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Abstract

The task of text simplification is to reduce the linguistic complexity of a text in order

to make it more accessible. Previous work on text simplification has primarily fo-

cused on either a single level of simplification or multiple levels of simplification, but

always with the goal of making the text simpler. In this work, we explore a related

task: re-generating sentences to produce equivalent text that targets an audience

at a different readability level, whether that level is simpler or more advanced. We

formulate the problem as a sequence to sequence task and explore different meth-

ods of using the pre-trained T5 encoder-decoder model to perform the task. In

particular, we investigate the use of the hyperformer++ Mahabadi et al. [2021]

architecture to solve the task, and propose and evaluate custom variants of the ar-

chitecture designed to maximize positive transfer between different transformation

pairs. According to automatic metrics, our custom variant of hyperformer++ is able

to compete with strong baselines while only storing a small fraction of parameters

compared to updating the entire language model.



Zusammenfassung

Die Aufgabe der Textvereinfachung besteht darin, die sprachliche Komplexität eines

Textes zu reduzieren, um ihn leichter zugänglich zu machen. Bisherige Arbeiten zur

Textvereinfachung haben sich hauptsächlich auf eine oder mehrere Vereinfachungs-

ebenen konzentriert, aber immer mit dem Ziel, den Text zu vereinfachen. In dieser

Arbeit untersuchen wir ein verwandtes Problem: die Neuerstellung von Sätzen, um

einen äquivalenten Text zu erzeugen, der sich an ein Publikum mit einem anderen

Lesbarkeitsniveau richtet, unabhängig davon, ob dieses Niveau einfacher oder fort-

geschrittener ist. Wir formulieren das Problem als Sequence-to-Sequence-Aufgabe

und untersuchen verschiedene Methoden, um das vortrainierte T5-Encoder-Decoder-

Modell zur Lösung der Aufgabe einzusetzen. Insbesondere untersuchen wir die Ver-

wendung der hyperformer++ Architektur Mahabadi et al. [2021] zur Lösung der

Aufgabe, schlagen geeignete Varianten dieser Architektur vor und evaluieren die-

se, um den positiven Transfer zwischen verschiedenen Transformationspaaren zu

maximieren. Automatisierte Metriken zeigen, dass unsere angepasste Variante von

hyperformer++ in der Lage ist, mit starken Baselines zu konkurrieren und dabei

nur einen kleinen Teil der Parameter des Sprachmodells zu verwenden.
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1 Introduction

1.1 Motivation

In the past few years, advancements in Natural Language Processing (NLP) have

opened new doors. Large Language Models (LLMs) are now capable of leveraging

minimal task examples to perform as well as, or even better than, models specifically

fine-tuned for particular tasks [Ray, 2023]. This breakthrough has gained worldwide

attention with the increased public access to LLMs. Over the past ten years, through

LLMs or even smaller models, there has been a tremendous progresses [Liu et al.,

2019; Radford et al., 2019] of performance in many tasks, even tasks which it would

have been unimaginable to be performed by non human intelligence. Even if multiple

LLM’s models have became publicly accessible through user interfaces or API’s the

size of these models prohibits their use on consumer devices, and as such, research

on smaller and more compact models remains crucial.

However, there are also always negative consequences of such scientific progress.

There have been numerous reporting of rouges utilising these models to achieve

malicious purposes for their own benefit in the expense of others. As researchers,

we should always instead strive to provide positive contribution to the community

and thus find helpful contributions through the available tools. One such field is the

technology for education which has been progressing towards great contributions

such as Language Model study assistants and tutors, correcting tools for teachers

and even digital teachers. Our research falls within that field and envisions to help

in the following scenario:

As humans, we spend a large part (if not all) of our lives learning, either through the

formal education system or simply searching for answers to questions that arise based

on all the stimuli we are exposed to. Finding answers to questions has become very

easy since the world wide web because it is publicly affordable, but we often stumble

upon content that is inappropriate for our level of understanding. Sometimes middle

school students are looking for simple answers to questions when the Internet is

full of scholars’ opinions on the topic. An example of such a discussion is within

1



Chapter 1. Introduction

mathematics is when you search “what is expected value” you somehow end up to

a definition using integrals with respect to probability measures. But the problem

does not end there; educated adults also search for answers to questions that are

typically phrased for children, such as how to tie a hair bun.

But how could this problem be solved? Imagine a system which automatically

rewrites the same content you are reading but instead make the content suitable to

your reading level, whether that is simpler or more complicated.

This thesis is a tiny step towards that system. We focus on using Language Mod-

els (LM’s) to transform sentences across different readability levels. Our study

specifically explores sentence transformation across three English proficiency levels:

“advanced”, “intermediate”, and “elementary”.

1.2 Task Formalization

The goal of our task is to transform a given sentence of any readability level into a

sentence that conveys the same information and meaning, but at a different read-

ability level. This level may be simpler or more advanced.

Readability Level

The readability level of a text indicates how easy or difficult a reader finds it to

comprehend the text [Vajjala, 2022]. Another way of formalising readability level it

is that it is a measure of the complexity of the text. Texts with a low readability

level, within our study called ‘advanced’, tend to use complex words and intricate

sentence structures. These characteristics can make them difficult to read without

a good knowledge of the language’s vocabulary and grammar. In contrast, a highly

readable, within our study called ’elementary’, text uses simpler words and shorter

sentences, making it easier to be understood for more readers. Another common

interpretation of readability level is the expected level of proficiency in the natural

language (often correlated with years of education) that a reader would need to

understand the text.

Examples

Before we dive into the system requirements, let’s first try to understand the task

we pose to the models ourselves. Let’s look at a couple of sample sentences (from

the dataset we will later introduce) of different readability levels in Table 1.

The readability assement task is the automatic classification of the readability level

2



Chapter 1. Introduction

ID Readability Sentence

1 Advanced Hearing that subtle click is harder if theres a lot of noise around you.

2 Advanced Some Americans have taken to keeping their wealth secret.

3 Advanced To be honest, I have never seen what my neighbours look like.

4 Intermediate The leaves are said to provide energy and have medicinal qualities.

5 Intermediate Sleep deprivation used to be a sign that you were busy and very much in demand.

6 Intermediate Hair sample testing is also pointless, the guide says.

7 Elementary He spends his spare moments at work reading news articles and books.

8 Elementary The shop is uniting people here, Kalisa Migendo, a 24-year-old student, says.

9 Elementary They found that it was not his baby and not her baby.

10 Guess it 1 I have seen octopuses on boats escape through bilge pumps.

Table 1: Samples of short sentences (out of context) of different readability levels.

of a text using non parallel training data for different levels. As with many natural

language processing tasks, the labels assigned to texts are subjective, influenced by

the reader’s background and previous experience. Personally, I was surprised to

see the third sentence of Table 1 labeled ‘advanced’. But there’s a bigger question:

even with the inherent subjectivity of labeling, would we be able to perform this

task ourselves?

Given a limited set of examples, our initial human strategy would likely involve

identifying commonalities in vocabulary usage. Given enough samples, this strategy

proves to be very effective. This is evidenced by the continued success of frequency-

based classifiers, which remain a challenging benchmark in the field, even for ad-

vanced language models.

In Table 2, we present some of the pairs from the fine-tuning data used for our

models. For a model to effectively transform text from level X to level Y , it must

recognize the unique characteristics of level X and understand how to construct an

equivalent text that fits level Y . It is important to note that the model does not

have access to the surrounding context of a sentence. Therefore, it is unrealistic to

expect it to predict replacements like it ’to the mirrors’ during inference, as seen in

the last example.

From Table 2 we can also observe the Flesch-Kincaid Grade Level (FKGL) read-

ability metric (introduced later), where each value difference is equal to roughly one

grade level. We can observe a great deal of inconsistency, as two of the advanced-

elementary pairs have less than one grade level difference, while the first example

3



Chapter 1. Introduction

Parallel Pairs

Advanced - Hearing that subtle click is harder if theres a lot of noise around you.

Elementary - It is harder to hear that click if theres a lot of noise around you.

(Source - Target) FKGL Difference: 0.8

Advanced - You need a 15-minute distance and typical off-the-shelf drones have about that distance.

Elementary - You need a 15-minute distance, and typical drones have about that distance.

(Source - Target) FKGL Difference: 0.4

Advanced - This is, instead, approximated by peer support such as online discussion forums.

Intermediate - Instead, they get peer support, such as online discussion forums.

(Source - Target) FKGL Difference: 3.1

Advanced - You dont realize how safe Vienna is until you head abroad, said Hartlauer.

Intermediate - You dont realize how safe Vienna is until you go abroad, said Hartlauer.

(Source - Target) FKGL Difference: 0.0

Intermediate - To be honest, I have never seen what my neighbours look like.

Elementary - I have never seen what my neighbours look like.

(Source - Target) FKGL Difference: 2.3

Intermediate - You could put it on top of shopping malls.

Elementary - You could put the mirrors on top of shopping malls.

(Source - Target) FKGL Difference: -1.6

Table 2: Parallel short sentences of the OneStop dataset (out of context) of different
readability pairs.

of advanced-intermediate calculates a three-year grade level difference between the

parallel sets.

While the model learns based on patterns present in the training set, many training

pairs involve single or double word replacements. However, there are also examples,

especially in the advanced-to-elementary pair, where the underlying sentence struc-

ture changes, similar to the first example in the table. Therefore, we expect that

a model trained on all available fine-tuning data (as opposed to just pairwise data)

would perform more diversely.

Necessary Properties

In order for our sentence re-generation system to be viable and useful for consumer

use, it should satisfy the following constraints:

4
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1. Require only one set of language model parameters across all transformation

tasks.

2. Preserve the original meaning while generating grammatically correct and flu-

ent sentences.

Constraint Relaxation

During both the training and inference phases, the model will have access to infor-

mation about the readability level of both the original and desired target text.

1.3 Hypotheses

In this research, we aim to use a contextual parameter generation approach [Platan-

ios et al., 2018], specifically through the adapter generation variant as implemented

in Hyperformer++ [Mahabadi et al., 2021]. Our goal is to address our task within

a multitasking environment using an architecture designed to maximize the models

ability to benefit from emergent patterns in the training across different transforma-

tion pairs. While exploring different configurations for this architecture, we examine

the following hypotheses:

• Initializing the supplementary input representation (later referred to as task

embeddings) with information about the readability level, as opposed to ran-

dom initialization, leads to improved performance.

• Separating the supplementary inputs for the Encoder and Decoder components

of the model facilitates greater transfer to the more difficult transformation

pairs.

• Disabling parameterization of a meaningful supplementary input representa-

tion is expected to enhance model performance.

In addition to testing our proposed approach, we compare its performance to a wide

range of baseline models. We hypothesize that the performance of the models will

be ranked as follows:

• Models that share parameters between transformation pairs are expected to

consistently perform better than their pairwise equivalents in the more difficult

transformation pairs.

• Models that have dedicated parameters for a transformation pair are expected

to perform better in smaller models.

5



Chapter 1. Introduction

1.4 Thesis Outline

This thesis progresses through a logical sequence of chapters, each focusing on one

or more key topics related to our study. These topics are:

• Background: Provides a background on T5 and discusses related research in

the area of parameter efficiency and its applicability to our study.

• Datasets & Evaluation Metrics: Details the data sets used and outlines

the metrics used to evaluate the performance of our model.

• Methodology: Describes the architecture of our proposed model, any vari-

ations explored, and the results of the experiments that led to our proposed

architecture.

• Results: Presents and discusses the results of our experiments compared to

the baselines.

• Limitations & Future Work: Acknowledges the limitations of the present

work, and outlines directions for future research, for example within a multi-

lingual setting.

• Conclusions: Summarises our contributions within this study and concludes

what we have learned.

6



2 Background

To provide a brief overview of the study of related tasks, there have been a plethora

of studies on text simplification, including a series of Shared Tasks by PAN [Er-

makova et al., 2023, 2022], where language models are explored for both extractive

and generative approaches. Similarly, automatic readability assessment (the classifi-

cation of the readability level of a text) has also seen its fair share of studies [Vajjala,

2022] using language models such as BERT [Deutsch et al., 2020], RoBERTa [Lee

et al., 2021] and T5 [Lee and Lee, 2023]. However, the aforementioned tasks do not

have a many-to-many sequence-to-sequence nature, so we need to get creative and

design our own baselines inspired by a popular sequence-to-sequence task, machine

translation. We formalize our choice of baselines in Chapter 5.

Kew and Ebling [2022] take a completely different approach to a task similar to ours,

text simplification at different levels. This method uses FUDGE [Yang and Klein,

2021], a lightweight binary classifier for each target simplification level, to control

the complexity of the generated text during inference. This is a very interesting

alternative idea as within their approach, they can perform the multiple level sim-

plification relying solely on off-the-shelf language models and a simple lightweight

classifier, which is both practical and efficient.

To justify the idea behind our proposed multitask setting, we examine recent ad-

vances in the field. An extensive study in the NLP community that used a single

model for transfer learning among different tasks is the introductory paper on the

T5 architecture [Raffel et al., 2020]. The T5 model, an encoder-decoder-transformer

architecture, treats each task as a sequence-to-sequence problem. This text-to-text

framework provides a straightforward method for training a single model on a set of

tasks using a uniform loss function and decoding procedure. The study also provided

evidence that the T5 model can sometimes adequately perform some text-to-text

tasks in a zero-shot setting. For our study, we chose the T5 model as the pre-trained

model of interest, and all of our solutions use the English pre-trained T5.

One particular finding in the T5 study caught our interest, and we would like to

explore its implications in more depth. The authors found that the traditional pro-

7



Chapter 2. Background

cess of unsupervised pre-training followed by fine-tuning on single or a few related

tasks, where all model parameters are updated, outperforms any form of mass mul-

titask learning, regardless of multiple mixing ratio settings. In contrast, Mahabadi

et al. [2021] find in their results that multitask learning is beneficial to single task

performance.

In another study, the authors of MUPPET [Aghajanyan et al., 2021] found that in-

corporating a multi-task “pre-fine-tuning” phase consistently improved RoBERTa’s

performance on various tasks, especially those with sparse training data. The keys to

the success of this pre-tuning process were the use of a large number of tasks (15+),

combined with heterogeneous batching1 and a scaled loss function across different

task heads. These conflicting results leave us with an open question: “What charac-

teristics of tasks and multitask settings cause multitask to improve the performance

of single tasks?”

In a different line of research focused on parameter efficiency, Li and Liang [2021]

employ a technique they call “prefix tuning”. This method essentially adds a small

set of parameters (they study 2% or 0.1%) to each layer. During fine-tuning, these

parameters are updated while the remaining model parameters remain frozen, essen-

tially acting as a continuous prompt. This technique is competitive with full model

fine-tuning, while remaining parameter efficient, since only these parameters have

to be switched between tasks.

In a simpler parameter-efficient approach, previous studies such as Pfeiffer et al.

[2020] use adapters [Houlsby et al., 2019] – a small bottleneck neural network at-

tached to the end of each transformer block – as an alternative to updating the

entire set of model parameters to learn a new task.

A subsequent study [Ansell et al., 2021] used a shared hyperparameter generation

network to generate the weights of the adapters for each language. This network

uses representations of sparse typological vectors consisting of 289 binary linguistic

features as inputs for the corresponding language. The hyperparameter generation

network is trained using a masked language modeling objective over different lan-

guages, allowing parameters to be shared between languages with similar linguistic

features. This approach serves as the primary inspiration for our research. We build

on this concept by investigating whether a simple representation of the readability

level of a source and target sentence, given as input to a hyperparameter generation

network, can generate weights for adapters to effectively control the readability level

of the generated sentences.

1batches that contain equal samples from all fine-tuning tasks

8



3 Datasets & Evaluation Metrics

In this chapter, we first analyze the available datasets for our task, including those

that are not usable for our specific case. We then introduce traditional readability

features used to observe the generation of our models and apply this analysis to

our datasets. Finally, we explain how we evaluate the performance of our model

and how we utilize external language models to ensure fluency and preservation of

meaning within the generated sentences.

3.1 OneStop English

The OneStop English dataset is a publicly accessible text readability dataset con-

taining texts at three distinct readability levels: advanced, intermediate, and ele-

mentary. The creation of this corpus involved sourcing article and was later rewritten

by teachers to suit the three readability levels [Vajjala and Lučić, 2018].

Additionally, the dataset contains aligned sentences extracted through a one-to-all

comparison of sentences between the aligned texts. The comparison was done using

cosine similarity, and sentences falling in between 0.7 and 0.95 were extracted as

aligned sentences [Vajjala and Lučić, 2018]. Table 3 shows the quantity of available

sentence pairs1 across these three levels:

Level Level Train Set Validation Set Test Set

Advanced Intermediate 1710 222 222

Advanced Elementary 1757 210 199

Intermediate Elementary 1328 167 179

Table 3: Available aligned parallel sentences in the OneStop English Dataset. Note:
data is bidirectional

1We later found out there were 1000 additional missing pairs from our advanced-intermediate
training set, likely due to a corrupted file. This accident inadvertently helped to balance our
dataset and therefore we decided to keep this reduced set of pairs.

9
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3.2 Newsela

The Newsela dataset is a collection of 1130 news articles that has been rewritten to

four different grade levels by editors at Newsela2, a company that produces reading

materials for pre-college classroom use [Xu et al., 2015]. These reading levels are

denoted as follows: ’Simple0’ indicates the original text, ’Simple1’ refers to the most

complex rewritten version, while ’Simple4’ represents the most simplified version of

the text. For more information and examples of the Newsela dataset please refer to

[Xu et al., 2015].

Further work by Jiang et al. [2020] created a manual alignment of sentences for

different levels of simplification. From these annotations, we extracted (using code

from Kew and Ebling [2022]) aligned sentences that spanned across three specific

levels, to make our experiments similar to those conducted on the onestop English.

In choosing these three levels—Simple0, Simple1, and Simple3—our primary con-

sideration was the size of the resulting dataset. Table 4 shows the resulting dataset.

However, no matter what we experimented with this dataset, the models were un-

able to train, hence we do not report results from Newsela in this thesis. This might

be due to the very limited amount of samples or possibly due to the sentences being

already fairly simple as also shown through the readability metrics in Table 7.

Level Level Train Set Validation Set Test Set

Simple0 Simple1 951 120 256

Simple0 Simple3 330 31 98

Simple1 Simple3 554 65 175

Table 4: Number of available aligned sentences for the selected simplification levels.
Note: data is bidirectional

3.3 Non-Parallel Readability Datasets

There exists datasets with non-parallel data that are valuable in the field, but not

directly applicable to our specific study. One such dataset is the WeeBit dataset

[Vajjala and Meurers, 2012]. This dataset consists of articles from two sources:

the WeeklyReader2, which contains educational articles aimed at Years 2, 3, 4 and

Senior, and the BBC-Bitesize2, which contains articles divided into four grade levels

2https://newsela.com
2http://www.weeklyreader.com
2http://www.bbc.co.uk/bitesize
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Chapter 3. Datasets & Evaluation Metrics

(KS1, KS2, KS3, GCSE). Together, these two sources provide a diverse readability

dataset. However, since the dataset is not parallel neither by text nor by sentences

across levels, it falls outside the scope of our study.

3.4 Evaluation/Observation Metrics: Traditional

Readability Features

In this study, we use a set of traditional statistical readability features taken from

the Martinc et al. [2021] study. The simplest of these is Average Sentence Length

(ASL), but there are others that take into account factors such as word length and

word difficulty. These features are defined in the survey as follows:

The Gunning Fog Index [Gunning, 1952] (GFI) estimates the years of formal edu-

cation a person needs to understand the text on the first reading. It is calculated

with the following expression:

GFI = 0.4

(
totalWords

totalSentences
+ 100

longWords

totalSentences

)
(3.1)

where longWords are words longer than 7 characters. Higher values of the index

indicate lower readability.

Flesch Reading Ease (FRE) [Kincaid, 1975] assigns higher values to more readable

texts. It is calculated in the following way:

FRE = 206.835− 1.015

(
totalWords

totalSentences

)
− 84.6

(
totalSyllables

totalWords

)
(3.2)

The values returned by the Flesch-Kincaid Grade Level (FKGL) [Kincaid, 1975]

correspond to the number of years of education generally required to understand

the text for which the formula was calculated. The validity of this metric has been

critised in a recent study. The formula is defined as follows:

FKGL = 0.39

(
totalWords

totalSentences

)
+ 11.8

(
totalSyllables

totalWords

)
− 15.59 (3.3)

However, FKGL has its limitations. Tanprasert and Kauchak [2021] have shown ex-

perimentally that FKGL can be easily increased by very basic postprocessing tech-

niques. As also stated by the authors, it remains a valuable form of understanding

the behaviour of generative models.
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Another readability formula that returns values corresponding to the years of edu-

cation required to understand the text is the Automated Readability Index (ARI)

[Smith and Senter, 1967]:

ARI = 4.71

(
totalCharacters

totalWords

)
+ 0.5

(
totalWords

totalSentences

)
− 21.43 (3.4)

In our study, we calculate3 the average readability features for the validation set

every 1000 steps during our model’s fine-tuning phase. These averages help indicate

the model’s generative direction. While these metrics are relatively simplistic and

solely based on the lexical level, we supplement them with reference-based evaluation

metrics to provide a more comprehensive overview.

3.5 Readability Features Analysis of Datasets

To further understand the nuances of our parallel sentences, we perform an average

readability metric analysis within the parallel sentences of the onestop and newsela

datasets. The results of this analysis are presented separately for each split: Table 5

for the training set, Table 6 for the validation set, and Table 7 for the test set.

Level - Level
GFI FRE FKGL ARI

Left Right Left Right Left Right Left Right

OneStop Parallel Sentences

Advanced - Intermediate 14.22 13.21 55.74 59.35 11.72 10.77 14.48 13.28

Advanced - Elementary 11.96 10.53 64.22 69.61 9.65 8.36 11.86 10.39

Intermediate - Elementary 12.06 10.99 62.99 67.10 9.80 8.82 12.00 10.83

Newsela Parallel Sentences

Level0 - Level1 10.93 10.79 64.12 64.78 8.55 8.46 10.79 10.70

Level0 - Level3 8.88 7.86 71.60 76.64 6.61 5.77 8.21 7.34

Level1 - Level3 9.07 8.12 69.95 74.56 6.86 6.03 8.65 7.83

Table 5: Average readability features across parallel sentences in the training set.
Lower scores in GFI, FKGL, and ARI imply greater readability, whereas
for FRE, a higher score indicates more readable text.

3using the textstat package https://pypi.org/project/textstat/
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Level - Level
GFI FRE FKGL ARI

Left Right Left Right Left Right Left Right

OneStop Parallel Sentences

Advanced - Intermediate 14.39 13.27 55.11 59.15 11.94 10.91 14.68 13.47

Advanced - Elementary 12.93 11.33 61.26 68.04 10.45 8.89 12.89 11.00

Intermediate - Elementary 11.58 10.60 65.82 69.91 9.20 8.32 11.21 10.30

Newsela Parallel Sentences

Level0 - Level1 11.13 11.00 64.03 65.32 8.79 8.68 11.24 11.11

Level0 - Level3 8.40 7.06 71.40 78.21 6.32 5.32 7.89 7.15

Level1 - Level3 9.91 7.65 65.06 75.50 7.61 5.83 9.33 7.65

Table 6: Average readability features across parallel sentences in the validation set.
Lower scores in GFI, FKGL, and ARI imply greater readability, whereas
for FRE, a higher score indicates more readable text.

By carefully observing the average readability features within the OneStop English

dataset in Table 7, we can find what each value represents in an American school

system, and by doing so we find minor disagreements between the different metrics.

This partial disagreement is to be expected since each metric measures readability

through a different formula.

For the “elementary” sentences, the ARI metric suggests they are appropriate for

fifth graders, while other metrics suggest they would be suitable for eighth to ninth

graders.

For the next level, “intermediate”, the sentences are deemed appropriate for seventh

graders according to the ARI. In comparison, other metrics rate them as suitable

for tenth graders.

For our most difficult level, “advanced”, ARI suggests they these sentences are

suitable for ninth graders, while other metrics suggest they would be appropriate

for students between eleventh and twelfth grade.

Upon examining the readability features of the dataset in more details, there are a

few more key observations to be made:

• The readability features of the Newsela parallel sentences are generally better,

indicating higher readability. This could be due to inherent differences in the

complexity and structure of the texts in these different resources.
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Level - Level
GFI FRE FKGL ARI

Left Right Left Right Left Right Left Right

OneStop Parallel Sentences

Advanced - Intermediate 13.98 12.84 56.20 60.74 11.55 10.54 14.06 12.78

Advanced - Elementary 12.27 10.53 62.93 70.38 9.97 8.28 12.41 10.46

Intermediate - Elementary 12.03 10.74 63.15 68.42 9.69 8.52 12.01 10.55

Newsela Parallel Sentences

Level0 - Level1 11.67 11.37 62.04 63.68 9.14 8.87 11.44 11.21

Level0 - Level3 8.37 7.64 72.83 77.52 6.30 5.45 7.98 7.08

Level1 - Level3 8.58 8.00 72.20 75.43 6.43 5.84 8.37 7.76

Table 7: Average readability features across parallel sentences in the test set. Lower
scores in GFI, FKGL, and ARI imply greater readability, whereas for FRE,
a higher score indicates more readable text.

• Minor discrepancies in the average features exist across the train, validation,

and test sets, but these are negligible.

• Within each pair, the features are consistent with the associated readability

level.

However, there are inconsistencies when comparing the same readability levels across

different sentence pairs in both datasets. Take, for example, the average Flesch-

Kincaid Grade Level (FKGL) of the ‘advanced’ sentences in the ‘advanced-intermediate’

pair, which is 11.72. Surprisingly, this average is much lower, at 9.65 (almost a two

school grades drop), in the advanced-elementary pair. This discrepancy is signif-

icant enough to cause the ‘advanced’ sentences in the ‘advanced-elementary’ pair

to be considered more readable than the ’intermediate’ sentences in the ‘advanced-

intermediate’ pair, according to these readability features. This inconsistency sug-

gests that these readability features may not fully capture the quality and behavior

of the generative models.

3.6 Evaluation Metrics: Reference-Based

Reference-based evaluation metrics for generative models are used to evaluate the

quality of the generated output by comparing it to a reference text or set of reference

texts. These metrics quantify the similarity between the generated output and the

14
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reference output(s), where a higher score indicates a higher similarity and therefore

better performance of the generative model. As one might anticipate, automatic

reference-based evaluation has faced criticism for not adequately capturing all im-

provements or subtleties of generative models. Recent studies highlight SARI as the

leading metric for evaluating text simplification. The SARI4 score is an average of

F1 scores based on three operations relative to the reference text: added n-grams,

kept n-grams, and deleted n-grams. In addition to its popularity, a recent study

experimentally demonstrated that minor changes to the text have a negligible effect

on the metric [Tanprasert and Kauchak, 2021]. These characteristics, along with

the inconsistencies in the average readability features within our dataset5, led us to

choose SARI as our primary metric.

3.7 Evaluation Metrics: Language Models Based

Quality Assurance

Much of the recent literature has used BERTScore Zhang et al. [2019], a scoring

system utilising BERT [Kenton and Toutanova, 2019] to evaluate the quality of text

produced by generative models. Inspired by this recent trend, within this study

we we utilise inference Encoder Transformer models to ensure the quality of the

text generated through the methods we are about to introduce fluency and meaning

preservation checks

Fluency

In the recent research on paraphrase generation [Krishna et al., 2020], the researchers

used a Large RoBERTa model, fine-tuned using the CoLA corpus [Warstadt et al.,

2019], to check the fluency of the generated sentences. We consider this method-

ology appropriate and use the same model6 to evaluate the fluency of our own

sentences generation. To ensure that the models adhere to the generation of fluent

sentences, we observe the percentage of generated sentences that are classified as

fluent throughout the learning curve. The results of the fluency test are relatively

stable, consistently classifying over 95% of the generated sentences to be fluent.

4The acronym stands for System output Against Reference and against the Input sentence.
5Note that there is a consistent 0.27± 0.03 SARI for the basic baseline of copying the input into
predictions which is often the starting behaviour of models.

6accessible at huggingface
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Meaning Preservation

Preserving the inherent meaning and information of the original sentence is a crit-

ical factor when re-generating sentences. In natural language, even the slightest

alteration, whether it is the addition, deletion, or modification of a single word

or conjunction, can drastically change and potentially invert the intended message

of the original sentence. Therefore, a methodology that can understand and com-

pare the meaning of the generated sentence against the input sentence is crucial.

To address this, we fine-tune an Encoder-Transformer model (arbitrarily choosing

MUPPET RoBERTa [Aghajanyan et al., 2021] for its demonstrated limited sam-

ple generalizability) to validate that the input and predicted sentences are accurate

paraphrases (True Paraphrases).

While there are pre-existing models fine-tuned for this purpose, our project requires

a model that is ideally suited to our specific data. Since the parallel sentences

derived from the onestop dataset often have minimal differences due to the high

cosine similarity alignment methodology, we aim to train our model to refrain from

classifying two sentences as paraphrases based solely on their lexical proximity. To

accomplish this, we combine sentence pairs from the onestop dataset [Vajjala and

Lučić, 2018] with adversarial paraphrase sentence pairs from Nighojkar and Licato

[2021] to create a comprehensive fine-tuning set. The adversarial paraphrase sen-

tence positive pairs are characterized by their lexical and syntactic divergence, as

indicated by low BLEURT scores. Further details about the selected fine-tuning

data can be found in Table 8.

Data Source Sentence Pairs Paraphrase Label Sourcing Method

OneStop 1000 True Balanced Sample

Adversarial 2433 True Human Written

Adversarial 1313 False Human Written

Adversarial 2000 False T5 Generated

Adversarial 2000 True T5 Generated

Total Samples 5433T/3313F True/False Concatenation of above

Table 8: Paraphrase model fine-tuning dataset

We fine-tune our model for a maximum of 10 epochs, following the standard fine-

tuning parameters of RoBERTa [Liu et al., 2019]. After carrying out three experi-

mental iterations of fine-tuning, we found that extending it beyond 2 epochs did not

lead to any noticeable improvement in validation performance or loss. Consequently,

we decide to keep the checkpoint reached at the end of the second epoch.
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The performance of our model is compared to RoBERTa fine-tuned on the adver-

sarial dataset [Nighojkar and Licato, 2021] as a paraphrase detector, across two

different datasets. When applying it to the onestop parallel sentences (where the

label always indicates true paraphrases), our model shows a 1% (total 96%) in-

crease in accuracy. Similarly, when applied to the test set of the adversarial dataset

[Nighojkar and Licato, 2021], our model exhibits a 0.7% (total 77%) improvement in

accuracy. Hence, we conclude that our model is adequate to ensure our generation

models maintain the meaning of the original text.
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4 Methodology

In this chapter, we first introduce hyperformer++ (first on a high level and then

formally), the core architecture underlying our proposed approach. We then present

and explain the idea behind our architectural modifications and provide experiments

to demonstrate their effectiveness.

4.1 Hyperformer++

Hyperformer++ is an architecture that allows parameter-efficient multi-task training

of the T5 Encoder Decoder model as introduced in past work [Mahabadi et al.,

2021]. There are a few key components we need to define sequentially to explain

the architecture:

Adapters

Adapters are small, trainable bottleneck neural networks attached to the end of each

frozen transformer block. They serve as an alternative to updating the entire set of

model parameters to learn a new task [Houlsby et al., 2019].

Hyperparameter Generation Networks

A hyperparameter generation network, or hypernetwork, is a compact neural net-

work that generates the weight of another network [Ha et al., 2017]. Its primary

function is to generate the weights and biases of another part (or whole) of a larger

neural network, based on (sometimes) arbitrary inputs. The hypernetwork can be

trained through the backpropagation signal during the standard fine-tuning process

of the larger model that utilizes these weights and biases.

Adapter Generation in Hyperformer++

Hyperformer++ places an uninitialized adapter block at the end of each transformer

layer. During the fine tuning and inference phases, the hypernetwork is given pa-

rameters representing the task, the layer id, and the adapter position1 as a concate-

1This categorization of parameters signals to the hypernetwork whether the adapter parameters
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nated input representation. The hypernetwork then uses these inputs to compute

a representation that is passed through linear layers to determine and instantiate

all parameters of the adapter module for the corresponding layer and block. This

process is also illustrated in a diagram in Figure 1.

Multi-head attention

Feed forward

Adapter

+

Layer norm

Layer norm

Feed forward

Adapter

+

Feed forward down
projection

Nonlinearity

Feed forward up
projection

Layer norm

+

Adapter LayerDecoder Layer

Multi-head attention

Feed forward

Adapter

+

Layer norm

Layer norm

Feed forward

Adapter

+

Encoder Layer

OR

Combined Separate

Figure 1: The hyperformer++ architecture variants. The dotted blue lines repre-
sent the original (also called combined) variant which generates both the
Encoder and Decoder adapters from the same task representation. Within
the separate variant, the dark red dotted line represents the source read-
ability which is used for the generation of the adapters of the Encoder
Layers, whilst the light green dotted line represents the target readability
which is used for the generation of the adapters of the Decoder Layers.

to be generated will be used at the end of the feedforward layer or at the end of the attention
layer.
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Hyperformer++ formalisation

To formally introduce hyperformer++ and our variants within our task, we use the

same notation and closely follow the original paper [Mahabadi et al., 2021], which

first introduces the general hyperformer architecture and then hyperformer++. Con-

sider a multi-task learning problem2, where we are given the data from a set of

transformation pairs {Dτ}Tτ=1, where T is the total number of transformations and

Dτ = {(xi
τ , y

i
τ )}Nτ

i=1 shows the training data for τ -th task with Nτ samples. We

assume we are also given a large-scale pretrained language model fθ(.) parameter-

ized by θ that computes the output for input xi
τ . Standard multi-task fine-tuning

minimizes the following loss on the training set:

L(θ, {Dτ}Tτ=1) =
T∑

τ=1

∑
(xi

τ ,y
i
τ )∈Dτ

wτ l
(
fθ(x

i
τ ), y

i
τ

)
.

where l is typically the cross-entropy loss, and wτ shows the sampling weight for τ -th

task. The goal of hyperformer is to finetune the pretrained model in a multi-task

learning setup efficiently, while allowing sharing information across tasks and at the

same time, enabling the model to adapt to each individual task.

The key idea of hyperformer++, depicted in Figure 1, is to learn a parametric task

embedding {Iτ}Tτ=1 for each task, and then feed these task embeddings to hyper-

networks parameterized by ν that generate the task-specific adapter layers [Houlsby

et al., 2019]. The authors insert adapter modules within the layers of a pretrained

model, making the final model of Xν(x
i
τ , θ, Iτ ) parameterized by ν that computes

the output for input xi
τ . During training, hypernetwork parameters are trained ν,

task embeddings {Iτ}Tτ=1, and layer normalizations in fθ(.), while the rest of the

pretrained model parameters θ are fixed:

L(ν, {Iτ}Ti=1, {Dτ}Tτ=1) =
T∑

τ=1

∑
(xi

τ ,y
i
τ )∈Dτ

wτ l
(
Xν(x

i
τ , θ, Iτ ), y

i
τ

)
,

The hypernetworks capture the shared information across transformation pairs in

a multi-task learning model enabling positive transfer between related pairs, while

adapters are reducing negative interference, encapsulating task-specific information.

We consider simple linear layers as hypernetworks that are functions of input task

embeddings Iτ . As part of plain hyperformer, the authors introduce these hyper-

networks in each layer of the transformer. They define hypernetwork hl
A(.) that

2In our case, each task is a transformation pair
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generates task conditional adapter weights (Ul
τ , D

l
τ ):

(Ul
τ ,D

l
τ ) := hl

A(Iτ ) =
(
WUl

,WDl
)
Iτ ,

where WUl ∈ ℜ(d×h)×t and WDl ∈ ℜ(h×d)×t are the respective hypernetwork param-

eters.

They additionally define the hypernetwork hl
LN(.) that computes the layer normal-

ization parameters:

(γl
τ , β

l
τ ) := hl

LN(Iτ ) =
(
Wγl

,Wβl
)
Iτ ,

where Wγl ∈ ℜh×t and Wβl ∈ ℜh×t.

Having a separate hypernetwork for each transformer layer introduces a lot of pa-

rameters and the authors propose to share hyperparameters across all layers to reach

the hyperformer++ architecture. Reapplying the same hypernetwork across all lay-

ers introduces weight sharing across target parameters, which may not be diserable.

Therefore, to allow for a flexible parameterization of task conditional adapters/layer

normalization, for a transformer of L layers, the authors introduce a set of layer id

embeddings I = {li}Li=1, and adapter position embeddings P = {pj}2j=1, which spec-

ify the position of adapter layers in each transformer block (after the attention layer

or feed-forward layer), which are used as additional inputs to the hypernetworks.

For simplicity, we consider li ∈ ℜt, pj ∈ ℜt, and zτ ∈ ℜt. This is followed by a

concatenation of (zτ , li,pj) to a similar task projector network h′
I as shown before:

Iτ = h′
I(zτ , li,pj),

which is then followed by a shared layer normalization to compute final task embed-

dings Iτ ∈ ℜt to the hypernetwork. This way, the hypernetwork is able to produce

distinct weights for each task, adapter position, and layer of a transformer. Fur-

thermore, layer id and adapter position embeddings are parameters that are learned

via back-propagation, allowing the authors to train the whole model end-to-end

conveniently.

In later Section 4.2 when we introduce our separate architectural variant, what we

essentially do is to train two separate sets of task, layer id I = {li}Li=1, and adapter

position P = {pj}2j=1 embeddings, and projector networks, one that is given as input

to the hypernetwork during the generation of adapters for the encoder layers and
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one during the generation of adapters for the decoder layers.

Generation Procedure

The generation procedure plays a crucial role in the performance of generative tasks.

To maintain consistency and comparability, we use a uniform procedure across all of

our experiments. Specifically, we adopt the standard procedure for generation tasks

as used in Mahabadi et al. [2021], which has two primary components: a topk = 50

sampling method and a four-beam search.

The topk = 50 is a parameter used in the sampling method that determines the pool

of words from which the next word is selected. This means that at each step during

generation, the model considers only the top 50 words with the highest probabilities

and selects the next word from this pool. This approach helps to promote diversity

in the generated output while still limiting the selection to relatively likely options.

Beam search is a search algorithm used in many natural language processing tasks

to improve the quality of the output. The number of “beams” refers to the number

of alternative sequences that the algorithm maintains at each step. In our case, we

maintain four beams, or four alternative sequences. This allows the model to explore

multiple high-probability paths through the search space, increasing the likelihood

of producing higher quality output.

4.2 Hyperformer++ Architecture Variations

Architectural Variation Assessment Experiments Setup

While hyperformer++ provides a solid foundation for multi-task transfer learning, in

this chapter we investigate modifications aimed at maximizing the suitability of this

architecture for performing the task. To this end, we compare the performance on

the validation set over 65,000 fine-tuning steps (homogeneous batches each consisting

of 32 sentences) in terms of SARI (primary metric), loss, and the average readability

features of the predictions. Our exact hyperparameter setup and learning curves that

do not provide interesting new insights are placed in the Appendix A.
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Ordinal Readability Initialization

Hyperformer++ initializes the task embedding (the input representing the task E)

with 64 numbers sampled from a standard normal distribution. We propose initial-

ising this embedding with a simple ordinal representation of the readability transfor-

mation pair. The motivation behind this initialization is to aid the model to identify

the ordinal nature of the readability level. We formalise our proposed representation

in the following way:

Let N(64) be the total dimension of the task embedding, and let R(r) represent the

function that maps readability levels to values, defined as follows:

R(r) =


N
3
(21) if r = Advanced

N
4
(16) if r = Intermediate

N
8
(8) if r = Elementary

Given a source readability level src readability and a target readability level tgt readability,

we map these levels to scores s and t using (r):

s = R(src readability), t = R(tgt readability)

The source readability vector S and the target readability vector T are then inde-

pendently defined as:

S[i] = 1 if i ≤ s else 0 for i = 1, 2, ...,
N

2

T [i] = 1 if i ≤ s else 0 for i = 1, 2, ...,
N

2

Finally, the resulting task embedding vector E is formed by concatenating S and T :

E = [S, T ]

Here, the task embedding vector E is a binary vector of dimension N which uniquely

represents the transformation task from source to target readability level.
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Example: Advanced to Elementary

s = 21, t = 8

S[i] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

T [i] = [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

E = [S, T ]

Advanced -> Intermediate: SARI Intermediate -> Advanced: SARIAdvanced -> Elementary: SARI

Elementary -> Advanced:  SARI Elementary -> Intermediate: SARIIntermediate -> Elementary: SARI

Figure 2: Learning curve of SARI of the random/readability initialization in the
combined architecture
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Advanced -> Intermediate: Validation Loss Intermediate -> Advanced: Validation LossAdvanced -> Elementary: Validation Loss

Elementary -> Advanced: Validation Loss Elementary -> Intermediate: Validation LossIntermediate -> Elementary: Validation Loss

Figure 3: Learning curve of validation loss of the random/readability initialization
in the combined architecture

To understand whether this readability initialization is beneficial, we explore this

experimentally. However, before we dive deeper into the readability initialization,

some general observations need to be made. Figure 2 illustrates the SARI on the

validation set over the course of the model’s training. A key observation is that the

advanced-elementary (bidirectional) pair is able to achieve much higher SARI scores

than the other four pairs. This is also reflected in Figure 3, where the validation loss

is decreasing for the advanced-elementary pair, while it is either stable or increasing

for the other pairs. The hypothesis for this pattern is that the signal between

adjacent pairs is not strong enough to train a pairwise model, which we later confirm

through the results of the baselines at Section 5.2. This might be because the changes

in the training data are too minor for the model to be able to train on, or the data

samples are simply not meaningful enough.

Comparing the SARI performance of our proposed readability initialization with
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SRC->

TGT->

TGT->

TGT->
SRC->

SRC->

TGT->

SRC->

Advanced -> Intermediate: Prediction's Average GFI Intermediate -> Advanced: Prediction's Average GFIAdvanced -> Elementary: Prediction's Average GFI

Elementary -> Advanced: Prediction's Average GFI Elementary -> Intermediate: Prediction's Average GFIIntermediate -> Elementary: Prediction's Average GFI

TGT->

TGT->

SRC->

SRC->

Figure 4: Learning curve of average predictions’ GFI of the random/readability ini-
tialization in the combined architecture

random initialization, in Figure 2, we observe that the readability initialization is

beneficial throughout the learning curve. This observation is also consistent when

we look at the average GFI of the predictions in Figure 4, as the readability initial-

ization more closely matches the average GFI of the target sentences. However, we

should note the occasional sharp spikes in most of the readability features. These

are likely due to inconsistent checkpoints resulting from the bottlenecks of the lim-

ited parameters allowed for updates. In the following experiments, unless explicitly

stated otherwise, task embeddings will be initialized with the readability level de-

scribed above.
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Separate Task Embeddings Instances for Encoder and Decoder

Inspired by recent advances in machine translation using decoupled encoders and

decoders [Philip et al., 2020], we propose the use of separate instances of task em-

beddings to represent the encoder and decoder transformer stack. These are then

given as inputs to the hyperparameter generation network when generating adapters

for the corresponding transformer layers.

This allows us to adapt our definition of readability initialization to be a separate

embedding E, consisting only of either the source readability level S or the target

readability level T . We expect that this approach will also allow for greater positive

transfer between different transformation pairs.

For instance, in the case of the decoder, the decoder task embedding is initialized

with identical values for both the advanced-elementary and intermediate-elementary

transformation pairs. These values are updated independently during training by

the shared hyperparameter generation network, and thus may diverge as a result.

However, it is important to note that this method does not completely decouple the

encoder and decoder. This idea is also shown in the diagram in Figure 1 labeled

‘Separate’.

Similar to the last section, we start our empirical examination by looking at the

SARI score shown in Figure 5. We observe small performance improvements in the

advanced-elementary pair, with more notable improvements in the lower performing

pairs. These improvements are particularly evident in the base model size. This

observation supports our hypothesis that our task embedding separation technique

allows for improved positive transfer to lower performing pairs. Similar to our

previous analysis, we examined the average readability features of the predictions

and observe a slight improvement over the original initialization, as illustrated by

the FKGL in Figure 6.

To verify that our separate instances of task embeddings also benefit from read-

ability initialization, we compare their SARI scores to their randomly initialized

counterparts in Figure 7. The figure clearly illustrates the benefits of readability

initialization in all evaluation pairs and is further supported by the learning curve

of Figure 8.
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Advanced -> Intermediate: SARI Intermediate -> Advanced: SARIAdvanced -> Elementary: SARI

Elementary -> Advanced:  SARI Elementary -> Intermediate: SARIIntermediate -> Elementary: SARI

Figure 5: Learning curve of SARI for the Separate/Combined architecture

Frozen Task Embeddings

We further investigate whether it would be beneficial for the model to freeze the

task embeddings, with their sole purpose to represent the readability level. The

idea is that under these conditions, by freezing the embeddings we force the model

to treat pairs with common readability levels as similar tasks. In the case of sepa-

rate task embeddings, they would even be treated as identical tasks. That means

when decoding the output of advanced-elementary and intermediate-elementary, the

model will learn to produce the same characteristics for the two pairs hence possibly

allowing greater positive transfer from one pair to another.

In the combined architecture, we compare the SARI performance between frozen

and unfrozen runs in Figure 9. The results are largely similar, and the performance

in terms of readability features, as illustrated by the GFI feature in Figure 10, is also

comparable. However, the frozen embedding variant seems to show signs of more
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SRC->

TGT->

SRC->

TGT->

TGT->

SRC-> SRC->

TGT->

Advanced -> Intermediate: Prediction's Average FKGL Intermediate -> Advanced: Prediction's Average FKGLAdvanced -> Elementary: Prediction's Average FKGL
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Figure 6: Learning curve of average predictions’ FKGL in the Separate/Combined
architecture

stable training. Therefore, we conclude that the automated metrics don’t provide a

definitive conclusion in this case.

In contrast, when considering the separate task embedding architecture, the results

diverge significantly. Freezing the task embeddings consistently underperforms the

non-frozen variant in four out of six pairs, as illustrated by SARI in Figure 11. The

readability characteristics are consistent with this observation, and we illustrate this

using GFI in Figure 12. Therefore, we conclude that with separate task embeddings

for the encoder and decoder, keeping the task embedding representation trainable is

beneficial for the performance of the model, which contradicts our initial hypothesis.
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Advanced -> Intermediate: SARI Intermediate -> Advanced: SARIAdvanced -> Elementary: SARI

Elementary -> Advanced:  SARI Elementary -> Intermediate: SARIIntermediate -> Elementary: SARI

Figure 7: Learning curve of SARI in a Random/Readability Initialization in the
Separate architecture
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Figure 8: Learning curve of SARI in a Random/Readability Initialization in the
Separate architecture
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Advanced -> Intermediate: SARI Intermediate -> Advanced: SARIAdvanced -> Elementary: SARI

Elementary -> Advanced:  SARI Elementary -> Intermediate: SARIIntermediate -> Elementary: SARI

Figure 9: Learning Curve of SARI For Frozen/Unfrozen Embeddings in the com-
bined architecture
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Figure 10: Learning Curve of average predictions’ GFI For Frozen/Unfrozen embed-
dings in the combined architecture
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Advanced -> Intermediate: SARI Intermediate -> Advanced: SARIAdvanced -> Elementary: SARI

Elementary -> Advanced:  SARI Elementary -> Intermediate: SARIIntermediate -> Elementary: SARI

Figure 11: SARI of Frozen/Unfrozen embeddings in the separate architecture
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Figure 12: Learning curve for average predictions’ GFI of in the separate architecture
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5 Results

In this chapter, we begin by defining our experimental setups and identifying the

baselines against which we will compare them. We then discuss, illustrate, and

evaluate the results in two different settings.

In the first type of results discussion, referred to as the “Extended Evaluation”, we

perform a comprehensive analysis of the predictions and their characteristics of our

approaches relative to all baselines. We then investigate the effects of expanding the

hyperparameter generation network.

In the second section, referred to as the “Concise Evaluation Overview”, we present

a more concise, stand-alone evaluation that focuses solely on SARI. Within this

section, we also delve into a discussion of the parameter efficiency of different ap-

proaches.

While there is some overlap between the “Extended Evaluation” and the “Concise

Evaluation Overview”, each section provides unique insights. The concise evalua-

tion overview should be sufficient to grasp the main findings of the study, but the

extended evaluation provides a more comprehensive understanding of the results

and the value of our contributions.

5.1 Hyperformer++ Chosen Variation & Baselines

Hyperformer++ configuration

Ideally, we would evaluate each possible model over multiple training runs and com-

pare their performance to draw the most reliable conclusions about our results.

However, since we are unable to sufficiently replicate the experiments, we need an

alternative fair evaluation comparison that is also accessible to the reader. As a

result, we decided to include only the following two variations of our architecture in

the final results:

• H++ (Original): The original hyperformer++ architecture trained in a

36



Chapter 5. Results

multi-task setting under the randomly initialised task embedding as intro-

duced explained in Mahabadi et al. [2021].

• H++ (Combined): Our hyperformer++ variant trained in a multi-task

setting under the combined task embedding readability initialization as intro-

duced in Section 4.2.

• H++ (Separate): Our hyperformer++ variant trained in a multi-task set-

ting under the separate task embedding readability initialization as introduced

in Section 4.2.

Baselines

Based on the related literature review, we select four approaches to act as baselines

and represent the state of the art against our approaches. In the following list, we

refer to these baselines as follows:

• Pairwise Adapters (T5): (Single Task) Frozen-T5 with pairwise adapters

to perform the transformation task. No prompt used.

• Pairwise Full Model (T5): (Single Task) A fully parameterizable model

for each pair of transformations. No prompt used.

• Zero Shot (T5): Inference using off-the-shelf T5 with the prompt: ”Sim-

plify/Rewrite from {Source-Readability} to {Target-Readability} : {Input}”

• String Prefix (T5)1.: (Multi Task) T5 fine-tuned in a multitask setting

with the following prompt: ”Simplify/Rewrite from {Source-Readability} to

{Target-Readability} : {Input}”

5.2 Extended Evaluation

The results for these experiments are reported in the following tables: 9, 10, 11,

and 12

• Table 9 shows the performance of T5-Small on the simplification transforma-

tion pairs.

• Table 10 shows the performance of T5-Small on the complexification trans-

1An underexplored multi-task setup method, which has a fair amount of success in past works
[Johnson et al., 2017; Zhang et al., 2023; Mahabadi et al., 2021; Raffel et al., 2020]
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formation pairs.

• Table 11 shows the performance of T5-Base on the simplification transforma-

tion pairs.

• Table 12 shows the performance of T5-Base on the complexification transfor-

mation pairs.

However, before looking into the performance results, we first want to highlight the

two quality assurance columns labeled ‘Fluency’2 and ‘True Paraphrases’ (True P.),

as introduced in Section 3.7.

Looking at these columns, we see that the vast majority of sentences (the lowest

percentage is 94%) generated by each model are classified as fluent. The True

Paraphrases column also suggests that all models generally preserve the original

meaning. However, in both the small and basic variants, it is noteworthy that for

most transformation pairs, the string prefix model is consistently classified as failing

to preserve meaning more often (by 1%) than the hyperformer++ separate variant.

The performance observations in the extended evaluation results are consistent with

those reported for the hyperformer in the GLUE benchmark [Mahabadi et al., 2021;

Wang et al., 2018]. In their study, the authors found that multitasking – whether

through the string prefix or, even greater, through the hyperformer++ architecture

– improves overall performance.

Our results replicate this pattern, showing that multitasking models consistently

outperform pairwise models across all tasks. This highlights the importance of

sharing information between different transformation pairs. However, opposite to

the original study, the string prefix baseline – even more so in the smaller models –

consistently outperforms both separate and combined hyperformer++ architectures.

Our hypothesis for this discrepancy lies in the generative nature of our tasks, as op-

posed to those in the GLUE benchmark. This generative nature may require a larger

number of trainable parameters. Consequently, each hyperformer++ architecture

faces a parameter bottleneck due to its hypernet, which accounts for (≈2%3) of the

total model parameters. On the other hand, the string prefix baseline can leverage

the entirety of the T5 model’s parameters for these six transformation pairs.

2In the base variant, fitting all these models into a 16GB GPU memory proved challenging, so
the fluency check was omitted in the base experiments. We assume (but don’t report) that the
results would be similar to the corresponding small variants.

3for the base model, ≈4% for the small model
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Extra Evaluation: A Wider Hypernetwork

To test the hypothesis that the performance of the hyperformer++ architecture is

bottlenecked by the size of the hypernetwork, we trained our variants of the T5

base hyperformer++ model using a hypernetwork 3.5 times wider (accounting for a

total of 7% of the LM parameters). The variants that use a wider hypernetwork are

denoted by the symbol †.

As can be seen from the results in Tables 13 (simplification) and 14 (complexifica-

tion), using a wider hypernetwork does indeed enhances the SARI performance of

our hyperformer++ variants. It not only achieves the highest performance within

two pairs, but also makes our variants more competitive against the strong string

prefix baseline across all transformation pairs. To clearly demonstrate the value of

our contributions, we also trained an original variant of the hyperformer++ archi-

tecture, which consistently underperforms all of our variants.

5.3 Concise Evaluation Overview

In a concise summary of the main results of the study, we compare SARI across

different architectures and transformation pairs for both sizes in Table 15. It is

immediately apparent that pairwise models underperform compared to the multitask

approach, likely due to the commonalities between different transformation tasks.

In particular, for the T5 small models, the string prefix setting significantly out-

performs the hyperformer++ variants, including those with wider hypernetworks.

However, for the T5 base models, this performance gap narrows significantly, oc-

curring in only four of the six transformations, and decreases even further against

the hyperformer++ variants with a wider hypernetwork. These observations sug-

gest that, in the context of this study, we have successfully developed a task-specific

variant of hyperformer++ which, despite using a minimal increase in additional pa-

rameters (2% or 7%), nearly matches the performance of a model that fine-tunes all

of it’s weights, demonstrating parameter efficient positive transfer between transfor-

mation pairs

As an advantage of conducting a bidirectional study, we can answer a final unique

question. Which of the supertasks do the models generally perform better at, text

simplification (three columns on the left) or text complexification (three columns on

the right)? Although the differences are small, all models seem to perform better

at text simplification. However, when comparing our hyperformer++ variant and
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the string prefix approach, hyperformer++ seems to perform slightly better in the

simplification task, while the string prefix variant seems to have a slight advantage

in the text complexification task.
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0-1 Measures Average Readability Features

Simplification SARI Fluency True P. Copies GFI FRE FKGL ARI ASL

Adv → Ele 0.985 0.976 0.000 11.33 68.04 08.89 11.00 20.57

Zero Shot 0.296 0.933 0.771 0.176 10.87 66.11 08.47 10.40 17.83

Pairwise Adapters 0.759 0.967 0.981 0.167 11.55 66.05 09.20 11.36 20.71

Pairwise Full Model 0.840 0.555 0.990 0.086 11.60 66.68 09.15 11.31 20.88

H++ (Combined) 0.867 0.957 0.976 0.057 11.47 67.16 09.02 11.13 20.64

H++ (Separate) 0.852 0.967 0.976 0.086 11.49 67.16 09.04 11.23 20.69

String Prefix 0.938 0.971 0.967 0.019 11.47 67.55 09.00 11.14 20.74

Adv → Int 0.991 0.932 0.000 13.27 59.15 10.91 13.47 23.71

Zero Shot 0.272 0.887 0.671 0.167 11.29 63.02 08.99 11.30 18.17

Pairwise Adapters 0.384 0.968 0.986 0.514 13.94 56.72 11.48 14.09 24.64

Pairwise Full Model 0.398 0.955 0.991 0.586 14.22 55.69 11.80 14.48 25.35

H++ (Combined) 0.436 0.955 0.959 0.338 13.44 58.39 11.01 13.53 23.71

H++ (Separate) 0.445 0.973 0.950 0.333 13.30 59.00 10.92 13.46 23.70

String Prefix 0.467 0.968 0.955 0.315 13.70 57.43 11.28 13.87 24.27

Int → Ele 0.976 0.880 0.000 10.60 69.91 08.32 10.30 19.37

Zero Shot 0.280 0.898 0.743 0.323 09.95 68.29 07.70 09.37 15.92

Pairwise Adapters 0.344 0.976 0.964 0.623 11.23 67.37 08.83 10.74 19.97

Pairwise Full Model 0.399 0.946 0.982 0.557 11.27 67.33 08.92 10.94 20.31

H++ (Combined) 0.553 0.964 0.928 0.311 10.70 69.88 08.33 10.25 19.39

H++ (Separate) 0.554 0.964 0.952 0.323 10.81 68.84 08.47 10.36 19.36

String Prefix 0.636 0.964 0.940 0.257 10.75 69.58 08.41 10.41 19.54

Table 9: Extended Evaluation: Target-level results for T5-Small on the onestop
dataset in the simplification pairs. For SARI, where higher values in-
dicate better performance, we emphasize the systems according to their
scores. For the average readability features, we highlight the systems that
perform closest to the level-specific references (which are provided in the
intermediary rows).
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0-1 Measures Average Readability Features

Complexification SARI Fluency True P. Copies GFI FRE FKGL ARI ASL

Ele → Adv 0.981 0.995 0.000 12.93 61.26 10.45 12.89 23.05

Zero Shot 0.297 0.923 0.766 0.205 09.91 70.68 07.63 09.46 16.98

Pairwise Adapters 0.504 0.952 1.000 0.486 11.50 67.16 09.11 11.16 20.97

Pairwise Full Model 0.795 0.976 0.990 0.205 12.55 63.82 09.98 12.34 22.59

H++ (Combined) 0.677 0.962 1.000 0.238 11.93 65.77 09.48 11.68 21.70

H++ (Separate) 0.663 0.967 0.986 0.281 11.92 65.68 09.45 11.67 21.51

String Prefix 0.932 0.976 0.995 0.010 12.77 62.01 10.29 12.69 22.83

Int → Adv 0.991 0.959 0.000 14.39 55.11 11.94 14.68 25.62

Zero Shot 0.282 0.910 0.775 0.238 11.08 64.36 08.83 10.94 18.27

Pairwise Adapters 0.304 0.986 1.000 0.946 13.27 59.09 10.91 13.46 23.70

Pairwise Full Model 0.327 0.982 0.995 0.779 13.36 58.78 11.01 13.63 23.93

H++ (Combined) 0.326 0.977 0.995 0.757 13.30 58.65 11.00 13.51 23.83

H++ (Separate) 0.319 0.977 0.995 0.793 13.28 58.96 10.94 13.49 23.75

String Prefix 0.470 0.982 0.977 0.432 13.45 58.41 11.18 13.81 24.40

Ele → Int 0.980 0.910 0.000 11.58 65.82 09.20 11.21 20.60

Zero Shot 0.288 0.928 0.748 0.299 09.33 73.24 07.00 08.85 15.88

Pairwise Adapters 0.299 0.964 0.994 0.850 10.62 69.84 08.35 10.32 19.43

Pairwise Full Model 0.308 0.976 0.988 0.856 10.64 70.03 08.34 10.33 19.49

H++ (Combined) 0.384 0.940 0.976 0.581 10.80 69.56 08.46 10.41 19.71

H++ (Separate) 0.393 0.958 0.988 0.557 10.65 69.33 08.43 10.32 19.49

String Prefix 0.558 0.976 0.970 0.251 11.24 67.57 08.90 10.91 20.37

Table 10: Extended Evaluation: Target-level results forT5-Small on the onestop
dataset in the complexification pairs. For SARI, where higher values
indicate better performance, we emphasize the systems according to their
scores. For the average readability features, we highlight the systems that
perform closest to the level-specific references (which are provided in the
intermediary rows).
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0-1 Measures Average Readability Features

Simplification SARI Fluency True P. Copies GFI FRE FKGL ARI ASL

Adv → Ele 0.985 0.976 0.000 11.33 68.04 08.89 11.00 20.57

Zero Shot 0.271 0.842 0.621 0.214 08.83 70.84 06.64 08.43 13.13

Pairwise Adapters 0.840 0.986 0.105 11.66 65.30 09.39 11.54 21.09

Pairwise Full Model 0.837 0.990 0.105 11.61 66.42 09.20 11.34 20.94

H++ (Combined) 0.915 0.971 0.029 11.47 67.36 09.01 11.14 20.69

H++ (Separate) 0.918 0.971 0.029 11.40 67.45 08.97 11.12 20.59

String Prefix 0.939 0.962 0.019 11.49 67.53 09.00 11.15 20.76

Adv → Int 0.991 0.932 0.000 13.27 59.15 10.91 13.47 23.71

Zero Shot 0.260 0.901 0.594 0.171 08.59 69.79 06.82 08.80 13.26

Pairwise Adapters 0.424 0.986 0.459 14.00 56.70 11.60 14.27 25.14

Pairwise Full Model 0.410 0.991 0.482 14.20 55.86 11.78 14.47 25.38

H++ (Combined) 0.484 0.955 0.194 13.48 58.54 11.05 13.58 23.94

H++ (Separate) 0.484 0.977 0.203 13.60 58.22 11.13 13.65 24.10

String Prefix 0.474 0.964 0.342 13.73 57.10 11.34 13.94 24.31

Int → Ele 0.976 0.880 0.000 10.60 69.91 08.32 10.30 19.37

Zero Shot 0.286 0.911 0.670 0.221 08.84 74.19 06.28 07.97 13.55

Pairwise Adapters 0.416 0.976 0.461 11.03 68.41 08.63 10.53 19.74

Pairwise Full Model 0.406 0.988 0.467 11.15 68.12 08.80 10.77 20.28

H++ (Combined) 0.620 0.952 0.293 10.90 68.99 08.53 10.49 19.67

H++ (Separate) 0.651 0.958 0.210 10.72 69.61 08.40 10.39 19.51

String Prefix 0.647 0.940 0.257 10.86 68.94 08.52 10.53 19.62

Table 11: Extended Evaluation: Target-level results for T5-Base on the onestop
dataset in the simplification pairs. For SARI, where higher values in-
dicate better performance, we emphasize the systems according to their
scores. For the average readability features, we highlight the systems that
perform closest to the level-specific references (which are provided in the
intermediary rows).
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0-1 Measures Average Readability Features

Complexification SARI Fluency True P. Copies GFI FRE FKGL ARI ASL

Ele → Adv 0.981 0.995 0.000 12.93 61.26 10.45 12.89 23.05

Zero Shot 0.287 0.904 0.710 0.219 08.25 74.20 06.17 07.48 13.08

Pairwise Adapters 0.800 1.000 0.195 12.55 63.54 10.03 12.43 22.66

Pairwise Full Model 0.796 1.000 0.205 12.61 63.49 10.05 12.40 22.72

H++ (Combined) 0.869 0.981 0.062 12.68 62.74 10.14 12.47 22.66

H++ (Separate) 0.876 0.990 0.071 12.60 62.79 10.12 12.46 22.61

String Prefix 0.930 0.990 0.033 12.75 61.93 10.30 12.69 22.82

Int → Adv 0.991 0.959 0.000 14.39 55.11 11.94 14.68 25.62

Zero Shot 0.251 0.887 0.617 0.189 08.95 68.05 07.12 08.66 13.47

Pairwise Adapters 0.345 0.982 0.662 13.37 59.09 11.02 13.63 24.14

Pairwise Full Model 0.341 0.995 0.748 13.35 58.75 10.97 13.52 23.76

H++ (Combined) 0.411 0.977 0.342 13.41 58.62 11.11 13.66 24.23

H++ (Separate) 0.428 0.955 0.392 13.59 57.90 11.25 13.88 24.41

String Prefix 0.480 0.959 0.392 13.54 58.32 11.19 13.76 24.38

Ele → Int 0.982 0.910 0.000 11.58 65.82 09.20 11.21 20.60

Zero Shot 0.278 0.874 0.598 0.191 07.40 76.72 05.43 06.90 11.55

Pairwise Adapters 0.330 0.982 0.647 10.83 68.62 08.59 10.58 19.73

Pairwise Full Model 0.322 0.994 0.725 10.62 69.87 08.35 10.31 19.45

H++ (Combined) 0.498 0.958 0.311 10.86 68.10 08.64 10.53 19.60

H++ (Separate) 0.531 0.952 0.263 10.94 67.80 08.69 10.58 19.64

String Prefix 0.571 0.970 0.275 11.30 67.11 08.97 11.03 20.38

Table 12: Extended Evaluation: Target-level results for T5-Base on the onestop
dataset in the complexification pairs. For SARI, where higher values
indicate better performance, we emphasize the systems according to their
scores. For the average readability features, we highlight the systems that
perform closest to the level-specific references (which are provided in the
intermediary rows).
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0-1 Measures Average Readability Features

Simplification SARI Fluency True P. Copies GFI FRE FKGL ARI ASL

Adv → Ele 0.985 0.976 0.000 11.33 68.04 08.89 11.00 20.57

H++(Original) 0.902 0.976 0.038 11.52 67.32 09.05 11.20 20.84

H++ (Combined) 0.915 0.971 0.029 11.47 67.36 09.01 11.14 20.69

H++ (Combined)† 0.917 0.962 0.033 11.39 67.60 08.97 11.10 20.65

H++ (Separate) 0.918 0.971 0.029 11.40 67.45 08.97 11.12 20.59

H++ (Separate)† 0.918 0.967 0.024 11.47 67.26 09.02 11.15 20.66

String Prefix 0.939 0.962 0.019 11.49 67.53 09.00 11.15 20.76

Adv → Int 0.991 0.932 0.000 13.27 59.15 10.91 13.47 23.71

H++ (Original) 0.475 0.977 0.230 13.74 57.53 11.30 13.87 24.41

H++ (Combined) 0.484 0.955 0.194 13.48 58.54 11.05 13.58 23.94

H++ (Combined)† 0.491 0.964 0.212 13.56 58.29 11.12 13.60 24.11

H++ (Separate) 0.484 0.977 0.203 13.60 58.22 11.13 13.65 24.10

H++ (Separate)† 0.504 0.968 0.140 13.53 58.58 11.06 13.61 24.01

String Prefix 0.474 0.964 0.342 13.73 57.10 11.34 13.94 24.31

Int → Ele 0.976 0.880 0.000 10.60 69.91 08.32 10.30 19.37

H++ (Original) 0.619 0.940 0.222 10.88 68.89 08.53 10.47 19.62

H++ (Combined) 0.620 0.952 0.293 10.90 68.99 08.53 10.49 19.67

H++ (Combined)† 0.653 0.952 0.234 10.81 69.24 08.52 10.49 19.77

H++ (Separate) 0.651 0.958 0.210 10.72 69.61 08.40 10.39 19.51

H++ (Separate)† 0.656 0.952 0.251 10.76 69.58 08.44 10.39 19.64

String Prefix 0.647 0.940 0.257 10.86 68.94 08.52 10.53 19.62

Table 13: Extra Results: Target-level results for T5-Base on the onestop dataset
in the simplification pairs. For SARI, where higher values indicate better
performance, we emphasize the systems according to their scores. For the
average readability features, we highlight the systems that perform closest
to the level-specific references (which are provided in the intermediary
rows). †shows a model using a wider hypernetwork (x3.5 params)
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0-1 Measures Average Readability Features

Complexification SARI Fluency True P. Copies GFI FRE FKGL ARI ASL

Ele → Adv 0.981 0.995 0.000 12.93 61.26 10.45 12.89 23.05

H++ (Original) 0.837 1.000 0.100 12.57 63.65 10.00 12.38 22.60

H++ (Combined) 0.869 0.981 0.062 12.68 62.74 10.14 12.47 22.66

H++ (Combined)† 0.889 1.000 0.062 12.63 62.78 10.15 12.55 22.70

H++ (Separate) 0.876 0.990 0.071 12.60 62.79 10.12 12.46 22.61

H++ (Separate)† 0.901 0.990 0.038 12.61 63.02 10.10 12.52 22.66

String Prefix 0.930 0.990 0.033 12.75 61.93 10.30 12.69 22.82

Int → Adv 0.991 0.959 0.000 14.39 55.11 11.94 14.68 25.62

H++ (Original) 0.383 0.973 0.410 13.63 57.84 11.27 13.87 24.43

H++ (Combined) 0.411 0.977 0.342 13.41 58.62 11.11 13.66 24.23

H++ (Combined)† 0.406 0.977 0.351 13.53 58.50 11.20 13.80 24.54

H++ (Separate) 0.428 0.955 0.392 13.59 57.90 11.25 13.88 24.41

H++ (Separate)† 0.414 0.977 0.338 13.56 57.93 11.16 13.68 24.05

String Prefix 0.480 0.959 0.392 13.54 58.32 11.19 13.76 24.38

Ele → Int 0.982 0.910 0.000 11.58 65.82 09.20 11.21 20.60

H++ (Original) 0.438 0.982 0.407 10.82 68.28 08.59 10.53 19.52

H++ (Combined) 0.498 0.958 0.311 10.86 68.10 08.64 10.53 19.60

H++ (Combined)† 0.516 0.940 0.275 10.90 67.91 08.68 10.60 19.69

H++ (Separate) 0.531 0.952 0.263 10.94 67.80 08.69 10.58 19.64

H++ (Separate)† 0.541 0.964 0.222 11.11 67.72 08.74 10.62 19.82

String Prefix 0.571 0.970 0.275 11.30 67.11 08.97 11.03 20.38

Table 14: Extra Results: Target-level results for T5-Base on the onestop dataset
in the complexification pairs. For SARI, where higher values indicate
better performance, we emphasize the systems according to their scores.
For the average readability features, we highlight the systems that perform
closest to the level-specific references (which are provided in the interme-
diary rows). †shows a model using a wider hypernetwork (x3.5 params)
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AVG

Single-Task Training

T5small 6.0× 100% 0.840 0.398 0.399 0.795 0.327 0.308 0.511

T5-Adapterssmall 1 + 6× 0.01 0.74% 0.759 0.384 0.344 0.504 0.304 0.299 0.432

T5base 6.0× 100% 0.837 0.410 0.406 0.796 0.341 0.322 0.519

T5-Adaptersbase 1 + 6× 0.01 0.87% 0.840 0.424 0.416 0.800 0.345 0.330 0.526

Multi-Task Training

H++small(Original) 1.04× 0.67% 0.827 0.415 0.494 0.652 0.324 0.345 0.510

H++small(Separate) 1.04× 0.67% 0.852 0.445 0.554 0.663 0.319 0.393 0.538

H++small(Separate)† 1.15× 2.50% 0.869 0.445 0.555 0.716 0.322 0.379 0.548

T5 String Prefixsmall 1.0× 16.67% 0.938 0.467 0.636 0.932 0.470 0.558 0.667

H++base(Original) 1.02× 0.40% 0.902 0.475 0.619 0.837 0.383 0.438 0.609

H++base(Separate) 1.02× 0.40% 0.918 0.484 0.651 0.876 0.428 0.531 0.648

H++base(Separate)† 1.07× 1.15% 0.918 0.504 0.656 0.901 0.414 0.541 0.656

T5 String Prefixbase 1.0× 16.67% 0.939 0.474 0.647 0.930 0.480 0.571 0.673

Table 15: Concise Evaluation: SARI Performance of the T5 model across all dif-
ferent tasks. †shows a model using a wider hypernetwork (3.5 times the
params). The LM Params column indicates the proportion of parameters
required for the approach (relative to the total LM params of the model).
The Per Pair column indicates the proportion of trained parameters (rel-
ative to the total LM Params of the model) to perform each task.
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6 Limitations & Future Work

While our models consistently generate sentences that are similar to the reference

sentence across multiple metrics, this does not guarantee that these sentences will

always be the user’s preferred choice, or even found useful in real-world scenarios.

The importance of evaluating the quality of generated text from a human perspec-

tive cannot be overstated. This is why modern chatbots like BlenderBot3 [Shuster

et al., 2022] and ChatGPT [OpenAI, 2023] continuously incorporate human feedback

during and after training. Regrettably, due to the significant technical overhead of

this project, we have supplemented human evaluation with fluency and meaning

preservation checks via Language Models. While these offer a helpful indication,

they are by no means equivalent, and this choice remains a limitation of this study.

While this work has presented some interesting results, we believe that there is still

a plethora of insights about the properties and capabilities of our architectures that

can be gained through further experimentation. One such interesting property that

could be explored is whether our models have acquired the ability, through multitask

training, to perform in a zero or few-shot scenarios on transformation pairs that they

haven’t encountered before. This could be achieved by omitting a transformation

pair during training and then evaluating performance on the omitted pair.

Another aspect that we have not explored at all in this study is the effect of different

ways of aligning sentences as training data for our models. We trained our models

on Onestop parallel English sentence aligned using a cosine similarity method. We

expect that the model might show different behavior if it was trained on sentences

aligned with a different method, such as alignment using a language model.

While the trend in natural language processing research is to be predominantly fo-

cused on the English language, a trend that our study unfortunately follows, we

found it difficult during our preliminary search to find suitable resources for con-

ducting this specific study in another language. However, we were able to identify

the German simplification/summarization datasets [Ebling et al., 2022] and [An-

schütz et al., 2023] which, with additional effort, could potentially be transformed

into valuable resources for the task we have explored. Given access to parallel sen-
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Chapter 6. Limitations & Future Work

tences in multiple readability levels and languages, it would be possible to replicate

this study in a multilingual setting by replacing T5 with a multilingual model such

as mT5 [Xue et al., 2021]. However, a critical aspect of any potential multilin-

gual follow-up study would be to modify the multitask scheduler to accommodate

multilingual learning.

49



7 Conclusion

In this thesis, we have made several contributions to the study of the task of re-

generating sentences at different readability levels. We started by examining the

available corpora and analyzing their readability features. We then established

an evaluation pipeline that evaluates the performance of the models using several

traditional readability features as well as reference-based metrics such as SARI. As

part of our evaluation methodology, we used externally trained language models to

ensure that our models generate paraphrases that maintain grammatical correctness.

Within a logical sequence of experiments, we evaluate our proposed architectural

variations to the hyperformer++ architecture. This leads us to our main contribu-

tion, a unique variant of hyperformer++, specifically designed to tackle the sentence

re-generation to target specific readability levels task within a multitask framework.

Finally, we compare our approach with other common pairwise or multitask solu-

tions. Our results suggest that pairwise approaches often struggle to extract suffi-

cient signals from the training data, which might also be due to the nature of the

data itself.

Within this comparison, we show that our proposed method (using only 2% trained

parameters) performs competitively against strong multitask baselines that fine-tune

all model parameters. Specifically, our two key architectural additions, initialization

by an ordinal readability representation and separation of the task representation

between the encoder and decoder, both contribute significantly to bridging the per-

formance gap of the original hyperformer++ to the strong string prefix baseline.
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M. Anschütz, J. Oehms, T. Wimmer, B. Jezierski, and G. Groh. Language models

for German text simplification: Overcoming parallel data scarcity through

style-specific pre-training. In Findings of the Association for Computational

Linguistics: ACL 2023, pages 1147–1158, Toronto, Canada, July 2023.

Association for Computational Linguistics. URL

https://aclanthology.org/2023.findings-acl.74.

A. Ansell, E. M. Ponti, J. Pfeiffer, S. Ruder, G. Glavaš, I. Vulić, and A. Korhonen.
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A Architecture Variations

Supplementary Learning Curves

Hyperparameter Setup

1. Initial Learning Rate

• Default: 0.0003

• Short Description: The model initial learning rate.

2. Training Steps

• Default: 65000

• Short Description: The finetuning steps (batches).

3. LR Scheduler

• Default: linear

• Short Description: Which lr scheduler to use.

4. Temperature

• Default: 1

• Short Description: Defines the temperature value for sampling across the

multiple datasets.

5. Top K

• Default: 50

• Top K words from softmax to sample for generation.

6. Beam Size

• Default: 4
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APPENDIX A. ARCHITECTURE VARIATIONS SUPPLEMENTARY LEARNING CURVES

• The sequences considered simulatenously for generation. Beam size = 1

is greedy decoding.

Readability Initialisation
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SRC->

TGT->

SRC->

TGT->

TGT->
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TGT->SRC->

TGT-> SRC->

TGT->

Advanced -> Intermediate: Prediction's Average ARI Intermediate -> Advanced: Prediction's Average ARIAdvanced -> Elementary: Prediction's Average ARI

Elementary -> Advanced: Prediction's Average ARI Elementary -> Intermediate: Prediction's Average ARIIntermediate -> Elementary: Prediction's Average ARI

SRC-> TGT->

Figure 13: Average Predictions’ ARI Random/Readability Initialisation Combined

Separate Task Embeddings Instance for Encoder and Decoder

Frozen Task Embeddings
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SRC->

TGT->

SRC->
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TGT->

SRC-> SRC->

TGT->

Advanced -> Intermediate: Prediction's Average FKGL Intermediate -> Advanced: Prediction's Average FKGLAdvanced -> Elementary: Prediction's Average FKGL

Elementary -> Advanced: Prediction's Average FKGL Elementary -> Intermediate: Prediction's Average FKGLIntermediate -> Elementary: Prediction's Average FKGL
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TGT->

SRC->

Figure 14: Average Predictions’ FKGL Random/Readability Initialisation Com-
bined
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SRC->

TGT->

Advanced -> Intermediate: Prediction's Average FRE Intermediate -> Advanced: Prediction's Average FREAdvanced -> Elementary: Prediction's Average FRE

Elementary -> Advanced: Prediction's Average FRE Elementary -> Intermediate: Prediction's Average FREIntermediate -> Elementary: Prediction's Average FRE

Figure 15: Average Predictions’ FRE Random/Readability Initialisation Combined

58



APPENDIX A. ARCHITECTURE VARIATIONS SUPPLEMENTARY LEARNING CURVES

Advanced -> Intermediate: Validation Loss Intermediate -> Advanced: Validation LossAdvanced -> Elementary: Validation Loss

Elementary -> Advanced: Validation Loss Elementary -> Intermediate: Validation LossIntermediate -> Elementary: Validation Loss

Figure 16: Validation loss of Separate/Combined Embeddings
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Elementary -> Advanced: Prediction's Average ARI Elementary -> Intermediate: Prediction's Average ARIIntermediate -> Elementary: Prediction's Average ARI

TGT->SRC->

Figure 17: Average Predictions’ ARI Separate/Combined Embeddings
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Advanced -> Intermediate: Prediction's Average GFI Intermediate -> Advanced: Prediction's Average GFIAdvanced -> Elementary: Prediction's Average GFI

Elementary -> Advanced: Prediction's Average GFI Elementary -> Intermediate: Prediction's Average GFIIntermediate -> Elementary: Prediction's Average GFI
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Figure 18: Average Predictions’ GFI Separate/Combined Embeddings
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Figure 19: Average Predictions’ FRE Separate/Combined Embeddings
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Advanced -> Intermediate: Validation Loss Intermediate -> Advanced: Validation LossAdvanced -> Elementary: Validation Loss

Elementary -> Advanced: Validation Loss Elementary -> Intermediate: Validation LossIntermediate -> Elementary: Validation Loss

Figure 20: Validation Loss of Random/Readability Initialisation Separate
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Advanced -> Intermediate: Prediction's Average ARI Intermediate -> Advanced: Prediction's Average ARIAdvanced -> Elementary: Prediction's Average ARI

Elementary -> Advanced: Prediction's Average ARI Elementary -> Intermediate: Prediction's Average ARIIntermediate -> Elementary: Prediction's Average ARI

SRC-> TGT->

Figure 21: Average Predictions’ ARI Random/Readability Initialisation Separate
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Advanced -> Intermediate: Prediction's Average FKGL Intermediate -> Advanced: Prediction's Average FKGLAdvanced -> Elementary: Prediction's Average FKGL

Elementary -> Advanced: Prediction's Average FKGL Elementary -> Intermediate: Prediction's Average FKGLIntermediate -> Elementary: Prediction's Average FKGL
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Figure 22: Average Predictions’ FKGL Random/Readability Initialisation Separate
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Elementary -> Advanced: Prediction's Average FRE Elementary -> Intermediate: Prediction's Average FREIntermediate -> Elementary: Prediction's Average FRE

Figure 23: Average Predictions’ FRE Random/Readability Initialisation Separate
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Advanced -> Intermediate: Validation Loss Intermediate -> Advanced: Validation LossAdvanced -> Elementary: Validation Loss

Elementary -> Advanced: Validation Loss Elementary -> Intermediate: Validation LossIntermediate -> Elementary: Validation Loss

Figure 24: Validation Loss of Frozen/Unfrozen Combined Readability Initialisation
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TGT->
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SRC->
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SRC->

TGT->

Advanced -> Intermediate: Prediction's Average ARI Intermediate -> Advanced: Prediction's Average ARIAdvanced -> Elementary: Prediction's Average ARI

Elementary -> Advanced: Prediction's Average ARI Elementary -> Intermediate: Prediction's Average ARIIntermediate -> Elementary: Prediction's Average ARI

SRC-> TGT->

Figure 25: Average Predictions’ ARI of Frozen/Unfrozen Combined Readability Ini-
tialisation
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Advanced -> Intermediate: Prediction's Average FKGL Intermediate -> Advanced: Prediction's Average FKGLAdvanced -> Elementary: Prediction's Average FKGL

Elementary -> Advanced: Prediction's Average FKGL Elementary -> Intermediate: Prediction's Average FKGLIntermediate -> Elementary: Prediction's Average FKGL

SRC-> TGT->

Figure 26: Average Predictions’ FKGL of Frozen/Unfrozen Combined Readability
Initialisation

SRC->

TGT->
SRC->

TGT->

SRC->

TGT->

TGT->

SRC->

SRC->

TGT->

SRC->

TGT->

Advanced -> Intermediate: Prediction's Average FRE Intermediate -> Advanced: Prediction's Average FREAdvanced -> Elementary: Prediction's Average FRE

Elementary -> Advanced: Prediction's Average FRE Elementary -> Intermediate: Prediction's Average FREIntermediate -> Elementary: Prediction's Average FRE

Figure 27: Average Predictions’ FRE of Frozen/Unfrozen Combined Readability Ini-
tialisation
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Advanced -> Intermediate: Validation Loss Intermediate -> Advanced: Validation LossAdvanced -> Elementary: Validation Loss

Elementary -> Advanced: Validation Loss Elementary -> Intermediate: Validation LossIntermediate -> Elementary: Validation Loss

Figure 28: Validation Loss of Frozen/Unfrozen Separate Readability Initilisation

Advanced -> Intermediate: Prediction's Average ARI Intermediate -> Advanced: Prediction's Average ARIAdvanced -> Elementary: Prediction's Average ARI

Elementary -> Advanced: Prediction's Average ARI Elementary -> Intermediate: Prediction's Average ARIIntermediate -> Elementary: Prediction's Average ARI
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SRC->
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Figure 29: Average Predictions’ ARI of Frozen/Unfrozen Separate Readability Ini-
tialisation
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Figure 30: Average Predictions’ FKGL of Frozen/Unfrozen Separate Readability Ini-
tialisation
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Figure 31: Average Predictions’ FRE of Frozen/Unfrozen Separate Readability Ini-
tialisation

66


	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Task Formalization
	Hypotheses
	Thesis Outline

	Background
	Datasets & Evaluation Metrics
	OneStop English
	Newsela
	Non-Parallel Readability Datasets
	Evaluation/Observation Metrics: Traditional Readability Features
	Readability Features Analysis of Datasets
	Evaluation Metrics: Reference-Based
	Evaluation Metrics: Language Models Based Quality Assurance

	Methodology
	Hyperformer++
	Hyperformer++ Architecture Variations

	Results
	Hyperformer++ Chosen Variation & Baselines
	Extended Evaluation
	Concise Evaluation Overview

	Limitations & Future Work
	Conclusion
	References
	Architecture Variations Supplementary Learning Curves

