
Simulator of Distributed Datasets
for Pulse-wave DDoS Attacks

Pascal Kiechl
Zurich, Switzerland

Student ID: 16-927-998

Supervisor: Dr. Bruno Rodrigues, Katharina O. E. Müller, Prof. Dr.
Burkhard Stiller

Date of Submission: August 06, 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Die fortlaufend zunehmende Stärke und Häufigkeit von Distributed Denial-of-Service
(DDoS) Angriffen, sowie auch das Aufkommen neuer Angriffsmethoden, wie zum Bei-
spiel Pulse-Wave DDoS Angriffe, betonen wie wichtig es ist, dass Gegenmassnahmen mit
der eskalierenden Bedrohung mithalten können. Zu diesem Zweck wurde bereits viel For-
schung betrieben, die das Ziel hat, DDoS Datensätze zu generieren, welche die Grundlage
für die Entwicklung von Gegenmassnahmen wie Intrusion Detection Systems (IDS) legen.

Allerdings repräsentieren bestehende Datensätze in der Regel einen einzelnen, Opfer-
basierten Blickwinkel, was gegenüber einem verteilten Datensatz limitiert ist, da dieser
zahlreiche verschiedene Perspektiven auf einen Angriff beinhaltet. Daher implementiert
diese Arbeit einen Simulator der solche verteilte Datensätze generieren kann. Dabei wird
der Fokus auf Pulse-Wave DDoS Angriffe gelegt, da für diese bis anhin keine öffentlich ver-
fügbare Datensätze existieren. Der Simulator ermöglicht die Kreation von verschiedenen
Topologien und Angriffs-Zusammensetzungen durch hohe Flexibilität in den Konfigurati-
onsmöglichkeiten.

Die Auswertung zeigt die Fähigkeit des Tools eine grosse Vielfalt von verschiedenen Daten-
sätzen zu erzeugen, die unterschiedliche Eigenschaften aufweisen bezüglich häufig verwen-
deter DDoS Fingerabdruck-Metriken. Daher repräsentiert diese Arbeit einen bedeutenden
Schritt vorwärts in der Erforschung von Pulse-Wave DDoS Angriffen, was die Entwicklung
verbesserter Gegenmassnahmen unterstützt.

i

ii

Abstract

The ever increasing scale and frequency of Distributed Denial-of-Service (DDoS) attacks,
as well as the emergence of new forms of attacks, such as pulse-wave DDoS attacks,
highlights the importance of ensuring that mitigation capabilities are able to keep up
with the escalating threat posed by DDoS attacks. To that end, much work has been
done with regard to the generation of DDoS datasets which form the basis for developing
effective mitigation tools such as Intrusion Detection Systems (IDS).

However, existing datasets typically represent a single, victim-centric viewpoint, which has
limitations compared to a distributed dataset that provides multiple different perspectives
onto an attack. Thus, this thesis implements a simulator for distributed datasets specifi-
cally focused on pulse-wave DDoS attacks, for which at current no datasets are publicly
available. The simulator provides high flexibility and configurability in the types of use
cases that can be modeled, allowing for the creation of different topologies and attack
compositions.

The evaluation demonstrates the tool’s capability to create of a wide range of diverse
datasets that exhibit different characteristics with regard to metrics that are commonly
used in a DDoS attack’s fingerprint. As such, this thesis represents a significant step
towards enabling a better understanding of pulse-wave DDoS attacks and thereby the
development of improved tools to help defend against them.

iii

iv

Acknowledgments

I wish to express my gratitude to the people who have supported me throughout this thesis.
My supervisors Dr. Bruno Rodrigues and Katharina Müller deserve special thanks for
their efforts and so does Prof. Dr. Burkhard Stiller to whom I owe the opportunity to
work on this project at the Communication Systems Group at the UZH.

Dr. Bruno Rodrigues in particular has provided me with invaluable guidance and support.
He has always been available for discussions and has given important feedback throughout
the entirety of the project.

Finally, I would like to thank Fabian Küffer for his assistance with proofreading the report.

v

vi

Contents

Abstract i

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Goals . 2

1.3 Methodology . 2

1.4 Thesis Outline . 3

2 Fundamentals 5

2.1 Background . 5

2.1.1 Distributed Denial-of-Service (DDoS) 5

2.1.2 DDoS Datasets . 10

2.2 Related Work . 12

2.2.1 Pulse-Wave DDoS Attacks . 12

2.2.2 DDoS Dataset Generation . 13

2.2.3 Discussion . 16

3 Design 19

3.1 Prototype Requirements . 19

3.2 Application Scenario . 20

3.2.1 IXP and AS Topology . 20

vii

viii CONTENTS

3.2.2 AS Internals . 20

3.2.3 Attack Configurability . 21

3.2.4 From Generic Scenario to Specific Use Case 22

3.3 Architecture . 22

3.3.1 Configuration Parsing . 23

3.3.2 Topology Construction . 23

3.3.3 Traffic Models . 23

3.3.4 Attack- & Pulse-Wave Scheduling 24

3.3.5 Traffic Capture . 24

3.3.6 Logging . 24

4 Implementation 25

4.1 Framework Selection . 25

4.2 Implementation as NS-3 Module . 26

4.3 Component Implementations . 27

4.3.1 Main Script . 28

4.3.2 Configuration Parsing . 33

4.3.3 Topology Construction . 41

4.3.4 Traffic Models . 53

4.3.5 Attack Scheduling . 62

4.3.6 Traffic Capture . 65

5 Evaluation 69

5.1 Attack Vector Variability . 69

5.1.1 Variable Attack Vector Composition 70

5.1.2 Variable Pulse-Wave Patterns . 74

5.2 Distributed Perspective . 76

5.3 System Scalability . 78

5.4 Takeaways from Developing with NS-3 . 81

5.5 Discussion . 88

CONTENTS ix

6 Final Considerations 93

6.1 Summary . 93

6.2 Conclusions . 94

6.3 Future Work . 95

Bibliography 96

Abbreviations 103

List of Figures 103

List of Tables 106

List of Listings 107

A Contents of the CD 111

B Installation Guidelines 113

B.1 Distributed Pulse-Wave DDoS Simulator 113

B.2 Evaluation Scripts . 115

C Additional Figures 117

D Evaluation Scripts 119

x CONTENTS

Chapter 1

Introduction

Distributed Denial-of-Service (DDoS) attacks represent a persistent threat to network
security in today’s world, with attacks continuously increasing in terms of complexity and
sophistication [64, 65]. In 2017, the term pulse-wave DDoS attack was coined and applied
to a new approach to performing DDoS attacks [77]. Pulse-wave DDoS attacks are capable
of generating high amounts of traffic with near-immediate ramp up, producing short and
repeating bursts of DDoS traffic that have proven detrimental to DDoS mitigation systems,
specifically so-called appliance first hybrid mitigation systems [77].

Frequently, an Intrusion Detection System (IDS) is one of the most important systems for
ensuring the secure operation of a network and usually represents the first line of defense,
receiving and analyzing incoming traffic before the traffic arrives at an Intrusion Preven-
tion System (IPS), such as a firewall appliance [20]. IDSs rely on comparing inbound
traffic to known characteristics of previous attacks (fingerprints) to raise alerts on poten-
tial attacks [5]. Therefore the generation of network traces to evaluate the effectiveness
of an IDS’s signatures and to update the system to match previously undetected cases is
critical [47].

1.1 Motivation

One limitation of existing DDoS datasets in general is that they frequently focus on the
victim, i.e., the target of the attack [1, 5]. While considering the victim’s point of view
is a relatively simple and efficient approach to understanding and profiling simple attack
patterns, such as volumetric attacks, it has a limitation in understanding the origins of
systems orchestrating such attacks, such as Botnets [67]. The benefits of abandoning
the victim-centric perspective in favor of a distributed view onto an attack are significant,
providing a more complete picture of the attack as it evolves on its path towards the victim
and ideally enabling the prevention of the attack before it reaches its target through the
application of cooperative DDoS mitigation techniques [64].

Thus, this thesis proposes an approach for the generation of such distributed datasets
specifically with pulse-wave DDoS attacks mind, thereby filling a gap in existing research.

1

2 CHAPTER 1. INTRODUCTION

As such the major contribution of the thesis is the open source prototype system capa-
ble of generating a diverse range of distributed pulse-wave datasets that exhibit specific
characteristics based on user configuration. The resulting datasets provide the founda-
tional input for the future creation of pulse-wave DDoS attack fingerprints based on a
distributed perspective, thus enabling further research and contributing to the develop-
ment of collaborative DDoS mitigation techniques centered around pulse-wave attacks.

1.2 Thesis Goals

Consequently, the main objective of the thesis is the design and implementation of a
prototype system that is capable of producing pulse-wave DDoS traffic traces in form of
a distributed dataset.

Furthermore, the prototype must operate in a way that allows the characteristics of the
generated dataset to be determined by configurable parameters such as the protocols used
in the attack, the overall topology and other factors that are used in determining attack
signatures. In this way, the system-to-be shall support the execution of a wide range of use
cases and pulse-wave attacks that result in distributed datasets which show characteristics
that are indicative of having different attack fingerprints.

Lastly, the thesis must evaluate the proposed system regarding its capabilities to generate
diverse, distributed pulse-wave datasets as well as analyse the system’s scalability such
that its ability to simulate large-scale use cases can be determined.

1.3 Methodology

The methodology applied to this thesis is as follows: As a first step, a literature review is
conducted with the goal of obtaining the necessary theoretical foundation needed to build
such a simulator. This review naturally includes the topic of pulse-wave DDoS attacks,
but also covers dataset generation in the realm of DDoS traffic analysis, as well as general
fundamental knowledge about DDoS attacks.

This is followed by designing and implementing the system, making use of the insights
acquired in the literature review. The phases of design and implementation are somewhat
less clearly separated, with learnings from implementing being fed back into the design,
thus lending a somewhat exploratory character to this part of the work.

The evaluation represents the last link in the chain of activities, with focus being put on
demonstrating the prototype implementation’s capabilities regarding the generation of a
wide range of different pulse-wave patterns and attack vector characteristics. A second
point of focus is the analysis of how the system performs and scales. Though achieving
scalability is not a direct goal of this thesis, insights gained from analyzing the system’s
capabilities in this regard are still is relevant to determine the development path of the
prototype going forward.

1.4. THESIS OUTLINE 3

1.4 Thesis Outline

The rest of the thesis is structured as follows: In Chapter 2 the required foundational
knowledge regarding DDoS, including pulse-wave DDoS and dataset generation is estab-
lished. Further, existing work in the realms of dataset generation and pulse-wave DDoS
attacks is examined and contrasted against this thesis. The design of the system-to-be is
described in Chapter 3 and the subsequent implementation is documented in Chapter 4.
Then, the system is evaluated and the findings are discussed in Chapter 5. Finally, in
Chapter 6, the results of this work are summarized, conclusions are drawn and possible
future work is outlined.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals

The purpose of this chapter is twofold, as it aims to lay the theoretical groundwork needed
for the proper understanding of the discussed material and provide the relevant practical
and research context in which this work is situated.

Thus, in the background section, the theoretical basis is established, whilst the related
work section discusses prior work done in the realm of Distributed Denial-of-Service
(DDoS) attack dataset generation and existing literature regarding pulse-wave DDoS at-
tacks.

2.1 Background

In this part of the thesis, the concepts surrounding DDoS, including a coarse-grained
categorization of attack types and the possible motivation of the attackers are explained.
Further, pulse-wave DDoS attacks are differentiated from ‘regular’ DDoS attacks and the
topic of DDoS attack datasets, the role they play in research, their availability and the
ways they can be generated are discussed.

2.1.1 Distributed Denial-of-Service (DDoS)

Fundamentally speaking, a Denial-of-Service (DoS) attack aims to disrupt the use (i.e.,
service) of a network resource [8, 46]. If successful, such an attack usually either makes the
targeted service completely unavailable or only available at lower performance, causing
harm to both service providers and service users alike [8].

DDoS attacks constitute a logical step in the evolution of DoS attacks, in which not just
one but multiple attacking entities are used in combination to achieve service denial [46].
The distributed nature of DDoS attacks makes them both more potent in terms of e.g.,
the traffic volume it can generate and more difficult to defend against when compared to
their non-distributed counterpart [24].

5

6 CHAPTER 2. FUNDAMENTALS

2.1.1.1 Incentives for Attackers

The reasons for executing a DDoS attack vary greatly, as do the targets of the attacks,
ranging from government institutions, over commercial and political targets, to private
individuals [45, 46]. [12] outline how the practice of performing DDoS attacks has spread
over time from ‘hacker culture’ for the purpose of social protest and pranks to being
adopted by organized crime, nation states and governments for financial gains and control.

Five categories of motivations for conducting DDoS attacks are put forth by [45]:

• Financial or economic benefit: Attacks carried out in pursuit of monetary gains are
typically performed by experienced technicians. Thus, considered highly dangerous
and difficult to stop.

• Revenge: Typically, attacks in this category are conducted by lower-skilled individ-
uals who feel slighted or oppressed.

• Ideological belief : Ideologically motivated attacks are not as frequent but have
historically made up some of the most highlighted DDoS events, such as e.g., the
DDoS attack on WikiLeaks in 2010.

• Intellectual challenge: Attacks falling under this category serve the purpose of
demonstrating the attackers’ skills and capabilities. Readily available and user-
friendly tools constitute an important facilitating factor for this category.

• Cyberwarfare: This category contains attacks perpetrated on countries by other
countries or terrorist organizations, typically conducted by skilled people with sig-
nificant resources. Consequently, the impact on the target’s infrastructure and econ-
omy is potentially debilitating.

2.1.1.2 Categories of DDoS Attacks

DDoS attacks do not just vary in terms of motivation and the types of attackers and
targets, as outlined in Section 2.1.1.1, but also in terms of their technical makeup [8,
45, 46]. Crucially, the tools and mechanisms used by attackers continue to increase in
sophistication, and new options are continuously being explored to circumvent existing
defensive measures [8, 45, 46].

Given the ever-evolving nature of DDoS attack mechanisms, taxonomies and classifications
(cf. taxonomies put forth by [45, 46]) of attack methods will need to be continuously
refined. The aforementioned taxonomies represent powerful and detailed means for the
classification of attacks, but for the purpose of this work, it is sufficient to maintain a
comparatively coarse-grained categorization of DDoS attacks into two major categories,
which represent high-level categories of the taxonomy established by [8]:

• Application Layer Attack (‘Resource Exhaustion Attack’ in [45]): DDoS attacks
falling under this category aim to exhaust the resources of the host system (i.e.,

2.1. BACKGROUND 7

server), such as memory, CPU, disk bandwidth and sockets to ultimately render the
system unresponsive or make it crash completely [8, 45].

• Network Layer Attack (‘Bandwidth Depletion Attack’ in [45]): This group of at-
tacks targets the victim’s network bandwidth or routing capacity, thus rendering
it incapable of processing legitimate user’s service requests [8, 45]. In that way,
bandwidth depletion attacks undermine the victim’s connectivity, rather than di-
rectly targeting its ability to provide its services, the way a resource depletion attack
would [8].

2.1.1.3 Pulse-Wave DDoS Attacks

A pulse-wave attack is a new mechanism for orchestrating DDoS attacks that has emerged
relatively recently [3, 16]. This attack mechanism is characterized by consisting of ‘pulses’
of short-duration but high-rate traffic, making it different from more traditional forms of
DDoS attacks, which consist of traffic that ramps up much slower, but then is maintained
for longer periods of time [3, 16].

To exemplify that difference visually, Figure 2.1a shows two examples of pulse-wave DDoS
attacks with their characteristic traffic spikes (i.e., pulses), whereas the conventional way
of performing a DDoS attack and the corresponding traffic pattern is shown in Figure 2.1b.

(a) Pulse-Wave DDoS Attack [77] (b) Traditional DDoS Attack [77]

Figure 2.1: Comparison of Pulse-Wave and traditional DDoS attack Mechanisms [77]

This pulse-wave manner of performing the attack results in a number of characteristics
that make pulse-wave attacks effective at outmaneuvering DDoS defense systems:

• High attack vector adaptivity: Each pulse can, and typically does, make use of
a different attack vector [3, 39]. Which gives it the ability to circumvent DDoS
defenses that are not ‘generic’, meaning they are only capable of mounting a proper
defense against a specific set of attack vectors [3].

8 CHAPTER 2. FUNDAMENTALS

• Ability to attack multiple targets at once: The attacking entity (e.g., botnet) does
not, for lack of a better term, ‘cease operation’ after a traffic burst, but rather
changes the target with each pulse, giving it the ability to maintain an attack on
multiple targets at once [16, 39, 77]. This also explains how the attack manages to
achieve that rapid traffic ramp-up, as the attacking entities are not being marshalled
at the beginning of the attack but rather have already been operating at the desired
capacity, thus creating these immediate traffic spikes [77].

• High longevity of attack: Besides high attack vector adaptivity, another effect of
constantly altering the attack vector when combined with the short duration of the
traffic pulse is that it forces the DDoS defense to continuously rerun its analysis of
what defensive measures need to be deployed to deal with the currently incoming
pulse [3] appropriately. As [3] puts it, pulse-wave attacks target “the Achilles’ heel
of state-of-the-art DDoS defense”, referring to their reaction time. This ability of
pulse-wave attacks to constantly force the defense to reconsider its measures allows
the attack to be maintained for long periods of time [16].

That last point in particular bears further explanation. As [77] explains, pulse-wave
attacks are particularly efficient at disrupting so-called ‘appliance-first hybrid mitigation’
systems.

Such mitigation systems are usually sufficient to deal with the traditional DDoS attack
forms which possess the already discussed slow ramp up [77]. This ramp up gives the
on-premise part of the mitigation system enough time to activate the cloud-based part
of the mitigation topology (hence the term ‘hybrid’) where incoming traffic then is being
scrubbed [77]. An example of such an appliance first hybrid mitigation topology is shown
in Figure 2.2.

Figure 2.2: Appliance First Hybrid Mitigation [77]

2.1. BACKGROUND 9

With a pulse-wave attack however this does not work due to the immediacy of the attack
which does not afford the on-premise component the necessary time to react and activate
the cloud scrubbing, as the network is congested as soon as the attack starts [77].

Worse still, this also prevents the creation of an attack signature, meaning that even if
the cloud scrubbing platform manages to get activated it does not have the necessary
information about the attack to start scrubbing the traffic [77]. Instead it has to first
determine the attack signature itself [77].

Such pulse-wave DDoS attacks are characterized by [39] as ‘sophisticated’ with a require-
ment of having a high degree of control over the attacking entities in order to achieve the
precise orchestration which is so characteristic of pulse-wave attacks.

This leads [39] to conclude that pulse-wave attacks are likely executed using ‘proprietary
botnets’, made up of “a relatively small number of high-capacity, connected devices (e.g.,
servers).”

The only statement in the literature regarding the exact attack vectors that are commonly
used in pulse-wave attacks is found in [19], which specifically mentions ICMP flooding,
UDP flooding, and TCP SYN flooding as possible candidates.

2.1.1.4 DDoS Attacks in Internet of Things (IoT) Networks

The topics of IoT and DDoS are intrinsically intertwined due to the role IoT devices play
in events such as the series of DDoS attacks performed by the Mirai botnet in 2016 [6].
Another way in which the two topics are connected is through the attack surface IoT
networks present towards DDoS attacks, resulting in attacks that exploit specific aspects
of IoT networking such as those described in [1]:

• RPL DIS Flooding attack: A DDoS attack, where the victim node is flooded with
messages, specifically RPL DIS messages used for ‘neighbour discovery’ (cf. [40]),
leading to loss of node service and potentially battery exhaustion.

• Selective forwarding attack: This attack is characterized by selectively dropping
specific packets, which can lead to Denial-of-Service when combined with e.g., a
‘sinkhole attack’.

• Blackhole attack: During such an attack, all packets are dropped, negatively affect-
ing the IoT network topology and denying service by preventing the packets from
reaching their destination.

This has lead to a collection of DDoS literature specifically focused on IoT networks, as
is explored in Section 2.2.2.2

10 CHAPTER 2. FUNDAMENTALS

2.1.1.5 DDoS Attack Signatures

Attack signatures of DDoS attacks (also called ‘fingerprints’) play a key role in com-
bating DDoS attacks and are often used by intrustion detection systems (IDS) for that
purpose [20]. Such attack signatures comprise the key characteristics of observed DDoS
attacks [20]. Example criteria of characteristics used in attack fingerprints include source
and destination ports, average packets per second, average datarate, source IP addresses,
attack duration, time-to-live values on packets and autonomous system (AS) numbers [34].

IDSs that rely on the use of attack signatures, analyze incoming traffic and compare
them against their database of known fingerprints [34]. This enables the IDSs to detect
if an attack is being conducted [34]. Note though, that this only works for known DDoS
attacks and if attack traffic that does not match known fingerprints is analyzed by the
IDSs they will not be able to recognized them attacks, at least not based on the fingerprint
analysis [34]. To complement fingerprint based attack detection IDSs may use anomaly
detection such that even attacks whose signatures are not known have a chance of being
detected [20]

2.1.2 DDoS Datasets

Datasets containing network traces of DDoS attacks are a valuable resource for the devel-
opment of defensive mechanisms such as an IDS, specifically ‘anomaly-based IDSs’, where
machine learning (ML) models trained on those datasets are used to differentiate regular
from malicious traffic [1, 5].

Given the critical role of DDoS datasets in the training process of such models and the
fact that the methods and mechanisms of DDoS attacks keep evolving, having high-quality
and up-to-date datasets available that appropriately capture the characteristics of attacks
is key to the process of developing good anomaly-based IDSs [1, 67].

2.1.2.1 Availability of High Quality Datasets

As [67] point out in their analysis of datasets, both from real DDoS attacks, as well as
gathered from simulations, none of the datasets they analyzed were up-to-date enough to
include more modern DDoS attacks. Other shortcomings include insufficient real-world
closeness (e.g., due to insufficiently sophisticated simulation setups), anonymization of
traffic data, or lack of traffic completeness [67]. Similar findings were reported by [1]
and [5] in their analysis of existing datasets.

Suitable datasets from real DDoS attacks in particular are difficult to come by, as they
tend to suffer from anonymization or simply being outdated, as already established. Ad-
ditionally, getting access to them can come with its own set of hurdles and restrictions
regarding how the data is allowed to be used, cf. the request form for the CAIDA ‘DDoS
Attack 2007’ dataset [14].

2.1. BACKGROUND 11

In sum, this indicates that there is a lack of availability when it comes to suitable DDoS
datasets or, as [67] puts it, “having a suitable dataset is a significant challenge itself”.

Moreover, to the best of the author’s knowledge, there are no publicly available DDoS
datasets.

2.1.2.2 The Role of DDoS Dataset Generation

As established in Section 2.1.2.1, high-quality datasets can be difficult to come by, es-
pecially when the focus is put on more recent trends in DDoS attack methods. This
highlights the importance of having some means to generate suitable datasets to e.g.,
develop or refine IDSs [5].

As [67] mention in their analysis of existing datasets, simulated datasets risk being too
far removed from real-world outcomes. However, generating datasets by conducting real-
world DDoS attacks is both difficult and costly, thus not a viable option for most research
projects [5].

This means that a setup for mimicking DDoS attacks is the prevalent method within
the research for generating datasets [5]. To avoid a situation where datasets are being
produced that ultimately lack real-world closeness, the configuration and the design of
the generation setup are critical [5]. For example, the capabilities of the underlying tools
used to implement the generator and ultimately generate traffic must be well suited to
the generator’s attack scenarios to mimic [5].

2.1.2.3 Dataset Generation Techniques

There exist different approaches to mimic DDoS attack traffic and ultimately generate
a dataset, which all present distinct advantages and disadvantages when compared with
one another [10]:

• Real-world Traffic: This approach represents the most suitable one when it comes
to real-world closeness, as the network in which the traffic for the attack scenario
is generated is constructed directly in hardware, i.e., physical routers, computers
and switches. This comes at the expense of flexibility, as each scenario has to be
physically configured. Additionally, the used hardware is associated with significant
costs and the generator cannot be shared, for when e.g., the setup is to be reproduced
elsewhere as part of another work or for reproduction.

• Simulated Traffic: Simulation represents the other end of the spectrum when com-
pared to the real-world traffic approach. The network topology is modeled virtually
and so is all the traffic generated within, and as such, there are shortcomings related
to the realism of the generated traffic. However, due to its purely virtual nature,
the setup is flexible, can be shared, and is low cost. Further, the approach benefits
from scalability.

12 CHAPTER 2. FUNDAMENTALS

• Emulated Traffic: Emulation is a combination of aspects of the simulation and
real-world traffic approaches. The network topology is simulated, but the attacker
and target nodes are physical machines. As such, emulation inherits benefits and
drawbacks of both the simulation and real-world traffic generation approaches, re-
sulting in a setup that is configurable, but does incur some hardware costs, and is
considered not scalable.

2.2 Related Work

The Section of the thesis is divided into three parts, the first of which serves the exploration
of prior work that directly deals with pulse-wave attacks, with the second part being
reserved for the examination of existing literature related to DDoS dataset generation. In
the final part, the findings are discussed and this work is contrasted with existing research.

2.2.1 Pulse-Wave DDoS Attacks

Pulse-wave DDoS attacks have been given some attention in recent literature, with [9,
25, 41, 42] all recognizing them as a new form of DDoS attack.

A number of research projects have been conducted regarding defensive measures that are
capable of recognizing pulse-wave attacks. They are explored in the following paragraphs.

[16] developed an algorithm in the form of a binary classifier that is capable of detecting
malicious traffic with high accuracy. The appearance of a high numbers of unique IP
addresses serves as trigger for the algorithm, signaling the start of an incoming pulse-
wave attack [16]. The classifier then flags the addresses as either bots or legitimate users
based on the trained classifier [16]. Unfortunately, the classifier shows a false positive rate
of approximately 10 - 15%, which would lead to a significant portion of legitimate user
traffic also being blocked [16]. This is solved by not blocking the IP addresses flagged
as bots, but by moving them to a separate message queue with limited bandwidth, thus
reducing the impact of the attack [16].

Though through a different approach, [3] also propose a mechanism to defend against
pulse-wave attacks specifically. The mechanism they develop is an evolution of ‘Aggregate-
based Congestion Control’ (ACC), a technique for dealing with high-bandwith traffic
aggregates based on IP-prefixes [3]. ACC is capable of providing protection against tradi-
tional DDoS attacks, but cannot cope with the nature of traffic generated by pulse-wave
attacks, as the reaction time is too slow due to so-called ‘offline inference’ and the con-
figuration of the defense activation threshold introduces a tradeoff of further degrading
response time or compromising accuracy through high false positive rates [3]. [3] remedy
this in ‘ACC-Turbo’, where the inference is brought ‘online’ (i.e., runs in the data plane),
the inference mechanism is modified, and programmable scheduling is introduced. This
results in an approach that is capable of providing good protection against a range of
simulated DDoS attack types, including pulse-wave [3].

2.2. RELATED WORK 13

A number of other projects centered around defense against DDoS attacks, in general,
have also shown capabilities of dealing with pulse-wave attacks or are expected to show
effectiveness against them, though these works are not specifically concerned with pulse-
wave attacks. [15] develop a collaborative real-time defense framework for deployment
in 5G networks that has been able to provide protection against simulated pulse-wave
attacks. [63] propose an ‘entropy based’ approach to detecting pulse-wave attacks and
other difficult to deal with attack variants. Finally, related to internet exchange points
(IXP) [75] introduce ‘IXP scrubber’, a ML-based, continuously learning system that is
deployed at IXPs. Its purpose is to detect DDoS traffic, and the authors state that it
should be capable of detecting pulse-wave attacks [75].

To the best of the author’s knowledge, no work has been done on generating DDoS datasets
that specifically deal with pulse-wave attacks.

2.2.2 DDoS Dataset Generation

Existing work done on dataset generation can be examined through different lenses. The
first criterion to examine, discussed in Section 2.2.2.1, is the generation mechanism used
to create the dataset, resulting in a categorization along the mechanisms discussed in
Section 2.1.2.3.

The second criterion is about specialization, i.e., whether the purpose of the generation
is to create a specialized dataset that is more applicable to networking environments that
differ from the norm in certain aspects, such as topologies or protocols. Such environments
may present a different attack surface when it comes to DDoS, thus benefit from datasets
that take these differences into account [1]. Alternatively, the specialization could be
regarding the type of attack, by being focused on generating data for a specific DDoS
attack or attack mechanism. This criterion is discussed in Section 2.2.2.2.

2.2.2.1 Examination of Existing Work regarding Dataset Generation Mechanism

Traffic generation and, thus ultimately, the generation of datasets through simulation is
widespread in the existing literature (cf. works by [4, 5, 21, 43, 48, 71, 72]).

[5] for example, develop a traffic generator using the OMNeT++ simulation framework [59]
to simulate a set of DDoS attack types as they might occur from different data centers
around the globe. Specifically, the focus was put on UDP flooding, TCP-SYN, HTTP-
GET, and ICMP flooding attacks, with the generator being configurable regarding pa-
rameters such as message size and send-intervals [5]. [5] see the generator as a promising
first step in their plans to use the generated data for the development of a new IDS.

In [48], IXIA’s PerfectStorm is used to simulate both normal and attack traffic against
two groups of hosts, one group each for normal and attack traffic, respectively. Traffic
is captured using tcpdump, allowing for further processing with the goal of the resulting
dataset being the development of IDSs [48]. The generator interestingly does not only

14 CHAPTER 2. FUNDAMENTALS

support the simulation of Denial-of-Service attacks but is also capable of simulating differ-
ent attack traffic such as backdoor attacks or worms, though the authors, unfortunately,
do not provide a concrete list of specifically supported attacks [48].

[43] take a different approach by using Node-red, a middleware for connecting physical
IoT devices with backend infrastructure, and write code that mimics IoT sensor output,
thus simulating a set of IoT services for different scenarios such as smart home and
weather stations. These simulated services, combined with a set of both attacking and
normal virtual machines and a firewall, form the testbed environment [43]. This enables
the generator to simulate normal traffic and attack traffic for different IoT scenarios and
attacks, including DDoS attacks, specifically TCP-SYN and UDP flooding using Hping3
and HTTP-based attacks using Golden-eye [43]. [43] further train ML models on the
generated datasets showing high accuracy in detecting the simulated DDoS attack types.

Emulation to generate datasets has appeared less frequently in the reviewed literature
than the simulation or real-world traffic generation alternatives.

[1] propose a framework for real-time dataset generation, using Cooja and intricate net-
work topology to emulate an IoT networking environment. The topology comprises groups
of homogeneous sensor nodes and network sniffers for monitoring and data collection [1].
To further enhance real-world closeness, [1] add two ‘distributor nodes’ dedicated to
emitting IoT-typical noise signals. The framework supports four modes of operation: nor-
mal behaviour, representing regular network traffic, and three different attack scenarios,
namely: flooding using RPL DIS messages, selective forwarding and blackhole attacks,
detailed in Section 2.1.1.4. Data collection makes use of Sensniff and the Libpcap library
to enable the capturing of data at the MAC layer [1].

Another example of emulation is found in [10] that developed ‘Botloader’, a traffic gener-
ator for DDoS attacks and flash events (high load but legitimate traffic). The Botloader
framework implements two distinct networks, the so called ‘attack-network’ and the ‘man-
agement network’ [10]. The attack-network is comprised of a set of host-machines that use
IP-aliasing to each act as a group of attackers or legitimate users, based on the executed
scenario [10]. One of the host-machines in the attack-network is dedicated to performing
orchestration tasks, such as e.g., configuring the scenarios executed in the other host-
machines [10]. The behaviours of the machines, both for flash events and attacks, are
implemented in so-called ‘modules’ that are applied to a host-machine during orchestra-
tion [10]. The behaviour is further configurable through a suite of parameters such as
traffic rates, duration of emulation, and the number of bots [10]. The traffic emitted by
the host machines is passed through a layer 3 switch, which then connects it to the target
host [10]. One of the framework’s shortcomings is found in the data capturing process,
which in future work is to be moved to a separate machine, which would eliminate the
need to run certain scenarios twice, once for capturing and once without, so the resource
consumption for capturing can be accounted for [10].

Dataset generation through real-world traffic sees widespread use as well (cf. works by
[2, 18, 66, 67, 72]), somewhat surprisingly so, given its cost and inflexibility, as discussed
in Section 2.1.2.3.

2.2. RELATED WORK 15

[66] presents an architecture consisting of two separate real-world networks, the attack-
network, and the victim-network. The attack network comprises a router, a switch, and
four computers, running a mix of Linux Kali and Windows operation systems [66]. The
victim-network is larger, consisting of three servers, ten computers, two switches, a fire-
wall, a router, and a domain controller. One main switch port is mirrored to capture
all network traffic on a separate server [66]. The computers in the victim-network run a
combination of the three major operating systems by Linux, Windows, and MacOS [66].
Benign activity in the victim-network is provided by Java-based agents, developed with
insights from profiling behaviours of users based on a set of network protocols, such as
HTTPS and SSH [66]. The dataset generator supports a range of different attacks, some of
which are DoS and DDoS attacks, implemented using tools such as Slowloris, GoldenEye,
and Low Orbit Ion Canon (LOIC) [66].

Some of the authors of [66] use a similar setup in [67], where they alter the scope of the
generator by focusing specifically on generating data for a diverse set of up-to-date DDoS
attacks. The architecture is slightly changed by reducing the size of the victim-network
and having the attack-network be provided by a third party, which is also responsible for
conducting the DDoS attacks [67]. This generator supports twelve different DDoS attack
profiles, including WebDDos, LDAP and SYN attack scenarios [67].

Another example of real-world traffic-based dataset generation can be found in [18], where
the network comprises parts of a real-world in-use academic network, spanning the five
largest cities in Lithuania. This allows for capturing actual real-world normal behaviour
traffic, as in real-world traffic that does not stem from artificially generated traffic in a
sandbox environment [18]. The generator supports twelve network-attack types, including
DoS and DDoS attacks, such as TCP-SYN, HTTP-flooding and UDP-flooding [18].

If the term ‘generation’ is applied less strictly, then there is also the option to create
datasets without actually generating any traffic, real or simulated, which in this thesis
makes the term ‘transformation’ more suitable. An example of dataset generation through
transformation can be found in [31], where benign datasets are injected with attack-
activity, thus synthetically generating a new dataset that contains DDoS attack traces.

2.2.2.2 Literature Focused on Generation of Datasets for Specialization

The topics of DDoS and IoT are related, as hinted at in Section 2.1.1.4. Unsurprisingly,
the literature review has identified a number of works that focus on generating DDoS
datasets that satisfy specific qualities of IoT networks (cf. works in [1, 21, 43, 72, 73]. For
example, [1] present a generation framework, which takes into account IoT-typical levels
of signal noise and attacks that exploit topologies and protocols used in IoT networks. [43]
develop a testbed environment that is capable of simulating IoT scenarios such as smart
homes and weather stations and then incorporate these into their attack scenarios. As a
final example, [73] propose a new dataset for IDS development derived from a simulated
environment that refines existing work, such as the aforementioned [43], by adding more
regular traffic features and optimizing other parameters.

Another area of specialization is termed ‘vehicular ad hoc networks’ (VANETs), with
works such as [4]. [4] present a dataset that takes into account VANET characteristics,

16 CHAPTER 2. FUNDAMENTALS

such as rapid mobility of network nodes leading to topology changes and speed and density
of vehicles leading to variable connectivity. They simulate a realistic highway scenario for
vehicle-to-infrastructure DDoS attacks [4]

Container-based environments, like those found with Docker, represent the last area of
specialization encountered in the literature review. [71] in particular provide an example
of work done in this area, by proposing the first dataset that takes into account and is
generated within a containerized generator implemented using Docker and Docker swarm.

It should be understood that this list of areas of specialization should not be seen as
complete, as those are simply the areas encountered during the literature review, which
is not guaranteed to be exhaustive.

2.2.3 Discussion

The examination of existing work done concerning pulse-wave attacks and DDoS dataset
generation has yielded a few key insights.

First of all, whilst pulse-wave attacks are mentioned in the literature regarding emerging
threats in the domain of cyber-security in as early as 2017 (in [9]), they still have not
seen much attention when it comes to developing defensive measures, with only a small
number of projects being dedicated to dealing with pulse-wave attacks in detail. Further,
to the best of the author’s knowledge, no work has been done on developing a dataset or
a dataset generator for pulse-wave attacks.

Moreover, the examination of work that is specifically dedicated to building a dataset
generator or that builds a dataset generator as part of the project shows that the methods
of simulation and real-world traffic generation are more popular than emulation. Whilst
the prevalence of the simulation approach is to be expected, given its flexibility and low
barrier of entry, it is surprising to see that more projects have chosen real-world traffic
generation over emulation, since real-world traffic generation typically is associated with
certain hardware requirements (and costs) and suffers from inflexibility and an inability
to share or reproduce the setup (cf. Section 2.1.2.3). Lastly, to the best of the author’s
knowledge, all of the examined works dealing with dataset generation have focused solely
on the victim’s perspective, i.e., the traffic and impact as seen on the target machines or
network.

2.2. RELATED WORK 17

Table 2.1: Related Work Overview

Work Purpose
Specialization on
Specific DDoS Type

Distributed
Perspective

[5] Traffic Simulation ✗ ✗

[4] Traffic Simulation VANET ✗

[71] Traffic Simulation Docker ✗

[43] Traffic Simulation IoT ✗

[48] Traffic Simulation ✗ ✗

[21] Traffic Simulation IoT ✗

[73] Traffic Simulation IoT ✗

[1] Traffic Emulation IoT ✗

[10] Traffic Emulation ✗ ✗

[66] Real-World Traffic ✗ ✗

[67] Real-World Traffic ✗ ✗

[72] Real-World Traffic IoT ✗

[2] Real-World Traffic ✗ ✗

[18] Real-World Traffic ✗ ✗

[31] Dataset Transformation ✗ ✗

[3] Attack Mitigation Pulse-Wave ✗

[16] Attack Mitigation Pulse-Wave ✗

This work Traffic Simulation Pulse-Wave ✓

Table 2.1 presents an overview of the examined literature, showing that this work presents
a novel approach by combining a focus on simulating pulse-wave attacks with a distributed
perspective, i.e., the implementation of a distributed pulse-wave DDoS dataset generator
that aims to present data about the captured traffic at different points in the network on
the path from sender to recipient.

18 CHAPTER 2. FUNDAMENTALS

Chapter 3

Design

In this chapter, the requirements for the system-to-be are explored, and the design of the
prototype is captured. Section 3.1 lists the system requirements. The primary use case
implemented by the prototype is described in detail in Section 3.2. Finally, the prototype’s
architecture is discussed in Section 3.3.

3.1 Prototype Requirements

The following requirements were formulated for the prototype system:

• R1: Distributed Perspective: The prototype shall be able to capture traffic at
different points of the modeled topology for later analysis to have more data to
work with than with a single point of view, resulting in a more complete view onto
the attack.

• R2: Variability of Pulse-Wave Patterns: The prototype shall be flexible regarding
what kind of pulse-wave attack patterns can be produced, regarding factors such as
the attack vectors, the duration, and the amount of traffic of a given pulse.

• R3: High Degree of Configurability: The prototype shall be built such that con-
figuration is possible for users not adept at writing code, i.e., configuration shall be
possible without making changes to the prototype’s code base. Furthermore, the
configuration options shall be understandable and, where possible, sensible default
settings shall be used to reduce the burden of configuration on the user.

• R4: Reproducability of Results: The prototype shall be able to consistently repro-
duce comparable results, given that it is ran under comparable circumstances and
with identical configuration, thus allowing for both the verification of results and
the reuse of results by other users for their work. For that purpose, the prototype
shall also be publicly available and have clear instructions regarding installation.

• R5: Extendability: Given the prototype nature of the system-to-be, the system shall
support extension through e.g., introducing additional attack vectors or different
topologies.

19

20 CHAPTER 3. DESIGN

3.2 Application Scenario

The prototype system implements a generic primary scenario. Generic because the sce-
nario’s goal is to serve as a basis for crafting specific use cases through the application of
configurations.

Primary because while the prototype only explicitly implements this particular scenario,
the prototype’s components are also built to be reused to construct, or contribute to,
one’s own separate use case. Note, though, that this does require interacting with the
code directly and cannot be done just through configuration. Refer to the Implementation
part of the thesis (Chapter 4) for more information on the how the components are
implemented.

As outlined in the introductory chapter (cf. Section 1.1), the distributed perspective is
a key aspect of the system-to-be, with different entities collaborating and pooling their
captured traffic traces to establish a more holistic view of an attack.

A good example for such an entity is an IXP. IXPs allow their connected members (typ-
ically each an Autonomous System (AS) [68]) to exchange traffic between each other
through the infrastructure of the IXP, as an alternative to sending traffic via the global
internet [70].

3.2.1 IXP and AS Topology

This relationship between IXPs and ASs is what the primary scenario is based on. Fig-
ure 3.1 illustrates the kind of topology that results from this relationship, with IXP nodes
forming connections amongst each other, allowing their connected ASs to communicate
with other ASs that are also part of this topology.

The number of IXP nodes and the number of ASs connected to each IXP node are subject
to configuration. The semantic meaning of the individual IXP nodes is left to be deter-
mined by whatever scenario the user wants to configure. For example, the IXP nodes
could all be part of the same (IX) Internet Exchange, such as e.g., the SwissIX ([69]), or
they could all be part of different but collaborating IXs. The IXP nodes also represent
the points in the topology where traffic traces are captured.

3.2.2 AS Internals

Figure 3.1 also provides a close-up view of one of the examples ASs. The prototype
implements three main types of components that populate a given AS; client nodes, server
nodes, and an AS gateway.

The AS gateway serves as the entry and exit point to and from the AS. In other words,
all traffic that crosses the threshold of the AS in either direction traverses through the AS
gateway. The AS gateway is also what connects a given AS to the IXP node it belongs
to.

3.2. APPLICATION SCENARIO 21

Client Node

Server Node AS Gateway

Autonomous System (AS) Internet Exchange Point (IXP) Node

Figure 3.1: Primary Scenario Example Topology

Client nodes are nodes that perform some action with a server node. Benign client nodes
represent legitimate users of a given server, making use of whatever service the server
offers. Malicious client nodes (i.e., attackers) perform coordinated pulse-wave DDoS
attacks against a subset of the server nodes. The number of client and server nodes
within each AS are subject to configuration and the same applies to which subset of
server nodes is part of the list of targets that are attacked by malicious client nodes.

The interactions between client and server nodes are not restricted to a given AS. Instead,
any client node has the capability to interact with any server node in any of the ASs that
are part of the topology. In fact, given that traffic is captured at the IXP nodes, any
intra-AS traffic never passes through any IXP node and is therefore not represented in
the captured traffic traces.

3.2.3 Attack Configurability

The attacks performed by malicious client nodes can also be finely tuned through con-
figuration regarding aspects such as the types of attack vectors that are being used, the
duration of the pulses, the time it takes to switch the attack from one target to the next,
the attack data-rate coming from each malicious client as well as the size of the packets,
and the source and destination ports.

The purpose of this configurability is to allow for the creation of use cases that result

22 CHAPTER 3. DESIGN

in distributed datasets that differ regarding properties which are typically used for at-
tack signature creation (cf. Section 2.1.1.5). The exact set of characteristics that will
be configurable either directly or indirectly depends on what is feasible within the traffic
simulation framework that is ultimately chosen and the timeframe of the thesis.

Desirable characteristics include the protocol used in an attack vector, attack duration,
average data rate and packet volume, source and destination ports, IP addresses and the
AS number [34].

3.2.4 From Generic Scenario to Specific Use Case

All this combined allows the prototype to execute a wide range of diverse use cases through
the application of configuration to the primary scenario.

If the user wants only to capture attack traffic traces of one specific attack vector but
with different data rates or packet sizes, then that can be configured. If the user wants to
have all attackers in one AS and all targets in another AS, then that can be configured. If
the user wants to have only one attack target, but have it hit with a variety of differently
configured attack vector pulses, then that can be configured too.

Ultimately the purpose of this design is about providing flexibility in terms of what use
cases can be simulated and thereby also ensuring that a wide range of distributed pulse-
wave datasets.

3.3 Architecture

Simulation Framework

Configuration
Parsing

Topology
Construction

Traffic
Capture

Logging

Config
File

.pcap

Traffic
Models

Attack /
Pulse Wave
Scheduling

.pcap
.pcap

.pcap
.pcap

.pcap
.pcap

Figure 3.2: System Architecture

Figure 3.2 depicts the non-technology-specific architecture of the system and shows the
main system tasks in the form of components. Additionally, the arrows indicate the flow
from configuration input to PCAP output.

3.3. ARCHITECTURE 23

3.3.1 Configuration Parsing

Configuration parsing encapsulates two key activities:

• Read from file: The first part of configuration parsing consists of identifying the
configuration file and reading it into the system for further processing. This includes
running some basic validation on key parts of the input.

• Fill missing optional values: The second part of configuration parsing is completing
the configuration input, i.e., filling in default values for optional parameters that
have not been specified in the configuration file.

An alternative approach to dealing with default values is to have them already be present
on whatever class or object will end up implementing the desired feature, instead of having
the default values be part of the configuration parsing.

The reason for having the default values be filled in during configuration parsing is that it
enables providing logging output of the entire configuration, including default values, all at
once. This provides the user with a more complete picture of what the final configuration
of the system actually looks like, once the properties that were not explicitly specified in
the configuration file are added. This would be more difficult to achieve, if default values
were distributed all throughout the system.

3.3.2 Topology Construction

The next task of the system is to construct the topology resulting from the parsed con-
figuration. Specifically, this includes the following steps:

• Determining central network (CN) topology: Building up the CN, i.e., the network
of IXP-nodes with the configured IXP-nodes and with the correct settings regarding
aspects such as bandwidth or delay.

• Instantiating ASs and connections to CN: Creating the ASs according to the con-
figuration and connecting them to the CN topology at the correct IXP-node.

• Creating nodes within each AS: Creating the configured amount of each type of
node within each AS.

3.3.3 Traffic Models

Once the topology has been established, each type of node within an AS needs to be able
to make use of the appropriate traffic models. For example, benign nodes need to have
access to a traffic model that allows them to generate background traffic when connecting
to a server node. Similarly, attacker nodes need to have access to traffic models that allow
them to create attack traffic that corresponds to the configured DDoS attack vectors.

24 CHAPTER 3. DESIGN

3.3.4 Attack- & Pulse-Wave Scheduling

Given the nature of pulse-wave attack, the attack traffic needs to follow a schedule that de-
termines when which attack vector is active and which target is currently being subjected
to the DDoS traffic.

This schedule is shared amongst all attacker nodes, due to the attack being executed in
a coordinated manner, thus it needs to be made available to all attacker nodes that are
part of the topology.

3.3.5 Traffic Capture

The final main component in the system is tasked with capturing traffic at the correct
locations of the topology and providing them to the user by producing PCAP files on the
local file system.

3.3.6 Logging

The system benefits from logging capabilities as they can help making the system easier
to understand. This is true, particularly during development, but also for the end-user,
as having some information regarding what the system is currently doing can be helpful.
In that sense, logging is not strictly required to build a functioning system but is still
desirable.

In this case, logging is primarily an important part of the configuration, as it provides
the user with insight about the final configuration, once default values have been used
to fill gaps in the configuration file (cf. Section 3.3.1). In fact, all parts of the system
can improve the user-experience by making use of logs, with the exception of the traffic
capture component that already produces user-oriented output in the form of PCAP files.

Chapter 4

Implementation

In this chapter, the details of the system implementation are discussed. To begin, the
selection of the network traffic simulation framework is justified in Section 4.1. Afterwards,
the high-level structure of the prototype as an NS-3 framework is outlined in Section 4.2.
Finally, the implementation of the components defined in Section 3.3 is outlined, discussing
each of them in turn.

Section 4.3 outlines the inner workings of the ‘main’ script which acts as the coordinating
entity of the system. Configuration parsing and validation is discussed in Section 4.3.2
and the construction of the simulation topology is elaborated in Section 4.3.3. This is
followed by an explanation of the traffic models (Section 4.3.4) and attack scheduling
processes (Section 4.3.5). Finally, Section 4.3.6 provides insight into the traffic capture
process.

Note that as per agreement with the supervisor of this thesis, AI tools such as Chat-
GPT [58] have been used for the purpose of coding assistance. However, none of the work
presented in this report and none of the code has been produced by AI, as the tools were
only used for ideation processes.

4.1 Framework Selection

The decision was made to implement the prototype with the NS-3 discrete event simulator.
The reasons for that are as follows:

• Well established: NS-3 is a common choice within academia regarding network
simulation. A brief serach for “ns-3 network simulator” on Google Scholar [30],
reveals dozens of hundreds of both recent and older publications.

• Actively maintained: NS-3 has had multiple releases this year already, with the
latest (v3.39 [56]) having occurred less than a week ago at the time of writing this
part of the report.

25

26 CHAPTER 4. IMPLEMENTATION

• Strong library support: NS-3 boasts an extensive list of library modules that cover
a wide range of topics and features ranging from different routing models to paral-
lelization using the message passing interface (MPI) standard [57].

• Open for extension: NS-3 is designed to support code contributions in the form of
modules, with the documentation providing detailed instructions on how to set up
and develop a new module [54].

• Built-in logging and tracing: NS-3 comes with built-in logging capabilities and has
a rich tracing system that, among other things, enables the capturing of traffic in
PCAP files [54].

• Extensive documentation and example scripts: NS-3 is well documented regarding
tutorials, code examples, and code API [54].

• Strong community support: NS-3 has a number of highly active community mem-
bers that offer their advice on NS-3 related issues on an open Google group fo-
rum [51].

• Previous experience within department: Other members of the department, specif-
ically within the Communication Systems Group (CSG) ([74]), have had experience
with NS-3 or are currently working on other projects that utilize NS-3 , thus enabling
the exchange of ideas, insights, and learnings.

This is not to say that other candidates, such as e.g., OMNet++ [59], also a discrete
event simulator, do not have comparable qualities and are not also valid choices, but as a
whole NS-3 made the most sense for this thesis, especially when taking into account other
members of the department already having had hands-on experience with the framework.

4.2 Implementation as NS-3 Module

As mentioned in Section 4.1, one of the reasons for choosing NS-3 is its design that allows
for the creation of modules that represent an easy way to integrate external code into an
NS-3 installation. This prototype is consequently implemented as such an NS-3 module.

The documentation contains detailed instructions regarding how such a new module is
to be constructed ([54]), thus, this section is limited to discussing the folder- and file-
structure created within the new module.

Listing 4.1: Top-level structure of new NS-3 Module

distributed-pulse-wave-simulator

↪→ /external

↪→ /helper

↪→ /model

↪→ /service

↪→ /wrapper

↪→ CMakeLists.txt

4.3. COMPONENT IMPLEMENTATIONS 27

Listing 4.1 shows the top-level structure within the created module. The role of the
CMake file CMakeLists.txt is discussed at length in the documentation, but to still
briefly explain its purpose on a high level: it is responsible for defining which files make
up the new module, i.e., are to be respected during the build process.

The directory /external is reserved for external libraries that are not NS-3 related but
that has been included within the module to make the installation process simpler by not
having to download files from other sources. It only contains a single file, rapidyaml-
0.5.0.hpp, which is the all-in-one header-only version of rapidyaml ([27]), a library that
provides .yaml file parsing capabilities. Its used during the configuration parsing is dis-
cussed in more detail in Section 4.3.2.1.

The directories /helper and /model contain files that operate on the level of NS-3 helper-
respectively, model-implementations. In other words, any files that follow the implemen-
tation structure of NS-3 , thus e.g., make use of the built-in TypeId system, are contained
in these two directories. This includes both files by other authors, such as the HTTP
traffic model by [28], and modified versions of existing NS-3 files that don’t rely on being
placed directly into the NS-3 installation’s src folder.

Meanwhile, the /wrapper directory contains the files that don’t implement completely new
models or helpers but instead make use of the NS-3 implementation and ways that ulti-
mately make up the majority of the prototypes logic. This includes the implementations
of the AS, the CN and the individual node types (benign, malicious, target, non-target).
The ‘wrapper’ name aims to hint at that fact, given that the files contained within ‘wrap’
around functionalities provided by NS-3 , instead of directly extending existing models.

Finally, the /service directory contains a number of helper classes that provide function-
alities that are not part of any specific wrapper file but have to be available more globally.
This includes, for example, a helper class responsible for computing the attack schedules
based on the number of targets, the number of attack vectors, and their respective config-
urations. Having that functionality available in a separate helper class means not having
to re-compute the entire schedule for each attacker node.

4.3 Component Implementations

In this section, the components outlined within the architecture diagram (Figure 3.2) are
revisited and brought into context of the NS-3 framework. Specifically, it outlines how
they are implemented in class hierarchies, what implementation decisions were made and
how the individual components interface with each other.

Where appropriate, code excerpts are discussed in detail, though it is to be understood
that this section does not aim to be full-fledged documentation. If one is interested in
inspecting the code documentation, one may visit the GitHub page ([61]) where the source
code is made available to the public.

It also needs to be established that the term ‘node’ in the context of the implementation
is ambiguous, as NS-3 has its Node type and class hierarchy, whilst this system has its

28 CHAPTER 4. IMPLEMENTATION

own set of node classes that relate to node roles and behaviors (malicious, benign, etc.).
To distinguish them clearly, when relevant, the term ‘DPWSNode’ is used to refer to
this system’s node class hierarchy and ‘NS3Node’ to refer to the NS-3 classes. If neither
term is used the reader shall assume that the distinction is not relevant to what is being
discussed and the two terms can then be seen as synonymous.

4.3.1 Main Script

One component that was not part of the aforementioned architecture diagram is the ‘main
script’. The main script contains the main function that is being executed by the user
when giving the run command through the command-line interface (CLI). The main script
is responsible for a number of activities, specifically:

• Parsing CLI arguments: When an NS-3 script is run, the user may choose to
supply a number of predefined arguments alongside the run command, such as e.g.,
the name of the configuration file or the control flag that determines whether the
configuration should be printed to the console as a whole once it is parsed.

• Instantiating components: The main script is tasked with instantiating the nec-
essary components in a way that adheres to the configuration and the necessary
sequence of events, e.g., instantiating the CN before starting the instantiating the
ASs, as they depend on having CN nodes present to attach to.

• Control flow: The main script does not only instantiate components but also estab-
lishes the necessary flow of information between them by passing information such
as e.g., the list of IPv4 addresses of the target nodes to the attacker nodes or by
providing access to helper classes to components that rely on being able to share
specific instances of those helpers. Furthermore, the main script is also responsible
for triggering the construction of the routing tables.

• Anchoring parallelization: The system can make use of MPI to parallelize specific
tasks and increase overall performance. This is initiated within the main script and
the main script also is responsible for assigning ‘rank’, i.e., specifying which parallel
instance is responsible for which tasks.

• Controlling the NS-3 simulator: The NS-3 simulator instance expects to be man-
aged in terms of being started and shut down and can be configured in a number of
ways, such, for example, setting the time resolution at which the simulator operates.
This is also done in the main script.

There are two specific sections of code within the main script that warrant a more detailed
discussion, namely the parallelization management and the so-called NodeLookupMapper

helper class which is a key part of the instantiation phase.

4.3. COMPONENT IMPLEMENTATIONS 29

4.3.1.1 Managing MPI

NS-3 comes with module support for MPI, which in turn gives access to the so-called
MpiInterface that hides much of the complexity of having to work with MPI directly [55].
Enabling MPI for a specific simulation run requires passing a specific CLI argument,
specifically mpiexec -np {numcores} %s, where ‘numcores’ is an integer that specifies
how many logical cores the system is allowed to use [55].

For this to take effect, the rank (think of it as the ‘id’ of a given parallel instance) of the
parallel instances must be managed in a way that satisfies the following criteria:

1. MPI can only split a topology along a PointToPoint channel, which results in a
special ‘remote’ PointToPoint connection if the two nodes are not within the same
rank. Only in this way can a topology be split up for parallelization, thus every node
that is created has to be assigned to a specific rank. Implementing the control flow
that determines which rank a given node is the responsibility of the main script.

2. Just as each node must be assigned a specific rank, the act of tracing (i.e., capturing
traffic in a PCAP) is specific to a given rank because packets are only ‘visible’ on
the topology within the specific rank that manages that set of nodes [55]. Thus,
care must be taken that the ranks are assigned in such a way that capturing traffic
is still possible in a convenient way.

3. Finally, the parallelization has to make sense regarding the way it makes use of
the granted number of cores. For example, granting two cores to a system that
implements parallelization in a way that expects 3 parallel instances to each have
their own core will result in erroneous behaviour.

Listing 4.2: Logic for Rank Assignment

1 bool mpiMultiThreading = MpiInterface::GetSize() > 1;

2 std::vector<uint32_t> rankToAsIndex;

3
4 if (mpiMultiThreading)

5 {

6 int numLogicalCores = MpiInterface::GetSize();

7 int numAS = aSConfigVector.size();

8 int totalTasks = numAS + 1;

9 if (totalTasks <= numLogicalCores)

10 {

11 for (int i = 0; i < aSConfigVector.size(); i++)

12 {

13 rankToAsIndex.push_back(i + 1);

14 }

15 }

16 else

17 {

18 for (int i = 0; i < aSConfigVector.size(); i++)

19 {

20 rankToAsIndex.push_back((i + 1) % numLogicalCores);

21 }

22 }

30 CHAPTER 4. IMPLEMENTATION

23 }

24 else

25 {

26 for (auto _ : aSConfigVector)

27 {

28 rankToAsIndex.push_back(0);

29 }

30 }

Listing 4.2 shows the section of code responsible for performing rank assignments, though
it has been stripped of comments for the sake of brevity. The logic therein handles both
the concerns of the 2nd and 3rd criterion outlined above. The ‘unit of parallelization’
that has been chosen is the AS. This is primarily because it is a convenient place to do
so, given that its gateway has exactly one PointToPoint connection to some CN node,
and all nodes within the AS then can be created with the same rank, not having to
further differentiate within the AS. A further effect of that is that this makes it easy to
have the CN operate within its own rank. Lastly, it allows for the AS to freely chose
how it models its internal topology (i.e., is not limited to PointToPoint connections,
as it does not have to worry about internally splitting up into multiple ranks), which
also contributes to design requirement R5, by making the system extendable through
additional AS implementations, should the need arise.

Figure 4.1 provides an illustration of what the resulting rank assignment across the topol-
ogy looks like, given the example of having three ASs, with each color (green, blue, red)
representing a rank greater than zero, with rank zero being depicted in white. Having
rank zero reserved for the CN solves the problem of having traffic capture happen on
different ranks, given that all interfaces on which traffic is ultimately captured belong to
nodes that are part of the CN, which now has its own dedicated rank.

Getting back to Listing 4.2, the MpiInterface::GetSize() call (line 1) provides the total
number of instances. If it that number is 1, then only one logical core is available and no
parallelization occurs, resulting in having rank zero assigned to every node in the entire
topology (lines 24-30), by setting the rank allocated to each AS to zero.

If multiple cores are made available, then there is still a further case distinction to be
made. The number of total tasks that ideally each have their own core is calculated by
summing up the number of ASs and adding one for the CN (lines 7, 8). Should the total
number of tasks be equal or less than the allocated number of cores, then each task can
run on its own rank (lines 9-15). If that is not the case, then problems will occur.

For example, going back to Figure 4.1, the total number of tasks is 4, but assuming
the user only granted 3 cores, then one of the ASs would receive a rank that does not
actually coincide with a logical core, thus would not be executed. To solve this, a module
calculation is used that naively distributes ranks based on the number of available cores,
thus ensuring that only valid ranks are assigned (lines 16-22).

Note furthermore the i+1 on line 20. It is there to ensure that rank 0 is the first rank
to receive a second task, as it is ”only” responsible for the CN, thus not tasked with any
traffic generation, which the author expects to have higher performance cost. This avoids

4.3. COMPONENT IMPLEMENTATIONS 31

Central Network (CN)

Autonomous System 1
(AS1)

Autonomous System 2
(AS2)

Autonomous System 3
(AS3)

GW

GW

GW

IXP

IXP
IXPIXP

IXP
IXP

IN
IN

ININ
IN

IN IN

IN
IN

Figure 4.1: MPI Rank assignment

a situation where e.g., with four total tasks and three cores the CN still has its own
dedicated rank, whilst another rank has to handle two ASs.

Having now performed the rank assignment across the ASs and the CN, the 1st point still
needs to be satisfied. This is achieved by simply passing the assigned rank for each AS
as an argument during construction, which then enables the AS to assign the rank when
it instantiates its nodes. Finally, the rank assigned to nodes within the CN will always
be zero, no matter if multiple cores have been allocated or not, thus the rank of the CN
nodes can simply be hard-coded.

4.3.1.2 Map for Node Lookups

It is essential for information about individual nodes to be accessible within the main
script, such that e.g., a benign client node can be given the IPv4 address that was assigned
to its peer (some server node) or to enable the construction of the target list, by retrieving
the IPv4 addresses of all target servers and providing them to the attacker nodes.

Address assignments happen during the construction of the CN respectively the individual

32 CHAPTER 4. IMPLEMENTATION

ASs. Thus the simplest way to get access to such addressing information is to chain the re-
spective function calls. For example, each AS exposes functions such as GetIpv4ByNodeId
that then internally resolve to the specified node and in this case call that nodes GetAs-
signedIpv4Address method and pass the return through to the callee.

However, all of this operates based on Node Ids, meaning the main script needs to have
some way to know in which AS, which Node is present such that it can retrieve the
necessary information from that node. To make that lookup process more convenient than
having to construct nested loops and naively iterate through lists, the NodeLookupMapper
class was built.

It first comes into play during the configuration parsing process, where one of its two
internal maps is populated. The map contains a key-value pair that tracks the relationship
between Node Ids and AS Ids, thus enabling a lookup from Node Id to AS Id or in other
words determining in which AS a node with a given node id resides.

Listing 4.3 shows relevant excerpts from the main script that highlights the way the
NodeLookupMapper operates. Lines 1 and 2 show it being passed to the configuration
parsing, in which the first map is populated, as outlined above.

Listing 4.3: Use of the NodeLookupMapper

1 NodeLookupMapper nodeLookupMapper;

2 ConfigFileReader config(configFileName, &nodeLookupMapper);

3 ...

4 std::vector<P2pAutonomousSystem> aSVector;

5 int asVectorIndex = 0;

6 ...

7 for (auto asConfig : aSConfigVector)

8 {

9 // instantiate AS for asConfig

10 ...

11 // update mapper

12 nodeLookupMapper.AddAsToAsIndexEntry(asConfig.GetId(), asVectorIndex);

13 asVectorIndex += 1;

14 ...

15 aSVector.push_back(aS);

16 }

17 ...

18 for (auto bConfig : bCConfigVector)

19 {

20 // retrieve server connection information for configured peer

21 std::pair<Ipv4Address, int> peerServerInfo =

22 aSVector[nodeLookupMapper.GetAsIndexByNodeId(bConfig.GetPeer())]

23 .GetHttpConnectionInfoByNodeId(bConfig.GetPeer());

24 ...

25 // can now instantiate benign node now that peer connection info is known

26 }

Later, during the instantiation of the ASs, their index (line 5) in the vector that will end
up holding them (line 4) is utilized in line 12 to populate the second map within the
NodeLookupMapper.

4.3. COMPONENT IMPLEMENTATIONS 33

The second map maps AS ids to the position of that AS within the aSVector. Both
maps combined now allow for lookups such as the one shown in lines 21-23, where the
connection information for the peer configured on a benign node is retrieved.

4.3.2 Configuration Parsing

Configuration parsing is handled by a set of classes within the /service/configura-

tion directory of the module. Specifically, the ConfigFileReader is responsible for the
parsing of the configuration file, whilst the class hierarchy created by the fields within
/service/configuration/objects is instantiated in a one-to-one relation to that re-
spective wrapper classes that will need to be instantiated in the main script.

For example, for each configured attack vector an instance of AttackVectorConfigura-
tion will be created, whilst for each configured AS an instance of AutonomousSystem-
Configuration will be constructed. Where appropriate, one configuration class instance
might hold collections of other configuration classes, such as e.g., in the case of the Cen-
tralNetworkConfiguration which holds a vector of NodeConfiguration that represent
the nodes within the CN.

It is worth noting, that these configuration classes do not yet make use of any specific NS-3
provided types, e.g., network addresses are stored as strings rather than ns3::Address or
ns3::Ipv4Address and data rates are also stored as string rather than their corresponding
NS-3 type ns3::DataRateValue. This leads to the parsed configuration being agnostic
of NS-3 being used, thus allowing for maximal flexibility regarding how the parsed values
are utilized, contributing to design requirement R5.

Each of these configuration classes inherits from a common parent class, which enforces
the implementation of a PrintConfiguration method which then can be used to log the
entire configuration to the console. More importantly, the presence of a shared parent
class also allows for further functionality to be dictated top-down should the need arise
in the future.

This approach of parsing the configuration file into what essentially amounts to just
another packaging of said configuration may appear to be an odd choice at first, but there
are reasons to do so:

• Parsing all done at the start: Using this approach to configuration parsing, the
entire parsing process is completed before any of the wrapper classes are instantiated.
This allows for validation to occur before attempting to construct class instances
and further enables a simple way to log the configuration to the console, providing
the user with a view of the complete configuration, including the default values the
system used to fill in the gap where the configuration file does not specify values for
optional configuration settings.

• Parsing happens only once: Parsing happens once at the beginning and the re-
sulting configuration classes are then used for instantiation, instead of having to
continuously parse specific sections of the configuration file whilst the main script

34 CHAPTER 4. IMPLEMENTATION

constructs the wrapper classes, having to have the file kept open all throughout or
worse still, reopening and closing it constantly. Therefore this approach to parsing
constitutes a more efficient way of interacting with the file system.

• Simplified constructors: Constructors of the wrapper classes can now rely on the
fact that they receive the majority of the information they need for construction in
a single argument in the form of such a configuration class. This avoids having to
provide different constructor signatures for different combinations of settings being
present or absent within the configuration file.

• Wrapper classes are unaware of the parsing process: Having default values be
filled in during parsing at the start removes the need for the wrapper classes to
be aware of those default values. This ultimately results in wrapper classes being
entirely unaware of the entire parsing process, resulting in a cleaner separation of
responsibilities.

The creation of these configuration classes is straightforward and is not discussed in this
report. Rather, the focus is put onto ‘rapidyaml’ and how it is used within this project
to perform the actual reading of the configuration file. Additionally, the structure of the
configuration file is outlined. Finally, parts of the validation that is run during parsing is
explained as well.

4.3.2.1 Parsing with rapidyaml

This work makes use of the ‘rapidyaml’ [27] library developed by GitHub user ‘biojppm’.
As described on the project’s GitHub page, it represents a simple yet performant way
of reading YAML (Yet Another Markup Language) files [27]. YAML was chosen as the
configuration format for this project due to being, as stated in [22], “focused on human
readability” whilst also allowing for comments, thus contributing to design requirement
R3.

The rapidyaml library is available under the MIT-License and can be included in the
project as a single header file. Once the library is set up within the prototype project and
the functions for interacting with the file system (as shown in rapidyaml’s quickstart guide
on its project repository) are in place, it can be used as shown in Listing 4.4, which displays
excerpts of the function ConfigFileReader::ParseCentralNetworkConfiguration.

Listing 4.4: Using ‘rapidyaml’ for Parsing

1 ryml::ConstNodeRef root = m_rawTree;

2 if (!root.has_child("central_network"))

3 {

4 NS_FATAL_ERROR("Configuration does not contain any ’central_network’ key.");

5 return;

6 }

7 root = root["central_network"];

8
9 std::vector<NodeConfiguration> centralNetworkNodes;

10 for (ryml::ConstNodeRef node : root["nodes"].children())

4.3. COMPONENT IMPLEMENTATIONS 35

11 {

12 if (node.has_child("id"))

13 {

14 NodeConfiguration n(ToString(node["id"].val()));

15 centralNetworkNodes.push_back(n);

16 ...

17 }

18 ...

19 // parse optional settings for each CN node

20 }

Line 1 shows the type provided by rapidyaml that is used to hold the parsed ‘tree’ resulting
from reading the configuration file. That ConstNodeRef type then is also used to traverse
the parsed tree, i.e., jump to a specific node as in line 7 or iterate through a list of
child-nodes as in line 10.

On each ConstNodeRef methods are available to check for specific child nodes (line 2),
access all child nodes (line 10), or access the value of a specific node (line 14). The
ToString method shown in line 14 is used to convert the result of reading the value at a
specific node from rapidyaml’s csubstr type to the standard library’s string type.

This taken together is essentially all that is required to traverse and parse the entire
configuration file.

4.3.2.2 Configuration File Structure and Options

Having established how the system parses YAML files, a look at how the configuration
file is structured and what options are configurable is warranted. The file contains the
following keys:

• global_settings: Specifies global settings

• central_network: Contains CN configuration

• autonomous_systems: AS configurations

• attacker_nodes: Attacker node specifications

• benign_client_nodes: Benign node specifications

• target_server_nodes: Target server node settings

• non_target_server_nodes: Non target server node configurations

Each of these keys expects a number of required and accepts a number of optional prop-
erties for which default values are present in the configuration classes if they are omitted
in the configuration file.

36 CHAPTER 4. IMPLEMENTATION

Listing 4.5: Global Settings Configuration

1 global_settings:

2 capture:

3 pcap_prefix: test_scenario

4 attack:

5 burst_duration_s: 25.0

6 target_switch_duration_s: 0.0

7 attack_vectors:

8 - type: icmp_flooding

9 - type: udp_flooding

10 packet_size: 256

11 data_rate: 1Mbps

12 burst_duration_s: 45.0

13 target_switch_duration_s: 2.0

14 source_port: 9

15 destination_port: -1

16 scheduling:

17 simulation_duration_s: 300.0

18 autonomous_systems_connections:

19 network_address: 10.2.1.0

20 network_mask: 255.255.255.0

Listing 4.5 shows the configuration structure for the global settings. The capture setting
consists of only one property, namely the prefix that will be used during the naming of
the PCAP files. The capture setting is optional.

The same goes for the scheduling setting which defines the total duration of the simula-
tion and the autonomous_systems_connections, which enables the specification of the
network addresses used to create the connections from ASs to their respective CN node.
The reason these network addresses are separate from those of the CN or the AS is that
they are entirely ‘transparent’, i.e., do not show up in any of the PCAP output.

Finally, there are the attack settings, which define the characteristics of the pulse-waves.
The burst duration and target switch duration can be specified globally (lines 5 and 6)
and are optional. The individual attack vectors only require the type field, the rest of
the properties are optional.

Line 8 shows a minimal vector specification, whilst lines 9 to 15 show a vector specification
with all properties defined, with the burst duration and target switch duration on the
vector having higher precedence than the global values. The same goes for the source
and destination ports where the per-vector values also enjoy greater priority than the
per-attacker settings. For both port fields, -1 stands for randomized port, whereas a
specific port number fixes the port to that value. Not specifying a port setting means the
corresponding value present on the attacker nodes will be used. Naturally, the source and
destination port is only used by attack vectors that operate with ports in the headers, so
ICMP flooding will ignore these settings.

Listing 4.6: Central Network Configuration

1 central_network:

2 network_address: 10.1.1.0

3 network_mask: 255.255.255.0

4 bandwidth: 500 Gbps

4.3. COMPONENT IMPLEMENTATIONS 37

5 delay: 1ms

6 degree_of_redundancy: 0.75

7 topology_seed: 35

8 nodes:

9 - id: IXP1

10 - id: IXP2

11 - id: IXP3

Listing 4.6 contains an example configuration for a CN. The network mask and network
address are optional as they are transparent, only serving for routing purposes but never
showing up in any of the PCAP output files. The bandwidth and delay settings are also
optional.

The degree_of_redundancy controls the amount of superfluous connections within the
CN topology. A degree of zero means a minimal topology with N-1 connections for
N nodes, whereas a degree of 1 results in a CN topology with N*(N-1)/2 connections,
i.e., the amount of connections that would be found in a full mesh with N nodes. The
degree_of_redundancy setting is also optional.

The topology_seed is used to seed the random generator used for building the randomized
topology within the CN. A seed is used to ensure that all parallelized instances (when
using MPI) end up with the same CN topology. The setting is optional. Furthermore,
having the randomization controlled by a configurable seed also ensures the reproducibility
of results, contributing to design requirement R4.

Finally, the nodes list contains the list of CN nodes with only their respective identifier.
The identifier is required for each node and there are no other settings available for CN
nodes.

Listing 4.7: Autonomous Systems Configuration

1 autonomous_systems:

2 - id: AS1

3 network_address: 192.168.1.0

4 network_mask: 255.255.255.0

5 bandwidth: 100 Gbps

6 delay: 10ms

7 attachment:

8 central_network_attachment_node: IXP1

9 bandwidth: 100 Gbps

10 delay: 3ms

11 - id: AS2

12 network_address: 192.173.1.0

13 attachment:

14 central_network_attachment_node: IXP2

Listing 4.7 shows how ASs are configured. Each AS requires an identifier and a network
address. The central_network_attachment_node is technically optional but would re-
sult in a detached AS (i.e., the AS would not be part of the overall topology) and should
thus be also considered required. Thus, the configuration of AS2 starting on line 11
provides an example of a minimal AS specification.

38 CHAPTER 4. IMPLEMENTATION

AS1’s configuration, starting on line 2 provides an example of an AS configuration that
contains all properties. In addition to the network address, the network mask can also be
controlled. Further, bandwidth and delay are configurable both for the internal topology
of the AS as well as for the connection to the attachment node (lines 9 and 10).

Listing 4.8: Attacker Node Configuration

1 attacker_nodes:

2 - id: AN1

3 owner_as: AS1

4 - id: AN2

5 owner_as: AS3

6 data_rate: 1Mbps

7 packet_size: 378

8 source_port: 256

9 destination_port: 80

10 max_data_rate_fluctuation: 0.3

Listing 4.8 contains two examples of attacker node configurations. The first (lines 2 and
3) represents the minimal configuration with only the required properties for identifier
and owner AS.

The second example, starting on line 4 is an attacker node that has all properties con-
figured. In addition to the minimal configuration, the data rate and packet size are also
configurable on a per-attacker-node basis. These data rate and packet size settings have
lower precedence than the attack-vector specific settings (cf. Listing 4.5). The port num-
bers can also be specified for each attacker node individually as shown in lines 8 and 9.
The default values for the ports on the attacker nodes is -1, meaning they are randomized
by default. Finally, the maximal data rate fluctuation can be specified. Finally, the fluc-
tuation rate defines the possible range in both directions, i.e., a fluctuation of 0.2 means
the actual datarate varies between 0.8 and 1.2 times the originally configured data rate.

It is worth noting, that the attacker_nodes key is entirely optional, allowing the simu-
lator to run without any malicious traffic being modeled.

Listing 4.9: Benign Node Configuration

1 benign_client_nodes:

2 - id: BN1

3 peer: TN1

4 owner_as: AS1

5 max_reading_time: 100

Listing 4.9 shows an example of a benign node configuration. The fields for identifier and
owner AS are required and so is the peer property, which specifies with which server node
(target or non-target) the node establishes communication with. The max_reading_time
field is optional and is used to set the maximal waiting time before the node fires a
new Hypertext Transfer Protocol (HTTP) request towards the peer server. For more
information on the maximal reading time refer to Section 4.3.4.1.

The benign_client_nodes key, like the one for attacker nodes is optional, enabling the
simulator to forego benign traffic and focus solely on malicious traffic.

4.3. COMPONENT IMPLEMENTATIONS 39

Listing 4.10: Server Node Configuration

1 target_server_nodes:

2 - id: TN1

3 owner_as: AS2

4 http_server_port: 80

5
6 non_target_server_nodes:

7 - id: NTN1

8 owner_as: AS1

Listing 4.10 contains examples for both target and non-target server nodes. Their config-
uration is structured identically, with the fields for identifier and owner AS being required,
whilst the http_server_port field is optional.

The target server nodes are attacked by the malicious node in the order in which they are
listed in the configuration.

Both the keys for target- and non-target server nodes are entirely optional. It should
be noted though, that removing both leads to a situation where no traffic at all is being
generated, as malicious nodes rely on target nodes in order to have servers to attack and
benign clients require a communication peer from either the target- or non-target server
node list.

4.3.2.3 Configuration Validation during Parsing

During configuration parsing, the system performs basic validation of the configured topol-
ogy, to avoid a situation where topology construction begins with an obviously invalid
topology specification. Concretely, the system checks the following settings:

• Valid attachment node: Each AS has to specify to which CN node its gateway
is supposed to be connected during topology construction. The system, therefore,
checks if the configured attachment node is an actual CN node (i.e., if it exists).

• Valid AS ownership: Each node type (benign, attacker, target server, non-target
server) is required to specify to which AS it belongs. Thus, the system verifies if
the specified owner AS exists.

• Valid peer: Benign nodes have to specify with which server node (target or non-
target, both are valid node pools to draw from) it communicates during the simu-
lation. Hence, the system performs checks to ensure that the specified peer node
actually exists.

These validation processes are implemented within the ConfigurationFileReader, uti-
lizing a number of different sets to establish pools of valid options for each of the three
aforementioned settings, then simply checking if a given specified peer, owner AS or at-
tachment node is present in the respective set. The set container was chosen, as this
process does not care about ordering or number of occurrences.

40 CHAPTER 4. IMPLEMENTATION

On top of validating the specified topology, the system also checks if required configuration
settings are present, throwing errors or warnings (whichever is appropriate) if they are
missing.

Listing 4.11: Validating Topology Configuration

1 if (!root.has_child("autonomous_systems"))

2 {

3 NS_FATAL_ERROR("Configuration does not contain any ’autonomous_systems’ key.");

4 }

5 root = root["autonomous_systems"];

6 std::vector<AutonomousSystemConfiguration> autonomousSystems;

7 for (ryml::ConstNodeRef AS : root.children())

8 {

9 if (AS.has_child("id") && AS.has_child("network_address"))

10 {

11 AutonomousSystemConfiguration ASC(ToString(AS["id"].val()),

12 ToString(AS["network_address"].val()));

13 // parse optionals

14 ...

15 // parse connection of AS gateway to some central network node

16 bool hasAttachmentNodeIdSpecified = false;

17 if (AS.has_child("attachment"))

18 {

19 ryml::ConstNodeRef ASAttachment = AS["attachment"];

20 if (ASAttachment.has_child("central_network_attachment_node"))

21 {

22 hasAttachmentNodeIdSpecified = true;

23 std::string nodeId =

24 ToString(ASAttachment["central_network_attachment_node"].val());

25 if (m_validCentralNetworkNodeIds.count(nodeId) == 0)

26 {

27 NS_FATAL_ERROR("Found AS configuration that references "

28 "’central_network_attachment_node’: "

29 << nodeId

30 << ". No such central network node found in the "

31 "configuration file. The faulty AS

32 in question: "

33 << ASC.GetId());

34 }

35 ASC.SetAttachmentNodeId(nodeId);

36 }

37 // parse other settings regarding attachment connection

38 }

39 else

40 {

41 NS_LOG_WARN("Found AutonomousSystemConfiguration without "

42 "’attachment’ key.");

43 }

44 if (!hasAttachmentNodeIdSpecified)

45 {

46 NS_LOG_WARN("Found AutonomousSystemConfiguration that does not"

47 " specify a ’central_network_attachment_node’ key."

48 " Unless you plan to manually connect the AS in the"

49 " main script, this will lead to an isolated AS that"

50 " is not connected to the main topology.");

51 }

4.3. COMPONENT IMPLEMENTATIONS 41

52 autonomousSystems.push_back(ASC);

53 m_validAutonomousSystemIds.emplace(ASC.GetId());

54 }

55 }

Listing 4.11 contains excerpts of the ParseAutonomousSystemsConfiguration method,
which showcases both how valid options are added to a set and how set information is
used to determine if a specified option is valid. Additionally, it contains examples of both
warnings and errors being thrown if certain settings are missing from the configuration.

The code shown first checks if an autonomous_systems property is defined at all. Its
absence would mean that no AS has been configured, resulting in a non-functional con-
figuration. Line 3 shows how with NS-3 errors can be thrown that log the error to the
console and terminate the program execution.

Lines 6 to 13 show how the list of ASs is iterated upon and for each AS, an AS configuration
class is instantiated. Lines 17 to 37 contain code that checks first if any attachment settings
are present at all, and then specifically looks for the attachment node property (line 21)
and validates it using the corresponding set (line 26), leading to a fatal error if an invalid
CN node is specified.

Lines 40 to 51 show examples of warnings being used to communicate the absence of
important but not required settings. Finally, on line 53, the AS configuration is considered
fully parsed and its own id is added to the set of valid AS ids that can be used in the
different node types to specify to which AS a given node belongs.

4.3.3 Topology Construction

Topology construction is composed of three major tasks that serve the goal of ending up
with a topology that includes all the configured AS, the CN and the individual nodes
within the different ASs. The three tasks are:

1. Constructing the CN, resulting in the topology of the network of IXP nodes

2. Constructing the ASs, resulting in the topologies of the ASs being connected to the
CN and nodes being allocated within the AS to be assigned roles.

3. Assigning roles to the individual nodes within the AS, thus having the correct
amount of each node type (benign, malicious, target server and non-target server)
in each AS.

The relevant details for each of these tasks are discussed in the following sections.

42 CHAPTER 4. IMPLEMENTATION

4.3.3.1 Constructing the Central Network

The CN is implemented by a class hierarchy centered around the abstract base class
CentralNetwork. This base class enforces a minimal set of functions that each descendant
needs to implement. Notably, this includes the two methods EnablePcap which is used to
enable packet capturing (more on that in Section 4.3.6) and GetNodeById, which serves
the purpose of exposing specific nodes for the purpose of establishing a connection, e.g.,
when connecting an AS to the CN.

From this base class, the system at current provides two different implementations of
a CN, the FullMeshCentralNetwork and the RandomizedPartialMeshCentralNetwork.
The full mesh variant was primarily used during development and is not in use within the
actually finished system, as a full mesh topology was seen as too optimistic in terms of
what might be encountered in a real world situation, thus is not discussed in this report.
Nonetheless, it is present in the repository, should any user wish to make use of it, though
that does require making changes to the code.

CentralNetwork

m_config: CentralNetworkConfiguration

m_nodes: NodeContainer

m_numNodes: int

+ {virtual} EnablePcap(std::string prefix): void

+ {virtual} GetNodeById(std::string id): Ptr<Node>

- {virtual} BuildTopology(): void

RandomizedPartialMeshCentralNetwork

m_generator: std::mt19937

m_distribution: std::uniform_int_distribution<>

m_randomizedMinimalTopologyConnections: std::vector<std::pair<int, int>>

m_numConnectionsForMinimalTopology: int

m_randomizedAdditionalTopologyConnections:std::vector<std::pair<int, int>>

m_numAdditionalConnections: int

m_biDirectionalConnectionSet: std::set<std::pair<int, int>>

m_nodeIdToContainerIndexMap: std::unordered_map<std::string, int>

m_deviceVector: std::vector<NetDeviceContainer>

m_interfaceVector: std::vector<Ipv4InterfaceContainer>

m_deviceToNodeIndexTrackingVector: std::vector<std::pair<int, int>>

+ EnablePcap(std::string prefix): void

+ GetNodeById(std::string id): Ptr<Node>

+ PrintTopology(): void

- BuildTopology(): void

- PopulateNodeIdToIndexMap(): void

- PopulateRandomizedMinimalTopologyConnectionsVector(): void

- PopulateRandomizedAdditionalConnectionsVector(): void

- DrawRandomNodeIndex(): int

FullMeshCentralNetwork

m_interfaceVector: std::vector<Ipv4InterfaceContainer>

m_deviceVector: std::vector<NetDeviceContainer>

m_linkVector: std::vector<PointToPointHelper>

m_NodeIdToContainerIndexMap: std::unordered_map<std::string, int>

+ EnablePcap(std::string prefix): void

+ GetNodeById(std::string id): Ptr<Node>

+ GetNumNodes(): int

- BuildTopology(): void

- PopulateNodeIdToIndexMap(): void

Figure 4.2: Central Network Class Diagram

4.3. COMPONENT IMPLEMENTATIONS 43

Figure 4.2 depicts the class diagram for the CN class hierarchy. The full mesh variant was
included to highlight how much variety there can be within a CN implementation, ranging
from the somewhat simplistic full mesh implementation to the more complex randomized
partial mesh variant. The scope of the base class was conciously kept small to allow for
a potentially large variety of different CN implementations, thus improving extendability
(design requirement R5).

Regarding the randomized partial mesh variant, the one actually in use in the current
version of the system, there are a number of key aspects that bear further explanation.
First, the basics of how a topology is created are explained. Then, the approach to
randomization is outlined.

Listing 4.12: Basic Central Network Topology Construction

1 NodeContainer nodes;

2 ...

3 // check that number of nodes at least 2 to satisfy point-to-point arithmetics

4 ...

5 nodes.Create(m_numNodes, 0);

6 InternetStackHelper stack;

7 stack.Install(nodes);

8
9 std::vector<NetDeviceContainer> deviceVector;

10 std::vector<Ipv4InterfaceContainer> interfaceVector;

11
12 StringValue dataRate(m_config.GetBandwidth());

13 StringValue delay(m_config.GetDelay());

14 PointToPointHelper p2p;

15 p2p.SetDeviceAttribute("DataRate", dataRate);

16 p2p.SetChannelAttribute("Delay", delay);

17
18 Ipv4AddressHelper address;

19 Ipv4Address addressBase = m_config.GetNetworkAddress().c_str();

20 Ipv4Mask addressMask = m_config.GetNetworkMask().c_str();

21 address.SetBase(addressBase, addressMask);

22
23 for (int i = 0; i < m_numConnectionsForMinimalTopology; i++)

24 {

25 std::pair<int, int> currentPair = m_randomizedMinimalTopologyConnections[i];

26 int firstIndex = currentPair.first;

27 int secondIndex = currentPair.second;

28
29 NetDeviceContainer devices = p2p.Install(nodes.Get(firstIndex), nodes.Get(

↪→ secondIndex));

30 Ipv4InterfaceContainer interfaces = address.Assign(devices);

31 address.NewNetwork();

32 deviceVector.push_back(devices);

33 interfaceVector.push_back(interfaces);

34 m_deviceToNodeIndexTrackingVector.push_back(std::pair<int, int>(firstIndex,

↪→ secondIndex));

35 }

36
37 // identical procedure for additional connections

38
39 m_nodes = nodes;

40 m_deviceVector = deviceVector;

44 CHAPTER 4. IMPLEMENTATION

41 m_interfaceVector = interfaceVector;

Listing 4.12 shows extracts from the BuildTopology method. The first step when build-
ing the topology is to create the nodes. For this, the corresponding container is used
and the nodes are created in the correct amount and also in the correct system rank
(cf. Section 4.3.1.1), as seen on lines 1 to 5.

The next few lines (6-21) consist of setting up containers that will hold the relevant parts
of the individual point-to-point channels as well as configuring the PointToPointHelper
used to create the channels and the Ipv4AddressHelper used to perform the address
assignment.

So far, none of the nodes are connected yet. This is now remedied by iterating through the
vector m_randomizedMinimalTopologyConnections which specifies which connections
need to be established (line 25), such that each node is reachable from each other node,
whilst only using the minimal number of connections. For each pair of node indices
(referring to the indices within the NodeContainer on line 1), a point-to-point channel is
created (line 29) and the resulting NetDevices are stored (line 32). Similarly, the interface
resulting from performing address assignment (line 30) is also stored (line 33).

Then, to ensure that a given pair of NetDevices can be traced back to a specific pair of
node indices, a tracking vector is updated (line 34). The same procedure is repeated for
the additional connections that go beyond the minimal topology, by iterating through
the vector m_randomizedAdditionalTopologyConnections. Finally, the containers are
stored in the matching class members for access later on (lines 39-40).

Take special note of the NewNetwork() call on line 31. This results in each connection
residing in its own subnet. Whilst this is an inefficient use of network address space, it
is informed by insights gained from preliminary evaluations regarding the behaviour of
point-to-point and csma channels. Refer to Section 5.4.0.2 for more information on this
matter.

The code shown in Listing 4.12 requires the two vectors m_randomizedAdditional
TopologyConnections and m_randomizedMinimalTopologyConnections to already be
present. The way these two vectors are populated is related although slightly different.

Listing 4.13: Randomization of Minimal Topology Connections

1 std::set<int> alreadyDrawn;

2 std::set<int> notYetDrawn;

3 for (int i = 0; i < m_numNodes; i++)

4 {

5 notYetDrawn.emplace(i);

6 }

7
8 for (int i = 0; i < m_numConnectionsForMinimalTopology; i++)

9 {

10 int firstIndex;

11 int secondIndex;

12 bool isInTargetSet = false;

13 while (!isInTargetSet)

14 {

4.3. COMPONENT IMPLEMENTATIONS 45

15 firstIndex = DrawRandomNodeIndex();

16 if (alreadyDrawn.empty())

17 {

18 // set is initially empty, so just accept first draw as is.

19 isInTargetSet = true;

20 notYetDrawn.erase(firstIndex);

21 alreadyDrawn.emplace(firstIndex);

22 }

23 else

24 {

25 if (alreadyDrawn.count(firstIndex) != 0)

26 {

27 isInTargetSet = true;

28 }

29 }

30 }

31 isInTargetSet = false;

32 while (!isInTargetSet)

33 {

34 secondIndex = DrawRandomNodeIndex();

35 if (notYetDrawn.count(secondIndex) != 0)

36 {

37 isInTargetSet = true;

38 }

39 }

40 notYetDrawn.erase(secondIndex);

41 alreadyDrawn.emplace(secondIndex);

42 m_randomizedMinimalTopologyConnections.push_back(

43 std::pair<int, int>(firstIndex, secondIndex));

44 }

Listing 4.13 shows how the minimal topology connections are established. To ensure
that all nodes are reachable, a combination of two sets is used. Set alreadyDrawn holds
all nodes which have already been drawn (i.e., connected to the topology), whilst no-

tYetDrawn contains those nodes yet to be connected. The nodes are represented by the
index they will occupy within the NodeContainer (cf. Listing 4.12, line 1) during topology
building.

The set of already drawn nodes is initially empty, whilst the one with disconnected nodes
is initially full (lines 1 to 6). Then for the required number of connections (N-1 connections
for N nodes), a loop is ran that performs two random draws, one from each set, resulting
in a connection that is guaranteed to (1) involve two different nodes and (2) add a new
node to the already connected topology. After each iteration of the loop, the node that
was newly added to the topology is then removed from the notYetDrawn set and moved
to the alreadyDrawn set (see lines 40 and 41).

Note that the draws on line 15 and 34 actually happen over the entire range of possible
node indices (the number of nodes and thus the possible indices are known from the CN
configuration), which then has to be checked against the values within the target set (lines
25 and 35 respectively).

Note further, that for the first draw from the alreadyDrawn set, special rules apply. As the
set is initially empty, the check on line 25 will always fail, therefore when drawing nodes

46 CHAPTER 4. IMPLEMENTATION

for the first connection, the draw is simply accepted and the node is moved immediately
to the alreadyDrawn set to prevent it from being drawn again for the second index on
line 34, which would lead to a connection that connects a node to itself, thus not adhering
to the minimal topology.

Listing 4.14: Randomization of Additional Connections

1 for (int i = 0; i < m_numAdditionalConnections; i++)

2 {

3 int firstIndex = DrawRandomNodeIndex();

4 int secondIndex = DrawRandomNodeIndex();

5 while (firstIndex == secondIndex)

6 {

7 // prevent self-to-self connection

8 secondIndex = DrawRandomNodeIndex();

9 }

10 m_randomizedAdditionalTopologyConnections.push_back(

11 std::pair<int, int>(firstIndex, secondIndex));

12 }

When performing draws for the additional, superfluous connections, there is no need to
account for nodes not already being connected to the topology. Further, the decision was
made to allow for multiple connections between a pair of nodes. Consequently, the logic
for drawing these random connections, as shown in Listing 4.14 is significantly simpler,
just performing two random draws and ensuring that both drawn node indices are not
identical, as that would lead to a self-to-self connection on the given node.

The number of additional connections meanwhile is given by the configured degree of
redundancy, as outlined in Section 4.3.2.2. To briefly reiterate, a degree of zero signifies
no additional connections, whilst a degree of 1 results in the number of connections as
seen in a full mesh topology involving the same number of nodes.

Given that duplicate connections between two nodes are allowed and nodes are drawn
at random, a degree of 1 is not a guarantee that the resulting topology is actually a full
mesh. Furthermore, one can configure degrees of redundancy higher than 1.

This might make the choice of basing the number of additional connections on that degree
seem odd, given that it does not provide any guarantees. However, relying on a degree
that depends on the number of nodes seemed preferable compared to having to specify
the additional number of nodes in absolute terms. The reason for this is that a degree of
redundancy of e.g., 0.5 scales up with the number of nodes, whilst an absolute amount of
e.g., 10 additional connections is agnostic to the number of nodes, thus is a lot when the
CN only contains 4 nodes, but is very little when the CN contains 40 nodes.

One last fact that needs to be mentioned regarding this CN implementation, is that it
requires a modification of the GlobalRouteManagerImpl, as you otherwise may, based
on the randomly generated topology encounter the following error: assert failed. cond =
”m ecmpRootExits.size () <= 1”, msg=”Assumed there is at most one exit from the root
to this vertex”. What this error basically states is that it found two equal cost paths from
one node in the topology to another and considers this an error.

4.3. COMPONENT IMPLEMENTATIONS 47

An investigation of the topic shows multiple threads on the NS-3 community forum regard-
ing this particular error, with [53] in particular being informative and including a solution,
which boils down to removing that assertion from the GlobalRouteManagerImpl, as well
as enabling per-packet ECMP (Equal Cost Multi-Path) routing. Suggestions to remove
assertions from working could should in the author’s opinion always be regarded with
some skepticism, however, this suggestion seems to be at least partially backed up by
findings in [32].

Listing 4.15: Modified Section in the Routing Manager

1 SPFVertex::NodeExit_t

2 SPFVertex::GetRootExitDirection() const

3 {

4 NS_LOG_FUNCTION(this);

5 // in this project, ASSERT below is removed

6 NS_ASSERT_MSG(m_ecmpRootExits.size() <= 1, "Assumed there is at most one exit from

↪→ the root to this vertex");

7 return GetRootExitDirection(0);

8 }

Furthermore, investigation of the relevant code (Listing 4.15) shows that the method
always takes the first vertex (i.e., the one at index 0) anyway as shown in line 7, so there
is no harm in having more than one viable vertex available. Therefore, this project includes
a modified version of the GlobalRouteManagerImpl, with the corresponding installation
instructions on the projects repository [61].

Interestingly, the marked comment (comment 16) in [33] suggests that this final version of
the system may not actually need to do so, as that error apparently not relevant for point-
to-point topologies and, as explained in Section 5.4.0.1, the project switched over from its
previously CSMA-based AS implementation to one based on point-to-point channels.

However, the author feels that the modification to the GlobalRouteManagerImpl should
still be kept, primarily because not doing so would lead to the problem re-emerging once
other non-point-to-point implementations of the CN or the AS are added in future work,
thus negatively impacting design requirement R5. Additionally, it would at least have
to be tested if the assert does indeed not fire when using point-to-point topologies, but
testing for the absence of something that only occurs randomly is difficult to say the least.

4.3.3.2 Constructing the Autonomous Systems

The construction of the ASs results in having the individual ASs instantiated, connected
to their CN node of choice. Further, it results in the ASs having their internal nodes
created and connected to their AS gateweay node.

As with the CN construction, a class hierarchy has been created for ASs. Figure 4.3
depicts the AS class hierarchy, with a base class AutonomousSystem and two different
implementations, one based on point-to-point connections, the other based on a Carrier
Sense Multiple Access (CSMA) channel. The figure is kept small to fit the page layout, a
larger scale version can be found in the appendix (Figure C.1 in Appendix C).

48 CHAPTER 4. IMPLEMENTATION

The CSMA channel was used up until preliminary evaluations showed that there are issues
with incomplete traffic (cf. Section 5.4.0.1). Consequently, the CSMA variant has been
abandoned, but is still available within the repository, should any user wish to experiment
with.

AutonomousSystem

m_assignedMpiRank: uint32_t

m_config: AutonomousSystemConfiguration

m_nodes: NodeContainer

m_numNodes: int

m_firstUnclaimedNodeIndex: int

m_nodeIdToContainerIndexMap: std::unordered_map<std::string, int>

m_nodeIdToHttpServerConnectionMap: std::unordered_map<std::string, std::pair<Ipv4Address, int>>

m_nonTargetServerNodes: std::vector<DPWSServerNode>

m_targetServerNodes: std::vector<DPWSServerNode>

m_benignClientNodes: std::vector<DPWSBenignNode>

m_attackerNodes: std::vector<DPWSAttackerNode>

m_connectionLink: PointToPointHelper

m_connectionDevices: NetDeviceContainer

m_connectionInterfaces: Ipv4InterfaceContainer

+ {virtual} EnablePcap(std::string prefix): void

+ StartApplications(double start, double stop): void

+ ConnectToNode(Ptr<Node> targetNode, std::string addressBase): void

+ ConnectToNode(Ptr<Node> targetNode, Ptr<AddressProvider> addressIncrementor): void

+ CreateAttackerNode(AttackerNodeConfiguration config, std::vector<Ipv4Address> targetList, Ptr<AttackScheduleHelper> attackScheduler): void

+ CreateBenignClientNode(BenignNodeConfiguration config, std::pair<Ipv4Address, int> serverConnectionInfo): void

+ CreateNonTargetServerNode(ServerNodeConfiguration config): void

+ CreateTargetServerNode(ServerNodeConfiguration config): void

+ CreateTargetServerNode(ServerNodeConfiguration config): void

+ GetHttpConnectionInfoByNodeId(std::string nodeId): std::pair<Ipv4Address, int>

+ GetIpv4ByNodeId(std::string nodeId, DPWSNodeType type=DPWSNodeType::target): Ipv4Address

- {virtual} BuildTopology(): void

- {virtual} GetAndClaimNextAvailableNodeInfo(std::string nodeId): std::pair<Ptr<Node>, Ipv4Address>

- {virtual} GetGatewayNode(): Ptr<Node>

P2pAutonomousSystem

m_deviceVector: std::vector<NetDeviceContainer>

m_interfaceVector: std::vector<Ipv4InterfaceContainer>

+ EnablePcap(std::string prefix): void

- BuildTopology(): void

- GetAndClaimNextAvailableNodeInfo(std::string nodeId): std::pair<Ptr<Node>, Ipv4Address>

- GetGatewayNode(): Ptr<Node>

CsmaAutonomousSystem

m_csmaLink: CsmaHelper

m_csmaDevices: NetDeviceContainer

m_csmaInterfaces: Ipv4InterfaceContainer

+ EnablePcap(std::string prefix): void

+ GetNodeById(std::string id): Ptr<Node>

+ GetNumNodes(): int

- BuildTopology(): void

- PopulateNodeIdToIndexMap(): void

Figure 4.3: Autonomous System Class Diagram

Looking at the class diagram, it is tempting to conclude that a completely different ap-
proach was taken than with the CN class hierarchy, where the base class was minimal and
much of the logic left to the child classes to implement, whereas the AS base class already
contains a lot of logic and implements a large part of the functions directly, instead of
having them marked as virtual.

This conclusion would be wrong. The responsibility of a CN is rather different than that
of an AS. The CN’s main task is essentially just providing a topology through which traffic
is being routed. None of the CN nodes install any applications, generate any traffic or are
directly addressed in any way by any of the generated traffic.

The AS however has to be able to create different node types, all with their own traffic
models. It has to be able to provide information, such as e.g., HTTP server ports or
IP addresses about each of its nodes and needs to be capable of issuing start and stop
commands to the applications on said nodes. This then explains why the AS base class
is so much larger than the CN base class. It’s not that the goal of extendability (design
requirement R5) was abandoned, but rather had to be approached somewhat differently.

In the AS class hierarchy, a large part of the functionality is not actually tied to the AS’s
internal topology, but rather focuses directly on the nodes, without having to know if e.g.,
the internal topology is realised with CSMA or point-to-point channels. In other words,

4.3. COMPONENT IMPLEMENTATIONS 49

the nodes will always be instantiated in a NodeContainer, no matter how the topology is
ultimately constructed within the AS.

This allows the base class to already implement those parts of the logic that simply rely
on nodes being present. As a result, it is the child classes that are rather lean, only having
to focus on implementing the internal topology (i.e., connecting nodes and performing
address assignments). Thus, extendability is still maintained.

The actual topology construction is largely the same as the one discussed in the context
of the CN in Section 4.3.3.1, as the AS implementation is also done using point-to-point
channels, except instead of using randomized connections, each node within an AS con-
nects to exactly one node, the AS gateway. Therefore the construction of the AS internal
topology is not showed in code.

Gateway

Node 1

Node 2

Node 3

192.168.37.1

192.168.37.2

192.168.38.1

192.168.38.2

192.168.39.1
192.168.39.2

Figure 4.4: Autonomous System Internal Topology

As also already hinted at in Section 4.3.3.1, each point-to-point connection lives in its own
subnet, due to routing issues that otherwise occur (cf. Section 5.4.0.2). This results in an
internal topology within each AS that follows the pattern shown in Figure 4.4, where the
AS gateway always is granted the first address and the node the second address for each
point-to-point specific subnet.

After the internal topology is constructed, the AS gateway simply needs to be connected
to the configured CN attachment node. The procedure is shown in Listing 4.16, where the
AS gateway node and the targetNode, i.e., the node to which the connection is supposed
to be established are connected using a point-to-point channel.

50 CHAPTER 4. IMPLEMENTATION

Listing 4.16: Connecting the AutonomousSystem to the Central Network

1 PointToPointHelper p;

2 p.SetDeviceAttribute("DataRate", StringValue(m_config.GetAttachmentConnectionBandwidth

↪→ ()));

3 p.SetChannelAttribute("Delay", StringValue(m_config.GetAttachmentConnectionDelay()));

4
5 NetDeviceContainer devices = p.Install(GetGatewayNode(), targetNode);

6 Ipv4AddressHelper* address = addressProvider->GetAddressHelper();

7 Ipv4InterfaceContainer interfaces = address->Assign(devices);

8 address->NewNetwork();

9 // reuse Ipv4AddressHelper instance provided through argument

10
11 m_connectionLink = p;

12 m_connectionDevices = devices;

13 m_connectionInterfaces = interfaces;

The connection is set up with the corresponding settings from the configuration (lines 2
and 3), with an AddressProvider instance supplying the Ipv4AddressHelper for address
assignment purposes. Note that when using MPI, the AS gateway node will potentially
be on a different system rank than the node from the CN. This is handled automatically
by NS-3 ’s MPI module, as it will detect that the two nodes are not within the same
system rank and then instantiate a so called ‘remote’ point-to-point channel [55] instead
of a regular one.

4.3.3.3 Assigning Roles to Autonomous System Nodes

Once the ASs’ internal topologies are constructed and the ASs are connected to the CN,
the nodes need to be set up to exhibit the correct behaviours. For this purpose another
set of classes was created that rely on being ‘assigned’ to a given node within an AS and
then install the necessary applications that execute the desired behaviours for that node
type. Additionally, they provide functions that expose e.g., connection information or
provide control over the start and stop timings of the installed applications.

Figure 4.5 shows the class diagram for these ‘DPWSNode’ classes. The name was specif-
ically chosen to avoid confusion around the ‘node’ term, as NS-3 has its own node class
hierarchy. The prefix ‘DPWS’, short for Distributed Pulse-Wave Simulator is used to be
able to clearly distinguish the two class hierarchies when encountering them within the
code.

Each type of DPWSNode ‘wraps’ around a single NS3Node and represents a specific
‘role’ that represents the behaviour the node should exhibit. As the name suggests,
the DPWSAttackerNode is used to implement malicious behaviour, the DPWSBenignNode

provides benign behaviour and the DPWSServerNode is used to implement both target as
well as non-target server behaviour.

Each of these classes implements a specific traffic model or at least a part of a traffic model.
The discussion of these traffic models is delegated to Section 4.3.4. The malicious node
also contributes to the attack scheduling logic, i.e., the logic related to the coordinated

4.3. COMPONENT IMPLEMENTATIONS 51

DPWSNode

m_ns3Node: Ptr<Node>

m_assignedAddress: Ipv4Address

m_applications: ApplicationContainer

+ {virtual} GetNodeId(): std::string

+ GetNs3Node(): Ptr<Node>

+ GetAssignedIpv4Address: Ipv4Address

DPWSAttackerNode

m_config: AttackerNodeConfiguration

m_targetList: std::vector<Ipv4Address>

m_scheduleHelper: Ptr<AttackScheduleHelper>

+ GetNodeId(): std::string

+ StartApplications(double stop): void

+ ScheduleDynamicTargetChange(Ptr<OnOffRetargetApplication> app,
 Ptr<AttackScheduleHelper> scheduleHelper,
 std::vector<Ipv4Address> targetList,
 int vectorApplicationIndex,
 int targetIndex): void
+ CreateApplications(): void

- GetSocketFactoryString(AttackVector vector): std::string

- ResolvePacketSize(int vectorValue): int

- ResolveDataRate(std::string vectorValue): std::string

- CreateConstantRandomVariableString(double value): std::string

- GetRemoteAtTarget(AttackVector vector, int targetIndex=0): InetSocketAddress

DPWSBenignNode

m_config: BenignNodeConfiguration

m_peerServerInfo: std::pair<Ipv4Address, int>

+ GetNodeId(): std::string

+ StartApplications(double start, double stop): void

+ CreateApplications(): void

DPWSServerNode

m_config: ServerNodeConfiguration

+ GetNodeId(): std::string

+ StartApplications(double start, double stop): void

+ CreateApplications(): void

+ GetHttpConnectionInfo(): std::tuple<Ipv4Address, int>

Figure 4.5: DPWSNode Class Diagram

use of specific attack vectors to attack specific targets at specific times. This too is not
discussed here and is instead examined in detail in Section 4.3.5.

What is discussed here is how the DPWSNode behaviours are applied to NS3Nodes within
the topology. Figure 4.3 shows that each AS provides four methods specifically for that
purpose. Despite having different signatures in terms of the arguments they expect,
they are structurally identical, with the difference in arguments being due to different
DPWSNode types expecting different arguments in their constructor.

Listing 4.17: Creating a DPWS Attacker Node

1 // subclass method

2 std::pair<Ptr<Node>, Ipv4Address>

3 P2pAutonomousSystem::GetAndClaimNextAvailableNodeInfo(std::string nodeId)

4 {

5 int index = m_firstUnclaimedNodeIndex;

6 m_firstUnclaimedNodeIndex += 1;

7
8 return std::pair<Ptr<Node>, Ipv4Address>(m_nodes.Get(index),

9 m_interfaceVector[index - 1].GetAddress(1));

10 }

11
12 // base class method

13 void

14 AutonomousSystem::CreateAttackerNode(AttackerNodeConfiguration config,

15 std::vector<Ipv4Address> targetList,

16 Ptr<AttackScheduleHelper> attackScheduler)

17 {

18 auto [nextAvailableNode, address] = GetAndClaimNextAvailableNodeInfo(config.

↪→ GetNodeId());

52 CHAPTER 4. IMPLEMENTATION

19 DPWSAttackerNode aN(config, nextAvailableNode, address, targetList,

↪→ attackScheduler);

20
21 if (MpiInterface::GetSystemId() == m_assignedMpiRank)

22 {

23 aN.CreateApplications();

24 }

25 m_attackerNodes.push_back(aN);

26 }

Listing 4.17 shows how DPWSNodes are assigned to NS3Nodes based on the DPWSAt-

tackerNode example. The CreateAttackerNodemethod first ‘reserves’ the next available
NS3Node in the AS topology by calling the method GetAndClaimNextAvailableNode-

Info on line 18.

This method returns a smart pointer to the next available NS3Node (i.e., the next
NS3Node in the NodeContainer m_nodes which has not yet been assigned DPWSNode
behaviour and which is not the AS gateway) as well as the IPv4 address it received during
AS topology construction (lines 8 and 9).

Take note of the fact that GetAndClaimNextAvailableNodeInfo is not part of the AS base
class, but rather is specific to a concrete AS implementation, because address assignment
is something that varies with the internal AS topology, thus may look quite different for
AS implementations that do not rely on point-to-point channels.

Once the NS3Node and address are received in the CreateAttackerNode, they are used
as arguments during construction of the DPWSAttackerNode (line 19). Finally, a check
against the AS’s assigned system rank is ran to ensure that applications are only installed
on NS3nodes if the rank of the parallel instance (when using MPI) matches the one
assigned to that AS (lines 21 to 24).

Listing 4.18: Orchestration of DPWSNode Creation in ‘main’ Script

1 ...

2 for (auto aConfig : aNConfigVector)

3 {

4 aSVector[nodeLookupMapper.GetAsIndexByAsId(aConfig.GetOwnerAS())].

↪→ CreateAttackerNode(

5 aConfig,

6 targetList,

7 &scheduleHelper);

8 }

9 ...

The orchestration of these DPWSNode behaviour assignments are part of the ‘main script’
and is shown in Listing 4.18 on line 4, where for each configured attacker node, first the
NodeLookupMapper (cf. Section 4.3.1.2) is used to get access to the correct AS, and then
call the previously discussed CreateAttackerNode method.

4.3. COMPONENT IMPLEMENTATIONS 53

4.3.4 Traffic Models

The system makes use of two distinct traffic models, one model that implements benign
user behaviour and one which is responsible for modeling the behaviour of attackers. As
discussed in Section 4.3.3.3, at the end of the topology construction phase, the different
DPWSNode types are used to assign behaviours to the individual NS3Nodes within the
ASs.

This results in, as Listing 4.17 shows on line 23, the CreateApplications method being
called for each individual DPWSNode, with each DPWSNode type then installing the
appropriate traffic model applications on the corresponding NS3Node. In the remainder of
this section, the individual traffic models are explained and the aforementioned installation
procedure is discussed.

4.3.4.1 Benign Traffic Model

The purpose of the benign traffic model is to supply a configurable amount of non-
malicious background traffic, such that datasets can be generated that contain a mixture
attack and benign traffic.

The system relies on an existing implementation of an HTTP traffic generator called ‘ns-
3-http-traffic-generator’ by GitHub user Saulo Da Mata [28]. As stated on the repository
page, the implemented model is based on [62], which analyzed the page structure of the
most visited website and parametrized their model in accordance with the findings.

This model was chosen for a number of reasons. First, building a benign traffic model from
scratch does not only require implementation effort (i.e., writing the actual code) but also
needs a theoretical foundation on which to base the model, thus either relying on existing
studies of such traffic or alternatively conducting the traffic analysis as part of this thesis.
The latter was seen as unrealistic and out of scope due to the time constraints placed
upon this project. In the same spirit, if there already exists a suitable implementation of
a benign traffic model, then not having to perform the implementation oneself leaves more
time to focus on the main goal of the thesis, namely creating a capable and compelling
pulse-wave DDoS traffic model.

The second reason for choosing this model was its easy of use, as integrating the model into
the existing system simply boiled down to installing applications on the correct NS3Nodes.

Listing 4.19: Installing the Benign Traffic Model

1 void

2 DPWSBenignNode::CreateApplications()

3 {

4 auto [peerAddress, peerPort] = m_peerServerInfo;

5 HttpClientHelper httpClient(peerAddress, peerPort);

6 httpClient.SetAttribute("MaxReadingTime", UintegerValue(m_config.GetMaxReadingTime

↪→ ()));

7 m_applications.Add(httpClient.Install(m_ns3Node));

8 }

9

54 CHAPTER 4. IMPLEMENTATION

10 void

11 DPWSServerNode::CreateApplications()

12 {

13 // DPWSServerNode used for both targetServers and nonTargetServers

14 HttpServerHelper httpServer(m_config.GetHttpServerPort());

15 m_applications.Add(httpServer.Install(m_ns3Node));

16 }

The benign traffic model requires a pair of applications to be installed in order to function:
An HTTP server application that responds to requests from clients and an HTTP client
application that sends HTTP requests to said server and initiate the transfer of data.

Listing 4.19 shows how the installation procedure for both applications looks like. The
HTTP Client is installed on DPWSBenignNode instances, such that they can initiate a
connection with any HTTP server, thus resulting in background traffic flowing through
that connection.

Lines 1 to 8 show how this is implemented in code, with the installation being as simple
as accessing the IPv4 address and the server port of the HTTP server it wishes to connect
to (line 4), then setting up the corresponding helper class (line 5) and configuring the
maximum reading time (line 6) and then finally, on line 7, installing the client on the
NS3Node and adding the installed application to m_applications, which is a Applica-

tionContainer, as can be gleaned from Figure 4.5.

This last step bears further explanation. In principle, one could simply store the HTTP
client application directly on some class member to later start it through a call to DP-

WSBenignNode::StartApplications. However, the advantage of instead using a Appli-

cationContainer is that this leaves room for future extension, to e.g., use more than
one benign traffic model, which might mean having to potentially install multiple appli-
cations on the same NS3Node. Any application start commands are then issued to the
NodeContainer, which propagates it to each application stored within, meaning that any
additionally added applications receive them automatically as well.

This choice was specifically made with design requirement R5 in mind and has been
applied in the same fashion to all DPWSNode types by already including the Applica-

tionContainer in the DPWSNode base class.

Another important fact that needs to be explained is the setting of the maximum reading
time on line 7. The maximum reading time refers to the time between a client having
fully received a page and requesting the next, basically the time it would take an actual
user to read the page [62]. The implementation of the traffic model as found on GitHub
has a maximum reading time of 10’000 seconds, as the model formulated by [62] defines
it as such, with the number originating in the findings of [44].

The issue with having a maximal reading time of approximately 2 hours and 45 minutes,
is that it renders the model difficult to use for simulations with shorter duration. To
account for that, the implementation of the HTTP client was slightly changed to allow
for the maximal reading time to be configurable, to account for shorter simulations.

Listing 4.19 also shows the installation process for the HTTP server application, which is
even more straightforward than the installation of the HTTP client. Lines 10 to 16 show

4.3. COMPONENT IMPLEMENTATIONS 55

how the server application is installed on DPWSServerNode instances, which are used to
model both targets as well as non-target servers. Here too a helper class is first created
(line 14) which is then used to instantiate the actual server application (line 15) and add
it to the ApplicationContainer.

As already hinted at, the HTTP server is installed on all server nodes, no matter if they
have been designated as targets for attack traffic or not. This decision was made to
allow target servers to receive a mixture of benign and attack traffic or to also have the
traffic types be completely separate, by only creating benign traffic between benign nodes
and non-target servers, whilst the attack traffic flows between attacker nodes and target
servers.

4.3.4.2 Attack Traffic Model

The task of the attack traffic model is to provide means to generate different types of
DDoS traffic and to do so in a way that matches the characteristic fast-peaking, burst-like
nature of pulse-wave attacks. A distinction, therefore, has to be made between modelling
the traffic in a pulse-wave pattern and modelling the makeup of the traffic in terms of the
actual DDoS attack that is being conducted in a given pulse.

In earlier parts of the report, the term ‘attack vector’ has been used to refer to type of
DDoS attack (e.g., UDP flooding or ICMP flooding). This terminology is maintained
here, with the term ‘pulse’ specifically referring to the overall traffic pattern, irrespective
of the attack vector used in that given pulse.

In order to fully understand how the attack vectors are implemented, the implementa-
tion of the traffic pattern has to be explained first. The application responsible for the
generation of attack traffic is the OnOffRetargetApplication, a custom extension of the
OnOffApplication, a default application contained within NS-3 .

The regular OnOffApplication has capabilities for sending packets of configurable size at
a configurable data rate to a single predetermined target address and port. Additionally, it
runs an on-off schedule in either randomized or constant intervals in which the application
will switch from a sending state to an off state and vice versa.

This made it a good starting point for implementation, as the provided functionality
already covers a good portion of what is needed to implement the pulse-wave traffic
pattern. The data rate and packet sizes are present, allowing for differently constructed
traffic in terms of the overall packet volume sent at a given data rate (larger packets at
the same rate result in smaller packet volume compared to smaller packets at the same
data rate) as well as just the data rate in general. The on-off scheduling cycle can be used
to implement a given pulse within the pulse-wave pattern.

The exploration of the application logic in code form is omitted, as there are numerous
intermediate and helper methods involved, which make it impractical to illustrate the
behaviour of the OnOffApplication in its on and off states respectively. Figure 4.6 shows
a simplified diagram that illustrates the application’s behaviour.

56 CHAPTER 4. IMPLEMENTATION

Schedule switch to On

Schedule switch to Off

Off State On State

Calculate
Send

Interval

Send
Packet

Start Command

Figure 4.6: OnOffApplication State Cycle

Initially, upon receiving the start command, the application will pass a first off state
duration, thus not generating traffic. At the same time, it will schedule a switch over
to the on state. Once the simulator schedule has reached that switch over event, the
application is set to the on state. It will then immediately schedule the next switch-over
to the off state. It also will start sending packets in the following way: the application will
calculate the time at which to send the next packet (i.e., calculate the sending interval
between packets based on configured data rate and packet size) and schedule a send event.
Once that send event is reached, the packet is sent and the next send-even is scheduled by
calculating at what time in the simulation it should occur. This cycle is continued until
the application switches back to the off state.

What was missing was the ability for the application to switch the target address (and
potentially port) as well as the ability to cut out that initial time spent in the off state
when the application receives its start command, which is where the OnOffRetargetAp-

plication comes into play. The cutting out of the initial off state was easily addressed
and is not discussed in this report. The setting of a new target however bears further
discussion.

In principle, simply setting a new remote address or port is done easily. When the appli-
cation is constructed, its socket, used to send packets of the correct type, is instantiated
and the connection with the target is established. Setting a new remote then boils down
to communicating the new target address and port to the application, which then can dis-
connect the socket, set the new remote, and then reconnect, with the socket now pointing
to the new target.

The topic was broached on the NS-3 community forums by the author, leading to a con-
versation with one of the NS-3 contributors [52]. The key insight from that conversation
was that this will not work for protocols that rely on actually establishing a connection
through a handshake procedure, such as TCP [52]. Closing such a connection is not imme-
diate, making it not a viable choice to set a new remote this way [52]. A better approach
would thus be to completely close and remove the socket and instantiate a new one with
the new target address.

Listing 4.20: Setting a new Remote

4.3. COMPONENT IMPLEMENTATIONS 57

1 void

2 OnOffRetargetApplication::SetRemote(InetSocketAddress address)

3 {

4 m_socket->Close();

5 m_connected = false;

6 m_peer = address;

7 CancelEvents();

8 ManageSocketCreation();

9 }

10
11 void

12 OnOffRetargetApplication::ManageSocketCreation()

13 {

14 m_socket = Socket::CreateSocket(GetNode(), m_tid);

15 if (m_protocol != -1)

16 {

17 m_socket->SetAttribute("Protocol", UintegerValue(m_protocol));

18 }

19 ...

20 m_socket->SetConnectCallback(MakeCallback(&OnOffRetargetApplication::

↪→ ConnectionSucceeded, this),

21 MakeCallback(&OnOffRetargetApplication::

↪→ ConnectionFailed, this));

22 m_socket->Connect(m_peer);

23 ...

24 }

Listing 4.20 shows the relevant extracts from the code of the OnOffRetargetApplication,
where the new SetRemote method can be used to set a new address and port combination
(InetSocketAddress contains both the IP as well as the port). Lines 4 to 8 show how
this is achieved. First, the old socket is closed and the flag used for internal control flow
is set to false (line 5). Then the new peer is written to the class member and all pending
events are canceled (send events, as well as scheduled events for switching from on to off
or vice versa). In that sense, setting the remote in a way constitutes a complete restart
of the application. Finally, the new socket is created (line 8).

Lines 12 to 22 show the relevant parts of socket creation. On line 14, a call to create the
new socket with the correct TypeId is made (the TypeId essentially tells the code which
object factory to use, resulting in the correct type of socket). Lines 15 to 18 also show
another change made with the OnOffRetargetApplication, namely the ability to set the
protocol number on the socket. This is relevant if a raw socket type is configured, which
is the case for all attack vectors in the prototype.

Once the socket is created, the callbacks (lines 20 and 21) for successful or failed connec-
tions are set (which will start the on off cycle, respectively terminate the application),
and the socket can be connected to the new remote (line 22). With that, the application
now covers all that is needed to implement the desired pulse-wave traffic pattern.

One issue that needs to be addressed at this point is that according to the aforementioned
forum conversation, closed sockets are not completely removed from memory, thus essen-
tially introducing a memory leak [52]. Ultimately, this resulted in the NS-3 contributor
Tommaso Pecorella creating a fix for that memory issue, which at the time of writing this

58 CHAPTER 4. IMPLEMENTATION

part of the report has been merged and released with version 3.39 of NS-3 [60]. This
project however was developed, tested and evaluated with version 3.38 of NS-3 , thus this
project’s repository ([61]) includes the necessary files and instructions on how to apply
that memory fix to pre-3.39 versions of NS-3 .

In terms of attack vectors, the system implements three distinct vectors, namely ‘UDP
flooding’, ‘ICMP flooding’ and ‘TCP SYN flooding’. These were chosen because [19]
specifically mentions them as suitable candidates for pulse-wave attacks. To the best of the
author’s knowledge, there are no publicly available datasets containing pulse-wave attack
data, thus there is no other information to go by regarding what vectors to implement.

Similarly, due to the lack of pulse-wave datasets, the implementation cannot draw from the
analysis of real world pulse-wave attacks in terms of how the attack vector implementations
should be modelled or behave in terms of the. Thus, in accordance with the thesis
goals the approach was chosen to implement them simply based on the description of
the attack vector with configurability of parameters such as packet size, data rate and
(where appropriate) port numbers allowing for the attack vectors to be tailored towards
the signature users wants to utilize in their simulations.

UDP Flooding is the most straightforward to implement. In principle NS-3 already
includes a fully functional UDP socket, which when configured as the socket TypeId on
the OnOffRetargetApplication is already capable of producing the desired attack traffic
in the form of UDP packets. However, this would make implementing the parametrization
of the source and destination ports very complex. A more promising approach, shown to
be successful by the EDDD project ([23]) which ran in parallel to this thesis at the CSG
at the UZH ([74]), is to forego existing socket implementations and rely on the so-called
Ipv4RawSocketImpl which gives access to the the protocols without the accompanying
logic that is present on protocol-specific socket implementations.

Listing 4.21: UDP Flooding Implementation using Raw Socket

1 // part of OnOffRetargetApplication::SendPacket

2 ...

3 else if (m_attackVector == AttackVector::udp_flooding)

4 {

5 packet = Create<Packet>(m_pktSize - m_pktSizeOffsets[AttackVector::udp_flooding]);

6 // create UDP header with correct source and destination port

7 UdpHeader udpHeader;

8 udpHeader.SetSourcePort(GetRandomPort());

9 udpHeader.SetDestinationPort(GetRandomPort(true));

10 packet->AddHeader(udpHeader);

11 }

As a consequence of using the raw socket implementation, additional logic, such as fully
constructing the packets has to be moved into the application. In some sense this blurs
the border of responsibilities between the socket and the application, as the application
now has to take care of details such as constructing packet headers. On the other hand,
having to allow the application to take attack-vector specific actions in its methods as
is the case e.g., during packet construction, opens up a more flexible and less complex
way of implementing the sending of specially crafted packets and by that logic also an
easier way to implement attack vectors than having to build an entire socket as done

4.3. COMPONENT IMPLEMENTATIONS 59

in [11]. Ultimately this cannot be seen as a drawback and also helps simplify future
extension (thus contributing to design requirement R5), especially as it does not preclude
the implementation of attack vectors in the form of a dedicated socket, which remains
possible.

In the case of the UDP flooding implementation, using the raw socket implementation
means that now the packet header and thereby the source and target ports are defined
within the application. Lines 8 and 9 in Listing 4.21 show how the ports are handled, with
the GetRandomPort method returning a randomized port, unless a specific port number
is defined for source or destination port in which case it returns that number.

Figure 4.7: UDP Flooding Traffic

The resulting traffic is characterized by UDP packets being sent towards the attack target,
with the target responding to each UPD packet with an ICMP packet, informing that there
is no process listening on incoming UDP traffic on the target port [38]. How this traffic
looks like when reduced to a single attacker and target is shown in Figure 4.7.

The second attack vector is TCP SYN flooding. Initially, the goal was to integrate an
existing NS-3 implementation of a SYN flood socket, which was produced as the result [11].
That implementation would have fit perfectly with the OnOffRetargetApplication, as
the only thing that needed to be configured would have been to set the correct TypeId,
identifying the SYN flood socket and then using the application as normal, meaning the
application would be agnostic to the fact that it is executing an attack vector and the
responsibility of implementing attack traffic woud rely solely with the socket.

Unfortunately, the author was unable to find the implementation and also was unable of
reaching the authors of [11]. An attempt was made to re-implement the SYN flooding
socket based on the class diagram provided within [11], but ended up with a non-functional
socket factory and was thus abandoned. Instead, once more the EDDD approach of using
the Ipv4RawSocketImpl was used, which was already proven to be capable of implement-
ing both SYN flooding and ICMP flooding.

The code responsible for implementing the TCP SYN flooding attack vector is structurally
very similar to the one shown in Listing 4.21 for the UDP flooding. One thing of note is
that SYN packets are implemented as empty packets, thus disregarding any potentially
configured packet sizes. Making the packet an SYN packet is not strictly required, as
stated in [37], but it still represents the commonly used approach, thus is also done so
here.

60 CHAPTER 4. IMPLEMENTATION

Figure 4.8: TCP SYN Flooding Traffic

Figure 4.8 shows the resulting traffic if reduced to one attacker and one target. Unfortu-
nately, this is not exactly what one would like to see. Instead of returning a ‘SYN ACK’
flagged packet ([37]), the server simply rejects the connection altogether. What this means
is that this attack vector should only be used for simulations where the target’s response
is not relevant. The project’s GitHub page informs potential users of that caveat [61].

Another thing of note about the SYN flood implementation is that it can lead to packets
being flagged by Wireshark ([76]) as potential ‘TCP Retransmissions’ due to port number
reuse. This will happen even when randomizing both source and destination port as at
some point the combinations are exhausted. When configuring both ports to a specific
value then all except the first packet from each attacker IP address will be marked as
potential retransmission.

This may be problematic for some analyses, although the SYN flooding dataset by
StopDDoS ([29]) also shows packets flagged as retransmissions due to port reuse (cf. Fig-
ure 4.9).

Figure 4.9: Suspected Retransmission in StopDDoS’ SYN flood traces [29]

As such the SYN flooding implementation should still be considered viable and is therefore
included in the final version of the prototype.

The final attack vector the system implements is ICMP flooding. ICMP flooding also
makes use of the EDDD project’s approach of using the raw socket [23]. In that sense, it
too is structurally quite similar to the other two previously discussed attack vectors.

4.3. COMPONENT IMPLEMENTATIONS 61

Listing 4.22: ICMP Flooding Implementation using Raw Socket

1 // part of OnOffRetargetApplication::SendPacket

2 ...

3 else if (m_attackVector == AttackVector::icmp_flooding)

4 {

5 Ptr<Packet> dataPacket =

6 Create<Packet>(m_pktSize - m_pktSizeOffsets[AttackVector::icmp_flooding]);

7 Icmpv4Echo echo;

8 echo.SetData(dataPacket);

9
10 packet = Create<Packet>();

11 packet->AddHeader(echo);

12
13 Icmpv4Header header;

14 header.SetType(Icmpv4Header::ICMPV4_ECHO);

15 header.SetCode(0);

16 header.EnableChecksum();

17
18 packet->AddHeader(header);

19 }

Listing 4.22 shows the part of the OnOffRetargetApplication responsible for imple-
menting the ICMP flooding attack. First, on line 5, the data packet is created using the
configured packet size, corrected for overhead that stems from packet headers. This data
packet is then used as the echo part of the ICMP packet, and added to the ‘main’ packet
(lines 7 to 11).

Once done, the ICMP packet header is constructed with the echo flag, then the ‘Code’ is
set to 0. This relates to ICMP type numbers, as listed in [35], with the echo flag set on
line 14 indicating that this is a ‘type 8’ ICMP packet (i.e., an echo packet) and code 0
meaning that ‘no code’ has been set, as type 8 ICMP packets do not support (and also
do not require) any additional codes.

As a last modification to the header, checksums are enabled on line 16, which in the case
of this system means that in the resulting PCAP output the ICMP packets don’t carry
the ‘Checksum: 0x000 incorrect, should be {some-valid-checksum}’ annotation.
Then the header is attached to the packet (line 18) and the packet is ready to be sent.

Figure 4.10: ICMP Flooding Traffic

Figure 4.10 shows the resulting traffic, once reduced to a single attacker and a single
target. Echo packets are received at the recipient and the response is returned in form of
the echo, as is described in [36].

One final aspect of the attack traffic generation must be discussed which is that in an NS-3
simulation, the application will have its data rate locked to the exact value as configured,

62 CHAPTER 4. IMPLEMENTATION

leading to inter-packet intervals that are completely constant. Such ideal conditions of
operation are likely not reflective of the real world. As such, a per-packet data rate
fluctuation is introduced to produce a more dynamic inter-packet interval. This is done
in a way that corresponds to the approach taken so far with the prototype and aims to
be generic with the ability to tailor the behaviour through configuration, with the option
to have specify a separate deviation on each individual attacker node.

Listing 4.23: Packet Interval Randomization with Uniform Distribution

1 double

2 OnOffRetargetApplication::GetRandomSendDelayModifier() const

3 {

4 std::random_device dev;

5 std::mt19937 gen(dev());

6 // set range to twice the max, given that it is in either direction

7 std::uniform_real_distribution<> distribution(0, 2 * m_maxDataRateDeviationPercent

↪→);

8 // subtract half the range such that both negative and positive values are

↪→ possible

9 double delayModifierPercent = distribution(gen) - m_maxDataRateDeviationPercent;

10 return delayModifierPercent;

11 }

Listing 4.23 shows how this is achieved, by using a fresh random device draw to seed a
generator (lines 4 and 5) and then defining the range of possible values the distribution
draws from to twice that of the maximally configured deviation. This is done because the
data rate can deviate in both directions such that the actually configured data rate value
still holds true on average. A value is drawn (line 7) and then adjusted by half the range
such that both negative and positive modifiers values are possible (line 9).

For each send event that is scheduled (i.e., for each packet) such a modifier is drawn and
applied to the calculated inter-packet interval. It is important to note that the choice of
distribution represents a pragmatic choice and is not derived based on analyzing existing
datasets. The reasons for that are twofold. The first is that there are not existing pulse-
wave datasets so the values would have to be derived from non-pulse-wave DDoS data
which suffers from a significant ramp up at the start of the attack, thus the resulting
distribution would likely not be suitable for pulse-wave traffic. The second is that a more
sophisticated model that e.g., does not operate locally on each individual attacker node
and instead attempts to model data rate fluctuations more globally such as for example
per network or per connection in the topology is not appropriate to the scope of the thesis
and the corresponding time limit.

4.3.5 Attack Scheduling

So far, what was discussed in terms of implementation allows the system to be instantiated
and held together by the main script, the configuration file to be parsed and validated,
the topology to be constructed based on the configured ASs and the CN, and the desired
behaviours and traffic models to be applied to the individual nodes within the topology.

4.3. COMPONENT IMPLEMENTATIONS 63

What is still missing to get a functional pulse-wave traffic generator is the coordination
of the attacker nodes, ensuring that they execute the correct attack vector in the correct
pulse at the correct time and aimed towards the correct target server node. This is where
the process of attack scheduling comes into play.

The heavy lifting in this regard is done by the AttackScheduleHelper class, with some
auxiliary logic also being present in the DPWSAttackerNode instances. The task of the
AttackScheduleHelper is to calculate the schedule at which applications are turned on
and off, when they are started and when they need to have their target changed by setting
a new remote (cf. Section 4.3.4.2).

There is only a single instance of the AttackScheduleHelper used within the system,
and it is shared by all DPWSAttackerNode instances, which ensures that they all run on
the same schedule and also avoids having to re-compute the schedule in each individual
attacker node. The attacker nodes upon receiving the attack schedule then apply the
calculated on and off timings to their OnOffRetargetApplication instances and schedule
the respective remote changes.

This process is difficult to show in code, thus the exploration of the code is left to those
readers curious about the technical details. Instead, in this report the process is demon-
strated based on an example, shown in Figure 4.11.

1 2 3Targets:

Attack
Vectors:

Id A B C

Burst-
duration 40 60 30

Switch-
duration 20 0 30

Application Schedules:

a:

b:

20 20 20404040

60 60 60

c:

30 30 30 30 30 30

180

360

360

180

Figure 4.11: Attack Scheduling Example

64 CHAPTER 4. IMPLEMENTATION

The example presented in that figure consists of three targets being attacked in sequence,
with the attacker nodes using three different attack vectors during the attack. In the
table shown within the figure, each vector is listed with its burst duration and its switch
duration (i.e., the time it takes for the attack to be redirected to the next target).

Note that switching duration can and typically should be set to 0 (as is the case with
attack vector B) as the attacking resources realistically do not cease operation but are
just directed towards the new target. The reason the switching duration is configurable
is that this way pulse-wave attacks can be simulated against a single target by using the
switching duration to mimic the attack resources being directed to somewhere else and
then returning to the target.

Each attacker node creates one OnOffRetargetApplication instance per attack vector,
resulting in this example in each attacker node having three separate applications in their
application container. In the figure this is represented through the labels, i.e., attack
vector ‘A’ is implemented by application ‘a’ and so forth. In order to instantiate these
applications, the attacker nodes need to know the schedule, which they can access on the
AttackScheduleHelper.

The AttackScheduleHelper is given the number of targets, as well as the configurations
of the different attack vectors and based on that creates a schedule for each individual
application.

In the figure, the schedule for each application is shown, with the colored blocks repre-
senting the application being in their on-state and sending attack traffic toward the target
that matches the color of the block. The white blocks in the timeline meanwhile represent
the target switching duration, during which the application is in the off-state, thus not
producing any traffic.

The grey sections of the schedule also represent the application being in the off-state,
but not due to the target switching duration, but rather due to having to allow the other
application to perform their round of attacks before it cycles back to the initial application.
Lastly, the red bars represent the setting of a new (or initial) target. The schedules shown
constitute one ‘cycle’, i.e., until each application has attacked each target exactly once.
These cycles are repeated continuously for each application until the simulation stops.

For application a this then means that as soon as the simulation starts, it spends 40
seconds attacking target 1, then spending 20 seconds in off-state before being forced onto
target two and later target 3 where for each of them 40 seconds is spent sending traffic
and 20 seconds is spent in off-state. Once all targets have been visited, the application
spends 360 seconds waiting until the other applications have performed their attacks.

For applications b and c this is not quite as straight forward, as they cannot directly
start sending once the simulation starts, as otherwise all attack vectors are active at once
instead of in sequence. To account for that the scheduler calculates an ‘application start
offset’ for each application, which dictates how long the application should wait before it
starts up its scheduling cycle once the simulation has began. For application a, this offset
is 0, for application b it is 180 seconds (i.e., the amount of time it takes for application a

4.3. COMPONENT IMPLEMENTATIONS 65

to finish), and for application c it is 360 seconds (the time it takes for applications a and
b to finish).

On a technical level there are a few more details to be handled. The first concerns the
setting of the off time duration. Looking at the schedules shown in Figure 4.11 it becomes
apparent that there are two different off time intervals. When a given application is
attacking any target but the last, the time spent in off-state is shorter than the off-state
duration after having attacked the last target.

For example, for application c, after attacking targets 1 and 2, it spends 30 seconds in the
off-state, whereas after attacking target 3 it spends 390 seconds in off state. The numbers
for application a are 20 seconds and 380 seconds respectively, with application b operating
with 0 and 360 second durations.

In order to avoid having to re-configure the applications’ off times continuously, the appli-
cations are configured with the longer of the two off-duration values, which is calculated
such that it also accounts for only one attack vector, hence only one application being
present: off time = cycle duration− (N ∗ burst duration+(N − 1) ∗ switch duration),
with N being the number of targets. Applied to the example at hand, this results in 380
seconds for application a, 360 seconds for application b, and 390 seconds for application
c, the values already established before.

To still be able to have only the short off-state duration play out after attacking all but
the last target, the switching of the target (signified by the red vertical bars) does not
only set a new target but also resets the application’s on-off cycle, thus effectively forcing
it back into the on-state regardless of how much time it still had left to spend in the
off-state.

This then leads to the final problem, defining the points in time at which the target
switch is to be scheduled. To this end, the AttackScheduleHelper uses a pair of indices
to track which vector is currently active and which target is currently being attacked, thus
essentially having a complete view of where each application currently resides within its
schedule, therefore being able to supply each application with the appropriate interval for
when the next remote change needs to be scheduled.

4.3.6 Traffic Capture

Regarding the capturing of traffic in PCAP files, NS-3 provides built-in methods to do
so, meaning they simply need to be called on the correct locations within the topology,
such that the traffic is captured in a way that implements the generation of data from a
distributed perspective (design requirement R1).

In order to have that distributed perspective implemented, traffic is captured at each
interface of each CN node. This provides complete traceability of packets across the
entire CN, starting at the AS it originates from all the way to the target AS. To do so,
it is sufficient to simply call the EnablePcap method on the NetDevice instances that
belong to said interfaces.

66 CHAPTER 4. IMPLEMENTATION

The tricky part is to name the files in such a way that makes it clear where in the
topology a given file originates. The file names ultimately take the following form:
{globalPrefix}__{FromID}-to-{ToID}____{junk}.pcap.

The globalPrefix is configurable within the configuration file, such that the user has a
way to differentiate files that stem from different simulation runs, by altering said prefix.

The ToID is the id configured by the user for the CN node, or, if the file is captured
on a CN interface that belongs to a connection stemming from an AS gateway, the id
configured by the user for that AS. The FromID is always the id of a CN node.

Lastly, the junk part represents the part of the file naming done by NS-3 and typically
consists of two number, whose meaning the author was not able to fully grasp. Unfortu-
nately, the EnablePcap method as present on the NetDevice does not seem to provide
an option to not have NS-3 add its own part to the file name, hence the insertion of the
underscores to clearly separate it from the semantically meaningful part of the file name.

To help illustrate this more clearly, a few examples: If a file is captured on an interface
of a connection that connects an AS to a CN node, then the file will be called some-
thing along the lines of testRun__IXP2-to-AS3____{junk}.pcap. If a file on the other
hand is captured on a connection between two CN nodes, then there are two options, either
testRun__IXP2-to-IXP1____{junk}.pcap or testRun__IXP1-to-IXP2____{junk}.pcap.

The reason why there are two options when traffic is captured between two CN nodes,
is that the perspective of each CN node must be available in full, such that statements
can be made about the traffic as seen on each individual CN node. As a consequence,
the traffic is captured on both interfaces of that connection, resulting in two files with
mirrored names, with the one where the id of the node whose perspective one wishes to
examine comes first belonging to that node.

IXP 1

IXP 2

IXP 3

IXP 4

AS3

AS1

AS2

Figure 4.12: Example Topology

To give a more complete example, the assumed topology of some simulation run is shown
in Figure 4.12. The resulting PCAP file names, reduced to the FromId and ToId for each
involved CN node are shown in Table 4.1.

4.3. COMPONENT IMPLEMENTATIONS 67

As is apparent when looking at the table, in order to get the complete traffic view of a
given CN node, it is sufficient to simply look at all the files that have that paritcular CN
Node’s id as the FromId.

Table 4.1: Example Topology File Names

CN NodeId IXP1 IXP2 IXP3 IXP4

Associated Files
IXP1-to-AS1,
IXP1-to-IXP2,
IXP1-to-IXP3

IXP2-to-AS3,
IXP2-to-IXP1,
IXP2-to-IXP3,
IXP2-to-IXP4

IXP3-to-IXP1,
IXP3-to-IXP2,
IXP3-to-IXP4

IXP4-to-AS2,
IXP4-to-IXP2,
IXP4-to-IXP3

68 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

In this part of the report, the system is put through different evaluation scenarios to test
or show different aspects of the prototype. The configuration files used to perform the
evaluations are all available on the project’s GitHub repository page ([61]).

Regarding the rest of this chapter, in Section 5.1, a set of small scale scenarios is ran to
demonstrate the variability in attack vectors that can be achieved through the application
of configuration. Then, the distributed nature of the generated dataset is demonstrated
in Section 5.2. Afterwards, in Section 5.3 the performance and scalability of the system
are evaluated.

This is followed by Section 5.4, where findings that have had an impact on the evaluation
and required parts of the system to be changed are presented. These changes have been
made before the final evaluation. Nonetheless, they represent valuable takeaways and are
therfore included in the report.

Finally, the findings of the evaluation and their implications are discussed in Section 5.5.

5.1 Attack Vector Variability

The purpose of this part of the evaluation is to demonstrate the prototype’s ability to
generate attack vectors that exhibit different characteristics regarding packet size, packet
volume, data rates, protocol, source port and destination port. To that end, in Sec-
tion 5.1.1, a configuration, VAR1, is used that utilizes a combination of per-attacker and
per-attack-vector configurations to create those different pulses.

Afterwards, a different configuration, VAR2 is used to showcase how the duration and
overall traffic pattern of the pulses can be controlled. This is done in Section 5.1.2.

69

70 CHAPTER 5. EVALUATION

5.1.1 Variable Attack Vector Composition

Figure 5.1 shows the result of VAR1 as a plot of the produced attack traffic expressed
in data rate over time. The plot uses colors to indicate the protocol used in the attack
vector of a given pulse, with blue representing TCP, green signifying UDP, and brown
tones representing ICMP.

The different variations of a given color are used to show which of the 5 attacker nodes
contributes which part of the overall traffic, whilst the red line plot indicates the overall
packet volume.

0 50 100 150 200
Time [s]

0

1

2

3

4

5

Da
ta

 R
at

e
[M

Bi
t/s

]

Data Rate per Attacker Node over Time

Attacker 5 (TCP / UDP / ICMP)
Attacker 4 (TCP / UDP / ICMP)
Attacker 3 (TCP / UDP / ICMP)
Attacker 2 (TCP / UDP / ICMP)
Attacker 1 (TCP / UDP / ICMP)

0

2000

4000

6000

8000

10000

12000

14000

Pa
ck

et
 V

ol
um

e
[P

kt
/s

]

Combined Packet Volume

Figure 5.1: VAR1: Data Rate Breakdown per Attacker Across Vectors

Figure 5.2 also shows VAR1 but with the packet volume being broken down by attacker
and protocol rather than the data rate and the red line plot signifying the combined attack
traffic data rate. Both figures taken together allow for a more detailed breakdown of the
individual pulse-waves.

Both figures have been produced with the plot_attacker_and_protocol_keyed_traffic
_at_ixp_node.py script, which can be found in the project’s repository as well as in the
appendix (Appendix D.1).

With the two figures in mind, one can derive facts about the configuration of the individual
pulses’ attack vectors. All of them have been configured such that the data rates of
the individual attacker nodes combined arrive at the same total data rate of 5 Mbit/s,
resulting in an average data rate of 5 Mbit/s for each pulse. However, the four different
attack vectors go about this in different ways.

Besides the obvious difference in the protocols used, the first and second vectors appear
to have the same internal structure, with all attacker nodes contributing equally in terms
of data rate. However, looking at the breakdown of the packet volume contributions it

5.1. ATTACK VECTOR VARIABILITY 71

0 50 100 150 200
Time [s]

0

2000

4000

6000

8000

10000

12000

14000

Pa
ck

et
 V

ol
um

e
[P

kt
/s

]
Packet Volume per Attacker Node over Time

Attacker 5 (TCP / UDP / ICMP)
Attacker 4 (TCP / UDP / ICMP)
Attacker 3 (TCP / UDP / ICMP)
Attacker 2 (TCP / UDP / ICMP)
Attacker 1 (TCP / UDP / ICMP)

0

1

2

3

4

5

Da
ta

 R
at

e
[M

Bi
t/s

]

Combined Data Rate

Figure 5.2: VAR1: Packet Volume Breakdown per Attacker Across Vectors

becomes apparent that the first attack vector, using TCP SYN flooding achieves a signif-
icantly higher packet volume than the second attack vector (which uses UDP flooding) at
the same data rate.

This difference boils down to packet size, with TCP SYN flooding using small, fixed size
packets, due to SYN packets being essentially empty packets, whilst UDP flooding packets
are freely configurable in their size. In VAR1, the second vector uses a packet size that is
roughly double that of the fixed size SYN packets, hence the difference in packet volume.

Nonetheless, in the second vector the individual attacker nodes still contribute equally
in terms of packet volume as they are all configured to produce packets of the same
size. Moving the focus onto the packet volume breakdown of the third vector it may be
tempting to state that this has now changed, given that the contributions of the individual
attacker nodes to the combined packet volume are no longer equal.

This statement would however be wrong, as the difference in contribution to the overall
packet volume is caused not by using different packet sizes, but rather by using different
data rates. This becomes clear once one considers the data rate breakdown of the third
vector as shown in Figure 5.1, where the difference in data rate of the individual attackers
is shown. Looking more closely at the packet volume breakdown of the third vector back
in Figure 5.2, the ratios between the contributions of the attackers is identical to the ratios
seen in the data rate breakdown plot, thus hinting at the fact that the attackers all use
the same packet size in vector three.

To elaborate further on this: the relationship between data rate and packet volume, as
implemented in the basic OnOffApplication, as well as the OnOffRetargetApplication,
which is what the prototype uses to run the attack vectors (cf. Section 4.3.4.2) is in
essence given by a three component formula, with packet size being the third part of that
calculation.

72 CHAPTER 5. EVALUATION

Consider the way the interval between packets is calculated in those applications:

interval = packet size/data rate

Knowing this interval, one can now compute the packet volume that is generated like so:

packet volume = 1/interval

Combining the two equation and rearranging leads to:

packet volume = data rate/packet size

This is also the formula used by [13]. If the packet size is fixed, then e.g., attacker 1, who
contributes approximately 50% of the data rate in the vector must as a consequence also
be contributing 50% of the packet volume.

The system, however, also allows for the packet size to be varied across the different
attacker nodes. To illustrate this, the focus is now put on the last of the four attack
pulses, where e.g., attacker 1 still makes up approximately 50% of the data rate, but now
contributes in a reduced manner to the combined packet volume of that vector, whereas
attacker 2, who produces fewer data rate than attacker 1 contributes significantly more
to the combined packet volume than attacker 1.

This kind of configurable diversity in attack vector composition is seen as crucial for
this system, as it allows the user to create a wide range of different scenarios by using
a mixture of per-attack-vector, per-attacker-node, and global configuration options. For
example, pulse-wave attacks are seen as sophisticated DDoS attacks, which require precise
orchestration of attack resources and thus are according to [39] likely being executed using
small numbers of dedicated, high-capacity devices (cf. Section 2.1.1.3).

This then would in the author’s view likely result in an attack vector composition where
attackers contribute in precisely defined ratios, which is represented by the first two attack
vectors in VAR1 and is achieved by relying on configuration options that apply globally
or to specific attack vectors rather than individual attacker nodes.

This, however, does not necessarily exclude the possibility that pulse-wave attacks are
performed through the use of an IoT botnet, where the resulting attack vector composition
is likely less regular and more varied across the individual attackers, thus the third and
fourth vectors in VAR1 seem to be more appropriate representation of such an IoT based
pulse-wave attack, which is achievable by relying more on the system’s per-attacker-node
configuration options rather than global or attack-vector based ones.

Regardless, the configurability of the parameters data rate, packet size and therefore
indirectly packet volume (i.e., packets per second) on both a per-attacker and per-attack-
vector basis demonstrates the ability of the system to produce datasets that exhibit highly
variable with regard to said metrics. Additionally VAR1 also demonstrates the ability
to configure attack vectors that utilize different protocols. This all contributes towards
the main goal of the thesis of being able to configure the system such that a wide range

5.1. ATTACK VECTOR VARIABILITY 73

Table 5.1: VAR1: Vector Characteristic Breakdown

Attack
Vector 1

Attack
Vector 2

Attack
Vector 3

Attack
Vector 4

Packet
Sizes
(Bytes)

42 96 128

36 (49.1%)
48 (18.4%)
96 (5.5%)
128 (9.7%)
256 (17.3%)

Avg. Data
Rate (Mbps)

4.99 5.00 5.00 4.99

Avg. Packet
Volume (Pps)

14’874.3 6’505.8 4’879.7 7’064.7

Avg. Data
Rate per
Attacker (Mbps)

1 (all) 1 (all)

AN1: 2.49
AN2: 1.00
AN3: 0.69
AN4: 0.50
AN5: 0.30

AN1: 2.49
AN2: 0.99
AN3: 0.69
AN4: 0.50
AN5: 0.29

Avg. Packet
Volume per
Attacker (Pps)

2’974 (all) 1’300 (all)

AN1: 2’440.7
AN2: 975.0
AN3: 682.7
AN4: 488.4
AN5: 292.3

AN1: 1’219.9
AN2: 3’468.8
AN3: 683.4
AN4: 1302.3
AN5: 390.3

of different outcomes can be achieved regarding typical attack fingerprint characteristics,
which includes packet size, data rate and packets per second.

Table 5.1 quantifies the difference in the composition of the four attack vectors in terms of
packet sizes, data rates and packet volumes. The values for said table have been extracted
using the python script found in Appendix D.3. The same observations as already made
above based on the two figures can be made here too, though the table also reveals that
there are slight variations in the data rate and packet volume metrics. For example, the
average data rate, though configured to be equal for all four pulses, differs slightly. This
can also be observed in the aforementioned figures, where slight fluctuations in the attack
traffic can observed even within the same pulse. The cause for this is the configurable data
rate fluctuation (cf. Section 4.3.4.1), which further contributes to making the generated
attack traffic as flexible as possible.

This demonstrates the system’s ability to generate pulses that differ in terms of their
characteristics within the same overall pulse-wave attack.

VAR1 can also be used to demonstrate the configurability of two additional fingerprint
metrics, namely source port and destination port numbers. Using a script to determine
the port numbers (cf. Appendix D.2) as they are present within each attack vector leads
to the port number distributions as seen in Table 5.2.

Both source and destination ports are configurable on a per-attacker and per-attack-

74 CHAPTER 5. EVALUATION

Table 5.2: VAR1: Port Number breakdown by Attack Vector

Attack
Vector 1

Attack
Vector 2

Attack
Vector 3

Attack
Vector 4

Source
Ports

Random

139 (39.99%)
185 (20.00%)
487 (19.99%)
Random (20.02%)

not applicable

139 (22.79%)
185 (9.67%)
487 (18.43%)
Random(49.11%)

Destination
Ports

8080 Random not applicable

9 (49.11%)
118 (5.52%)
777 (26.94%)
Random (18.43%)

vector level. They both can either be randomized or set to specific values. Naturally,
attack vector 3 which uses ICMP flooding does not make use of either port setting as it is
not a transport layer protocol. TCP SYN flooding and UDP flooding however can fully
exploit this to create diverse port number signatures. In attack vector 1 all packets share
the same source port configuration (random) and are sent to destination port 8080 on the
target. This is achieved through configuration of port settings on the attack vector, which
has higher precendence and thus overrules the per-attacker configuration in this regard.

Attack vector 2 shows the result of not setting the the source port on the attack vector,
which reveals the per-attacker settings. The fact that the percentages are not even splits
is due to the data-rate fluctuation (cf. Section 4.3.4.2), which results in not every attacker
having sent the exact same amount of packets. Attack vector 2 does however define the
destination port as random for all packets.

In contrast, attack vector 4 does not prescribe any port numbers, hence the attacker-
specific destination ports are now revealed. Attack vector 4 also illustrates the impact of
packet volume on the percentages, as the previously even split in attack vector 2 is no
longer present in the source ports of attack vector 4. This is due to the different PPS
contributions of the individual attacker nodes as discussed earlier in this section.

These port numbers are not meant to be representative of an ideal configuration, but
rather serve the purpose of demonstrating the ability of the system to create pulses whose
attack vector composition also varies greatly in terms of the source and destination ports.

5.1.2 Variable Pulse-Wave Patterns

As demonstrated in Section 5.1.1, the system allows for a wide range of different options
regarding the composition of attack vectors that on the surface look identical when simply
considering their overall traffic pattern.

However, it is not a given, that all the pulses follow the same overall traffic pattern, the
system also needs to support diversity in terms of the duration of the pulses, the length of

5.1. ATTACK VECTOR VARIABILITY 75

the time spent switching between targets, as well as being able to have pulses of different
magnitude regarding the amount of traffic.

To illustrate the contrast, Figure 5.3a shows the pattern of the pulse-waves generated
with scenario VAR1. As expected, the individual pulses do not differ from one another
and match what was shown in Figure 5.1.

0 50 100 150 200
Time [s]

0

2

4

6

8

10

Da
ta

 R
at

e
[M

bi
t/s

]

Attack Traffic Data Rate over Time

Attack Traffic

(a) VAR1: Constant Pattern

0 50 100 150 200
Time [s]

0

2

4

6

8

10

Da
ta

 R
at

e
[M

bi
t/s

]

Attack Traffic Data Rate over Time

Attack Traffic

(b) VAR2: Variable Pattern

Figure 5.3: Pulse Wave Patterns

The pulse-wave pattern generated by VAR2, shown in Figure 5.3a on the other hand is
very different. Each vector uses a different data rate, pulse duration, and target switch
duration. As is visible at the 75 second mark, the target switch duration can also be set
to 0, resulting in a seamless transition from one pulse to the next. In fact, a switching
duration of 0 is the default behaviour as otherwise the attacker nodes cease operation
and resume them later, which goes against the principle of switching target on the fly as
is done with pulse-wave attacks. The reason the switching duration can be configured is
such that pulse-wave attacks can be simulated against a single target, with the switching
duration mimicking the time the attack is directed somewhere else.

Both figures have been created with the script plot_traffic_at_ixp_node.py, which is
available on the project’s repository, as well as in the appendix (Appendix D.4).

It is important to note, that what is done with VAR2 does not represent a typical config-
uration of the system, as in a pulse-wave attack usually more than one target is attacked
(cf. Section 2.1.1.3) and there is likely no reason to artificially vary the data rates in such
a way as whon in VAR2. However, for the sake of illustrating the configuration possibili-
ties, VAR2 only uses one target, otherwise, each pulse would occur twice in a row in the
pulse-wave pattern.

As was shown, the system allows for the creation of a wide range of pulse-wave patterns,
with the system doing little to restrict the user within the available configuration space.

76 CHAPTER 5. EVALUATION

5.2 Distributed Perspective

One of the main goals of the thesis is to be able to create datasets that represent a
distributed view, i.e., collecting data at different points in the CN topology and therefore
being able to get a full view of traffic as it passes through a specific CN node. In order
to demonstrate this distributed view, scenario DIST is introduced, which is specifically
crafted to allow for the showcasing of specific aspects of the distributed perspective.

Table 5.3: DIST scenario

Scenario Name Number of
CN Nodes

Number of
Attacker Nodes

Number of
Target Nodes

DIST 8 12:
- 5 in AS A1
- 3 in AS A2
- 2 in AS A3
- 2 in AS A4

2:
- 1 in AS T1
- 1 in AS T2

Table 5.3 introduces the scenario with a brief list of its key characteristics. The config-
uration of the scenario is such that four ASs contain attacker nodes with two ASs each
containing one target node. This leads to the topology as shown in Figure 5.4. The circles
represent the individual CN nodes, with the red and green rectangular shapes representing
the ASs configured in this scenario.

1

2

3

45

6

7

8

AS T1

AS T2

AS A1

AS A2

AS A3

AS A4

Figure 5.4: DIST Scenario Topology

In order to show how the different CN nodes have a different view on the attack traffic one
specific path in the topology is chosen (along the blue colored CN nodes in Figure 5.4)
and examined step by step. Only attack traffic as it leaves the CN node in question in

5.2. DISTRIBUTED PERSPECTIVE 77

the direction of the target is shown. Given that this scenario merely serves the purpose
of showing how the perspective on the attack traffic differs across CN nodes, the actual
attack traffic is not configured to achieve high packet volumes or data rates, as will be
evident when looking at the traffic plots representing the perspective of the four selected
CN nodes.

0 100 200 300 400 500 600
Time [s]

0

1

2

3

4

5

Da
ta

 R
at

e
[M

bi
t/s

]

Attack Traffic Data Rate over Time

Attack Traffic

(a) DIST: Traffic at CN Node 1

0 100 200 300 400 500 600
Time [s]

0

1

2

3

4

5

Da
ta

 R
at

e
[M

bi
t/s

]

Attack Traffic Data Rate over Time

Attack Traffic

(b) DIST: Traffic at CN Node 2

0 100 200 300 400 500 600
Time [s]

0

1

2

3

4

5

Da
ta

 R
at

e
[M

bi
t/s

]

Attack Traffic Data Rate over Time

Attack Traffic

(c) DIST: Traffic at CN Node 3

0 100 200 300 400 500 600
Time [s]

0

1

2

3

4

5

Da
ta

 R
at

e
[M

bi
t/s

]

Attack Traffic Data Rate over Time

Attack Traffic

(d) DIST: Traffic at CN Node 4

Figure 5.5: DIST: Traffic Pattern at different CN Nodes

Figure 5.5 shows the different views of the attack traffic along the path of the selected CN
nodes. Starting with CN node 1 as shown in Figure 5.5a. At this point of the topology,
the entire attack traffic of AS A2 is shown, with the traffic pulses destined for both targets
still appearing as a single block of traffic.

At CN node 2 (Figure 5.5b), the attack traffic of AS A1 and AS A2 both join the flow
of attack traffic. Notably though, now a difference between the traffic for the first and
second target is visible, and the uniform block of traffic is broken up. This is due to AS
A3 not contributing its attack traffic for target two because it has a shorter path when
routing along the CN nodes 6, 7, and 8 towards AS T2.

Taking the perspective of CN node 3 as visible in Figure 5.5c the pulses meant for the
two targets are now completely separate, due to all remaining attack traffic destined for
AS T2 breaking away towards CN node 8. At the same time though, the total amount of

78 CHAPTER 5. EVALUATION

attack traffic increases as the attack contribution of the nodes in AS A4 join the flow of
the DDoS attack.

Finally, the traffic as seen at CN node 4 is identical to the one at CN node 3, no further
attack traffic joins along the examined path of nodes or is diverted from it. This then
demonstrates the ability of the system to portray the traffic within the topology at different
points, thus allowing for the examination of specific CN nodes’ perspective which is a key
goal of the system.

5.3 System Scalability

For the performance and scalability analysis a set of three differently scaled scenarios is
used, as introduced in Table 5.4. The purpose of these three scenarios is to determine the
performance cost when scaling up the simulation on a single machine.

The scenarios scale towards what a pulse-wave attack might look like if conducted within
the SwissIX’s topology, hence the limitation to 6 CN nodes, as the SwissIX operates
with 6 peering locations [69]. Furthermore, all attacker nodes contribute equally in terms
of traffic generation and the focus is put on having fewer nodes but with each of them
producing traffic at a high data rate (though this naturally is limited by being ran on a
single machine).

This goes back to what was discussed in Section 2.1.1.3, where the fact was stated that
pulse-wave attacks tend to be seen as technically sophisticated, requiring precise orches-
tration and thus are likely best conducted with servers or virtual machines, rather than an
IoT botnet, hence the reliance on fewer, but more high-capacity attacker nodes in these
scenarios.

Finally, in terms of scenario design, the duration was set to 10 minutes, which is based on
observations by [39] that most DDoS attacks today tend to run for shorter than 15 minutes.
The average packet volume per second is calculated using the formula packet volume =
data rate/packet size ([13]) as already introduced in Section 5.1.1. Note that benign
traffic was not considered and therfore the calculation only includes attack traffic.

For the purpose of enabling direct comparison at the same packet volume, the three attack
vectors (UDP flooding, ICMP flooding, and TCP SYN flooding) were configured to use
the same packet size. Given that SYN flooding uses fixed-sized packets, that packet size
was thus applied to the other two vectors although they typically might use differently
sized packets.

The number of targets remains locked to three, due to wanting all three configured attack
vectors to have the opportunity to attack all targets. Increasing the number of targets
would mean each attack vector has to perform one additional pulse, thus leading to an
increased scenario duration. To ensure the number of targets is not a critical contributor
to overall execution time it was also considered when testing for the performance impact
of the individual factors (cf. Table 5.6).

5.3. SYSTEM SCALABILITY 79

Table 5.4: Scalability Scenarios

Scenario Name SC1 SC2 SC3

CN Nodes 2 4 6
ASs 2 6 12
Attacker Nodes 5 15 30
Benign Nodes 10 20 60
Targets 3 3 3
Non-Target
Servers

4 6 12

Approximate Average
Packet Volume
(Packets per Second)
of Attack Traffic

14’800 66’900 178’500

The scalability evaluation scenarios were all ran on a MacBook Pro (Apple M2 Max with
32GB of RAM (random-access memory)), running Mac OS X Ventura version 13.3.1(a).
To ensure the best possible basis for comparison between the different scenarios, the
system was cut off from the internet during the runs, with no applications other than the
prototype being active.

Unless stated otherwise, the prototype was granted full access to all 12 cores for MPI par-
allelization, and all simulations were conducted with the ‘optimized’ build profile available
within the NS-3 framework.

Scalability was heavily limited by RAM consumption when initially starting the evaluation
as the system began to leak memory quickly after scaling up minimally. Thus, an in-depth
analysis was done, which in the end, revealed that the memory consumption issues were
due to the MPI synchronization algorithm. Once the prototype was switched over to the
alternative ‘null message’ based parallelization strategy, these memory issues disappeared
completely (cf. Section 5.4.0.3).

Using the a script for capturing system resource consumption (cf. Appendix D.5) showed
that both CPU and RAM remain locked at constant values throughout the simulation in
all tested scalability scenarios, with NS-3 maxing out all cores granted to MPI, as long as
they are assigned an actual task (cf. Section 4.3.1.1), and the system’s combined memory
consumption being at a constant value of a few hundred MB. Interestingly, the TCP SYN
flooding vector shows slightly higher but nonetheless constant RAM consumption. Thus,
for the scalability analysis, the focus is put on the time it takes the scenarios to finish, as
that is the only way in which they differ in performance.

As can be gleaned from Table 5.5, where the resulting execution times for each scalability
scenario are shown, the execution time scales only approximately proportionally with the
(PPS) packets per second metric. From SC1 to SC2 the average PPS during active attack
phases is increased by a factor of approximately 4.5, whilst execution time increases by a
factor of 5.8. Similarly, when moving from SC2 to SC3 the PPS increases by a factor of
2.7 whilst the execution time is increased by a factor of 4.3.

80 CHAPTER 5. EVALUATION

Table 5.5: Scalability Scenario Results

Scenario Name SC1 SC2 SC3

Approximate Average
Attack Traffic
Packet Volume
(Packets per Second)

14’800 66’900 178’500

Execution Time 153s 887s 3’821s

This indicates that there are additional factors that impact execution time. This cannot
be differentiated based on the three basic scalability scenarios. Hence, variations of SC2
are introduced, which increase one individual factor (e.g., the number of benign nodes)
to the value used in SC3 while keeping the rest of the configuration at the values used in
SC2.

Table 5.6: Performance Impact of Individual Factors

Configuration
Name

Configuration Difference
Compared to SC2

Execution
Duration

Excecution Duration
Change Compared to SC2

SC2 ✗ 887s ✗

SC2 AN

Doubles the Number
of Attacker Nodes.

Halves the per Attacker
Data Rate to ensure same
PPS as SC2

851s - 4.1%

SC2 AS
Doubles the Number
of ASs

1’112s 25.4%

SC2 BN
Doubles the Number
of Benign Nodes

859s - 3.2%

SC2 CN
2 more IXP Nodes
(1.5 times incrase over SC2)

909s 2.5%

SC2 NT
Doubles the Number of
Non-Target Server Nodes

888s 0.1%

SC2 PV
Same PPS as SC3
(2.7 times increase over SC2)

2’790s 314.5%

Looking at the impact the individual scaling factors have on the execution time as shown
in Table 5.6, a few remarkable results jump out. It is clear that by far the most impact
on the execution time is caused by increasing the packet volume through the PPS metric
as is done with SC2 PV. This is not surprising, as creating and modeling the routing and
processing of additional packets can easily be conceived as computationally expensive.

The second most impactful factor appears the be the addition of additional ASs in
SC2 AS, which could make sense as additional ASs increase the size of the overall topol-

5.4. TAKEAWAYS FROM DEVELOPING WITH NS-3 81

ogy potentially by a significant amount, depending on the nodes present within them.
However, the total number of nodes in the topology (attackers, targets, benign nodes,
non-target servers) has not changed, they have simply been re-distributed onto a larger
number of ASs. As such, the cause for the increase is in execution time is unclear.

What is surprising is the fact that there are a number of factors that consistently reduce
the execution time when increase, even though the reductions are small. AN BN shows
consistently lower execution times than SC2 which is even more suprising given that more
benign nodes being present means that more benign traffic and therefore more packets
are being modeled.

SC AN suggests that having a larger set of attacker nodes whilst operating at the same
combined packet volume is beneficial for the execution time. What causes this is unclear,
and it could also be that this effect ceases once a certain scale is reached.

To test this, SC3 120AN, a varitation of SC3 is introduced that keeps all factors the
same but quadruples the number of attacker nodes, increasing their count from 30 to 120,
whilst keeping the overall packet volume at the same level by reducing the per-attacker
data rate by a factor of 4. The results reveal that SC3 120AN is more expensive than
the regular SC3 in terms of runtime, requiring 4’725 seconds to complete, which marks a
23.7 % increase over the regular SC3.

This suggests that there are more intricate interactions at play between the different
factors and that their impact is not necessarily consistent as the scale of the use cases
increase. This does raise some concerns about the higher-end scalability of the system as
potentially more and more factors could start having an increased impact on the execution
duration.

However, determining what that interplay between factors looks like at higher scales
requires a more dedicated and more time-intensive analysis and lies outside of the scope
of the thesis.

As for increasing the number of targets: Though not shown in Table 5.6, altering the
number of targets has no impact on performance, unless attack vectors are configured
such that they exhibit different performance (e.g., having unequal packet per second
stats) and the duration of the use case is configured such that not all vectors can attack
all targets the same amount of time. This in turn then introduces a situation where the
different execution time costs receive different weights depending on how many times they
can complete within the simulation run.

5.4 Takeaways from Developing with NS-3

Starting the evaluation phase quickly revealed a number of severe problems that needed
fixed for the system to pass any reasonable scrutiny regarding its ability to generate
pulse-wave patterns reliably.

Because these issues had to be addressed during this thesis and were not aspects that
could be delegated to future work, they have been fixed and thus do not affect the final

82 CHAPTER 5. EVALUATION

evaluation as laid out in Sections 5.1, 5.2 and 5.3. Regardless, they are findings that relate
to performing system evaluation and they provide important takeaways about working
with NS-3, hence the decision was made to include this section about findings during
what one might call a ‘preliminary evaluation phase’.

5.4.0.1 Unreliability of the CSMA Channel

As was briefly hinted at in the implementation part of the report when discussing the AS
(cf. Section 4.3.3.2), the initial AS implementation relied on a CSMA Channel, which of-
fered a convenient way to create the internal topology of the ASs, include all the necessary
nodes and perform address assignment in a straight forward manner.

Gateway

Node 1

Node 2

Node 3

192.168.37.1

192.168.37.2

192.168.37.3

192.168.37.4

(a) CSMA AS Internal Topology

0 20 40 60 80 100 120
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

Da
ta

 R
at

e
[M

bi
t/s

]

Traffic Data Rate over Time

Captured Traffic

(b) CSMA Scenario Traffic

Figure 5.6: CSMA Channel Issues

Figure 5.6a shows what such a CSMA-based AS looks like, with the internal nodes essen-
tially forming a bus-topology starting from the AS gateway.

Whilst this is a straight-forward though simplistic approach to implementing an AS, it
suffers from the fact that apparently on CSMA channels a large part of the packets does
not make it past the gateway. What exactly happens to them is unclear, but the results
clearly indicate that the CSMA channel is not suitable for this particular purpose.

Figure 5.6b makes this very apparent, as it shows the attack traffic as captured at the exit
of the attacker nodes’ AS. One can scarcely make out the hint of three pulses, starting at
the 60 second mark. What is lost completely is the first three pulses, which are supposed
to be visible in the first minute of the run.

This illustrates the issue rather well, as based on what the author was able to observe
the CSMA channel appears to struggle more as the packet volume increases, which is the
case within the first minute, where pulses with rather small packet sizes (and thus higher
packet volume per second) are situated.

Another clue that something was not working as intended would have been the file sizes
of the PCAP output, which for the CSMA scenario are approximately 6 MB, which does
not seem appropriate for the configured 2 minutes of attack traffic at multiple Mbit/s.

5.4. TAKEAWAYS FROM DEVELOPING WITH NS-3 83

The observation that the CSMA channel suffers from packets being lost is not limited to
just this prototype. A minimal topology (cf. Appendix D.7) of just two nodes, using none
of this system’s custom classes shows the discrepancy of using the CSMA channel when
compared to using a point-to-point channel. When running that minimal topology with
the CSMA channel, the resulting file size is 6.7 MB, with a packet count of 7’634, whereas
the same topology when ran with the point-to-point channel produces a PCAP file of 696
MB, containing 1’190’185 packets. In that particular case, the CSMA channel seemingly
has only transferred 0.6% of all packets.

The author wishes to make clear that this is not to be taken as an assault on neither
the capabilities of NS-3 nor their contributors. The CSMA channel may simply not have
been intended to be used in such scenarios. Regardless, for this thesis this meant having
to rethink and re-implement the way the ASs construct their internal topology.

5.4.0.2 Time-to-Live Issues with Single Subnet AS

The next step in getting the AS to perform properly was switching to a point-to-point
channel-based internal AS topology and using a single subnet to assign addresses to the
resulting interfaces. Figure 5.7a shows how the resulting topology and address assignment
scheme operates.

Gateway

Node 1

Node 2

Node 3

192.168.37.1

192.168.37.2

192.168.37.3

192.168.37.4

192.168.37.5
192.168.37.6

(a) Single Subnet Address Assignment

Gateway

Node 1

Node 2

Node 3

192.168.37.1

192.168.37.2

192.168.38.1

192.168.38.2

192.168.39.1
192.168.39.2

(b) Per-Channel Subnet Address Assignment

Figure 5.7: Point-to-Point AS Address Assignment Schemes

The issue with the single subnet approach to address assignment was that it led to what
the author suspects are ultimately routing issues. These express themselves in most
packets exceeding their Time-to-Live (TTL) and never reaching their destination. The
discrepancy in the size of the PCAP files capture at the exit of the attackers’ AS and
the entry of the targets’ AS illustrates this well. Whilst one would expect both files to
be equal in terms of the captured packets (at least in this scenario, where only two ASs
are configured and the attackers and targets are separated into one AS each), the file at
the exit of the attacker nodes’ AS is 596.4 MB large. In contrast, the one at the entry to
the target nodes’ AS takes up only 56.8 MB. In terms of packet counts, this equates to
7’633’852 and 341’820.

84 CHAPTER 5. EVALUATION

What is remarkable about this issue is that this single subnet approach to assigning
addresses to a topology of point-to-point channels was used without issue in the CN.
The author suspects that this address assignment scheme only becomes an issue once the
corresponding nodes are used as source or target for packets rather than just nodes that
route traffic, as is the case with CN nodes. This is merely speculation, and the author
could not produce any sources or information to back that hypothesis.

Listing 5.1: Single Subnet Address Assignment Approach

1 NetDeviceContainer mergedDeviceContainer;

2 PointToPointHelper p2p;

3 Ipv4AddressHelper address;

4 address.SetBase(addressBase, addressMask);

5
6 for (int i = 1; i < m_numNodes; i++)

7 // excluding 0, since that is the index of the gateway node

8 {

9 NetDeviceContainer devices = p2p.Install(nodes.Get(0), nodes.Get(i));

10 // continuously merge devices of new channels

11 mergedDeviceContainer.Add(devices);

12 }

13
14 // assign addresses all at once on same subnet

15 Ipv4InterfaceContainer interfaces = address.Assign(mergedDeviceContainer);

To briefly demonstrate the single subnet approach, its relevant parts are shown in List-
ing 5.1. Instead of assigning addresses on each individual NetDeviceContainer that
results from setting up a point-to-point channel between two nodes (line 9), a separate
NetDeviceContainer is instantiated outside of the loop (line 1) and any new NetDe-

viceContainer instances are continuously merged into it (line 11). This then enables the
address assignment to be done all at once, without the need for manual management of
subnets or address iterations (line 15).

Ultimately, the single subnet approach had to be abandoned in favor of using a separate
subnet for each individual point-to-point channel, as shown in Figure 5.7b and explained
in more detail in Section 4.3.3.2.

Since the exact cause of the TTL issues was not identifiable, the decision was also made
to no longer use the single subnet approach when performing address assignment on the
CN, despite it having worked without issue there as there may be other side-effects that
are less visible.

5.4.0.3 Memory Leak with Default MPI Synchronization Algorithm

When initially conducting the scalability analysis, the prototype was leaking memory
heavily. Figure 5.8a shows the memory consumption of the three scenarios, with Fig-
ure 5.8b showing the same data but without SC3 to provide a more detailed view of SC1
and SC2.

Whilst SC1 and SC2 do run fine in terms of execution duration, the pattern of continuously
increasing memory that starts with SC2 effectively imposes a scalability ceiling on the

5.4. TAKEAWAYS FROM DEVELOPING WITH NS-3 85

system, as RAM will eventually run out when the scaling of the scenario reaches a certain
threshold. This is shown with SC3 where the system’s memory consumption escalates
to approximately 70% which amounts to approximately 84% when not subtracting the
RAM consumption of the idling machine. At 84% RAM usage the system is forced to
start using swap memory ([50]) and the simulation progress slows down significantly until
the system crashes.

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00

Time Elapsed [s]

0

10

20

30

40

50

60

70

RA
M

 U
sa

ge
 [%

]

Memory Consumption with default MPI Synchronization
SC1
SC2
SC3

(a) SC1 to SC3: Memory Consumption

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Time Elapsed [s]

1

2

3

4

5

RA
M

 U
sa

ge
 [%

]

Memory Consumption with default MPI Synchronization
SC1
SC2

(b) SC1 and SC2: Memory Consumption

Figure 5.8: Memory Consumption when using default MPI Synchronization

This led to a lengthy process of investigating the memory consumption behaviour of the
system, which did yield some notable insights. The main factor turned out to be the
packet volume, regardless of packet size and data rate. This indicates that there is some
relationship tied to the amount of sent packets and memory consumption. A report by
Yoav Levy in an NS-3 community forum post from earlier this year [49] shows that there
is an issue where scheduled events stay in memory throughout the entire simulation run
depending on how they are handled.

Given the way data rate is implemented in the OnOffRetargetApplication which per-
forms the attack traffic generation, the system creates one send event per sent packet,
which made this a promising lead.

However, when looking at the per-process RAM usage with e.g., the ‘Activity Monitor’
tool ([7]) and mapping the processes to the MPI ranks for which they are responsible
reveals that this is unlikely. As shown in Table 5.7, the main bulk of the RAM is used by
the processes responsible for MPI rank 0 and rank 2 (cf. Section 4.3.1.1).

86 CHAPTER 5. EVALUATION

Table 5.7: Memory Consumption Breakdown by MPI Rank

MPI Rank Responsibility
Percent of Total
Memory Consumption

0 Central Network 28.2%
1, 3, 4, 5
and 6

AS 1 (Attack Traffic
Generation)

< 1% combined

2 AS 2 (Target Nodes) 71.3%

This does not support the theory that the RAM usage is tied to scheduled send event, as
those should be handled by all MPI ranks except rank 0 and rank 2, as mpi ranks 1 as
well as 3 through 6 are tasked with attack traffic generation in the scenario from which
these consumption figures were taken.

Another observation is that, as indicated on the RAM usage curve on SC2 in Figure 5.8b,
when the attack vector changes over from UDP flooding to ICMP flooding (highlighted
with a green circle) and when changing to TCP SYN flooding (indicated by a green
square) the RAM consumption experiences a significant increase. This was seen as being
due either the different underlying protocols of the attack vectors or due to the fact that
ICMP flooding and TCP SYN flooding use the raw socket implementation to send their
packets.

Note, that since doing this analysis the UDP flooding vector has also been switched over
to the raw socket due to allowing for increased configuration, thus that difference in
performance may no longer hold.

Interestingly, this difference disappears as the overall packet volume increases. In Fig-
ure 5.9 SC2 HPV, a variant of SC2 with increased packet volume shows, the character-
istic memory consumption curve that kicks in, leaping to approximately 40%. Unless the
packet volume is too high for the system, as is the case with SC3 the system prefers to
stabilize at around 40% where the difference in RAM usage between the different attack
vector implementations disappears.

Further investigation showed that installing a so-called PacketSink application on all
target nodes lifts the scalability ceiling. According to the NS-3 documentation, a packet
sink is tasked with receiving and consuming incoming packets [57]. The way the attack
vectors are currently implemented they simply send their packets to the target nodes
without any dedicated applications being present on the target nodes to consume the
traffic. This hints at packets still taking up memory after arriving at their destinations,
thus also explaining why rank 2, the MPI rank responsible for the target nodes in these
scalability scenarios, shows escalating memory consumption.

SC2 HPV PS in Figure 5.9 shows the difference a UDP packet sink makes when present
on all target nodes, with memory consumption being markedly lower during the UDP
flooding part of the scenario until the simulation switches to an attack vector that is not
UDP based as indicated with a green circle on the plot.

5.4. TAKEAWAYS FROM DEVELOPING WITH NS-3 87

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

Time Elapsed [s]

0

10

20

30

40
RA

M
 U

sa
ge

 [%
]

Impact of UDP Packet Sink on Memory Consumption

SC2_HPV
SC2_HPV_PS

Figure 5.9: Impact of UDP Packet Sink on Memory Consumption

However, whilst installing a packet sink for UDP packets is simple, doing so for ICMP,
in particular, turned out to not be possible within the time frame of the thesis. On top
of that, even if packet sinks were available for all the required attack vectors, they would
only solve the memory consumption problems on MPI rank 2, with rank 0 still being
unchanged, thus remaining a scalability limiting factor.

Ultimately, the MPI rank 0 RAM consumption issue turned out to be MPI-related. The
NS-3 documentation lists two possible simulator implementations that can be used for
MPI [55]. The default implementation relies on a global parallel synchronization strategy,
whilst the alternative ‘null message synchronization algorithm’ does not [55].

As the documentation states, which of the two synchronization strategies should be used
depends on the scenario, one tries to model [55]. Generally speaking, the null message
synchronization approach scales better, except in scenarios where there are long periods
without events [55]. Given the nature of pulse-wave attacks, this may occur, as when
targets are distributed to different ASs, there could be MPI ranks that do not receive any
traffic nor scheduled events. This should, in principle, support the decision to stick with
the default synchronization algorithm.

However, the fact that MPI rank 0 showed such high memory usage led the author to
suspect that this global coordination of the default synchronization strategy may be at
least a part of the problem. Especially since rank 0 does (at least in SC1 and SC2)
only focus on the CN. The CN itself could potentially cause high RAM usage, as it does
trace packets to create the PCAP output files. However, turning off tracing did not affect
memory usage. As it turns out, the suspicion that the memory leak was tied to MPI

88 CHAPTER 5. EVALUATION

turned out to be correct, as switching over to the null message-based synchronization
completely solved all memory problems.

All the observations above about the leaps in memory use when attack vectors change,
the impact of packet volume in general, and the increased scalability when using packet
sinks were specific to the default synchronization algorithm. Once the switch to the null
message synchronization algorithm was made, memory usage remained low and consistent
no matter the scale of the scenario, as is shown in Section 5.3 where system scalability is
discussed.

5.5 Discussion

The thesis’s main goal is to generate distributed datasets specifically for pulse-wave DDoS
attacks. Given that there are no existing pulse-wave data sets to compare against the
datasets generated with this prototype, it has to be evaluated in isolation. Nonethe-
less, criteria for successfully meeting the main goal can be established and evaluated,
specifically with regard to how select key metrics that relate to attack fingerprinting are
expressed in the datasets and if they match the configuration input.

This is done in Section 5.1 where the system’s capabilities regarding the generation of
diverse traffic attack traffic patterns as well as the ability to compose a wide range of
differently structured pulses in terms of configurable attributes such as protocol, packet
size, packet volume, port numbers, and data rate are demonstrated. The system also
allows for many of the attributes to be configured on a global level, a per attacker node
level, or a per attack vector level (cf. Section 4.3.2.2). This enables the creation of pulse-
wave DDoS attacks with unequal contributions across attacker nodes, extending the space
of possible use cases the prototype can model.

For example, a configuration may be used where the attacker nodes all contribute equally
to the attack, thus representing a use case that likely has attackers use servers or virtual
machines to perform the attack, resulting in precise orchestration and resource use. Alter-
natively the individual attacker nodes could be configured to have greatly different data
rates and packet sizes, thus resulting in very different request per second numbers per
attacker, which may be more likely to match the results of an IoT botnet based attack.

The prototype is capable of creating different pulse-wave patterns in terms of the overall
duration of the attacks, the number of attack vectors used, and the duration of the pulses
as demonstrated in Section 5.1.2.

A further criterion that is used in attack fingerprints is TTL (time-to-live) which is in-
dicative of the number of hops taken by a packet on its way towards the target (cf. Sec-
tion 2.1.1.5). Although not explicitly evaluated, the TTL figures of attacks simulated
by the system are determined by the topology of the configured use case and therefore
also indirectly configurable. Along the same lines and also not explicitly evaluated, IP
addresses of attacker nodes are not directly configurable but are steered indirectly by
controlling in which AS how many attacker nodes are present with the IP address space
of ASs being configurable.

5.5. DISCUSSION 89

AS numbers are in principle subject to the user’s configuration input as the IP address
space of individual ASs can be specified. Therefore a fingerprint creation tool such as the
one discussed in [34] may try to derive an AS number based on the source IP addresses
of the attack traffic. It must however be said that the prototype does not attempt to
delineate the IP address spaces of different ASs based on the address spaces of real-world
ASs. Thus, fingerprinting tools may struggle to do so which marks an area of potential
improvement in the future. Another point that must be made is that due to the late
changes to the AS that were necessitated as explained in Section 5.4.0.1, the AS are quite
wasteful in terms of how they use their available IP address space, which may require
future work to investigate different options for address assignments.

As for the distributed perspective, the prototype captures traffic at all interfaces of the
CN topology, thus enabling a complete dissection of the traffic on all CN nodes of the
topology. A demonstration of how the attack traffic pattern changes as the perspective of
different CN nodes is taken is given in Section 5.2. This satisfies the criteria of creating
a distributed dataset. Furthermore, the configuration allows for the creation of a wide
range of use cases, with topologies of varying sizes, different delays, and different numbers
of ASs and nodes, thus providing flexibility in terms of the distributed scenario that is to
be simulated.

As such, the main goal of the thesis is met, although there is room for refinement in certain
regards. For example, the generated attack traffic within a given pulse remains relatively
static across the pulse duration. Much can be configured to create very different pulses,
but any given pulse does not show much dynamicity. Whilst the prototype does e.g., model
fluctuations in data rates for each attacker node (cf. Section 4.3.4.2), these fluctuations
are local to each node and, as such, do not lead to a very noticeable impact on the attack
traffic pattern. This could be supplemented in the future with e.g., modifications to the
routing code of NS-3 to simulate packets being dropped or model general unreliability
factors such as attacker nodes failing and quitting the attack or a specific connection on
the topology suffering from varying throughput and thereby affecting groups of nodes.
This then would lead to more impactful and ultimately realistic fluctuations in the attack
traffic.

Another area of improvement is the internal modeling of ASs, which is rather pragmatic
and simplistic in nature due to the time constraints of the thesis. As such the AS modelling
could be refined such that ASs can be configured to use a range of different and more
sophisticated internal topology models. Along the same lines, the approach taken with the
simulator of providing the ability to create generic IXP topologies and attach ASs is limited
in the sense that the resulting topology does not explicitly implement the traditional
three-tiers of ISPs ([17]).Therefore the simulated topology simply consists of IXPs and
ASs, with the same AS model being used to simulate any AS no matter what it represents
semantically. Ultimately an AS, as implemented within the prototype represents a specific
range of IP addresses used to grant addresses to nodes within them, which may be too
generic for certain use cases.

An aspect that has not been mentioned yet is the choice of a benign traffic model. As
outlined in Section 4.3.4 the benign traffic application is an existing implementation of a
model introduced by [62] in 2012 with a focus on HTTP traffic. As such, it is well-suited

90 CHAPTER 5. EVALUATION

to model benign traffic for some use cases and less well-suited for others. Implementing
additional models for simulating other types of legitimate traffic and offering a selection
of models to choose from would thus increase the quality of the generated data sets for
cases where benign traffic in the form of an HTTP-based model is less fitting.

The system does fulfill the design requirements established in Section 3.1. Requirement
R1, R2 and R3 capture aspects of the main goal of the thesis i.e., the distributed per-
spective and the configurability of diverse pulse-wave patterns, respectively. These re-
quirements are met, as already discussed earlier in this section.

The system’s richness in configuration possibilities comes at a price in terms of ease of
configuration. Whilst the project’s repository contains detailed explanations regarding
the individual configuration parameters and an example configuration, the configuration
still requires some effort on the user’s part. This is less of an issue when a given user has
an exact idea about the use case they wish to configure. However, when wanting to run
the system without caring too much about configuring individual nodes or ASs, the user
may prefer a convenient way to configure more generic use cases. The system currently
does not support this well and should be improved in that regard in the future.

When it comes to R4 which is centered around reproducibility, the system can satisfy
that requirement. Use cases and specific scenarios are controlled by the configuration
file which can easily be shared, allowing for the reproduction and verification of results.
Given the open source and purely simulation-based nature of the prototype, the code is
available to anyone, and setting the project up also does not impose any special hardware
requirements. It simply requires a computer that can run NS-3 , thus achieving high
reproducibility and allowing anyone who wishes to extend the system to do so.

This is where requirement R5 comes into play. R5 is focused on extendability, which is
a key requirement for a prototype such as this. The system is fundamentally a proof of
concept that lays the foundation for future enhancements with some areas for potential
future work already highlighted throughout this section of the report. The prototype is
implemented as an NS-3 module, thus it can in principle be included in any existing NS-3
installation and be used in conjunction with other modules.

The prototype follows a modular approach, using a set of different class hierarchies to
cover different aspects of the system such as configuration parsing, topology building, or
node behaviours. This makes the prototype open for extension and straight-forward to
build upon.

Extending the system does however require a good grasp of NS-3 , which can be challenging
to work with not only because of the sheer amount of possibilities the framework provides
but also due to its intricacies and sometimes unexpected behaviors as also experienced
throughout the work done on this thesis (cf. Section 5.4).

Scalability is difficult to judge. Whilst the scalability analysis done in Section 5.3 is
generally favorable, with the main governing factor of the execution duration being the
amount of simulated packets, there are some questions about how the impact of other
factors, particularly the number of attacker nodes, impacts the duration at higher scales.

5.5. DISCUSSION 91

As such the thesis cannot definitively state how the execution time will develop as indi-
vidual factors are increased. A more in-depth analysis could be conducted in the future
to attempt to disentangle the performance impact of individual configuration parameters
more clearly.

What can be said is that the system runs stable, with low and consistent memory usage
whilst making full use of the cores the simulation is allowed to use, provided that the
correct parallelization synchronization algorithm is used cf. Section 5.4.0.3.

The prototype thus provides novelty in the types of datasets it generates, focusing on
creating distributed pulse-wave datasets that provide a more holistic view of an attack
compared to the traditional single-view datasets and thereby contributing to the devel-
opment of collaborative DDoS mitigation approaches.

92 CHAPTER 5. EVALUATION

Chapter 6

Final Considerations

6.1 Summary

In this thesis, a literature review centered around the topics of DDoS dataset generation
techniques and pulse-wave DDoS attacks was conducted. This laid both the theoretical
foundation of the subsequent design and implementation activities but also served as
starting point for discussing related work relating to the aforementioned topics. The
review of related work both served as an analysis of existing work in this domain as well
as a means to define the research gap and thereby justify the thesis.

Following the selection of the traffic generation framework, NS-3, the prototype design
was developed based on requirements that have been derived from the thesis’ goals prior
to that. The decision was made to pursue a generic design regarding the topology that
is made available by the prototype, i.e., not implementing a specific use case but rather
providing a system that can model a wide range of use cases based on configuration input,
with the generic structure of the use cases being given by a central network made up of
IXP nodes and ASs that can be individually defined and attached to the IXP node of
choice. This was done to provide high flexibility in terms of the attack scenarios and
topologies that can be simulated. This is crucial, due to no public pulse-wave DDoS
datasets being available and therefore no statistical analysis could be conducted that
might inform design decisions regarding what type of topology is best suited to create
pulse-wave DDoS datasets.

The same approach was also taken with regard to implementing the configurability of the
attack vectors with regard to common DDoS fingerprint properties, putting the focus in
maximizing flexibility and allowing for the maximal range of possible outcomes, rather
than trying to replicate existing attack datasets of non-pulse-wave attacks (given that no
pulse-wave attack data is publicly available).

The resulting prototype was evaluated with regard to its ability to produce different
pulse-wave traffic patterns, simulate pulse-wave DDoS attacks, and provide the required
distributed view onto the flow of traffic within the simulated topology. Further, the scal-
ability of the system was evaluated. The evaluation results were discussed and contrasted

93

94 CHAPTER 6. FINAL CONSIDERATIONS

with the goals of the thesis as well as the design requirements and shortcomings were
mentioned which provide starting points for future work.

6.2 Conclusions

Overall, the thesis manages to achieve its goals. The prototype is capable of generating
a wide range of different pulse-wave patterns using different attack vectors, durations,
and composition (cf. Section 5.1). The generated dataset, produced in the form of PCAP
files, fulfills the requirement of being distributed, i.e., providing a view of an attack
from different points within the topology of the simulated scenario (cf. Section 5.1.2)
and exhibiting the desired characteristics with regard to properties commonly used in the
realm DDoS fingerprinting.

This is achieved by exposing a large suite of parameters to users in the configuration file
(cf. Section 4.3.2.2) which allows for the flexible creation of diverse use cases by specifying
the desired topology in terms of IXP nodes, ASs which can be populated with different
types of nodes. The pulse-wave traffic patterns are configurable in terms of duration, with
a suite of properties such as source and target port numbers, attack vector (protocol),
packet sizes and data rates also being available for configuration.

Thanks to its approach which prioritizes high flexibility in the kinds of use cases that can
be configured, the prototype is not bound to any specific existing datasets as it does not
use their statistical properties (e.g., packet size or average time between packets) in its
attack traffic model but rather leaves all of that up for specification by the user through the
configuration file. This represents both a strength as well as a potential weakness, as on
the flip-side the generated traffic may be too generic for certain more specific use cases.
Due to the proposed system’s prototype nature, and the time constraints of operating
within the scope of a thesis, not every aspect of attack traffic is configurable in as much
detail as might be desirable.

An concrete example of this is the modelling of the fluctuations in the attack data rate
or in other words the variation in time between packets. As discussed at the end of
Section 4.3.4.2, the prototype uses a uniform distribution with a configurable range to
calculate that fluctuation. However, it may be that for certain use cases different, less
even distributions are more appropriate, which is something the prototype in its current
version does not support. In absence of publicly available pulse-wave datasets to derive a
more nuanced distribution from, an option that was considered is to base the modelling of
data rate fluctuation on non-pulse-wave datasets. However, these attacks exhibit different
properties, such as e.g., the pronounced ramp up (cf. Section 2.1.1.3), which would not
align with the structure of a pulse-wave attack and thus might produce an adverse effect
on the quality of the produced datasets. This highlights the importance of having publicly
available pulse-wave datasets (or datsets in general).

Performance is governed primarily by the overall packet volume, as discussed in in Sec-
tion 5.3. Memory consumption is no concern, given the right choice of synchroniziation

6.3. FUTURE WORK 95

algorithm for parallelization and therefore the scalability is only limited by the amount
of time the simulation is allowed to run for.

As such the prototype is projected to be be able to simulate larger scale use cases if given
enough time to run, though the scalability analysis has not been able to entirely clear up
the impact of the individual scaling parameters, with especially the impact of the number
of attacker nodes raising some questions about higher-end scalability.

The thesis also provides a number of insights specifically with regard to challenges faced
in the context of working with the NS-3 framework. Whilst it is undoubtedly a powerful
framework, it is in the author’s opinion difficult to use at times. This has manifested
itself in a number of major challenges in the later stages of the thesis discussed in detail
in Section 5.4. Of those the biggest takeway is the importance of selecting the right
synchronization algorithm for parallelization as the default algorithm lead to significant
the memory consumption problems. Analyzing and consequently changing parts of the
system to overcome those challenges put considerable strain on the timeline, though doing
so was necessary as otherwise the prototype would have been rendered essentially non-
viable.

A further aspect that bears mentioning is that during the selection of the traffic generation
framework, a broader decision had to be made regarding the direction of the thesis.
Specifically, whether the prototype should use emulation or simulation as the technique
of choice. Initially, the thesis was meant to focus on emulation, but when evaluating
possible frameworks and discussing the findings with the supervisor the decision was
made to instead build a simulator. The main reason for that choice was the inherent
scalability limitations of emulators (cf. Section 2.1.2.3).

Overall, the contribution made by this thesis represents a significant step towards having
accessible and diverse distributed pulse-wave DDoS datasets, which can serve as a ba-
sis for further research in the realm of pulse-wave DDoS attacks and inform the future
development of cooperative DDoS defense mechanisms.

To that end, the prototype is made publicly available, fostering reproducibility and al-
lowing for the prototype to be expanded upon in the future. Additionally, the prototype
employs a modular, object-oriented architecture that allows for the straight-forward ex-
tension and enhancement of its capabilities. As such the requirements of reproducibility
and extendibility put forth in Section 3.1 are fulfilled.

6.3 Future Work

The prototype system proposed by this thesis marks a strong first step towards the gen-
eration of distributed pulse-wave DDoS datasets. However, as discussed in Section 5.5,
there are parts of the system that could be improved upon in the future.

A number of models used in the system are limited in terms of their realism. Due to
the limited scope of the thesis, the AS implementation is relatively simplistic and cannot
model more complex internal topologies, such as nested subnets. Depending on the use

96 CHAPTER 6. FINAL CONSIDERATIONS

case the user wants to configure, having this capability would be desirable, increasing the
realism of the topology.

Another model that could be improved in terms of realism concerns the attack traffic
generation. Whilst the prototype is strong at generating pulses with very different internal
makeup in terms of factors such as protocols, packet sizes and packet volume, this could
be expanded upon. For example, attacker nodes cannot change the size of their packets
throughout a given pulse and the prototype does not offer the possibility to have attacker
nodes join are drop from the attack. Additionally, whilst the data rates of the individual
attacker nodes does is subject to a configurable degree of variation throughout the attack,
more global effects that have a more noticeable impact on the overall traffic patterns
could also be desirable, such as for example having groups of nodes experience reduced
data rates or dropped packets due to a connection in the topology suffering from reduced
throughput. Effects such as this would lead to overall less consistent attack traffic and
could improve the realism of the generated attack traffic pattern, though this certainly
would require further research into both what types of effects are appropriate and what
can be achieved within the confines of the NS-3 framework.

In terms of ease of configuration there are also improvements that could be made. The
high degree of configurability of the system results in having to dedicate some amount of
effort to configure a specific use case. Whilst the individual parameters are well-explained,
the system could still benefit from providing a more streamlined configuration experience.

A different avenue of possible enhancements is adding additional attack vector implemen-
tations and benign traffic models to further expand the range of configurable use cases.
Furthermore, the attack traffic generation may benefit from having additional options to
chose from in terms of how the data rate fluctuations are modelled.

The list of typical fingerprint metrics that are made configurable in this prototype is also
not exhaustive. For example, another criterion that is considered in the realm of DDoS
fingerprint creation is whether or not IP addresses have been spoofed ([34]). This could
prove challenging to achieve within the confines of NS-3 and require a higher degree of
technical understanding of the framework, but would further increase the quality of the
generated datasets.

Another area of potential improvement or at least further investigation is the scalability
of the system. Whilst the system runs stable, the fact depending on the overall scale of
the scenario that the number of attacker nodes in particular can have an either positive
or negative impact on the execution duration indicates that scalability could be worth
revisiting in future iterations of the prototype.

The list of potential future work discussed above is certainly not exhaustive. Ultimately,
as the prototype was specifically built such that future enhancements are possible and
provides a strong foundation to expand upon, regardless of which avenue future devel-
opment is ultimately considered, be that the refinement of already existing models, the
addition of entirely new capabilities, or more performance-centric improvements.

Bibliography

[1] Yahya Al-Hadhrami and Farookh Khadeer Hussain. “Real time dataset generation
framework for intrusion detection systems in IoT”. In: Future Generation Computer
Systems 108 (2020), pp. 414–423.

[2] Mouhammd Al-Kasassbeh, Ghazi Al-Naymat, and Eshraq Al-Hawari.“Towards gen-
erating realistic SNMP-MIB dataset for network anomaly detection”. In: Interna-
tional Journal of Computer Science and Information Security 14.9 (2016), p. 1162.

[3] Albert Gran Alcoz et al. “Aggregate-based congestion control for pulse-wave DDoS
defense”. In: Proceedings of the ACM SIGCOMM 2022 Conference. 2022, pp. 693–
706.

[4] Fahd A Alhaidari and Alia Mohammed Alrehan. “A simulation work for generating
a novel dataset to detect distributed denial of service attacks on Vehicular Ad hoc
NETwork systems”. In: International Journal of Distributed Sensor Networks 17.3
(2021), p. 15501477211000287.

[5] Sabah Alzahrani and Liang Hong. “Generation of DDoS attack dataset for effective
IDS development and evaluation”. In: Journal of Information Security 9.4 (2018),
pp. 225–241.

[6] Manos Antonakakis et al. “Understanding the mirai botnet”. In: 26th USENIX se-
curity symposium (USENIX Security 17). 2017, pp. 1093–1110.

[7] Apple Inc. Activity Monitor User Guide. https://support.apple.com/en-gb/
guide/activity-monitor/welcome/mac, Last visit July 30, 2023. 2023.

[8] Sunny Behal and Krishan Kumar. “Characterization and Comparison of DDoS At-
tack Tools and Traffic Generators: A Review.” In: Int. J. Netw. Secur. 19.3 (2017),
pp. 383–393.

[9] Theophilus Benson and Balakrishnan Chandrasekaran. “Sounding the bell for im-
proving Internet (of Things) security”. In: Proceedings of the 2017 Workshop on
Internet of Things Security and Privacy. 2017, pp. 77–82.

[10] Sajal Bhatia et al. “A framework for generating realistic traffic for Distributed
Denial-of-Service attacks and Flash Events”. In: computers & security 40 (2014),
pp. 95–107.

[11] Nikola Blazic et al. “Implementation of SYN flood attack simulator in NS-3”. In:
2018 Zooming Innovation in Consumer Technologies Conference (ZINC). IEEE.
2018, pp. 110–113.

[12] Richard R Brooks et al. “Distributed denial of service (DDoS): a history”. In: IEEE
Annals of the History of Computing 44.2 (2021), pp. 44–54.

[13] Calculator Academy Team. Packets Per Second Calculator. https://calculator.
academy/packets-per-second-calculator/, Last visit July 27, 2023. 2023.

97

https://support.apple.com/en-gb/guide/activity-monitor/welcome/mac
https://support.apple.com/en-gb/guide/activity-monitor/welcome/mac
https://calculator.academy/packets-per-second-calculator/
https://calculator.academy/packets-per-second-calculator/

98 BIBLIOGRAPHY

[14] Center for Applied Internet Data Analysis (CAIDA). Dataset for ”DDoS Attack
2007” - Request Form. https://www.caida.org/catalog/datasets/request_
user_info_forms/ddos_dataset_request/, Last visit March 18, 2023. 2010.

[15] Xu Chen et al. “Real-time DDoS Defense in 5G-Enabled IoT: A Multidomain Col-
laboration Perspective”. In: IEEE Internet of Things Journal (2022).

[16] Ilya V Chugunkov et al. “Development of the algorithm for protection against
DDoS-attacks of type pulse wave”. In: 2018 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus). IEEE. 2018,
pp. 292–294.

[17] Cisco Systems, Inc. ISP 3-Tier Model. https : / / www . thousandeyes . com /

learning/techtorials/isp-tiers, Last visit August 2, 2023. 2023.
[18] Robertas Damasevicius et al. “LITNET-2020: An annotated real-world network flow

dataset for network intrusion detection”. In: Electronics 9.5 (2020), p. 800.
[19] DDoS-Guard. Hidden threat of Pulse Wave DDoS attacks. https://ddos-guard.

net/en/blog/hidden-threat-of-pulse-wave-ddos-attacks, Last visit July 22,
2023. 2018.

[20] Ozgur Depren et al. “An intelligent intrusion detection system (IDS) for anomaly
and misuse detection in computer networks”. In: Expert systems with Applications
29.4 (2005), pp. 713–722.

[21] Rohan Doshi, Noah Apthorpe, and Nick Feamster. “Machine learning ddos detec-
tion for consumer internet of things devices”. In: 2018 IEEE Security and Privacy
Workshops (SPW). IEEE. 2018, pp. 29–35.

[22] Malin Eriksson and Victor Hallberg. “Comparison between JSON and YAML for
data serialization”. In: The School of Computer Science and Engineering Royal In-
stitute of Technology (2011), pp. 1–25.

[23] Calvin Falter. EDDD: Distributed DDoS Dataset Generator. https://github.com/
calvin-f/EDDD, Last visit July 22, 2023. 2023.

[24] Fortinet, Inc. DoS Attack vs. DDoS Attack. https : / / www . fortinet . com /

resources/cyberglossary/dos-vs-ddos, Last visit February 23, 2023. 2023.
[25] Vladimir Galyaev et al. “Recent Trends in Development of DDoS Attacks and Pro-

tection Systems Against Them.” In: Int. J. Netw. Secur. 21.4 (2019), pp. 635–647.
[26] ggouaillardet. A system call failed during shared memory initialization. https://

github.com/open-mpi/ompi/issues/7393#issuecomment-882018321, Last visit
August 4, 2023. 2021.

[27] GitHub user ’biojppm’. rapidyaml. https://github.com/biojppm/rapidyaml,
Last visit July 15, 2023. 2023.

[28] GitHub user ’saulodamata’. ns-3-http-traffic-generator. https : / / github . com /

saulodamata/ns-3-http-traffic-generator, Last visit July 15, 2023. 2020.
[29] GitHub users ‘lhridder’ and ‘Wqrld’. StopDDoS/packet-captures. https://github.

com/StopDDoS/packet-captures, Last visit August 1, 2023. 2023.
[30] Google. Google Scholar. https://scholar.google.com/, Last visit July 14, 2023.

2023.
[31] Arvin Hekmati, Eugenio Grippo, and Bhaskar Krishnamachari. “Large-scale urban

iot activity data for ddos attack emulation”. In: Proceedings of the 19th ACM Con-
ference on Embedded Networked Sensor Systems. 2021, pp. 560–564.

[32] Tom Henderson. Bug 1965 - restrictive assert in ECMP code. https://www.nsnam.
org/bugzilla/show_bug.cgi?id=1965, Last visit July 23, 2023. 2014.

https://www.caida.org/catalog/datasets/request_user_info_forms/ddos_dataset_request/
https://www.caida.org/catalog/datasets/request_user_info_forms/ddos_dataset_request/
https://www.thousandeyes.com/learning/techtorials/isp-tiers
https://www.thousandeyes.com/learning/techtorials/isp-tiers
https://ddos-guard.net/en/blog/hidden-threat-of-pulse-wave-ddos-attacks
https://ddos-guard.net/en/blog/hidden-threat-of-pulse-wave-ddos-attacks
https://github.com/calvin-f/EDDD
https://github.com/calvin-f/EDDD
https://www.fortinet.com/resources/cyberglossary/dos-vs-ddos
https://www.fortinet.com/resources/cyberglossary/dos-vs-ddos
https://github.com/open-mpi/ompi/issues/7393#issuecomment-882018321
https://github.com/open-mpi/ompi/issues/7393#issuecomment-882018321
https://github.com/biojppm/rapidyaml
https://github.com/saulodamata/ns-3-http-traffic-generator
https://github.com/saulodamata/ns-3-http-traffic-generator
https://github.com/StopDDoS/packet-captures
https://github.com/StopDDoS/packet-captures
https://scholar.google.com/
https://www.nsnam.org/bugzilla/show_bug.cgi?id=1965
https://www.nsnam.org/bugzilla/show_bug.cgi?id=1965

BIBLIOGRAPHY 99

[33] Tom Henderson. Bug 667 - ECMP operation in global routing. https://www.nsnam.
org/bugzilla/show_bug.cgi?id=667#c16, Last visit July 23, 2023. 2017.

[34] KW Hove. “Automated DDoS Attack Fingerprinting by Mimicking the Actions of
a Network Operator”. B.S. thesis. University of Twente, 2019.

[35] IANA. Internet Control Message Protocol (ICMP) Parameters. https://www.iana.
org/assignments/icmp-parameters/icmp-parameters.xhtml, Last visit July 22,
2023. 2023.

[36] Imperva. Ping flood (ICMP flood). https://www.imperva.com/learn/ddos/ping-
icmp-flood/, Last visit July 22, 2023. 2023.

[37] Imperva. TCP SYN Flood. https://www.imperva.com/learn/ddos/syn-flood/,
Last visit July 22, 2023. 2023.

[38] Imperva. UDP Flood. https://www.imperva.com/learn/ddos/udp-flood/, Last
visit July 22, 2023. 2023.

[39] Imperva. Understanding Pulse Wave DDoS Attacks. https://www.imperva.com/
resources/resource- library/white- papers/understanding- pulse- wave-

ddos-attacks/, Last visit July 22, 2023. 2017.
[40] Internet Engineering Task Force (IETF). RPL: IPv6 Routing Protocol for Low-

Power and Lossy Networks. https : / / www . rfc - editor . org / rfc / rfc6550 #
section-6.2, Last visit March 7, 2023. 2012.

[41] Houssain Kettani and Robert M Cannistra. “On cyber threats to smart digital en-
vironments”. In: proceedings of the 2nd international conference on smart digital
environment. 2018, pp. 183–188.

[42] Houssain Kettani and Polly Wainwright. “On the top threats to cyber systems”. In:
2019 IEEE 2nd international conference on information and computer technologies
(ICICT). IEEE. 2019, pp. 175–179.

[43] Nickolaos Koroniotis et al. “Towards the development of realistic botnet dataset in
the internet of things for network forensic analytics: Bot-iot dataset”. In: Future
Generation Computer Systems 100 (2019), pp. 779–796.

[44] Jeongeun Julie Lee and Maruti Gupta. “A new traffic model for current user web
browsing behavior”. In: Intel corporation (2007).

[45] Tasnuva Mahjabin et al. “A survey of distributed denial-of-service attack, preven-
tion, and mitigation techniques”. In: International Journal of Distributed Sensor
Networks 13.12 (2017), p. 1550147717741463.

[46] Jelena Mirkovic and Peter Reiher. “A taxonomy of DDoS attack and DDoS defense
mechanisms”. In: ACM SIGCOMM Computer Communication Review 34.2 (2004),
pp. 39–53.

[47] Robert Mitchell and Ing-Ray Chen. “A survey of intrusion detection techniques for
cyber-physical systems”. In: ACM Computing Surveys (CSUR) 46.4 (2014), pp. 1–
29.

[48] Nour Moustafa and Jill Slay. “UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set)”. In: 2015 military
communications and information systems conference (MilCIS). IEEE. 2015, pp. 1–
6.

[49] ns-3 community. Event-related memory consumption issue. https : / / groups .

google.com/g/ns-3-users/c/tEjTIJtDhYU/, Last visit July 27, 2023. 2023.

https://www.nsnam.org/bugzilla/show_bug.cgi?id=667#c16
https://www.nsnam.org/bugzilla/show_bug.cgi?id=667#c16
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.imperva.com/learn/ddos/ping-icmp-flood/
https://www.imperva.com/learn/ddos/ping-icmp-flood/
https://www.imperva.com/learn/ddos/syn-flood/
https://www.imperva.com/learn/ddos/udp-flood/
https://www.imperva.com/resources/resource-library/white-papers/understanding-pulse-wave-ddos-attacks/
https://www.imperva.com/resources/resource-library/white-papers/understanding-pulse-wave-ddos-attacks/
https://www.imperva.com/resources/resource-library/white-papers/understanding-pulse-wave-ddos-attacks/
https://www.rfc-editor.org/rfc/rfc6550#section-6.2
https://www.rfc-editor.org/rfc/rfc6550#section-6.2
https://groups.google.com/g/ns-3-users/c/tEjTIJtDhYU/
https://groups.google.com/g/ns-3-users/c/tEjTIJtDhYU/

100 BIBLIOGRAPHY

[50] ns-3 community. Increase Memory Consumption - EnergyModel. https://groups.
google.com/g/ns-3-users/c/scoHXqFcjE0/m/lL4IhwfOCQAJ, Last visit July 27,
2023. 2018.

[51] ns-3 community. ns-3-users. https://groups.google.com/g/ns-3-users/, Last
visit July 14, 2023. 2023.

[52] ns-3 community. ns-3-users: Dynamic Target Address Change on OnOffApplication.
https://groups.google.com/g/ns-3-users/c/kfdMW6s9CjI/m/7wgqEM7nBgAJ,
Last visit July 22, 2023. 2023.

[53] ns-3 community. NS3 Support for Multiple paths. https://groups.google.com/
g/ns-3-users/c/njclO2klIr0/m/N6QgoORdkcUJ, Last visit July 23, 2023. 2014.

[54] nsnam. Documentation. https://www.nsnam.org/documentation/, Last visit July
14, 2023. 2023.

[55] nsnam. ns-3: MPI for Distributed Simulation. https://www.nsnam.org/docs/
models/html/distributed.html, Last visit July 15, 2023. 2023.

[56] nsnam. NS-3 Release 3.39. https://gitlab.com/nsnam/ns-3-dev/-/tags/ns-
3.39, Last visit July 14, 2023. 2023.

[57] nsnam. ns3 Documentation. https://www.nsnam.org/doxygen/, Last visit July
28, 2023. 2023.

[58] OpenAI. ChatGPT. https://chat.openai.com/, Last visit July 14, 2023. 2023.
[59] OpenSim Ltd. OMNet++. https://omnetpp.org/, Last visit July 14, 2023. 2023.
[60] Tommaso Pecorella. Release memory when sockets are closed. https://gitlab.

com/nsnam/ns-3-dev/-/merge_requests/1515, Last visit July 22, 2023. 2023.
[61] PKiechl. DPWS-PoC. https://github.com/PKiechl/DPWS-PoC, Last visit August

4, 2023. 2023.
[62] Rastin Pries, Zsolt Magyari, and Phuoc Tran-Gia. “An HTTP web traffic model

based on the top one million visited web pages”. In: Proceedings of the 8th Euro-NF
Conference on Next Generation Internet NGI 2012. IEEE. 2012, pp. 133–139.

[63] Tamara Radivilova, Lyudmyla Kirichenko, and Abed Saif Alghawli. “Entropy Anal-
ysis Method for Attacks Detection”. In: 2019 IEEE International Scientific-Practical
Conference Problems of Infocommunications, Science and Technology (PIC S&T).
IEEE. 2019, pp. 443–446.

[64] Bruno Rodrigues, Thomas Bocek, and Burkhard Stiller. “Multi-domain DDoS mit-
igation based on blockchains”. In: Security of Networks and Services in an All-
Connected World: 11th IFIP WG 6.6 International Conference on Autonomous
Infrastructure, Management, and Security, AIMS 2017, Zurich, Switzerland, July
10-13, 2017, Proceedings 11. Springer. 2017, pp. 185–190.

[65] Bruno Rodrigues et al. “Blockchain signaling system (BloSS): cooperative signal-
ing of distributed denial-of-service attacks”. In: Journal of Network and Systems
Management 28 (2020), pp. 953–989.

[66] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.” In: ICISSp
1 (2018), pp. 108–116.

[67] Iman Sharafaldin et al. “Developing realistic distributed denial of service (DDoS)
attack dataset and taxonomy”. In: 2019 International Carnahan Conference on Se-
curity Technology (ICCST). IEEE. 2019, pp. 1–8.

[68] Swiss Internet Exchange. Get connected. https : / / www . swissix . ch /

infrastructure/get-connected/, Last visit June 25, 2023. 2023.

https://groups.google.com/g/ns-3-users/c/scoHXqFcjE0/m/lL4IhwfOCQAJ
https://groups.google.com/g/ns-3-users/c/scoHXqFcjE0/m/lL4IhwfOCQAJ
https://groups.google.com/g/ns-3-users/
https://groups.google.com/g/ns-3-users/c/kfdMW6s9CjI/m/7wgqEM7nBgAJ
https://groups.google.com/g/ns-3-users/c/njclO2klIr0/m/N6QgoORdkcUJ
https://groups.google.com/g/ns-3-users/c/njclO2klIr0/m/N6QgoORdkcUJ
https://www.nsnam.org/documentation/
https://www.nsnam.org/docs/models/html/distributed.html
https://www.nsnam.org/docs/models/html/distributed.html
https://gitlab.com/nsnam/ns-3-dev/-/tags/ns-3.39
https://gitlab.com/nsnam/ns-3-dev/-/tags/ns-3.39
https://www.nsnam.org/doxygen/
https://chat.openai.com/
https://omnetpp.org/
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/1515
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/1515
https://github.com/PKiechl/DPWS-PoC
https://www.swissix.ch/infrastructure/get-connected/
https://www.swissix.ch/infrastructure/get-connected/

BIBLIOGRAPHY 101

[69] Swiss Internet Exchange. SwissIX. https://www.swissix.ch/, Last visit June 25,
2023. 2023.

[70] Swiss Internet Exchange. What is an Internet Exchange Point (IXP). https://
www.swissix.ch/about/what-is-an-ixp/, Last visit June 25, 2023. 2023.

[71] Aparna Tomar et al. “A Step Towards Generation of DoS/DDoS Attacks Dataset for
Docker-Centric Computing”. In: International Journal of Mathematical, Engineering
and Management Sciences 7.1 (2022), p. 81.

[72] Imtiaz Ullah and Qusay H Mahmoud.“A scheme for generating a dataset for anoma-
lous activity detection in iot networks”. In: Advances in Artificial Intelligence: 33rd
Canadian Conference on Artificial Intelligence, Canadian AI 2020, Ottawa, ON,
Canada, May 13–15, 2020, Proceedings 33. Springer. 2020, pp. 508–520.

[73] Imtiaz Ullah and Qusay H Mahmoud. “A technique for generating a botnet dataset
for anomalous activity detection in IoT networks”. In: 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE. 2020, pp. 134–140.

[74] University of Zurich. Department of Informatics - Communication Systems Group.
https://www.csg.uzh.ch/csg/en/, Last visit July 14, 2023. 2023.

[75] Matthias Wichtlhuber et al. “IXP scrubber: learning from blackholing traffic for
ML-driven DDoS detection at scale”. In: Proceedings of the ACM SIGCOMM 2022
Conference. 2022, pp. 707–722.

[76] Wireshark Foundation. Wireshark. https://www.wireshark.org/, Last visit Au-
gust 3, 2023. 2023.

[77] Zeifman, Igal. Attackers Use DDoS Pulses to Pin Down Multiple Targets. https:
//www.imperva.com/blog/pulse-wave-ddos-pins-down-multiple-targets/,
Last visit July 22, 2023. 2020.

https://www.swissix.ch/
https://www.swissix.ch/about/what-is-an-ixp/
https://www.swissix.ch/about/what-is-an-ixp/
https://www.csg.uzh.ch/csg/en/
https://www.wireshark.org/
https://www.imperva.com/blog/pulse-wave-ddos-pins-down-multiple-targets/
https://www.imperva.com/blog/pulse-wave-ddos-pins-down-multiple-targets/

102 BIBLIOGRAPHY

Abbreviations

ACC Aggregate-based Congestion Control
AS Autonomous System
CLI Command-line Interface
CSMA Carrier Sense Multiple Access
CN Central Network
CSG Communication Systems Group
DoS Denial of Service
DDoS Distributed Denial of Service
ECMP Equal Cost Multi-Path
HTTP Hypertext Transfer Protocol
IDS Intrusion Detection System
IoT Internet of Things
IPS Intrusion Prevention System
IX Internet Exchange
IXP Internet Exchange Point
LOIC Low Orbit Ion Canon
ML Machine Learning
MPI Message Passing Interface
PCAP Packet Capture
PPS Packets Per Second
RAM Random-Access Memory
TTL Time-to-live
VANET Vehicular ad Hoc Network
YAML Yet Another Markup Language

103

104 ABBREVIATONS

List of Figures

2.1 Comparison of Pulse-Wave and traditional DDoS attack Mechanisms [77] . 7

2.2 Appliance First Hybrid Mitigation [77] . 8

3.1 Primary Scenario Example Topology . 21

3.2 System Architecture . 22

4.1 MPI Rank assignment . 31

4.2 Central Network Class Diagram . 42

4.3 Autonomous System Class Diagram . 48

4.4 Autonomous System Internal Topology . 49

4.5 DPWSNode Class Diagram . 51

4.6 OnOffApplication State Cycle . 56

4.7 UDP Flooding Traffic . 59

4.8 TCP SYN Flooding Traffic . 60

4.9 Suspected Retransmission in StopDDoS’ SYN flood traces [29] 60

4.10 ICMP Flooding Traffic . 61

4.11 Attack Scheduling Example . 63

4.12 Example Topology . 66

5.1 VAR1: Data Rate Breakdown per Attacker Across Vectors 70

5.2 VAR1: Packet Volume Breakdown per Attacker Across Vectors 71

5.3 Pulse Wave Patterns . 75

5.4 DIST Scenario Topology . 76

105

106 LIST OF FIGURES

5.5 DIST: Traffic Pattern at different CN Nodes 77

5.6 CSMA Channel Issues . 82

5.7 Point-to-Point AS Address Assignment Schemes 83

5.8 Memory Consumption when using default MPI Synchronization 85

5.9 Impact of UDP Packet Sink on Memory Consumption 87

C.1 Autonomous System Class Diagram, Larger Scale 117

List of Tables

2.1 Related Work Overview . 17

4.1 Example Topology File Names . 67

5.1 VAR1: Vector Characteristic Breakdown 73

5.2 VAR1: Port Number breakdown by Attack Vector 74

5.3 DIST scenario . 76

5.4 Scalability Scenarios . 79

5.5 Scalability Scenario Results . 80

5.6 Performance Impact of Individual Factors 80

5.7 Memory Consumption Breakdown by MPI Rank 86

107

108 LIST OF TABLES

Listings

4.1 Top-level structure of new NS-3 Module 26
4.2 Logic for Rank Assignment . 29
4.3 Use of the NodeLookupMapper . 32
4.4 Using ‘rapidyaml’ for Parsing . 34
4.5 Global Settings Configuration . 36
4.6 Central Network Configuration . 36
4.7 Autonomous Systems Configuration . 37
4.8 Attacker Node Configuration . 38
4.9 Benign Node Configuration . 38
4.10 Server Node Configuration . 39
4.11 Validating Topology Configuration . 40
4.12 Basic Central Network Topology Construction 43
4.13 Randomization of Minimal Topology Connections 44
4.14 Randomization of Additional Connections 46
4.15 Modified Section in the Routing Manager 47
4.16 Connecting the AutonomousSystem to the Central Network 50
4.17 Creating a DPWS Attacker Node . 51
4.18 Orchestration of DPWSNode Creation in ‘main’ Script 52
4.19 Installing the Benign Traffic Model . 53
4.20 Setting a new Remote . 56
4.21 UDP Flooding Implementation using Raw Socket 58
4.22 ICMP Flooding Implementation using Raw Socket 61
4.23 Packet Interval Randomization with Uniform Distribution 62
5.1 Single Subnet Address Assignment Approach 84
D.1 plot attacker and protocol keyed traffic at ixp node.py 119
D.2 calculate port number percentages.py . 123
D.3 calculate per packet stats.py . 125
D.4 plot traffic at ixp node.py . 126
D.5 capture-system-performance.py . 127
D.6 multiplot-system-performance.py . 129
D.7 Non-Prototype Related CSMA Showcase 131

109

110 LISTINGS

Appendix A

Contents of the CD

The following list of deliverables is submitted for this master thesis:

• Code:

– ZIP file containing the thesis’ source code. Note that the source code is also
made available on the project’s GitHub repository [61].

• Thesis:

– ZIP file containing the LaTeX source of the thesis

– PDF of the thesis

– Plain text file of the English abstract

– Plain text file of the German abstract

111

112 APPENDIX A. CONTENTS OF THE CD

Appendix B

Installation Guidelines

The installation guidelines are also present on the project’s GitHub repository [61].

B.1 Distributed Pulse-Wave DDoS Simulator

The simulator requires that you have NS-3 installed.

1. Clone the NS-3 GitLab Repository:
git clone https://gitlab.com/nsnam/ns-3-dev.git

2. Change into the repository directory:
cd ns-3-dev

3. Select the release of your choice. This project was developed under version 3.38,
thus your mileage may vary when using different versions:
git checkout -b ns-3.38-branch ns-3.38

The simulator requires CMake and MPI to be installed on your system. On Mac OS you
may use:

• brew install cmake

to install CMake

• brew install open-mpi

to install OpenMPI

The next step is to configure your NS-3 installation and ensure that it is functioning
properly.

113

114 APPENDIX B. INSTALLATION GUIDELINES

1. Configure your NS-3 installation. You may wish to use the debug build profile
instead of the optimized profile if you plan to debug or develop. If you simply
wish to run the simulator, then the optimized profile will yield significantly better
performance.
./ns3 configure --enable-mpi --build-profile=optimized

2. Once the configuration has finished, run the build script. This may take a moment
to finish:
./ns3 build

3. (Optional) Test that your installation is functional:
./test.py

At this point you have a functioning NS-3 installation on your system and it is time to
install the project’s simulator files.

• Clone the project GitHub repository:
git clone https://github.com/PKiechl/DPWS-PoC.git

• As a next step, a number of files have to be transferred to your NS-3 installation:

1. Copy the contents of the contrib directory to the contrib directory of your
NS-3 installation

2. Copy the contents of the scratch directory to the scratch directory of your
NS-3 installation

3. Copy the contents of the socket memory patch/src/internet/model direc-
tory to the src/internet/model directory of your NS-3 installation and over-
write the files present there.

4. Copy the contents of the overwrites/src/internet/model directory to the
src/internet/model directory of your NS-3 installation and overwrite the file
present there.

• As a last step, the build step must be executed again such that the newly transferred
files take effect: ./ns3 build

If you are on the Mac OS then you should consider altering your TEMPDIR as it has
been known to experience truncation which can lead to errors when using MPI [26]. To
circumvent this issue, run:
export TMPDIR=/tmp

In order to run the simulator you may use the example_configuration.yaml configura-
tion or use your own configuration file. You can supply a number of optional commands
when running the simulator:

• --command-template="mpiexec -np {number_of_cores} %s" allows you to make
use of parallelization and control how many cores the simulator is allowed to use.
Specify the number of cores as a number without the curly brackets.

B.2. EVALUATION SCRIPTS 115

• --printConfiguration=true provides a console printout of the entire configura-
tion including optional values that you may not have explicitly specified in the
configuration file.

• --progressLogInterval={number} allows you to control the interval in which the
simulator will provide console output to indicate progress in the simulation timeline.
The value is in seconds and represents simulation time and not execution time. Thus
if you run larger scale use cases you may wish to use a lower value in order to get a
better sense of progress. The default value is 15 seconds.

• --printTopology=false allows you to have the simulator not print the topology
in the form of pairs of connected nodes at the end of the simulation run.

To execute a simulation run using all options use:
./ns3 run dpws --command-template="mpiexec -np 4 %s"

-- --configFile="sample_config.yaml"

--printConfiguration=true

--progressLogInterval=5

--printTopology=false

Due to the way the NS-3 run command operates, command-template must directly follow
dpws with all other arguments lining up behind an additional -- as shown above. The
configFile parameter is required.

B.2 Evaluation Scripts

Clone the project repository:

1. git clone https://github.com/PKiechl/DPWS-PoC.git

2. cd DPWS-PoC/evaluation

Ensure you have Python 3 and pip3 installed on your system. These scripts were written
with Python 3.11, thus your mileage may vary when using different versions.

1. Install Python 3.11 in the manner of your choice. On Mac OS you can use:
brew install python@3.11

which will also install pip3

2. If you wish to double check if you have the pip3 packet manager installed:
python3 -m ensurepip

Set up a virtual environment for the installation of the Python requirements.

116 APPENDIX B. INSTALLATION GUIDELINES

1. Ensure that you have virtualenv installed. To install it use:
pip3 install virtualenv

You may also use alternatives such as conda, though this guide will assume that you
use virtualenv.

2. Create a new virtual environment. In this guide it is called venv though you may
elect to use a different name:
python3 -m virtualenv venv

3. Activate the new virtual environment:
source venv/bin/activate

4. Install the requirements:
pip3 install -r requirements.txt

In order to run the script of your choice you may use:
python3 path/to/script.py

For example, to gather port statistics from a PCAP file run:
python3 evaluation/traffic/calculate_port_number_percentages.py

Be cognizant of the fact that the evaluation scripts rely on files being present and other
parameters being defined within the script. You will have to adjust those in the scripts
before executing them.

Appendix C

Additional Figures

AutonomousSystem

m_assignedMpiRank: uint32_t

m_config: AutonomousSystemConfiguration

m_nodes: NodeContainer

m_numNodes: int

m_firstUnclaimedNodeIndex: int

m_nodeIdToContainerIndexMap: std::unordered_map<std::string, int>

m_nodeIdToHttpServerConnectionMap: std::unordered_map<std::string, std::pair<Ipv4Address, int>>

m_nonTargetServerNodes: std::vector<DPWSServerNode>

m_targetServerNodes: std::vector<DPWSServerNode>

m_benignClientNodes: std::vector<DPWSBenignNode>

m_attackerNodes: std::vector<DPWSAttackerNode>

m_connectionLink: PointToPointHelper

m_connectionDevices: NetDeviceContainer

m_connectionInterfaces: Ipv4InterfaceContainer

+ {virtual} EnablePcap(std::string prefix): void

+ StartApplications(double start, double stop): void

+ ConnectToNode(Ptr<Node> targetNode, std::string addressBase): void

+ ConnectToNode(Ptr<Node> targetNode, Ptr<AddressProvider> addressIncrementor): void

+ CreateAttackerNode(AttackerNodeConfiguration config, std::vector<Ipv4Address> targetList, Ptr<AttackScheduleHelper> attackScheduler): void

+ CreateBenignClientNode(BenignNodeConfiguration config, std::pair<Ipv4Address, int> serverConnectionInfo): void

+ CreateNonTargetServerNode(ServerNodeConfiguration config): void

+ CreateTargetServerNode(ServerNodeConfiguration config): void

+ CreateTargetServerNode(ServerNodeConfiguration config): void

+ GetHttpConnectionInfoByNodeId(std::string nodeId): std::pair<Ipv4Address, int>

+ GetIpv4ByNodeId(std::string nodeId, DPWSNodeType type=DPWSNodeType::target): Ipv4Address

- {virtual} BuildTopology(): void

- {virtual} GetAndClaimNextAvailableNodeInfo(std::string nodeId): std::pair<Ptr<Node>, Ipv4Address>

- {virtual} GetGatewayNode(): Ptr<Node>

P2pAutonomousSystem

m_deviceVector: std::vector<NetDeviceContainer>

m_interfaceVector: std::vector<Ipv4InterfaceContainer>

+ EnablePcap(std::string prefix): void

- BuildTopology(): void

- GetAndClaimNextAvailableNodeInfo(std::string nodeId): std::pair<Ptr<Node>,
 Ipv4Address>
- GetGatewayNode(): Ptr<Node>

CsmaAutonomousSystem

m_csmaLink: CsmaHelper

m_csmaDevices: NetDeviceContainer

m_csmaInterfaces: Ipv4InterfaceContainer

+ EnablePcap(std::string prefix): void

+ GetNodeById(std::string id): Ptr<Node>

+ GetNumNodes(): int

- BuildTopology(): void

- PopulateNodeIdToIndexMap(): void

Figure C.1: Autonomous System Class Diagram, Larger Scale

117

118 APPENDIX C. ADDITIONAL FIGURES

Appendix D

Evaluation Scripts

The script shown in Listing D.1 is used to create stack plots of the specified PCAP file’s
attack traffic, such that the contributions to the attack of the individual attacker nodes
can be highlighted.

Listing D.1: plot attacker and protocol keyed traffic at ixp node.py

1 import matplotlib.pyplot as plt

2 from matplotlib.patches import Patch

3 import numpy as np

4 from scapy.all import rdpcap

5 from collections import defaultdict

6 import warnings

7
8 def process_pcap(pcap, dr_tcp_global, pv_tcp_global, dr_udp_global, pv_udp_global,

dr_icmp_global, pv_icmp_global,

9 attackers, max_time):

10 for pkt in pcap:

11 if ’IP’ in pkt:

12 ip = pkt[’IP’]

13
14 # don’t process packets whose ip.src does not match any of the attackers

15 if ip.src not in attackers:

16 continue

17
18 time_bin_index = int(pkt.time)

19 # only store information for range covered by provided max_time (end_time)

20 if time_bin_index <= max_time:

21 # update data rate and packet count for src--time_bin pair for given

protocol

22 if ip.proto == 1:

23 # ICMP

24 dr_icmp_global[ip.src][time_bin_index] += len(pkt)

25 pv_icmp_global[ip.src][time_bin_index] += 1

26 elif ip.proto == 6:

27 # TCP

28 dr_tcp_global[ip.src][time_bin_index] += len(pkt)

29 pv_tcp_global[ip.src][time_bin_index] += 1

30 elif ip.proto == 17:

31 # UDP

119

120 APPENDIX D. EVALUATION SCRIPTS

32 dr_udp_global[ip.src][time_bin_index] += len(pkt)

33 pv_udp_global[ip.src][time_bin_index] += 1

34 else:

35 warnings.warn("Found packet that does not fit protocols (UDP, TCP,

ICMP)", pkt)

36 else:

37 warnings.warn("Found packet without IP layer:", pkt)

38
39 def rearrange_into_array(attackers, dr_dict, dr_arr, pv_dict, pv_arr):

40 for atk in attackers:

41 # check if atk actually was present in any packet (both dicts share same keys)

42 if atk in dr_dict.keys():

43 dr_arr.append([dr / 1e6 * 8 for dr in dr_dict[atk]])

44 pv_arr.append(pv_dict[atk])

45
46 def plot_traffic(pcap_file_list, attacker_ip_list, end_time, plot_file_name):

47 # establish x-axis dimension (time elapsed)

48 time_array = np.arange(end_time + 1) # 1 second time "bins". range is exclusive

at the end, thus + 1

49
50 # collections for data rates and packet volume per protocol

51 dr_tcp_per_attacker_per_time_bin = defaultdict(lambda: [0] * len(time_array))

52 pv_tcp_per_attacker_per_time_bin = defaultdict(lambda: [0] * len(time_array))

53 dr_udp_per_attacker_per_time_bin = defaultdict(lambda: [0] * len(time_array))

54 pv_udp_per_attacker_per_time_bin = defaultdict(lambda: [0] * len(time_array))

55 dr_icmp_per_attacker_per_time_bin = defaultdict(lambda: [0] * len(time_array))

56 pv_icmp_per_attacker_per_time_bin = defaultdict(lambda: [0] * len(time_array))

57
58 # perform accumulation across all files

59 for file in pcap_file_list:

60 print("Processing file:", file)

61 pcap = rdpcap(file)

62 process_pcap(pcap,

63 dr_tcp_per_attacker_per_time_bin,

64 pv_tcp_per_attacker_per_time_bin,

65 dr_udp_per_attacker_per_time_bin,

66 pv_udp_per_attacker_per_time_bin,

67 dr_icmp_per_attacker_per_time_bin,

68 pv_icmp_per_attacker_per_time_bin,

69 attacker_ip_list,

70 end_time)

71
72 # convert dictionaries to nested arrays for plotting, convert data rate form Bytes

/s to MBit/s -> div by 1e6 * 8

73 # also perform reordering such that order in nested array follows order of

attackers in initial attacker_ip_list

74 dr_tcp_nested_ordered = []

75 pv_tcp_nested_ordered = []

76 dr_udp_nested_ordered = []

77 pv_udp_nested_ordered = []

78 dr_icmp_nested_ordered = []

79 pv_icmp_nested_ordered = []

80
81 rearrange_into_array(attacker_ip_list, dr_tcp_per_attacker_per_time_bin,

dr_tcp_nested_ordered,

82 pv_tcp_per_attacker_per_time_bin, pv_tcp_nested_ordered)

121

83 rearrange_into_array(attacker_ip_list, dr_udp_per_attacker_per_time_bin,

dr_udp_nested_ordered,

84 pv_udp_per_attacker_per_time_bin, pv_udp_nested_ordered)

85 rearrange_into_array(attacker_ip_list, dr_icmp_per_attacker_per_time_bin,

dr_icmp_nested_ordered,

86 pv_icmp_per_attacker_per_time_bin, pv_icmp_nested_ordered)

87
88 # perform per-time-bin sum across all attacker nodes for the supplementary line-

plots

89 dr_summed = np.zeros(len(time_array))

90 pv_summed = np.zeros(len(time_array))

91 for time in time_array:

92 for lst in dr_tcp_nested_ordered:

93 dr_summed[time] += lst[time]

94 for lst in dr_udp_nested_ordered:

95 dr_summed[time] += lst[time]

96 for lst in dr_icmp_nested_ordered:

97 dr_summed[time] += lst[time]

98
99 for lst in pv_tcp_nested_ordered:

100 pv_summed[time] += lst[time]

101 for lst in pv_udp_nested_ordered:

102 pv_summed[time] += lst[time]

103 for lst in pv_icmp_nested_ordered:

104 pv_summed[time] += lst[time]

105
106 colors_stack_TCP = [’#162258’, ’#40437e’, ’#6768a7’, ’#908fd2’, ’#d7d4ff’]

107 colors_stack_UDP = [’#003804’, ’#21652f’, ’#53955b’, ’#84c88b’, ’#b8febd’]

108 colors_stack_ICMP = [’#3e2707’, ’#6b4f2f’, ’#9a7a59’, ’#cba986’, ’#ffdab5’]

109
110 # https://stackoverflow.com/a/63741687

111 p_TCP_1 = Patch(facecolor=colors_stack_TCP[0], edgecolor=’black’)

112 p_TCP_2 = Patch(facecolor=colors_stack_TCP[1], edgecolor=’black’)

113 p_TCP_3 = Patch(facecolor=colors_stack_TCP[2], edgecolor=’black’)

114 p_TCP_4 = Patch(facecolor=colors_stack_TCP[3], edgecolor=’black’)

115 p_TCP_5 = Patch(facecolor=colors_stack_TCP[4], edgecolor=’black’)

116
117 p_UDP_1 = Patch(facecolor=colors_stack_UDP[0], edgecolor=’black’)

118 p_UDP_2 = Patch(facecolor=colors_stack_UDP[1], edgecolor=’black’)

119 p_UDP_3 = Patch(facecolor=colors_stack_UDP[2], edgecolor=’black’)

120 p_UDP_4 = Patch(facecolor=colors_stack_UDP[3], edgecolor=’black’)

121 p_UDP_5 = Patch(facecolor=colors_stack_UDP[4], edgecolor=’black’)

122
123 p_ICMP_1 = Patch(facecolor=colors_stack_ICMP[0], edgecolor=’black’)

124 p_ICMP_2 = Patch(facecolor=colors_stack_ICMP[1], edgecolor=’black’)

125 p_ICMP_3 = Patch(facecolor=colors_stack_ICMP[2], edgecolor=’black’)

126 p_ICMP_4 = Patch(facecolor=colors_stack_ICMP[3], edgecolor=’black’)

127 p_ICMP_5 = Patch(facecolor=colors_stack_ICMP[4], edgecolor=’black’)

128
129
130 # plot 1: stackplot of dr per attacker node with pv_summed line plot

131 fig, ax = plt.subplots()

132 # stackplots for data rate

133 ax.stackplot(time_array, dr_tcp_nested_ordered, colors=colors_stack_TCP)

134 ax.stackplot(time_array, dr_udp_nested_ordered, colors=colors_stack_UDP)

135 ax.stackplot(time_array, dr_icmp_nested_ordered, colors=colors_stack_ICMP)

122 APPENDIX D. EVALUATION SCRIPTS

136 ax.legend(bbox_to_anchor=(1.15, 0.85), loc="upper left",

137 handles=[p_TCP_5, p_TCP_4, p_TCP_3, p_TCP_2, p_TCP_1,

138 p_UDP_5, p_UDP_4, p_UDP_3, p_UDP_2, p_UDP_1,

139 p_ICMP_5, p_ICMP_4, p_ICMP_3, p_ICMP_2, p_ICMP_1],

140 labels=["", "", "", "", "",

141 "", "", "", "", "",

142 "Attacker 5 (TCP / UDP / ICMP)",

143 "Attacker 4 (TCP / UDP / ICMP)",

144 "Attacker 3 (TCP / UDP / ICMP)",

145 "Attacker 2 (TCP / UDP / ICMP)",

146 "Attacker 1 (TCP / UDP / ICMP)"],

147 ncol=3, handletextpad=0.5, handlelength=2.5, columnspacing=-0.5)

148
149 ax.set_xlabel(’Time [s]’)

150 ax.set_ylabel(’Data Rate [MBit/s]’)

151 ax.set_title(’Data Rate per Attacker Node over Time’)

152 # line plot for packet volume

153 ax_alt = ax.twinx()

154 ax_alt.plot(time_array, pv_summed, label="Combined Packet Volume", linewidth=1.25,

color="red")

155 ax_alt.legend(bbox_to_anchor=(1.15, 1), loc="upper left")

156 ax_alt.set_ylim(ymin=0) # prevent entire subplot from "floating" slightly above

the bottom of the graph

157 ax_alt.set_ylabel("Packet Volume [Pkt/s]")

158 # save and show

159 plt.savefig(f"{plot_file_name}__data_rate.pdf", format="pdf", bbox_inches="tight")

160 plt.show()

161
162
163 # # plot 2: stackplot of pv per attacker node with dr_summed line plot

164 fig2, ax2 = plt.subplots()

165 # stackplots for packet volume

166 ax2.stackplot(time_array, pv_tcp_nested_ordered, colors=colors_stack_TCP)

167 ax2.stackplot(time_array, pv_udp_nested_ordered, colors=colors_stack_UDP)

168 ax2.stackplot(time_array, pv_icmp_nested_ordered, colors=colors_stack_ICMP)

169 ax2.legend(bbox_to_anchor=(1.15, 0.85), loc="upper left",

170 handles=[p_TCP_5, p_TCP_4, p_TCP_3, p_TCP_2, p_TCP_1,

171 p_UDP_5, p_UDP_4, p_UDP_3, p_UDP_2, p_UDP_1,

172 p_ICMP_5, p_ICMP_4, p_ICMP_3, p_ICMP_2, p_ICMP_1],

173 labels=["", "", "", "", "",

174 "", "", "", "", "",

175 "Attacker 5 (TCP / UDP / ICMP)",

176 "Attacker 4 (TCP / UDP / ICMP)",

177 "Attacker 3 (TCP / UDP / ICMP)",

178 "Attacker 2 (TCP / UDP / ICMP)",

179 "Attacker 1 (TCP / UDP / ICMP)"],

180 ncol=3, handletextpad=0.5, handlelength=2.5, columnspacing=-0.5)

181 ax2.set_xlabel(’Time [s]’)

182 ax2.set_ylabel(’Packet Volume [Pkt/s]’)

183 ax2.set_title(’Packet Volume per Attacker Node over Time’)

184 # line plot for data rate

185 ax2_alt = ax2.twinx()

186 ax2_alt.plot(time_array, dr_summed, label="Combined Data Rate", linewidth=1.25,

color="red")

187 ax2_alt.legend(bbox_to_anchor=(1.15, 1), loc="upper left")

123

188 ax2_alt.set_ylim(ymin=0) # prevent entire subplot from "floating" slightly above

the bottom of the graph

189 ax2_alt.set_ylabel("Data Rate [MBit/s]")

190 # save and show

191 plt.savefig(f"{plot_file_name}__packet_volume.pdf", format="pdf", bbox_inches="

tight")

192 plt.show()

193
194
195 # List pcap file paths

196 pcap_files = ["filename.pcap"]

197 # List ip addresses of the attacker nodes

198 attacker_node_ips = ["192.168.1.2", "192.168.2.2", "192.168.3.2", "192.168.4.2", "

192.168.5.2"]

199 plot_traffic(pcap_files, attacker_node_ips, 220, "output_filename")

The code shown in Listing D.2 is used to calculate a given attack traffic pulse’s port
utilization metrics.

Listing D.2: calculate port number percentages.py

1 from scapy.all import *

2 import warnings

3
4
5 def sum_per_port_percentage(packets, target_ip, source_ip_list, end_time, start_time):

6 # use target_ip and source_ip_list to narrow down to just attack traffic in one

pulse

7
8 source_ports = {}

9 dest_ports = {}

10 total_packets = 0

11
12 for pkt in packets:

13 if ’IP’ in pkt:

14 # filter packets to only specified pulse and duration

15 if pkt[’IP’].src not in source_ip_list:

16 continue

17 if pkt[’IP’].dst != target_ip:

18 continue

19 if pkt.time > end_time or pkt.time < start_time:

20 continue

21
22 # grab transport layer packet port counts

23 src_port = -1

24 dst_port = -1

25 if ’TCP’ in pkt:

26 src_port = pkt[’TCP’].sport

27 dst_port = pkt[’TCP’].dport

28 elif ’UDP’ in pkt:

29 src_port = pkt[’UDP’].sport

30 dst_port = pkt[’UDP’].dport

31
32 if src_port == -1 or dst_port == -1:

33 warnings.warn("found packet without port, double check your time

stamps")

34 else:

124 APPENDIX D. EVALUATION SCRIPTS

35 total_packets += 1

36 source_ports[src_port] = source_ports.get(src_port, 0) + 1

37 dest_ports[dst_port] = dest_ports.get(dst_port, 0) + 1

38 return source_ports, dest_ports, total_packets

39
40
41 def calculate_port_percentages(filename, target_ip, source_ip_list, start_time,

end_time, random_trim_threshold):

42 packets = rdpcap(filename)

43 source_ports, dest_ports, total_packets = sum_per_port_percentage(packets,

target_ip, source_ip_list, end_time,

44 start_time)

45
46 source_port_percentages = {port: (count / total_packets) * 100 for port, count in

source_ports.items()}

47 dest_port_percentages = {port: (count / total_packets) * 100 for port, count in

dest_ports.items()}

48
49 # sorting

50 sorted_src_count = dict(sorted(source_ports.items(), key=lambda item: item[1],

reverse=True))

51 sorted_src_percent = dict(sorted(source_port_percentages.items(), key=lambda item:

item[1], reverse=True))

52 sorted_dest_count = dict(sorted(dest_ports.items(), key=lambda item: item[1],

reverse=True))

53 sorted_dest_percent = dict(sorted(dest_port_percentages.items(), key=lambda item:

item[1], reverse=True))

54
55 # remove those with percentages below threshold

56 filtered_sorted_src_count = {key: value for key, value in sorted_src_count.items()

if value >= random_trim_threshold*total_packets}

57 filtered_sorted_dest_count = {key: value for key, value in sorted_dest_count.items

() if value >= random_trim_threshold*total_packets}

58 filtered_sorted_src_percent = {key: value for key, value in sorted_src_percent.

items() if value >= random_trim_threshold}

59 filtered_sorted_dest_percent = {key: value for key, value in sorted_dest_percent.

items() if value >= random_trim_threshold}

60
61 # count ports with percentages below threshold, use as indication for

randomization

62 src_ports_below_threshold = len(sorted_src_percent) - len(

filtered_sorted_src_percent)

63 dest_ports_below_threshold = len(sorted_dest_percent) - len(

filtered_sorted_dest_percent)

64
65 # treat low-count/low-percent as randomized -> set trim threshold to change the

cut off

66 # to determine randomiziation percent, the percentages ABOVE the threshold are

subtracted from 1, yielding the remaining

67 src_port_random_percent = round(100 - sum(filtered_sorted_src_percent.values()),

2)

68 dest_port_random_percent = round(100 - sum(filtered_sorted_dest_percent.values()),

2)

69
70 print(f"total packets considered: {total_packets}\n")

71

125

72 print(f"source ports counts: {filtered_sorted_src_count}")

73 print(f"source ports percentage breakdown: {filtered_sorted_src_percent}")

74 print(f"number of individual source port numbers below occurrence threshold: {

src_ports_below_threshold}")

75 print(f"percent of source ports that are randomized: {src_port_random_percent}\n")

76
77 print(f"destination ports counts: {filtered_sorted_dest_count}")

78 print(f"destination ports percentage breakdown: {filtered_sorted_dest_percent}")

79 print(f"number of individual destination port numbers below occurrence threshold:

{dest_ports_below_threshold}")

80 print(f"percent of destination ports that are randomized: {

dest_port_random_percent}\n")

81
82
83
84 src_list = ["192.168.1.2", "192.168.2.2", "192.168.3.2", "192.168.4.2", "192.168.5.2"]

85 # use the start_time and end_time to restrict the analysis to a sepcific part of the

packet. In combination with the

86 # ip address arguments you can narrow down the analysis to a specific pulse

87 # use trim threshold to determine which percentages are considered low enough to be

random

88 calculate_port_percentages("VAR1__IXP2-to-AS2____-1-2.pcap", "192.173.1.2", src_list,

60, 90, 0.01)

The script shown in Listing D.3 serves the purpose of extracting statistics about packet
sizes, packet volume and data rates from PCAP traces.

Listing D.3: calculate per packet stats.py

1 from scapy.all import *

2
3 def calculate_raw_stats(packets, start, end, target, sources):

4 data_per_ip = {} # data per ip address

5 data_sizes = {} # counts per packet-size

6
7 for pkt in packets:

8 if "IP" in pkt:

9 # filter packets to only specified pulse and duration

10 if pkt[’IP’].src not in sources:

11 continue

12 if pkt[’IP’].dst != target:

13 continue

14 if pkt.time > end or pkt.time < start:

15 continue

16
17 src_ip = pkt["IP"].src

18 size = len(pkt)

19
20 # accumulate per IP

21 if src_ip in data_per_ip:

22 data_per_ip[src_ip][’total_size’] += size

23 data_per_ip[src_ip][’total_packets’] += 1

24 else:

25 data_per_ip[src_ip] = {’total_size’: size, ’total_packets’: 1}

26 # count per size

27 if size in data_sizes:

28 data_sizes[size] += 1

126 APPENDIX D. EVALUATION SCRIPTS

29 else:

30 data_sizes[size] = 1

31
32 return data_per_ip, data_sizes

33
34 def calculate_values(filename, start, end, target, sources):

35 packets = rdpcap(filename)

36 pv_dr_per_ip, pkt_sizes = calculate_raw_stats(packets, start, end, target, sources

)

37
38 for ip, data in pv_dr_per_ip.items():

39 data_bytes = data[’total_size’]

40 num_pkts = data[’total_packets’]

41 avg_mps = ((data_bytes / (end-start)) / 1000000) * 8 # convert to Mbps

42 avg_pps = num_pkts / (end-start)

43
44 print(f"\nIP: {ip}")

45 print(f"\t\tAverage DR: {avg_mps:.4f} Mbps")

46 print(f"\t\tAverage PV: {avg_pps:.4f} Pps")

47
48 pkt_count = sum(pkt_sizes.values())

49 print("\nPacket Size Percentages:")

50 for size, data in pkt_sizes.items():

51 print(f"{size}: {data/pkt_count*100:.2f} %")

52
53 # sum packet counts and accumulated bytes

54 total_pv = 0

55 total_bytes = 0

56 for ip, data in pv_dr_per_ip.items():

57 total_pv += data[’total_packets’]

58 total_bytes += data[’total_size’]

59
60 print("\nAverages:")

61 print(f"\t\tOverall Average DR: {((total_bytes / (end-start)) / 1000000) * 8:.4f}

Mbps")

62 print(f"\t\tOverall Average PV: {total_pv / (end-start):.4f}")

63
64 sources=["192.168.1.2", "192.168.2.2", "192.168.3.2", "192.168.4.2", "192.168.5.2"]

65 calculate_values("filename.pcap", 180, 210, "192.173.1.2", sources)

Listing D.4 shows the code used for plotting the overall traffic pattern, filtered by IP
addresses as data rate over time.

Listing D.4: plot traffic at ixp node.py

1 from scapy.all import *

2 import matplotlib.pyplot as plt

3 import numpy as np

4 import warnings

5
6
7 def process_pcap(pcap, packet_data_rate_global, ip_src_filter):

8 for pkt in pcap:

9 if ’IP’ in pkt:

10 ip = pkt[’IP’]

11 # only process packets that are in filter list

12 if ip.src not in ip_src_filter:

127

13 continue

14
15 time_bin_index = int(pkt.time)

16 packet_data_rate_global[time_bin_index] += len(pkt) # len(packet) gives

packet size in bytes

17 else:

18 warnings.warn("Found packet without IP layer:", pkt)

19
20 def plot_traffic_data_rate(pcap_file_list, end_time, plot_file_name,

filter_ip_src_list=None, force_y_lim=[]):

21 # mutable default argument should not be a problem here, but PyCharm is not a fan,

so here we go :)

22 if filter_ip_src_list is None:

23 filter_ip_src_list = []

24
25 time_array = np.arange(end_time + 1) # 1 second time "bins". range is exclusive

at the end, thus + 1

26 packet_data_rate = np.zeros(len(time_array)) # bytes, stored per seconds, thus

effectively yielding data rate

27
28 for file in pcap_file_list:

29 print("Processing file:", file)

30 pcap = rdpcap(file)

31 process_pcap(pcap, packet_data_rate, filter_ip_src_list)

32
33 # convert bytes go Mbit/s -> div by 1e6 then times 8

34 packet_data_rate = [dr / 1e6 * 8 for dr in packet_data_rate]

35
36 fig, ax = plt.subplots()

37 ax.plot(time_array, packet_data_rate, label="Attack Traffic", linewidth=0.75,

alpha=0.9)

38 ax.legend(loc=’lower right’)

39 ax.set_xlabel(’Time [s]’)

40 ax.set_ylabel(’Data Rate [Mbit/s]’)

41 if len(force_y_lim) == 2:

42 ax.set_ylim(force_y_lim)

43 ax.set_title(’Attack Traffic Data Rate over Time’)

44 plt.savefig(plot_file_name, format="pdf", bbox_inches="tight")

45 plt.show()

46
47 pcap_files = ["file_name.pcap"]

48 filter_src_ip = ["192.168.1.2", "192.168.2.2", "192.168.3.2", "192.168.4.2", "

192.168.5.2"]

49 plot_traffic_data_rate(pcap_files, 600, "VAR1_newCols.pdf", filter_ip_src_list=

filter_src_ip)

The script shown in Listing D.5 is used to capture RAM and CPU usage of the host
machine.

Listing D.5: capture-system-performance.py

1 import psutil

2 import csv

3 import time

4 import signal

5 import sys

6

128 APPENDIX D. EVALUATION SCRIPTS

7
8 def measure_system_resource_use():

9 # RAM % and CPU %

10 measurements = []

11
12 def signal_handler(sig, frame):

13 # https://stackoverflow.com/a/1112350

14 # capture program interrupt and write measurements to a CSV file before

terminating

15 write_to_csv(measurements)

16 sys.exit(0)

17 # register signal handler

18 signal.signal(signal.SIGINT, signal_handler)

19
20 while True:

21 # Get current system time to synch up with execution of ns-3 simulation run

22 time_stamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())

23
24 # Get CPU usage

25 cpu_percent = psutil.cpu_percent(interval=1)

26
27 # Get RAM usage

28 ram = psutil.virtual_memory()

29 ram_percent = ram.percent

30
31 # Create a dictionary for the measurements including the timestamp

32 measurement = {

33 "time_stamp": time_stamp,

34 "cpu_percent": cpu_percent,

35 "ram_percent": ram_percent,

36 }

37
38 # Append the measurement to the list

39 measurements.append(measurement)

40
41 # Print the measurements

42 print(f"Time: ${time_stamp}")

43 print(f"CPU Usage: {cpu_percent}%")

44 print(f"RAM Usage: {ram_percent}% ")

45
46 # Wait for 1 second before measuring again

47 # Note: this is very likely to have some slight timing drift. Additionally, it

actually does not measure

48 # every second, but rather performs the measurements, then waits 1 second.

this seems to result in more

49 # of an every 2 seconds measurements. This is perfectly fine, given that the

goal is not to have measurements

50 # happening in perfect synch, but rather a steady stream of measurements such

that trends over time can be

51 # observed.

52 time.sleep(1)

53
54
55 def write_to_csv(measurements):

56 # define fieldnames CSV

57 fieldnames = ["time_stamp", "cpu_percent", "ram_percent"]

129

58
59 # prompt for filename

60 filename = input("Enter the output filename (without file extension): ")

61 filename = filename+".csv"

62
63 # write to csv

64 with open(filename, mode="w", newline="") as file:

65 writer = csv.DictWriter(file, fieldnames=fieldnames)

66 # header row written separately

67 writer.writeheader()

68 writer.writerows(measurements)

69
70 print(f"Performance Data written to: ’{filename}’")

71
72
73 measure_system_resource_use()

Listing D.6 contains the script used to plot multiple memory-consumption curves in one
figure.

Listing D.6: multiplot-system-performance.py

1 # neglecting CPU in this plot because it is basically always maxed anyway

2
3 import csv

4 import matplotlib.pyplot as plt

5 from datetime import datetime

6
7 def create_plot_data_for_file(filename, idle_ram_avg, time_frame_start,

time_frame_stop):

8 # perform full file read

9 timestamps = []

10 ram_percentages = []

11
12 with open(filename, mode="r") as file:

13 reader = csv.DictReader(file)

14 for row in reader:

15 timestamps.append(datetime.strptime(row["time_stamp"], "%Y-%m-%d %H:%M:%S"

))

16 ram_percentages.append(float(row["ram_percent"]))

17
18 # narrow down to specified time-frame & express timestamps as time elapsed in

seconds

19 start_time = datetime.strptime(time_frame_start, "%Y-%m-%d %H:%M:%S")

20 end_time = datetime.strptime(time_frame_stop, "%Y-%m-%d %H:%M:%S")

21
22 to_plot__time_elapsed = []

23 start_index = -1

24 end_index = -1

25
26 for i, stamp in enumerate(timestamps):

27 # just to be safe we operate with the day as well. I sincerely hope none of

the tests will for that long

28 # though...

29 if start_time <= stamp <= end_time:

30 diff = int((stamp - start_time).total_seconds())

130 APPENDIX D. EVALUATION SCRIPTS

31 # int() to trim the decimal positions. datetime as used in this project

does not consider sub-second

32 # time, so the diff is always essentially just an integer with a .0

33 to_plot__time_elapsed.append(diff)

34
35 if start_index == -1:

36 # take note of the first index to be considered in the cpu/ram data

lists

37 start_index = i

38 end_index = i

39
40 # extract relevant sub-lists of the cpu/ram data, based on the relevant time-frame

(upper slice index is exclusive,

41 # thus +1)

42 to_plot__ram_percentages = ram_percentages[start_index:end_index + 1]

43
44 # subtract the idle system averages to get isolated costs of just the simulation

45 to_plot__ram_percentages = [el - idle_ram_avg for el in to_plot__ram_percentages]

46
47 print(f"max ram for file {filename}: {max(to_plot__ram_percentages)}")

48
49 return to_plot__time_elapsed, to_plot__ram_percentages

50
51 def plot_system_load(filename_list, timestamp_list, idle_ram_avg_list, plot_labels,

plot_name, plot_title, force_full_y_axis=False, overwrite_legend_position=""):

52
53 plt.title(plot_title)

54 plt.xlabel("Time Elapsed [s]")

55 plt.ylabel("RAM Usage [%]")

56
57 for index, file in enumerate(filename_list):

58 print(f"processing file: {file}")

59 x, y = create_plot_data_for_file(file, idle_ram_avg_list[index],

timestamp_list[index][0], timestamp_list[index][1])

60 plt.plot(x, y, label=plot_labels[index])

61
62 if overwrite_legend_position != "":

63 plt.legend(loc=overwrite_legend_position)

64 else:

65 plt.legend()

66 plt.locator_params(axis=’x’, nbins=15) # Setting the number of ticks

67 plt.xticks(rotation=45)

68 if force_full_y_axis:

69 plt.yticks([0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100])

70 plt.tight_layout()

71
72 # Save and show

73 plt.savefig(f"{plot_name}.pdf", format="pdf", bbox_inches="tight")

74 plt.show()

75
76 files = ["../../SC2_2p4Mib.csv", "../../SC2_2p4Mib_with_socket.csv"]

77 labels = ["SC2_HPV","SC2_HPV_PS"]

78 timestamps = [("2023-07-28 14:25:30", "2023-07-28 14:48:01"),("2023-07-28 14:50:58", "

2023-07-28 15:07:21")]

79 ram_idle_avgs = [15.1,14.6]

80 plot_system_load(files, timestamps, ram_idle_avgs, labels, "SC2p4_w_and_wo_sink", "

131

Impact of UDP Packet Sink on Memory Consumption")

The code shown in Listing D.7 was used to demonstrate the reliability issues faced with
the CSMA channel described in Section 5.4.0.1.

Listing D.7: Non-Prototype Related CSMA Showcase

1 #include "ns3/applications-module.h"

2 #include "ns3/core-module.h"

3 #include "ns3/internet-module.h"

4 #include "ns3/network-module.h"

5 #include "ns3/point-to-point-module.h"

6 #include "ns3/csma-module.h"

7
8
9 using namespace ns3;

10
11 NS_LOG_COMPONENT_DEFINE("OnOffExample");

12
13 int

14 main(int argc, char* argv[])

15 {

16 CommandLine cmd;

17 cmd.Parse(argc, argv);

18
19 Time::SetResolution(Time::NS);

20 LogComponentEnable("OnOffExample", LOG_LEVEL_INFO);

21
22 // Create nodes

23 NodeContainer nodes;

24 nodes.Create(2);

25
26 // Create links

27
28 // use for point-to-point

29 // PointToPointHelper pointToPoint;

30 // pointToPoint.SetDeviceAttribute("DataRate", StringValue("500Gbps"));

31 // pointToPoint.SetChannelAttribute("Delay", StringValue("2ms"));

32
33 // use for CSMA

34 CsmaHelper csma;

35 csma.SetChannelAttribute("DataRate", StringValue("500Gbps"));

36 csma.SetChannelAttribute("Delay", StringValue("2ms"));

37
38 NetDeviceContainer devices;

39 // use for CSMA

40 devices = csma.Install(nodes);

41 // use for point-to-point

42 // devices = pointToPoint.Install(nodes);

43
44 // Install internet stack

45 InternetStackHelper stack;

46 stack.Install(nodes);

47
48 // Assign IP addresses

49 Ipv4AddressHelper address;

50 address.SetBase("10.1.1.0", "255.255.255.0");

132 APPENDIX D. EVALUATION SCRIPTS

51
52 Ipv4InterfaceContainer interfaces = address.Assign(devices);

53
54 // Create OnOff application

55 uint16_t port = 9;

56 OnOffHelper onOffHelper("ns3::UdpSocketFactory",

57 Address(InetSocketAddress(interfaces.GetAddress(1), port))

↪→);

58 onOffHelper.SetAttribute("OnTime", StringValue("ns3::ConstantRandomVariable[

↪→ Constant=5]"));

59 onOffHelper.SetAttribute("OffTime", StringValue("ns3::ConstantRandomVariable[

↪→ Constant=10]"));

60 onOffHelper.SetAttribute("DataRate", StringValue("50Mbps"));

61 onOffHelper.SetAttribute("PacketSize", UintegerValue(1024));

62
63 ApplicationContainer apps = onOffHelper.Install(nodes.Get(0));

64 apps.Start(Seconds(0.0));

65 apps.Stop(Seconds(20.0));

66
67 // Create packet sink application

68 PacketSinkHelper packetSinkHelper("ns3::UdpSocketFactory",

69 Address(InetSocketAddress(Ipv4Address::GetAny(),

↪→ port)));

70 apps = packetSinkHelper.Install(nodes.Get(1));

71 apps.Start(Seconds(0.0));

72 apps.Stop(Seconds(20.0));

73
74 // use for CSMA

75 csma.EnablePcap("on_off_test_csma", devices.Get(1), false);

76 // use for point-to-point

77 // pointToPoint.EnablePcap("on_off_test", devices.Get(1), false);

78
79 Simulator::Run();

80 Simulator::Stop(Seconds(20.0));

81 Simulator::Destroy();

82 return 0;

83 }

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Methodology
	Thesis Outline

	Fundamentals
	Background
	Distributed Denial-of-Service (DDoS)
	DDoS Datasets

	Related Work
	Pulse-Wave DDoS Attacks
	DDoS Dataset Generation
	Discussion

	Design
	Prototype Requirements
	Application Scenario
	IXP and AS Topology
	AS Internals
	Attack Configurability
	From Generic Scenario to Specific Use Case

	Architecture
	Configuration Parsing
	Topology Construction
	Traffic Models
	Attack- & Pulse-Wave Scheduling
	Traffic Capture
	Logging

	Implementation
	Framework Selection
	Implementation as NS-3 Module
	Component Implementations
	Main Script
	Configuration Parsing
	Topology Construction
	Traffic Models
	Attack Scheduling
	Traffic Capture

	Evaluation
	Attack Vector Variability
	Variable Attack Vector Composition
	Variable Pulse-Wave Patterns

	Distributed Perspective
	System Scalability
	Takeaways from Developing with NS-3
	Discussion

	Final Considerations
	Summary
	Conclusions
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Contents of the CD
	Installation Guidelines
	Distributed Pulse-Wave DDoS Simulator
	Evaluation Scripts

	Additional Figures
	Evaluation Scripts

