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In this paper, we investigate the performance of a momentum trading strategy aug-

mented by an ARFIMA(p,d,q) statistical model. By incorporating long-memory fea-

tures into the modelling of stock returns, we aimed to achieve more accurate predictions

and subsequently, superior trading outcomes. Our research was motivated by the quest

to further refine trading strategies and increase their profitability while accounting for

market complexities. The main focus is on the thorough dissection of the Sowell (1992)

Maximum Likelihood Estimation methodology of ARFIMA parameters based on the pi-

oneering results in Hosking (1981) and recommended by Dahlhaus (1988). We pinpoint

the main advantages and disadvantages of this methodology, suggested improvements,

and describe in details the application process towards a momentum trading strategy

that extends the work of Chitsiripanich et al. (2022).

The general ARFIMA(p,d,q) can be written in a compact form as:

Φ(L)(1− L)dzt = Θ(L)εt (1)

and we introduce the Normal Likelihood function that is used to estimate the ARFIMA

parameters, namely the ARMA coefficients and the fractional difference parameter d :

f (ZT ,Σ) = (2π)−T/2|Σ|−1/2 exp

{
−1

2
Z ′

TΣ
−1ZT

}
(2)

where ZT is a sample of T observations normally distributed with µ = 0 and covariance

matrix Σ, which is of a Toeplitz form. The complexity around the computation of

the covariance matrix revolves around implementing ten distinctive functions in the

style of Sowell (1992) and Chung (1994) that involve multiple series of hypergeometric

functions and gamma functions.

Lastly, we perform an unconstrained maximum log-likelihood estimation of the ARFIMA

parameters based on the Normal Likelihood function:

ν̂ = argmax
ν∈Ω

fl (ZT ,Σ(T, ν)) with ν̂ = [d̂, ϕ̂, θ̂] (3)

where fl is the logarithm of the Normal Likelihood function, Ω is the parameter space,

a finite-dimensional subset of Euclidean space, d̂ is the fractional difference estimated
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parameter, ϕ̂ - a vector of AR(p) estimated coefficients, and θ̂ - a vector of estimated

MA(q) coefficients.

Due to the fact that the likelihood equations ∂fl(ZT ,Σ(ν)
∂ν

= 0 cannot be solved explicitly

for an estimator ν̂ = ν̂(ZT ), we introduce an iterative process based on an updating

formula with an initial guess (ν̂1) as recommended in Sowell (1992). This is a two-

step implementation: choosing a grid of d parameters (from -0.49 to 0.49 to follow the

restriction of ARFIMA), fractionally differencing the series, and estimating the ARMA

parameters, based on that series. The initial guess will be the parameters that portray

the lowest variance of the innovations from this procedure.

In the style of Doornik and Ooms (2004), the best linear prediction of zT+H|T , given the

information in ZT and knowing the estimated parameters ν̂ = [d̂, ϕ̂, θ̂] of the ARFIMA

process, is given by:

ẑT+H|T = (γT−1+H · · · γH) (ΣT )
−1 ZT (4)

(ΣT )
−1 ZT could easily be computed via a Durbin-Levinson algorithm (see Durbin

(1960)), which is used for the inversion of finite Toeplitz matrices. Essentially, com-

puting γ(0), ..., γ(T +H) for the input parameters ν̂ allows the forecasting of future H

data points of the time series ZT .

As echoed by Chitsiripanich et al. (2022), applying the first difference transforma-

tion to log-returns might constitute an overly drastic modification, leading to an over-

differenced and potentially less informative dataset. This concern is particularly rele-

vant in the context of ARFIMA(0,d,0) models, the forecasting performance of which

has been critically evaluated by Ellis and Wilson (2004). However, it is essential to note

that these critiques were primarily levelled at analyses of conventional stock returns,

which are generally not believed to possess substantial long-term memory. To solve

the conundrum of having a stationary (quasi-stationary) input for the ARFIMA model

while not eliminating the entire memory or predictive power from the data, it would be

mindful to apply a two-step approach by first obtaining a time series (1 − L)d1zt and

then estimating d2 in the classical sense of ARFIMA.

For our analysis, we choose two values of d1: 0.4 and 0.9. First ensures with a high

probability that the transformed time series are stationary and allows the preservation

of memory to the maximum extent possible, while the latter still preserves memory in

the data, but allows the evaluation of the autocovariance function without implying

roots close to the unit circle. Consequently, we choose an ARFIMA(2, d1 + d2, 2),

parsimonious model as a compromise between computation time and estimation power.

The trading strategy, per se, consists of forecasting future values of a stock’s universe

at each point in time for a rolling window of 250 days, ranking the forecasts, creating

quantile buckets, and going long the top bucket and short the bottom bucket. We chose
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a value-weighted strategy with weekly rebalancing, a period of backtesting of 5 years -

December 2015 to December 2020, and a randomised set of paths that involve having

a portfolio of 30 stocks at each point in time. The same data set as in Chitsiripanich

et al. (2022) is used; namely, the Asness et al. (2013) universe and for the purpose

of comparison we showcase the strategies ARFIMA(2, 0.4 + d2, 2), ARFIMA(2, 0.9 +

d2, 2), FI(0.9) as in Chitsiripanich et al. (2022) but with the same stock universe, and

S&P500 as a proxy for the market. The bucket size is chosen to be q = 0.2, as it was

proved to be the best performing one.

Metric d1 = 0.4 d1 = 0.9 FI(0.9) S&P500
Annual Return 6.56% -2.61% -3.38% 14.96%
Volatility 11.38% 14.57% 25.62% 19.30%
Sharpe Ratio 0.58 -0.18 -0.13 0.29
Sortino Ratio 0.83 -0.24 -0.17 0.60
STARR 0.0173 -0.0028 -9e-05 0.0201
Skewness -0.162 -0.207 -1.410 -1.144
Kurtosis 7.571 7.556 22.32 25.303
Maximum Drawdown -17.39% -50.10% -58.51% -67.74%
Average Drawdown -4.53% -19.10% -14.81% -7.33%
Drawdown Duration 218 days 1035 days 666 days 145 days
Beta -0.0186 -0.0096 -0.0687 1.0000
Hit Ratio 53.40% 49.88% 52.36% 56.35%
VaR95 1.05% 1.46% 2.10% 1.75%
CVaR95 1.61% 2.23% 4.10% 3.13%
Turnover 79.6% 79.5% 78.5% NA

Table 1: Performance metrics for different strategies and the market index.

ARFIMA(2, 0.4+ d2, 2) outperforms all the other strategies and the market on a risk-

adjusted returns basis. This is entailed from the higher Sharpe and Sortino ratios, lower

Skewness and Kurtosis, much lower Drawdowns, and lower risk-measures such as VaR95

& CVaR95. Two other key elements of these returns are the absence of correlation with

the market and even lower crash risk, the dynamics of which were captured during the

Covid-19-related crisis. One also has to be mindful of the implied high turnover.

However, these findings should be considered cautiously, given the limitations of the

data sample scope. Therefore, the main disadvantage of the results is the small sample

of stocks used for the generation of the quantile buckets due to computational con-

straints pertaining to the EMLE of ARFIMA parameters. Nevertheless, through an

inference process, we expect the results to be even more attractive with greater sample

size. Future research could leverage more substantial computing resources, extend the

stock selection, or apply alternate estimation methodologies such as indirect estimation

of ARFIMA as in Martin and Wilkins (1999) or other parametric and semiparamet-

ric methodologies recommended by Fox and Taqqu (1986) and tested by Reisen et al.

(2001).

3



References

C. S. Asness, T. J. MOSKOWITZ, and L. H. PEDERSEN. Value and momentum

everywhere. The Journal of Finance, 68(3):929–985, 2013. ISSN 00221082, 15406261.

URL http://www.jstor.org/stable/42002613.

S. Chitsiripanich, M. S. Paolella, P. Polak, and P. S. Walker. Momen-

tum without crashes. Nov 2022. Swiss Finance Institute Research Pa-

per No. 22-87, Available at SSRN: https://ssrn.com/abstract=4280465 or

http://dx.doi.org/10.2139/ssrn.4280465.

C.-F. Chung. A note on calculating the autocovariances of the fraction-

ally integrated arma models. Economics Letters, 45(3):293–297, 1994.

ISSN 0165-1765. doi: https://doi.org/10.1016/0165-1765(94)90026-4. URL

https://www.sciencedirect.com/science/article/pii/0165176594900264.

R. Dahlhaus. Small Sample Effects in Time Series Analysis: A New Asymptotic The-

ory and a New Estimate. The Annals of Statistics, 16(2):808 – 841, 1988. doi:

10.1214/aos/1176350838. URL https://doi.org/10.1214/aos/1176350838.

J. A. Doornik and M. Ooms. Inference and forecasting for arfima mod-

els with an application to us and uk inflation. Studies in Nonlinear Dy-

namics Econometrics, 8(2), 2004. doi: doi:10.2202/1558-3708.1218. URL

https://doi.org/10.2202/1558-3708.1218.

J. Durbin. The fitting of time-series models. Revue de l’Institut International de Statis-

tique / Review of the International Statistical Institute, 28(3):233–244, 1960. ISSN

03731138. URL http://www.jstor.org/stable/1401322.

C. Ellis and P. Wilson. Another look at the forecast performance of ARFIMA

models. International Review of Financial Analysis, 13(1):63–81, 2004. URL

https://ideas.repec.org/a/eee/finana/v13y2004i1p63-81.html.

R. Fox and M. S. Taqqu. Large-sample properties of parameter estimates for strongly

dependent stationary gaussian time series. The Annals of Statistics, 14(2):517–532,

1986. ISSN 00905364. URL http://www.jstor.org/stable/2241233.

J. R. M. Hosking. Fractional differencing. Biometrika, 68(1):165–176, 1981. ISSN

00063444. URL http://www.jstor.org/stable/2335817.

V. L. Martin and N. P. Wilkins. Indirect estimation of arfima and

varfima models. Journal of Econometrics, 93(1):149–175, 1999. ISSN

0304-4076. doi: https://doi.org/10.1016/S0304-4076(99)00007-X. URL

https://www.sciencedirect.com/science/article/pii/S030440769900007X.

V. Reisen, B. Abraham, and S. Lopes. Estimation of parameters in arfima

processes: A simulation study. Communications in Statistics - Simulation

4



and Computation, 30(4):787–803, 2001. doi: 10.1081/SAC-100107781. URL

https://www.tandfonline.com/doi/abs/10.1081/SAC-100107781.

F. Sowell. Maximum likelihood estimation of stationary univariate fractionally

integrated time series models. Journal of Econometrics, 53(1-3):165–188, 1992. URL

https://EconPapers.repec.org/RePEc:eee:econom:v:53:y:1992:i:1-3:p:165-188.

5


