
Enforcing Privacy in a Smart Home
Environment via Pi-hole Integration

Elliott Wallace
Zurich, Switzerland

Student ID: 11-915-956

Supervisor: Dr. Bruno Rodrigues, Katharina O. E. Müller, Prof. Dr.
Burkhard Stiller

Date of Submission: August 9th, 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Kurzfassung

Das Internet der Dinge (Internet of Things - IoT) hat die Entwicklung von Smart-Home-
Technologien ermöglicht und dadurch den Markt revolutioniert. Trotz zahlreicher Vorteile,
welche moderne Smart Homes bieten, gibt es Bedenken hinsichtlich ihrer Sicherheit und
bezüglich des Datenschutzes. Die zunehmende Komplexität von Smart Homes und die ge-
ringe Hardware-Kapazität vieler IoT-Geräte machen es oft erforderlich, dass die von ihnen
gesammlten Daten in Cloud-Umgebungen verarbeitet und gespeichert werden. Dies birgt
die Gefahr eines möglichen Missbrauchs oder der Offenlegung sensibler Informationen über
die Nutzer und Nutzerinnen. Soweit dem Autor bekannt ist, bietet keine existierende Tech-
nologie zur Verbesserung der Privatsphäre (Privacy Enhancing Technology - PET) einen
schlanken Ansatz zur Sicherung der Privatsphäre in Smart-Home-Umgebungen durch die
Zusammenführung vorhandener Tools in einem System. Ziel dieser Arbeit ist es, einen
ersten Lösungsansatz in Richtung eines erweiterbaren Open-Source-Softwaresystems zu
konzipieren, das leicht in bestehende Smart Homes integriert werden kann. Damit soll die
Kommunikation von Smart-Home-Geräten überwacht und ihr Kommunikationsverhalten
durch benutzerdefinierte Regeln gesteuert werden. Zu diesem Zweck wird ein Prototyp
entwickelt, der die Domain-Name-System-Anfragen (DNS requests) von Smart-Home-
Geräten überwacht und gesetzte Regeln über einen DNS-Sinkhole-Mechanismus durch-
setzt. Der Prototyp wird auf einer Ein-Chip-System-Plattform installiert und in einer ak-
tiven Smart-Home-Umgebung getestet, um die Funktionalitäten des Protoyps zu prüfen.
Auf diese Weise sollen die Leistung, Effektivität und Grenzen des Prototyps untersucht
werden, um den allgemeinen Ansatz zu validieren. Die Ergebnisse der durchgeführten Ver-
suche haben ergeben, dass der Protoyp die zu Beginn der Arbeit gesetzten Ziele erfüllt.
Der Prototyp überwacht zuverlässig die Netzwerkaktivitäten von Smart-Home-Geräten.
Die dabei gesammelten Daten werden aufbereitet, um damit mehr Transparenz für den
Nutzer oder die Nutzerin zu schaffen. Darüber hinaus ermöglicht der Prototyp die Defin-
tion von einfachen Regeln, um bestimmte Domänen für ein Smart-Home-Gerät entweder
zuzulassen oder zu blockieren. Diese Regeln können anschliessend erfolgreich vom System
umgesetzt werden.

i

Abstract

The Internet of Things (IoT) platform is one of the key drivers of the smart home mar-
ket, having revolutionized the advancement of smart home technology. Besides the many
benefits for convenience and efficiency, there are also concerns about security and privacy
in such environments. The increasing complexity of smart homes and hardware limita-
tions of individual devices necessitate the storage and processing of data in remote cloud
environments. This raises privacy issues due to potential misuse or disclosure of sensitive
information about residents. To the author’s knowledge, no existing Privacy Enhancing
Technology (PET) offers a lightweight approach to enforce privacy in smart home envi-
ronments by combining existing tools into a unifying framework. The goal of this thesis
is to take a first step towards an extensible open source software system that integrates
into the smart home environment with the purpose of monitoring smart home device com-
munications and controlling their communication behavior through user-defined policies.
To this end, a prototype application is developed, which monitors smart home devices’
Domain Name System (DNS) requests and enforces policies via a DNS sinkhole mecha-
nism. The prototype system is deployed to a system-on-chip platform and evaluated in a
live smart home environment to gain insight into the viability of the prototype. The aim
is to examine the performance, effectiveness, and limitations of the prototype with the
intention of validating the general approach. The results of these experiments indicate
that the prototype successfully achieves the goals outlined in this thesis. The application
prototype is capable of monitoring the network activity of smart home devices. The col-
lected data are processed to gain insights and make this information transparent to the
users. Furthermore, the prototype allows users to define simple allow/block policies which
are subsequently enforced by the system.

ii

Acknowledgments

I would like to express my sincere gratitude towards my supervisors Dr. Bruno Rodrigues,
Katharina O. E. Müller and Prof. Dr. Burkhard Stiller at the Communication Systems
Group of the University of Zurich for granting me the opportunity to write this thesis.
Especially, I wish to thank Dr. Bruno Rodrigues for his support, advice, and inspiration
in guiding me through the process of this thesis.

To my family and friends, I am thankful for their encouragement, understanding, and
unwavering belief in me. Their support has been a constant source of motivation.

iii

Contents

Kurzfassung i

Abstract ii

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Goals . 2

1.3 Methodology . 3

1.4 Thesis Outline . 4

2 Fundamentals 6

2.1 Internet of Things . 6

2.2 Smart Home . 7

2.2.1 Smart Home Components . 7

2.2.2 Smart Home Security . 8

2.2.3 Smart Home Privacy . 10

2.3 Domain Name System . 11

2.3.1 DNS Sinkholes . 12

2.4 Related Work . 12

2.4.1 Privacy Enhancing Technologies . 12

2.4.2 Tools . 15

iv

CONTENTS v

3 Design 17

3.1 Application Scenario . 17

3.2 Requirements . 18

3.2.1 Functional Requirements . 19

3.2.2 Non-functional Requirements . 19

3.3 Architecture . 20

3.3.1 Components . 20

4 Implementation 25

4.1 Core Features . 25

4.1.1 Pi-hole Integration . 26

4.1.2 Monitoring . 27

4.1.3 Notification Service . 30

4.2 Development and Build Pipeline . 34

5 Evaluation 35

5.1 Configuration . 35

5.1.1 Hardware . 35

5.1.2 Software . 36

5.1.3 Networking . 37

5.2 Scenarios . 38

5.2.1 Monitoring . 38

5.2.2 Policy Enforcement . 38

5.2.3 Weekly Notification . 39

5.2.4 Smart Device Operability . 40

5.2.5 Performance Evaluation . 40

5.3 Results . 41

5.3.1 Monitoring . 41

5.3.2 Policy Enforcement . 43

vi CONTENTS

5.3.3 Weekly Notification . 45

5.3.4 Smart Device Operability . 47

5.3.5 Performance Evaluation . 49

5.4 Discussion . 51

6 Final Considerations 54

6.1 Summary . 54

6.2 Conclusions . 56

6.3 Contributions . 57

6.4 Future Work . 58

Bibliography 58

Abbreviations 64

List of Figures 65

List of Tables 66

List of Listings 67

A Contents of the Repository 69

B Code 70

Chapter 1

Introduction

The global smart home market is expected to experience a significant surge in the coming
years, reaching a value of more than USD 330 billion by 2030. This growth is due to the
growing number of Internet users, the higher disposable income of people in developing
countries, and the increasing demand for energy-efficient and low-carbon solutions [33].
The Internet of Things (IoT) platform is one of the main drivers of the market, having
revolutionized the advancement of smart home technology. It enables us to introduce
smartness into our homes by fully interconnecting devices, objects, and appliances with
the local network and the Internet [25].

Smart homes offer a multitude of benefits, including automation and control through
seamless integration of services. They promote energy efficiency by enabling real-time
monitoring and intelligent scheduling, which can result in lower utility bills and envi-
ronmental sustainability. Smart home environments promise an improved quality of life
through increased comfort and convenience [42]. Applications of smart home technologies
range from ambient lighting and intelligent heating systems to smart security infrastruc-
tures, and even smart cities.

In spite of the much-described benefits of smart home systems, there are also concerns
about security and privacy in such environments. The growing number of devices that
use a multitude of communication protocols and technologies presents a larger surface for
potential attackers [29]. There are significant differences in hardware and software quality
from different manufacturers. Low production values, often caused by increased market
pressure, lead to negligence in security issues [18].

Generally, depending on the complexity of the tasks performed by a smart home envi-
ronment, more data needs to be collected and more resources are required to process the
data. Due to hardware limitations, this data is typically processed and stored remotely in
a cloud environment. This leads to users having to surrender control over their personal
data and trust the data practices of providers [73]. Hence, privacy becomes a crucial
topic in smart homes, as aggregated data can reveal sensitive information about their
occupants [41].

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Previous research has shown that users are often unaware of the privacy implications
of using smart home devices [15, 41]. Users have also suggested that they want more
control over their privacy in their smart home environments, but feel that the mechanisms
provided by manufacturers for this purpose generally do not meet their expectations [41,
74].

While the emergence of the Internet of Things has undeniably ushered in a new era of
the smart home with many advantages, the important issue of privacy protection must be
carefully reviewed. Smart home environments are constantly sensing and collecting data.
It is essential to ensure that people are aware of and consent to the collection, processing,
and sharing of their data to maintain a balance between technological development and
the individual’s right to privacy. For example, in the cases of Amazon owned Ring doorbell
and Echo/Alexa, users of these smart home devices fell victims to privacy violations and
data compromises. In 2019, Amazon employees gained access to the cameras of private
houses by misusing the Ring video doorbell functionality [69]. Similarly, in the incident
involving Amazon Alexa, customers reported that employees and contractors were able
to listen to recordings of sensitive and private information [20].

Legally, data collection should be in accordance with the principles of data minimization
established by the General Data Protection Regulation (GDPR). The principle states
that the processing of personal data must be: ”adequate, relevant and limited to what is
necessary in relation to the purposes for which they are processed”, as stated in Article 5
(1c) of the GDPR [57]. In practice, compliance with these rules is not always easy to verify.
The ability to adopt and enforce the GDPR data minimization principle will pave the way
toward empowering smart home residents with more control over their personal data and
fostering an environment of trust and privacy in the realm of smart home technology.

To the best of the author’s knowledge, no existing Privacy Enhancing Technology (PET)
provides a lightweight solution to enforce privacy in smart home environments through
data minimization by integrating existing tools. Therefore, this thesis addresses this gap
by proposing an extensible architecture that builds on existing knowledge and incorporates
established systems. These tools are intended to facilitate the monitoring and control of
network interactions of smart home devices. Furthermore, existing technologies mainly
focus either on privacy preservation or on observability, but not both in conjunction. For
this reason, a system that promotes transparency while offering users options for privacy
protection is warranted.

1.2 Thesis Goals

Given the challenges described above, this thesis aims to raise awareness of data collection
in smart homes and regain control over the process. To this end, the aim is to make
the communication behavior of devices in smart home environments more transparent.
Equipped with this knowledge, it is envisioned that smart home residents will be able to

1.3. METHODOLOGY 3

make informed decisions about their privacy. As a way to ensure that these preferences
can be enforced, the goal is to create simple privacy control mechanisms for users in smart
home environments.

To achieve the overarching objective, the following goals are defined for this thesis:

• Design an architecture for a system that manages smart home devices to monitor
and restrict their traffic with external networks, such as cloud services. For this
purpose, the system shall monitor Domain Name System (DNS) requests of the
devices, make them transparent to users, and enable them to define simple policies
that are enforced via a DNS sinkole. Achieving this goal involves the elicitation of
requirements, specifying the system architecture, and designing the planned software
components.

• Implement a prototype that meets the specified requirements. The implementation
should leverage existing tools and build on established frameworks. It is intended
that the built application is suitable for execution on a System-on-Chip (SoC) plat-
form.

• Evaluate the prototype using a real-world deployment in a live smart home envi-
ronment. This includes the definition of scenarios to test the functionality of various
features of the prototype. Conducting experiments in these use cases will provide
qualitative and quantitative results that validate the implementation and provide in-
sight into the effectiveness and limitations of the chosen solution. In particular, the
advantages and disadvantages of the application prototype are examined in terms of
the balance between privacy and possible limitations on the functionality of smart
home devices.

The vision is to take a first step towards an extensible open-source framework that in-
tegrates into the smart home environment with the purpose of monitoring devices and
controlling their communication behavior through user-defined policies. Therefore, the
system should be extensible, allowing it to support different types of policies, additional
data sources for device behavior, and more mechanisms to enforce policies.

1.3 Methodology

The methodology applied in this thesis is designed to comprehensively achieve the goals
listed in Section 1.2. The approach taken can be divided into two main stages: A literature
review and applied research.

Literature review: The initial stage involves conducting a literature review to gather
essential knowledge about fundamental concepts and related work in the context of smart
home security and privacy. From this research, an overview of related work on privacy
enhancing technologies is derived, which is summarized in Table 2.1 in Section 2.4.1.
Furthermore, existing solutions and tools are studied to understand their functionalities,
strengths, and limitations. This literature review will serve as the basis for the subsequent

4 CHAPTER 1. INTRODUCTION

phases and ensures that the proposed system builds upon existing knowledge and best
practices.

Applied research: The second stage entails the creation and assessment of a prototype
to validate the approach outlined in the thesis goals in Section 1.2. The details of the
procedure in this phase are described below.

• Design: Based on the previously defined thesis goals and the insights gained from
research, this phase features the elicitation and documentation of functional and
non-functional requirements (see Section 3.2). A comprehensive system architecture
will be designed encompassing the components and key interactions necessary to
fulfill the requirements. The deliverables of this phase include the documentation
of this design in the form of descriptions and software design artifacts, presented in
Section 3.3.

• Implementation: The design specified in the previous phase is implemented, result-
ing in a prototype of the software system. During this process, implementation
details for key features are reported to highlight the approach and the reasoning
behind it (see Section 4.1).

• Evaluation: In a final phase, a set of scenarios for the evaluation of the prototype
is defined. A description of these use cases can be found in Section 5.2. Following
this, the prototype system is deployed in a live smart home environment to test its
properties in a real-world setting. A series of experiments are conducted on this
platform as outlined in Section 5.2, and the results are presented in Section 5.3.

1.4 Thesis Outline

The contents of this thesis are structured into several chapters. Chapter 2 lays the
foundation for the research by exploring fundamental concepts related to the smart home
domain in general, particularly focusing on security and privacy aspects. Moreover, the
chapter covers Domain Name Systems (DNS) and DNS sinkholes. Lastly, related work,
including privacy enhancing technologies and selected tools, is discussed.

Chapter 3 provides a description of the design of the proposed system. Here, the context
is explained by presenting a possible application scenario for the solution. Furthermore,
the requirements for the system are specified and divided into the categories functional
and non-functional. In addition, the architecture and design of the associated software
components and their interaction are introduced.

To provide insight into the technical realization of the prototype, selected implementation
details of its core features are presented and discussed in Chapter 4. This includes specifics
for the integration with Pi-hole, monitoring DNS requests, and sending email notifications.
The elaborations in this chapter also give an overview of the technology stack that was
utilized to realize the implementation. The chapter further covers the development and
build pipeline used in the project.

1.4. THESIS OUTLINE 5

Chapter 5 addresses the evaluation of the application prototype in a smart home envi-
ronment. It describes the configuration of hardware, software, and networks used in the
process and defines several scenarios to test the performance and functionality of the sys-
tem. The results of these experiments are presented with the aim of providing insights
into the viability of the prototype’s core features, effectiveness, and overall system perfor-
mance. The chapter concludes with a discussion of the results and their implications.

Finally, Chapter 6 summarizes the results of this thesis, lists the contributions made, and
draws conclusions based on the results obtained. It also highlights potential areas for
future work, suggesting opportunities for further development and improvement of the
proposed system.

Chapter 2

Fundamentals

The following chapter covers the fundamental subjects that provide the background for
this thesis. First, a brief introduction to the concept of the Internet of Things is given in
Section 2.1. Subsequently, in Section 2.2, smart homes are discussed in detail, including
their basic characteristics and components. Furthermore, security and privacy in the
context of smart home environments will be explored more closely. In addition, the topic
of Domain Name System (DNS) and DNS sinkholes is introduced in Section 2.3. The
chapter concludes with an analysis of related work in Section 2.4. It focuses in particular
on existing literature on privacy enhancing technologies. In addition, the tools used to
realize this work are introduced.

2.1 Internet of Things

The Internet of Things (IoT) paradigm refers to everyday objects equipped with tech-
nology and connected via pervasive communication networks to serve as sensors and ac-
tuators. The goal is to embed intelligence into our environment by establishing smart
connectivity with existing networks and context-aware computation [26].

The result is a system of physical objects that are connected to the Internet and can
communicate with each other. These items can be used to observe and interact with
their environment through Wireless Sensor Networks (WSN). WSNs use a network of
small, low-power sensors to collect environmental data. They can be used to monitor
and control physical states, such as temperature, humidity, and pressure. Furthermore,
they enable location-based services that can be used for navigation and asset tracking.
Wireless sensor networks are a cornerstone of modern IoT applications, which also include
smart homes [27].

The Internet of Things has revolutionized the development of smart home technology.
By interconnecting everyday objects, it has enabled the automation of numerous tasks in
the home. This has led to a variety of smart home technologies, such as voice-controlled
assistants, automatic lighting and smart security systems. In addition, the IoT has enabled
the development of more efficient energy management systems that allow residents to

6

2.2. SMART HOME 7

monitor and control their energy consumption. Consequently, the emergence of the IoT
has had a significant impact on the development of smart home technology [71].

2.2 Smart Home

A smart home is a residence equipped with smart objects or devices interconnected by a
communication network. It enables remote access, monitoring, and control for a system
that provides smart home services to its residents. The smartness of the home arises
through its fully interconnected nature [25]. Remote home control, home automation, and
ambient intelligence are services a smart home system provides to its residents. These
services can be context-sensitive, automated, or assistive[2]. In [6], the authors identify
four key aspects that characterize a smart home: A communications network enabling
smart devices to exchange messages, intelligent controls for system management, sensors
that collect information, and smart features responding to user input or sensor data.

The primary goal of smart home systems is to improve the quality of life of users in
their homes. It is supposed to increase convenience and comfort, provide security and
entertainment, and optimize energy use [42].

Smart home systems automate tasks that would otherwise have to be performed manually,
such as turning on the lights when a user enters a room or adjusting the temperature in
the home to the time of day. They can also improve home security by alerting users to
potential hazards. Furthermore, they provide entertainment, for example, by streaming
music or movies. By monitoring energy consumption, smart homes can also help improve
energy efficiency. Based on monitoring data, lights in unused rooms can be turned off
or the temperature of the house can be adjusted according to the weather forecast. In
addition, the energy consumption of individual appliances can be monitored, allowing
users to identify which appliances consume the most energy and take action to reduce
their power usage.

2.2.1 Smart Home Components

In [70], a conceptual framework for IoT-based smart home systems is introduced. The
framework encompasses the following levels: smart home, hub, cloud, third party, user
interface, and utility.

• Smart home: The smart home level includes a Wireless Sensor Network (WSN),
comprising smart devices with modest processing power and wireless communication
capabilities.

• Hub: Another element of a smart home is a central hub, a device that stores and
processes data locally and connects the WSN to other networks. It is crucial for the
interoperability between smart devices as it translates their differing communication
protocols. Data generated through sensing by smart devices are forwarded to a hub.
After local pre-processing, the hub pushes the data to the cloud.

8 CHAPTER 2. FUNDAMENTALS

• Cloud: In this model, the cloud assumes a central role and is responsible for massive
data storage and processing.

• Third party: Third parties develop software applications offering services to the end
user based on the data provided by the cloud.

• User interface: End users interact with these smart home and third party solutions
on the User Interface (UI) level. UIs are responsible for intuitively displaying the
accumulated data, providing smart home controls, as well as notifying and giving
recommendations to the user.

• Utility: The utility level pertains to the integration of smart home technology into
smart power grids. Smart grids, however, will not be discussed in the scope of this
thesis.

2.2.2 Smart Home Security

Security has become a growing concern for the IoT field in general, specifically also for
smart home environments. Due to the fact that smart home infrastructures rely heavily
on the devices communicating with each other as well as with the service providers’ cloud
infrastructure via the Internet, they are at risk of being compromised. As the number of
different protocols, technologies and application scenarios for smart home devices contin-
ues to grow, so does the potential attack surface for smart homes [29]. The heterogeneous
nature of IoT, smart home devices, and technologies further weakens the security of these
systems. Other factors increasing security risks in smart homes include the short time
to market for IoT devices and cost reductions, which are valued higher by manufacturers
than protection of their hardware and software [18]. Further, privacy is one of the most
important aspects to consider in the home environment. In the following paragraphs, we
define security and privacy in the context of smart homes. We discuss vulnerabilities and
threats to smart home security and some of the attack vectors they enable.

A well-known model in the field of information security is the CIA triad of confidentiality,
integrity, and availability [18, 39]. It describes the goals for the security of a system and
serves as a guideline for developing and implementing information security strategies.

• Confidentiality refers to the principle that data can only be accessed by authorized
entities. Encryption and access control mechanisms are possible ways to achieve
data confidentiality.

• Integrity ensures that the data is not modified without authorization to maintain
an accurate and consistent state of the data. This attribute is especially relevant in
view of possible interference during data transit.

• Availability guarantees that authorized entities can access any information resources
at any given time, even if the network is under attack.

In addition to the CIA triad, authenticity, authorization, and non-repudiation have been
identified as important security objectives for smart home environments [39].

2.2. SMART HOME 9

• Authenticity refers to proving identity and validating this information by the re-
spective communication partner. Mutual authentication prevents the spoofing of
false roles.

• Authorization ensures that access is controllable for any entity that is part of the
system and that those rights can be managed accordingly.

• Non-repudiation ensures that a claim is provable and prevents any entity from
denying that it has performed a specific action.

Based on the CIA categories, the authors in [30] define security requirements for smart
home services: For confidentiality, they list encryption mechanisms as well as secure key
and identity management. Further, responsible password practices are suggested. Mutual
authentication between devices and reliable communication are important to maintain
integrity. Unauthorized user or device access and forging encryption keys should be pro-
hibited. To ensure the availability of the resources, it should be possible to set up device-
specific security policies and to receive regular security updates for software components.
Additionally, they suggest monitoring for abnormal device behavior, blocking unnecessary
remote access and providing external attack detection capabilities.

Most data transmissions in IoT use cases, such as smart homes, are carried out by WSNs.
Hence, they are naturally vulnerable to many attacks targeting wireless networks [70].
In [47], IoT vulnerabilities are classified by their attack vectors targeting different layers
and analyzed in terms of the security goals they threaten. Inadequate authentication and
improper encryption at the network layer are identified as threats to the confidentiality
and integrity of IoT resources. However, limitations in computational capabilities and
energy supply of devices, on the other hand, are determined to hinder the implementa-
tion of sufficiently sophisticated authentication and encryption algorithms. This enables
attackers to reveal sensitive information or take control of the system. Common prob-
lems highlighted as a representation of these vulnerabilities are the unsecured sharing
of symmetric keys for authentication and the unencrypted transmission of WiFi pass-
words when setting up devices. IoT devices with unnecessary open ports are another
network-based vulnerability listed to threaten availability, providing an attack surface for
denial-of-service (DoS) attacks.

The authors in [47] further describe software-based vulnerabilities such as insufficient
access control and weak programming practices that threaten both confidentiality and in-
tegrity. In conjunction with the fact that most users have elevated permissions, inadequate
access control also refers to the problem of weak credential management, such as using
default passwords. This may lead to unauthorized third parties gaining access. Further-
more, deficiencies in the firmware of IoT devices are commonly found due to programming
that includes known vulnerabilities.

These vulnerabilities expose an IoT-based smart home to a variety of threats. In [19],
a threat model examines the possible risks of active or passive adversaries directed at
the smart home’s infrastructure or the data stored in the associated cloud services. The
identified threats are described below:

10 CHAPTER 2. FUNDAMENTALS

• Eavesdropping: An adversary may capture network traffic between the different
components of the smart home infrastructure. The information acquired during this
process can extract knowledge about the user’s behavior passively or learn details
about the communication mechanisms that can later be used in an active attack.

• Impersonation: To access smart home devices, an adversary can try to impersonate
a legitimate user, which enables them to control the devices or extract confidential
information from them. The adversary may use information like unique identifiers
of devices and Internet Protocol (IP) addresses from previous eavesdropping attacks
to successfully impersonate an authorized user.

• DoS: Denial of Service (DoS) or Distributed Denial of Service (DDoS) attacks can
target either the hubs in a smart home or individual devices. As most IoT devices are
based on hardware with low processing capabilities, they are especially vulnerable
to DoS.

• Software exploitation: Smart home IoT devices can be infected with malware to
gain access to information and influence operations. One possible scenario is the
creation of a botnet by infecting many IoT devices with the goal of launching large-
scale DDoS attacks. Other approaches may exploit vulnerabilities in applications on
an authorized user’s device that are used to interact with the smart home system.

2.2.3 Smart Home Privacy

Smart homes offer various services to increase their inhabitants’ convenience. Providing
such functionalities often requires collecting various types and amounts of information.
Smart home equipment can amass extensive data concerning its users, encompassing de-
tails regarding their activities and surroundings. An instance of this would be a smart
temperature regulator that can gather data about when users are present, how they ma-
nipulate the temperature settings, and when they do so. Similarly, a smart door lock
can accumulate data about the identities of individuals entering or leaving the property,
at what times, and for what duration. This data may serve diverse objectives such as
enhancing energy efficiency or fortifying home protection. Due to hardware limitations,
this data is typically processed and stored remotely. In most cases, this happens in a
cloud environment run by the device manufacturer, where user data may be outside of
their control. Hence, they have to rely on the data practices of device manufacturers and
third parties instead [73]. Consumers are forced to weigh their privacy needs against the
utility and comfort of smart device services and accept the trade-offs [74]. Privacy poses
a complex topic in IoT use cases in general. In the specific case of smart home environ-
ments, the gathered information concerns the domestic intimacy of users’ personal lives.
The resulting privacy implications become important as the aggregated data can reveal
sensitive insights about smart home residents [41].

Consumers are often unaware of the privacy implications and risks caused by their in-
stallation and use of smart home technology. Comprehension thereof is not effectively
promoted by displaying lengthy privacy policies that are difficult to understand. Further-
more, buyers cannot monitor the data practices of smart device producers and service

2.3. DOMAIN NAME SYSTEM 11

providers [15, 41]. Hence, the perspective users have to trust the intentions of the com-
panies whose products they are buying, concerning their data. To warrant this trust, it
should be a goal to establish well-communicable transparency about the types of data
collected, data retention time, who the information is shared with, and how securely it is
stored [41].

Studies [41, 74] suggest that even though smart home devices, like smart speakers with
integrated voice assistants, come with some privacy indication and control features, they
are not aligned with the needs or capabilities of their users. However, they still wish for
enhanced transparency and control over their data collection and sharing.

An important requirement to preserve privacy in an IoT environment like a smart home is
the residents’ consent regarding which data is gathered and stored and how it is processed
and shared with third parties. In a fully integrated smart home, sensing and collecting
data is a ubiquitous process that spans many areas and operates at various levels. For
people living in such environments, expressing their consent in a differentiated manner
so the data capturing fits their wishes for privacy without proper awareness and control
mechanisms may not be a trivial task. Consequently, the definition of access rules to
protect residents’ privacy is difficult to achieve [1]. This suggests the necessity of new
approaches to raise awareness about data gathering and dissemination connected to using
smart devices. Furthermore, implementing easy-to-use privacy control mechanisms to
leverage this awareness is proposed.

Collecting and using personal data raises a range of ethical questions that are important
to consider concerning smart homes. For example, is it ethical to use data from smart
homes to target ads to inhabitants, or to sell the data to third parties [46]? Do users have
the right to opt out of data collection in general, or should they be required to share their
data as a condition of using smart home devices?

2.3 Domain Name System

The Domain Name System (DNS) is a crucial component of the Internet infrastructure. It
serves as a name service that translates human-readable domain names into IP addresses,
which are used for accessing online resources. The domain name space is structured as
a variable-depth tree, with nodes representing domains, each having a label. The node’s
domain name is constructed by concatenating its label with its parent domain name,
separated by a dot [45].

Essentially, the Internet’s DNS acts as a distributed database. The database nodes are
hosted on DNS name servers that store zone files containing records related to a specific
domain or DNS zone. When a client requests a domain name, the request is forwarded to
the appropriate DNS server by the DNS resolver. The DNS server then searches its zone
files for the requested domain’s information [45].

The DNS’s structure follows the hierarchy given by the domain name space: Root name
servers are at the tree’s top and top-level domain (TLD) servers contain information about
the different TLDs. Authoritative DNS servers contain data about specific domain names.

12 CHAPTER 2. FUNDAMENTALS

When a user enters a domain name into their browser, it sends a DNS query to the
local DNS resolver. If the resolver has the IP address of the domain name in its cache,
it returns it. Otherwise, it forwards the query iteratively or recursively to other DNS
servers, beginning with the root servers, until it finds the IP address on the authoritative
name server associated with the domain name. This entire process is known as a DNS
lookup [45].

2.3.1 DNS Sinkholes

Sinkholing is a technique to intercept outgoing DNS queries requesting undesired do-
mains to redirect traffic to a different IP address [9, 50]. Various lists of such malicious
or unwanted domains are publicly available and maintained by communities of security
professionals. A DNS sinkhole essentially takes the role of a DNS server that receives
DNS queries from clients and, in the first step, checks the configured instance of such a
blacklist against the requested domain. If the domain is not listed on the blacklist, the
DNS request is forwarded to an upstream DNS server to resolve the legitimate query.
Otherwise, if the requested domain is blacklisted, the DNS sinkhole does not forward the
request and instead may respond with a different privately controlled IP address [7].

2.4 Related Work

2.4.1 Privacy Enhancing Technologies

The authors in [76] survey different privacy-enhancing technology (PET) proposals for
hub-based smart homes. Proposed systems are categorized on the basis of their approach
to implementing privacy preservation mechanisms. The following categories have been
identified:

• Network traffic obfuscation

• Local data processing

• Device activity control and patching

• Cross-cloud data flows control

• App activity control

• Data minimization

• Data obfuscation

2.4. RELATED WORK 13

In addition to categorizing them according to their privacy preservation mechanisms, the
paper also differentiates between different system models that the PETs are based on,
i.e., hub-centric, hub-only, cloud-centric, or hybrid. Furthermore, the stakeholders of the
smart home system that are considered potentially dangerous in the threat model of the
respective design are identified. Lastly, the locations in the smart home system model,
where the different security mechanisms of the systems operate, are determined [76].
Utilizing this analytical framework, the solution proposed in this thesis can be described
as a hub-centric system that fits in the data minimization category. The stakeholders
considered by our threat model are device and application providers. Regarding the
generic system model described in [76], the solution proposed in this thesis implements
security and privacy mechanisms at the home gateway security checkpoint.

Based on these observations, we take a closer look at those research proposals similar to
the work presented in this paper and compare them based on their distinctive attributes.

Privacy-enhancing technologies that deal with app activity control try to minimize the
privacy and security threats from third-party applications that run within a smart home
or other IoT platforms [76]. HomePad [75] is a smart home hub system that contains a
platform for third-party apps. It requires developers to build isolated modules and explic-
itly define the data flows between them. Users can specify expressive privacy preferences
that the runtime of HomePad checks against the apps’ specifications. Only functions that
comply with the user’s policy are executed.

Network traffic obfuscation techniques aim at reducing the possibility of an adversary
inferring privacy sensitive information from observed network traffic, such as the daily
routines of a smart home inhabitant [76]. As such, inference attacks can succeed even
with encrypted communication through pattern detection [5]. Using stochastic traffic
padding to reshape the traffic generated by devices, this is no longer easily possible.

Other approaches use data obfuscation to anonymize user data before propagating outside
the home network. Systems that use such a process need access to the raw sensor data
generated by devices to alter data that can individually identify a user [76]. The authors
of [38] describe a privacy agent that uses a neural network to learn a user’s privacy policy
and enforce it directly on the respective devices. In contrast to the other technologies
described here, this approach is not implemented at the gateway or hub, but is directly
deployed onto the device. The agent runs with the embedded software in a hypervisor
emulating the device’s hardware interfaces. The agent can either let data pass through or
modify it and drop or inject traffic to achieve anonymity.

Data minimization techniques aim to reduce the risk of leakage of privacy-sensitive data by
only disclosing as little data as possible to service providers, while still maintaining all rel-
evant functionalities of the system [76]. Peekaboo [34] is a proposal for a privacy-sensitive
smart home architecture. The authors argue that existing smart home apps collect more
data than necessary. Therefore, peekaboo offers a framework for application developers
to transparently collect user data on a need-to-know basis by explicitly specifying the
collection behaviors in a manifest. The peekaboo runtime uses the manifest to build a
preprocessing pipeline, manipulating the data so that it only discloses the agreed upon
information. PFirewall [8] is another data minimization technology that focuses on home
automation. It uses a virtualization approach mediating the communication between IoT

14 CHAPTER 2. FUNDAMENTALS

Name Category Objectives Method Environment Platform

PFirewall [8] Data mini-
mization

Minimize data sent
to platform. En-
able users to define
custom policies.

Mediator between
devices and plat-
form. Filters raw
IoT data, forward-
ing only policy
compliant data.

Cloud or hub-
based smart
home.

Local hub

HomePad [75] App activity
control

Users control how
apps access and
process data col-
lected by smart de-
vices.

Apps modeled in
a prescribed way.
Only execute if
compliant with
users’ settings.

Dedicated
hub-centric
smart home

Local hub

Klingensmith
et al. [38]

Data obfusca-
tion

Learning user’s
global privacy
policy and enforce
it on all devices.

AI agent disables
or modifies data
streams directly at
device level.

General IoT Device hard-
ware

IoTrim [44] Data mini-
mization

Only sending data
that is required
by primary device
functionalities.

Automatically
classify destina-
tions as required
or not and create
firewall rules for
the latter.

Cloud or hub-
based smart
home

IP router

Apthorpe et
al. [5]

Network traffc
obfuscation

Making it harder
to infer genuine
user interactions
by analyzing traffic
patterns.

Stochastic traffic
padding. Reshapes
traffic during user
activity, injects
dummy traffic
during down time.

Cloud-centric
IoT/Smart
home system

Local hub
(WiFi access
point)

IoT Inspec-
tor [32]

Traffic analy-
sis

Gather network
traffic data from
smart home de-
vices. Making
traffic observable
in real-time.

Intercept traffic
between devices
and router via
ARP spoofing.
Process data and
visualize in UI.

Cloud or hub-
based smart
home

Local Unix
host. Central
server.

Klement et
al. [36]

Traffic analy-
sis

Gathers network
traffic of IoT
devices and as-
sociated mobile
applications.

ARP Spoofing.
MITM-proxy used
to capture en-
crypted mobile
app traffic.

Cloud or hub-
based smart
home

Local hub

Peekaboo [34] Data mini-
mization

Transparent data
collection. Cen-
tralized privacy
features across
apps and devices.

Developers specify
data collection be-
haviors in mani-
fest. Local pre-
processing of data.

Dedicated
hub-centric
smart home

Local hub

Kazlouski et
al. [35]

Data min-
imization,
App activity
control

Block unnecessary
third party connec-
tions of Fitbit asso-
ciated apps.

Block unwanted
domains through
publicly available
blocklists.

Fitbit ecosys-
tem

Smart phone

Table 2.1: Related work

2.4. RELATED WORK 15

devices and the smart home platform, acting as a hub. PFirewall builds its own internal
model of the automation rules in a smart home. It uses this model to check if the data
received from devices should trigger a configured automation. The request is forwarded
only if the condition is met. The last privacy-enhancing technology we discuss in this cate-
gory is IoTrim [44]. The prototype consists of two components: IoTrigger and IoTrimmer.
IoTrigger uses experimentation to classify network traffic destinations into required and
non-required destinations for the tested smart device functionality. This results in a block
list that is then used by the IoTrimmer component to install firewall rules on the router.
Besides the other hub-based technologies, IoTrim runs natively on the router, making it
not a trivial installation for the average user. The approaches described above effectively
enforce the data minimization principle stated in the General Data Protection Regulation
(GDPR) [57].

Not exactly fitting into the definition of PETs are [32, 36], as the software systems de-
scribed in the papers does not actively intervene in smart home communications. The
objective of these approaches is to allow its users to observe the network traffic generated
in their smart homes, which, in turn, can help them make informed decisions regarding
their privacy. Both presented systems use Address Resolution Protocol (ARP) spoofing to
intercept traffic between devices and the home router. A notable difference between the
two approaches is that IoT Inspector [32] uses a central cloud server for data aggregation
and storage. In contrast, the proposal in [36] offers a local-only option.

The system proposed in this thesis stands out as a lightweight PET, specifically designed
to run on system-on-chip (SoC) environments, such as the Raspberry Pi. This system is
based on the integration of existing and proven tools to achieve data minimization. In
contrast to related technologies that require complex virtualization or custom runtimes,
the prototype developed here uses a simple DNS-based monitoring and policy enforcement
approach. By operating directly at the network level, this approach avoids the need for
direct modifications to devices or the smart home platform.

2.4.2 Tools

For the creation and testing of a prototype in the context of this thesis, various tools are
used. Some of the main examples are listed below:

• Home Assistant [31] is an open source home automation platform that allows users
to control smart home devices and create custom automations. It integrates with
various services and devices, such as Amazon Alexa, Google Assistant, Philips Hue,
and Sonos. Home Assistant provides a web interface and a mobile app for users to
monitor and manage their smart home devices. Users can also create automation
and scripts to customize their smart home scenarios.

• Pi-hole [62] is a network-level ad blocker that runs on a Raspberry Pi. It acts as a
DNS sinkhole that blocks unwanted domains for ads, trackers, malware, and phish-
ing sites. Pi-hole also provides a web interface and an Application Programming
Interface (API) for users to configure and query their Pi-hole settings and statistics.

16 CHAPTER 2. FUNDAMENTALS

• Raspberry Pi is a series of small, low-cost computers that can be used for various
purposes. They are based on a single-board design that contains a processor, mem-
ory, input/output ports, and other components. As their operating system, they run
Raspberry Pi OS, an official operating system based on Debian Linux, optimized
for Raspberry Pi hardware. The Pi supports various programming languages, such
as Python and C [12].

• Docker technology allows developers to create, deploy, and run applications using
containers. Containers are isolated environments that contain all the dependencies
and configurations necessary for an application to run. This makes it easier to ensure
consistency and portability across different platforms and environments. Docker also
provides tools to manage and orchestrate containers, such as Docker Compose and
Docker Hub [10].

Chapter 3

Design

This thesis focuses on designing and implementing a prototype to enhance user privacy
by offering insights into the interactions of smart home devices with the Internet and
providing users with simple tools to give them more control over their data. The intention
is to address some of the privacy limitations in smart homes described in Section 2.2.3. To
this end, the capabilities of the existing tools listed in Section 2.4.2 should be leveraged
by using or integrating them into the prototype design. The prototype must capture the
network behavior of smart home devices by monitoring DNS requests and enforce simple
policies through a DNS sinkhole mechanism. The interaction with the system will be
facilitated by a user-friendly interface. It provides observability through reporting and
data visualization and enables the user to manage devices and configure policies.

The purpose of this chapter is to provide a comprehensive description of the design of
the proposed system. Section 3.1 presents a possible application scenario, providing con-
text for the work done in this thesis. Furthermore, the functional and non-functional
requirements for the prototype system are defined in Section 3.2.1. Lastly, the system
architecture and details of the software design are presented in Section 3.3.

3.1 Application Scenario

The increasing number of smart devices in a home environment prompts demands for im-
proved device security and data privacy. Smart devices often rely on cloud-based services
to provide various automation and remote services at the expense of relying on collected
personal data. To provide some context and exemplify the environment in which the
proposed system will be embedded, an application scenario for the prototype is described
below. The suggested scenario is illustrated in Figure 3.1, organized into five abstrac-
tion layers. The first abstraction layer concerns several smart devices, including but not
limited to smart light bulbs, TVs, IP cameras, thermostats, and fans/air filters. At the
bridge layer, devices may connect directly to a router in a cabled or wireless connection, or
via a bridge that connects to the router. The automation layer often relies on integration
APIs offered by bridges to automate two or more devices in pre-configured scenarios by

17

18 CHAPTER 3. DESIGN

the user, such as“entering or leaving home”, or based on predefined time schedules. Major
home automation services, such as Apple HomeKit [4], Amazon Alexa [3], Google Home
[24], and Home Assistant (open source) [31] offer interfaces for managing smart devices
and often rely on a cloud service. The exception is Home Assistant [31], a community-
driven project that is deployed locally and treats remote control through the cloud as
optional. The proposed system is intended to operate as a network layer service that
offers visibility into device network usage and the exchange of personal data. The service
layer features management interfaces that can be accessed remotely over the Internet or
locally via APIs.

External service Integration API

SHIFT

Fetch data of
available APIs

Monitor DNS requests and
network traffic

Enforce policies via
API/Bridge

Enforce policies via network

Device
layer

Bridge
layer

Network
layer

Internet (external) API (local)

Automation
layer

Automation service
(e.g., Apple HomeKit, Amazon Alexa, Google Home, Home Assistant)

Service
layer

Figure 3.1: Overview of application scenario

In this scenario, the purpose is to observe which devices are sending what information
and how frequently, noting that barriers hinder visibility. For instance, some devices
may use encrypted end-to-end communication, preventing the observation of transmitted
data. Although this secures personal information from third parties, the manufacturer
may anonymously use the data. In the scope of this thesis, the focus lies on monitoring
DNS requests and enforcing policies at the network layer.

3.2 Requirements

To develop an overview of the tasks that must be considered in the design stage to achieve
the desired functionality of the system, as outlined by the thesis objectives in Section 1.2,

3.2. REQUIREMENTS 19

this chapter lists the requirements for the prototype. They are categorized into functional
and non-functional requirements.

3.2.1 Functional Requirements

1. The user shall be able to configure which smart home devices the system manages
using a web-based admin interface.

2. The user shall be able to enter their credentials and API keys for integration with
peripheral systems, such as Pi-hole, through the user interface.

3. The system shall persist the user- and device-specific configurations in a relational
database.

4. The system shall monitor the DNS requests of the specified devices by periodically
querying the Pi-hole API.

5. The data gathered by monitoring the connections and requests shall be stored in a
time series database.

6. The network behavior data of managed devices shall be presented to the user on a
dashboard.

7. The system shall periodically inform the user about the network behavior of the
specified devices.

8. The user interface shall allow the user to set simple privacy policies for individual
devices.

9. The system shall periodically check whether the observed metrics violate any policies
specified by the user.

10. A policy violation shall trigger an appropriate action in the system to enforce the
policy in the future using the integration of peripheral systems.

3.2.2 Non-functional Requirements

1. The system shall be easy to deploy and integrate into the existing smart home
infrastructure.

2. The system shall run on a system-on-chip environment such as the Raspberry Pi
platform.

3. Monitoring and policy enforcement functions shall be designed modularly so that
they can be extended to other mechanisms.

4. To protect users’ privacy, the system shall store and process all data locally without
sharing it with any third parties.

20 CHAPTER 3. DESIGN

3.3 Architecture

The prototype design allows for a non-restrictive integration with an existing smart home
environment. As its functionality is based on the local network’s DNS communication, the
prototype system is not directly dependent on the specific variation of the smart home
platform in operation, such as Home Assistant, Apple Homekit, or any other variant.
However, as Home Assistant itself can be operated locally, it is especially well suited for
the purpose of data minimization. The core of the suggested system is formed by the
lightweight web application prototype and a Pi-hole instance, serving as the network’s
primary DNS server. Both are designed to be hosted on a system-on-chip (SoC) platform
(e.g., Raspberry Pi) in the local network. The interaction between these two parts of the
system composition enables the realization of the key functionalities of the system, such
as monitoring and policy enforcement.

3.3.1 Components

The prototype design is based on the multi-component architecture illustrated in Figure
3.2. The diagram shows the prototype’s environment, its various components, and their
relationships. Its aim is to visualize the system design at a high level. This section details
the purpose and intended operation of each module in the design.

Figure 3.2: System Components

Web Application: Users interact with the system through the application’s user interface
in a web browser. It provides an administrative interface through which users can

3.3. ARCHITECTURE 21

log in to configure devices and policies. Moreover, it grants access to user-specific
settings.

Dashboard: The user interface provides a dashboard that contains data visualization and
statistics of device-network interactions. This component may be directly integrated
into the web application or powered by an external tool such as Grafana [40], which
relies on a data source provided by the system.

Routes: Incoming HTTP(S) requests from the frontend of the web application are han-
dled by the routes component. This serves as an entry point for the backend. It is
responsible for managing user authentication, redirecting requests, and serving the
requested web pages to the web client.

Service Integration API: Interactions with different software systems are facilitated by
the service integration API component, which acts as a consumer to integrate third-
party services. Within the scope of the prototype, this component integrates mainly
the Pi-hole HTTP API, but it can be extended to incorporate other systems or tools.

Monitor: The monitor component is responsible for executing scheduled jobs to supervise
network activity, e.g. by periodically triggering queries directed at the Pi-hole API.

Models: The system’s data models are defined in the models component, encapsulating
all functionality related to interactions with the system’s databases. This abstrac-
tion is facilitated by the use of an object relational mapper (ORM) library.

Policy Engine: User-defined policies are evaluated against metrics observed by the recur-
ring monitoring activities. The policy engine checks for violations and may trigger
actions to prevent future deviations.

Notification Service: The service generates reports on the behavior of smart devices and
handles their delivery to users.

Relational Database: A relational database is used to store data concerning properties of
users, policies, and devices. The entity relationship diagram in Figure 3.3 illustrates
a simple model for a relational database, capturing user, policy, and device data.

Time Series Database: A time series database may store device networking information
collected from various data sources in a unified format.

Pi-hole: Pi-hole serves as the primary DNS server of the smart home environment. Its
API can be queried to monitor DNS requests made by devices. Its DNS sinkhole
capabilities enable the enforcement of blocking policies.

Tools: The system design can be extended to integrate other third-party services and
tools that may be used as data sources or to enforce user policies.

Mail Server: User notifications are delivered via a standard email service.

22 CHAPTER 3. DESIGN

Figure 3.3: ER-Diagram

3.3.1.1 Frontend

In the prototype design, users interact with the application through a web-based frontend
that consists of an administration interface and a dashboard. This user interface lets
users register and log in with their credentials, allowing them to access their data and
settings. After installing the application in a smart home environment, users must define
smart home devices that the system monitors and manages using the administration
interface. Furthermore, the interface lets users define simple device policies to allow
or block connections. Users can review the configurations made in the administration
interface and edit them anytime.

In addition to the administrative interface, the frontend provides a dashboard that displays
statistics and data visualizations. It lets users interactively discover their devices’ network
behavior. The prototype design features a native dashboard integrated into the web
application and uses Pi-hole’s API as its main data source. In an extended version of the
system that monitors additional data sources, the design can be adapted to incorporate
a dashboarding platform such as Grafana [40]. This configuration requires dedicated
data storage, such as a time series database that persists the transformed data from all
monitoring activities and serves as the data source for the dashboard.

3.3.1.2 Backend

The backend of the system runs on a lightweight web server and contains the main busi-
ness logic of the application. Its responsibilities include data aggregation, storage and
retrieval, handling incoming frontend requests, integrating third-party services, perform-
ing monitoring and policy evaluation tasks, and generating user notifications.

3.3. ARCHITECTURE 23

Figure 3.4: UML Sequence Diagram

Figure 3.4 illustrates two core functionalities of the prototype’s backend design. The
Unified Modeling Language (UML) sequence diagram features the interactions between
the four components introduced above: Monitor, Service Integration API, Data Models,
and Policy Engine.

The upper section of the graphic represents a recurring data collection job. It monitors
devices’ behavior based on DNS query information retrieved from Pi-hole. The Monitor
initiates the process by obtaining a list of devices from the relational database through the
Data Models component. It then fetches DNS query data through the Service Integration
API module, which serves as a consumer for Pi-hole’s API. This process returns the query
data for the time interval between job executions. The next step is to clean and transform
the obtained data and store the results in a time series database. This step is only required
if the data is collected from multiple data sources to make the data available in a unified
format for analysis and visualization.

24 CHAPTER 3. DESIGN

The lower part of the diagram illustrates the evaluation of the collected data orchestrated
by the Policy Engine. First, a list of user-defined and device-specific policies is retrieved
from the relational database. The Policy Engine then checks for violations by comparing
the data provided through the data collection job with the retrieved policies. The results
of this evaluation are then persisted through the Data Models component for use by other
system features, such as reporting and user notification. The Policy Engine can take
necessary steps to ensure future policy compliance if the evaluation brought forth any
policy violations. In the prototype, this entails the installation of additional rules for
Pi-hole’s DNS sinkhole mechanism by utilizing the integration with their API.

Chapter 4

Implementation

Based on the design presented in Chapter 3, a prototype of the proposed system is devel-
oped to evaluate this approach to improving awareness and control over communications
in a smart home environment. As indicated in the architecture description in Section
3.3, the prototype is realized as a lightweight web application. It is designed to run on a
system-on-chip (SoC) platform located in the network of the smart home ecosystem.

To build a prototype, Flask has been chosen as a framework [55] to implement the web
application. The framework enables the creation of web applications using Python [16]
and adheres to the Web Server Gateway Interface (WSGI) specification described in the
Python Enhancement Proposal (PEP) 3333 [11]. WSGI serves as an intermediary between
web servers and Python web applications, translating HTTP requests and responses.
Flask is often referred to as a microframework due to its minimal but extensible core
[53]. This means that it focuses on central functionalities to create web applications, such
as URL routing and request parsing. It is left up to the developer to install additional
features by including extensions and libraries. Hence, the application environment can
remain lightweight. This attribute is the main reason why Flask was chosen to develop
the prototype.

This chapter presents selected implementation details of key features to illustrate the ap-
proach to realizing the design elaborated in Chapter 3. For this purpose, the implemen-
tation of the Pi-hole integration, the monitoring functionality, and finally the notification
service are closely examined in Section 4.1. Moreover, Section 4.2 contains a description
of the development and build pipeline that was applied to manage this software project.

4.1 Core Features

This section examines selected features of the prototype. This includes listing the re-
quirements they help to meet, describing the context in which the respective feature is
embedded, and explaining the chosen solution. The goal is to highlight some of the key
implementation details of the application to better understand the system’s operations.

25

26 CHAPTER 4. IMPLEMENTATION

4.1.1 Pi-hole Integration

In the system’s architecture, the Service Integration API component serves the purpose
of facilitating communication with third party services to collect data and to enforce user-
defined policies. The component is intended as an abstraction of the interfaces provided
by these services, mapping selected functionalities offered by them and making them
accessible for other modules of the application. Although the architecture allows the
implementation of multiple third-party services, the prototype focuses on Pi-hole to prove
the concept. Hence, the integration with Pi-hole plays a crucial role in the prototype’s
design, as it enables the monitoring of device-related DNS query data and the installment
of new policies.

Pi-hole offers an HTTP-based API, which was chosen as this project’s primary interaction
point between the two systems. At the time of writing this thesis, the developers of the
Pi-hole community are working on an updated RESTful API, offering a richer set of
functionalities that will eventually replace the API currently in use. However, as it is
in a pre-release state with development still ongoing, and considering the stability of
the integration, the decision was made to utilize the current HTTP API. There is no
official documentation on the HTTP API available. Therefore, its integration relied on
the analysis of Pi-hole’s source code on Github [61].

1 class PiholeConsumer:

2

3 def __init__(self, pihole_domain, auth_token: str):

4 self._pihole_domain = pihole_domain

5 self._auth_token = auth_token

6

7 def get_all_queries(self, from_timestamp: int, until_timestamp: int) -> dict:

8 builder = QueryBuilder(self._pihole_domain)

9 builder.add_auth_token(self._auth_token)

10 builder.type_all_queries()

11 builder.add_from(from_timestamp)

12 builder.add_until(until_timestamp)

13 response = builder.query.send_request()

14 return response

Listing 1: Snippet taken from the PiholeConsumer class

Listing 22 of Appendix B depicts a subset of the Pi-hole HTTP API represented using the
OpenAPI standard [52] to illustrate the structure of the API. The API essentially consists
only of a single endpoint located at http://pi.hole/admin/api.php, where pi.hole is
the standard domain for Pi-hole in the local network. This endpoint accepts various
types of queries for information such as a daily summary, the top x clients or statistics on
query types. Requests are formed by appending query parameters to the URL of the API
endpoint and transmitted as HTTP GET-requests. As an example, the parameters in Listing
22 can be combined to create a request: http://pi.hole/admin/api.php?auth=API_KEY
&getAllQueries=1&from=TIME_X&until=TIME_Y. This results in requests for all DNS
queries between times TIME_X and TIME_Y in UNIX timestamp format. To authenticate

4.1. CORE FEATURES 27

the request, Pi-hole expects an API_KEY, which is also passed to the API as a parameter
in the query string. Using just HTTP without any encryption, this may not be the most
secure way of authentication. It is therefore recommended to only allow requests from the
local network.

Implementing the Pi-hole module of our Service Integration API component takes an
object-oriented approach and employs the builder pattern to construct requests as de-
scribed above. The module contains three classes: PiholeConsumer, QueryBuilder, and
Query. PiholeConsumer is an abstraction that encapsulates the integration for clients in
other components by providing a simple interface to work with the API.

1 def send_request(self) -> dict:

2 response = requests.get(self._base_url, params=self._query_params)

3 return response.json()

Listing 2: The send request method of the Query class

Listing 1 shows a snippet of the PiholeConsumer class, including the get_all_queries

method that can be used to create and execute requests for all queries within a specific
time frame, as in the example above. To apply this feature, a client instantiates the
PiholeConsumer, initializes it with the domain name for Pi-hole (pi.hole by default) and
its API key, and then invokes the get_all_queries method. The method constructs a
new instance of the QueryBuilder class and calls its methods to direct the creation of
the query URL by telling the builder which parameters to add. Finally, the builder is
asked to return the finished query and transmit it by invoking the send_request method,
depicted in Listing 2. The method shows that the Query instance, which contains a base
URL for the endpoint and the added query parameters, sends “itself” using the requests
HTTP library and returns a response in JSON format.

4.1.2 Monitoring

The Monitor component of the architecture proposed in Section 3.3.1 plays a central role
in the system’s overall design. It is responsible for executing recurring or on-demand tasks
that involve collecting and processing data concerning the behavior of smart home devices.
To obtain the data from third-party services, it depends on the Service Implementation
API component. For the implementation of the prototype, this covers the functional
requirement number 4 described in Section 3.2.1.

The goal is to collect and process the data to make the relevant information available to
other components, either directly or by storing it in a time-series database for later access.
By preparing the data for these clients, the Monitor facilitates their functionalities and
helps them fulfill the functional requirements they cover. The Policy Engine depends on
the data provided by the Monitor to evaluate policy compliance, the Notification Service
needs it to compile reports, and the Dashboard generates data visualizations based on it.
Hence, the Monitor component lays the foundation to meet the functional requirements

28 CHAPTER 4. IMPLEMENTATION

5, 6, 7, and 9 from the list in Section 3.2.1. This further underscores the importance of
this component for the application.

To implement the prototype, the Monitor component consists of one module, the Pi-hole
monitor, which gathers data from the Pi-hole instance utilizing the integration described
in the previous Section 4.1.1. The module interacts with the Service Integration API
component through the PiholeConsumer class. Listing 3 shows how the consumer is
initialized at the start of the fetch_dns_query_data function in the pi-hole monitor.

1 def fetch_dns_query_data(from_timestamp: int, until_timestamp: int):

2 # Load Pi-hole configuration and initialize consumer

3 pihole_domain = current_app.config['PIHOLE_DOMAIN']
4 auth_token = current_app.config['PIHOLE_AUTH_TOKEN']
5 pihole_consumer = PiholeConsumer(pihole_domain, auth_token)

Listing 3: Instatiation of PiholeConsumer in the Monitor component

Following this, the fetch_dns_query_data function calls the method get_all_queries

of the PiholeConsumer, which was examined above and depicted in Listing 1.

1 query_data = pihole_consumer.get_all_queries(

2 from_timestamp, until_timestamp)['data']

Listing 4: Pihole consumer method invocation

The response of the consumer’s method is a JSON object in the form of a Python dictionary
datatype. As seen in Listing 4, the response is accessed with the key data before it is
stored to a variable. This is due to the fact that the returned JSON object only has a single
attribute containing a list of datapoints represented by a list of its values. An example
of the structure of such a response from the Pi-hole API containing a single datapoint is
given in Listing 5.

1 {"data": [[

2 "1689149492",

3 "A",

4 "netcom.netatmo.net",

5 "192.16x.x.xxx",

6 "2",

7 "0",

8 "3",

9 "82",

10 "N/A",

11 "-1",

12 "one.one.one.one#53",

13 ""

14],]}

Listing 5: Pi-hole API response for getAllQueries

4.1. CORE FEATURES 29

1 # Get all active IPs from db

2 active_ips = db.session.execute(

3 db.select(DeviceConfig.ip_address)

4 .where(DeviceConfig.valid_to == None)).scalars().all()

5 active_ip_set = set(active_ips)

6

7 dataset = []

8 # Process data

9 for datapoint in query_data:

10 client = datapoint[3]

11 # Filter out data from inactive/unregistered clients

12 if client not in active_ip_set:

13 continue

14 timestamp = int(datapoint[0])

15 query_type = datapoint[1]

16 domain = datapoint[2]

17 status = datapoint[4]

18 reply_type = datapoint[6]

19 dataset.append([timestamp, client, query_type, domain, status, reply_type])

20

21 return dataset

Listing 6: Data processing

After obtaining the DNS query data from Pi-hole via the Service Integration API, the raw
data is processed before the fetch_dns_query_data function returns the resulting data
set. When processing the data set, as illustrated in Listing 6, all data points that are not
configured as active device IP addresses are discarded and only the relevant attributes of
each data point are retained.

The fetch_dns_query_data function described above is the approach taken in the Pi-hole
monitor module for collecting data from Pi-hole. Various features of the module build on
top of this approach by invoking said function in their implementation. One application
of this is a job that is designed to be executed at scheduled intervals to continuously
monitor the DNS queries of configured devices. The code snippet in Listing 7 illustrates
the implementation of the function that executes the business logic of the job. First, the
fetch_query_data_job function searches the InfluxDB time-series database for the latest
entry recorded by a previous run of the job. Based on that, the fetch_dns_query_data

function is called, using the time interval between the latest record and the current times-
tamp. Following this, the entries of the returned data set are mapped to a data structure
designed to hold InfluxDB measurements, which are comparable to records in a relational
database. Finally, the transformed data set is written to the time series database instance.
To run the job independently and parallel to the rest of the web application, a Flask-CLI
command was created to execute the fetch_query_data_job function. The Command-
Line Interface (CLI) command listed in 8 is periodically triggered by a cron job that is
installed when building the project’s Docker image.

30 CHAPTER 4. IMPLEMENTATION

1 def fetch_query_data_job():

2 current_app.logger.info('starting job...')
3 # Load latest record from influxdb and find timestamp

4 influxdb_client = InfluxDBClientWrapper()

5 latest_timestamp = influxdb_client.get_latest_timestamp("dns_queries")

6 from_timestamp = datetime.now().timestamp() - \

7 current_app.config['SCHEDULER_TIMEINTERVAL'] \

8 if latest_timestamp == -1 else latest_timestamp

9 until_timestamp = int(datetime.now().timestamp())

10

11 # fetch dns query data from pihole

12 dataset = fetch_dns_query_data(from_timestamp, until_timestamp)

13

14 # map to influxdb model

15 dns_query_measurements = list(map(

16 lambda x: DNSQueryMeasurement(x[0], x[1], x[2], x[5], x[3], x[4]), dataset))

17

18 current_app.logger.info(

19 f"Writing {len(dns_query_measurements)} new datapoints to influxdb...")

20

21 influxdb_client.store_dns_query_measurements_batch(dns_query_measurements)

Listing 7: Fetch query data job

1 @app.cli.command()

2 def execute_monitoring_job():

3 """Run scheduled job"""

4 from app.monitors.pihole_monitor import fetch_query_data_job

5 fetch_query_data_job()

Listing 8: Command line interface command

4.1.3 Notification Service

The system architecture described in Section 3.3.1 features a Notification Service compo-
nent in the application’s backend. Its responsibilities include generating reports containing
visualizations and statistics related to the network behavior of smart home devices and
sending them to registered users. To compile these reports, the feature depends on the
data made available by the Service Integration API component. It is the objective of the
Notification Service to keep users informed about device activities and perhaps enabling
them to spot irregularities. The intention is also to raise the awareness of smart home
residents of their privacy level through added observability. In the proposed design, the
medium used to notify users is email. Different types of notifications may warrant the
use of alternative transmission methods, such as instant messaging services. The imple-
mentation of the Notification Service component aims to meet the functional requirement
number 7 listed in Section 3.2.1. This section examines the creation and transmission of
a weekly summary email included in the prototype realization of the Notification Service.

4.1. CORE FEATURES 31

One of the few default dependencies of the Flask framework is the Jinja2 templating
engine [54], which allows developers to create dynamic HTML templates. Templates
are HTML documents, but extend the syntax of static HTML by allowing variables and
expressions that enable the insertion or generation of content when rendering the final
HTML document on the server. Jinja templates are not only used to implement the web
pages of the prototype’s frontend, but also to render the HTML-based email template
for the weekly summary notification. Due to inconsistencies in HTML and Cascading
Style Sheets (CSS) support across different email clients and other constraints, creating
email templates from scratch can prove difficult. To avoid these complexities, the MJML
library [43] has been applied to create the layout for the email template. MJML provides
a markup language and a component library designed to build responsive emails. The
markup can also be combined with templating constructs, such as those used by the Jinja2
engine. After implementing the email layout in MJML markup, the code is transpiled to
HTML. For the weekly summary email used in the prototype, this process results in a
template containing placeholders for the user’s name, a logo, and two plots. Moreover,
it embeds the logic to generate a table of the top domains visited by devices. Listing 9
shows a combination of MJML and Jinja syntax that is used to dynamically create the
table of top domains. The mj-table tag in line 1 is part of MJML’s markup and the
for-loop construct is used by the Jinja engine.

1 <mj-table css-class="demTable">

2 <thead>

3 <tr>

4 <th>Smart Device</th>

5 <th>Domain</th>

6 <th>Visits</th>

7 </tr>

8 </thead>

9 <tbody>

10 {% for key in top_dict %}

11 <tr>

12 <td>{{key[0]}}</td>

13 <td>{{key[1]}}</td>

14 <td>{{top_dict[key]}}</td>

15 </tr>

16 {% endfor %}

17 </tbody>

18 </mj-table>

Listing 9: Table in the weekly notification email layout in MJML

After implementing the email template, the next step is to provide the content, render
it, and add it to a sendable email data type. The prototype’s Notification Service mod-
ule handles these tasks in its create_weekly_email function, the first part of which is
illustrated in Listing 10.

The function takes an argument of type User, as the generated email has to be sent to a
specific email address, and the template contains a variable for the username. It obtains
a data set from the Pi-hole Monitor component by calling its weekly_summary function

32 CHAPTER 4. IMPLEMENTATION

1 def create_weekly_email(user: User) -> MIMEMultipart:

2 recipient = user.email_address

3 username = user.username

4

5 # Get the weekly summary from pihole monitor

6 df = weekly_summary()

7 top_domains = df[['client_name', "domain"]] \

8 .value_counts().nlargest(10).sort_values(ascending=False)

9 top_dict = top_domains.to_dict()

10

11 html_content = render_template('emails/weekly-summary.html', \

12 username=username, top_dict=top_dict)

Listing 10: Weekly email summary creation (Part 1)

in line 6 of the Listing 10, which returns a pandas DataFrame. The DataFrame is further
processed to prepare the data for the top-domain table in the email template. Following
this, the HTML content of the email is rendered by providing the email template for the
weekly summary, and the values for its username and top_dict variables to the template
engine with the function call in line 10.

1 # Creating plots

2 img_1 = figure_to_byte_img(create_pie_chart(df))

3 img_2 = figure_to_byte_img(create_stacked_bar_chart(df))

4

5 # Initalizing images as email attachments

6 logo = MIMEImage(enc_img, 'png')
7 chart1 = MIMEImage(img_1, 'png')
8 chart2 = MIMEImage(img_2, 'png')

Listing 11: Weekly email summary creation (Part 2)

After rendering the HTML body, the create_weekly_email function prepares the email’s
attachments. Lines 2 and 3 of the Listing 11 create the plots for the weekly report based
on the data contained in the pandas DataFrame that was initialized in Listing 10. Both
figures are generated with the help of plotly.py [64], a graphing library for Python and
then converted to static images in the form of byte strings. The images are then used to
initialize the content of two new MIMEImage objects in lines 7 and 8 of Listing 11. The
MIMEImage class is part of the email package in Python’s standard library [65], which
can be used to create Multipurpose Internet Mail Extension (MIME) datatypes with the
media type set to image as defined in RFC 2046 of the Internet Engineering Task Force
(IETF) [17].

Finally, Listing 12 shows how all parts are put together to build and return a MIMEMul-

tipart message, using the Nofication Service module’s EmailBuilder class. Adding the
images to the message also entails marking each MIMEImage with a Content-ID header,
as can be seen in the code of the the add_image method of the EmailBuilder in Listing
13. This is important because it allows us to reference the respective image by the given

4.1. CORE FEATURES 33

1 msg = EmailBuilder() \

2 .with_subject('Weekly summary') \

3 .with_sender(current_app.config["MAIL_USERNAME"]) \

4 .with_recipient(recipient) \

5 .with_html_content(html_content) \

6 .with_text_content(text_content) \

7 .add_image(logo, "logo") \

8 .add_image(chart1, "chart1") \

9 .add_image(chart2, "chart2") \

10 .build()

11

12 return msg

Listing 12: Weekly email summary creation (Part 3)

Content-ID in the email template, which permits the inlining of the email attachment
into the HTML body of the message.

1 def add_image(self, image: MIMEImage, content_id: str | None):

2 if content_id is not None:

3 image.add_header('Content-ID', f'<{content_id}>')
4 self.msg.attach(image)

5 return self

Listing 13: Weekly email summary creation (Part 4)

After generating the weekly summary report for the user, the email is sent to them using
a standard email service. For the prototype implementation, it is left to the user to set up
an account with an email provider and set the their chosen credentials in the application
configuration. The email is sent via the Simple Mail Transfer Protocol (SMTP) [37] using
the smtplib package [66] of the Python standard library, as illustrated in the Listing 14.

1 send_email(msg: MIMEMultipart):

2 try:

3 with smtplib.SMTP(current_app.config["MAIL_SERVER"],

4 current_app.config["MAIL_PORT"]) as smtp:

5 smtp.starttls()

6 smtp.login(current_app.config["MAIL_USERNAME"],

7 current_app.config["MAIL_PASSWORD"])

8 smtp.send_message(msg)

9 except smtplib.SMTPException as e:

10 current_app.logger.error(f'Email not sent to {msg["To"]}. \n Error: {e}')
11

12 current_app.logger.debug(f'Email sent to {msg["To"]}')
13 return 'Sent'

Listing 14: Weekly email summary creation (Part 5)

34 CHAPTER 4. IMPLEMENTATION

4.2 Development and Build Pipeline

In the context of developing the prototype for the proposed system, a continuous inte-
gration and delivery (CI/CD) process has been established to streamline the code man-
agement, build, and deployment of the project. This section describes the workflows and
infrastructures used for these tasks.

The project’s source code is managed using Git [21] as a version control system with a
remote repository of the code base hosted on GitHub [22]. The source code for the front-
and backend of the application is hosted in a mono repository. On the backend, the de-
velopment relies primarily on Python, using the Flask framework and various libraries.
Python virtual environments [67] and the pip package installer [63] are employed to man-
age the backend dependencies. Frontend development is performed using HTML, Jinja2
templates, CSS and Javascript. For frontend specific libraries included in the project,
such as TailwindCSS and MJML, dependency management is carried out using the npm
package manager [51]. To enable the usage of npm-installed packages, the project uses
Parcel [56] to build and bundle the CSS and Javascript code to be imported into the
application’s Jinja2 HTML templates.

The prototype web application is built and delivered as a Docker image [10], facilitating
its execution in a containerized environment. This image is created in a two-stage build
process implemented by the project’s Dockerfile. The initial builder stage (see Listing
16 in Appendix B) installs nodejs and npm to enable the subsequent installation of npm
dependencies. After this, docker copies the project to the builder image and executes
the necessary npm commands to generate the frontend source files for the project. The
second stage is the actual Docker image that will be published, whereas the builder image
is discarded once the build terminates. This final stage, as shown in the code in Listing
17 in Appendix B, initially sets hardcoded environment variables for the production envi-
ronment and creates the user who runs the application. It then copies the project files to
the image and installs cron and the SQLite command-line interface (CLI). Next, it sets
up the cron tabs for the monitoring job and the weekly email notification. It then copies
the frontend dependencies that where generated in the builder stage to the main image
and installs the required Python libraries. Finally, the Dockerfile exposes port 8000 for
other containers and defines a boot script to launch the application as an entry point.

The prototype deployment process is implemented through an automated GitHub Actions
workflow that builds and deploys the Docker image. The yaml-file used to define the
workflow can be found in Listing 18 of Appendix B. Triggered upon creating a new
release, this workflow checks out the project’s Github repository and prepares Docker
Buildx to enable multi-platform builds. Following this, it logs into Docker Hub using
the credentials stored as repository secrets. The Docker image for ARM architectures is
then built, targeting the Raspberry Pi platform, and subsequently pushed to Docker Hub,
enabling efficient access and distribution through this channel. This automation optimizes
the deployment process and provides users with easy access to the latest version of the
web application by simply pulling the image from Docker Hub.

Chapter 5

Evaluation

The following chapter addresses the evaluation of the application prototype in a live
smart home setting. Section 5.1 explains the hardware, software, and networks set up
for the assessment. Furthermore, several scenarios for evaluating system performance
and experimentally validating its functionalities are outlined in Section 5.2. Section 5.3
presents the results of the experiments to provide an understanding of the viability of the
prototype. The chapter ends with a discussion of the results and their implications in
Section 5.4.

5.1 Configuration

This section outlines the configuration of hardware, software, and network settings that
were employed to test the developed prototype in a productive smart home environment.
This setup enabled the evaluation of the system’s functionalities and performance.

5.1.1 Hardware

Raspberry Pi: As a platform to host the prototype system, a Raspberry Pi 3 Model B
Plus Rev 1.3 [68] was utilized. The single-board computer was released in Q1 of
2018 and comes with a 1.4 GHz quad-core processor based on an ARMv8 64-bit
architecture. It offers 1 gigabyte of synchronous dynamic random access memory
(SDRAM) and uses a MicroSD card for permanent storage [12].

Smart home devices: The smart home used as a testing environment for the prototype
system provides lighting powered by seven individual Philips Hue smart light bulbs
[59]. These lights are managed with a Hue Bridge [58], which acts as a hub that
communicates with the lights through the ZigBee protocol, connecting them to the
network. Furthermore, the smart home uses a Netatmo smart air quality monitor
[49]. The device measures temperature, humidity, CO2 levels and noise intensity in
ten-minute intervals. It uses WiFi to communicate with the network. Lastly, an

35

36 CHAPTER 5. EVALUATION

Android-based smart TV box named Leap-S1 [72] is connected to the smart home
via LAN.

Network Infrastructure: The smart home network is interconnected by a standard ISP-
issued combined modem-router-gateway. In this case, an AX7501-B SERIES device
by Zyxel is utilized [77].

5.1.2 Software

Figure 5.1: Docker containers

The prototype application developed in this thesis and the surrounding software systems
it interacts with are hosted in a container environment running on a Raspberry Pi. Con-
tainerization is a virtualization method that packages applications, their dependencies,
libraries, and settings into individual units known as containers. These containers are
self-contained and isolated from the underlying host system, which makes the technology
highly portable. In this thesis, Docker [10] is used as a containerization platform to build,
deploy, and run applications.

The diagram in Figure 5.1 shows the composition of the Docker containers employed in
this assessment. It also illustrates the flow and ports used for communication between
containers within the internal Docker network and with the host network. The full docker-
compose file, specifying this set-up can be found in Appendix B, divided into Listings:
19, 20, and 21. The central component is the Application Server container, which houses
the web application prototype. It leverages a Gunicorn WSGI server [28] to run the
Flask web application and accept HTTP requests. In front of the application server, a
container running an Nginx web server is configured to act as a reverse proxy. It handles
incoming client requests from the network by directly serving static content for the web
application, forwarding requests to the application server, and returning the application
server’s response. The reverse proxy is configured to soley forward requests from the
local network. It thereby helps to shield the web app running on the application server,

5.1. CONFIGURATION 37

which does not directly expose any ports outside the docker environment. Another key
part of the system is the Pi-hole instance running in a separate docker container. The
Application Server instance communicates with the Pi-hole container via API on port
80 using the Docker internal network. Pi-hole also accepts DNS requests from the host
network on port 53.

The three container instances described above form the core system around the prototype
web application. In an extended configuration, another container running an instance of
the InfluxDB time series database is included. As the prototype currently uses only one
data source to monitor device behavior, it is not dependent on this database to store,
merge, and aggregate data from different sources. The necessary data can be queried
directly over the Pi-hole API. Additionally, a containerized instance of Home Assistant
runs on the same Raspberry Pi platform. Home Assistant does not interact with the
prototype directly. Still, it is used to test the effects of the policies enforced by the
prototype on the platform’s ability to communicate with smart home devices and run
automation.

5.1.3 Networking

Figure 5.2: Network configuration

A diagram illustrating the network structure used for the hardware discussed in Section
5.1.1 is presented in Figure 5.2. This network was used during the evaluation phase of this
thesis. Ethernet cabling connects the Raspberry Pi, smart TV, and Hue Bridge devices
to the home router. Hue’s smart lightbulbs wirelessly communicate with the Hue Bridge
using the ZigBee protocol and are indirectly connected to the smart home network through
the bridge. The air quality monitor, on the other hand, is directly connected to the router
via Wi-Fi. A key detail in this network structure is the configuration of Pi-hole as the
router’s primary DNS server. This has the effect that all DNS queries of the connected
smart devices are handled by Pi-hole. This enables the use of Pi-hole’s DNS sinkhole

38 CHAPTER 5. EVALUATION

mechanism to enforce the policies defined by the user in the prototype application. If Pi-
hole does not block a query based on such a policy, it forwards the request to an upstream
DNS server to resolve the requested domain.

5.2 Scenarios

To evaluate whether the implementation of the prototype sufficiently satisfies the func-
tional and non-functional requirements defined in Section 3.2, a series of experiments are
conducted. This section describes the scenarios that were tested to obtain the necessary
qualitative and quantitative data necessary to assess the implementation outcomes.

5.2.1 Monitoring

Our first scenario aims at verifying whether the smart home devices specified by the user
and managed in the prototype application are monitored according to the requirements.
DNS requests made by devices should be queried at regular intervals via the Pi-hole API.
If the application is configured to integrate the time series database module, the collected
data should be persisted upon each run of the monitoring task.

To test this, the following steps are performed:

1. Add a new smart home device to the application’s database using the web-based
admin interface.

2. Let the application run for multiple monitoring cycles.

3. Examine the reporting database table to determine whether the monitoring task
has been completed successfully the correct number of times and if the behaviour
of the newly configured device was considered during the process.

4. Use the user interface provided by Pi-hole, to retrieve the data for the same time
frame and device and compare it to the data stored in the time series database.

The expected result is that the prototype application runs the monitoring job at pre-
defined intervals, according to the configuration of the cron job that triggers it. It is
also anticipated that the newly configured device is considered when processing the data
returned by the Pi-hole API.

5.2.2 Policy Enforcement

The purpose of this following scenario is to determine whether the policies defined by the
user are successfully enforced. This means certain domains are blocked or allowed for a

5.2. SCENARIOS 39

smart home device, depending on the user’s settings. The experiment also aims to verify
whether the default policies are applied to newly detected domains.

The following steps are performed in the context of testing policy enforcement:

1. Add a new smart home device using the web-based admin interface. The default
policy for this device is set to allow all domains.

2. Await the next policy evaluation cycle. Verify that policies have been created with
the default behavior for all domains detected in the previous monitoring job for the
smart home device in question.

3. Change one of the automatically created policies to block the associated domain.

4. Verify that the policies defined in the prototype application have been successfully
installed on the Pi-hole instance.

After executing the steps listed above, the prototype application is expected to have rec-
ognized all domains requested by the newly configured smart home device in the previous
monitoring cycle. It is also supposed to have created policies for them with the chosen
default value of allow and one of them was changed to block. Furthermore, all policies are
expected to be correctly mirrored in the Pi-hole instance’s domain list.

5.2.3 Weekly Notification

This test reviews the feature of weekly email notifications on the behavior of registered
smart home devices. The aim is to ascertain whether reports are being produced correctly
and sent by email in a productive setting.

To verify the weekly notification feature, the following steps are executed:

1. Add a valid Simple Mail Transfer Protocol (SMTP) mail service connection to the
application’s configuration.

2. Register a user with a valid email address.

3. Add all available smart home test devices to be monitored by the application.

4. Configure allowing and blocking policies for all devices.

5. Verify the receipt of the report by email at the time predefined by the application.

6. Examine the correctness of the data contained in the report.

The anticipated result of this experiment is that a weekly report will be created and
dispatched to the relevant email address with accurate information at the right time.

40 CHAPTER 5. EVALUATION

5.2.4 Smart Device Operability

The following scenario aims to determine to what extent shielding smart home devices
from the cloud affects the functionality of the devices. For this purpose, we conduct
experiments with our smart home devices from Philips Hue and Netatmo. We test the
usability of the devices on the one hand via integration with our hub-based smart home
platform Home Assistant, and on the other hand with the respective smartphone apps
of the manufacturers. The goal is to determine whether blocking domains limits the
functionality of the devices.

To assess the operability of smart home devices under the influence of blocking policies
we proceed with the following steps:

1. Ensure that the Philips Hue Bridge and the Netatmo air quality monitor are regis-
tered in the prototype application.

2. Configure different allow/block policy combinations for the domains visited by the
respective device.

3. For each of the policy combinations, test whether the specified smart home devices
can still be controlled/used via Home Assistant. Furthermore, check if they are still
accessible using their respective mobile apps.

The expectation is that Philipps Hue devices will be controllable via Home Assistant,
even if all domains are blocked. The reason for this is that the Philips Hue integration
for Home Assistant [60] works through local push. This means that Home Assistant
is able to provide direct communication with a device and will be alerted when a new
state is available, without using a cloud service. The air quality monitor on the other
hand depends on the connection to the Netatmo cloud. Home Assistant integrates with
Netatmo devices through cloud polling [48], which requires an active Internet connection.
Therefore, creating blocking policies for this device is expected to cause limitations in its
usability.

5.2.5 Performance Evaluation

In this test scenario, the aim is to evaluate the performance of our prototype deploy-
ment on the Raspberry Pi platform. The goal is to measure the resource utilization of
the containers running on the physical device to assess the solution’s suitability for the
platform.

The following step are necessary for this evaluation:

1. Set up the application with a user, all smart home devices and different policies to
simulate an average use case.

5.3. RESULTS 41

2. Run a prepared script to measure the resource utilization of the individual container
instances while using the application normally over an extended time period to
obtain a baseline.

3. Assess the performance by examining the collected data set.

This test scenario is expected to result in a high utilization of available resources for the
configuration that includes all containers.

5.3 Results

This section presents the results of the experiments that were outlined in the scenario
descriptions of Section 5.2.

5.3.1 Monitoring

To evaluate the monitoring feature of the prototype in a productive setting, the Netatmo
air quality monitor device was chosen to run the experiment. After establishing a clean
prototype installation on the Raspberry Pi platform, the first step was to register the test
device with the application. This was carried out using the web-based user interface, as
illustrated in Figure 5.3. The user chooses a name for the smart home device, configures
its MAC and IP addresses, and selects a default policy.

Figure 5.3: Adding a new device

Having registered the device successfully, the next step was to let the monitoring job
run multiple times at predefined intervals. In a typical deployment scenario, an hour

42 CHAPTER 5. EVALUATION

between job runs should be ideal, as the amount of data does not become too large and
the application performance will not be significantly impacted. To reduce testing time,
the application was configured to run a monitoring job every 15 minutes via crontab.

After letting the application run without interference for about an hour, thereby complet-
ing the second step of this scenario, we opened a secure shell connection to the Raspberry
Pi to examine the results. On the platform, a bash terminal was opened in the Docker
container hosting the prototype web application in order to access its relational database
with the SQLite command line tool. Table 5.1 shows the results of quering the report
table with the following command: SELECT * FROM MONITORING_REPORT . Each time a
monitoring job is completed successfully and without exceptions, a record is added to this
database table. Hence, we can observe that the process was executed four times, as was
to be expected after one hour. The table further shows a total of five queries that were
made by the air quality monitor during this time. As we have only registered one device
with the application, it is clear that the monitoring job must have included this device’s
DNS queries in its analysis.

data source interval start interval end total queries unique domains queries blocked evt create

pi hole 2023-07-25 12:00 2023-07-25 12:15 1 1 0 2023-07-25 12:15
pi hole 2023-07-25 12:15 2023-07-25 12:30 1 1 0 2023-07-25 12:30
pi hole 2023-07-25 12:25 2023-07-25 12:45 1 1 0 2023-07-25 12:45
pi hole 2023-07-25 12:35 2023-07-25 13:00 2 1 0 2023-07-25 13:00

Table 5.1: Report database table after 4 monitoring job executions

Figure 5.4 shows a table listing the datapoints stored in the InfluxDB time series database
for the examined time period. This table was generated with the data visualization tools
available on the web interface of the InfluxDB instance. The data indicates five DNS
query records for one client, which is identified by the air quality monitor’s IP address.
This is consistent with the information taken from the reporting database table and listed
in Figure 5.1. Under the _value column of the table in Figure 5.4, we find the domain
that the respective client requested.

Figure 5.4: Timeseries database

To validate these data points, we use Pi-hole’s admin interface to check the query log
for the Netatmo air quality monitor. Figure 5.5 shows a screenshot with an extract from
the query log for the time frame that was examined, filtering by the IP address of the
air quality monitor. Comparing this information with Table 5.1 and the data points in
Figure 5.4 confirms that the monitoring job reliably queries Pi-hole’s API, stores the data
to the time series database, and creates an aggregation in the monitoring report table.

5.3. RESULTS 43

Figure 5.5: Pihole query log

5.3.2 Policy Enforcement

In order to assess the policy enforcement scenario outlined in Section 5.2.2, the Philipps
Hue Bridge device was added to the prototype application with a default policy of allow
all. The subsequent monitoring job runs then detected all domains for which the device
sent DNS requests to the Pi-hole DNS server. The data was then passed to the Policy
Engine component as modeled in the sequence diagram in Figure 3.4 in Section 3.3.1.2.
For each domain that did not have an associated policy in the database for the new device,
the Policy Engine added a new policy with the default value.

Figure 5.6: Policy dialog for Philips Hue Bridge

The section of a screenshot shown in Figure 5.6 lists the policies page of the prototype’s
UI. With the dropdown menu on the top right side, the desired device can be selected.
Hence, the image shows all domains that have a policy linked to the Philips Hue Bridge.
The Policy Engine has created policies for all of them with the default allow value. To

44 CHAPTER 5. EVALUATION

test both the allow and block cases, one policy was manually changed using the editing
feature to block the associated domain.

To enforce these user-defined policies, the prototype’s Policy Engine installs or updates
entries in Pi-hole’s domain list. A section of a screenshot shown in Figure 5.7 lists these
entries in the domain list for our Pi-hole instance. The list includes all domains for
which the prototype created policies after detecting them in a monitoring job run. It
encompasses the domains for the Philips Hue Bridge from this scenario and a single one
for the air quality monitor from the previous scenario. These policies were translated into
domain list rules, either whitelisting the domain for an allow policy or blacklisting the
domain for a block policy. In our test scenario, we have allowed all domains except for
www.ecdinterface.philips.com, which was then successfully blacklisted in Pi-hole.

Figure 5.7: Pi-hole domain list

In this evaluation, we observed that the policies defined in the prototype application are
consistently transferred to the Pi hole system. The DNS sinkhole functionality of Pi-
hole then allows to block those domains that were blacklisted. On the basis of this, the
enforcement of policies defined by users of the prototype is ensured. Pi-hole’s query log
for the blocked domain additionally confirms this, as can be seen in Figure 5.8. After
switching the policy to block, the domain list entry in Pi-hole was updated to blacklist
the domain, upon which the domain was successfully blocked in subsequent requests.

Figure 5.8: Pi-hole query log

5.3. RESULTS 45

5.3.3 Weekly Notification

An initial step in testing the scenario described in Section 5.2.3 was to configure the SMTP
connection to the email service responsible for delivering the notifications generated by
the Notification Service component. For this purpose, a new account was created with
the address shift.info@gmx.ch. GMX [23] was chosen as the email provider for this
test, because they allow third party applications to utilize their service to send emails via
SMTP. The necessary parameters to use the service for the notification feature consist
of the mail server address, a port number, the account’s username and password. These
arguments were passed to the application through the environment variables defined in
a docker-compose.yml file for the project. In addition to configuring a sender for the
notifications, the scenario required a receiver for these emails. Therefore, a user with a
valid email address was registered in the prototype application. All available smart home
devices, that is, the air quality control monitor, the smart TV and the Philips Hue Bridge
were added to the prototype to be included in the reporting.

The weekly email notification process is activated by a cron job that is set to run at a
certain time. To make testing more flexible, the execution times for this job were changed
in the crontab of the running Docker container. This had no effect on the results, since
the task itself was not changed, and the data taken into account in each execution always
included the preceding seven days up to the time of execution.

1 [2023-07-26 14:30:37 +0200] [1] [ERROR] Worker (pid:55) was sent SIGKILL!

2 Perhaps out of memory?

3 [2023-07-10 14:30:37 +0200] [119] [INFO] Booting worker with pid: 119

4 [2023-07-10 14:31:07 +0200] [1] [CRITICAL] WORKER TIMEOUT (pid:119)

5 [2023-07-10 14:31:08 +0200] [1] [ERROR] Worker (pid:119) was sent SIGKILL!

6 Perhaps out of memory?

7 [2023-07-10 14:31:08 +0200] [156] [INFO] Booting worker with pid: 156

Listing 15: Weekly notification log

In the initial run of the tests, we encountered some issues. Weekly email notifications
were able to be generated and sent from our development environment. However, the
executions initially failed in our productive environment on the Raspberry Pi platform.
An excerpt from the log files, which captures the time of an execution of the weekly email
notification process, is shown in Listing 15.

This reveals that the Gunicorn Web Server worker processes were timed out during pro-
cessing and were consequently terminated before the task could be completed. As a result,
no email reports were sent from the prototype. It was discovered that the default timeout
for a worker process was set to 30 seconds. As this was not enough time for long running
background tasks, this issue was resolved by increasing the request timeout to 180 sec-
onds. Finally, emails were able to be sent automatically, as indicated by the following line
of the log file of the associated cron job: [2023-07-26 20:46:14,645] INFO in wsgi:

Sent all weekly notifications.

The resulting weekly email notification contains two graphics and a table visualizing the
configured smart home devices’ behavior over the past week. Figure 5.9 shows the table

46 CHAPTER 5. EVALUATION

Figure 5.9: Weekly email notification - Domain table

included in the email from our test scenario. It displays the top ten domains visited by
the three smart devices used in this test. The domains are ranked by the number of times
the respective device successfully sent a DNS request to resolve the domain.

Figure 5.10: Weekly email notification - Stacked bar chart

5.3. RESULTS 47

The weekly report also contains a graph that shows the average number of DNS requests
made by each device at each hour of the day. For this purpose, a stacked bar chart was
attached to the email and inlined into the layout. The plot resulting from our test run in
this scenario is shown in Figure 5.10. This illustration aims to make the behavior of smart
home devices during the course of a regular day transparent to the user. An interesting
point, which can be seen in the graph from our test run, is that traffic appears to be
mostly unrelated to device usage. Although the number of DNS queries increases slightly
during the day, it remains relatively constant at night when the devices are not actively
used.

5.3.4 Smart Device Operability

We conducted several experiments with the previously added smart home devices from
Netatmo and Philips Hue to verify their functionality under policy constraints as de-
scribed in Scenario 5.2.4. In a first step, all policies for both devices were set to block the
assiociated domains, as demonstrated by the policy definitions for the Philips Hue Bridge
depicted in Figure 5.11.

Figure 5.11: Philips Hue policies - All domains blocked

After successfully installing the blocking policies, we tested the data access and device con-
trols for both devices using their Home Assistant integrations, as well as their respective
mobile applications. The results of the tests performed are summarized in Table 5.2.

Philips Hue Netatmo

Home Assistant Fully operational Not operational
Mobile App Operational over Wi-Fi Not operational

Table 5.2: Operability in total blocking configuration

As expected, Philips Hue lighting was found to be controllable via the Home Assistant
platform even without a cloud connection. In the case of the Hue app for Android, we

48 CHAPTER 5. EVALUATION

have observed no restriction on functionality as long as the smartphone is on the same
network. However, remote access via the cellular network is no longer possible in this
configuration.

In contrast to Philips Hue’s Bridge, the Netatmo air quality monitor only calls up a single
domain. This is why the device only possessed a single policy that could be set to block. As
expected, blocking this domain resulted in no status updates being sent to the cloud server.
However, both the Netatmo Home Assistant integration and the manufacturer’s Android
app Home Coach obtain their data from the cloud service. Therefore, the blocking policy
rendered the air quality monitor unusable.

Figure 5.12: Philips Hue policies - Minimal configuration

The next step was to try to determine a minimum configuration for the Philips Hue Bridge.
That is, achieving a combination of policies that allow as few domains as possible, while
still enabling remote control via the Hue app. Through experimentation, we found that
we technically only needed to change one of the existing policies from block to allow to
achieve the desired behavior. Figure 5.12 shows this minimal configuration, allowing us
to block most of the domains, while retaining the ability to control the lighting remotely.
The domain www.ecdinterface.philips.com enables the remote control functionality. Addi-
tionally, the policy for time1.google.com was changed to allow time synchronization, thus
enabling time-based automation.

During our experiments, we made an interesting observation. By setting blocking policies
for the Philips Hue Bridge, there was a significant increase in the number of DNS queries
that emanated from the device. This effect was not expected. The graph in Figure 5.13
illustrates the discrepancy in requests between the fully blocking and fully allowing policy
configurations. In this screenshot of part of the prototype’s dashboard, we can observe
the decrease in DNS queries from the Hue Bridge after changing all policies from block
to allow. This demonstrates that the number of queries in the setting with all domains
blocked is up to 20 times higher than in the setting with none blocked.

5.3. RESULTS 49

Figure 5.13: Fully blocking vs. fully allowing

5.3.5 Performance Evaluation

In order to measure the resource utilization of each container running on the platform,
the bash script displayed in Listing 23 of Appendix B was prepared and deployed on the
Raspberry Pi. The script invokes the docker stats command from the Docker command
line interface every three minutes, reformats the output, and writes the result to a file in
comma-separated value (CSV) format.

To obtain a baseline of the performance metrics, the script described above was executed
over a period of twelve hours during regular operations. For this initial assessment, the
following containers were running continuously: the prototype flask application, the In-
fluxDB time series database, the Nginx reverse proxy server, and the Home Assistant
instance. Upon termination of the test script, the collected data were loaded into a
Python script, cleaned, and outliers were removed using the z-score method. Following
this, several plots were created to illustrate the data set.

The upper plot in Figure 5.14 shows the relative CPU usage of each of the containerized
applications. It can be seen from the graph that apart from a few spikes in the course of the
Pi-hole instance, the CPU load is in a relatively low range. On the basis of this observation,
the Raspberry Pi’s processing power seems to be sufficient to run our application in
this configuration. Furthermore, no performance problems were noticed while using the
application during this period.

Memory utilization of the docker containers during the baseline measurement is shown in
the second plot of Figure 5.14. The plot displays a dedicated line for the relative memory
usage of each container, as well as a line representing the sum over all container instances.
In contrast to the values observed for CPU usage, the total memory loads on the system
were relatively high. The largest contributors to these values were the Home Assistant
instance and the prototype container. A constant load between 10 and 15% caused by the
prototype application is rather at the high end for a lightweight application. However,

50 CHAPTER 5. EVALUATION

Figure 5.14: Relative CPU and memory usage of docker containers

there were also no major fluctuations in the course of the measurements, indicating a
certain level of stability.

During the experiments on the productive Raspberry Pi system, there were situations
where the available random access memory (RAM) on the platform was not sufficient. This
led to several events in which the system became unresponsive and had to be restarted.
To counteract this, a swap file with a higher capacity was configured. This significantly
reduced the load on the RAM. Although access to the virtual memory of the swap file is
much slower, no major performance losses were observed during the testing.

To get a more complete picture of memory utilization, additional data was collected.
In addition to the relative values for the individual containers, the total load on the
Raspberry Pi was measured at the same time. The plot in Figure 5.15 shows the course of
RAM and swap utilization as well as their respective upper limits. To illustrate the share
of the running containers in the RAM load, the aggregated value over all instances is also
shown. Since it is difficult to associate the swap memory used with a specific process, the
contribution of the Docker containers could not be shown here.

5.4. DISCUSSION 51

Figure 5.15: Absolute system memory and swap utilization

5.4 Discussion

The core of this thesis includes the design and implementation of a prototype. This
prototype permits users to manage smart home devices and define simple policies to allow
or block domains, which is enforced by integrating a DNS sinkhole. Additionally, users
are kept informed about the behavior of their devices. The evaluation results indicate
that the goals of this thesis have been achieved to a satisfactory extent.

In the context of the evaluation phase of this thesis, a series of experiments were conducted
to assess the viability of specific features of the prototype implementation and to collect
performance-related data. The evaluation presented in this chapter is structured into
experiment scenarios that encompass different aspects of the prototype system. The
initial three scenarios outlined in Section 5.2 focused on monitoring, policy enforcement,
and email notifications, which are the primary features of the application. These scenarios
aimed to evaluate and demonstrate the respective functionalities in a productive setting,
that is, in a live smart home environment. The purpose of the fourth scenario was to then
test possible limitations in the usability of smart home devices due to policy enforcement.
The last scenario was designed to assess the suitability of the developed solution for the
Raspberry Pi platform based on the given resource constraints.

The first test case described in Section 5.2.1 sought to validate the prototype’s ability to
monitor DNS requests of smart home devices. The execution of the steps necessary to
test this scenario was documented in Section 5.3.1. It indicates that the prototype allows
users to add new smart home devices via the user interface. Furthermore, the results
reveal that monitoring jobs, which receive data about DNS queries of the devices via the
Pi-hole API, are automatically executed at regular intervals. Finally, it shows that the

52 CHAPTER 5. EVALUATION

collected data points are reliably stored in a time series database. These results confirm
the fulfillment of the functional requirements 1, 4 and 5 defined in Section 3.2.1.

In this thesis, the implementation of the prototype involved Pi-hole as the only data source
for the network behavior of smart home devices. For this reason, the use of a time series
database is not strictly necessary. However, with the vision of a more comprehensive
system using multiple data sources in mind, the use of a time series database makes
sense. It facilitates the consolidation of the collected data in a uniform format and store
it for later processing, for example, to build reports or create data visualizations. In
the presented case, though, one is able to query the Pi-hole API at any given time for
this data. It is not very useful to save the data twice at this stage. That is why the
prototype was designed not to rely on this storage medium. Nevertheless, the feature was
implemented - mainly as a proof-of-concept for an extended version - and can be activated
via configuration.

The goal of the second experiment, as described in the second scenario 5.2.2, was to
assess the capabilities of the system to set and enforce simple allow/block policies. These
features have been implemented to meet functional requirements 8, 9 and 10 as defined
in Section 3.2.1. The test results documented in Section 5.3.2 confirm that the prototype
application meets the specified requirements. The documentation asserts that policies
are automatically created for newly detected domains with the configured default values
of the respective smart home devices. Furthermore, it was proven that users can easily
make changes to policies created via the user interface to influence behavior. It was also
verified that both the automatically generated policies and changes made by the user are
propagated from the prototype to the Pi-hole system. Through the DNS sinkhole function
of Pi-hole, user-defined blocking policies could be successfully enforced.

It can be argued that this protoype provides another interface to interact with Pi-hole.
This is true to some extent, as the functionalities of the prototype rely heavily on it.
Pi-hole even offers a much richer set of features and configurations, making it a powerful
tool. However, it is not simple to use and geared more towards tech-savvy users. The
prototype developed, on the other hand, is aimed at average smart home owners who want
more transparency and control over their privacy. Furthermore, it is designed to allow the
integration of additional mechanisms for enforcing privacy policies beyond the Pi-hole.

In contrast to Pi-hole, the prototype offers the function of automatically generated reports
about the behavior of smart home devices, which are sent to the user via email. The test
scenario outlined in Section 5.2.3 was designed to test this feature. The results presented in
Section 5.3.3 affirm that the protoype is capable of generating a weekly report and sending
it to the user as an email notification. The implementation of this feature meets the
functional requirement number 7 defined in Section 3.2.1. Testing this scenario revealed
some pitfalls that could subsequently be resolved. Nevertheless, these difficulties highlight
the challenges of implementing a solution for a platform with limited resources.

In addition to the integrated dashboard in the Web UI, weekly email notifications provide
an important source of information for users about the activities of their smart home
devices. Therefore, they play a key role in achieving one of the main goals of this thesis.
The statistics and visualizations contained in the notifications make the behavior of the

5.4. DISCUSSION 53

devices in the smart home observable, and thus create increased transparency regarding
the impact on privacy.

In the fourth test scenario outlined in Section 5.2.4, the influence of policies on the usability
of certain smart home devices was measured. A hub-based smart home environment
powered by the Home Assistant platform as well as the native smart phone applications of
the respective device manufacturers were utilized to perform experiments in this scenario.
The goal was to determine how blocking certain domains would affect the ability of these
tools to control devices and access their data.

The results presented in Section 5.3.4 illustrate that the method by which smart home
device integrations are implemented is critical. It determines the extent to which commu-
nication with cloud servers can be influenced without severely restricting functionality. In
most cases, this will be determined by the possibilities manufacturers offer developers to
integrate their products into a platform like Home Assistant. The decisive factor here is
whether communication with devices is supported in the local network or whether there
is only a cloud interface. Moreover, it was found that the blocking policies on one of the
test devices resulted in a surge in the number of DNS queries observed. This, in turn,
raises new questions and problems. For instance, it would be essential to investigate the
impact of this increased network traffic on the available bandwidth. Furthermore, this
increase in requests distorts the statistics and data visualizations applied in the prototype
to make the behavior of smart home devices observable. Since this effect was only noticed
during the evaluation, it was not considered in the application design.

The final test scenario, described in Section 5.2.5, focuses on performance. Its objective
was to determine whether the proposed system is suitable for operation on a SoC platform
with limited resources. For this purpose, the CPU and memory utilization of the individual
containerized applications were examined. Additionally, the total memory load on the
hardware was measured.

The performance evaluation’s results documented in 5.3.5 indicate that a SoC platform
such as Raspberry Pi can effectively support the prototype together with the remain-
ing containerized applications with satisfactory CPU performance and stable memory
utilization. Implementing a swap file mitigated RAM-related issues, ensuring system re-
sponsiveness and reliability during testing.

Chapter 6

Final Considerations

In this concluding chapter, Section provides a summary of the work that was carried out
in the course of this thesis 6.1. Section 6.2 then outlines the conclusions drawn from this
work. This includes a consideration of whether the set goals have been achieved and which
factors have contributed significantly to the outcome. In addition, obstacles encountered
during the course of the work and how they were overcome are discussed. It also addresses
the limitations of the presented results. Section 6.3 lists the contributions made through
the work on this thesis. Finally, Section 6.4 discussess opportunities for future research
and development based on the outcomes.

6.1 Summary

This thesis proposes a novel software system to improve privacy protection in smart homes.
The system is designed to run on a system-on-chip (SoC) platform and to fit seamlessly
into an existing smart home environment. The idea is to monitor the communication of
smart home devices, make the resulting data transparent to residents, and restrict devices’
access to the Internet according to user-defined policies. Different ways of collecting data
and enforcing policies are possible, e.g. by integrating different interfaces and tools. The
vision is to have an extensible framework that allows for a combination of several such
mechanisms. To create a proof of concept for this proposal, a prototype was realized
within the scope of this thesis. The approach chosen was to monitor smart home devices’
DNS queries and enforce simple allow/block policies via a DNS sinkhole.

To establish the theoretical context for this thesis, the first step was to explore relevant
fundamental concepts through a literature review. A definition of the term smart home
was given and its significance as an application of the Internet of Things as well as its
composition and characteristics were examined. Additionally, the security goals, vulner-
abilities, and threats for smart home environments were analyzed. Of particular interest
in the context of this work was the review of existing research on smart home privacy.
The issues associated with gathering personal information were discussed, as well as the
views and preferences of consumers. Moreover, in order to provide a basis for working

54

6.1. SUMMARY 55

with Pi-hole, a brief overview of the functionalities of DNS systems and DNS sinkholes
was compiled.

The literature review then progressed to the study of related work. The main focus
was placed on existing research on the topic of privacy-enhancing technologies (PET).
Different privacy preservation mechanisms were introduced and analyzed on the basis of
technologies already developed or proposed in research papers. As a result of the insights
gained, a summary comparison of these PETs was derived to obtain an overview of the
state-of-the-art. This research has served as inspiration for the design of the proposed
hub-centric data minimization PET. Finally, an overview of the hardware and software
tools used for the realization of the practical part of this thesis was given.

Afterward, a documentation of the design of the proposed system is featured. This in-
cludes the description of an application scenario that abstracts the smart home envi-
ronment into layers and shows how the proposed system is incorporated into it. The
requirements for the implementation of the prototype were derived from the defined the-
sis goals and previous research. The design also contains a specification of the software
architecture. The system comprises a frontend, a backend, and a database model, which in
turn have been structured into individual components, each of which form a self-contained
feature of the system. Its frontend is designed to include an administration interface and a
dashboard. On the backend, a lightweight web server handles the main application logic,
such as monitoring device communications and aggregating reports for user notifications.
In addition, the surrounding systems with which the application interacts were specified.
Most notably, it defines the Pi-hole integration, which enables the monitoring of DNS
queries and the enforcement of blocking policies.

A prototype of the designed system was implemented to allow for validation of the general
concept. The main part of the prototype was written in Python using the Flask framework
to create a lightweight web application. Building the prototype’s backend included the
development of an integration component to communicate with Pi-hole, a monitor com-
ponent to observe DNS queries via Pi-hole, and a policy engine to enforce user-defined
policies. Furthermore, a weekly email notification service, a routes module to handle
incoming HTTP requests, and a (data) models component for interactions with the re-
spective databases were added. For the application’s frontend, Flask’s templating system
was used to generate dynamically created HTML pages. In addition, custom Javascript
was added to make these pages interactive. The layout and design of the user interface
are powered by TailwindCSS and Flowbite. For the implementation of the dashboard of
the UI, Plotly Dash was used to create interactive data visualizations. To streamline the
development process, a continuous integration and delivery (CI/CD) infrastructure has
been set up. It serves the purpose of managing the project’s source code, building the
application as a docker image and deploying it to the remote Docker Hub repository.

During the evaluation phase, the protoype was deployed in a live smart home environment.
Experiments were conducted to assess the prototype and gather data on its viability. The
evaluation included test scenarios focused on verifying the functionality of the monitor-
ing, policy enforcement, and email notification features. Additionally, the operability of
smart home devices was investigated under restricting policies. Therefore, different policy
settings were configured to test whether they had an impact on device accessibility via

56 CHAPTER 6. FINAL CONSIDERATIONS

the Home Assistant platform or through manufacturer-specific mobile apps. Furthermore,
the suitability of the solution for a resource-constrained SoC platform was examined by
collecting and analyzing performance data in the productive deployment.

6.2 Conclusions

A prototype software system to enhance user privacy in smart home environments was
successfully designed, implemented and evaluated, thereby meeting the goals that were
outlined for this thesis. By observing their DNS queries, this prototype is able to monitor
the network traffic of smart home devices. The collected data is processed to make the
communication behavior of the devices transparent to users. Furthermore, the prototype
allows users to define simple allow/block policies to control the devices’ access.

The integration of Pi-hole has made it possible to implement monitoring jobs that reg-
ularly fetch data about DNS requests from smart home devices. Furthermore, its DNS
sinkhole feature has permitted to successfully enforce user-defined policies in order to
block specific domains. One limitation that must be mentioned here is that only tra-
ditional DNS queries can be captured via this integration. DNS over HTTPS (DoH)
requests, for example, do not use Pi-hole as a DNS server and therefore cannot be blocked
this way.

To create more transparency with respect to the communication of smart home devices, a
dashboard was added to the user interface. In addition, a weekly report is generated and
sent to the user via email. Both features include data visualizations and statistics on the
behavior of these devices. Through these channels, useful information can be provided to
the user, revealing insights into the privacy implications of using these technologies.

The prototype also met the prerequisite that the proposed system must operate on a SoC
platform. Performance evaluations carried out on the Raspberry Pi hardware confirm this.
Since memory swapping had to be applied to ensure stable operation, there may still be
potential for optimization. Given that the heaviest load was caused by Home Assistant,
it might be reasonable to run this part on a separate hardware. However, more recent
versions of the Raspberry Pi offer increased memory capacities, which could render this
step obsolete.

Tests conducted with Home Assistant have shown that the developed prototype can be
used to disconnect the cloud connections of individual devices in a hub-centric smart
home. The mode of communication used between the smart home platform and the
individual device largely determines whether restricting its access to the Internet limits
its functionality. For platform integrations that use local communication, there should be
no major limitations. Integrations that are solely cloud-based are inherently dependent on
this connection. However, in the experiments conducted, it was observed that for certain
devices, not all of the frequently accessed domains were mandatory for the functionality
of cloud-driven services such as remote control.

Whilst the prototype successfully accomplished the set objectives, certain challenges were
encountered during its development and evaluation process. One such challenge was that

6.3. CONTRIBUTIONS 57

the current Pi-hole HTTP API does not provide the ability to add or modify whitelist
or blocklist entries. A new Representational State Transfer (REST) API is under devel-
opment and would provide this capability, but is not stable enough at this time. This
difficulty was overcome by accessing Pi-hole’s database directly for this task. Another
challenge was that features that had been developed and successfully tested in the local
environment did not behave in the same way when deployed on the Raspberry Pi plat-
form. Often, these difficulties were related to missing configurations or permissions in the
Docker base image. Moreover, a different web server and an additional reverse proxy were
used in the production setting, which also presented pitfalls. Since the process of manually
building and deploying the prototype was cumbersome, new builds were only rolled out at
irregular intervals during the initial development phase. Therefore, problems were often
detected later. However, by adding a build and deployment pipeline, this process could
be automated. This reduced the intervals between feature implementation and testing on
the target system, resulting in a more efficient development process.

Lastly, the scope of this thesis initially included not only the integration of Pi-hole but
also an integration of Home Assistant via an API. However, during the discovery phase
of the work, it was found that this was not necessary to achieve the objectives of the
thesis. Nevertheless, Home Assistant was chosen as the platform for our smart home
environment in our application scenario. Thanks to its offline capability and local smart
device integrations, the platform was ideally suited to complement the prototype’s setup.

6.3 Contributions

The following contributions were made within the framework of this thesis:

• Design and implementation of a prototype software system. Its features include
monitoring DNS queries from smart home devices, and using the collected data
to inform users about the communication behavior of devices. Furthermore, the
prototype can enforce user-defined policies to allow or block certain domains.

• Evaluation of the prototype in a live smart home environment to assess the viability
of the examined approach to enhance residents’ privacy.

• Releasing the source code of the prototype to the public and making it accessi-
ble on Github. Publishing the project under an open source license is intended to
invite further research and collaborative development within the open source com-
munity [14].

• The prototype Docker image is made publicly available on Docker Hub, facilitating
easy deployment for test and research purposes [13].

58 CHAPTER 6. FINAL CONSIDERATIONS

6.4 Future Work

This project has successfully developed a prototype aiming to lay the foundation for a
more comprehensive privacy protection solution for smart home environments. However,
to achieve a more mature system suitable for wider use, further research and development
is required.

First, it would be essential to conduct more comprehensive testing with a diverse selection
of smart home devices. The number of different devices available for experimentation in
this thesis was limited. Therefore, the results may not be fully representative, given the
complexity and variety of smart home configurations.

To improve the user experience, a feature should be added to automatically detect smart
home devices on the network. This could be implemented through ARP scanning. The
monitoring and policy enforcement mechanisms of the system could be expanded by im-
plementing alternative methods. For example, additional network monitoring techniques,
such as ARP spoofing and deep packet inspection, could be used to get a more complete
overview of communications inside a smart home. A valid approach would be to integrate
additional existing tools that already offer these capabilities through APIs.

To serve different use cases and a wider range of user preferences, the system could
furthermore be extended to support more sophisticated policy types. It could even be
considered to incorporate machine learning to automatically suggest tailored policies based
on device behavior and general user preferences. Additionally, further research could aim
to identify the type of data collected and transmitted by smart home devices. Integrating
this information into the system could greatly increase transparency and help users make
informed decisions. Lastly, to increase the accessibility and usability of the system, a
Home Assistant plugin could be developed to enable direct interaction with the system
on the Home Assistant platform. Having most of the functions of the smart home in one
place could greatly improve the user experience.

Bibliography

[1] Ado Adamou Abba Ari et al. “Enabling privacy and security in Cloud of Things:
Architecture, applications, security & privacy challenges”. In: Applied Computing
and Informatics (July 2020).

[2] Muhammad Raisul Alam, Mamun Bin Ibne Reaz, and Mohd Alauddin Mohd Ali.“A
Review of Smart Homes-Past, Present, and Future”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and Reviews) 42.6 (Apr. 2012),
pp. 1190–1203.

[3] Amazon.com Inc. Understand Smart Home Security Skills. 2023. url: https://
developer.amazon.com/en-US/docs/alexa/device-apis/overview-smart-

home-security.html (visited on June 5, 2023).
[4] Apple Inc. Developing Apps and Accessories for the Home. 2023. url: https://

developer.apple.com/apple-home/ (visited on Aug. 8, 2023).
[5] Noah Apthorpe et al. “Keeping the Smart Home Private with Smart(er) IoT Traf-

fic Shaping”. In: Proceedings on Privacy Enhancing Technologies 2019.3 (2019),
pp. 128–148.

[6] Nazmiye Balta-Ozkan et al. “The development of smart homes market in the UK”.
In: Energy 60 (Oct. 2013), pp. 361–372.

[7] Guy Bruneau. DNS Sinkhole. Tech. rep. SANS Institute, Aug. 2010.
[8] Haotian Chi et al. PFirewall: Semantics-Aware Customizable Data Flow Control for

Smart Home Privacy Protection. 2021. url: https://arxiv.org/abs/2101.10522.
[9] European Union Agency for Cybersecurity. DNS Sinkhole - ENISA. url: https:

//www.enisa.europa.eu/topics/incident-response/glossary/dns-sinkhole

(visited on Apr. 3, 2023).
[10] Docker, Inc. Docker: Accelerated, Containerized Application Development. url:

https://www.docker.com/ (visited on July 15, 2023).
[11] P.J. Eby. PEP 3333 - Python Web Server Gateway Interface v1.0.1. Sept. 2010.

url: https://peps.python.org/pep-3333/ (visited on July 10, 2023).
[12] eLinux.org. RPi HardwareHistory. Jan. 2023. url: https://elinux.org/RPi_

HardwareHistory (visited on July 20, 2023).
[13] Elliott Wallace. shipp - Dockerhub. url: https : / / hub . docker . com / r /

elliottwallace/shipp (visited on Aug. 9, 2023).
[14] Elliott Wallace. shipp - Smart Home Integrated Privacy Protection. url: https:

//github.com/elduwa/shipp (visited on Aug. 9, 2023).
[15] Müge Fazlioglu. IAPP privacy and Consumer Trust Report - Executive Summary.

Mar. 2023. url: https : / / iapp . org / resources / article / privacy - and -

consumer-trust-summary/ (visited on Apr. 20, 2023).

59

https://developer.amazon.com/en-US/docs/alexa/device-apis/overview-smart-home-security.html
https://developer.amazon.com/en-US/docs/alexa/device-apis/overview-smart-home-security.html
https://developer.amazon.com/en-US/docs/alexa/device-apis/overview-smart-home-security.html
https://developer.apple.com/apple-home/
https://developer.apple.com/apple-home/
https://arxiv.org/abs/2101.10522
https://www.enisa.europa.eu/topics/incident-response/glossary/dns-sinkhole
https://www.enisa.europa.eu/topics/incident-response/glossary/dns-sinkhole
https://www.docker.com/
https://peps.python.org/pep-3333/
https://elinux.org/RPi_HardwareHistory
https://elinux.org/RPi_HardwareHistory
https://hub.docker.com/r/elliottwallace/shipp
https://hub.docker.com/r/elliottwallace/shipp
https://github.com/elduwa/shipp
https://github.com/elduwa/shipp
https://iapp.org/resources/article/privacy-and-consumer-trust-summary/
https://iapp.org/resources/article/privacy-and-consumer-trust-summary/

60 BIBLIOGRAPHY

[16] Python Software Foundation. Welcome to Python.org. 2023. url: https://www.
python.org/ (visited on July 10, 2023).

[17] Ned Freed and Dr. Nathaniel S. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types. RFC 2046. Nov. 1996. url: https://www.rfc-
editor.org/info/rfc2046.

[18] Mario Frustaci et al. “Evaluating Critical Security Issues of the IoT World: Present
and Future Challenges”. In: IEEE Internet of Things Journal 5.4 (Oct. 2018),
pp. 2483–2495.

[19] Dimitris Geneiatakis et al. “Security and privacy issues for an IoT based smart
home”. In: 2017 40th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). May 2017, pp. 1292–1297.

[20] George Wright. Amazon to pay $25m over child privacy violations. July 2023. url:
https://www.bbc.com/news/technology-65772154 (visited on Aug. 6, 2023).

[21] Git. Git. url: https://git-scm.com/ (visited on July 15, 2023).
[22] GitHub. GitHub. url: https://github.com/ (visited on July 15, 2023).
[23] GMX. GMX E-Mail. url: https://www.gmx.ch/mail/ (visited on July 25, 2023).
[24] Google. A Helpful Home is a Private Home. url: https://safety.google/nest/

(visited on June 5, 2023).
[25] Kirsten Gram-Hanssen and Sarah J. Darby. “”Home is where the smart is”? Evalu-

ating smart home research and approaches against the concept of home”. In: Energy
Research & Social Science 37 (Mar. 2018), pp. 94–101.

[26] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural ele-
ments, and future directions”. In: Future generation computer systems 29.7 (Sept.
2013), pp. 1645–1660.

[27] Kamal Gulati et al. “A review paper on wireless sensor network techniques in Inter-
net of Things (IoT)”. In: Materials Today: Proceedings 51 (2022), pp. 161–165.

[28] Gunicorn. Gunicorn. url: https://gunicorn.org/ (visited on July 20, 2023).
[29] Badis Hammi et al. “Survey on smart homes: Vulnerabilities, risks, and countermea-

sures”. In: Computers & Security 117, 102677 (June 2022).
[30] Jin-Hee Han, YongSung Jeon, and JeongNyeo Kim. “Security considerations for

secure and trustworthy smart home system in the IoT environment”. In: 2015 Inter-
national Conference on Information and Communication Technology Convergence
(ICTC). Oct. 2015, pp. 1116–1118.

[31] Home Assistant. Awaken Your Home. 2023. url: https://www.home-assistant.
io/ (visited on Aug. 8, 2023).

[32] Danny Yuxing Huang et al. “IoT Inspector: Crowdsourcing Labeled Network Traf-
fic from Smart Home Devices at Scale”. In: Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 4.2 (June 2020).

[33] Fortune Business Insights. Smart Home Market Size, Share & COVID-19 Impact
Analysis, By Device Type (Safety and Security Devices, Energy and Water Control,
Climate Control, Lighting Control, Consumer Electronics), By Housing Type (Mul-
tifamily Dwelling, Single Family Dwelling), and Regional Forecast, 2023-2030. July
2023. url: https://www.fortunebusinessinsights.com/industry-reports/
smart-home-market-101900 (visited on July 27, 2023).

[34] Haojian Jin et al. “Peekaboo: A Hub-Based Approach to Enable Transparency in
Data Processing within Smart Homes”. In: 2022 IEEE Symposium on Security and
Privacy (SP). May 2022, pp. 303–320.

https://www.python.org/
https://www.python.org/
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.bbc.com/news/technology-65772154
https://git-scm.com/
https://github.com/
https://www.gmx.ch/mail/
https://safety.google/nest/
https://gunicorn.org/
https://www.home-assistant.io/
https://www.home-assistant.io/
https://www.fortunebusinessinsights.com/industry-reports/smart-home-market-101900
https://www.fortunebusinessinsights.com/industry-reports/smart-home-market-101900

BIBLIOGRAPHY 61

[35] Andrei Kazlouski, Thomas Marchioro, and Evangelos Markatos. “I Just Wanted to
Track My Steps! Blocking Unwanted Traffic of Fitbit Devices”. In: Proceedings of
the 12th International Conference on the Internet of Things. IoT ’22. Nov. 2023,
pp. 96–103.

[36] Felix Klement, Henrich C. Pöhls, and Korbinian Spielvogel. “Towards privacy-
preserving local monitoring and evaluation of network traffic from IoT devices and
corresponding mobile phone applications”. In: 2020 Global Internet of Things Sum-
mit (GIoTS). IEEE. June 2020, pp. 1–6.

[37] Dr. John C. Klensin. Simple Mail Transfer Protocol. RFC 5321. Oct. 2008. url:
https://www.rfc-editor.org/info/rfc5321.

[38] Neil Klingensmith, Younghyun Kim, and Suman Banerjee. “A Hypervisor-Based
Privacy Agent for Mobile and IoT Systems”. In: Proceedings of the 20th International
Workshop on Mobile Computing Systems and Applications. HotMobile ’19. Feb.
2019, pp. 21–26.

[39] Nikos Komninos, Eleni Philippou, and Andreas Pitsillides. “Survey in smart grid
and smart home security: Issues, challenges and countermeasures”. In: IEEE Com-
munications Surveys & Tutorials 16.4 (Apr. 2014), pp. 1933–1954.

[40] Grafana Labs.Grafana Labs - Open Source. 2023. url: https://grafana.com/oss/
(visited on May 8, 2023).

[41] Josephine Lau, Benjamin Zimmerman, and Florian Schaub. “Alexa, Are You Lis-
tening? Privacy Perceptions, Concerns and Privacy-Seeking Behaviors with Smart
Speakers”. In: Proc. ACM Hum.-Comput. Interact. 2.CSCW (Nov. 2018), pp. 1–31.

[42] Wenda Li et al. “Motivations, barriers and risks of smart home adoption: From
systematic literature review to conceptual framework”. In: Energy Research & Social
Science 80, 102211 (Oct. 2021).

[43] Mailjet. MJML - The responsive email framework. url: https://mjml.io/ (visited
on July 13, 2023).

[44] Anna Maria Mandalari et al. “Blocking without Breaking: Identification and Mitiga-
tion of non-essential IoT Traffic”. In: Proceedings on Privacy Enhancing Technologies
2021.4 (2021), pp. 369–388.

[45] P. Mockapetris and K. J. Dunlap. “Development of the Domain Name System”.
In: Symposium Proceedings on Communications Architectures and Protocols. SIG-
COMM ’88. Aug. 1988, pp. 123–133.

[46] Hooman Mohajeri Moghaddam et al. “Watching You Watch: The Tracking Ecosys-
tem of Over-the-Top TV Streaming Devices”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’19. Nov.
2019, pp. 131–147.

[47] Nataliia Neshenko et al. “Demystifying IoT Security: An Exhaustive Survey on IoT
Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations”. In:
IEEE Communications Surveys & Tutorials 21.3 (Apr. 2019), pp. 2702–2733.

[48] Netatmo - Home Assistant. url: https : / / www . home - assistant . io /

integrations/netatmo/ (visited on July 29, 2023).
[49] Netatmo (Legrand). Smart Indoor Air Quality Monitor | Netatmo. url: https:

//www.netatmo.com/smart-indoor-air-quality-monitor (visited on July 20,
2023).

[50] Lily Hay Newman. Hacker Lexicon: What Is Sinkholing? WIRED. Jan. 2018. url:
https://www.wired.com/story/what-is-sinkholing/ (visited on Apr. 3, 2023).

https://www.rfc-editor.org/info/rfc5321
https://grafana.com/oss/
https://mjml.io/
https://www.home-assistant.io/integrations/netatmo/
https://www.home-assistant.io/integrations/netatmo/
https://www.netatmo.com/smart-indoor-air-quality-monitor
https://www.netatmo.com/smart-indoor-air-quality-monitor
https://www.wired.com/story/what-is-sinkholing/

62 BIBLIOGRAPHY

[51] npm, Inc. npm. url: https://www.npmjs.com/ (visited on July 15, 2023).
[52] OpenAPI Initiative. OpenAPI Specification v3.1.0. Feb. 2021. url: https://spec.

openapis.org/oas/latest.html (visited on July 12, 2023).
[53] Pallets. Design Decisions in Flask - Flask Documentation (2.3.x). 2023. url: https:

//flask.palletsprojects.com/en/2.3.x/design/ (visited on July 10, 2023).
[54] Pallets. Jinja - Jinja Documentation (3.1.x). 2023. url: https : / / jinja .

palletsprojects.com/en/3.1.x/ (visited on July 13, 2023).
[55] Pallets. Welcome to Flask - Flask Documentation (2.3.x). 2023. url: https://

flask.palletsprojects.com/en/2.3.x/ (visited on July 10, 2023).
[56] Parcel. Parcel. url: https://parceljs.org/ (visited on July 15, 2023).
[57] European Parliament and Council of the European Union. Regulation (EU)

2016/679 of the European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance). Apr. 27, 2016. url: https :
//data.europa.eu/eli/reg/2016/679/oj (visited on Aug. 1, 2023).

[58] Philips Hue. Hue Bridge. url: https://www.philips-hue.com/en-my/p/hue-
bridge/8719514342644 (visited on July 20, 2023).

[59] Philips Hue. Smart lighting. url: https://www.philips-hue.com/en-my (visited
on July 20, 2023).

[60] Philips Hue - Home Assistant. url: https : / / www . home - assistant . io /

integrations/hue/ (visited on July 29, 2023).
[61] Pi-hole. Pi-hole - A black hole for Internet advertisements. url: https://github.

com/pi-hole (visited on July 12, 2023).
[62] Pi-hole. Pi-hole: Network-wide Ad Blocking. 2023. url: https://pi-hole.net/

(visited on Feb. 20, 2023).
[63] pip - The Python Package Installer. url: https://github.com/pypa/pip (visited

on July 15, 2023).
[64] Plotly, Inc. plotly/plotly.py: The interactive graphing library for Python. url:

https://github.com/plotly/plotly.py (visited on July 15, 2023).
[65] Python Software Foundation. email - An email and MIME handling package. July

2023. url: https://docs.python.org/3.11/library/email.html (visited on
July 15, 2023).

[66] Python Software Foundation. smtplib - SMTP protocol client. July 2023. url:
https://docs.python.org/3.11/library/smtplib.html (visited on July 15,
2023).

[67] Python Software Foundation. venv - Creation of virtual environments. July 2023.
url: https://docs.python.org/3/library/venv.html (visited on July 15,
2023).

[68] Raspberry Pi. Raspberry Pi 3 Model B+. url: https://www.raspberrypi.com/
products/raspberry-pi-3-model-b-plus/ (visited on July 20, 2023).

[69] Reuters. Amazon’s Ring doorbell was used to spy on customers, FTC says in privacy
case. May 2023. url: https://www.theguardian.com/technology/2023/may/
31/amazon-ring-doorbell-spying-ftc (visited on Aug. 6, 2023).

[70] Biljana L. Risteska Stojkoska and Kire V. Trivodaliev. “A review of Internet of
Things for smart home: Challenges and solutions”. In: Journal of Cleaner Production
140.3 (Jan. 2017), pp. 1454–1464.

https://www.npmjs.com/
https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/latest.html
https://flask.palletsprojects.com/en/2.3.x/design/
https://flask.palletsprojects.com/en/2.3.x/design/
https://jinja.palletsprojects.com/en/3.1.x/
https://jinja.palletsprojects.com/en/3.1.x/
https://flask.palletsprojects.com/en/2.3.x/
https://flask.palletsprojects.com/en/2.3.x/
https://parceljs.org/
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://www.philips-hue.com/en-my/p/hue-bridge/8719514342644
https://www.philips-hue.com/en-my/p/hue-bridge/8719514342644
https://www.philips-hue.com/en-my
https://www.home-assistant.io/integrations/hue/
https://www.home-assistant.io/integrations/hue/
https://github.com/pi-hole
https://github.com/pi-hole
https://pi-hole.net/
https://github.com/pypa/pip
https://github.com/plotly/plotly.py
https://docs.python.org/3.11/library/email.html
https://docs.python.org/3.11/library/smtplib.html
https://docs.python.org/3/library/venv.html
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus/
https://www.theguardian.com/technology/2023/may/31/amazon-ring-doorbell-spying-ftc
https://www.theguardian.com/technology/2023/may/31/amazon-ring-doorbell-spying-ftc

BIBLIOGRAPHY 63

[71] Leong Yee Rock, Farzana Parveen Tajudeen, and Yeong Wai Chung. “Usage and
impact of the internet-of-things-based smart home technology: a quality-of-life per-
spective”. In: Universal Access in the Information Society (Nov. 2022).

[72] STRONG. LEAP-S1. url: https://uk.strong- eu.com/products/ip- tv-
receivers/leap-s1/ (visited on July 20, 2023).

[73] Madiha Tabassum, Tomasz Kosiński, and Heather Richter Lipford. “”I Don’t Own
the Data”: End User Perceptions of Smart Home Device Data Practices and Risks”.
In: Proceedings of the Fifteenth USENIX Conference on Usable Privacy and Security.
SOUPS’19. Aug. 2019, pp. 435–450.

[74] M. Vimalkumar et al. “’Okay google, what about my privacy?’: User’s privacy per-
ceptions and acceptance of voice based digital assistants”. In: Computers in Human
Behavior 120, 106763 (July 2021).

[75] Igor Zavalyshyn, Nuno O Duarte, and Nuno Santos. “HomePad: A Privacy-Aware
Smart Hub for Home Environments”. In: 2018 IEEE/ACM Symposium on Edge
Computing (SEC). Oct. 2018, pp. 58–73.

[76] Igor Zavalyshyn et al. “SoK: Privacy-enhancing Smart Home Hubs”. In: Proceedings
on Privacy Enhancing Technologies 2022.4 (2022), pp. 24–43.

[77] Zyxel. AX7501-B SERIES. url: https://service-provider.zyxel.com/global/
en/products/fiber- oltsonts/10g- active- fiber/hgus/ax7501- b- series

(visited on July 20, 2023).

https://uk.strong-eu.com/products/ip-tv-receivers/leap-s1/
https://uk.strong-eu.com/products/ip-tv-receivers/leap-s1/
https://service-provider.zyxel.com/global/en/products/fiber-oltsonts/10g-active-fiber/hgus/ax7501-b-series
https://service-provider.zyxel.com/global/en/products/fiber-oltsonts/10g-active-fiber/hgus/ax7501-b-series

Abbreviations

ARP Address Resolution Protocol
ARM Advanced RISC Machine
API Application Programming Interface
CI/CD Continuous Integration and Continuous Delivery
CIA Confidentiality, Integrity and Availability
CLI Command-Line Interface
CPU Central Processing Unit
CSS Cascading Style Sheets
CSV Comma-Separated Value
DDoS Distributed Denial of Service
DNS Domain Name System
DoH DNS over HTTPS
DoS Denial of Service
GDPR General Data Protection Regulation
HTML Hyper Text Markup Language
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
ISP Internet Service Provider
LAN Local Area Network
MAC Media Access Control
MIME Multipurpose Internet Mail Extension
MITM Man-In-The-Middle-Attack
PEP Python Enhancement Proposal
PET Privacy Enhancing Technology
RAM Random-Access Memory
REST Representational State Transfer
SDRAM Synchronous Dynamic Random-Access Memory
SMTP Simple Mail Transfer Protocol
SoC System-on-Chip
TLD Top-Level Domain
UI User Interface
UML Unified Modeling Language
URL Uniform Resource Locator

64

65

WSGI Web Server Gateway Interface
WSN Wireless Sensor Networks

List of Figures

3.1 Overview of application scenario . 18

3.2 System Components . 20

3.3 ER-Diagram . 22

3.4 UML Sequence Diagram . 23

5.1 Docker containers . 36

5.2 Network configuration . 37

5.3 Adding a new device . 41

5.4 Timeseries database . 42

5.5 Pihole query log . 43

5.6 Policy dialog for Philips Hue Bridge . 43

5.7 Pi-hole domain list . 44

5.8 Pi-hole query log . 44

5.9 Weekly email notification - Domain table 46

5.10 Weekly email notification - Stacked bar chart 46

5.11 Philips Hue policies - All domains blocked 47

5.12 Philips Hue policies - Minimal configuration 48

5.13 Fully blocking vs. fully allowing . 49

5.14 Relative CPU and memory usage of docker containers 50

5.15 Absolute system memory and swap utilization 51

66

List of Tables

2.1 Related work . 14

5.1 Report database table after 4 monitoring job executions 42

5.2 Operability in total blocking configuration 47

67

List of Listings

1 Snippet taken from the PiholeConsumer class 26
2 The send request method of the Query class 27
3 Instatiation of PiholeConsumer in the Monitor component 28
4 Pihole consumer method invocation . 28
5 Pi-hole API response for getAllQueries . 28
6 Data processing . 29
7 Fetch query data job . 30
8 Command line interface command . 30
9 Table in the weekly notification email layout in MJML 31
10 Weekly email summary creation (Part 1) 32
11 Weekly email summary creation (Part 2) 32
12 Weekly email summary creation (Part 3) 33
13 Weekly email summary creation (Part 4) 33
14 Weekly email summary creation (Part 5) 33
15 Weekly notification log . 45
16 Dockerfile - Builder stage . 70
17 Dockerfile - Final stage . 71
18 Github actions worklow - Build and deployment 72
19 Docker compose file (Part 1) . 73
20 Docker compose file (Part 2) . 74
21 Docker compose file (Part 3) . 75
22 Pi-hole API excerpt . 76
23 Performance measuring script . 77

68

Appendix A

Contents of the Repository

The source code of the protoype developed during the course of this thesis is hosted in a
Github repository at: https://github.com/elduwa/shipp.

The project has been tentatively named shipp, which stands for Smart Home Integrated
Privacy Protection. Since this is still a prototype that is intended to be further developed
by the open source community, the name is subject to change. Therefore, aside from this
Appendix, the thesis does not explicitly reference the prototype’s name.

The Github repository includes the following content:

• Instructions: The README.md file of the repository includes instructions for the
installation and configuration of the prototype. In addition, some usage examples
are presented. Moreover, directions for setting up a development environment are
listed.

• Web Application: The source code for the prototype Flask web application is con-
tained in the app directory, in addition to the wsgi.py and config.py modules in
the root directory of the repository.

• Docker: The repository contains a Dockerfile that hosts the instructions for building
the prototype’s Docker image. It also provides a docker-compose.yml template for
the set-up of Docker containers for all subsystems, including the prototype, Pi-hole,
InfluxDB, Home Assistant and Nginx.

• Dependencies: A requirements.txt file lists all the Python dependencies required
by the prototype. Similarly, a package-lock.json file lists all npm dependencies.

69

https://github.com/elduwa/shipp

Appendix B

Code

1 FROM arm64v8/python:3.11-slim-bullseye as builder

2

3 WORKDIR /builder

4

5 USER root

6

7 RUN apt-get update && apt-get install -y curl

8 RUN curl -fsSL https://deb.nodesource.com/setup_18.x | bash -

9 RUN apt-get install -y nodejs

10

11 COPY package*.json ./

12

13 RUN npm install

14

15 COPY . .

16

17 # Build the frontend dependencies

18 RUN npm run build

19 RUN npm run build-mail

Listing 16: Dockerfile - Builder stage

70

71

1 FROM arm64v8/python:3.11-slim-bullseye

2

3 ENV FLASK_APP wsgi.py

4 ENV FLASK_ENV production

5 RUN adduser --disabled-password --gecos "" server_runner

6 WORKDIR /opt/webapp

7 USER root

8

9 COPY --chown=server_runner:server_runner app app

10 COPY --chown=server_runner:server_runner migrations migrations

11 COPY --chown=server_runner:server_runner wsgi.py config.py boot.sh requirements.txt ./

12

13 RUN apt-get update && apt-get install -y cron nano sqlite3

14

15 RUN echo "0 * * * * cd /opt/webapp/ && . .venv/bin/activate \

16 && . ./project_env.sh \

17 && flask execute-job >> /opt/webapp/logs/pihole_job.log 2>&1" \

18 >> /etc/cron.d/webapp-cron \

19 && echo "30 12 * * 0 cd /opt/webapp/ && . .venv/bin/activate \

20 && . ./project_env.sh && flask execute-weekly-notifications \

21 >> /opt/webapp/logs/weekly_email_job.log 2>&1" >> /etc/cron.d/webapp-cron \

22 && crontab -u server_runner /etc/cron.d/webapp-cron \

23 && mkdir -p /opt/webapp/logs \

24 && touch /opt/webapp/logs/pihole_job.log \

25 /opt/webapp/logs/weekly_email_job.log \

26 && chown server_runner:server_runner /opt/webapp/logs/pihole_job.log \

27 /opt/webapp/logs/weekly_email_job.log \

28 && chmod u+s /usr/sbin/cron

29

30 RUN chown -R server_runner:server_runner /opt/webapp

31 RUN chmod u+x /opt/webapp/boot.sh

32

33 USER server_runner

34

35 RUN mkdir -p /opt/webapp/data/rel_db

36 RUN mkdir -p /opt/webapp/data/pihole_etc

37

38 # Copy built files from the builder stage

39 COPY --from=builder --chown=server_runner:server_runner /builder/app/static/dist \

40 /opt/webapp/app/static/dist

41

42 RUN python -m venv .venv

43 RUN .venv/bin/pip install -r requirements.txt

44

45 EXPOSE 8000

46

47 ENTRYPOINT ["./boot.sh"]

Listing 17: Dockerfile - Final stage

72 APPENDIX B. CODE

1 name: Build and Push Docker Image

2

3 on:

4 release:

5 types:

6 - created

7

8 jobs:

9 build-and-push-image:

10 runs-on: ubuntu-latest

11

12 steps:

13 - name: Check out code

14 uses: actions/checkout@v3

15

16 - name: Set up Docker Buildx

17 uses: docker/setup-buildx-action@v2

18

19 - name: Log in to Docker Hub

20 uses: docker/login-action@v2

21 with:

22 username: ${{ secrets.DOCKERHUB_USERNAME }}

23 password: ${{ secrets.DOCKERHUB_TOKEN }}

24

25 - name: Build and push Docker image for ARM architecture

26 uses: docker/build-push-action@v4

27 with:

28 context: .

29 push: true

30 tags: ${{ secrets.DOCKERHUB_USERNAME }}/shipp: \

31 ${{ github.event.release.tag_name }}, \

32 ${{ secrets.DOCKERHUB_USERNAME }}/shipp:latest

33 platforms: linux/arm64

Listing 18: Github actions worklow - Build and deployment

73

1 services:

2 prototype:

3 container_name: shipp

4 image: elliottwallace/shipp:latest

5 expose:

6 - 8000

7 volumes:

8 - static_volume:/opt/webapp/app/static

9 - sqlite-data:/opt/webapp/data/rel_db

10 - pihole-etc:/opt/webapp/data/pihole_etc

11 environment:

12 - SECRET_KEY=<your_secret_key>

13 - API_SECRET_KEY=<your_api_secret_key>

14 - SQLITE_URL=sqlite:////opt/webapp/data/rel_db/sqlite.db

15 - INFLUXDB_ACTIVE=true

16 - INFLUXDB_URL=http://influxdb:8086/

17 - INFLUXDB_AUTH_TOKEN=<your_influxdb_auth_token>

18 - INFLUXDB_ORG=home

19 - INFLUXDB_BUCKET=communications

20 - PIHOLE_DOMAIN=<your_pihole_domain>

21 - PIHOLE_AUTH_TOKEN=<your_pihole_auth_token>

22 - PIHOLE_DB_URL=sqlite:////opt/webapp/data/pihole_etc/gravity.db

23 - MAIL_SERVER=<your_mail_server>

24 - MAIL_PORT=<your_mail_port>

25 - MAIL_USERNAME=<your_mail_username>

26 - MAIL_PASSWORD=<your_mail_password>

27 - SCHEDULER_TIMEINTERVAL=3600

28 - TZ=<your_timezone>

29 restart: unless-stopped

30

31 nginx:

32 container_name: nginx_reverse_proxy

33 image: nginx:stable-bullseye

34 depends_on:

35 - prototype

36 ports:

37 - "8080:80"

38 volumes:

39 - ./nginx/nginx.conf/:/etc/nginx/nginx.conf

40 - ./nginx/templates:/etc/nginx/templates

41 - static_volume:/usr/src/app/static

42 environment:

43 - LOCAL_NETWORK_IP_RANGE=<your_local_ip_range>

44 restart: unless-stopped

Listing 19: Docker compose file (Part 1)

74 APPENDIX B. CODE

1 influxdb:

2 container_name: influxdb

3 image: influxdb:2.7.1-alpine

4 ports:

5 - "8086:8086"

6 volumes:

7 - influxdb-data:/var/lib/influxdb2

8 - influxdb-config:/etc/influxdb2

9 environment:

10 - DOCKER_INFLUXDB_INIT_MODE=setup

11 - DOCKER_INFLUXDB_INIT_USERNAME=<your_username>

12 - DOCKER_INFLUXDB_INIT_PASSWORD=<your_password>

13 - DOCKER_INFLUXDB_INIT_ORG=home

14 - DOCKER_INFLUXDB_INIT_BUCKET=communications

15 - DOCKER_INFLUXDB_INIT_RETENTION=1m

16 - DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=<your_influxdb_auth_token>

17 restart: unless-stopped

18

19 pihole:

20 container_name: pihole

21 image: pihole/pihole:latest

22 ports:

23 - "53:53/tcp"

24 - "53:53/udp"

25 - "80:80/tcp"

26 - "443:443/tcp"

27 environment:

28 - "TZ:<your_timezone>"

29 - "WEBPASSWORD:<your_password>"

30 - "FTLCONF_LOCAL_IPV4:<raspberry_pi_ip>"

31 - "PIHOLE_DNS_:1.1.1.1;1.0.0.1"

32 - "REV_SERVER:true"

33 - "REV_SERVER_TARGET:<local_router_ip>"

34 - "REV_SERVER_CIDR:<your_local_ip_range>"

35 volumes:

36 - "pihole-etc:/etc/pihole"

37 - "pihole-dnsmasq:/etc/dnsmasq.d"

38 - "./resolv.conf:/etc/resolv.conf"

39 logging:

40 driver: "json-file"

41 options:

42 max-size: "10m"

43 max-file: "3"

44 restart: unless-stopped

Listing 20: Docker compose file (Part 2)

75

1 homeassistant:

2 container_name: homeassistant

3 image: ghcr.io/homeassistant/home-assistant:stable

4 restart: unless-stopped

5 network_mode: host

6 privileged: true

7 volumes:

8 - homeassistant-config:/config

9 - /etc/localtime:/etc/localtime:ro

10

11 volumes:

12 sqlite-data:

13 influxdb-data:

14 influxdb-config:

15 pihole-etc:

16 pihole-dnsmasq:

17 homeassistant-config:

18 static_volume:

Listing 21: Docker compose file (Part 3)

76 APPENDIX B. CODE

1 openapi: 3.0.0

2 info:

3 title: Pi-hole API

4 description: This is an unofficial OpenAPI 3.0 specification for the Pi-hole API.

5 version: 1.0.0

6 servers:

7 - url: http://pi.hole/admin/

8 description: The default URL for the Pi-hole API

9 paths:

10 /api.php:

11 get:

12 summary: Main API endpoint

13 description: Returns a JSON object with data.

14 parameters:

15 - name: getAllQueries

16 in: query

17 description: The getAllQueries 'endpoint' (needs parameters below)

18 required: false

19 schema:

20 type: integer

21 default: 1

22 - name: from

23 in: query

24 description: from timestamp

25 required: false

26 schema:

27 type: string

28 format: date-time

29 - name: until

30 in: query

31 description: until timestamp

32 required: false

33 schema:

34 type: string

35 format: date-time

36

37 # 1) Define the key name and location

38 components:

39 securitySchemes:

40 ApiKeyAuth:

41 type: apiKey

42 in: query

43 name: auth

44 # 2) Apply the API key globally to all operations

45 security:

46 - ApiKeyAuth: []

Listing 22: Pi-hole API excerpt

77

1 #!/bin/bash

2 # Run for 12 hours (43200 seconds) with the command: nohup bash /path/to/script &

3 timeout_duration=42300

4 function log() {

5 echo "$(date '+%Y-%m-%d %H:%M:%S') - $1" | tee -a output.log

6 }

7 function cleanup() {

8 log "Script execution completed."

9 exit 0

10 }

11

12 trap cleanup SIGTERM SIGINT

13 current_timestamp=$(date '+%Y-%m-%d_%H-%M')
14 mkdir -p datasets

15

16 csv_file="datasets/container_stats_${current_timestamp}.csv"

17 echo "Timestamp,CONTAINER ID,Name,CPU %,MEM %,MEM USAGE / LIMIT,NET I/O,BLOCK I/O, \

18 PIDs,SysMem Total,SysMem Used,SysMem Available,Swap Total,Swap Used" > "$csv_file"

19

20 log "Script started. Output will be logged in output.log"

21 end_time=$(($(date +%s) + timeout_duration))

22

23 while true; do

24 # Get the current Unix timestamp

25 c_timestamp=$(date '+%Y-%m-%d %H:%M:%S')
26 if ["$(date '+%s')" -ge "$end_time"]; then

27 cleanup

28 fi

29 # Execute docker stats command

30 docker_stats_output=$(docker stats --no-stream --format " \

31 {{.Container}},{{.Name}},{{.CPUPerc}},{{.MemPerc}}, \

32 {{.MemUsage}},{{.NetIO}},{{.BlockIO}},{{.PIDs}}")

33 if [$? -eq 0]; then

34 # Get memory and swap usage

35 memory_info=$(free -h | awk 'NR==2 {print $2","$3","$7}')
36 swap_info=$(free -h | awk 'NR==4 {print $2","$3}')
37 while read -r line; do

38 echo "$c_timestamp,$line,$memory_info,$swap_info" >> "$csv_file"

39 done <<< "$docker_stats_output"

40 log "Data collected successfully."

41 else

42 log "Error collecting data: $docker_stats_output"

43 fi

44 sleep 180 # Collect data every 3 minutes

45 done 2>&1 | tee -a output.log

Listing 23: Performance measuring script

	Kurzfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Methodology
	Thesis Outline

	Fundamentals
	Internet of Things
	Smart Home
	Smart Home Components
	Smart Home Security
	Smart Home Privacy

	Domain Name System
	DNS Sinkholes

	Related Work
	Privacy Enhancing Technologies
	Tools

	Design
	Application Scenario
	Requirements
	Functional Requirements
	Non-functional Requirements

	Architecture
	Components

	Implementation
	Core Features
	Pi-hole Integration
	Monitoring
	Notification Service

	Development and Build Pipeline

	Evaluation
	Configuration
	Hardware
	Software
	Networking

	Scenarios
	Monitoring
	Policy Enforcement
	Weekly Notification
	Smart Device Operability
	Performance Evaluation

	Results
	Monitoring
	Policy Enforcement
	Weekly Notification
	Smart Device Operability
	Performance Evaluation

	Discussion

	Final Considerations
	Summary
	Conclusions
	Contributions
	Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Contents of the Repository
	Code

