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Abstract

Open-Set classification (OSC) addresses one of the core issues of traditional classification tech-
niques, namely, the underlying closed-world assumption. The goal of OSC methods is to classify
known classes correctly while also rejecting unknown classes. We propose two novel generic loss
functions, Margin-OS and Margin-EOS, which combine the Entropic Open-Set and Objectosphere
loss with margin-based loss functions used in face recognition tasks, CosFace and ArcFace, to
learn discriminative features. We find that the margin has a positive effect on the closed-set accu-
racy but a mixed effect on the open-set performance. For applications that can tolerate high false
positive rates, our losses improve the classification of known classes, but for low false positive
rates the margin negatively impacts the training which leads to subpar classification of known
samples.
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Chapter 1

Introduction

Ever since deep convolutional neural networks (DCNNs) such as AlexNet (Krizhevsky et al.,
2012) have proved successful on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012 (Russakovsky et al., 2015), DCNNs have become dominant approaches for image classifica-
tion tasks. Classification is the task of categorizing inputs into known classes, i. e., predicting
their ground-truth label. The ILSVR challenge, like many others, is a closed-set classification task —
often simply called classification task — which means that all class labels that occur at test time
also have been seen during training (Boult et al., 2019; Wen et al., 2016). As such, this notion of a
(closed-set) classification tasks makes a closed-world assumption (Scheirer et al., 2013; Boult et al.,
2019; Mahdavi and Carvalho, 2021). It assumes that the world of all possible classes comprises
only of the classes contained in the dataset that the algorithm was trained on and consequently
a closed-set classifier will classify any input as one of the classes seen during training, even if the
input visually is completely different to all known inputs.

Neural networks designed for classification can be considered as a composition of two key
components: the neural network backbone and the head (see Section 3.1). The backbone takes
the preprocessed inputs and transforms them into non-linear deep features — or simply features,
hence, the backbone is often also called the feature extractor (Goodfellow et al., 2016). Figure 1.1a
depicts the deep feature distribution of four known classes 1–4 and two unknown classes 5–6.
These deep feature then get fed into the neural network head which performs the actual classifi-
cation task and returns a probability distribution over all classes. These probabilities are known
as softmax probabilities or softmax scores. Finally, label prediction is performed by choosing the
class label with the highest softmax score.

The training supervision is traditionally performed via the categorical cross-entropy loss —
or softmax loss — which separates the deep features via decision boundaries as depicted in Fig-
ure 1.1b. Therefore, the network is encouraged to learn separable features, i. e. the network is only
concerned on which side a sample lies and ignores the distance to the decision boundary of any
given sample. These decision boundaries partition the entire deep feature space with respect to
the known classes and as such, encompasses the entire open space. For example, it classifies all
samples in the top left corner of Figure 1.1b as class 1 even though there lies a different class that
is unknown to the classifier, class 6, in the open space behind class 1. If, in this case, a sample of
class 6 was given as input, the classifier would predict that it belongs to class 1 as this is the most
likely outcome out of all known classes.

Open-Set Classification For real-world applications the closed-world assumption is obviously
not justified, since often unwanted or unknown inputs can occur once a model is in an uncon-
trolled environment (Dhamija et al., 2018). Therefore, we require the classifier to have the option
“none of the above” when classifying some input (Dhamija, 2022). In other words, a robust clas-
sifier needs to be able to reject unknown or unwanted inputs that don’t belong to the closed space,
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(a) Deep Feature Distribution (b) Closed-set Classification (c) Open-Set Classification

Figure 1.1: DEEP FEATURE SPACE FOR CLASSIFICATION TASKS. This figure illustrates the deep feature
space on which a classification is performed. Deep features for known classes 1–4 and unknown classes 5–6
are shown in (a). Decision boundaries of traditional closed-set classifiers that partition the deep feature
space are depicted in (b). Lastly, (c) illustrates the goal of open-set classification, that is preserving and
recognizing the open space. Source: (Geng et al., 2021)

in addition to correctly classifying known classes (Mahdavi and Carvalho, 2021; Dhamija et al.,
2018). This requires the classifier to preserve and recognize the open space with the challenge of
only having incomplete information about it (Scheirer et al., 2013). Figure 1.1c illustrates this idea
by adjusting the decision boundaries to recognize the open space.

(Scheirer et al., 2013) define open-set recognition (OSR) as the task, where we want to recognize
some classes “in a much larger space of things we do not recognize.” (Scheirer et al., 2013) While
many use the term open-set classification (OSC) synonymously, in this thesis we use the term OSC
to refer to tasks or algorithms that perform classification via computing a softmax probability
distribution over the known classes. We do so to highlight the fact that all algorithms we ex-
periment with, in this thesis, are extensions to traditional closed-set classification algorithms and
to differentiate from classification-based face recognition methods, which do not predict labels
based on probability distributions, even when performing classification-like tasks. Accordingly,
we consider OSR a broader term that includes OSC as a special case.

According to Dhamija et al. (2018) the goal of OSR methods is twofold:

1. Correctly classify inputs belonging to the known classes.

2. Reject inputs belonging to all other classes.

As such, OSR and in particular OSC aim to improve robustness of AI classification systems against
unwanted inputs. This makes OSR a very interesting field for real-world applications and many
different approaches from various disciplines exist. In Chapter 2 we introduce two fields which
contributed to OSR in ways which are relevant for this thesis, OSC and race recognition.

Problem Formalization Following Dhamija et al. (2018) we can formalize the problem of OSC
as follows. We denote the infinite label space of all classes as Y ⊂ N which can be further split into
two subsets:

• C = {1, . . . , C} ⊂ Y denotes the finite set of known classes that a neural network shall learn
to classify, for both, closed-set and open-set tasks. Note that the cardinality of this set is
C = |C| < ∞.

• M = Y \ C denotes the infinite set of mixed unknown classes which shall be rejected by a
neural network. These are all classes contained in the label space that are not considered
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to be known classes and are thus sometimes simply called unknown classes. We can further
divide M into the following two subsets:

– N ⊂ M denotes the finite set of mixed unknown classes for which labeled data is
available during training. We call the classes contained in N negative classes, but they
are sometimes also referred to as background, garbage, or known unknown classes. These
classes shall be rejected by the neural network and serve as proxy for M during train-
ing.

– U = M\N denotes the infinite set of unknown classes, sometimes also called unknown
unknown classes. For samples of this class no training samples are available and thus
these only occur at test time.

In order to not confuse the mixed unknown and unknown classes, we will not refer to the mixed
unknown classes as “unknown” in this thesis. With these notions we can define notations for
train and test datasets used in OSC, inspired by the notation from Dhamija et al. (2018). We
denote the train dataset of known samples as Dtrain

C , which contains samples from C, and denote
the corresponding test set as Dtest

C . Let Dtrain
N be the train set of negative samples and Dtest

N be the
corresponding test set. Similarly, let Dtest

U be the test set of unknown samples. Accordingly, we
denote the test set of mixed unknown samples as Dtest

M = Dtest
U ∪ Dtest

N . Finally, we denote the full
training data by Dtrain = Dtrain

C ∪ Dtrain
N and the test data by Dtest = Dtest

C ∪ Dtest
M , where we denote

the size of the training data by N =
∣∣Dtrain

∣∣. Note however, that we use batch processing in all
our experiments.

Our Contributions This thesis is motivated by the hypothesis that clustering classes more com-
pactly in the deep feature space enhances a classifiers ability to perform closed-set and open-set
classification, with a primary focus on open-set classification. Dhamija (2022) identifies five gen-
eral approaches of open-set recognition, namely: (1) learning with unlabeled data, (2) deep feature
learning via network architecture changes, (3) deep feature learning via changing the loss function, (4)
learning feature distributions, and (5) learning with additional data.

Dhamija (2022) suspects that many advancements in the field of OSR have been made, but
accounted as advancements to other fields, e. g., face recognition. Therefore, this thesis aims to
explore and improved improve upon OSC loss functions for neural networks by combining re-
cent OSC losses with the fundamental idea used in face recognition methods, namely, learning
discriminative features. As such, we explore the combination of the two categories of open-set
recognition: deep feature learning via changing the loss function and learning with additional data.

In particular, we make use of the Entropic Open-Set (EOS) loss and the Objectosphere (OS) loss
(Dhamija et al., 2018) for OSC, which incorporate negative samples into the training process to
enable effective thresholding of the softmax scores. We combine these with the margin-based loss
functions CosFace (Wang et al., 2018b) and ArcFace (Deng et al., 2019), which learn discriminative
features through imposing margins in the traditional softmax loss.

We capture these goals with the following research questions:

RQ1: What effect do margins from margin-based loss functions have on the

RQ1a: closed-set performance and

RQ1b: open-set performance

of an OSC task, when trained without negative samples?

RQ2: What effect do margins from margin-based loss functions have on the

RQ2a: closed-set performance and



4 Chapter 1. Introduction

RQ2b: open-set performance

of an OSC task, when combined with EOS and OS to incorporate negative samples during
training?

What We Do and Don’t Do We start by exploring how CosFace and ArcFace perform on open-
set classification tasks with soft feature normalization (SFN) since recent research suggests that
SFN can achieve better performance (Zheng et al., 2018; Liu et al., 2023). We refer to these losses
as SFN-CosFace and SFN-ArcFace. As our main contribution, we propose two novel loss functions
Margin-OS and Margin-EOS that combine the above mentioned approaches in different ways,
but both make use of negative samples during training. For all these losses, the normalization of
features and weights forces the networks to discriminate between classes only based on the angles
of the deep features to each class center (see Section 3.2). This allows us to effectively target the
angles with margins to encourage learning discriminative features by clustering deep features for
each class more compactly.

In this thesis we only consider methods that perform open-set classification via thresholding
softmax probabilities and do not consider any methods that apply thresholds to the logits, i. e.,
the unnormalized log probabilities, or that introduce a background class (see Section 2.1). For all
of the losses considered, we compare hard feature normalization (HFN) and soft feature normal-
ization (SFN) (see Section 3.2.1). However, we do not consider this a focus of this thesis and thus
do not formulate it as a research question. Nevertheless, because the feature magnitude plays an
important role in margin-based losses and consequently also in our proposed loss functions, we
deem it an important consideration (see Section 3.2.2).

We perform preliminary experiments to aid in the process of developing our losses and to
visualize deep features, which helps build intuition on how the losses work. Importantly, we
consider the four margin-based loss functions SM-Softmax, SphereFace, CosFace, and ArcFace
each with a different type of margin. However, due to time restrictions it is impossible for us
to consider all four, which is why the preliminary experiments provide empirical guidance on
which margin types to prioritize. Then, we conduct our experiments on the ImageNet open-
set protocols introduced by Palechor et al. (2023) and evaluate the performance via the open-set
classification rate (OSCR) curves introduced by Dhamija et al. (2018) with crucial improvements
made by Bisgin et al. (2023). The OSCR curves allow us to evaluate the closed-set performance as
a special case when performing an open-set experiment (ses Section 5.2).

Results We find that the margin shows a clear positive effect on the closed-set performance,
while the effect on the open-set performance is mixed. The increased closed-set accuracy on
methods that are trained with negative samples, is partly explained through the margin, but
largely explained through the fact the Margin-OS losses and Margin-EOS losses are forced to
discriminate based on the angles only. For losses without negative samples, the effect is almost
solely a result of applying a margin.

Our losses can achieve improved open-set classification performance on the known samples
when accepting that the classifier will wrongly classify many negative and unknown samples
as known (high false positive rate). The higher the applied threshold, the more negative the
effect of the margin becomes, as it leads to more known samples being rejected, than for identical
networks that do not impose a margin. This leads to underperformance of our margin-based
losses on open-set classification tasks where the false positive rate is required to be low. While the
size of the margin effects are a bit different when trained with or without negative samples, but
qualitatively the observations are similar.

Thesis Outline This thesis is outlined as follows:
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• Related Work: In this chapter we provide a non-technical overview over relevant approaches
from open-set classification and face recognition.

• Background: This chapter formally introduces the notation used in this thesis. We motivate
the interpretation of the logits via the cosine similarity, which then allows us to formally
introduce all loss functions upon which we build our losses.

• Approach: In this chapter we introduce and motivate our proposed loss functions Margin-
OS and Margin-EOS as well as variations of CosFace and ArcFace that make use of soft
feature normalization (SFN), SFN-CosFace and SFN-ArcFace.

• Experimental Setup: In this chapter we introduce our toy protocol and the ImageNet open-
set protocols on which we conducted our experiments. Furthermore, we introduce the
OSCR curve as our evaluation metric and the hyperparameters used in our experiments.
Finally, we discuss the network architectures used and the hyperparameter choices.

• Experiments: In this chapter we explain the experiments we conducted for answering our
research questions and present the results.

• Discussion: In this chapter we interpret the results and answer our research questions.
Furthermore, we highlight limitations of our work.

• Conclusion and Future Work: In this chapter we provide a summary of this thesis and
discuss possible areas for future work that is left untouched by this thesis.





Chapter 2

Related Work

In this chapter we provide a non-technical overview over open-set classification approaches and
in particular provide an overview into the area of face recognition. Approaches upon which we
build our losses are introduced in more detail along with formal definitions in Chapter 3.

2.1 Open-Set Classification
There exist several ways of extending closed-set classification methods to open-set classification
methods by providing them with an option to reject inputs (Mahdavi and Carvalho, 2021). Mah-
davi and Carvalho (2021) identify two fundamental approaches for addressing open-set classi-
fication with approaches that predict probability distributions over known classes: including a
background class or thresholding the probability scores.

Background Class Background — or garbage — class approaches make use of negative — or
background — samples, that originally belong to various different classes, by relabelling them to
form a single background class. The network then treats this like a regular class and learns C + 1
classes via softmax loss. If a sample is classified as the background class, it is considered to be un-
known. According to Mahdavi and Carvalho (2021) and Dhamija et al. (2018), background class
approaches are simple, yet, very effective approaches in practice that aim to learn a separation
between the known classes and the background class.

Softmax Score Thresholding Another way of extending a closed-set classifier that predicts a
probability distribution over all classes is to apply a probability threshold to the softmax scores.
A sample is considered known if its maximal probability score surpasses the threshold, then the
label is predicted for which the probability is highest. If the maximal probability does not surpass
the threshold for a given sample, then it is considered to be unknown.

Since softmax scores are a “squished” result of the logits and entirely determined by their
relative distances, their values can become 1 (up to some precision) when the distances between
the logits are high. This makes thresholding them impossible, in which case thresholding the
logits directly can lead to better results. However, we only consider softmax thresholding as
evaluation method. Furthermore, thresholding softmax scores is susceptible to adversarial or
fooling images which achieve high probabilities for images that do not represent any human
interpretable class (Nguyen et al., 2015; Goodfellow et al., 2015).

Approaches that aim to threshold softmax scores heavily benefit from learning with negative
classes. Dhamija et al. (2018) introduce the Entropic Open-Set (EOS) loss and the Objectosphere
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(OS) loss which are trained to achieve a maximal entropy distribution for negative samples, i. e.,
a uniform distribution over all known classes. This is ideal for applying probability thresholds.

2.2 Face Recognition
Face recognition is an extensively studied computer vision problem and in the context of human
biometrics it is also the most used computer vision problem in real-world applications according
to Du et al. (2022). We do not provide a comprehensive overview over all possible methods used
in face recognition here, but only highlight classification-based face recognition methods. For a
broader overview we point to Du et al. (2022). Even though our approaches do not make use
of the face recognition pipeline (see Figure 2.1), but use a traditional classification approach, we
think it is important to highlight where the idea of imposing a margin comes from and to motivate
why the cosine interpretation of the logits is a crucial component of all our proposed losses (see
Section 3.2).

The goal of most face recognition tasks is to determine if two images depict the same identity
or to identify a person from a list of identities who should be identified, i. e., the gallery. Naturally,
most face recognition tasks are evaluated on an open-set protocol, where label prediction is not
possible since the the identities from the gallery typically do not overlap with the identities in the
training data (Liu et al., 2017). As such, face recognition problems are addressed as transfer learn-
ing tasks, where neural networks serve as deep feature extractors (Goodfellow et al., 2016), i. e.,
they learn face representations from images. This makes face recognition inherently a more open
problem than any closed-set classification problem (Scheirer et al., 2013) and therefore requires
strong generalization (Scheirer et al., 2013).

2.2.1 End-To-End Face Recognition
Any DCNN-based face recognition pipeline contains the three steps (see Figure 2.1): face detec-
tion, face alignment, and face representation (Du et al., 2022). Face representation is broadly con-
sidered the core step and is also the only step of interest to us. Note that, due to the fact that face
representation is considered the core step of any face recognition task, the term face recognition
is sometimes used to refer to face representation.

Figure 2.1 depicts the face recognition process for the face verification task. The face detection
step takes an image as input (although other inputs such as videos or a set of images are also
possible) and localizes the face region. It typically returns the coordinates of the bounding box
(red box in Figure 2.1) as well as a confidence score. The face alignment step takes the detected
face and normalizes it to the canonical layout which facilitates the face representation task. The
detected faces are, for example, scaled and rotated such that the facial landmarks such as eyes,
nose, and corners of the mouth lie on their canonical coordinates within the cropped image. The
face representation step then computes deep features that are then used to carry out concrete face
recognition tasks.

The two most prominent face recognition tasks are face verification and face identification
(Du et al., 2022; Liu et al., 2017). Face verification is the task of deciding if two images depict
the same identity by computing the cosine similarity between the feature representations. If the
similarity score is above a certain threshold, then the images are considered to depict the same
identity, otherwise they are considered to depict different identities. Face identification is the task
of identifying some person, via a probe image, from the gallery. Du et al. (2022) note that for
“open-set face identification, a prior step is needed, whose target is predicting whether the face
belongs to one of the gallery identities or not.” As such, open-set face identification can be viewed
as a series of face verification tasks, where the probe gets compared to every image on the gallery
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Figure 2.1: END-TO-END FACE RECOGNITION PIPELINE FOR FACE VERIFICATION. The typical
end-to-end face recognition pipeline for face verification consists of three separate steps: face detection, face
alignment, and face representation. Face detection takes an input image and localizes the face region. Then,
face alignment normalizes the detected face into the canonical layout. Face representation extracts deep
feature vectors for each input. Finally, the cosine similarity between two deep feature vectors is computed
and compared to a threshold to perform face verification. Source: (Du et al., 2022)

(Liu et al., 2017). For this reason DCNN-based face recognition is usually interpreted as learning
features for face verification in the hope that these generalize well to open-set face identification.

2.2.2 Learning Discriminative Features
Dealing with unseen faces at test time requires strong generalization of the learned features be-
yond the training data (Wen et al., 2016; Scheirer et al., 2013) and thus the “objective of supervision
for any face representation learning is to encourage the faces of same identity to be close and those
of different identities to be far apart in the feature space.” (Du et al., 2022) Liu et al. (2017) refer to
this objective as the open-set criterion which states that the maximal intra-class distance between
deep features must be smaller than the minimal inter-class distance, given some metric deep fea-
ture space. In other words, we want face representations of the same class to be very close in the
deep feature space while keeping different classes not only separated but far apart.

Features learned via softmax loss are considered to be separable features and do generally not
fulfill the open-set criterion (see Section 3.1). As such, Wen et al. (2016), Liu et al. (2017), Wang
et al. (2018b), Deng et al. (2019), and Meng et al. (2021) among many others have highlighted that
learning separable deep features — while sufficient for closed-set classification — is insufficient
for open-set recognition tasks. For this reason, recent research in face recognition focuses on
learning discriminative features, which are clustered more compactly in the deep feature space than
separable features.

Learning discriminative features can be achieved in various ways with two main contributing
factors: the network architecture and the training supervision (Du et al., 2022; Dhamija, 2022). In
this thesis we focus on finding new ways of providing supervision for neural networks via differ-
ent loss functions, so we now only discuss research related to the supervision of face recognition
networks and omit discussing specialized network architectures. Most current state-of-the-art ap-
proaches, and also the ones relevant to our thesis, are classification-based methods Du et al. (2022).

Classification-Based Methods Classification-based face recognition methods consider learn-
ing face representations as a multi-class classification task, i. e., the training is conducted via soft-
max loss. This brings the benefits of being able to leverage the advantages of the softmax loss,
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such as scalability to large data sets and number of classes, but comes with the downside that it
only learns separable features (Deng et al., 2019).

Classification-based methods are specifically trained to perform transfer learning and are
trained as closed-set task on datasets like CASIA-WebFace (Yi et al., 2014), which contains 0.49M
face images from 10575 different identities. This is done in the hope that the learned mapping
from images to face representations generalizes well to previously unseen face images. Then,
the pipeline, as illustrated in Figure 2.1, gets used to carry out face recognition tasks by using
the trained network as deep feature extractor for the face representation step. Because the deep
features then get compared via the cosine similarity, classification-based methods reinterpret the
logits via their cosine interpretation optimize the cosine similarity directly (see Section 3.2). Note
that these methods are trained without negative samples, i. e., Dtrain

N = ∅.
A prominent subset of classification-based face recognition losses are the margin-based losses.

These are fundamental to this thesis and many get introduced in more detail in Section 3.3. To
overcome the limitations of separable features learned by the softmax loss, recent methods such as
SphereFace (Liu et al., 2017, 2023), SM-Softmax (Liang et al., 2017), CosFace (Wang et al., 2018b),
AM-Softmax (Wang et al., 2018a), ArcFace (Deng et al., 2019), and MagFace (Meng et al., 2021)
impose a margin in the deep feature space between classes, i. e., identities. This margin artificially
penalizes a network during training by computing the softmax activation as if a sample were
further away from the true class center than it actually is. By doing so, the margin encourages the
network to move the sample closer to the center and further away from the decision boundaries
which helps fulfilling the open-set criterion.



Chapter 3

Background

In this chapter we introduce relevant loss functions and fundamental concepts upon which our
proposed loss functions build. We start by defining the softmax loss, introducing notation, and
terminology. Then, we introduce the margin-based losses SM-Softmax, SphereFace, CosFace, and
ArcFace. Lastly, we introduce the OSC approaches Entropic Open-Set loss and Objectosphere
loss.

3.1 Softmax Loss
The softmax loss is the backbone of neural network training for many closed-set and open-set
classification algorithms. To formally define the softmax loss we need to introduce some notation
regarding neural networks. An accompanying overview with a focus on the neural network head
and its components is presented in Figure 3.1.

All of the here considered methods are supervised learning techniques which require input-
target pairs (xi, ti) ∈ Dtrain for training, where i is an index over all samples in the data. Notably,
we differentiate between the ground-truth labels y and the targets t used for training. The labels
y ∈ CN correspond to the known class labels and allow us to keep notation succinct, where N
denotes the number of training data points. For example, y1 = 3 denotes that the ground-truth
label of the data point 1 is 3, i. e., x1 belongs to class 3. The targets t ∈ RN represent the concrete
targets used during training, which can be either equal to the labels but often is a one-hot encoding
thereof.

Throughout this thesis we consider a neural network classifier as a composition of two func-
tions: (1) the backbone or deep feature extractor ϕi = B(xi) ∈ RK , which maps a sample xi to their
deep feature representations ϕi, where K ∈ N is the deep feature dimensionality, and (2) the head
pi = H(ϕi) ∈ RC , which maps the deep feature representations ϕi to a probability distribution pi

over all known classes, where C is the number of known classes. Since the probability distribu-
tion pi is the result of a softmax activation, it the probabilities also known as softmax scores. Note
that the deep feature representations are also referred to as embeddings. The neural network is
then given by the composition pi = H(B(xi)).

Neural Network Head While the feature extractor B performs a crucial task in open-set recogni-
tion and open-set classification we do not further discuss it in this thesis. The actual classification
task is performed by the head H , which itself is a composition of two layers: (1) a logit layer
zi = L(ϕi) ∈ RC , where zi are the logits, and (2) a softmax activation layer pi = σ(zi) ∈ RC . The
head is then given by:

pi = H(ϕi) = σ(L(ϕi)). (3.1)
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Figure 3.1: SCHEMATIC NEURAL NETWORK OVERVIEW. This figure illustrates a schematic represen-
tation of the general neural network architecture with a focus on the network head. Input samples xi get
passed through the backbone B(xi) which extracts deep features ϕi. The deep features get transformed into
logits zi = L(ϕi) via the logit function. Then, the softmax activation σ(zi) computes softmax scores pi.
Finally, during training, the loss is computed via the loss function J (pi, ti) as a function of pi and the
targets ti.

Most neural networks for classification tasks share this basic form of a classifier function, i. e.,
the head, where the logits are typically defined as a linear transformation of the deep features.
The logits for some sample xi are then given by:

zi = Llinear(ϕi) = W⊤ϕi + b, (3.2)

where W ∈ RK×C is the weight matrix and b ∈ RC is the bias vector (Goodfellow et al., 2016). For
all future discussions we require b = 0 to be the zero vector as this is a crucial assumption for SM-
Softmax, SphereFace, CosFace, ArcFace, EOS, and OS. The logits zi represent an unnormalized log
probability distribution of the sample xi over all known classes c ∈ C, i. e., zi,c = α logP (yi = c|xi)
denotes the unnormalized log probability that the true label yi for input xi is class c ∈ C, where α
is some normalization constant (Goodfellow et al., 2016).

Softmax To obtain normalized probabilities, the logits get passed through the softmax activa-
tion function σ(zi) which outputs a probability distribution over all known classes c ∈ C. The
softmax function is defined element-wise for sample xi and class c as follows:

pi,c = σ(zi)c =
ezi,c∑

c′∈C
ezi,c′

∈ (0, 1), ∀c ∈ C (3.3)

where c ∈ C is a class label, zi,c is the logit value associated with class c, and the full probabil-
ity distribution is given by pi = (pi,1, . . . ,pi,C) (Goodfellow et al., 2016). The softmax function
guarantees that the resulting vector is a probability distribution as it satisfies all required proper-
ties. Each probability pi,c for some sample xi and class c is non-negative, i. e., pi,c ≥ 0, does not
exceed 1, i. e., pi,c ≤ 1, and the probabilities sum to 1 over all classes, i. e.,

∑
c∈C pi,c = 1. Most

importantly, the softmax scores are entirely determined by the differences in the logit values. No
differences between the logits, result in a probability distribution where each score is equal to 1

C ,
i. e. zi,c = k, ∀c ∈ C ⇒ pi,c = 1

C for some constant k (Dhamija et al., 2018). On the other hand,
sufficiently large differences between logits, e. g., one logit zi,c being far larger than all others, zi,c′
for c′ ̸= c, can result in a score pi,c ≈ 1, while all others are around 0, i. e. pi,c′ ≈ 0.
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Categorical Cross-entropy Loss The loss function J measures the “error” — or loss — that a
network makes during training and as such guides the supervision. We generally omit stating the
explicit arguments for the loss functions and instead highlight here that the arguments include the
scores pi, targets ti, and optionally the deep features ϕi for all samples xi in the batch. However,
we introduce the EOS and softmax loss as a functions of the scores only, since this will simplify
upcoming notation.

A neural network for closed-set classification with a softmax activation on the logits is typi-
cally trained with the categorical cross-entropy (CCE) loss, which is defined as:

JCCE(pi) = −
C∑

c=1

ti,c · logpi,c (3.4)

= − logpi,yi , (3.5)

where ti ∈ is the target vector for sample xi and yi is the respective ground-truth class label.
Note that (3.4) is a more general definition and can be simplified into (3.5) only if ti is a one-hot
encoded target vector. Since this combination of softmax activation and categorical cross-entropy
loss function is very frequently used, it is often often simply called softmax loss. Figure 3.2a illus-
trates the deep feature distributions of a network trained via softmax loss on our toy protocol (see
Section 5.1.1).

3.2 Cosine Interpretation of the Logits
Neural networks for face recognition follow a transfer learning approach where the network
(backbone and head) is trained via softmax loss and at test time the head gets discarded and
only the backbone is used as feature extractor. Concrete face recognition tasks are then conducted
by computing cosine similarities between deep feature vectors of identities to determine how
similar the deep features are (Liu et al., 2017; Du et al., 2022). For this reason classification-based
face representation methods interpret the logits via their cosine to optimize the cosine similarity
directly (Wang et al., 2017).

Cosine Similarity The cosine similarity between two vectors u,v ∈ RK is defined as:

Scosine := cos(θ) =
u · v

∥u∥ ∥v∥
, (3.6)

where θ is the angle between these two vectors and ∥·∥ denotes the Euclidean norm. In other
words, the cosine similarity between two vectors is the dot product of the normalized vectors. As
such, the cosine similarity is neither a distance nor a metric but rather a measure of orientation,
which means that it is agnostic to the magnitudes of the vectors and only concerned with their
relative orientation around a hypersphere in terms of their angles.

Using the well known fact that the dot product between two vectors u,v ∈ RK with angle θ
can be written as:

u · v = ∥u∥ ∥v∥ cos θ, (3.7)

many loss functions interpret the linear logits (3.2), which are simply C dot products (if b = 0),
via their cosine interpretation, which allows us to rewrite the logits element-wise as:

zi,c = Llinear(ϕi)c = W⊤
c ϕi = ∥Wc∥ ∥ϕi∥ cos(θi,c), (3.8)

where zi,c is the logit of sample xi corresponding to class c, Wc is the c-th column of W (i. e., the
class center for class c), and θi,c is the angle between Wc and ϕi.
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(a) Softmax Deep Features (b) Normalized Softmax Features (c) Normalized SFN-CosFace
Features

Figure 3.2: DEEP FEATURE DISTRIBUTIONS FOR SOFTMAX AND SFN-COSFACE. This figure shows
deep feature distributions of the softmax loss in (a). In, (b) and (c) normalized features for softmax and
SFN-CosFace are shown, where the deep features are projected onto a hypersphere, with the respective class
centers Wc (lines), which are normalized to fit the scale of the features for illustrative purposes.

3.2.1 Importance of Normalization
Because cosine similarity is a measure of orientation and thus does not consider the magnitudes
of the vectors, we want to normalize the weight and feature vectors in (3.8) to recover the cosine
similarity. For this reason classification-based face recognition approaches normalize the weights
∥Wc∥ = 1,∀c ∈ C and fix the feature magnitude to a constant s = ∥ϕi∥ for all samples xi Wang
et al. (2017). This results in the logits representing the scaled cosine similarity between the deep
feature vector ϕi and all class centers c and gives us element-wise logits of the form

zi,c = Lnormalized(ϕi)c = s · W⊤
c ϕi

∥Wc∥ ∥ϕi∥
= s · cos(θi,c), (3.9)

where s ∈ R>0 is a positive scaling constant. The constant s can be interpreted in different ways.
For instance, s can be interpreted as a scaling factor on the cosine similarity, to achieve logits of a
desired size. Alternatively, it can be interpreted as the normalized deep feature magnitude, where
but it defines the radius of the hypersphere on which the deep features get cast.

Figure 3.2b illustrates the deep features of known samples being projected onto a hypersphere
for SFN-CosFace which performs feature and weight normalization (see Section 4.1). We choose
SFN-CosFace as comparison, since the visualizations show the impact of the margin the clearest.
Note that, in contrast to softmax (Figure 3.2b), the class centers for SFN-CosFace are actually
“centers” of the class (Figure 3.2c), which is a result of weight and feature normalization.

Normalizing the weights and deep feature magnitudes this forces the network to separate the
data in the deep feature space only via the pairwise angles (Wang et al., 2017, 2018b; Deng et al.,
2019; Liu et al., 2023). These normalizations reduce the classification problem to the problem of
separating deep features only via their pairwise angles, which results in the networks distributing
the deep features around a hypersphere. Wang et al. (2018b) note that normalizing the feature
magnitude learns more discriminative features in the angular space.

Soft vs. Hard Feature Normalization Work by Zheng et al. (2018) and Liu et al. (2023) stress
the importance of feature normalization and suggest that soft feature normalization (SFN) might be
superior to hard feature normalization (HFN), the latter being how the features are normalized in
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(3.9) and also how CosFace and ArcFace were originally introduced. Zheng et al. (2018) perform
SFN by adding a magnitude regularization term to the softmax loss and SphereFace loss (see
Section 4.1) and in both cases achieve significant performance improvements on face recognition
tasks on a variety of datasets. They call their SFN approach the Ring loss where s serves as the
target feature magnitude that shall be learned by the networks. Liu et al. (2023) find in their revi-
sion of the original SphereFace formulation (Liu et al., 2017) that SFN achieves better performance
than HFN on datasets with high quality, while HFN performs better on noisy images. While SFN
comes at the cost of an additional hyperparameter — the weight associated with the regulariza-
tion term — that potentially needs tuning, Zheng et al. (2018) find that the improvements over
HFN stay significant for a large range of values for the weight.

3.2.2 Importance of the Feature Magnitude
The scaling constant s is of great importance for the training of classification-based networks as
well as prediction via softmax scores because it directly influences the probability scores that the
network can achieve (Zhang et al., 2019) since the probabilities are determined by the difference
between the values of the logits.

The original SphereFace was introduced without feature normalization which lead to unstable
training that was critiqued by (Wang et al., 2018b) and Liu et al. (2023) themselves who fixed it to
some empirically chosen constant s that provided good performance. Wang et al. (2018b) provide
a lower bound on s (see (3.11)) for expected maximal softmax scores and argue that “s should
be larger to deal with more classes since the growing number of classes increase the difficulty
for classification in the relatively compact space. A hypersphere with large radius s is therefore
required for embedding features with small intra-class distance and large inter-class distance.”
However, they proceed to choose a value for s significantly larger than the any reasonable lower
bound they could have achieved, as they empirically set s = 64 . Deng et al. (2019) copy the value
s = 64 from Wang et al. (2018b) while Liu et al. (2023) choose a lower value of s = 30 and achieve
significant improvements.

Intuition and Desired Behavior Zhang et al. (2019) provide a more in-depth analysis of the
parameter s for a classifier with logits of the form (3.9), for which we have zi,c ∈ [−s, s] since
the domain for the angles is [0, π]. For simplicity we assume that even with SFN the logits lie in
[−s, s] even though the range of logits is likely significantly larger. However, Zhang et al. (2019)
find that empirically we can further reduce the domain of the angles to [0, π

2 ] since in practice
the maximal angle of deep features to any non-ground-truth class is around π

2 , i. e. their angle is
usually around 90 degrees. This leads to logits zi,c ∈ [0, s].

They analyze the probability score of a sample xi to some class center c, as a function of
the angle between the deep feature and the class center, θi,c. Of particular interest here are the
scores for the ground truth labels, i. e., pi,yi . This provides probability curves which can be nicely
analyzed, visualized, and interpreted. They are given by:

P (yi = c|xi; θi,c) =
es·cos(θi,c)

es·cos(θi,c) + (C − 1)es·0
, (3.10)

where one can optionally also include any margins, e. g., the additive cosine margin (3.15). These
curves are not exact, however, because they rely on two assumptions: (1) HFN of the deep fea-
tures and (2) the average angle of any known sample to all other class centers is π

2 . We verified
empirically that the second assumption is fulfilled for all losses with almost no deviation for any
individual test sample. For an visualization of these probability curves see Figure 6.6.

Zhang et al. (2019) argue that we want these curves to gradually decrease from 1 to 0 as the angle
of the sample to the ground truth class center increases from 0 to π

2 . They find that when s is too
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small the probabilities for the true class fail to reach 1 even when θi,yi
= 0. This is undesirable as

this leads to the network being punished by the loss even though it is as confident as it can be —
hence the need for a lower bound. When s is too large — and Zhang et al. (2019) explicitly mention
s = 64 as being too large — and increasing the angle from 0 to π

2 (i. e. moving further away from
the ground truth class center), the probability curve will stay close to 1 until almost θi,yi

= π
2

before it falls off steeply to 0. This, too, is undesirable since this means that the probabilities stay
close to 1 even if the angle θi,yi

approaches π
2 . As such a too large feature magnitude “s may fail to

penalize mis-classified samples and cannot effectively update the networks to correct mistakes”
because of very small gradients of the probability curves (Zhang et al., 2019). In summary, s
should be as large as necessary but as small as possible.

Lower Bound Wang et al. (2018b) provide a lower bound on s as a function of the number of
classes C and the expected minimum posterior probability p̂i,c of a sample xi and some class
center c. The expected minimum posterior probability is a hyperparameter that represents the
lower bound on the expected maximal softmax score for sample xi and class c when their angle
is 0, i. e. θi,c = 0, and consequently cos(θi,c) = 1 holds. The lower bound is given by:

s ≥ C − 1

C
log

(C − 1)p̂i,c

1− p̂i,c
, (3.11)

where C > 1. When s fulfills this bound, then a sample xi with θi,c = 0 achieves in expectation a
maximal softmax score pi,c ≥ p̂i,c.

Effectively, this lower bound replaces the hyperparameter s with the hyperparameter p̂i,c for
which it is much simpler to find a suitable value, since we have a clear understanding and inter-
pretation for it. We would like p̂i,c to be very close to 1 but potentially a bit smaller to guarantee
that on average the maximum softmax scores for the known classes are larger than p̂i,c.

Note that this lower bound does not take into account the additive cosine margin nor the
additive angular margin. During training, this will result in cos(θi,yi

) − m = 1 − m < 1 or
cos(θi,yi

+m) = cos(m) < 1 for the true class label yi and m ∈ (0, π), which may lead to wrongful
penalization of the network even though network learned to classify the sample perfectly.

3.3 Margin-Based Losses
We now formally introduce the margin-based losses that we consider in this thesis: SM-Softmax,
SphereFace, CosFace, and ArcFace, each of which applies a different type of margin. The margin-
based losses benefit strongly from having feature and weight normalization, because forcing the
networks to discriminate only based on the angle is critical for imposing margins on the angles,
as it prevents the networks from circumventing the margin (Wang et al., 2018b). Which leads
to classes being clustered more compactly with larger differences between samples from differ-
ent classes. This is illustrated in Figure 3.2, where Figure 3.2b depicts traditional softmax and
Figure 3.2c depicts our SFN-CosFace loss which imposes a margin between known classes (see
Section 4.1).

Highlighting the fact that these losses are essentially just modifications in the logits trained
with standard softmax loss (3.5), they can all be written very succinctly as:

JT =
1

N

N∑
i=1

JCCE (σ(LT(ϕi))) (3.12)

where T is the type of logits used, e. g., T = SM-Softmax for SM-Softmax logits (3.13).
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3.3.1 SM-Softmax Loss - Additive Logit Margin
SM-Softmax is perhaps the most straight forward extension of the softmax loss. Liang et al. (2017)
don’t explicitly mention if their loss is designed for face recognition tasks and conduct their ex-
periments on the CIFAR-10 and CIFAR-100 datasets, both are designed for general image clas-
sification tasks, but they base their approach on L-Softmax (Liu et al., 2016) which is designed
for face recognition tasks and is similar to SphereFace. They do, however, explicitly follow the
goal of learning discriminative features by optimizing the open-set criterion which makes the
SM-Softmax a noteworthy consideration for this thesis.

SM-Softmax does neither use feature normalization nor weight normalization and targets the
logits directly with its margin. As such, we call it an additive logit margin mlogit and the logit for
sample xi and class c is given by:

zi,c = LSM-Softmax(ϕi)c = W⊤
c ϕi − δcyi ·mlogit, (3.13)

where yi denotes the ground-truth label and δcyi
is the Kronecker delta which equals 1 if c = yi

and 0 otherwise. Liang et al. (2017) do not provide any bounds on mlogit, but explore values
mlogit[0.1, 0.9] and find that values around 0.3 provide the best results. Trivially, however, any
reasonable margin must be a positive real valued number, i. e. mlogit ∈ R>0.

3.3.2 SphereFace Loss - Multiplicative Angular Margin
SphereFace is designed to be an extension of the softmax loss that imposes a multiplicative margin
on the angle of a sample to its ground-truth class center. Liu et al. (2017) call their proposed loss
the A-Softmax loss, however, for clarity we refer to it as SphereFace loss. Unlike SM-Softmax,
SphereFace interprets the logits via their cosine and normalizes the weights Wc = 1, ∀c ∈ C.
SphereFace was originally introduced without feature normalization (Liu et al., 2017) which lead
to instabilities during training. As such, we introduce SphereFace with HFN here, following Liu
et al. (2023). For sample xi and class c, SphereFace has logits of the form:

zi,c = LSphereFace(ϕi)c =

{
s ·

(
(−1)ki cos(mmultθi,yi

)− 2ki
)

if c = yi

s · cos(θi,c) otherwise
, (3.14)

where mmult ∈ R>1 denotes the multiplicative angular margin and ki ∈ N is chosen such that
θi,yi

∈
[

kiπ
mmult

, (ki+1)π
mmult

]
holds. Liu et al. (2017) use (−1)ki cos(mmultθi,yi

)− 2ki as an approximation
for cos(mmultθi,yi

) because this allows them to get around the restriction that θi,yi
∈ [0, π

mmult
] must

hold. In the code accompanying their paper, Liu et al. (2023) set ki = ⌊mmultθi,yi

π ⌋.

3.3.3 CosFace Loss - Additive Cosine Margin
CosFace extends the logits (3.9) by imposing an additive margin mcos ∈ R>0 on the cosine of
the ground-truth class (Wang et al., 2018b) and as such the logits are linear in the margin. It is
designed to directly target the unscaled cosine similarities, since it is applied before multiplying
by s. This can also be interpreted as a margin on the logit of the true class (Du et al., 2022), where
now the margin is scaled to s ·mcos. As Zhang et al. (2019) demonstrate we can succinctly express
the CosFace loss via their logits:

zi,c = LCosFace(ϕi)c = s · (cos(θi,c)− δcyi ·mcos), (3.15)

where mcos is the additive cosine margin and δcyi
is the Kronecker delta.
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During training, the cosine margin decreases the value of the cosine for the logit corresponding
to the ground-truth class and thus indirectly simulates points being further away in terms of
their angle to the true class. Wang et al. (2018b) refer to the resulting loss, i. e., softmax loss in
conjunction with the CosFace logits, as Large Margin Cosine Loss (LMCL).

3.3.4 ArcFace Loss - Additive Angular Margin
ArcFace extends the logits (3.9) by imposing an additive margin mang ∈ R>0 on the angle towards
the true class center (Deng et al., 2019). In contrast to CosFace, ArcFace targets the deep feature
space directly by imposing the margin on the angle. This results in a margin that non-linearly
impacts the logits but allows for simple interpretation of the clustering in the deep feature space.
For this thesis we restrict the discussion to the standard ArcFace version and do not consider sub-
center ArcFace as this addresses issues particular to face recognition which are irrelevant for our
application. Following Zhang et al. (2019) we can succinctly express ArcFace via the logits:

zi,c = LArcFace(ϕi)c = s · cos(θi,c + δcyi
·mang︸ ︷︷ ︸

θ̃i,c

), (3.16)

where mang is the additive angular margin and δcyi
is the Kronecker delta. Following the im-

plementation from Liu et al. (2023)1 we clamp the modified angle values θ̃i,c to the interval [0, π]
to avoid falsely punishing the network in case the angle θi,c is smaller than the margin mang, in
which case the network would learn to decrease the angle by turning it negative and trying to
learn −mang as optimal angle. Which it could not achieve, since the angles are always considered
to be positive, when measuring the cosine similarity.

3.4 OSC Losses
Dhamija et al. (2018) propose two loss functions for training neural networks for open-set classifi-
cation with negative samples. Both approaches, Entropic Open-Set Loss (EOS) and Objectosphere
Loss (OS) — the latter being an extension of the former — aim to learn the networks in such a way
that for unknown samples it returns a uniform distribution, i. e., every class being equally likely.
This lends itself well to applying probability thresholds to the softmax scores.

3.4.1 Entropic Open-Set Loss
The Entropic Open-Set loss can be viewed as a generalization of the softmax loss, because it
extends the loss to deal with negative samples. The core idea of EOS is to train the network such
that for any unknown sample xi ∈ Dtrain

N the resulting probability distribution pi = H(B(xi)) has
maximal entropy (Shannon, 1948), i. e., it is a uniform distribution. We deviate from our naming
convention for loss functions here and define the EOS loss JEOS for a single as a function of pi,
which will simplify upcoming notation:

JEOS(pi) =

{
− logpi,yi

if xi ∈ Dtrain
C

− 1
C

∑C
c=1 pi,c if xi ∈ Dtrain

N
, (3.17)

1Source code is available at: https://github.com/ydwen/opensphere/blob/main/model/head/arcface.
py

https://github.com/ydwen/opensphere/blob/main/model/head/arcface.py
https://github.com/ydwen/opensphere/blob/main/model/head/arcface.py
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(a) Known (b) Negatives (c) Unknowns (d) Normalized Features

Figure 3.3: DEEP FEATURE DISTRIBUTIONS FOR THE EOS LOSS. EOS deep feature distributions of
the 10 known classes are shown in (a) as learned by the EOS loss . In, (b) and (c) the deep features for
negative samples (gray) and unknown samples (black) are superimposed, respectively. Finally, (d) shows
normalized features, i. e., being projected onto a hypersphere, with the respective class centers Wc (lines),
which are normalized to fit the scale of the features for illustrative purposes.

where pi,c = H(B(xi))c is the softmax score for class c associated with sample xi. In practice,
we can implement the EOS loss via the general CCE loss (3.4) by setting the targets for negative
samples j to tj,c =

1
C , ∀c ∈ C, which gives us the equivalent expression:

JEOS(pi) =

C∑
c=1

ti,c · logpi,c (3.18)

This requires the implementation to use one-hot encoded targets instead of labels.
Dhamija et al. (2018) show that for negative samples, i. e. xi ∈ Dtrain

N , JEOS is minimized if
the logit values for all classes are equal. However, such a minimum is not unique. Figure 3.3
illustrates the deep features of learned by the EOS loss on our toy protocol. We superimpose the
negative and unknown test samples in Figure 3.3b and Figure 3.3c, respectively, which have a
tendency to be drawn to the origin of the deep feature space.

3.4.2 Objectosphere Loss
In order to address the issue of a non-unique minimum, Dhamija et al. (2018) refine the EOS loss
with a regularization term that guarantees that the loss for a negative sample is minimized only
for the zero vector in the deep feature space. They call the resulting loss the Objectosphere loss,
which we call OS loss, for short. As such, the OS loss exploits the natural tendency of negative
and unknown samples being drawn to the origin of the deep feature space when training with
softmax loss or EOS loss (Dhamija et al., 2018). This has the desirable property that logits with
a feature magnitude of zero have a logit vector that is the zero vector, which yields a softmax
distribution with maximal entropy, i. e. ∥ϕi∥ = 0 ⇒ zi,c = 0, ∀c ∈ C ⇒ pi,c =

1
C .

While Dhamija et al. (2018) did not name the regularization term, we refer to it as objectosphere
regularizer — or OS-regularizer, for short. The OS-regularizer targets the deep features directly
and draws negative samples towards the origin of the deep feature space while casting known
samples outside of a sphere to differentiate the knowns and negatives based on their feature
magnitude. Figure 3.4 illustrates the deep features learned via the OS loss, along with the negative
and unknown test samples. We also depict the normalized deep features of the known samples
in Figure 3.4d.
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(a) Known (b) Negatives (c) Unknowns (d) Normalized Features

Figure 3.4: DEEP FEATURE DISTRIBUTIONS FOR THE OS LOSS. OS deep feature distributions of the
10 known classes are shown in (a) as learned by the OS loss . In, (b) and (c) the deep features for negative
samples (gray) and unknown samples (black) are superimposed, respectively. Finally, (d) shows normalized
features, i. e., being projected onto a hypersphere, with the respective class centers Wc (lines), which are
normalized to fit the scale of the features for illustrative purposes.

The objectosphere loss JOS is defined as:

JOS =

N∑
i=1

JEOS(pi) + λ ·

{
max(0, ξ − ∥ϕi∥)2 if xi ∈ Dtrain

C
∥ϕi∥

2 if xi ∈ Dtrain
N

, (3.19)

where λ ∈ R>0 is a hyperparameter controlling the weight of the regularization term and ξ is the
radius of the sphere. The hyperparameter ξ can be interpreted as the minimally accepted feature
magnitude for known samples.



Chapter 4

Approach

In this chapter we introduce three generic loss functions SFN-Margin loss, Margin-OS loss, and
Margin-EOS loss with fundamentally different approaches to the open-set classification problem.
We consider these to be “generic loss functions” since they can theoretically use various different
types of margins by simply choosing different logits. We consider the additive cosine margin
and the additive angular margin, as introduced by Wang et al. (2018b) and Deng et al. (2019),
respectively, as these have shown the most promising results in our preliminary testing (see Sec-
tion 6.1.1).

For each of these generic loss functions we introduce a zero-margin version that is identical to
the main losses but sets the margin to 0. This allows us to study the effect of the respective margins
in isolation by serving as a baseline to which we can compare the respective cosine and angular
margin versions and correct for effects caused by normalizing weights and features. Notably,
however, these zero-margin versions are not the benckmarks to which we compare the classifica-
tion performance (see Section 6.2). For SFN-Margin and Margin-OS we can provide visualizations
of the deep feature distributions on our toy protocol (see Section 6.1.4). Unfortunately, we cannot
provide deep feature visualizations for Margin-EOS because it learns orthogonal class centers,
which cannot be visualized in 2D space.

4.1 SFN-Margin Losses
To address research question RQ1 we adapt the margin-based face recognition loss functions Cos-
Face and ArcFace to be used for open-set classification tasks, i. e., for performing label prediction
at test time via softmax scores. We train these networks without negative samples, i. e. Dtrain

N = ∅.
CosFace and ArcFace were originally introduced with HFN and a scaling parameter s. How-

ever, newer research suggests that SFN achieves superior performance (Zheng et al., 2018; Liu
et al., 2023) and we can confirm these findings for CosFace and ArcFace with our preliminary
experiments (see Section 6.1.2). Thus, we define SFN-CosFace and SFN-ArcFace — analogously
to work by Zheng et al. (2018) — by adding the Ring loss and keeping the feature magnitude
variable in the logits. This gives us SFN-CosFace logits for sample xi and class c of the form

LSFN-CosFace(ϕi)c = ∥ϕi∥ · (cos(θi,c)− δcyi
·mcos) (4.1)

and analogously SFN-ArcFace logits of the form

LSFN-ArcFace(ϕi)c = ∥ϕi∥ · cos(θi,c + δcyi
·mang︸ ︷︷ ︸

θ̃i,c

), (4.2)
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(a) Known (b) Negatives (c) Unknowns (d) Normalized Features

Figure 4.1: DEEP FEATURE DISTRIBUTIONS FOR THE SFN-ARCFACE LOSS. SFN-ArcFace deep fea-
ture distributions of the 10 known classes are shown in (a) as learned by the SFN-ArcFace loss . In, (b) and
(c) the deep features for negative samples (gray) and unknown samples (black) are superimposed, respec-
tively. Finally, (d) shows normalized features, i. e., being projected onto a hypersphere, with the respective
class centers Wc (lines), which are normalized to fit the scale of the features for illustrative purposes.

where δcyi
is the Kronecker delta. Like for ArcFace, the modified angle θ̃i,c is clamped to the

interval [0, π] to avoid learning negative angles. At test time the margins are set to 0.
This is a combination of CosFace and ArcFace respectively with the Ring loss (Zheng et al.,

2018) with the only difference that we do not multiply the regularization term by 1
2 , which does

not change its behavior, but means that values of λ should be compared cautiously. This gives us
the SFN-CosFace and SFN-ArcFace loss:

JT =
1

N

N∑
i=1

JCCE (σ(LT(ϕi))) + λ ∥s− ∥ϕi∥∥
2
, (4.3)

for T ∈ {SFN-CosFace, SFN-ArcFace}, where λ is the weight of the regularization term and s is
the target deep feature magnitude.

We believe this to be a very straight forward extension of classification-based loss functions
used in face recognition for typical classification tasks and thus do not consider this an inher-
ently novel approach, however, this builds a relevant basis for our proposed methods Margin-
OS (Section 4.2) and lets us evaluate whether the inclusion of a margin is helpful for open-set
classification. To evaluate the impact of the margin independently from the weight and feature
normalization we also consider an additional loss that is identical to (4.3) but sets the margin to
0 during training. We call this loss SFN-Norm since the only factor differentiating it from softmax
loss (apart from the Ring loss) is the normalization of the logit weights, i. e. ∥Wc∥ = 1, ∀c ∈ C and
the SFN of the deep features. Figure 4.1 illustrates the learned deep features for the SFN-ArcFace
loss, with superimposed negative and unknown test samples. Additionally, we depict the deep
features projected onto a sphere with normalized class centers in Figure 4.1d to highlight the
impact of imposing a margin. We can see that the known classes are oriented around the sphere
with the negative and unknown samples learning generally smaller deep feature magnitudes and
being distributed relatively equally across the deep feature space.

4.2 Margin-OS Losses
Margin-OS is our first proposed generic loss to address research question RQ2. It builds directly
on the loss functions (4.3) and extends them to train with negative samples in a similar fashion
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to the OS loss, as it tries to explicitly encourage negative samples being drawn to the origin in
comparison to the SFN-Margin losses. Similarly to the OS loss, this results in uniform probability
scores for negative and unknown samples.

Since the OS-regularizer and the Ring loss share similarities in how they address the deep fea-
ture magnitudes directly and the OS-regularizer already handles negative samples in an effective
and intuitive way, it is perhaps natural and straight forward to replace the Ring loss with the
OS-regularizer. One problem with this idea is that the feature magnitudes of known samples are
not bound above for the OS-regularizer which can run into the issues discussed in Section 3.2.2.
While this is no issue in for EOS and OS — which keep the logit weights unnormalized which can
counteract these problems — this is a potential problem for Margin-OS since it builds on the SFN-
Margin losses (4.3) which keep the weights normalized. We adapt the OS-regularization term to
symmetrically penalize deviations of the feature magnitudes from the target feature magnitudes
s of known samples, we call it the symmetric OS-regularizer (see Section 6.1.3). In accordance with
the namesakes of the margin losses CosFace and ArcFace as well of the OS-regularizer, we call
these losses Cos-OS and Arc-OS respectively. The Cos-OS loss is given by:

JCos-OS =
1

N

N∑
i=1

JCCE (σ(LSFN-CosFace(ϕi))) + λ

{
∥s− ∥ϕi∥∥

2 if xi ∈ Dtrain
C

∥ϕi∥
2 if xi ∈ Dtrain

N
(4.4)

and the Arc-OS loss is given by

JArc-OS =
1

N

N∑
i=1

JCCE (σ(LSFN-ArcFace(ϕi))) + λ

{
∥s− ∥ϕi∥∥

2 if xi ∈ Dtrain
C

∥ϕi∥
2 if xi ∈ Dtrain

N
, (4.5)

where λ is the weight of the regularization term and s is the target deep feature magnitude.
One challenge that arises regarding this joint loss is how the cross-entropy loss term is sup-

posed to handle negative samples since they do not have a corresponding class label. There are
two main ways to address this are: ignoring negative samples for the computation of the cross-
entropy loss term or use the EOS loss and adapt it to use a margin. Since the adaption of the EOS
loss to employ a margin is itself a new loss (see Section 4.3) and since we observe it to behave
slightly differently from the goal of the OS-regularizer — i. e. not only do negatives not get drawn
to the origin but actually get cast to large magnitudes — we opt for the former. This is also in the
interest of being able to examine the effect of the addition of the symmetric OS-regularizer on the
SFN-Margin losses (4.3) in isolation.

One benefit the Margin-OS losses bring is the separation of responsibilities: the symmetric OS-
regularizer’s sole responsibility is discriminating between known and unknown samples, while
the cross-entropy loss term’s sole responsibility is correctly classifying the known samples (albeit
not entirely independently since its classifications depend on the soft feature normalization per-
formed by the symmetric OS-regularizer). While we did not further explore this, in theory we
hypothesize that the weight λ now can be used to weigh the importance of the two goals of OSC,
this is however subject for future work.

To analyze the effect of the cosine and angular margins in conjunction with the symmetric
OS-regularizer individually, we also consider the same loss as (4.4) and (4.5) but with the margin
set to zero. This results in a unique loss as the only difference between Cos-OS and Arc-OS is
the placement of the margin. We call this loss Norm-OS which is simply a softmax loss with
symmetric OS-regularization and normalized logit weights, ∥Wc∥ = 1, ∀c ∈ C.

Figure 4.2 illustrates the behavior of the deep features of Arc-OS on our toy protocol As is
to be expected, it shows in achieving better separation between known and negative/unknown
samples compared to SFN-ArcFace (Figure 4.1) while preserving the margin between the classes
(Figure 4.2d).
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(a) Known (b) Negatives (c) Unknowns (d) Normalized Features

Figure 4.2: DEEP FEATURE DISTRIBUTIONS FOR THE ARC-OS LOSS. Arc-OS deep feature distribu-
tions of the 10 known classes are shown in (a) as learned by the Arc-OS loss . In, (b) and (c) the deep
features for negative samples (gray) and unknown samples (black) are superimposed, respectively. Finally,
(d) shows normalized features, i. e., being projected onto a hypersphere, with the respective class centers
Wc (lines), which are normalized to fit the scale of the features for illustrative purposes.

4.3 Margin-EOS Losses
Our second proposed generic loss to address research question RQ2 is the Margin-EOS loss.
Margin-EOS makes use of the CosFace (3.15) and ArcFace logits (3.16) — notably with HFN —
and incorporates the EOS loss instead of the softmax loss to include negative samples for training.
We choose HFN over SFN as experiments on the toy protocol suggest that it provides superior
performance (see Section 6.1). The specific Margin-EOS losses for Cos-EOS and Arc-EOS are given
by:

JCos-EOS = JEOS(σ(LCosFace(ϕi))) and (4.6)
JArc-EOS = JEOS(σ(LArcFace(ϕi))), (4.7)

where ϕi = B(xi). Notably, the CosFace and ArcFace logits can naturally be applied to negative
samples as they simply never will add a margin because δcyi

= 0 for all negative samples xi.
What makes the Margin-EOS approaches unique is that they are not only forced to discrimi-

nate between known classes only via the angle, but also between known and unknown/negative
samples.

The EOS loss encourages negative samples to have a uniform distribution in the softmax
scores which requires the logit values for all classes to be identical (Dhamija et al., 2018). The only
way in which the Margin-EOS losses can achieve a uniform distribution, is by learning an implicit
class center for negative samples, i. e. learning a deep feature vector that has the same angle to
all class centers of known classes, i. e., for xi ∈ Dtrain

N we have θi,c = θ,∀c ∈ C for some constant
θ ∈ [0, π]. This makes the Margin-EOS approach akin to a background class approach as it learns
a non-zero vector as implicit class center for the negatives, unlike EOS, OS, and Margin-OS which
learn the zero-vector. However, evaluation is still performed by thresholding the softmax scores
and as such it is not a background class approach.

Similar to the previous approaches we introduce a zero-margin version of the Margin-EOS
approach that serves as baseline to evaluate the effect of the respective margins in isolation by
setting the margin the margin to zero. Following our naming scheme, we call this loss the Norm-
EOS.
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Experimental Setup

In this chapter we introduce the general experimental setup which concerns both, the preliminary
as well as the main experiments. We start by discussing the protocols used for both experiments.
Then we introduce the OSCR as our evaluation metric. Finally, we discuss the neural network
architectures used as well as our hyperparameter choices for all experiments.

5.1 Protocols

5.1.1 Toy Protocol
The toy protocol is inspired by similar protocols and datasets used for visualization purposes by
Wen et al. (2016), Liu et al. (2017), Wang et al. (2018b), Zheng et al. (2018), Dhamija et al. (2018),
and Deng et al. (2019). While some use a subset of identities of face recognition datasets, many
use the MNIST digits as the known classes. Dhamija et al. (2018) additionally use EMNIST letters
as negative classes and Devanagari letters (Acharya and Gyawali, 2016) as unknowns for their
OSC toy protocol.

MNIST vs. EMNIST MNIST Instead of mixing MNIST dataset (LeCun et al., 1998) with the
EMNIST Letters dataset (Cohen et al., 2017), we opt for using EMNIST MNIST as known classes
and EMNIST Letters for the negatives and unknowns to make sure that all samples are con-
verted identically from the original NIST data. Although Cohen et al. (2017) follow the conversion
steps outlined by LeCun et al. (1998) to replicate the MNIST conversion process for all EMNIST
datasets, they acknowledge some differences in the conversion process (e. g. different downsam-
pling methods). Figure 5.1 demonstrates our findings that, based on visual inspection of various
samples, the EMNIST Letters (Figure 5.1a) and EMNIST MNIST (Figure 5.1b) seem visibly more
blurry compared to MNIST (Figure 5.1c). As we want to avoid making the already simple toy
example not artificially simple by allowing networks to pick up on blurryness as indicator if a
sample is known or unknown we choose EMNIST MNIST over MNIST, although we acknowl-
edge that EMNIST MNIST apparently constitutes a “more separable problem than the original
MNIST dataset.” (Cohen et al., 2017)

Removing Visibly Indistinguishable Letters The MNIST Letters dataset consists of 26 classes
of letters “a” through “z” and each class contains a mix of uppercase and lowercase letters (Cohen
et al., 2017). A visual inspection of individual samples reveals that certain letters (Figure 5.1a) are
visually indistinguishable from certain digits (Figure 5.1b and Figure 5.1c). For example, many
images depicting the letter “o” are indistinguishable from the digit “0”. Similar observations can
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(a) EMNIST Letters (b) EMNIST MNIST (c) MNIST

Figure 5.1: COMPARISON EMNIST AND MNIST DATA. Comparison of random samples of letters
(“o”, “i”, “l”, and “g”) and digits (“0”, “1”, and “9”) from the EMNIST and MNIST datasets. We show
the EMNIST Letters (Figure 5.1a), EMNIST MNIST (Figure 5.1b), and MNIST (Figure 5.1c). EMNIST
samples seem visibly more blurry than MNIST samples. The selected letters and digits are arranged per
row to highlight which letters are often indistinguishable from the corresponding digits. Rows 2 and 3
depict the same samples for EMNIST MNIST and MNIST.

be made for the letters “i” and “l” being indistinguishable from digit “1” and letter “g” and digit
“9” respectively. This introduces undesirable artifacts that render the dataset impractical for our
use case, e. g., this leads to the letters “i” and “l” dominating the training data and every method
learning to reject every sample from class “1”. This is a problem of the separability of the knowns
and negatives and not about the performance of the algorithms, which is why we remove these
letters from the data and split the letters into two sets: Negatives (first 11 letters, excl. “o”, “i”,
“l”) and unknowns (last 11 letters, excl. “g”). While excluding the letter “g” from the unknowns
is arguably an arbitrary choice, it simplifies the visual inspection of the deep features by reducing
the overlap of the two classes which is a known effect.

Excluding these letters can be viewed as an arbitrary choice, but we belief that this is in the
interest of providing cleaner and easier to interpret visualizations. Also, since the preliminary
experiments aim to compare the various methods, we are not interested in the absolute perfor-
mances, and we belief that these changes do not significantly affect the relative performances.

Breakdown of the Protocol The protocol comprises of 140’400 samples in total and is split into
three partitions: training data, validation data, and test data. Table 5.1 provides an overview
over the composition of the individual partitions in terms of known, negative, and unknown
samples. Since the unknown samples simulate the samples for which no labeled data is available,
they occur exclusively in the test set. The training data is composed of 53% known samples and
The negative samples make up 47% of the training data (excl. validation). Correspondingly, in
the ImageNet open-set protocols the negatives make up 37% (P1), 52% (P2), and 39% (P3) of the
respective training data.
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Table 5.1: BREAKDOWN OF THE TOY DATASET. The dataset contains 140400 data points and is divided
into three partitions: training set (64.27%), validation set (16.07%), and test set (19.66%). In parenthesis
we provide the percentage of the sample type (column; known, negative, and unknown) for each partition
(row), e.g., the known samples make up roughly 53% of the total training set.

Known Negative Unknown Total
Training 48’000 (53.19%) 42’240 (46.81%) 0 (0%) 90240
Validation 12’000 (53.19%) 10’560 (46.81%) 0 (0%) 22560
Test 10’000 (36.23%) 8’800 (31.88%) 8’800 (31.88%) 27600

5.1.2 ImageNet Open-Set Protocols

Palechor et al. (2023) propose — based on the Master’s thesis by Bhoumik (2021) — three protocols
with varying degrees of difficulty for evaluating open-set classification algorithms. These proto-
cols consist of subsets of the ImageNet classes (Russakovsky et al., 2015) and are each grouped
into known, negative, and unknown classes. The three protocols P1, P2, and P3 are designed to
have increasing levels of difficulty by having increasing levels of similarity in appearance and
overlap in visual features between inputs from known and unknown classes (Palechor et al.,
2023).

Protocol P1 consists of C = 116 known classes all of which are various classes of dogs. The
negative classes consist of 67 classes of other 4-legged animal classes. The unknown classes con-
sist of 166 non-animal classes. As such, P1 poses an easy task for discriminating knowns and
unknowns, because they are semantically very different and share little visual features. As such,
it is well suited to test the evaluation of out-of-distribution detection algorithms. However, P3

poses a hard task for closed-set classification.
Protocol P2 is the smallest of the three protocols in terms of data points with only C = 30

known classes, depicting half of the hunting dog classes. The negatives are made up of the second
half of the hunting dog classes, i. e. it contains 31 classes. The unknowns consist of 55 classes of
other 4-legged animals. Being the smallest in size allows this network to be used for optimizing
hyperparameters which can be transferred to protocols P1 and P3 (Palechor et al., 2023). Since
this is a comparative study, we did not do this. P2 sits between P1 and P3 in terms of difficulty of
open-set and closed-set classification difficulty.

Lastly, protocol P3 consists of C = 151 known classes, 97 negative classes, and 164 unknown
classes. All of these classes contain a mix of various classes such as animals, plants, and other
objects, making this the hardest task for open-set classification but the simplest task for closed-
set classification. Because of the similarities of the known and unknown classes “it is very un-
likely that out-of-distribution detection algorithms are able to discriminate between them, and
real open-set classification methods need to be applied.” (Palechor et al., 2023)

5.2 Evaluation Metric

We evaluate the performance of all losses on the open-set protocols via the OSCR curves intro-
duced by Palechor et al. (2023) and corrected by Bisgin et al. (2023). The OSCR curves are a com-
bination of two metrics which handle known and mixed unknown (i. e. negative and unknown)
samples separately: the Correct Classification Rate (CCR) and the False Positive Rate (FPR), both
of which are defined as functions of the probability threshold τ . Following Bisgin et al. (2023)
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CCR and FPR are defined as:

CCR(τ) =
|{xi|yi ≤ C ∧ argmax

1≤c≤C
pi,c = yi ∧ pi,c ≥ τ}|

|Dtest
C |

∈ [0, 1] (5.1)

FPR(τ) =
|{xi|yi > C ∧ max

1≤c≤C
pi,c ≥ τ}|

|Dtest
M |

∈ [0, 1], (5.2)

where yi ≤ C indicates a known sample, i. e., yi ∈ C, and yi > C indicates a negative or unknown
sample, i. e., yi ∈ M. The CCR is very similar to the accuracy and extends its idea to an open-
set problem. It measures the proportion of all known test samples that are classified as known
(pi,c ≥ τ ) and the sample is correctly classified (argmax1≤c≤C pi,c = yi). The FPR measures the
proportion of all negative and unknown test samples that are classified as known. The OSCR
curves have the advantage over other metrics that the CCR and FPR measure the two goals of
open-set recognition directly.

The OSCR are drawn by plotting the CCR against the FPR and increasing the threshold from
0 to 1, which draws the curves from right to left, i. e., from high to low FPR values. As such, they
depict CCR values for a given FPR value (CCR@FPR). We plot the FPR on a logarithmic curve to
highlight low FPR values because most applications require a very few false positives Bisgin et al.
(2023).

Interpretation Because the OSCR curve combines two metrics and plots them against each other
while being a function of a threshold that is not explicitly depicted in the OSCR curve it can be
hard to interpret. Crucially, we always want the CCR to be as close to 1 as possible, while we
want the FPR to drop from 1 to 0 as fast as possible. As such, the perfect open-set classifier will
draw a curve from the top right (CCR = 1 at FPR = 1) to the top left (CCR = 1 at FPR = 10−4).
For example, consider the toy experiment in Figure 6.3a, where the Cos-EOS classifier achieves
almost perfect classification on known samples and perfect separation of known and negative
samples. Note that in all figures we plot the FPR from 10−4 to 1 but report the exact CCR@FPR
values in Table 6.2 only from 10−3 as no classifier reached 10−4 exactly.

An important special case to consider is the case when we set τ = 0, for which we have that
FPR(0) = 1, i. e. the classifier classifies every single sample as known, and CCR(0) = Acc, where
Acc is the closed-set accuracy, i. e. the accuracy of the closed-set classifier when evaluated only
on the known samples. This lets us analyze the research sub-questions for RQ1 and RQ2 respec-
tively within the same plot and using the same evaluation metric. Therefore, we can interpret the
CCR@FPR values as the closed-set accuracy for FPR = 1, which is always at the rightmost edge of
any OSCR curve. This is also the point from which the curves start being drawn when increasing
the threshold from 0 to 1 and the curves then extend to the left. For approaches where the max-
imum softmax score of some sample and for any class reaches 1 exactly — up to any reasonable
precision — there is no threshold τ that allows to threshold these scores, and thus FPR values
cannot be lowered any further (Bisgin et al., 2023). In this case the OSCR curve will not extend
further to the left and, for example, highlight issues when s is too large (see Section 3.2.2).

5.3 Neural Networks
Since this is a comparative study of loss functions we keep the network backbone architecture
identical across all experiments on the ImageNet protocols and toy protocol, respectively. For
the toy experiments we use the LeNet++ backbone following Wen et al. (2016) and Dhamija et al.
(2018). For the ImageNet experiments we use a ResNet-50 backbone He et al. (2016) as this is a
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Table 5.2: HYPERPARAMETERS OVERVIEW. This table shows the hyperparameters used for the ImageNet
protocols P1, P2, and P3 and the toy protocol Ptoy. C denotes the number of known classes, K denotes the
deep feature dimensionality, and s denotes the scaling factor or target for the deep feature magnitude.
The margins are denoted by mmult (multiplicative angular margin), mcos (additive cosine margin), mang
(additive angular margin), and mlogit (additive logit margin). λ denotes the weight for the regularization
terms.

Protocols K C s mmult mcos mang mlogit λ

P1 116 116 17 0.35 0.5 0.01
P2 30 30 16 0.35 0.5 0.01
P3 151 151 18 0.35 0.5 0.01
Ptoy 10 10 13 1.2 0.35 0.5 0.3 0.01
Ptoy (vis) 2 10 13 0.15 0.4 0.01

common network architecture for image classification tasks and also used by Palechor et al. (2023)
and Bisgin et al. (2023) on which our experiments build. We train all networks from scratch and
do not make use of pre-trained models as these include knowledge of ImageNet samples and
classes that we use as unknown samples at test time. For both network topologies we discard the
head and use the respective heads outlined in Chapter 4.

For all experiments we set the deep feature dimensionality — i. e. length of the deep feature
vectors — equal to the number of classes, i. e. K = C (see Table 5.2). The only exception being the
toy experiments used for visualizing the deep features, where we set K = 2. Additionally, we do
not add a bias to the deep features.

ImageNet Preprocessing Following Palechor et al. (2023) and Bisgin et al. (2023) we perform
the following image preprocessing steps on the ImageNet data. We resize the images, perform
random crops, and apply a horizontal flip with a flip probability of 0.5.

Implementation Details Our code is publicly available1 and is a fork2 of the the code from
Palechor et al. (2023) and Bisgin et al. (2023). The implementations for ShpereFace, CosFace, and
ArcFace taken from the code3 by Liu et al. (2023). The implementations of all of our logit functions
include the characteristic gradient detachment trick, which, according to Liu et al. (2023), increase
the performance of margin-based loss functions. All experiments are run on Nvidia GeForce RTX
2080 Ti GPUs.

5.4 Hyperparameters
An overview over all hyperparameters for each experiment is given in Table 5.2. It lists the scaling
factor or target for the deep feature magnitude s, the number of classes C (not a hyperparameter
but relevant for s), as well as the multiplicative angular margin mmult, the additive cosine margin
mcos, the additive angular margin mang, and additive logit margin mlogit. The logit margin was
used only for SM-Softmax in the preliminary experiments, which is why the other cells are left
empty.

1https://github.com/TwoDigitsOneNumber/openset-imagenet-comparison
2https://github.com/AIML-IfI/openset-imagenet-comparison
3https://github.com/ydwen/opensphere

https://github.com/TwoDigitsOneNumber/openset-imagenet-comparison
https://github.com/AIML-IfI/openset-imagenet-comparison
https://github.com/ydwen/opensphere
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Margin The margin m is perhaps the most important hyperparameter for any margin-based
loss, yet there is currently no comprehensive understanding or guidance for how to choose them
optimally. The margins for SM-Softmax (Liang et al., 2017), SphereFace (Liu et al., 2017), CosFace
(Wang et al., 2018b), and ArcFace (Deng et al., 2019) were chosen empirically with some providing
lower and upper bounds and results of experiments on the margin parameter. Zhang et al. (2019)
conducted a hyperparameter study on mcos for CosFace and mang for ArcFace, but proceeded to
choose mcos = 0.25 and mang = 0.5 unfortunately without any reasoning. Since optimizing the
margin is out of scope for this thesis we choose the hyperparameters proposed in their original
publications, i. e. mcos = 0.35 and mang = 0.5 (Wang et al., 2018b; Deng et al., 2019). This comes
with the caveat that one might be closer to optimal than the other for the respective methods,
requiring cautious interpretation. The logit margin for SM-Softmax for preliminary experiments
is set to mlogit = 0.3 following the choice of Liang et al. (2017) for their experiments on CIFAR-
10. These margins provide reasonable results throughout all experiments. The only exception
being Arc-OS which diverged on protocol P1, however, we do not know if this was caused by the
margin.

For the deep feature visualizations we require the margins to satisfy mcos ≤ 1 − cos( 2πC ) ≈
0.1910 (Wang et al., 2018b) and mang ≤ 2π

C ≈ 0.6283 for C = 10. We do not rigorously optimize the
margins since they only serve the purpose of visualization but manually choose the margins as
large as possible to maximize the visible effect but small enough such that all methods converge.
We choose mcos = 0.15 and mang = 0.4.

Feature Magnitude As discussed in Section 3.2.2 we can compute a lower bound on the feature
magnitude s (3.11) as a function of the number of classes C and the expected minimum posterior
probability of a class center p̂i,c, the latter being a hyperparameter that can be freely chosen.
We choose p̂i,c = 0.999995 as this value allows a perfectly classified sample (i. e. θi,yi

= 0) to
achieve a softmax score of exactly 1 when taking into account the precision of a PyTorch float32
datatype. We computed s for each protocol as the ceil of the lower bound, giving us the values
s as summarized in Table 5.2. Note that for the OS loss we set ξ = s for a fair comparison to all
other methods.

Deep Feature Dimensionality For all losses and all protocols the feature dimensionality K is
set to the number of known classes, i. e. K = C, except the toy protocol when used for visualizing
the deep features, where we set K = 2.

Training Parameters Following Dhamija et al. (2018) and Bisgin et al. (2023) we train all net-
works on the ImageNet open-set protocols for 120 epochs with a constant learning rate of 10−3.
In contrast to Bisgin et al. (2023) we use the SGD optimizer instead of Adam. The SGD optimizer
uses a momentum factor of 0.9. The networks on the toy protocols are trained for 15 epochs.

Regularizer Weight Zheng et al. (2018) find λ = 0.01 to work best for the Ring loss but state that
performance does not seem to vary much for larger or smaller values. Notably, their definition
of λ for the Ring loss differs by a factor of 1

2 from our definition, and as such corresponds to a
value of 0.005 for us. We find however, that λ = 0.01 works best for our losses, with 0.1 and 0.001
being too large and too small, respectively, when training the OS loss on protocol P2. As such we
choose λ = 0.01.
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Experiments

We introduce the preliminary toy experiments and the main experiments on the ImageNet open-
set protocols along side the results. Even though all experiments on the ImageNet protocols
follow the same procedure and evaluation methods, we discuss them separately based on which
research question (RQ1 or RQ2) they address.

6.1 Preliminary Toy Experiments
The toy experiments serve mainly two purposes: (1) they are used for developing our losses and
(2) they are used for visualizing deep features to build intuition about the clustering of the deep
features for the respective loss functions. Additionally, we have also used the toy protocol for
verifying correctness of implementations of our generalized loss functions (e. g. CosineMargin)
against their respective special cases (e. g. CosFace) from the implementations1 by Liu et al.
(2023).

Using the toy protocol for developing our losses requires it to be similar to the ImageNet
open-set protocols proposed by Palechor et al. (2023) in terms of their composition, such as ratios
of negatives to the total training data. While the toy protocol poses a task of much lower difficulty,
we find that the results are qualitatively similar to findings on P2 on which we verified some early
results. This gives us reason to believe that the toy protocol provides results that are relevant to
the ImageNet protocols and thus using the toy protocol for development of the proposed SFN-
Margin losses, Margin-OS losses, and Margin-EOS losses is justified, even if this is not guaranteed.

The preliminary experiments provide empirical guidance in cases where theoretical knowl-
edge is insufficient to choose one method over another, e. g., which margin-based loss works best
under classification via softmax-scores or whether to penalize feature margins symmetrically or
asymmetrically. Furthermore, they provide a way to validate our intuition about certain methods
and uncover previously overlooked ideas by drastically reducing the time required to train, ana-
lyze, and compare small variations in the methods as well visualize the distributions of the deep
features.

We conduct experiments on: (1) what margin to apply, (2) using SFN or HFN, and (3) using
the original OS-regularizer or a symmetric OS-regularizer. For the latter two questions only the
additive cosine margin and the additive angular margin are considered. All results are discussed
in detail in the following sections and summarized in Table 6.1, which depicts the CCR@FPR
on the unknowns, i. e. Dtest

U , where the results are grouped by the question they address. To
facilitate the comparison some losses are listed twice and grouped by their margin such that for
each column the best performance per group is underlined.

1https://github.com/ydwen/opensphere

https://github.com/ydwen/opensphere
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Table 6.1: TOY PROTOCOL RESULTS. This table depicts the CCR@FPR for all losses as well as the closed-
set accuracy (Acc) on the unknowns. Losses are grouped by the respective experiments.For each column,
the best performance per group is underlined. Empty cells indicate that the respective FPR was not reached.

Group Loss CCR@FPR Acc
10−3 10−2 10−1 1

Margin Types

SM-Softmax 0.2789 0.8310 0.9921
SphereFace 0.0302 0.1644 0.8607 0.9927

CosFace 0.0361 0.2789 0.8900 0.9934
ArcFace 0.0107 0.1745 0.8801 0.9942

HFN vs. SFN (CosFace) CosFace 0.0361 0.2789 0.8900 0.9934
SFN-CosFace 0.0322 0.4377 0.9030 0.9947

HFN vs. SFN (ArcFace) ArcFace 0.0107 0.1745 0.8801 0.9942
SFN-ArcFace 0.0617 0.5522 0.9140 0.9939

HFN vs. SFN (Cos-EOS) Cos-EOS 0.9849 0.9919 0.9923 0.9923
Cos-EOS (SFN) 0.9579 0.9848 0.9928 0.9930

HFN vs. SFN (Arc-EOS) Arc-EOS 0.9853 0.9933 0.9933 0.9933
Arc-EOS (SFN) 0.9677 0.9857 0.9931 0.9933

OS vs. sym. OS (Cos-OS) Cos-OS 0.8841 0.9503 0.9845 0.9939
Cos-OS (non-sym.) 0.8548 0.9498 0.9842 0.9933

OS vs. sym. OS (Arc-OS) Arc-OS 0.8779 0.9483 0.9851 0.9936
Arc-OS (non-sym.) 0.8769 0.9499 0.9857 0.9933

6.1.1 Comparing Margin Types

Testing all possible combinations of margin-based losses with losses that include negative sam-
ples, even on the smallest ImageNet protocol P2, is infeasible due to the combinatorial explo-
sion in the number of possible combinations. Hence we aim to consider only the most promis-
ing margin-based losses — or margin types. We compare SM-Softmax (additive logit margin),
SphereFace (multiplicative angular margin), CosFace (additive cosine margin), and ArcFace (ad-
ditive angular margin).

Figure 6.1 shows the OSCR curves for all losses evaluated on the negatives and unknowns of
the test set respectively. While all losses reach FPR values of almost 10−4 on the negatives and
unknowns, SM-Softmax fails to do so, most likely due to the fact that this is the only method
which does not employ feature or weight normalization. SM-Softmax also consistently under-
performs in terms of CCR@FPR compared to all other margin types on the unknowns, except
for FPR = 10−2 where it achieves the best performance together with CosFace (see Table 6.1).
On the negatives, both SM-Softmax and SphereFace, consistently are outperformed by CosFace
and ArcFace. Similarly, SphereFace is outperformed on the unknowns. CosFace achieves the
best performance across all non-zero thresholds. ArcFace which achieves the highest closed-set
performance with an accuracy of 0.9942%, 0.0008% higher than CosFace.

In summary, the additive cosine margin and additive angular margin of CosFace and ArcFace
seem better suited for open-set classification tasks and are thus our two margins of choice. Due to
time constraints we did not further explore the modifications of SM-Softmax as this would have
required more understanding of the behavior of the method, which is beyond the scope of this
thesis.
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Figure 6.1: OSCR CURVES FOR PRELIMINARY EXPERIMENTS: MARGIN TYPES. This figure shows
the OSCR curves of the preliminary experiments comparing different margin-based losses with different
margin types: SM-Softmax, SphereFace, CosFace, and ArcFace. The curves depict the performance evalu-
ated on the negative and unknown test samples.

6.1.2 Hard vs. Soft Feature Normalization
We compare hard and soft feature normalization for the margin-based losses CosFace and ArcFace
(Section 4.1) and the Margin-EOS losses (Section 4.3).

SFN-Margin Losses Figure 6.2 shows the OSCR curves on the negatives and unknowns from
the test set for HFN and SFN with the CosFace and ArcFace loss, respectively. The closed-set
accuracy is very comparable between all approaches and differences in CCR@FPR values become
generally larger for FPR values of 10−1 and 10−2. These differences between HFN and SFN are
smaller for the cosine margin, whereas the angular margin benefits strongly from SFN.

While the difference in closed-set accuracy are very small and potentially insignificant, the
general trend and differences at lower FPR values show a clear trend that SFN should be preferred
over HFN for these margin-based losses. This confirms on a small-scale experiment the findings
by Zheng et al. (2018) and Liu et al. (2023) under a different evaluation method.

Margin-EOS Losses Figure 6.3 shows the OSCR curves for the Margin-EOS losses on the neg-
ative and unknown test samples with HFN and SFN, respectively. The differences are almost not
visible as all losses manage to almost perfectly separate knowns from negatives/unknowns while
correctly classifying all known classes. However, for both margin types the performance of the
HFN versions surpasses the Margin-EOS version that employs SFN. For this reason we choose
HFN, which makes our Margin-EOS losses, in contrast to all other losses considered in this thesis,
the only one that cannot support the classification via deviations in the feature magnitudes.

6.1.3 OS-Regularizer vs. Symmetric OS-Regularizer
Figure 6.4 shows the Margin-OS losses with symmetric OS-regularizer, as introduced in Sec-
tion 4.2, and with the original — i. e. non-symmetric — OS-regularizer. Both regularizations
achieve almost identical CCR@FPR values for all levels FPR values and the differences are likely
not significant. The only exception being the CCR at FPR = 10−4 where the CCR of the symmet-
rically penalized version outperforms the non-symmetric by about 20%. We hypothesize that this
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(a) HFN versus SFN for the CosFace

(b) HFN versus SFN for the ArcFace

Figure 6.2: OSCR CURVES FOR PRELIMINARY EXPERIMENTS: HFN VS. SFN. This figure shows the
OSCR curves of the preliminary experiments comparing HFN and SFN for the additive cosine margin in
Figure 6.2a and additive angular margin Figure 6.2b. The curves depict the performance evaluated on the
negative and unknown test samples.

outperformance for thresholds of 1 might be due to the fact that the non-symmetric penalty yields
more unknown samples to reach a large enough feature magnitude such that its maximum soft-
max score equals 1 and thus cannot be discriminated from the known samples with potentially
larger magnitudes. Recalling the discussion in Section 3.2.2, both penalties encourage the mag-
nitudes to be as large as necessary, but only the symmetric penalty encourages the magnitudes
to be as small as possible. This observation leads us to prioritize the symmetric penalty because
it brings potential upsides while, to the best of our knowledge, not providing any downsides.
Additionally, the symmetric penalization lends itself more naturally to the idea of feature nor-
malization as it defines a clear target magnitude as opposed to an unbound range of acceptable
magnitudes.
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(a) HFN versus SFN for the Cos-EOS

(b) HFN versus SFN for the Arc-EOS

Figure 6.3: OSCR CURVES FOR PRELIMINARY EXPERIMENTS: MARGIN-EOS FEATURE NORMAL-
IZATION. This figure shows the OSCR curves of the preliminary experiments comparing HFN and SFN
for the Margin-EOS losses: Cos-EOS Figure 6.3a and Arc-EOS Figure 6.3b. The curves depict the perfor-
mance evaluated on the negative and unknown test samples.

6.1.4 Deep Feature Visualizations

The experiments for computing visualizations of the deep feature distributions are identical to the
toy experiments except that we set the deep feature layer to become a bottleneck in the network.
In other words, we set the deep feature dimensionality — i. e. the length of the deep feature
representation vector — to K = 2 such that we can plot thee deep features ϕi,1 against ϕi,2.

Crucially, we cannot visualize the deep features of the Margin-EOS methods as these learn
a deep feature vector for the negative samples that has equal angles to all known class centers.
However, for C = 10 this is not possible in two dimensions.
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(a) Cos-OS versus Non-symmetric Cos-OS

(b) Arc-OS versus Non-symmetric Arc-OS

Figure 6.4: OSCR CURVES OF PRELIMINARY EXPERIMENTS: OS-REGULARIZATION. This figure
shows the OSCR curves of the preliminary experiments comparing the symmetric OS-regularizer (Cos-OS
in Figure 6.4a and Arc-OS in Figure 6.4b) against the non-symmetric counterparts for the Margin-OS
approaches. The curves depict the performance evaluated on the negative and unknown test samples.

6.2 ImageNet Experiments
The ImageNet experiments are the main experiments conducted in this thesis and are used to
answer our research questions. We analyze the effect of the additive cosine margin and the ad-
ditive angular margin on losses trained and evaluated on the ImageNet open-set protocols. We
compare the performance of our proposed loss functions to the respective benchmarks and to re-
spective zero-margin versions of our losses to analyze the effect of the margin in isolation to the
normalization of weight and feature magnitudes. The zero-margin versions are required because
the normalizations are fundamentally required for all of our losses and make a direct comparison
with softmax, EOS, and OS difficult.

Since all experiments are identical from a practical perspective and only differ in the choice
of loss functions, we group our losses as: SFN-Margin, Margin-OS, and Margin-EOS with an
additional group for the benchmarks (see Table 6.2). The SFN-Margin losses address research
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question RQ1 and are compared to the softmax loss, which serves as our benchmark, since neither
of these methods incorporate negative samples during training. The two groups Margin-OS and
Margin-EOS address research question RQ2 and are compared to the EOS and OS loss. To keep
the OSCR plots uncluttered we omit the EOS and only compare the results visually against the
OS since both achieve very comparable performance with the OS loss usually slightly better.

Table 6.2 shows the CCF@FPR values on unknown test samples for each protocol. Each ta-
ble shows all loss functions in a single table in order to facilitate the comparison of all methods
beyond the individual research questions and to present all results compactly.

Angle Distributions All margin-based and respective zero-margin losses are forced to discrim-
inate classes solely based on the angle to the respective class centers, with exception of the effect
of soft feature normalization. For this reason we analyze the behavior of known, negative, and
unknown samples in terms of the angles in more depth as well. Figure 6.6, Figure 6.8, and Fig-
ure 6.10 show the distributions of angles for the SFN-Margin, Margin-OS, and Margin-EOS losses.
Each plot depicts the histograms of the angles of known samples to the ground-truth class center,
i. e. θi,yi

. For negative and unknown samples, which do not have a ground-truth class center, the
angle to the closest class center (in terms of the angle) is depicted, i. e. minc∈C{θi,c}.

For losses with feature and weight normalization we can compute the probability curve as
s function of the angle between the deep feature and a class center (Zhang et al., 2019). We su-
perimpose these probability curves with consideration of the respective scaling factor s used for
each protocol. For margin-based losses we additionally superimpose the probability curve with
consideration of the margin that is applied during training (dashed black line). The cosine and
angular margins mainly shift the probability curves to the left and as such encourage learning
discriminative features (Zhang et al., 2019). The probability curves visually indicate the softmax
scores that are achieved at a given angle.

Recalling the assumptions of the probability curves (3.10), we see that the assumption on the
HFN is not fulfilled for any SFN-Margin loss, because the feature magnitudes can show large
deviations from the target feature magnitude s. However, for most protocols this assumption is
at least fulfilled for the average sample. Since this assumption is not fulfilled for each individual
sample, we need to analyze (and later interpret) these curves with caution. Ideally we would
like to see the known distributions clustered as far to the left as possible and the negative and
unknown distributions clustered around π

2 since this is the empirical upper bound on the angles.

6.2.1 SFN-Margin Losses
Figure 6.5 shows the OSCR curves of the SFN-Margin losses and the softmax loss on all three
ImageNet open-set protocols.

Protocol 1 On protocol P1 we can clearly see that the SFN-CosFace and SFN-ArcFace achieve
superior closed-set accuracy over SFN-Norm and softmax. This observation holds on the nega-
tive and on the unknown samples and is important, considering that P1 is the hardest protocol
for closed-set classification. SFN-CosFace in fact achieves the highest closed-set accuracy on the
negative samples out of all loss functions evaluated on P1. Training of SFN-ArcFace is a bit more
unstable on protocol P1 compared to the other losses which might have lead to suboptimal per-
formance, however, we find no sign of divergence.

For negative samples and FPR values in the range from roughly 2×10−2 to 1, SFN-CosFace and
SFN-ArcFace outperform SFN-Norm and softmax, while underperforming at lower FPR values.
On the unknowns we observe a similar effect, with the margin-based losses achieving higher
CCR for FPR values in the range of roughly 3 × 10−3 to 1. For lower FPR values SFN-CosFace
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achieves similar performance to softmax and SFN-Norm while the CCR@FPR values of SFN-
ArcFace deteriorate quickly, reaching CCR = 0 at roughly 6×10−4. SFN-Norm, which normalizes
the weights and uses SFN for feature normalization, achieves almost identical performance as
the benchmark for all FPR values, however, the CCR@FPR values are constantly about 0.01 to
0.02 lower. As expected, all losses are able to reject unknowns better than negatives as they are
semantically further away from the known classes than the negatives.

Protocol 2 On the intermediate protocol P2, SFN-CosFace and SFN-ArcFace also achieve higher
closed-set accuracy of roughly 0.67 compared to roughly 0.62 for softmax and SFN-Norm on the
unknowns. A similar observation can be made on the negatives.

The difference between the performance on the negatives and unknowns is very small and
visually indistinguishable, which is to be expected, since they contain semantically similar classes
that share similar visual features. The only notable difference being that the OSCR curves of the
margin-based losses don’t extend beyond FPR = 2× 10−3 whereas SFN-Norm and softmax reach
FPR values of 7 × 10−4. On negative and unknown samples SFN-CosFace performs worse than
SFN-ArcFace. Overall, all losses achieve similar CCR@FPR values for FPR values smaller than
roughly 10−2 with SFN-CosFace and, in particular, SFN-ArcFace outperforming SFN-Norm and
softmax for larger FPR values.

Protocol 3 The most difficult protocol for OSC, P3, both margin-based approaches achieve al-
most identical CCR@FPR values with maximal differences of only about 0.02 on negatives and
unknowns. Both achieve a high closed-set accuracy of about 0.79, which is amongst the highest
closed-set accuracies achieved on P3 for all losses and only surpassed by Cos-OS. The closed-set
accuracy of SFN-Norm and softmax is slightly below 0.76

On the negative and unknown samples all SFN-Margin losses achieve a lower FPR than the
benchmark softmax, i. e., their curves extend further to the left. On the negative samples the
benchmark fails to extend to FPR values of 10−2 while SFN-Norm and the margin-based losses
reach values of 5 × 10−3 or lower. On the unknown samples SFN-CosFace and SFN-ArcFace
achieve comparable performance to the negative samples. Notably, SFN-Norm achieves almost
identical CCR@FPR values to softmax but reaches FPR values of 10−3 compared to softmax which
stops at about 7×10−3. For for FPR values below 10−1, the CCR@FPR values of the margin-based
losses are significantly lower compared to softmax or SFN-Norm.

Angle Distributions Figure 6.6 shows the angle distributions for the SFN-Margin losses. As
expected, imposing a margin on the angle forces the networks to draw known samples closer to
the respective class centers compared to SFN-Norm and softmax. On all three protocols SFN-
CosFace and SFN-ArcFace achieve angles of known classes to the class centers that are smaller
than π

4 , with the largest angles being around π
2 . SFN-Norm and softmax generally have angles

in the range of [π4 ,
π
2 ] for known, unknown, and negative samples. On all protocols the margin-

based approaches shift the peak of the knowns closer to 0 than approaches without a margin.
This appears to separate the knowns from the negatives and unknowns better, especially on P1,
although it is not very clear. However, the margin-based losses also shift the distributions of
the negatives and unknowns towards the left. This leads to negative and unknown samples
reaching similarly small angles and more overlap of the distributions for lower angles. As such
the distributions of the angles between knowns and negatives/unknowns, respectively, visually
seem more separated for softmax and SFN-Norm on all protocols.

Interestingly, the distribution of angles of the known classes are heavily right-skewed and
extending up to angles around π

2 . This is likely an empirical upper bound on the angles as we
know that the average angle of a known sample to any non-ground-truth class center is almost
exactly π

2 . This indicates large potential for misclassifying samples, since — ceteris paribus — many
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negative and unknown samples would achieve higher softmax scores than many of the known
samples.

Summary On all three protocols SFN-CosFace and SFN-ArcFace achieve higher closed-set ac-
curacies than to SFN-Norm and softmax, which achieve similar accuracies. SFN-CosFace and
SFN-ArcFace outperform the others for high FPR values but their OSCR curves tend to drop faster
for decreasing FPR values, with exception of protocol P2. With increasing open-set difficulty from
one protocol to the next, the range of FPR values on which SFN-CosFace and SFN-ArcFace out-
perform the approaches without margins becomes smaller.

The margin-based losses learn smaller angles than losses without margins as they draw the
knowns closer to angles of 0. However, compared to softmax and SFN-Norm, SFN-CosFace and
SFN-ArcFace have more negative and unknown samples with very low angles to class centers
which leads to more overlap of the distributions on the low end of the angles.

6.2.2 Margin-OS and Margin-EOS Losses
The OSCR curves for the Margin-OS losses and Margin-EOS losses are shown in Figure 6.7 and
Figure 6.9, respectively. We analyze the results for each protocol separately, providing a sum-
mary in the end. Figure 6.8 and Figure 6.10 shows the angle distributions for the Margin-OS and
Margin-EOS losses, respectively.

Protocol 1 For protocol P1 the Arc-OS loss was not able to converge, showing high fluctuations
in the validation loss and constant training loss. Unfortunately, we do not know what caused this
failure to converge.

Cos-OS and Norm-OS achieve similar closed-set accuracies of about 0.7 which slightly surpass
the benchmark accuracies on the unknown and negative samples. The Margin-EOS losses achieve
almost identical closed-set accuracy of 0.71 with Norm-EOS being slightly lower. These small
differences are not surprising on P1 given that it poses the hardest closed-set task of all three
protocols.

When considering the open-set performance we can see clear differences between the perfor-
mance on the negatives and unknowns for Cos-OS. On the negative samples the Cos-OS OSCR
curve drops below the curves for Norm-OS and OS at around 10−1 and shows consistently worse
CCR@FPR values for all lower FPR values. However, Cos-OS seems much better at generalizing
towards the unknowns as it clearly and consistently achieves higher CCR@FPR for all FPR values
above 10−2 compared to Norm-OS and OS. But again, it shows a clear drop in performance for
FPR values below 10−3. Norm-OS shows very similar performance to OS on the unknowns with
slightly worse performance on the negatives.

The OSCR curves for Cos-EOS and Arc-EOS show that they are able to achieve slightly higher
CCR@FPR values on the negatives than the benchmark for almost all levels of FPR. This advan-
tage largely disappears on the unknowns for FPR values below about 5 × 10−3 for both losses,
after which their performance deteriorates and lags behind the OS benchmark. Norm-EOS again
shows qualitatively similar results to the benchmark but shows consistently lower CCR, espe-
cially on the unknown test samples.

Protocol 2 Norm-OS achieves the highest closed-set accuracy of 0.68 on the unknowns of pro-
tocol P2 out of all losses, with Cos-OS close behind. While Arc-OS was able to converge on P2,
its loss curves again reveal some training instabilities, leading to having among the worst accu-
racy of less than 0.63. We can see similar results on the negative samples. Cos-EOS and Arc-EOS
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achieve very similar closed-set accuracies of about 0.67, and are thus between Norm-OS and Cos-
OS, with Norm-EOS performing noticeably worse but still surpassing both benchmarks EOS and
OS.

The training instabilities of Arc-OS are further reflected in its open-set performance which, at
best, is equal to the benchmark but otherwise shows comparatively low CCR throughout all FPR
values compared to all other losses. On the negative samples, both, Cos-OS and Norm-OS have
their OSCR curves drop below the benchmark at very high FPR values of roughly 4 × 10−1 and
10−1, respectively. However, on the unknowns both losses consistently and clearly achieve higher
CCR@FPR than the OS loss, with Norm-OS even extending further to the left and achieving the
highest CCR of all losses at FPR = 10−2.

Cos-EOS and Arc-EOS show similar behavior on the negatives and unknowns, where their
OSCR curves are higher than the OSCR curves for OS and Norm-EOS, but drop below them at
FPR values at or slightly above 10−2. Norm-EOS, however, achieves consistently better or equal
performance compared to the benchmark on the negatives and almost identical performance on
the unknowns, except its increased closed-set accuracy.

Protocol 3 The closed-set accuracies on protocol P3 for the Margin-OS losses is among the high-
est out of all losses, with Cos-OS having the highest accuracy of 0.80. The accuracies of Arc-OS
and Norm-OS on the unknowns is roughly 0.79 and 0.78, respectively. All of which are higher
than the Margin-EOS closed-set accuracies of about 0.77.

Not only does Cos-OS achieve the highest closed-set accuracy, but it also achieves the highest
CCR at FPR = 10−1 on the unknowns, namely, 0.60. As is to be expected, because the nega-
tives and unknowns share many visual features, we observe almost identical OSCR curves for all
Margin-OS losses and Margin-EOS between the negatives and unknowns. Interestingly, even be-
tween the two groups the OSCR curves behave very similarly. For Cos-OS, Arc-OS, Cos-EOS, and
Arc-EOS the CCR@FPR values are above the OS benchmark for FPR values from roughly 3×10−2

to 1, from where the CCR steeply drops to values below 0.2. It is also noteworthy to highlight that
even though the zero-margin versions of Margin-OS and Margin-EOS slightly lag behind the re-
spective margin-based losses for high FPR values, for low FPR values they clearly achieve higher
CCR@FPR values. In particular, Norm-EOS achieves largely slightly better performance com-
pared to the OS benchmark, but reaches much lower FPR values, albeit at very low CCR below
0.2. Norm-OS and, in particular, all Margin-EOS losses extend to very small FPR values of down
to 2× 10−4, thus achieving significantly lower FPR values compared to the benchmark.

Angle Distributions Figure 6.8 shows that Cos-OS shifts the angle distribution of the known
samples towards the left with a very clear peak of angles below π

8 compared to the zero-margin
version Norm-OS on all protocols. On protocols P2 and P3 where Arc-OS converged, it shows
similar distributions of the knowns. Norm-OS also learns slightly smaller angles than the OS loss
for known samples, but overall the distribution is not as wide as for Cos-OS and Arc-OS. As is
to be expected, we can also see that the angular separation between knowns and negatives/un-
knowns becomes less clear with increasing difficulty of the protocols for all Margin-OS losses and
the benchmark. Generally, the distributions of the negatives and unknowns overlap almost per-
fectly for all losses on all protocols. Similar to the SFN-Margin losses, the distribution of angles
of the known classes are heavily right-skewed and the distributions of the margin-based losses
show higher overlaps for very small angles on all protocols compared to Norm-OS or OS.

The Margin-EOS losses, which exclusively separate the classes based on the angles show much
stronger separation of the angles. Since these losses use HFN, the probability curves can be ex-
pected to be accurate since both assumptions are fulfilled. Cos-EOS and Arc-EOS learn distri-
butions for the knowns which peak at around π

8 , which is where the probability curves reach
1 during training. This illustrates the influence of the margin, as Norm-EOS does not achieve
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similarly small angles for the knowns. Analogous to the SFN-Margin and Margin-OS losses, the
losses that apply a margin tend to skew the distributions of negatives and unknowns to the left
and achieve an increased overlap in the distributions for small values. In contrast to the SFN-
Margin and Margin-OS losses, as we can see that for all Margin-EOS losses the minimum angle
for negative samples to any class is heavily concentrated around π

2 , which is equal the average an-
gle. This implies that the maximum angle of the negatives is π

2 or slightly larger as well, which is
also what we observe empirically. Interestingly, for P1 we can see that all Margin-EOS losses have
distributions of unknown samples that don’t overlap with the negatives as much as for the other
protocols. We also verified that the pairwise angles between all class centers are at or slightly
above π

2 . From these observations we know that the Margin-EOS losses learn C + 1 class centers
that are close to — but not exactly — mutually orthogonal.

Summary Arc-OS shows general signs of training instabilities and even fails to converge on
P1. With exception of Arc-OS all Margin-OS and Margin-EOS losses, notably including the zero-
margin versions, achieve significantly higher closed-set accuracies compared to the benchmarks
on all protocols. The closed-set accuracies are generally higher for losses that impose a margin,
with the exception of Norm-OS on P2, which achieves the highest closed-set accuracies out of
all losses. The CCR values at low FPR values, however, are generally worse compared to the
benchmarks. This effect seems stronger the more difficult the OSC task becomes.

While zero-margin losses Norm-OS and Norm-EOS generally perform worse on P1 compared
to the benchmarks, they generally achieve similar or better performances to the benchmarks on
the protocols P2 and P3. They also achieve much lower FPR values on P3 along with Cos-EOS
and Arc-EOS, compared to the benchmarks.

The margin-based losses Cos-OS, Arc-OS, Cos-EOS, and Arc-EOS achieve lower angles on the
known samples than losses without margins, but their distributions of the knowns become wider.
This leads to them being heavily right-skewed and reaching angles up to π

2 . Notably, the margin-
based approaches also skew the distributions of the negatives and unknowns to the left, such that
they achieve angles that are as low as the smallest angles for the knowns. The Margin-EOS losses
achieve a stronger angular separation between knowns and negatives/unknowns, with the latter
ones being clustered such that their angles to all class centers are around π

2 .
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Table 6.2: IMAGENET OPEN-SET PROTOCOL RESULTS. The tables in (a), (b), and (c) depict the perfor-
mances on the unknown samples on protocols P1, P2, and P3 respectively. Each table shows the CCR@FPR
for all losses as well as the closed-set accuracy (Acc). Losses are grouped into: benchmarks, SNF Margin,
Margin-OS, and Margin-EOS. For each column, the best performance is highlighted in blue, and the best
per group is underlined. Empty cells indicate that the respective FPR was not reached.

(a) Protocol 1

Group Loss CCR@FPR Acc
10−3 10−2 10−1 1

Benchmarks
Softmax 0.1772 0.4048 0.5855 0.6726

EOS 0.2648 0.4816 0.6643 0.6903
Objectosphere 0.3095 0.5214 0.6666 0.6843

SFN Margin
SFN-Norm 0.1674 0.3814 0.5562 0.6719

SFN-CosFace 0.1802 0.4729 0.6583 0.7095
SFN-ArcFace 0.0503 0.5005 0.6809 0.6945

Margin-OS
Norm-OS 0.2897 0.4986 0.6612 0.7029
Cos-OS 0.1803 0.5440 0.6952 0.7067
Arc-OS 0.0000 0.0000 0.0009 0.0126

Margin-EOS
Norm-EOS 0.2172 0.4336 0.6436 0.6950
Cos-EOS 0.2531 0.5278 0.6653 0.7060
Arc-EOS 0.1386 0.5472 0.6733 0.7083

(b) Protocol 2

Group Loss CCR@FPR Acc
10−3 10−2 10−1 1

Benchmarks
Softmax 0.0280 0.1160 0.3673 0.6260

EOS 0.1073 0.4013 0.6253
Objectosphere 0.0347 0.1607 0.4093 0.6320

SFN Margin
SFN-Norm 0.0527 0.1220 0.3267 0.6213

SFN-CosFace 0.1100 0.4020 0.6653
SFN-ArcFace 0.0407 0.1493 0.4220 0.6733

Margin-OS
Norm-OS 0.0660 0.1853 0.4420 0.6800
Cos-OS 0.0573 0.2080 0.4473 0.6647
Arc-OS 0.1173 0.4133 0.6273

Margin-EOS
Norm-EOS 0.0353 0.1647 0.4073 0.6573
Cos-EOS 0.0127 0.1553 0.4793 0.6740
Arc-EOS 0.0027 0.1080 0.4627 0.6733

(c) Protocol 3

Group Loss CCR@FPR Acc
10−3 10−2 10−1 1

Benchmarks
Softmax 0.2238 0.5163 0.7574

EOS 0.2517 0.5428 0.7630
Objectosphere 0.2562 0.5294 0.7482

SFN Margin
SFN-Norm 0.0809 0.2351 0.5275 0.7597

SFN-CosFace 0.0805 0.5501 0.7894
SFN-ArcFace 0.0623 0.5536 0.7901

Margin-OS
Norm-OS 0.0411 0.2185 0.5832 0.7768
Cos-OS 0.0877 0.6044 0.7952
Arc-OS 0.1159 0.5874 0.7858

Margin-EOS
Norm-EOS 0.0531 0.2596 0.5576 0.7674
Cos-EOS 0.0097 0.1417 0.5909 0.7713
Arc-EOS 0.0033 0.0838 0.5932 0.7764



6.2 ImageNet Experiments 43

Figure 6.5: OSCR CURVES OF SFN-MARGIN LOSSES. This figure shows the OSCR curves of the
SFN-Margin losses for each ImageNet open-set protocol and for the negative and unknown tests samples
respectively. The softmax loss is the benchmark.
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Figure 6.6: ANGLE DISTRIBUTIONS WITH PROBABILITY CURVES OF SFN-MARGIN LOSSES. This
figure shows the distributions of the angles (in radians) of known, negative, and unknown test samples of
the SFN-Margin losses and the softmax loss as benchmark. The known samples depict their angles to the
ground-truth class center (θi,yi ). The negative and unknowns depict theeir angles to the closest class center
(minc∈C{θi,c}). For each loss with normalized features and weights we superimpose the probability curves
as a function of the angle (solid black line) with consideration of the scaling factor s. For margin-based
losses we add the probability curve with consideration of the respective margin (dashed black line).
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Figure 6.7: OSCR CURVES OF MARGIN-OS LOSSES. This figure shows the OSCR curves of the
Margin-OS losses for each ImageNet open-set protocol and for the negative and unknown tests samples
respectively. The OS loss is the benchmark.
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Figure 6.8: ANGLE DISTRIBUTIONS WITH PROBABILITY CURVES OF MARGIN-OS LOSSES. This
figure shows the distributions of the angles (in radians) of known, negative, and unknown test samples
of the Margin-OS losses and the OS loss as benchmark. The known samples depict their angles to the
ground-truth class center (θi,yi ). The negative and unknowns depict theeir angles to the closest class
center (minc∈C{θi,c}). For each loss with normalized features and weights we superimpose the probability
curves as a function of the angle (solid black line) with consideration of the scaling factor s. For margin-
based losses we add the probability curve with consideration of the respective margin (dashed black line).
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Figure 6.9: OSCR CURVES OF MARGIN-EOS LOSSES. This figure shows the OSCR curves of the
Margin-EOS losses for each ImageNet open-set protocol and for the negative and unknown tests samples
respectively. The OS loss is the benchmark.
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Figure 6.10: ANGLE DISTRIBUTIONS WITH PROBABILITY CURVES OF MARGIN-EOS LOSSES. This
figure shows the distributions of the angles (in radians) of known, negative, and unknown test samples
of the Margin-EOS losses and the OS loss as benchmark. The known samples depict their angles to the
ground-truth class center (θi,yi ). The negative and unknowns depict theeir angles to the closest class
center (minc∈C{θi,c}). For each loss with normalized features and weights we superimpose the probability
curves as a function of the angle (solid black line) with consideration of the scaling factor s. For margin-
based losses we add the probability curve with consideration of the respective margin (dashed black line).
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Discussion

In this section we discuss and interpret the results from our experiments in order to answer our
research questions with consideration of the limitations of our work. Even though our research
questions do not specifically ask for the effect of feature and weight normalizations, we are able
to draw conclusions about this effect as well by comparing the zero-margin versions to the bench-
marks.

Probability Curves Before addressing the research questions we want to highlight the signif-
icance of the probability curves for our interpretation. The probability curves highlight a cor-
respondence from the angles to softmax scores. While this is not a one-to-one correspondence
for approaches that employ SNF, it still provides intuition on the softmax score that is likely to
be achieved for any specific angle. It is also important to keep in mind that the two probability
curves of margin-based approaches are to be interpreted differently. The one shifted to the left
(dashed) provides the supervision feedback during training, while the one to the right (solid)
is used to compute predictions at test time, since we cannot apply a margin at test time. This
results in significantly more samples achieving maximal softmax scores of 1 at test time than dur-
ing training. This is a fundamental problem when thresholding the softmax scores, because each
sample with score 1 will always be classified as known and thus result in higher false positive
rates.

7.1 Effect of the Margin without Negative Samples
(RQ1)

Research question RQ1 asks: What effect do margins from margin-based loss functions have on the open-
set (RQ1a) and closed-set (RQ1b) performance of an OSC task, when trained without negative samples?

Effect on Closed-set Performance (RQ1a) We clearly see a consistently increased closed-set
performance from SFN-CosFace and SFN-ArcFace over softmax throughout all protocols. Since
the zero-margin version, SFN-Norm, shows comparable performances to softmax on all proto-
cols, it is safe to conclude that the increased closed-set performance is a result of the respective
margins. As such, subquestion RQ1a can be clearly answered as we find a positive effect (in-
creased accuracy) of imposing a margin on the closed-set performance. However, we do not see
a clear indication as to whether the additive cosine or angular margin is better suited, since the
results vary for each protocol with no clear trend.
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This result is not surprising because the margins are designed to move known samples further
away from the decision boundaries and closer to the respective class center. We can also see that
the normalization of the features and class centers does not show any effect on the ability of the
classifiers to correctly classify samples on a closed-set classification task.

Effect on Open-Set Performance (RQ1b) Analyzing the effect of the margin on the open-set
performance is less clear. On P1 we can see that imposing a margin helps to separate between
knowns and negatives and unknowns, respectively. The more we increase the threshold (and
lower the FPR) on SFN-CosFace and SFN-ArcFace, the worse their relative performance becomes
compared to softmax and SFN-Norm. Crucially, since the performance deteriorates relative to
SFN-Norm, it is likely that the decreasing open-set performance is a result of the margin.

Ultimately, we do not know for certain what causes this effect. It is likely a result of the mar-
gin drawing negative and unknown samples towards class centers and increasing the dispersion
in the angles of known samples. This can have two effects: (1) samples with very low angles
become false positives or (2) known samples achieve lower softmax scores and become rejected
more easily. While both this would explain the drop in CCR, the former would also coincide
with stagnating FPR values at comparatively high values, which is not what we observe when
comparing the margin-based losses to SFN-Norm.

Additionally, in the appendix we provide the OSCR curves (Figure A.1) for the SFN-Margin
losses under evaluation via thresholding of the logits, to analyze if the decrease in CCR is a result
of the scores reaching 1 and becoming difficult to threshold. Only for P3 can we see a decrease in
FPR values, which would support this argument, while for all other protocols, the margin does
not lead to any change in the FPR. This indicates that the scores are likely not too large.

Because the CCR only drops for high thresholds and is clearly higher for low thresholds, we
believe that the margin does not counterintuitively lead to more misclassifications of known sam-
ples. Instead, we hypothesize that the decrease in CCR is in fact a result of larger angles for
many known samples, which in turn lead to scores that are strictly smaller than one, but not by
much. This would result in a drop of CCR values for large thresholds that leads to knowns not
being recognized as such while keeping the FPR values largely unaffected. The angle distribu-
tions of the known samples along with the corresponding probability curve without a margin
(Figure 6.6) supports this interpretation as many scores are likely to not reach scores less than 1.
This can somewhat be counteracted by the SFN adjusting to learn larger magnitudes but the effect
cannot be mitigated entirely, since the cosine of the angle and the feature magnitude are multi-
plied, meaning that cosine values around 0 will not be able to counteracted. Further analysis of
other metrics, such as the false negative rate is needed. We observe that with increasing open-
set difficulty of the protocols, the downsides of the margin also become more pronounced, as
the underperformance of SFN-CosFace and SFN-ArcFace compared to SFN-Norm on P3 is much
stronger compared to protocols P1 and P2.

In conclusion, we can answer research question RQ1b as follows: The effect of the margin
on open-set performance is positive when applying low thresholds which results in higher CCR.
However, for higher thresholds, the effect becomes negative, as the margin-based methods pre-
sumably fail to successfully identify known samples which leads to a high rejection rate, while
still achieving low false positive rates. The downsides of applying a margin seem to become more
pronounced the harder the OSC task is.

7.2 Effect of the Margin with Negative Samples (RQ2)
Research question RQ2 asks: What effect do margins from margin-based loss functions have on the open-
set performance (RQ2a) and closed-set performance (RQ2b) of an OSC task, when combined with EOS and
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OS to incorporate negative samples during training? First and foremost we need to highlight that,
while we propose two generic loss functions that combine the margin-based losses CosFace and
ArcFace with EOS and OS, we cannot extrapolate the effect we observe to any loss that modifies
EOS and OS to impose margins between known classes. The effects we observe seem largely
similar for both of our losses but this does not guarantee that losses can exist where the effect
of the margin is different. As such we answer these questions with respect to our proposed loss
functions.

Effect on Closed-set Performance (RQ2a) Similar to the closed-set performance of the SFN-
Margin losses, the Margin-OS and Margin-EOS losses show a clear and strong tendency to achieve
increased closed-set accuracies on all protocols over the benchmarks. In contrast to the SFN-
Margin losses, the isolated effect of the margin for Margin-OS and Margin-EOS is not as strong
when compared to the respective zero-margin losses. For the Cos-OS losses on protocol P2 the iso-
lated effect of the margin is even negative. This suggests that, while the effect is mostly positive,
it is not as strong when incorporating negative samples during training. It appears that forcing
the networks to discriminate between known classes only based on the angle (when normaliz-
ing feature and weights) shows a stronger positive effect than imposing a margin. Comparing
Margin-OS and Margin-EOS in terms of their closed-set performance, we cannot see a strong dif-
ference between the two, except that Margin-OS seems to have a slight edge over Margin-EOS.
As such, there is no clear preference on how to deal with negatives in a closed-set task, i. e., dis-
criminating between knowns and negatives/unknowns based on the angle or feature magnitude.

We can answer research question RQ2a as follows: The effect of the margin on the closed-set
accuracy, when the network is trained with negative samples, is mostly positive but small and
possibly insignificant in terms of its effect size. Forcing the networks to distribute deep features
around a hypersphere and only discriminating the known classes based on the angle, by normal-
izing features and weights, seems to show a stronger effect.

Effect on Open-Set Performance (RQ2b) Interestingly, the effect of the margin on the open-set
performance seems to be largely unchanged when including negative training samples. Through-
out all protocola, all loss functions show a steep decrease in CCR for high thresholds while show-
ing similar performance in terms of FPR or even improving over the benchmarks. Thresholding
the logits instead of the softmax scores does in fact yield slight improvements but does not fully
remove — and thus does also not explain — the steep drop in CCR of the margin-based losses
(see Figure A.2 and Figure A.3).

We also observe that Cos-OS, Arc-OS, Cos-EOS, and Arc-EOS increase the dispersion in the
angles of the known samples. Norm-OS and Norm-EOS shows a similar effect but less strong. We
suspect that, analogously to the SFN-Margin losses, the steep decrease in CCR values at thresh-
olds close to 1 is the result of known samples not reaching softmax scores of 1 exactly. This leads to
them being rejected while keeping reaching very low FPR values. This effect seems to be strongest
on protocol P3 but similar tendencies can be observed on the other protocols as well. Similarly
to the SFN-Margin losses, we thus believe that the downsides of applying a margin become more
pronounced with increased difficulty of the OSC task.

Since the Margin-EOS losses employ HFN, the probability curves in Figure 6.10 are expected
to be relatively accurate, which suggest that many known samples achieve scores very close to
0. This provides strong evidence that this is causing known samples to be rejected with large
thresholds since many do not reach scores of 1.

We answer research question RQ2b as follows: The effect of the margin on open-set perfor-
mance positive when low thresholds are applied to the softmax scores. Imposing margins, how-
ever, seems to have a negative side effect that leads to the distribution of angles of known samples
being heavily right-skewed which results in some known samples achieving small probability
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scores for the ground-truth class and getting rejected at high thresholds. This negative side effect
seems to become more pronounced the harder the OSC task is. Forcing the networks to discrim-
inate between classes only based on the angles seems to explain most of the increased accuracy
and CCR while circumventing the negative effects of imposing margins.

7.3 Limitations
Following we want to highlight individual remarks and limitations of our work:

• For each loss we explore two different margin types: the additive cosine margin and the
additive angular margin. Because we do not optimize the margin parameters for each loss
individually, we cannot directly compare the effects of these margins, as we do not know
if both chosen parameters achieve equally optimal performance for the respective losses.
The angular margin, however, shows instabilities during training of the Arc-OS loss, but
we currently do not know what caused this. This issue is related to the fact that, due to
time constraints, we do not quantify the uncertainty in the CCR@FPR values. This makes
comparisons of CCR@FPR values very difficult as we do not know which differences are
significant and which are likely a result of random chance.

• Since this is a comparative study and we choose training parameter such that they lead to
reasonable results for most losses, we cannot exclude that certain losses might benefit from
vastly different training parameters. For example, when analyzing the validation loss for
all Margin-EOS losses we observe that they converge very fast (about 30 epochs) to a state
from which not the other 90 epochs show little progress. This could be an indicator that the
learning rate is too small. Also, training for a fixed number of epochs will favor losses that
benefit from more iterations over losses that converge quickly and consequently run the risk
of overfitting to the training data more.

• While we compute a lower bound on the scale parameter s as a function of the expected
minimum posterior probability p̂i,c, that is simpler to guess reasonably, it is ultimately still a
hyperparameter that ideally should be tuned and experimented on. Considering our results
it is possible that we chose p̂i,c too small to not obtain a scale factor s that is too large, and
as a result ended up with s being too small.

• We observe, that the Margin-EOS losses learn deep features for the negatives for which the
angles to all other class centers are clustered at π

2 with a skew towards smaller angles. This
can be interpreted as an implicit background class center in the deep feature space. Interest-
ingly, the pairwise angles between all class centers is also very close to π

2 but occasionally a
bit larger. This indicates that Margin-EOS wants to learn C+1 mutually orthogonal vectors,
which crucially requires K = C + 1. As such, the deep feature dimensionality of K = C
possibly leads to worse performance than could have been possible.

• We acknowledge that the decision to remove certain visually indistinguishable letters from
our toy protocol is to a certain degree an arbitrary choice.
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Conclusion and Future Work

In this thesis we explore the effect that imposing a margin between deep features of known classes
has on closed-set and open-set classification performance. This thesis started on the hypothesis
that learning discriminative features can increase said closed-set and open-set performance. We
analyze this effect for losses that are only trained on known samples and losses that incorporate
negative samples during training. To analyze the former, we adapt the CosFace loss and ArcFace
loss with a Ring loss regularizer to achieve SFN and obtain the SFN-CosFace and SFN-ArcFace
losses. To analyze the latter, we propose two novel loss generic functions Margin-OS and Margin-
EOS, that are combinations of the EOS and OS losses with the CosFace and ArcFace loss.

To achieve effective training with margins, we normalize the weights in the logit layer and em-
ploy SFN or HFN on the deep features. This forces the networks to discriminate known classes
primarily based on the angle to the class centers. The Margin-OS losses discriminate between
knowns and negatives/unknowns via the feature magnitude, learning the zero vector as deep
feature for negative and unknown samples, while learning a feature magnitude s for known sam-
ples. The Margin-EOS losses discriminate between known and negative/unknown classes only
via the angle, which lets us interpret the Margin-EOS losses as learning an implicit background
class center for negative and unknown samples.

We train all networks on three ImageNet open-set protocols of varying degrees of difficulties.
We find that a margin has a clear positive effect on the closed-set accuracy throughout all protocols
and losses. However, the effect becomes smaller when training includes negative samples, where
normalizing weights and features without imposing a margin shows a large positive effect on
closed-set accuracy and explains most of the increased closed-set accuracy for the Margin-OS
and Margin-EOS losses. The effect of the margin on open-set classification is less clear. We find
that when applying low thresholds to the softmax scores, an open-set classifier can benefit from
imposing a margin between classes as it leads to increased CCR. However, this effect only holds
for relatively high FPR values and thresholds that are clearly smaller than 1. In fact, for thresholds
close to 1 and consequently small FPR values, the margin has a negative impact on the CCR, as it
leads to overproportionally many known samples being rejected compared to losses that do not
impose a margin. This negative effect renders the margin-based losses useless for safety critical
applications that require very few false positives.

Future Work To close the thesis off, we want to highlight potential considerations for future
work:

• The scale parameter s is of great importance for any margin-based loss as these require ei-
ther hard or soft feature normalization. While we do have a lower bound on this parameter,
more research into the effect that the feature magnitude has on the performance of OSC
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methods is needed. This might include derivations of better bounds that, for example, ac-
count for the margin parameter, or adaptions of our proposed losses to methods such as
AdaCos (Zhang et al., 2019) which dynamically adapt the feature magnitude during train-
ing.

• While we observed the effect of the margin on closed-set and open-set classification per-
formance, it would be interesting to further explore what causes these effects to potentially
find ways to counteract the negative effect on open-set performance.

• Since the effect of the margin on closed-set classification is clearly positive, it would be
interesting to combine the SFN-Margin losses with a background class approach, to learn a
margin between known and negative/unknown samples.
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Figure A.1: OSCR CURVES OF SFN-MARGIN LOSSES FOR LOGIT THRESHOLDING. This figure
shows the OSCR curves of the SFN-Margin losses for each ImageNet open-set protocol and for the negative
and unknown tests samples respectively. In contrast to Figure 6.5, the curves are computed by thresholding
the logits instead of the softmax scores. The softmax loss is the benchmark. These results are discussed in
Chapter 7.



57

Figure A.2: OSCR CURVES OF MARGIN-OS LOSSES FOR LOGIT THRESHOLDING. This figure shows
the OSCR curves of the Margin-OS losses for each ImageNet open-set protocol and for the negative and
unknown tests samples respectively. In contrast to Figure 6.7, the curves are computed by thresholding the
logits instead of the softmax scores. The OS loss is the benchmark. These results are discussed in Chapter 7.
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Figure A.3: OSCR CURVES OF MARGIN-EOS LOSSES FOR LOGIT THRESHOLDING. This figure
shows the OSCR curves of the Margin-EOS losses for each ImageNet open-set protocol and for the negative
and unknown tests samples respectively. In contrast to Figure 6.9, the curves are computed by thresholding
the logits instead of the softmax scores. The OS loss is the benchmark. These results are discussed in
Chapter 7.
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Lists of Symbols
Sets of class labels

Y ⊂ N Set of all infinitely possible class labels
C = {1, . . . , C} ⊂ Y Set of finitely many known classes
C Cardinality of set C, i. e., C = |C|
M = Y \ C Infinite set of mixed unknown classes
N ⊂ M Finite set of negative classes
U = M\N Infinite set of unknown classes

Datasets

Dtrain
C Train dataset of known samples

Dtest
C Test dataset of known samples

Dtrain
N Train dataset of negative samples

Dtest
N Test dataset of negative samples

Dtest
U Test dataset of unknown samples

Dtest
M = Dtest

U ∪ Dtest
N Test dataset of mixed unknown samples

Dtrain = Dtrain
C ∪ Dtrain

N Train dataset
Dtest = Dtest

C ∪ Dtest
M Test dataset

N =
∣∣Dtrain

∣∣ Size of the training data

Neural network components

xi Input data point or sample with index i ∈ {1, . . . , N}
yi ∈ C Ground-truth class label for sample xi

ti ∈ R Target for sample xi, typically one-hot encoding of yi

ϕi ∈ RK (Deep) feature representation (embedding) of xi

K ∈ N Dimensionality of deep feature representations
B Neural network backbone or feature extractor: B(xi) = ϕi

zi ∈ RC Logit vector of sample xi

L Logit function mapping features ϕi to logits zi: L(ϕi) = zi
W ∈ RK×C Weight matrix of the logit lunction
Wc ∈ RK c-th column vector of W representing the class center of class c ∈ C
θi,c Angle between deep feature ϕi and class center Wc

pi ∈ RC Softmax scores/probability distribution of sample xi

σ Softmax function: σ(zi) = pi

H Neural network head: H(ϕi) = σ(L(ϕi)) = pi

τ ∈ [0, 1] Softmax score (probability) threshold
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