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Zusammenfassung

Mit der rasanten Zunahme der Haufigkeit und Schwere von Distributed Denial of Ser-
vice (DDoS)-Angriffen ist der Bedarf an robusten und effektiven Gegenmassnahmen von
grosster Bedeutung. In dieser Arbeit wird ein neuartiger Ansatz zur Bewéltigung dieses
Problems durch die Entwicklung eines Emulator-Tools vorgestellt, das verteilte DDoS-
Datensétze generiert. Dieses Tool geht auf die Einschrdnkungen bestehender, vorwiegend
zentralisierter DDoS-Datensétze ein und bietet eine verteilte Perspektive, die entscheiden-
de Einblicke in die Dynamik dieser Angriffe erméglicht.

Der Emulator basiert auf der Open-Source-Flexibilitéat des Network Simulator 3 (NS3) und
ist in der Lage, SYN-Flood-Verkehr, ICMP-Flood-Verkehr und legitimen Verkehr zu mo-
dellieren, jeweils auf der Grundlage bereits vorhandener Datensétze, wodurch die Vielfalt
und der Realismus der simulierten DDoS-Szenarien erhoht werden. Das architektonische
Design des Tools ermdoglicht eine umfassende Konfiguration von Netzwerkstrukturen, die
sich realistisch iiber mehrere Lander erstrecken konnen, was die Bandbreite der zu untersu-
chenden Angriffsszenarien deutlich erh6ht. Das Tool liefert Ergebnisse im weit verbreiteten
PCAP-Format und verfiigt iiber eine unkomplizierte Befehlszeilenschnittstelle, so dass es
sowohl fiir Forschungs- als auch fiir operative Anwendungen leicht zugénglich ist.

Im Wesentlichen stellt dieses Tool einen bedeutenden Fortschritt in der DDoS-Forschung
dar und bildet eine solide Grundlage fiir kiinftige Erweiterungen. Es ist ein Zeichen fiir
das Potenzial zur Verbesserung unseres Verstdndnisses und unserer Abwehrstrategien an-
gesichts zunehmend komplexer und zerstorerischer DDoS-Angriffe. Die Einblicke in die
Angriffsdynamik sind eine wertvolle Ergdnzung zu den laufenden Bemiihungen im Be-
reich der Netzwerksicherheit.
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Abstract

With the rapid escalation in prevalence and severity of Distributed Denial of Service
(DDoS) attacks, the need for robust and effective countermeasures has become paramount.
This thesis presents a unique approach to tackling this issue through the development of
an emulator tool that generates distributed DDoS datasets. Addressing the limitations
of existing, predominantly centralized DDoS datasets, this tool provides a distributed
perspective, offering critical insights into the dynamics of these attacks.

Built upon the open-source flexibility of Network Simulator 3 (NS3), the emulator is
capable of modeling SYN flood traffic, ICMP flood traffic, and legitimate traffic, each one
based on pre-existing datasets, thereby increasing the richness and realism of simulated
DDoS scenarios. The tool’s architectural design allows for comprehensive configuration of
network structures that can realistically span multiple countries, significantly enhancing
the range of attack scenarios that can be explored. Providing outputs in the widely used
PCAP format and featuring a straightforward command-line interface, the tool is designed
to be highly accessible for both research and deployed applications.

In essence, this tool constitutes a significant step forward in DDoS research, laying a
solid foundation for future enhancements. It stands as a testament to the potential for
improving our understanding and mitigation strategies in the face of increasingly complex
and destructive DDoS attacks. The insights it offers into attack dynamics mark a valuable
addition to the ongoing efforts in network security.
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Chapter 1

Introduction

Distributed Denial-of-Service (DDoS) attacks, while a longstanding threat in the cyber
domain, have seen an alarming escalation in frequency and magnitude in recent years,
thus highlighting their increased destructive potential. With shrinking intervals between
new record-breaking attack intensities, DDoS threats demonstrate a swift and alarming
evolution. For instance, the largest attack ever reported, as of February 2023, involved
an astounding 71 million requests per second, surpassing the previous record set just
eight months prior by a staggering 35% |20, 53]. This worrying trend not only indicates
the persisting threat of DDoS attacks but also highlights their escalating danger to daily
network operations.

The proliferation of botnets - responsible for a significant share of DDoS attacks - has
been facilitated by the rise in poorly secured IoT devices. While the processing power
of individual devices may be limited, their collective strength, exemplified by the 1.35
million bots detected from malware families like Mirai, Meris, and Dvinis in 2022, can
inflict substantial damage [61].

DDoS attacks pose not just a technical but also a significant financial burden to businesses.
The associated financial loss is influenced by numerous factors, including the size of the
business, the industry in which it operates, and the specific services targeted by the
attack. A study by Kaspersky Lab and B2B International indicated that the average cost
of a DDoS attack in 2016 was approximately $106,000 for small businesses and over $1.6
million for larger enterprises. This figure spiked to $123,000 and $2.3 million respectively
by 2017, revealing another distressing escalation [44]. Notably, there have been instances
where a single DDoS attack has inflicted financial losses of up to $160 million on a business,
demonstrating the catastrophic potential of these attacks [45].

1.1 Motivation

The prevalence and escalating severity of DDoS attacks necessitate the development of
robust and adaptable countermeasures. Intrusion Detection Systems (IDS) constitute an
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2 CHAPTER 1. INTRODUCTION

essential barrier, intercepting and scrutinizing traffic before it reaches an Intrusion Pre-
vention System (IPS). Given its sentinel role in identifying and alerting about suspicious
or malignant traffic, the IDS is indispensable to the secure operation of any network [27].

To retain the effectiveness of an IDS, generating network traces that enable the assess-
ment of IDS signatures and refining of the system in light of previously undetected cases is
crucial [55]. IDS calibration typically relies on datasets that represent attack patterns [6].
However, the current datasets adhere to a victim-centric perspective, thus overlooking the
broader landscape of the attack [1, 3]. This approach may suffice for profiling straightfor-
ward attack frameworks like volumetric attacks, but falls short in deciphering the sources
of more complex orchestrations like botnets [5] [72].

The importance of a distributed perspective on an attack cannot be overstated: it illu-
minates the full scope of an attack, facilitates the discernment of traffic patterns, and
provides a rough identification of the participating attackers. Moreover, observing the
attack from various network vantage points allows one to trace its evolution, potentially
enabling its interception and mitigation earlier, while the malicious packets are still scat-
tered across the network and not yet concentrated on the target.

Despite the evident advantages, the distributed perspective has not been adopted yet.
One primary challenge stems from the prevailing target-centric approach of today’s de-
fense strategies. This approach focuses on recording attacks at their target, resulting
in a lack of real datasets providing a distributed view of an attack. Consequently, un-
derstanding how such attacks evolve across the network becomes challenging, hindering
the creation of additional distributed datasets and the refinement of collaborative DDoS
defense strategies.

Therefore, this thesis paves the path toward new approaches for evaluating DDoS defenses
by enabling the creation of complex attack scenarios under a distributed viewpoint. This
enables, for example, to analyze the influence of intermediate nodes within the attack,
the geographical distribution of attack sources, and observe other traffic patterns for
improving IDS systems.

1.2 Thesis Goals

This thesis aims to expand current DDoS datasets’ limitations by establishing an emulator
that proficiently creates distributed DDoS datasets. A concerted effort is made to architect
and actualize a system that offers a distributed lens into DDoS attacks. This approach
paves the way for a comprehensive understanding of attack dynamics and encourages the
exploration of collaborative detection and mitigation strategies.

The main goal is the design and implementation of a DDoS dataset emulator. The en-
visioned system should be capable of generating DDoS datasets with a distributed per-
spective. It would allow the configuration of a multitude of attack parameters, network
topologies, and attack scenarios to create diverse and realistic datasets. Subsequently, the
thesis aims to lay the groundwork for better insight into DDoS attacks. This is achieved
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by capturing and analyzing attack data from various distributed perspectives. Consider-
ing the collaborative behavior of different entities in the network, the emulator aims to
uncover valuable insights that might be overlooked in centralized datasets.

A vital aspect of the work involves comparing the emulator-generated datasets with ex-
isting centralized datasets. This comparative study helps evaluate and validate the em-
ulator’s output to assess the fidelity of the generated datasets, verifying the accuracy
of the distributed perspective and ensuring the emulator captures key characteristics of
real-world DDoS attacks.

Finally, a significant ambition of this master’s thesis is to contribute to the field of DDoS
research. By providing an emulator that enables the generation of distributed DDoS
datasets, the work aims to enhance the understanding of DDoS attacks, facilitate the
development and evaluation of collaborative detection and mitigation techniques, and
ultimately contribute to network infrastructures’ overall resilience and security.

Developing a robust and configurable emulator for generating distributed DDoS datasets
is envisaged in achieving these goals. By enabling the exploration of DDoS attacks from
a distributed viewpoint, the emulator can advance the understanding of attack dynamics
and contribute to the evolution of effective defense mechanisms.

1.3 Methodology

This thesis adopts a systematic methodology to achieve the stated goals. The initial stage
of this process involves a comprehensive examination of existing literature on the subject.
This includes understanding the construction and operation of networks, familiarizing with
the variety of DDoS attacks to be emulated, and comprehending key aspects associated
with the creation of datasets.

Given the multifaceted nature of the task, it becomes pertinent to examine different
methodologies for dataset creation. After scrutinizing the available strategies, an appro-
priate approach is selected that aligns best with the goals of this thesis. Subsequently, the
requirements for the envisaged system are clearly defined. These requirements, rooted in
the findings of existing research, serve as the blueprint for designing and implementing
the DDoS dataset emulator.

The proposed prototype of an emulator is designed as a composite of interchangeable
modules, each responsible for generating a specific type of network traffic. The structure
of the emulator also includes a component dedicated to generating network topologies.
The traffic generation in these components is modeled on existing datasets, ensuring the
realism and relevance of the emulator’s output.

In the final phase, the datasets generated by the emulator are meticulously compared with
the datasets that served as their basis. This comparative analysis allows for a thorough
evaluation of the emulator’s output in terms of accuracy and fidelity. Additionally, the
system’s performance is evaluated in this stage. The evaluation parameters include but
are not limited to, the system’s efficiency and scalability. By examining these factors, the
effectiveness and potential improvements of the emulator are thoroughly assessed.
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1.4 Thesis Outline

This thesis is structured into six chapters. After the introduction comes Chapter [2] con-
sisting of fundamentals on the topic. First, Section elucidates indispensable concepts
and provides requisite background knowledge. Thereafter, Section serves to delineate
related studies and elucidate existing solution strategies.

The third part, Chapter [3| is centered on explaining the solution design. This chapter
presents a detailed exposition of the requirements guiding the design and the decisions
made in its formulation. Building on this foundation, Chapter [4] further elaborates on the
technical aspects of the solution, providing insights into the implementation process and
illustrating the technology stack utilized.

Upon presenting the implemented solution, Chapter [5| follows with an evaluation and
discourse on the final results. This chapter focuses on assessing the accuracy and perfor-
mance of the solution. Concluding this work, Chapter [6] delivers a summary, highlights
the limitations of the present solution, and offers directions for future research.



Chapter 2

Fundamentals

2.1 Background

The subsequent section aims to elucidate on essential terminology and attack approaches
pertinent to DDoS, which form the foundation of this thesis. It also casts light on the
concept and tools of network traffic simulation, a cornerstone of the investigation carried
out in this thesis. Finally, it delves into the network topology approach adopted herein,
contrasting it with its manifestation in real-world scenarios. This overview forms the
backbone of the discussions and analyses in the subsequent chapters.

2.1.1 DDoS Attacks

A DDoS attack is a malicious cyber-attack in which the perpetrator seeks to disrupt
the regular traffic of a targeted server, service, or network by overwhelming it with a
flood of Internet traffic. Among the different types of Denial-of-Service (DoS), a DDoS
is typically achieved by utilizing multiple compromised computer systems as sources of
attack traffic. These exploited machines can include traditional computers and other
networked resources, such as Internet of Things (IoT) devices, which are increasingly
being used to amplify the scale and impact of DDoS attacks [22].

2.1.1.1 Botnets

One of the fundamental principles underlying the methodology of DDoS attacks is the
use of botnets. A botnet refers to a collection of internet-connected devices, including
personal computers, servers, mobile devices, and IoT devices, that have been compromised
by malware and can be controlled remotely by a cybercriminal. These devices, or bots,
can launch such an attack, amplifying the attack’s scale and impact by leveraging the
compromised devices’ collective bandwidth and computational resources. As every bot
is a legitimate internet device, distinguishing attack traffic from regular traffic can be
difficult [22]. Attack tools using such botnets can employ one of two primary models: the

>



6 CHAPTER 2. FUNDAMENTALS

Agent-Handler or the IRC (Internet Relay Chat) model [5]. The Agent-Handler model
is based on a master-slave relationship, where a central server, known as the handler,
controls several agent computers used to launch the attack. This model allows for a
high level of control and coordination, as the handler can direct the agents to target
specific systems or networks. Alternatively, the IRC model utilizes public channels on
an [IRC network to launch attacks. In this model, the attackers use publicly available
IRC channels to coordinate and launch attacks, making tracing the attack’s origin more
difficult. However, this model tends to be less centralized and coordinated than the
Agent-Handler model.

Botnet owners resort to mimicking legitimate cyber behavior to perpetuate their botnets’
existence and conceal their actions’ malicious nature [56]. This approach allows them to
operate undetected and evade detection by security systems. It highlights the increasing
sophistication of botnets and the need for effective countermeasures to mitigate their
impact.

2.1.1.2 IP Spoofing

IP spoofing is a technique to create Internet Protocol (IP) packets with a modified source
address. This can hide the sender’s identity, impersonate another computer system, or
both. It is a core vulnerability exploited by many DDoS attacks as it makes it challenging
to block malicious requests and track down the perpetrator of the attack. While IP spoof-
ing cannot be prevented entirely, measures such as ingress filtering, outlined in BCP38 [2],
can be implemented to stop spoofed packets from infiltrating a network. This involves
examining incoming IP packets and rejecting those that do not match their origin or look
suspicious [23].

2.1.1.3 Volumetric Attacks

Volumetric attacks are a subset of DDoS attacks in which the attacker tries to overwhelm
the target network or website with much traffic to prevent legitimate users from accessing
it. These types of attacks typically target the network layer of the target. The main goal
of volumetric attacks is to overwhelm the target’s network infrastructure, making it either
slow or completely inaccessible. They achieve this goal by generating an immense volume
of traffic that consumes a significant amount of bandwidth, thus limiting the available
bandwidth for legitimate traffic. This massive influx of traffic comes from multiple sources,
including botnets or compromised devices, making detecting and blocking the attack
traffic challenging.

The taxonomy of volumetric attacks comprises various attack types, each with unique
methods for overwhelming network systems.

In an Internet Control Message Protocol (ICMP) flood attack, an attacker floods a tar-
get network device with excessive ICMP echo-requests, hindering its operations [59].
IP/ICMP fragmentation attacks manipulate the IP fragmentation process by sending
false fragments that resist defragmentation. This causes an accumulation in the receiver’s
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temporary storage, ultimately leading to a denial of service [60]. A UDP flood attack
overwhelms a target host by directing numerous IP packets carrying UDP datagrams to
random ports. This situation overloads the host, preventing it from processing legitimate
traffic [58]. Reflection attacks utilize inherent behaviors of network protocols such as
UDP or TCP to amplify attack traffic. The attacker sends a request to a server using the
target’s IP address, causing the server to reflect the attack traffic back to the target. This
process substantially magnifies the volume of traffic that the target receives, potentially
causing a denial of service [57]. Recently, however, this type of attack has decreased in
favour of direct-path attacks, which increased by 18% over the last three years [61].

2.1.1.4 Protocol Attacks

Protocol attacks also referred to as state-exhaustion attacks, aim to disrupt the normal
functioning of a target system by depleting its resources. These attacks exploit network
and transport layer weaknesses and consume server resources or network equipment re-
sources, such as firewalls and load balancers. Because network protocols are stateful,
the server must maintain the state of each connection, consuming its resources for the
duration of the connection. An attacker establishing a huge number of connections, each
utilizing a small amount of resources, can eventually get the server overwhelmed [22].

One example of such an attack is a SYN flood attack. The attack takes advantage of the
TCP handshake, a sequence of messages exchanged between two computers to initiate
a network connection, by sending many fake Initial Connection Request SYN packets to
the target. This results in the target machine responding to each request and waiting for
the final step of the handshake, which never comes, ultimately leading to the depletion of
the target’s resources [22]. A SYN flood attack can occur in three ways: direct, spoofed,
or distributed [21]. In a direct attack, the attacker’s IP is not masked, making them
susceptible to discovery and mitigation. It’s important to note, however, that if the
attacker employs a botnet such as Mirai, there is generally less concern about masking
the IPs of the infected devices, as the vast number of involved devices provides a form of
anonymity. In a spoofed attack, the attacker obscures their identity by spoofing their 1P
address, complicating mitigation efforts. Lastly, in a distributed attack, the attacker uses
a botnet, which significantly reduces the chances of tracing the attack back to its source,
especially when each device in the botnet also spoofs its IP addresses.

2.1.1.5 Resource Attacks

Resource attacks, focused on the application layer, seek to overwhelm a target’s server
resources rather than simply increasing traffic volume. These attacks exploit the server’s
obligation to expend significant resources to generate web pages in response to HTTP
requests [22]. Differentiating between benign and malicious traffic presents a defensive
challenge due to the substantial resource influence of each request.

Several types of resource attacks exist, often focused on preserving connections in a throt-
tled manner. Slowloris, for example, fragments HTTP headers, forcing the server to
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maintain open connections until all fragments arrive, impeding the processing of legiti-
mate requests [56]. Similar strategies, like the Slow Post and Slow Read attacks, exploit
the establishment of connections and the initiation of large downloads, respectively, at
incredibly slow speeds, causing excessive resource utilization.

Some attacks exploit the higher resource consumption of HT'TP requests on the server side.
Large POST requests involve attackers uploading large files or data, monopolizing the
server’s connection and exhausting TCP or server resources. Similarly, HT'TPS flooding
involves attackers imposing high-rate HT'TP /S requests, burdening the server [56].

2.1.2 Network Traffic Simulation

Traffic simulation is a technique used to model and evaluate network traffic behavior.
Simulations can be performed using either real or simulated data based on previous attack
characteristics [3]. In the context of intrusion detection systems, it can be used to validate
the performance of models that aim to detect and respond to malicious activity [6]. Traffic
can be simulated using hardware or software simulation techniques [7]. While hardware
simulation creates a physical environment that closely resembles real-world conditions
and therefore provides a more accurate representation of a network’s behavior, it has
limitations in terms of scalability, making it difficult to simulate large or complex networks.
Software simulation on the other hand is highly scalable and flexible enough to create a
wide variety of network scenarios. Also, as software simulation is often less expensive than
hardware simulation as it only requires access to a computer and simulation software.

Within the scope of software-based simulation tools, notable contenders exist such as
NS3, OMNeT++, and QualNet. NS3 is a discrete-event network simulator, valuable for
simulating protocols over wired and wireless networks [63]. OMNeT++ is a modular,
C++-based simulation framework, allowing the modeling of various communication pro-
tocols and systems [64]. Lastly, QualNet, a commercial solution, excels in testing large
networks, providing high-speed simulations across a variety of network configurations [47].

Libpcap, a popular library in the domain of network data capture, is recognized for its
extensive use by a multitude of networking tools including, but not limited to, TepDump,
WinDump, and Snort. Furthermore, the most used networking tools Wireshark and
TShark, while presently favoring the next generation pcapng by default, also offer Libpcap
support [81]. The structure of a capture file is straightforward; it commences with a file
header, followed by packet records - each delineating a captured packet featuring pertinent
information such as timestamp, length, and data [39]. The library’s extensive adoption
and robust functionality position it as a vital resource for any endeavors in network traffic
analysis.

2.1.3 Network Topologies

The structure of internet topologies can be comprehended and represented through a
hierarchical model, commonly referred to as tiers. This hierarchical approach aids in dis-
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tinguishing the various levels within the internet topology, creating a clear and organized
system.

Within this tier system, three main levels are conventionally acknowledged [34} |42]. Tier
3 occupies the lowest rung of this hierarchy, positioned just above individual clients or
end-users. Providers at this tier are also known as access providers, characterized by their
primarily local coverage. They function as gateways, connecting businesses and consumers
to the broader scope of the internet. To facilitate this connection, clients use specific
hardware such as modems or Network Interface Cards (NICs), enabling communication
with these local Internet Service Providers (ISPs).

Upon successful connection and initiation of a message or data packet from the client,
this packet is then passed up the hierarchy to the next level - tier 2. The tier 2 ISPs, also
known as regional ISPs,; hold an intermediate position in the tiered hierarchy. If a data
packet received at this level is destined for a client within the ISP’s coverage area, it is
delivered directly. However, if the intended recipient is outside the regional ISP’s network,
the data packet is forwarded to the ISP’s backbone network for further transmission.

The highest point of the hierarchy, tier 1, often referred to as the backbone level, sits at
the top. Backbone networks maintain high-speed fiber-optic connections with the regional
ISPs, ensuring fast and efficient data transmission. They function as a central hub within
the internet topology, effectively directing data traffic and ensuring data packets reach
their respective destinations, whether through direct delivery or rerouting to lower tiers
for subsequent delivery. This tiered structure is instrumental in ensuring an efficient
transmission and routing functionality.

In the realm of network topologies, latency plays a pivotal role in determining the efficiency
and performance of data transmission. As [24] elucidates, fiber optic cables exhibit latency
at 67% of the speed of light, which translates to a speed of 200,000 km /s within the fiber.
The index of refraction for these cables is 1.5, resulting in light traveling 1.5 times slower
through optical fiber than it does in a vacuum.

[50] highlights that this is the maximum speed achievable in real-life scenarios, with var-
ious factors often causing slower speeds. Interestingly, as distances decrease, the factors
impacting speed tend to increase. This phenomenon can be attributed to the nature of
connections, which are not direct or linear. Instead, data zigzags from one router to
another until it reaches the target, affecting the overall latency.

For more extensive connections, such as transatlantic cables, the zigzag pattern becomes
less pronounced, predominantly occurring on continents. This knowledge serves as a
foundation for analyzing and designing network topologies that take latency into account,
ensuring realistic latency differences between different network structures.

2.2 Related Work

In the field of cybersecurity, the validation of IDSs is an essential task, and it has been
approached in various ways. One of the prevalent methods involves conducting practical
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tests, where systems are put to the test in real-world scenarios. This hands-on approach
primarily involves the use of attack tools and traffic generators to simulate possible threat
scenarios and gauge the system’s ability to detect and mitigate such threats. These tools
will be explored in depth in Section [2.2.1]

As an alternative to practical testing, validation can also be conducted in a more con-
trolled, theoretical manner. This approach typically involves network traffic datasets
which are used to test the IDS’s capability to detect and respond to potential threats.
These datasets consist of network traffic which is designed to reflect realistic network
behaviour, both normal and anomalous. The limitations of this theoretical validation
approach will be further discussed in Section [2.2.2]

Lastly, an integral part of synthetic datasets involves the generation of the dataset. The
quality and relevance of the dataset used can greatly affect the results of the validation
process. Different methodologies exist for generating these datasets, each with its own
strengths and potential pitfalls. These approaches to dataset generation will be detailed
in Section [2.2.3.1] In this way, a comprehensive overview of the existing methods for IDS
validation will be provided, shedding light on the multi-faceted nature of IDS testing and
its vital role in maintaining network security.

2.2.1 Attack Tools and Traffic Generators

The sphere of DDoS attacks has witnessed the emergence of increasingly sophisticated
attack tools and traffic generators. A substantial amount of existing research has been
devoted to understanding these tools [40, 46, 149, |52} (75| |80].

These attack tools can be distinguished along various dimensions. For instance, some tools
offer a Command Line Interface (CLI), while others provide a Graphical User Interface
(GUI). The dynamics of attack rates, too, differ in patterns and possible configurations
across tools. The cross-platform compatibility of tools is another distinguishing factor, as
not all tools are supported on all operating systems. Furthermore, the synchronization of
the attack in a distributed setting varies between tools, as does the attack category and
the protocol used.

Aging is also a pertinent concern with regard to these tools. There are many known
tools from the early 2000s, such as Stacheldraht [26] and TFN Tribe Flood [26] from
1999, Mstream [31], Shaft [30], and Trinoo [26] from 2000, as well as Kaiten [40] and
Knight [32] from 2001. However, there has also been the development of newer tools, such
as Silent-Ddoser [5] or SEER [5], which reflect the evolving landscape of DDoS attacks.

In contrast to attack tools, traffic generators can create both attack traffic and legitimate
traffic. They can be employed to test the load balancing of a system or to execute a
stress test. There are numerous tools that are suitable for such tasks. Some are quite
rudimentary, like Apache Bench [78], but are nevertheless effective for certain scenarios.

In addition, more sophisticated tools, such as D-ITG, are capable of creating both legit-
imate and attack traffic [4, 11, [13, 132]. There are also various other tools available, as
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shown in [5]. These tools offer diverse functionalities and can be utilized to create a range
of traffic patterns depending on different input parameters.

2.2.2 Existing Datasets

In the past, researchers in the domain of DDoS attacks have increasingly utilized publicly
available real datasets to validate their IDS approaches [7, 9, 15, 29, |41} [51} 65, 70, |74,
83]. Despite this trend, the suitability of the chosen dataset for the intended validation
method remains a topic of active debate.

Datasets, particularly those related to DDoS, often come with several inherent challenges.
For instance, the age of datasets can pose significant complications [35]. Research con-
ducted by [3] and [6] illustrates that numerous datasets, including the FIFA World Cup
Dataset and KDD among others, are considerably aged. This age issue can be especially
problematic as older datasets may not reflect the current patterns and standards of net-
work traffic. This issue becomes pronounced in the context of DDoS attacks, which have
rapidly evolved over the years.

Furthermore, many datasets suffer from incompleteness, with only a limited number being
available in their entirety. The extent of the network traces often represents only a brief
snapshot of network activity. This short length may not capture the full complexity or
diversity of potential network interactions, particularly over extended periods of time. For
instance, certain types of network attacks evolve slowly, and short-term data may not re-
veal the full extent or progression of these attacks. In addition, the sanitization measures,
such as anonymization or trimming, applied to these datasets can further toughen the
challenge. Anonymization, while necessary for privacy reasons, often results in the loss
of valuable information that could be crucial in identifying and understanding network
attacks. Trimming, a process that reduces dataset size by selectively removing data, can
result in missing crucial information and might inadvertently remove traces of subtle or
slow-evolving attacks. As attackers switch from big volume, easily detected attacks to low
volume stealthy attacks, this is becoming more and more of an issue [6].

Additionally, the number of datasets that are publicly accessible is rather limited, with
most requiring specific access permissions. As a result, the majority of public datasets are
effectively semi-restricted. Compounding this problem is the fact that available datasets
often come in various formats, including some that are incompatible with quasi-standard
tools like tepdump [79]. Certain datasets even contain processed traffic data compressed
into flows, thereby reducing their size. Additionally, trimmed Packet Capture (PCAP)
files with removed payloads or altered headers are not uncommon, as highlighted by [6].

These datasets can vary greatly in terms of the nature and scope of attacks they include,
their size, and whether they are anonymized or real or derived from simulated scenarios.
For instance, CAIDA is frequently utilized in numerous research studies [719, [84], while
also DARPA remains one of the well-known datasets [48, 77]. As time goes by, the ongoing
aging of commonly used datasets has prompted researchers to increasingly turn to more
recent offerings. The Canadian Institute for Cybersecurity has responded to this demand
by publishing several artificially created datasets, tailored to the evolving landscape of
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network security. Notably, among these contributions, the CICDD0S2019 dataset has
emerged as a prominent resource in contemporary cybersecurity research [72]. It presents
a novel alternative to aging datasets, providing up-to-date and relevant network traffic
patterns that reflect the current state of DDoS threats. These newer datasets are partly
derived from real attacks, but often they are also based on existing datasets, as Figure [2.1
shows.

The choice of dataset is highly contingent on its intended use, making it a crucial factor
in any research study [10]. To validate any proposed DDoS attack detection technique,
it is essential for the captured network trace to contain a realistic mix of background
and attack traffic, without any undue bias towards a specific type of traffic [7]. However,
achieving this mix in a real experiment-driven dataset is challenging due to the lack of a
known model for correctly characterizing internet traffic [66].

In contrast, if datasets are used as a data source for generating new traffic, other consid-
erations become more pertinent. Primarily, it is important to understand the composition
of traffic in the source dataset. Unlike the validation of DDoS attack detection techniques,
the blending of various types of traffic is less desirable. If a filtered dataset by type isn’t
available, the traffic should be labeled at the very least. CAIDA is one such dataset that
includes filtered DDoS traffic suitable for this purpose. Furthermore, there is a dataset
collection, denoted as DDoS Packet Capture Collection, that is a compilation of various
types of DDoS traffic, filtered by type [37].

2.2.3 Dataset Generation

Dataset generation plays a crucial role in developing and evaluating network security
systems. To accurately represent the complexity and diversity of real-world network
traffic, it is essential to consider several properties a dataset must possess. Moreover,
various approaches have been proposed to generate network traffic datasets. Based on
existing words, this subsection provides an overview of the properties and approaches in
network traffic dataset generation, highlighting their strengths and limitations.
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2.2.3.1 Approaches

In the process of generating datasets for network scenarios like DDoS attacks, four main
approaches can be identified, as described in [6, |7} [73].

Mathematical models employ theoretical and symbolic representations of systems, applica-
tions, platforms, and conditions to understand network scenarios, such as DDoS attacks.
By using mathematical validation, researchers can test the accuracy and reliability of
these models. Although mathematical models offer a valuable foundation for understand-
ing complex scenarios, they remain theoretical and may not accurately capture the full
scope of real-world interactions and network behavior.

Simulation-based experiments offer a controllable and repeatable framework for network-
based experiments on a single computer system. They provide researchers with the flex-
ibility to rapidly prototype and evaluate potential solutions, discarding suboptimal al-
ternatives before full implementation. Simulations use models of key operating system
functions, kernel mechanisms, virtual platforms, and synthetic conditions to mimic net-
work behavior. However, the realism of simulating attackers, targets, and network devices
has been questioned [54], and the slower speed of traffic replay can hinder the evaluation of
DDoS attack detection techniques, particularly for high-rate flooding attacks. Examples
include NS3 [63], OMNET++ [64], QualNet [47], etc.

Emulation bridges the gap between simulation and real systems by integrating real ele-
ments of an operating system and applications with simulated network links and virtual
nodes. It leverages soft routers to make connections and runs in real time, as opposed to
the virtual simulated time used in simulations. While this approach offers greater realism
than simulation, it faces scalability challenges, as extending the topology of computer
systems beyond certain limits is difficult. Previous research has demonstrated that the
intricacy involved in building and managing a network topology typically caps at around
300 nodes [7]. However, in real-life scenarios, DDoS attacks often involve thousands of
nodes, making it challenging to accurately replicate such attacks in a controlled environ-
ment [68].

Real systems deliver the most realistic network conditions, operating systems, applica-
tions, and platforms for network-based experimentation. Despite their advantages, real
systems pose several limitations: changes to network topology are not easily made for new
experiments, live experiments involving internet worms or viruses pose significant risks,
and flooding-based DDoS attacks can degrade network links. However, real systems, such
as GENI [33] and PlanetLab [67], continue to be valuable tools for researchers, offering a
robust platform for network experimentation and evaluations.

2.2.3.2 Dataset Requirements

The generation of realistic datasets is crucial to the validation and improvement of various
defense systems. As such, [6] articulates four properties that a dataset should possess to
maximize its realism and utility in this context.
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Firstly, a realistic dataset should incorporate real source and destination IP addresses.
This implies that clients should establish valid TCP connections with the target server,
emulating genuine interactions that occur within networked environments. Additionally,
these clients should be accessing real pages on the server, further augmenting the authen-
ticity of the network traffic patterns.

Secondly, a realistic dataset should display a broad range of random source IP addresses.
Both actual attacks and legitimate traffic should emanate from a diverse range of 1P
addresses. This level of variety accurately reflects the decentralized and widespread nature
of internet traffic.

Thirdly, the generation of actual packets with valid headers is essential for the dataset’s
realism. Given the authentic nature of the traffic generated and captured, it is necessary
for packets to maintain valid headers, aligning with the technical standards of real-world
network traffic.

Lastly, the dataset should exhibit an appropriate mixture of normal and attack traffic.
The simulation of network traffic should entail a balanced blend of legitimate and ma-
licious attack traffic. This balanced representation is vital for effectively evaluating the
performance of any IDS, as it replicates the multifaceted and complex environment these
systems encounter in reality.

However, the degree of realism attainable in a dataset is contingent upon the selected
approach, as described in Section [2.2.3.1] This suggests a nuanced approach in dataset
creation, where the importance of individual properties in terms of realism is taken into
account. Consequently, while all four properties are necessary for a comprehensive and
realistic dataset, their significance may vary based on the intended use of the dataset and
the specificities of the chosen approach.

2.2.3.3 Generation System Requirements

In crafting a system for generating network traffic datasets, the design-level requirements
outlined by [35] and [7] provide a valuable roadmap.

Firstly, they advocate for reconfigurability. Such a feature facilitates the simulation of
a diverse range of DDoS attacks, and allows for the alteration of network topologies as
required. By ensuring that the system remains adaptable and flexible, researchers can
model a wider array of scenarios.

Secondly, the system needs to emulate a complete computer network. This includes the
incorporation of all necessary network equipment, from PCs and servers to routers and
firewalls. Such a comprehensive setup allows for a more accurate representation of real-
world networks.

Thirdly, the system must generate complete traffic, defined as a sequence of packets
transmitted from a source, through routers or switches, to a destination. In the context
of DDoS attacks, this involves coordinating multiple attacking machines to significantly
impact a target host.
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The fourth requirement concerns traffic load coordination. Each attacking host should
contribute only a small fraction of the overall traffic. The goal is not to overwhelm the
target with traffic from any one source, but rather to model a realistic attack where traffic
comes from multiple sources. Furthermore, the system should aim for a complete capture
of traffic, encompassing not just attackers, but also benign participants. Despite this,
the system should still generate a labeled dataset for benign and attack traffic, enabling
differentiation of the two in analysis.

Fifthly, the system should be capable of producing diverse types of traffic. This diversity
extends both to protocols used and attack types launched. Such versatility enables a
more comprehensive evaluation of the system’s resilience and performance under various
conditions.

The sixth requirement focuses on the balance between performance and cost. The sys-
tem should be able to operate effectively with modest hardware, leveraging customized
software to conduct meaningful experiments. While higher-end networking devices can en-
hance the scale of emulated attacks, substantial insights can still be gleaned from systems
running on more modest setups.

Finally, the system should prioritize privacy and produce anonymous data. As such, it
should not reveal any privacy-related information in the course of generating network traf-
fic. This requirement aligns with ethical considerations and legal constraints in network
research.
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Chapter 3

Design

3.1 Generation Approach

Selecting one of the approaches discussed in Section [2.2.3.1] to generate a dataset is es-
sential. For the specific scenario of creating a distributed DDoS dataset, the following
criteria based on those mentioned in Section 2.2.3] are crucial:

1. Flexibility: The network topology must be easily reconfigurable, requiring minimal
effort to recreate various attack scenarios.

2. Configurable Attacks: The final system should be capable of generating a wide array
of different attacks, varying in DDoS attack types, distribution, and timing.

3. Realism: The network behavior should accurately reflect routers, participating de-
vices, and a genuine mix of link bandwidth capacities and delays. The resulting
dataset must possess properties stemming from this realistic network environment.

4. Scalability: The system must handle the simulation of DDoS attacks involving thou-
sands of nodes, as these large-scale attacks are common in real-life situations.

5. Repeatability: The system should consistently produce the same output for a given
input configuration, ensuring reliable and repeatable results.

6. Affordability: As financial resources for this project are limited, the system must
not generate costs that exceed the project’s budget constraints.

As outlined in Section the mathematical approach offers limited realism, as it
can only capture a small portion of real-world complexity through mathematical models.
However, the realism questioned by [54] for simulation is not a concern in this application,
as real-time simulation evaluation is not required. The slower simulation speed is not an
issue; it may even provide advantages. This simulation speed is likely to be faster for
non-computation-intensive tasks, allowing for quicker results. Thus, simulation can be
considered realistic enough for the purpose at hand.

17
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Scalability poses a challenge when attempting to achieve such results through emulation
or real-world replication. Single-system emulation proved inefficient, as demonstrated
in a trial with Mininet for a large-scale network. Bigger systems replicating a DDoS
attack using real systems or distributed emulation would not be affordable within the
project’s scope. Additionally, even if they were, such extensive systems could not be
easily reconfigured for different scenarios.

Therefore, simulation is the chosen approach. It aligns well with the desired setup com-
plexity and reconfigurability, allowing for repeatable experiments and the simulation of
various attack types.

3.2 Architecture

The architecture of the EDDD is displayed in Figure [3.1] The system is organized in a
centralized manner, with a controller at its core. This controller is responsible for reading
and validating the system configuration. Furthermore, it interacts with the simulation
engine, loading the validated configuration into the simulator as an initial step. Following
this, the controller initiates the simulation process for generating the datasets. Upon com-
pleting the simulation, the controller extracts the generated datasets from the simulator
and places them in an output folder readily accessible to the user.

The subsequent sections delve into the detailed design of the subcomponents Topology
Creator, Legitimate Traffic Controller, and Attack Traffic Controller. These sections elu-
cidate the principles these components adhere to to fulfill their respective roles within the
simulation engine effectively. The controller, input file, and simulator, along with all its
subcomponents and the technologies employed, will be thoroughly examined in Chapter [4]
This chapter will provide an in-depth analysis and discussion of these core elements, fa-
cilitating a comprehensive understanding of their functions and interrelationships within
the system.
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3.3 Topology

To observe traffic in different nodes effectively, these nodes must be accurately represented
within the chosen modeling approach. Therefore, it is important to consider two primary
requirements when modeling network topology: accurately representing the target node,
which represents the destination of network traffic, and effectively observing the behavior
and activity of the network before it reaches the target through observing nodes.

A key characteristic of DDoS attacks or general traffic on large-scale servers is their dis-
tributed nature, which often leads to packets from different sources exhibiting distinct
features at the target and passing through various observing nodes. Packets from remote
locations tend to travel greater distances, encompassing more hops and experiencing big-
ger latencies before reaching their intended target. These factors are influenced by the
geographic locations of the countries involved and the quality and structure of their re-
spective infrastructures.

Modeling the distributed nature of traffic in large-scale networks can be achieved by
utilizing a multi-layer network approach (¢f. Section[2.1.3)). A crucial component of this
model is the broadband internet network, which connects larger regions within a country
to the broadband network of the neighboring countries. The broadband internet topology
level is vital for facilitating high-speed connections and achieving low latency over vast
distances. This is accomplished through a strategic network design that minimizes the
number of hops required to cover enormous distances, thereby ensuring efficient data
traffic flow between larger regions and reducing the likelihood of potential bottlenecks or
points of congestion that could adversely affect network performance.

Each node within the broadband layer delivers connectivity to a sub-network of regional
routers, further refining the network’s structure. The regional internet topology level
focuses on distributing data traffic within smaller geographical areas, ensuring efficient
connections for users within those regions. As the network hierarchy continues to narrow,
each node on the regional layer provides connectivity to a sub-network of local routers.
These local routers serve as the access network for nodes seeking to connect to the broader
network, such as servers and clients. At the local internet topology level, the emphasis is on
maintaining connections for end-users. While latency and bandwidth play essential roles in
determining the overall user experience and network performance, the connections within
the access network exhibit significantly lower performance than higher-level networks.

As depicted in Figure[3.2] the traffic flowing through such a network structure forms a tree-
like hierarchy. The diamond-shaped symbols labeled B in this Figure represent backbone
routers. In contrast, the octagon-shaped R symbols indicate regional network routers and
the elliptic L symbols denote local network routers. However, this tree representation falls
short of accurately modeling the multi-level network approach, geographic structure, and
distance between nodes.

The geographic distances between nodes are reflected as latency in network traffic. Al-
though packets may traverse countries in just a few milliseconds, these milliseconds cannot
be neglected when modeling a network of this nature. Unfortunately, the tree represen-
tation like it can be seen in Figure is unsuitable for displaying these geographical
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Figure 3.2: Traffic Flow Over Network Topology
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distances clearly and meaningfully. Furthermore, configuring a network to resemble a
country-like structure, each with its distinct subnets, presents challenges when using the
tree representation. This limitation makes it difficult for an individual to easily grasp and
manipulate the network structure to represent the desired geographic topology accurately.

The approach of modeling and connecting countries proves to be more intuitive for an
individual. However, certain abstractions are necessary, as not all aspects influence the
outcome of routed packets and their latencies in the same manner. In the real world,
coverage, redundancy, population density, and general infrastructure quality vary. In
contrast, the simulation in this thesis assumes a randomly distributed network and end-
user coverage across a country, neglecting geographical features such as deserts, lakes,
mountains, and rural areas. This simplifies the representation in a simulated model.

struct Country {

std::string name; //!< Name of the country

uint32_t nodes; //'< Number of backbone nodes

double area; //'< Area of the country in sqkm

double population; //!< Population of the country

bool enablePcap; //!1< Is pcap recording enabled for backbone nodes
of the country

double attackTrafficFactor; //'< How much of the clients produce

attack traffic in this country
std::vector<Country> neighbors; //!< What are the neighboring
countries (without loops)

};
Listing 3.1: Country Configuration Type

A country is defined by a configuration shown in Listing [3.1] including a name for easy
router node identification during traffic analysis and specifications for its area and pop-
ulation. When modeling, it is assumed that the number of end devices inside a country
scales linearly with the population. The configuration also allows specifying the number
of backbone router nodes, which are then randomly distributed across the country’s area.

An abstraction assumes that a country’s area is a square, facilitating distance measure-
ments between nodes. These distance measures can be used to deduct the latency of a
packet traveling from one node to another. Figure |3.3| shows what a random distribution
of nodes inside an area could look like. All those nodes are then connected to ensure every
node can be reached within a couple of hops. Each backbone router serves a portion of
the country’s area, connecting to a regional network below it. The same assumptions
about square areas and equally spaced nodes apply to regional and local networks. The
number of clients connected to a node is determined by the area a local node serves and
the country’s population density.

These countries can then be connected to neighboring countries, all modeled with the
same approach but individually customizable. Neighboring countries are defined in the
configuration, and their connections to the first country are determined in a way that
places them as far apart as possible (e.g., two neighboring countries are placed on opposite
sides). Neighboring countries connect their backbone nodes to the closest backbone nodes
of the first country, ensuring efficient inter-country connections.
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Figure 3.3: Node Distribution in Service Area

3.4 Legitimate Traffic

This section discusses legitimate traffic patterns based on dataset [28], which reveals
benign traffic patterns. There, a flow-based analysis involves combining and analyzing
different datasets, specifically CIC DoS dataset [18, 43|, CIC-IDS2017 [17], and CSE-
CIC-IDS2018 [25] [71]. A flow represents a sequence of packets with shared characteristics,
such as source and destination addresses, ports, and protocols. Analyzing flows provides
insights into network behavior and communication patterns between hosts. 84 features
characterize each flow; however, not all are relevant and chosen for remodeling legitimate
traffic in this project’s scope. Not every flow within this dataset includes a complete TCP
flow with SYN packets for the handshake and FIN flags.

The focus is on the sending patterns in the dataset, and the following features must be
extracted:

e Flow Duration

Idle Time between Flows

e T'CP Connection Durations

Packet Length

Packets per Second

The dataset contains the following properties for each flow, which enable the deduction
of the desired values:

e Flow Duration
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e Timestamp

e Fwd Pkt Len Mean

e F'wd Pkt Len Std

e Fwd Pkt Len Min

e Fwd Pkt Len Max
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Figure 3.4: Probability of Flow Duration
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Subsequent paragraphs detail how the different features are to be remodeled. Only a
portion of the dataset is analyzed to remodel benign traffic according to recent traffic
patterns. The dataset comprises multiple DDoS attacks with benign traffic from 2010
until 2018. As the goal is to model the traffic patterns according to the current standards,
the most recent bulk of 2018 data is taken from the AWS portion of the dataset [28§].

Consequently, only the traffic from April 20th, 2018, to April 21st, 2018, is examined.

Inspection of the Flow Duration column in the dataset facilitates direct measurement of
the flow duration in microseconds. Analyzing the Flow Duration at certain probability
quantiles reveals that most durations are extremely brief, taking only a fraction of a second

(c¢f. Figure . However, approximately a third of the flows have significantly longer

durations, ranging from several seconds to upwards of two minutes.
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In the process of recreating benign traffic, the analysis of idle times between the flows
of a specific IP address is imperative. The idle times can be inferred by subtracting the
duration of a flow from the time difference between two consecutive flows originating
from a single IP, as illustrated in Figure [3.6l This method subtracts Timestamp A from
Timestamp B, followed by Duration A.

Examination of the duration between the flows (¢f. Figure reveals that the sub-
sequent idle time is minimal for approximately half of the flows, lasting only fractions
of a second. However, there are outliers, with idle times spanning multiple seconds and
minutes and extending to several hours.

Figure explores the potential correlation between completing a full TCP flow involving
SYN and FIN flags and the idle time duration. A plausible hypothesis could posit that
it is more likely to terminate a TCP connection before an extended idle time and initiate
a new one post this duration. Nonetheless, this hypothesis is refuted by the data. The
only observable pattern indicates that the probability of ending a TCP connection is at
0.6%, while the probability of initiating a connection is at 6%. This suggests that many
connections remain open post the evaluation timeframe within the dataset, or a large
proportion of TCP connections are not terminated gracefully.

The packet lengths in the dataset can be derived from the Fwd Pkt Len Mean, Fwd Pkt
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Len Std, Fwd Pkt Len Min, and Fwd Pkt Len Max columns. These four columns char-
acterize a distribution for each flow within the dataset. However, these values cannot be
simply added up to get an overall distribution, as these values describe multiple distribu-
tions. Therefore, a set encompassing a diverse range of packet lengths must be calculated
first. This can be established by generating samples according to the distributions out-
lined for each flow and subsequently combining these samples. This distribution of packet
lengths is depicted in Figure |3.8|

In this analysis, it is crucial to differentiate between the terms packet length and packet
size. The term packet size pertains to the total size of a network packet, incorporating
both the payload and any additional headers or overhead. Conversely, packet length refers
to the size of the payload or data segment of the packet, excluding any supplementary
headers or overhead. Interestingly, a considerable fraction of packets within the dataset
exhibits a packet length of 0, which implies these packets do not contain a payload.

The Flow Pkts/s column in the dataset provides the number of packets per second for
each distinct flow. This column can determine the rate at which packets are transmitted.
The probability distribution of achieving specific packets-per-second rates is delineated
in Figure 3.9 Upon analyzing this distribution, it becomes evident that there is a broad
range of packet arrival rates. These rates extend from scenarios where packets reach the
destination several seconds apart to instances where packets arrive at the same microsec-
ond.
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Figure 3.9: Probability of Packets per Second
3.5 Attack Traffic

There exists a wide variety of DDoS attacks, each presenting distinctive characteristics.
The primary objective of this thesis is to devise a system that facilitates the creation
of distributed datasets. However, the primary focus is not necessarily remodeling the
most intricate DDoS attacks. Out of the DDoS attacks discussed in Section 2.1.1] the
volumetric and protocol attacks are deemed most appropriate for this study as they target
the network and transport layer. Given that the system behind a target is not modeled
but only the traffic arriving at it, it is not feasible to infer the effects of resource attacks.

Hence, two types of attacks are selected for modeling: an ICMP flood attack representing
a volumetric attack and a SYN flood attack representing a protocol attack.

3.5.1 ICMP Flood Attack

The attack traffic is modeled according to the CAIDA DDoS dataset |[14]. As this dataset
only includes attack traffic, it is an excellent choice since no effort in labelling and filtering
has to be made. This dataset comprises 14 files of the attack, each encapsulating a 5-
minute duration. Packet timestamps have been consolidated into these 5-minute intervals
to simplify evaluation and data load. From this dataset, it is discerned when various
clients join the attack, their duration of participation, and the number of packets they
send.

Figure indicates that most IPs join simultaneously. Given the 5-minute segment
grouping of timestamps in the analysis, it can be inferred that most of them join within
the same 5-minute segment. A probability model for the joining time is constructed to
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replicate this, representing the probability of joining an attack within a 5-minute interval.
These probabilities are illustrated in Figure [3.10b]

A similar approach is adopted to ascertain the duration of a client’s attack. Figure
displays the number of distinct IP addresses in the CAIDA dataset and their respective
attack durations. A probability model is also developed for this scenario, demonstrat-
ing the likelihood of maintaining an attack for a specific duration. This is depicted in

Figure

The third piece of information to extract is the number of packets sent. Figure [3.12]
portrays the progression of the attack in the CAIDA dataset and the average number of
packets sent within a 5-minute segment of this attack. From a global attack perspective, no
clear trend in the number of packets sent concerning the duration is evident. Figure |3.13
presents the attack progression from the viewpoint of a single IP and the specific client’s
attack duration. The packets sent appear more consistent, with some outliers attributed
to the fact that in these 5-minute segments where the number of packets sent per IP is
lower, many IPs do not participate in the entire 5-minute segment of an attack, thereby
reducing the average. Disregarding these outliers, there is a relatively constant packet-
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Figure 3.12: Average Packets Over Time in CAIDA Dataset

per-second rate between 16 and 27 packets per second.

3.5.2 Syn Flood Attack

The SYN Flood attack also has a corresponding dataset [37]. The SYN Flood dataset
of the DDoS Packet Capture Collection contains 37,841 TCP SYN requests. However,
inferring how the attack evolved regarding participating clients is not feasible due to IP
spoofing. Similarly, it is impossible to ascertain each client’s contribution to the attack
as separating distinct clients is unattainable. The only extractable information is the
number of requests arriving at the target over time, as illustrated in Figure [3.14]

Figure[3.14]shows two phases of the attack: a high-load packet phase and a low-load packet
phase. In the high-load phase, up to 7,452 packets per second arrived at the target, while
in the low-load phase, the rate fluctuated between 2 and 14 packets per second.

As such, these two phases should be reflected in the implementation. Figure [3.15] rep-
resent the probabilities of the number of packets per second within each specific phase,
respectively.
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Chapter 4

Implementation

This chapter delves into implementing the Emulator for Distributed DDoS Datasets
(EDDD), initially introduced in Chapter The high-level architecture, as illustrated
in Figure 4.1 encompasses three key components and employs various technologies as
follows:

The configuration of the system is articulated as a JSON file. A few reasons underpin the
choice of JSON as the format for the configuration file. First, its distinct file format allows
easier adaptation and sharing of configurations, enhancing the flexibility and collabora-
tive potential of the system. Second, JSON enables simple data reading and validation,
simplifying user interaction and minimizing errors. Third, the accessibility of properties
in JSON is straightforward, further easing the user experience. Lastly, JSON allows the
representation of nested data structures. This aspect is crucial for more complex config-
urations, such as the topology configuration with countries, as illustrated in Section [3.3]
In contrast, these configurations would be less clear and manageable if directly passed via
program arguments.

As the controlling instance, a shell script is utilized. Given its primary function of reading
the configuration, loading it into the simulator, initiating its start, and extracting the

@ @ Simulator 2!NS:3

Controller 1.Load Simulation
According Topology Creator
To Configuation
2. Initiate Simulation J
Read 3. Extract Datasets
Configuration Legitimate Traffic
Controller
\
Attack Traffic
Configuration
Controller

Figure 4.1: Implementation - Core Components
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datasets, it is apparent that CLI access is essential. In this context, a shell script represents
the most intuitive and basic system for accomplishing such a task. Moreover, it allows for
automatic or remote execution, a feature that proves helpful if a simulation is desired to
be executed on a different workstation.

At the heart of EDDD lies NS3, which assumes the role of the simulator. From the
variety of simulators mentioned in Section NS3 appears to be the most suitable.
The simulator needs to meet key requirements, such as the ability to generate PCAP files.
Among the simulators mentioned, namely NS3 [63], OMNet++ [64], and QualNet [47], all
support this traffic data extraction and analysis method. Furthermore, the simulator had
to be accessible for CLI interaction. This requirement extends beyond mere execution;
it encompasses automated topology creation and configurations. Simulators OMNet—++
and QualNet, while more focused on providing a user-friendly interaction via a GUI,
were suitable for a use case via a GUI. The end user would never interact with the
simulator directly but only through the EDDD controller. Moreover, the simulator had
to be available free of charge, as paid software like QualNet would exceed the resources
allocated for this thesis. In this regard, NS3 fulfills all these prerequisites. With its
coding approach for the simulation and direct interaction with the simulator classes, NS3
offers the flexibility to create various scenarios and custom behaviors. Performance is
another key criterion, and NS3’s low-level code, written in C++, along with the ability
to distribute the workload across multiple cores or even different machines via Message
Passing Interface (MPI), also satisfies this requirement. In addition, a comparative study
of the most widely used simulators reveals that NS3 is the predominant choice for academic
purposes [62]. This fact further affirms the selection of NS3 as the simulator for this
thesis. This prevalence suggests that NS3 meets the technical requirements and provides
a robust and reliable platform for simulating network events, as attested by its widespread
acceptance within the academic community. Consequently, the choice of NS3 brings with
it a degree of assurance in its ability to meet the demands of this project.

In the following sections, a deeper exploration of each component is undertaken, highlight-
ing the most interesting aspects of their implementation. Not only do these discussions
cover the primary constituents such as the configuration file, controller, and simulator, but
they also extend to the subcomponents. These include the various traffic applications and
the network topology creator, each presented in detail. The ensuing discourse is designed
to provide a comprehensive understanding of the system’s workings.

4.1 Configuration

The configuration file utilized in the implementation is a static JSON file the user can
interact with. In addition, the configuration file is responsible for setting up the required
network and simulation parameters. It also allows to pass optional parameters to the
system. These parameters serve as the blueprint guiding the operation of the simulation,
providing crucial details that determine the behavior and outcomes of the simulation.

The required network parameters dictate the following properties of the topology and
network structure:
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Countries with their properties as shown in Listing

Bandwidth for each of the network levels, broadband, regional and local

Latency factors for the connections on the network levels broadband, regional, and
local

Simulation representation factor in customizing the amount of network structure
portrayed

Similarly, the required simulation parameter attackType defines the details of the sim-
ulation process itself. With this parameter, it can be decided whether an ICMP Flood
Attack according to [14] or a syn flood attack according to [37] should be simulated.

In addition to these required parameters, the configuration file also allows for setting op-
tional parameters. These optional parameters provide further customization possibilities,
allowing users to fine-tune aspects of the simulation as per their specific requirements.
Optional parameters include logging options to print out the pings from each client to
the target (LogPings) or printing the alignment and connections of the backbone routers
in a Graphviz format (logGraphviz). Furthermore, it can be defined how many cores
the MPI configuration uses and whether the exported PCAPs include the payload of the
packets or only the headers. By offering these optional parameters, the configuration file
increases the flexibility and adaptability of the simulation, allowing it to cater to a wider
range of use cases and research objectives.

4.2 Shell Script Controller

The primary function of the shell script controller involves reading, validating, and pars-
ing the configuration. However, before initiating a new dataset generation phase, it is
crucial to clean up the remnants of the previous run meticulously. This involves deleting
any lingering PCAP files from previous executions to guarantee a clean dataset free of
outdated files. This process of tidying up is a prerequisite to avoid any potential contam-
ination of the new dataset with residual data. The new configuration JSON is validated
once this clean-up phase has been concluded. Listing illustrates the initial valida-
tion of required parameters, namely networkFactor, clientFactor, backboneLatency-
Factor, regionallatencyFactor, localLatencyFactor, backboneBandwidthGbps, re-
gionalBandwidthGbps, localBandwidthGbps, and clientBandwidthGbps ensuring they
are of the correct types and formats. If this validation fails, an appropriate error message
is displayed. Following this, the required country property is recursively validated for
each connected country, again with appropriate error messaging if validation fails. The
act of validation ensures the correctness of the inputted configuration parameters and
safeguards against any possible errors during the subsequent dataset generation phase.

# Read JSON file

json_file="input-config. json"

json_data=$(cat "$json_file")
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# Validate JSON properties

network_factor=$(echo "$json_data" | jgq -r ’.networkFactor’)

client_factor=$(echo "$json_data" | jg -r ’.clientFactor’)

backbone_latency_factor=$(echo "$json_data" | jq -r °’.
backbonelLatencyFactor’)

regional_latency_factor=$(echo "$json_data" | jq -r ’.
regionalLatencyFactor’)

local_latency_factor=$(echo "$json_data" | jgq -r ’.locallatencyFactor’)

backbone_bandwidth_gbps=$(echo "$json_data" | jq -r °’.
backboneBandwidthGbps’)

regional_bandwidth_gbps=$(echo "$json_data" | jq -r ’.
regionalBandwidthGbps’)

local_bandwidth_gbps=$(echo "$json_data" | jq -r ’.localBandwidthGbps’)

client_bandwidth_gbps=$(echo "$json_data" | jq -r ’.clientBandwidthGbps"’
)

attack_type=$(echo "$json_data" | jq -r ’.attackType’)

validationSuccessful=true

if [ -z "$network_factor" 1 || (($(bc <<<"$network_factor <= 0"))) || ((
$(bc <<<"$network_factor > 1"))); then
validationSuccessful=false
echo "Property networkFactor must be in the range (0,1]"
fi

# Also for client_factor

s if [ -z "$backbone_latency_factor" ] || (($(bc <<<"

$backbone_latency_factor < 1"))); then
validationSuccessful=false
echo "Property backbonelLatencyFactor must be >= 1"
fi

# Also for regional_latency_factor and local_latency_factor

if [ -z "$backbone_bandwidth_gbps" 1 || (($(bc <<<"
$backbone_bandwidth_gbps <= 0"))); then
validationSuccessful=false
echo "Property backboneBandwidthGbps must be > 0"

; £i

# Also for regional_bandwidth_gbps and local_bandwidth_gbps and
client_bandwidth_gbps

if [ -z "$attack_type" 1 || { [ "$attack_type" != "syn-flood" ] && [ "
$attack_type" != "icmp-flood" 1; }; then
validationSuccessful=false
echo "Property attackType must be either syn-flood or icmp-flood"
fi

countries=$(echo "$json_data" | jq -r ’.countries’)

validate_country () A{
local json="$1"

# Validate the JSON object
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valid=$(echo "$json" | jq °’
|
has ("name") and (.name | type == "string") and
has("nodes") and (.nodes | type == "number") and
has ("area") and (.area | type == "number") and
has ("population") and (.population | type == "number") and
has ("enablePcap") and (.enablePcap | type == "boolean") and

has ("attackTrafficFactor") and (.attackTrafficFactor | type ==
number") and

has ("neighbors") and (.neighbors | type == "array")

)

if [ "$valid" == "true" ]; then
nodes=$(echo "$json" | jg -r ’.nodes’)
area=$(echo "$json" | jgq -r ’.area’)
population=$(echo "$json" | jq -r ’.population’)
attackTrafficFactor=$(echo "$json" | jgq -r ’.attackTrafficFactor’)
if (($(bc <<<"$nodes < 1"))) || (($(bc <<<"$nodes % 1 !'= 0"))); then

echo "Country property nodes is invalid. Make sure, it is a
positive integer."

validationSuccessful=false
fi

# Validation for area, population, attackTrafficFactor

if $validationSuccessful; then
# Check each neighbor recursively
neighbors=$(echo "$json" | jq -c ’.neighbors | .[]’)
for neighbor in $neighbors; do
validate_country "$neighbor"
done
fi
chlisie
echo "Country property is incomplete. Make sure, the properties name
, nodes, area, population, enablePcap, attackTrafficFactor and
neighbors are present."
validationSuccessful=false
fi

s validate_country "$countries"

Listing 4.1: JSON Validation of Required Configuration

Subsequently, the running configuration regarding the maximum number of cores to which
the simulation will be distributed is defined. If a value is present, it is utilized for the
running configuration. If not, the maximum number of physical cores is determined us-
ing the command in Listing and is adopted as the configuration. When specifying
the number of cores for the MPI configuration, it is essential to note that the number
of physical cores, not logical ones, must be used. This distinction is critical because
if a number larger than the available physical cores is selected, NS3 will encounter an
error during the setting of the MPI configuration. The failure manifests in the follow-
ing error message There are not enough slots available in the system to sat-
isfy the slots requested by the application. This approach is based on findings
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from Section [5.5.1] highlighting the superior performance of multi-core MPI-based exe-
cution over single-core execution. Lastly, the optional parameters, logPings and log-
Graphviz, are examined. If not present, they passed to the simulation with a default
value of false.

lscpu | grep "\"Core(s) per socket:" | awk ’\{print $4\}\’
Listing 4.2: Determination of Maximal Number of MPI Cores

After parsing, the simulation is initiated using the command depicted in Listing All
parsed configuration properties are passed along as custom program arguments, except for
the number of cores used to establish the MPI profile, as shown in Line 13 of Listing [4.3]

./$ns3_directory/ns3 run \
"eddd \
--networkFactor=$network_factor \
--clientFactor=$client_factor \
--backbonelatencyFactor=$backbone_latency_factor \
--regionallatencyFactor=$regional_latency_factor \
--locallatencyFactor=$local_latency_factor \
--backboneBandwidthGbps=$backbone_bandwidth_gbps \
--regionalBandwidthGbps=$regional_bandwidth_gbps \
--localBandwidthGbps=$local_bandwidth_gbps \
--clientBandwidthGbps=$client_bandwidth_gbps \
--logPings=%$log_pings \
--logGraphviz=$log_graphviz \
--attackType=$attack_type \
--country=$(echo "$countries" | jq -c)" \
--command -template="mpiexec -np $cores Ys"

Listing 4.3: Running the Simulation

Upon completion of the simulation, the resulting PCAP files are extracted and placed in
an output folder. If the configuration specifies that only packet headers are to be retained,
the PCAP files are opened, and the payload is dropped using tshark (cf. Listing {4.4)).

if [ "$remove_pcap_payload" == true ]; then
mkdir -p ShortDatasets
for file in Datasets/*.pcap; do
filename=$(basename "$file")
tshark -r Datasets/"$filename" -w ShortDatasets/"$filename" -Y "not
tcp.payload"
done
fi

Listing 4.4: Removing Payload From Dataset

4.3 Simulator

Situated at the core of the EDDD architecture is the simulator. The primary file is the
control center, governing the overall NS3 setup and simulation procedure.
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At the outset, the main file acquires the simulation configuration from the controller, as
delineated in Section [1.2] The configuration details are transmitted to the simulation via
program arguments, which ensure that the simulation parameters are properly initialized
and adhered to throughout the simulation process.

The following properties are passed onto the simulation:

e networkFactor

e clientFactor

e backboneLatencyFactor
e regionalLatencyFactor
e localLatencyFactor

e backboneBandwidthGbps
e regionalBandwidthGbps
e localBandwidthGbps

e clientBandwidthGbps

e country

e logPings

e logGraphviz

e attackType

Employing custom program arguments to pass the configuration presents a distinct advan-
tage, primarily that NS3 does not require a system rebuild for each novel configuration.
This approach significantly streamlines the process, making the system more efficient and
less time-consuming.

The initiation of the main application marks the commencement of the NS3 simulation
preparation. Initial efforts are directed towards constructing the network, inclusive of
clients, routers, connections, routing tables, and more, facilitated by the NetworkTopol-
ogyCreator (cf. Listing [.5). A detailed discussion of this component can be found in
Section [4.4] Upon successful network creation, both attacking and legitimate clients are
easily identifiable, along with the ability to extract the target IP address and the target
node for future procedures.

NetworkTopologyCreator topologyCreator;
topologyCreator.SetNetworkSpeedFactors (backbonelLatencyFactor,

regionallatencyFactor,
locallatencyFactor) ;

5 topologyCreator.SetNetworkBandwidth (backboneBandwidthGbps ,

regionalBandwidthGbps,
localBandwidthGbps,
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8 clientBandwidthGbps) ;

) topologyCreator.SetRepresentationFactors (networkFactor, clientFactor);
) if (logPings)

1 {
12 topologyCreator.ListPings () ;

3 }

14 if (logGraphviz)

5 {

5 topologyCreator .EnableBackboneGraphviz () ;

17}

15 topologyCreator.CreateNetwork (parsedCountries) ;

20 NodeContainer legitimateClients

1 = topologyCreator.GetLegitimateClients () ;

22 NodeContainer attackingClients = topologyCreator.GetAttackingClients ();

22 Ptr<Node> targetNode = topologyCreator.GetTargetNode () ;
5 Ipv4Address targetAddress = topologyCreator.GetTargetAddress();

Listing 4.5: Setup of Topology

Subsequently, attention is turned to the three client parties. The attacking clients are the
first to be addressed. Given the existence of two distinct types of attacking clients, the
main process installs either the SynFloodApplication or the IcmpFloodApplication on
the attacking clients, contingent upon the program argument (cf. Listing [£.6). This
choice not only determines the global simulation duration - as only the traffic during
an attack is simulated - but also relays parameters such as the seed in the form of the
attacking client’s index to the application.

i for (uint32_t i = 0; i < attackingClients.GetN(); ++1i)
2 {
if (attackType == "syn-flood")
o q
5 Ptr<SynFloodAttacker> attackerApp =
6 CreateObject<SynFloodAttacker>() ;
7 attackerApp->SetRemote (targetAddress, 8080) ;
8 attackerApp->SetSeed (i) ;
9 attackerApp->SetStartTime (Seconds (0)) ;
0 attackerApp->SetStopTime (Seconds (80));

2 attackingClients.Get (i) ->AddApplication(attackerApp) ;

| endTime = Seconds (80) ;

5}

6 chlisie

|

8 Ptr<IcmpFloodAttacker> attackerApp =

9 CreateObject<IcmpFloodAttacker>(i);

20 attackerApp->SetRemote (InetSocketAddress (targetAddress, 8080));

1 Time clientStart = attackerApp->GetStartTime () ;
2 Time clientEnd = attackerApp->GetEndTime () ;

3 attackerApp->SetStartTime (clientStart);

| attackerApp->SetStopTime (clientEnd) ;

26 attackingClients.Get (i) ->AddApplication(attackerApp);
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if (clientEnd > endTime)
{

endTime = clientEnd;
¥
¥
}

Listing 4.6: Attacker Setup

By checking the attack type and creating specific attacker applications accordingly, List-
ing grants flexibility to add new attack types. Both applications also incorporate
randomness in determining the start and end times of attacks based on probability dis-
tributions. This randomness adds variability to the attack patterns, making them more
realistic and challenging to detect or mitigate. Therefore, Listing [4.6] tracks the maximum
end time (endTime variable) to ensure that the simulation runs for a sufficient duration
to cover all attacks. This ensures comprehensive testing of the network’s resilience.

Next is the configuration of the target client. A sink application is installed on this node,
ensuring efficient socket functionality without the risk of buffer overflow (¢f. Listing [4.7)).
This is achieved by flushing arriving packets into a sink, eliminating the need for additional
processing.
PacketSinkHelper sinkHelper ("ns3::TcpSocketFactory",

InetSocketAddress (Ipv4Address: :GetAny (), 8080));

ApplicationContainer sinkApp = sinkHelper.Install(targetNode);
sinkApp.Start (Seconds (0));

5 sinkApp.Stop(endTime) ;

Listing 4.7: Target Setup

In the final step, the LegitimateTrafficApplication is installed on the legitimate client
nodes, with all the relevant parameters passed on to the application (¢f. Listing {4.8]).
This systematic approach ensures a well-structured and meticulously planned simulation,
setting the stage for a comprehensive and insightful analysis.
for (uint32_t i = 0; i < legitimateClients.GetN(); ++1i)
{
Ptr<LegitimateTrafficApplication> legitimateTrafficApp =
CreateObject<LegitimateTrafficApplication>();
legitimateTrafficApp->SetRemote (InetSocketAddress (targetAddress, 8080)
)
legitimateTrafficApp->SetSeed (i) ;

legitimateClients.Get (i)->AddApplication(legitimateTrafficApp);

legitimateTrafficApp->SetStartTime (Seconds (0)) ;
legitimateTrafficApp->SetStopTime (endTime) ;

Listing 4.8: Legitimate Client Setup

Following the setup phase, the program records the duration it took to establish the
simulation construct for the packet flow. This metric is essential for analysis and pro-
vides the user with a sense of the network’s magnitude that is aimed to be simulated.



42 CHAPTER 4. IMPLEMENTATION

Subsequently, the NS3 simulation is triggered. Upon the conclusion of the simulation,
the duration required to simulate all packets is again logged for analysis purposes. Such
a systematic logging approach aids in understanding the simulation process, enabling a
more comprehensive evaluation with critical insights into the computational demands of
the simulation, which is particularly useful when dealing with expansive networks and
complex scenarios.

The ensuing sections offer a more in-depth exploration of the NetworkTopologyCreator,
the LegitimateTrafficApplication, and both DDoS Traffic Applications. These sub-
components are integral to the simulation process and significant to the system’s architec-
ture. The description highlights the underpinning principles guiding their functionality
within the NS3 simulation environment.

4.4 Topology

In developing a solution that accurately represents network topologies, it is essential to
consider the underlying principles discussed in Section [2.1.3] particularly latency factors
as highlighted by [50]. The NetworkTopologyCreator incorporates configurable factors
for each network level to ensure a comprehensive and adaptable representation: backbone,
regional, and local. It is possible to address the latency variations occurring within dif-
ferent network topologies by allowing customization of these factors. Consequently, this
flexibility enables a more precise representation of the desired network.

Moreover, the number of nodes created per country can be adjusted. Since not every
user in a country accesses the target system, simulating 100% of network coverage and
end devices per country is inefficient (assuming one device per inhabitant, as outlined in
Section . The subnetRepresentationFactor determines the proportion of subnets
(regional and local) represented below each backbone router. For instance, a factor of 1
implies that every area of the country (simplified as a square, as defined in Section [3.3)) is
covered by a subnet. In contrast, a factor of 0.5 indicates that only 50% of the area covered
by backbone routers is covered by regional routers, and only 50% of their area is covered
by local routers. Finally, the clientRepresentationFactor controls the number of end
devices within the simulated local networks’ coverage area. A factor of 1 signifies that
100% of the average population/devices per area in the regions covered by the simulated
subnets is represented in the simulation.

As described in Section [3.3] the simulated network comprises countries containing back-
bone routers serving regional networks. In turn, these regional networks consist of local
networks consisting of local routers to which the end clients are connected. This section
delves into constructing these topologies and how the different layers are connected.

4.4.1 Routers and Service Area

The service area of each network level, including the country, regional network, local
network, or access network, is defined by a square area. The user determines the area of
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countries, while the area of the regional network under a backbone router is a fraction of
the country’s total area.

The area of a regional network can be defined as:

number of backbone routers

regional area = (4.1)

country area

The area a single regional router covers with its local network below is set to 900km? in
the code. This service area of a regional router is just an assumption and not based on
actual information as real world distributions vary depending on the geographic features
of an area. Consequently, the number of regional routers in a regional network under a
backbone router is determined as follows:

900km?
number of regional routers = T (4.2)
regional area

The amount of local routers within the network beneath a regional router is defined
similarly:

4km?

900km? (4:3)

number of local routers =

Lastly, the country’s population density dictates the number of clients connected to a
single local router. This relationship ensures that the distribution of clients within the
network accurately represents the population distribution within the simulated area.

4.4.2 Placing Nodes

The procedure for distributing router nodes within an area remains consistent across all
network layers, including the backbone, regional, and local layers. Each area is interpreted
as a square, and nodes are distributed randomly within the square of the area they are
placed in.

A deterministic randomness approach with a seed is chosen for the system to be repro-
ducible. This strategy ensures that the placement of nodes, while appearing random,
remains consistent and replicable across multiple simulations. As such, by using a deter-
ministic probability function with a seed, the same node distribution can be replicated,
ensuring that the simulation is consistent and reproducible. In addition, it has the ben-
efit that any observed effects or performance variations can be attributed to the specific
protocols or algorithms being studied rather than random fluctuations in node positions.
Listing provides insight into the node placement process within a given area.



44 CHAPTER 4. IMPLEMENTATION

struct PositionedNode
{

int id;

Vector2D position;

5 1

std: :vector<NetworkTopologyCreator::PositionedNode>
NetworkTopologyCreator::PositionNodesRandomly (uint32_t numberOfNodes,
double area, uint32_t seed)
{
std::mt19937 rng(seed);
std::uniform_real_distribution<double> dist (0, std::sqrt(area));

std::vector<PositionedNode> nodes (number0OfNodes) ;

for (uint32_t i = 0; i < number0fNodes; i++)
{
nodes[i] = {static_cast<int>(i), {dist(rng), dist(rng)l}};
}
return nodes;

Listing 4.9: Node Placement Within a Given Area

In the function PositionNodesRandomly, the number of nodes to be placed and the area
in which they are to be placed are taken as input parameters. The placement algorithm
ensures that the same outcome is achieved with every execution of the program. A seed
is passed to the function to generate these random positions, which are determined by
the number of nodes to place and the area in which they are placed. Both properties
are dependent on the countries and the topology level. This guarantees some variations
in node placements. Ultimately, the positioned nodes, along with their coordinates, are
returned.

As for the placement of clients, it is important to note that no further placement is made
in the simulation beyond the local router level. In the simulation, a direct connection
exists between a local router and a client. The local router and the connected clients
comprise the access network. The area of an access network is so small that the distance
between one client and the local router would not significantly impact latency compared
to another client within the same access network.

4.4.3 Connecting Nodes

As described in Section [£.4.2] nodes are placed two-dimensionally within a square area
in this network model. To ensure network connectivity, these nodes must be connected
while satisfying two key requirements to represent a realistic network topology:

e guarantee all-connectedness: each node can reach any other node within the network
through a series of connections

e connections should not cross: a connection between nodes A and B should never
intersect with a connection between nodes C and D
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Figure 4.2: Triangulation Comparison: Gabriel Graph (left) vs. RNG (right) [3§]

Graph theory can be employed to create such networks, offering multiple approaches to
achieve the desired outcome. Minimum Spanning Trees (MSTs) represent one option,
but they often exhibit a low edge count, translating to fewer connections and potentially
requiring numerous hops to travel between nodes. Furthermore, MSTs lack redundancy
or alternate routes, making them less realistic.

Triangulation serves as an alternative approach, fulfilling the requirements above. Three
variants, Delaunay triangulation, Gabriel graphs, and Relative Neighborhood Graphs
(RNG), implement triangulation to varying extents. Delaunay triangulation maximizes
the minimum angle of all triangles within the network. At the same time, Gabriel graphs
and RNGs impose distance-based constraints on the connections, resulting in sparser net-
works that maintain connectivity and non-crossing properties.

Figure [4.2] compares the two sparser triangulation network approaches: the Gabriel graph
and RNG. Upon examination, it becomes evident that an RNG can encounter similar
issues as an MST, such as requiring numerous hops to traverse from one node to another
within the network. Consequently, the Gabriel graph algorithm has been selected as
the preferred method for connecting nodes within a network due to its more desirable
properties in addressing the issues mentioned above.

Establishing connections between nodes begins with a theoretical evaluation employing
the Gabriel Graph Algorithm. After the potential edges have been ascertained, they are
instantiated within the NS3 framework using point-to-point connections. Listing
delineates the connection creation process at a backbone network level. The distance
between the two nodes intended to be connected is calculated in the initial phase. This
distance is then used to derive the latency value that passed to the point-to-point con-
nection via the ChannelAttribute Delay.

for (auto& edge : edges)
{ // calculate distance between nodes and set the latency (delay)
// of the connections appropriately
double dist =
CalculateDistance (nodes.at (edge.first) .position, nodes.at(edge.second)
.position);
totalDistance += dist;
std: :stringstream delay;
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delay << (dist * m_backbone_speed_km_per_ms) << "ms";
p2pHelper.SetChannelAttribute ("Delay", StringValue (delay.str()));

// make connection and assign ip addresses

NetDeviceContainer devices;

devices .Add (

p2pHelper.Install (backboneNodes.Get (edge.first), backboneNodes.Get(
edge .second))) ;

address.Assign(devices) ;

address.NewNetwork () ;

backboneDevices.Add (devices) ;

Listing 4.10: Point-To-Point Connections and IP Assigning

After establishing the point-to-point connection, IP addresses must be assigned to the
devices at the ends of such connections. In the NS3 environment, every node possesses
multiple devices, each corresponding to a point-to-point connection with another node.
These devices necessitate the assignment of IP addresses, enabling NS3 to populate routing
tables accurately. NS3 mandates that network devices that have IP addresses of the
same subnet assigned to them must be connected by a point-to-point connection. The
most straightforward resolution adhering to this requirement manifests as a continual
sequence of IP allocations, where each successive point-to-point connection corresponds
to an incremented subnet. This can be observed in Listing Line 14-16, where the
pairs of each connection are assigned IP addresses of the same subnet, whereas afterward
the subnet is incremented.

4.4.4 Connecting to Sub-Networks

Per Section [£.4.1] every router has an underlying subnet that covers a specific area. Fig-
ure [4.3|depicts this concept, displaying the area with nodes distributed randomly following
the process described in Section [4.4.2] The diamond-shaped r represents the router one
level above, accountable for managing the allocated area. This router connects to the
three closest nodes within the subnet as part of the design. Placing the router at the cen-
ter of the area might result in connections from the router to nodes crossing other node
connections. To avoid this issue, the three most central nodes are selected as candidates
for connection. Subsequently, the router is positioned in the center of these chosen nodes.

Utilizing the 2D placement of the router that serves a particular area, measuring the
distance between the router and the nodes it connects to becomes advantageous. By
determining this distance, one can calculate the latency a signal experiences as it travels
from the router to the node. As outlined, bandwidth and latency factors are defined for
each level. In this case, the bandwidth and latency factors of the subnet are applied to
these point-to-point connections.
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Figure 4.3: Router Connections to Subnet Nodes
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4.4.5 Connecting Countries

As described in Section [3.3] countries are connected to their neighboring countries based
on the topology configuration. Initially, the border nodes of a country are selected. List-
ing demonstrates an approach for selecting border nodes that is both efficient and
effective. First, the nodes are sorted based on their polar angle concerning the bottom-left
starting node. This sorting strategy simplifies the subsequent process of identifying border
nodes. Finally, Graham’s scan algorithm is employed, chosen for its ability to efficiently
determine convex hulls, allowing for identifying border nodes in the network.

1 std::vector<NetworkTopologyCreator::PositionedNode>
NetworkTopologyCreator::FindBorderNodes (const std::vector<PositionedNode

2

{

>& nodes)

// Find the bottom-left node as the starting point

const PositionedNode* start = &nodes[0];
for (const auto& node : nodes)
{
if (node.position.y < start->position.y ||
(node.position.y == start->position.y
&% node.position.x < start->position.x))
{
start = &node;
}

}

// Sort the nodes by polar angle with respect to the starting node
std::vector<const PositionedNode*> sortedNodes;
sortedNodes .reserve (nodes.size()) ;

for (const auto& node : nodes)
{

sortedNodes .push_back (&node) ;
}

std: :sort(sortedNodes.begin (),
sortedNodes .end (),
[start] (const PositionedNode* a, const PositionedNodex* b)

{
double cp = crossProduct(start->position, a->position, b->position);
if (cp == 0)
{
return CalculateDistanceSquared(start->position, a->position) <
CalculateDistanceSquared (start->position, b->position);
}
return cp > O;
1)
// Find the border nodes using Graham’s Scan algorithm
std::vector<PositionedNode> borderNodes = {*start};
for (const auto& node : sortedNodes)
{
while (borderNodes.size() >= 2
4& crossProduct (borderNodes [borderNodes.size() - 2] .position,

borderNodes .back () .position,
node->position) <= 0)
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borderNodes .pop_back () ;
}
borderNodes .push_back (*node) ;
}

return borderNodes;

Listing 4.11: Select Border Nodes

From these border nodes, the k ones furthest apart are selected as demonstrated in List-
ing [£.12] In this context, k represents the number of neighboring countries. In most
cases, this equals the number of countries within the neighbors parameter plus one, as
the country needs to connect to the previously created one. When creating a country,
a border node from the previous country is always passed on to which the new country
must connect. The only exception is the root country, representing the target country, as
no previous country exists. The function findFurthestApartNodes iteratively compares
the distances between nodes to determine the furthest apart nodes, which are then added
to the list of selected nodes. If the desired number of connections exceeds the number of
border nodes, it selects all the nodes and repeats the selection process. This approach
ensures an optimal distribution of connections among border nodes, contributing to a
more realistic network topology representation.
std::vector<NetworkTopologyCreator::PositionedNode>
NetworkTopologyCreator::FindFurthestApartNodes (

const std::vector<PositionedNode>& borderNodes,
ulong numberOfConnections)

{
if (numberOfConnections <= 0)
{
return {};
}
ulong borderNodeCount = borderNodes.size();

std::vector<PositionedNode> selectedNodes;

// If numberOfConnections is greater than borderNodeCount, select all
nodes, then repeat the selection process

while (numberOfConnections > borderNodeCount)

{
selectedNodes.insert(selectedNodes.end (), borderNodes.begin (),
borderNodes .end ()) ;
number0fConnections -= borderNodeCount;

std: :vector<bool> used(borderNodeCount, false);

int currentNodelIndex = 0;

used[currentNodeIndex] = true;

selectedNodes .push_back (borderNodes [currentNodeIndex]) ;
number0fConnections-—;

while (numberOfConnections > 0)
{

double maxDistance = -1;

int maxIndex = -1;
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for (ulong i = 0; i < borderNodeCount; i++)
{
if (lused[il)
{
double minDistance = std::numeric_limits<double>: :max();
for (const auto& selectedNode : selectedNodes)

{
double currentDistance =
CalculateDistance (borderNodes[i] .position,
selectedNode.position);
if (currentDistance < minDistance)

{

minDistance = currentDistance;
}
}

if (minDistance > maxDistance)
{
maxDistance = minDistance;
maxIndex = 1i;
}
}
}

used [maxIndex] = true;
selectedNodes .push_back(borderNodes [maxIndex]) ;
number0fConnections——;

}

return selectedNodes;

Listing 4.12: Select Country Connection Nodes

A connection is established for the border node connecting to the previous country. Since
a node from the previous country is passed on to the new country, it is possible to create
this backbone connection. The bandwidth for this connection is the same as the backbone
bandwidth within a single country, and since the distance between those country connect-
ing nodes cannot be ascertained de the latency is determined by the average connection
distance among the backbone nodes within a country (¢f. Listing [4.13).

The connection to the new neighbors cannot be made yet, as they do not exist. Therefore,
a new country is created, and the border node from the current country, which should
connect to this new neighbor, is passed along.

4.4.6 PCAP Nodes

PCAP recording is conducted at the backbone router level within EDDD. NS3 facilitates
PCAP recording at the device level associated with network nodes. EDDD mandates
the inclusion of a parameter, pcapEnabled, for each country represented in the connect-
edCountries object. If this parameter is set to true, PCAP recording is activated for
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all backbone devices associated with that particular country. To facilitate the identifica-
tion of the generated pcap files, they are named following the schema: backbone-node-
[country_name] - [node_id]-[device_id] .pcap.

Section explicated that countries are only connected to the subsequent country once
the latter has been instantiated. This implies that one of the devices created in a point-
to-point connection between two countries does not belong to the current country, but
rather, to the preceding one. This peculiarity must be taken into account while enabling

the PCAP recording (c¢f. Listing4.13]).

const bool pcapEnabled = c.enablePcap && MpiInterface::GetSystemId() ==
m_current_system_id;

if (hasPreviousCountryNode)
{ // make the connection to the previous country

// set the latency (delay) according to the average distance of the
connections in the current country

std: :stringstream delay;

delay << (averageDistance * m_backbone_speed_km_per_ms) << "ms";

p2pHelper.SetChannelAttribute("Delay", StringValue (delay.str()));

// make connection and assign ip addresses
NetDeviceContainer countryConnectionDevices =
(p2pHelper.Install(
backboneNodes.Get (connectingBorderNodes.at (0) .id),
previousCountryNode.value()));

address.Assign(countryConnectionDevices) ;
address .NewNetwork () ;

if (pcapEnabled)

{ // enable pcap on the net device, that is in the current country
p2pHe1per.EnablePcap("backbone—node—” + country.name,
countryConnectionDevices.Get (0)) ;

}

if (prevCountryPcapEnabled && previousCountryName.has_value ())
{ // enable pcap on the net device, that is in the previous country
p2pHelper .EnablePcap ("backbone -node-" + previousCountryName.value(),
countryConnectionDevices.Get (1)) ;

}

if (pcapEnabled)
{ // enable pcap on all backbone devices of the current country
p2pHelper .EnablePcap("backbone -node-" + country.name, backboneDevices)

)

Listing 4.13: Connecting Countries and PCAP Enabling

If PCAP recording was enabled for the previous country, PCAP recording must also be
initiated for the connecting device associated with the previous country. Conversely, if
PCAP recordings are enabled for the current country, they must only be activated for the
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device associated with the current country. Each pcap enabler must also be annotated with
the correct country name, ensuring the resulting PCAP files can be accurately attributed
to their respective countries.

Moreover, PCAP recording is enabled for traffic arriving at the target node. Given that
the target node maintains only a single device (its connection to the router) merely one
PCAP file is produced. This file encapsulates all packets arriving at the target, serving as
a valuable resource for validation. It can be used for comparison with existing centralized
datasets, providing a benchmark for evaluation. Utilizing this file also facilitates a more
accurate assessment of the load imposed on the target by both the attack and legitimate
traffic, thereby enhancing the understanding of network dynamics under a DDoS attack.

4.5 Legitimate Traffic

As discussed in Section [3.4] legitimate traffic is modeled based on the CIC dataset [28].
However, it is important to note that recreating the data exactly is not feasible. Conse-
quently, selected features have been decided upon in Section [3.4] and a piecewise probabil-
ity approach has been introduced to address this issue. By utilizing an array of piecewise
probabilities at 10% quantile intervals, it is possible to obtain a distribution that closely
resembles the original one.

Listing demonstrates the implementation of this approach, where the input consists
of an array of outcomes at different quantiles and a seed. This seed from the invocation
of this method is then combined with m_seed, the seed unique to the instance of the
application. This combination ensures that the results are different for each invocation of
the method and different comparing individual application instances. It also assures that
the results are deterministic, meaning that each execution of the program yields the same
outcome. Nevertheless, the specific values chosen from this distribution are random.

double
LegitimateTrafficApplication::GetRandomDistributionNumber (
std::array<double, 11> piecewiseProbability,
uint32_t seed)
{ // Calculate a deterministic random number based on a quantile
distribution
// (piecewiseProbability) and a seed

std::mt19937 gen(seed * m_seed);
std::uniform_real_distribution<> dis (0, 1);

double u = dis(gen);

int minIndex = static_cast<int>(u * 10) ;
if (minIndex == 11)
minIndex = 10;

return piecewiseProbability.at(minIndex) +
(piecewiseProbability.at (minIndex + 1)
- piecewiseProbability.at(minIndex)) * u;
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20 }
Listing 4.14: Random Value According to a Peacewise Probability

The legitimate traffic controller is developed as an extension of the application class within
NS3. Consequently, it possesses the StartApplication and EndApplication methods,
which dictate when the application is activated and terminated. Since benign traffic
is omnipresent throughout the simulation, the application’s start and end timestamps
correspond to the simulation’s global commencement and conclusion.

StartApplication StopApplication
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Figure 4.4: Activity Diagram of Legitimate Traffic Application

Upon activation of the application, the process aligns with the activities delineated in
Figure [£.4] Initially, the flow is in an idle phase. The duration of this idle phase is estab-
lished using the piecewise probability defined in Section[3.4] Subsequently, the progression
within this idle phase is determined through a random linear progress distribution. These



N

o4 CHAPTER 4. IMPLEMENTATION

determinations are randomly generated using a seed that ensures consistent results across
each execution of the program. Following a delay equivalent to the remaining idle phase’s
duration, a StartSending event is scheduled, as demonstrated in Listing [4.15]

void

LegitimateTrafficApplication::StartApplication ()

3 {

CancelEvents () ;

double waitSeconds = this->GetRandomDistributionNumber (
DISTRIBUTION_TIME_BETWEEN_FLOWS, m_seed);

std::mt19937 gen(m_seed) ;
std::uniform_real_distribution<> dis (0, 1);
double waitProgress = dis(gen);

m_startStopEvent =
Simulator::Schedule (Seconds (waitSeconds * waitProgress),
&LegitimateTrafficApplication::StartSending, this);

Listing 4.15: StartApplication Method of the LegitimateTrafficApplication

The StartSending method first verifies the existence of a TCP connection with the target.
In the absence of an established TCP connection, it initiates a handshake. This method
also instigates the scheduling of a transaction sending event via the ScheduleNextTx
method and a StopSending event through the ScheduleStopEvent method.

The ScheduleStopEvent method selects a deterministically random value from the flow
duration distribution, as described in Section[3.4] A StopSending event is scheduled upon
reaching this duration. Conversely, the ScheduleNextTx method schedules the subsequent
SendPacket event after a certain delay. This delay is determined through a random de-
terministic distribution, based on a packets-per-second probability. The random selection
of a packets-per-second value within this method varies on each execution, resulting in a

variable delay to the next SendPacket event, as it is defined as m.

The SendPacket method’s primary function is dispatching packets. A packet length
is randomly selected for every packet to be sent following the distribution defined in
Section[3.4l Packets with a length of zero represent those without a payload. Upon sending
a packet via the socket, a new SendPacket event is scheduled via the ScheduleNextTx
method.

Once a scheduled StopSending event is triggered, the StopSending method is invoked.
All scheduled SendPacket events are canceled upon reaching the end of the flow. As
indicated in Section [3.4) the conclusion of a flow does not necessarily signify the termi-
nation of a TCP connection; this occurs only in 6% of instances. Therefore, within the
StopSending method, the socket is disconnected with a 6% probability. Following this, a
new StartSending event is scheduled via the ScheduleStartEvent method, which sets a
new start event after a random idle time as per the distribution described in Section [3.4]

Upon reaching the scheduled end timestamp of the application, the application cancels
all events, encompassing the SendPacket events and the events to start and stop a flow.
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The implementation of the legitimate traffic controller is made available as an application
for an NS3 simulation. In EDDD, a LegitimateTrafficApplication is established and
attached for every legitimate client (c¢f. Listing [4.8)). Necessary properties for the appli-
cation are a seed to incorporate a degree of variation among the clients, which is utilized
as m_seed for each stochastic decision that needs to be made, a remote socket address
to which the traffic is sent, and the start and end times of the application. It’s crucial
to note that the start time of the application does not represent the point at which the
client begins to send data but rather when the application is loaded and the first flow
is scheduled. In the instance of EDDD, this is intended to occur at the beginning of
the simulation at time 0. The end time is an attacking client’s final interaction, which
indicates that the simulation concludes when the attack is finished.

4.6 Attack Traffic

Dedicated attack traffic applications are required to model DDoS traffic for the simulation.
EDDD currently supports two types of DDoS attacks, necessitating the creation of two
distinct applications: the IcmpFloodApplication, which simulates an ICMP flood attack,
and the SynFloodApplication, which generates a SYN flood attack.

Both applications require certain parameters to be specified upon creation. Foremost
among these is the remote address, which delineates the socket address to which the traffic
will be sent. In addition, a seed available to the applications as m_seed is needed to ensure
that each client maintains a unique and deterministic random stochastic decision-making
process. Furthermore, the start and end times for the applications must be defined. It
should be noted that the end time for these applications is of particular importance as it
dictates the global end time of the simulation.

The following subsections will provide a more detailed examination of the implementation
of these two distinct applications. The unique aspects of their designs, including how they
model SYN flood and ICMP flood attacks, are thoroughly discussed.

4.6.1 ICMP Flood Traffic

The IempFloodAttacker application is constructed on the foundation of the CAIDA
dataset, as elaborated in Section [3.5.1] The yield from this dataset in terms of client-
specific behaviour appears rather meager, as once a client joins the attack, it tends to
send ICMP packets to the target at a rate of approximately 20 packets per second until
it eventually exits the attack, as depicted in Figure |3.13] Consequently, this facilitates a
straightforward implementation of the application itself, as demonstrated in Figure [4.5
The crux of this application lies in the determination of the start and end times.



96 CHAPTER 4. IMPLEMENTATION

StartApplication

y

SendPacket

Stopped Sending

Delay

ScheduleNextTx
% StopApplication @

Delay

Figure 4.5: Activity Diagram of ICMP Flood Traffic Application

Drawing from the analysis in Section [3.5.1] the probabilities of starting the attack vary
across different points in time. For simplification, these probabilities have been grouped
into 5-minute buckets. To ascertain the start time for the application, a decision is
made regarding the specific 5-minute bucket into which a particular node falls. This
decision is derived from a deterministic random choice as demonstrated in Listing [4.16]|
Subsequently, the precise time is determined by generating another deterministic random
number, representing the progress within this bucket. Given that these buckets represent
5-minute intervals, the sum of the bucket and the inter-bucket progress is multiplied by 5
minutes and results in the start time.

std: :vector<double> start_bmin_buckets_probabilities = // Probabilities

int startBucket = SelectProbabilityBucket (
start_bmin_buckets_probabilities, m_seed) ;

std: :mt19937 gen(m_seed * 2);
std::uniform_real_distribution<double> interBucketTime (0, 1);

Time clientStart = (startBucket + interBucketTime (gen)) * Minutes (5);

Listing 4.16: Determination of Start Time of IcmpFloodAttacker Application

The application’s duration is calculated in a similar fashion. The analysis in Section [3.5.1
provided probabilities for 5-minute interval durations. In this case, too, the duration
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bucket is selected using another seed specific to this instance. The final duration is then
calculated by combining the selected duration bucket with a new value of the inter-bucket
progress, multiplied by 5 minutes. The required end time for the application can then be
inferred by adding the start time to the duration.

std::vector<double> duration_bmin_buckets_probabilities = //
Probabilities

int durationBucket = SelectProbabilityBucket (
duration_bmin_buckets_probabilities, m_seed * 3);

Time clientEnd = clientStart + ((durationBucket + interBucketTime (gen))
* Minutes (5));

Listing 4.17: Determination of End Time of IcmpFloodAttacker Application

During the application’s runtime, the SendIcmp method is scheduled, which recursively
schedules itself until the application terminates. Within this method, an ICMP Echo
packet is formed following the default configuration in the NS3 Ping application (cf.
Listing . Once the ICMP Echo packet is successfully dispatched, a new packet is
subsequently scheduled. This procedure is conducted at an approximate attack rate of 20
packets per second. The rate is not fixed, introducing a degree of variability in the attack
pattern, but it predominantly gravitates around this value, mirroring the packet rate
identified within the CAIDA dataset. Upon termination of the application, all residual
events are canceled to ensure a clean state.

void

IcmpFloodAttacker: :SendIcmp ()

s {

Ptr<Packet> dataPacket = Create<Packet>(56) ;

// Create an empty packet
Ptr<Packet> icmpPacket = Create<Packet>();

// Using IPv4
Icmpv4Echo echo;

// In the Icmpv4Echo the payload is part of the header.
echo.SetData(dataPacket) ;

icmpPacket->AddHeader (echo) ;

Icmpv4Header header;

header.SetType (Icmpv4Header: : ICMPV4_ECHO) ;
header.SetCode (0) ;
icmpPacket->AddHeader (header) ;

// Send the Icmp packet using the raw socket
m_socket->SendTo (icmpPacket, O, m_remote) ;

m_pktSent++;

ScheduleSend () ;

Listing 4.18: SendIcmp Method of IcmpFloodAttacker Application
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4.6.2 Syn Flood Traffic

The SYN Flood Application finds its foundational basis in the SYN Flood dataset from
the DDoS Packet Capture Collection, as discussed in Section [3.5.2] It is important to note
the inherent complexity in replicating this dataset, especially due to the inability to deduce
information about individual clients. However, as illustrated in Figure the dataset’s
distinct phases can be replicated. The activity diagram reveals that upon initiating the
application, phase 1 commences via the StartPhasel method (c¢f. Figure . This
process triggers the scheduling of the first packet and determines the initial phase’s stop

event.
Start Phase 1 ’ StartApplication

ScheduleNextTx
Delay
Check Phase

’ TPhase 1$Phase 2—]

Delay 1 l Delay 2
Delay SendPacket

’ Stopped Sending

Stop Phase 1

‘ Start Phase 2

%No

Delay Delay StopApplication ®

Stop Phase 2

Figure 4.6: Activity Diagram of SYN Flood Traffic Application

Listing demonstrates the method of packet scheduling. A distinct packet difference
per second during the two phases in the dataset necessitates a similar distinction
within the ScheduleSend method. The dataset provides data for total packets per second,
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leading to an assumption that roughly 400 clients participated in the attack. Considering
this, each client would send approximately 20 packets per second at the attack’s peak.
This approximation aligns with the packets sent per client in ICMP attacks, as described
in Section [3.5.1} Therefore, the waiting time before sending a new packet is multiplied by
400(ORIGINAL_CLIENTS_ASSUMPTION)

Time
SynFloodAttacker::CalculateNextTime (const std::array<double, 11>&
packetPerSecondProbability) const
{ // Calculation of next time a packet should be sent based on quantile
distribution of packets per
// second at target
double packetsPerSecond = GetRandomDistributionNumber (
packetPerSecondProbability, m_pktSent) ;
return Seconds((1.0 / packetsPerSecond)
* ORIGINAL_CLIENTS_ASSUMPTION) ;

b
void
SynFloodAttacker::ScheduleSend ()
{
Time nextTime;
if (m_phasel)
{
nextTime = CalculateNextTime (DISTRIBUTION_PHASE1_PACKETS_PER_SECOND)
3
chlisie
{
nextTime = CalculateNextTime (DISTRIBUTION_PHASE2_PACKETS_PER_SECOND)
X
NS_LOG_LOGIC("next packet time = " << nextTime.As(Time::S));
m_sendEvent = Simulator::Schedule(nextTime, &SynFloodAttacker::SendSyn
, this);
X

Listing 4.19: ScheduleSend Method of the SynFloodAttacker Application

The method of sending a packet, as shown in the SendSyn method in Listing [£.20] first
involves constructing the headers before sending the packet via the socket. Given that
SYN flood attacks employ random ports, this feature is incorporated into this method.
Upon completion of the sending process, the next sending event is scheduled.

void

SynFloodAttacker: :SendSyn ()

{
// Create a TCP header with the SYN flag set
TcpHeader tcpHeader;
tcpHeader.SetFlags (TcpHeader: :SYN) ;
tcpHeader .SetSourcePort (GetRandomPort () ) ;
tcpHeader.SetDestinationPort (m_remotePort) ;

// Create an empty packet
Ptr<Packet> synPacket = Create<Packet>();
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// Add the header to the packet
synPacket->AddHeader (tcpHeader) ;

// Send the SYN packet using the raw socket
m_socket->SendTo (synPacket, 0, InetSocketAddress(m_remotelp,
m_remotePort));

m_pktSent += 1;

ScheduleSend () ;

Listing 4.20: SendSyn Method of the SynFloodAttacker Application

When phase 1 concludes, all lingering events are canceled, and phase 2 is subsequently
scheduled. The initiation of the second phase involves invoking a new ScheduleSend.
However, this phase employs the packets/second ratio from phase 2. Also, upon the
commencement of Phase 2, the end of this phase is scheduled. This process involves the
cancellation of all events, ensuring the effective clean-up of the application.

In the process of implementation, it emerges that certain intrinsic functionalities in NS3
induce connection resets which cannot be readily disabled. As a consequence, SYN-flood
attacks, where unfinished handshakes are a significant aspect, cannot be accurately sim-
ulated in NS3 due to premature termination with a reset. This aspect poses a challenge
in achieving a faithful representation of this common DDoS attack type within the NS3
environment. To mitigate this issue and ensure the final dataset does not include any un-
intended RST packets, a filtering mechanism is incorporated into the shell script controller
(cf. Listing [4.21)). This filter effectively sifts out all RST packets during the final phase
of data preparation, thereby ensuring that the resultant dataset remains undistorted by
these extraneous connection resets.
if [[ $attack_type == "syn-flood" 1]; then
for file in "Datasets"/#*.pcap; do
# Check if file ends with .pcap
if [[ $file == *.pcap 1]; then
# Create the output file name by appending "_filtered" to the

original file name
output_file="${file%.pcap}_filtered.pcap"

# Execute the tshark command to filter packets with reset flag
tshark -r "$file" -Y "tcp.flags.reset==0" -w "$output_file"

# rename to the o0ld names
rm "$file"
mv "$output_file" "$file"
fi
done

; £1

Listing 4.21: Filtering Mechanism for RST Packets
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Evaluation

The evaluation of the EDDD system takes its foundation from a carefully selected base
scenario. In this situation, the target, situated in Switzerland, possesses a Western Eu-
ropean reach, indicating that this server is designed to serve clients throughout Western
Europe. The corresponding configuration in the configuration file, dictating the program’s
execution, is outlined in Listing [5.1

{
"networkFactor": 0.025,
"clientFactor": 0.015,
"backboneLatencyFactor": 1.25,
"regionalLatencyFactor": 2.5,
"localLatencyFactor": 3.75,
"backboneBandwidthGbps": 1000,
"regionalBandwidthGbps": 100,
"localBandwidthGbps": 10,
"clientBandwidthGbps": 1,

"countries": {
"name": "Switzerland",
"nodes": 3,

"area": 41285,
"population": 8700000,
"enablePcap" :trug
"attackTrafficFactor": 0.7,

"neighbors": [
{
"name": "Germany",
"nodes": 8,

"area": 357558,
"population": 83200000,
"enablePcap" :trug
"attackTrafficFactor": 0.7,
"neighbors": [
{
"name": "Belgium",
"nodes": 2,
"area": 30688,
"population": 11590000,
"enablePcap" false
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"attackTrafficFactor": 0.5,

"neighbors": [
{
"name": "UnitedKingdom",
"nodes": 7,
"area": 243610,

"population": 67330000,
"enablePcap" false
"attackTrafficFactor": 0.3,
"neighbors": []

}
]
¥
{
"name": "Netherlands",
"nodes": 4,
"area": 41850,
"population": 17530000,
"enablePcap" false
"attackTrafficFactor": 0.4,
"neighbors": []
}
]
"name": "Italy",
"nodes": 8,
"area": 302073,

"population": 59110000,
"enablePcap" false
"attackTrafficFactor": 0.6,
"neighbors": []

"name": "France",
"nodes": 9,
"area": 551695,

"population": 67750000,
"enablePcap" false
"attackTrafficFactor": 0.7,
"neighbors": [

{
"name": "Spain",
"nodes": 5,
"area": 505990,

"population": 47420000,
"enablePcap" false
"attackTrafficFactor": 0.4,

"neighbors": [
{
"name": "Portugal",
"nodes": 3,
"area": 92212,

"population": 10330000,
"enablePcap" false
"attackTrafficFactor": 0.3,

CHAPTER 5. EVALUATION
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"neighbors": []

"name": "Austria",
"nodes": 3,
"area": 83871,
"population": 8956000,
"enablePcap" false
"attackTrafficFactor": 0.6,
"neighbors": []
b
]
3,
"logPings" false
"logGraphviz" false
"removePcapPayload" :trug
"attackType": "syn-flood",
"cores": 10

Listing 5.1: Configuration for Evalation Scenario

Each country incorporated in this scenario is represented by its respective population
size and area, as indicated by Google Feedback . The representation factor for the
network is set to 0.025 whereas the factor for the clients is set to a value of 0.015. The
attackTrafficFactor is set according to findings that suggest a negative correlation
between the ratio of attack traffic compared to legitimate traffic and the geographical
distance. The exact factors of each country can be observed in Listing [5.1]

Country Routers Clients

Backbone Regional Local Attack Legitimate

Switzerland 3 3 6 9 8
Germany 8 8 56 124 44
Belgium 2 2 4 15 9
United Kingdom 7 7 35 A7 93
The Netherlands 4 4 8 19 29
Italy 8 8 48 90 54
France 9 18 90 116 64
Spain 5 15 75 30 45
Portugal 3 3 15 9 21
Austria 3 3 12 11 13

52 71 349 470 380

Table 5.1: Generated Country Topology

The resulting topology output from this configuration is summarised in Table [5.1 For
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each country, the number of backbone routers, regional routers, and local routers, as
well as the number of attacking and legitimate clients, are presented. The configuration
generates 1’323 nodes, among which 850 are clients; one serves as the target, and the
remaining 472 nodes function as routers.

5.1 Topology

The approach of connecting countries has been chosen to resemble a real-world scenario.
This method allows for a comprehensible arrangement and definition of countries to sym-
bolize a map with a network infrastructure. By utilizing population and area settings, it
is possible to define a country with real-world data.

For the evaluation scenario, several Western European countries have been chosen. In
this scenario, a server in Switzerland is the victim of an attack originating from nodes
within other European countries. The countries represented in this virtual model include
Switzerland, Austria, France, Spain, Portugal, Italy, Germany, the Netherlands, Belgium,
and the United Kingdom.

Figure [5.1] presents a graphical representation of the countries displayed as squares in
proportion to their actual size. This figure also demonstrates how these countries are
connected. This representation does not resemble a real-world map of Western Europe.
However, when comparing it with a real map (c¢f. Figure displaying the connections
made in Figure [5.1], it becomes apparent that the connection paths in the real world are
represented in the virtual model.

In addition to merely connecting countries, the network topology exhibits further com-
plexity. Each country contains several backbone routers, and a multi-level network lies
beneath each of these routers. This structure closely mirrors real-world network configu-
rations (c¢f. Section . Connecting these nodes makes it possible to send messages
from any created clients to the target server. As depicted in Figure [5.1] the target server
in this scenario is located in Switzerland.

Sending a packet from any client to the Swiss target server should emulate the behavior
of real packets sent from a client in the originating country to the Swiss server. This
resemblance can be observed in the number of hops a packet takes before reaching the
target and the transmission duration. Figure compares real-world ping data [82],
representing transmission duration, with data generated within this system using NS3.

Through the latency factor described in Section [4.1] latency can be configured for each
network level. Factors 1.25 for the backbone latency (25% more latency than ideal), 2.5
for the regional latency (150% more latency than ideal), and 3.75 for the local latency
(275% more latency than ideal) provided the best results in achieving the desired outcome:
a ping within a similar range per country as the real-world data. This approach proved
effective for most of the represented countries; however, there were outliers. For instance,
Austria could not be represented as accurately as other countries. This discrepancy may
be due to geographic topologies rendering an equally distributed and evolved network
infrastructure less realistic.
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Figure 5.2: Map of Western Europe with Connections of Selected Countries
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Figure 5.3: Ping Comparison: NS3 Simulation vs. Real Measures
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Figure 5.4: CAIDA vs. EDDD: Legitimate Packet Length

5.2 Legitimate Traffic

The modeling of legitimate traffic is based on the traffic labeled benign from the CIC
dataset [28]. The subsequent approach is adopted to verify the fidelity of the generated
dataset concerning the properties outlined in Section

In the scenario detailed at the beginning of Chapter |5, a minor modification is introduced.
The main function of the simulator, rather than creating the entire simulation, focuses on
assigning the application for legitimate traffic to legitimate clients. With this alteration,
the PCAP extracted in the target application can be analyzed without the need to classify
arriving packets, as only legitimate traffic is in transit.

Evaluating the tool’s effectiveness, however, presents certain complexities. The traffic
modeling underlying the dataset under consideration represents data in flows, processed
by the CICFlowMeter [19]. When attempting to convert the output from EDDD into
flows using the CICFlowMeter, all packets are discarded, resulting in the absence of
identifiable flows. A salient reason for this might be the lack of flow simulation in EDDD’s
design. The traffic simulated is unidirectional, composed of simple packets often devoid
of any meaningful payload. For tools aiming to extract flows from realistic bidirectional
traffic, the output provided by EDDD might fall short in terms of readiness for further
processing. However, modeling complete bidirectional traffic to facilitate processing with
tools like CICFlowMeter is not EDDD’s primary aim. Hence, the evaluation is centered
on analyzing only the non-flow related properties, as delineated in Section [3.4]

One property that undergoes evaluation is packet length. With the chosen approach, it
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Figure 5.5: CAIDA vs. EDDD: Legitimate Packets per Second

is possible to model the ratio of non-payload packets precisely. This accuracy is evident
in the quantiles, where both the original traffic from the dataset (denoted in blue) and
the traffic generated by EDDD (in orange) maintain the same proportion in the charts
at a packet length value of zero. However, distributions incorporating payloads display
substantial deviations from the original data. The chi-square test also indicates a rejection
of the assumption that the two distributions are identical. This discrepancy primarily
stems from the specific scenario where the random selector frequently yields the same
values. Hence a packet length of 37 and one of 536 emerge as recurrent figures.

Another attribute subject to evaluation is the packets per second. This metric per IP
address is determined by the individual durations between the arrival of two packets. As
EDDD'’s output does not identify any flows, the packets per second metric is distorted
when compared to the same parameter in the original dataset, where it denotes packets per
second within an individual flow. Therefore, the duration between two packets arriving in
the generated dataset can be compared either to the packets per second or the duration
between two flows in the original dataset. Here, too, the chi-squared test fails to confirm
the similarity between the two datasets.

Upon manual inspection of the values, there is a significant discrepancy at certain quan-
tiles. Nevertheless, it is notable that the value range of the generated datasets still falls
within the original range, with a single exception at the very lowest packets per second.
This discrepancy likely stems from the idle time between two flows, mirroring the longer
waiting time between the arrival of two packets in the generated dataset. Given the vast
range of this data, it becomes challenging to definitively ascertain whether the data is re-
alistic. However, EDDD generates packets per second values from packets arriving several
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Figure 5.6: CAIDA vs. EDDD: ICMP Flood Attack Joining Time

seconds apart to those arriving at the same microsecond, in line with the original dataset.

5.3 Attack Traffic

A similar methodology to that used for for legitimate traffic is adopted to evaluate the
attack traffic. The simulator’s main function is slightly altered; instead of generating the
entire simulation, it constructs the attack traffic by assigning traffic applications solely to
attacking clients. With this modification, traffic arriving at the target can be analyzed
without the need to discern between DDoS and benign traffic.

The subsequent subsections will delve into the analysis of the two possible types of attack
traffic production. Section [5.3.1] centers around examining the ICMP Flood traffic, while
Section sheds light on the Syn Flood traffic.

5.3.1 ICMP Flood Attack

The evaluation of the synthesized ICMP Flood attack traffic leverages the structure of
the CAIDA DDoS dataset, which organizes the data into digestible 5-minute intervals for
more straightforward analysis. This format also serves as a logical approach for evaluating
the synthesized data.

The initial property under investigation is the time of IP joining. Figure depicts
this relationship via a histogram, wherein the blue bars stand for the original dataset as



70 CHAPTER 5. EVALUATION

IP Address Participation Duration

I CAIDA Dataset
EDDD Dataset
50 A
40 A
S
iy
5 30+
©
Ke]
e
o
20 A
10 A

R N N R

A A L P
RS A O S I S

Duration [min]

Figure 5.7: CAIDA vs. EDDD: ICMP Flood Attack Participation Duration

o)

represented in Figure [3.10D] and the orange bars denote the equivalent probabilities from
the synthesized dataset. To further validate the correspondence between the generated
and original datasets, a Chi-square test is employed as a statistical measure. The results
of this test provide a Chi-square statistic of 2.637 and a p-value of 0.999. The significance
of the obtained p-value, which is close to 1, suggests a lack of significant evidence to
reject the null hypothesis. This implies that the observed percentages align well with the
expected percentages derived from the original dataset. The high p-value in the chi-square
test corroborates the assertion that the join probability in the generated dataset does
not significantly deviate from that observed in the original dataset. Consequently, this
statistical assessment serves as an additional affirmation of the validity of the generated
dataset when compared to the original.

Subsequently, the focus shifts to the duration of participation. The histogram in Figure
contrasts the original and generated data. The blue bars echo the values originally seen
in Figure from the original dataset, while the orange bars present the respective
values drawn from the synthesized dataset. In further affirming the visually observed
similarities between the generated and original datasets, a Chi-square test of independence
is again utilized. However, the observed distortion from 45 to 55 minutes results in
a very low p-value of nearly 0. This statistically indicates an inconsistency with the
expected probabilities, and thus one might reject the null hypothesis. Nevertheless, a
different picture emerges if this particular range of data is disregarded, and attention is
only directed at the probabilities from 0 to 45 minutes. The revised computation yields
a p-value of 0.81, offering no significant evidence to reject the null hypothesis in this
area. This revised p-value suggests that the observed probabilities within this range are
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Figure 5.8: CAIDA vs. EDDD: ICMP Flood Attack Packets per IP over Participation
Duration

consistent with the expected probabilities, thus enhancing the validity of the generated
dataset.

The final comparison is drawn concerning the number of packets arriving at the target.
Given the observed number, an estimated 16-27 packets per second was reached. This
estimate is based on the observation that outliers in the diagram align with significant
shifts in the number of clients participating in the attack. In Figure 5.8 the blue line
corresponds to data already displayed in Figure [3.13] while the orange line represents the
new data being compared. Upon careful observation, it becomes evident that parts of the
duration exhibit similar behavior between the generated and original data sets. Notably,
no outliers in packets per IP are found in the original data except for instances when many
IP addresses leave the network within a five-minute interval. This observation validates
the hypothesis that during these periods, the average packets per IP in the given five-
minute interval may decrease due to an IP exiting the attack. Moreover, the original data
exhibits more fluctuations than the generated data. An estimation of 1627 packets per
second derived from the data resulted in a more uniform distribution, producing more
consistent data. This shows, that uniform_real_distribution used in Listing to
get a random attack rate indeed produces a uniform distribution.

In conclusion, the methodology employed for ICMP traffic generation has demonstrated
a high degree of efficacy in replicating the characteristics of an ICMP flood attack. The
patterns of clients joining the attack are well captured in the generated dataset, closely
reflecting the behavior observed in the original dataset. Furthermore, the duration of a
client’s participation in an attack is also accurately represented. Any deviations observed
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Figure 5.9: SYN Dataset vs. EDDD: SYN Flood Attack Arriving Packets Over Time

in the 45-55 minute range do not present significant concerns, as these discrepancies imply
a slightly longer attack duration for certain clients in the generated dataset. Consequently,
some of these clients fall into the subsequent five-minute interval for the duration mea-
surement, slightly distorting this specific metric. The packets-per-second approach yields
results that point in the right direction, even though it does not replicate the variations
and outliers observed within the original data with complete accuracy. Despite this minor
limitation, this approach provides valuable insights into the traffic dynamics of an ICMP
flood attack. Taken as a whole, the findings affirm that this traffic application effectively
emulates the characteristics inherent in an ICMP Flood attack.

5.3.2 Syn Flood Attack

As delineated in the dataset, SYN Flood attacks reveal a limited set of known properties.
As articulated in Section [3.5.2] it is notably challenging to derive information about at-
tacking clients solely based on the target’s perspective since the IPs are spoofed. However,
an intriguing observation can be made from Figure - the discernible presence of two
phases. This becomes the starting point for the evaluation presented herein.

Figure [5.9| visually compares the SYN packets over time, both for the original data and
for the data set generated with the EDDD. As the diagram elucidates the cumulative
quantity of arriving packets in 0.1-second intervals, it is not straightforwardly comparable
due to the absence of information regarding the number of clients participating in the
attack. Thus, comparison focuses primarily on the graphical structure rather than the
raw numerical values. To manage the differences in the magnitudes of packet numbers
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Figure 5.10: SYN Dataset vs. EDDD: SYN Flood Attack Phase 1 Arriving Packets per
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involved, a dual y-axis approach is employed, with the left for the original data (blue)
and the right for the generated data (orange). It can be observed that the generated data
also features two discernible phases.

The subsequent stage of this analysis is dedicated to contrasting the packets per second
within these distinct phases. Figure [5.10] offers a comparative view of phase 1 derived
from both the original dataset and the data generated via EDDD. Given the challenge of
differing magnitudes of packet numbers, the strategy of employing dual axes is sustained;
one axis for the original data and another for the generated data. Upon inspection, it
is evident that the two lines do not correspond accurately. The blue line, representing
the original data, follows a rather linear distribution over the quantiles. In contrast, the
EDDD-generated data exhibits a more constant rate of arriving packets during phase one.
This divergence is already observable in Figure[5.9, where the data points from EDDD lie
closer.

When scrutinizing the data from the second phase, it becomes apparent that the output
from EDDD demonstrates a remarkable level of consistency (¢f. Figure . Most
of the time, the packets arrived at a rate of two per second, with only a few outliers
marking instances where more packets arrived per second. In contrast, the original data
again adhered to a more linear distribution across the quantiles. Within phase two, a
substantial proportion of clients are yet to participate in the phase of the attack. The
original dataset encapsulates a relatively short duration of an SYN flood attack, with each
phase spanning mere seconds. Particularly in the second phase, this duration significantly
impacts the packets sent, as the interval between sending successive packets is considerably
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long and may even exceed the total duration of the phase itself.

Recreating data from the original dataset presents a distinct challenge. Given the limited
data available for analysis and the short duration of the attack, the generated dataset is
predominantly a brief snapshot of a random distribution, which could potentially skew the
overall perspective. However, it is evident that the replication of the dataset, featuring
different SYN flood attack phases, was successful, even tho the packets per second did
not accurately mirror the original data distributions within the phases. Despite failing to
replicate the exact distribution, the replication of magnitudes remains discernible in the
replicated two phases.

5.4 Distributed Attack View

The innovative feature of EDDD lies in its distributed capabilities. It presents the poten-
tial to generate DDoS datasets and assess traffic flows at multiple points in the network
topology. This is especially crucial in DDoS attacks, in which data from multiple sources
is sent to a single target to overwhelm it. Traditional tools that only examine data from
one location, typically the target, on a network may miss crucial aspects of these complex
attacks.

This section is dedicated to presenting an evaluation of the unique distributed approach
that this dataset employs. Analogous to DDoS reports produced by Cloudflare [20], the
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Figure 5.12: Topology of PCAP Backbone Nodes

intensity of an attack in this thesis is evaluated based on the metric of requests per second,
which equates to the number of packets per second.

Figure and Figure[5.14]illustrate the packets per second overtime at backbone routers
in France and Germany. The visualization encompasses all outgoing traffic destined for
the target node. Due to the detailed insights the ICMP Flood attack dataset provides
on the evolution of an attack, this particular attack type is chosen for the distributed
analysis. The difference in the number of packets arriving at the nodes once the DDoS
attack commences is considerably perceptible.

Further, Figure [5.12] offers an overview of the recording nodes and their interconnectivity.
This diagram only displays the backbone routers actively engaged in PCAP recording. The
other countries that connect to these backbone nodes, but do not have PCAP recording
enabled, are merely depicted as dashed rectangles. The nomenclature of these nodes
follows the pattern [Country Abbreviation] [Node ID]. Here, the Country Abbreviation
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Figure 5.13: Detected Packets Towards Target at Backbone Nodes in France

adheres to the Alpha-2 code of the respective country, as per the ISO 3166 standard [76].

Upon analyzing the distinct nodes presented in Figures [5.13] and [5.14], it is discernible
that substantial disparities exist in terms of the perceivable intensity of attack traffic.
Observations of nodes with low traffic, positioned towards the periphery of the topology
in Figure[5.12] reveal that these nodes do not facilitate the passage of traffic through them.
Consequently, the perceived intensity of an attack at a given node increases proportionally
with the volume of nodes routing their traffic via this node to reach the target. As such,
within a country, the highest intensity is invariably registered at the border node to
Switzerland, primarily as all traffic destined for Switzerland must traverse this node.

Once the traffic arrives at the target, it becomes evident that the intensity of the attack
has markedly escalated compared to its last observed state at the border node leading
to Switzerland, as indicated in Figure and Figure [5.14h| This intensification can
be attributed to the confluence of attack traffic delivered by various countries connecting
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Figure 5.14: Detected Packets Towards Target at Backbone Nodes in Germany
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Figure 5.15: Detected Packets at Target

to Switzerland, as illustrated in Figure [5.12, France and Germany, given their roles as
major connection points to Switzerland in this context, consequently accumulate the most
substantial portion of the attack traffic. Observing the rapid progression of the attack’s
intensity across nodes is intriguing. While the peak of the attack manifests roughly
4000 packets per second at the French and German border nodes (¢f. Figure and
Figure , this figure doubles to approximately 8000 packets per second at the target

(of B9

5.5 Performance

This section is devoted to evaluating the performance of EDDD. All tests are carried out
on a consistent machine with an Ubuntu 22.10 operating system for uniformity. An AMD
Ryzen 9 5900X CPU powers this system and utilizes 64 GB of DDR4-RAM at 3600 MHz.
Furthermore, all pertinent data is stored on a SATA-connected SSD.

The configuration employed to assess the system’s performance mirrors the one used in
previous evaluations for each traffic application. The sole potential variance is the number
of represented nodes, dictated by the two factors regulating network and client count.
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5.5.1 Parallelism

In this section, the performance of the EDDD system under different configurations is
analyzed. By default, NS3 executes the entire simulation on a single core, providing
robust, reproducible results in an event-based simulation context. One of the inherent
advantages of utilizing NS3 is the opportunity to implement parallelism through Message
Passing Interfaces (MPI). This technique allows each node in the simulation to be assigned

to a specific rank, which in the context of EDDD, corresponds to different cores of the
CPU.

When a point-to-point link is established between nodes that do not share the same
rank, a message must be passed to a separate simulation stream. It is important to
note that this process is slower than a message passing between nodes of the same rank.
Consequently, while it’s advantageous to distribute the simulation to multiple streams, it
is also beneficial to maintain a large proportion of links within the same rank to enhance
simulation efficiency.

In several trials, it has been observed that assigning entire simulated countries to specific
ranks proves to be an effective solution. In contrast, assigning ranks to different network
topology levels (backbone, regional, local) increases cross-rank communication, negatively
impacting overall performance.

Clients Packets Duration MPI Enabled Duration MPI Disabled
Attack Legitimate Network [s] Simulation [s] Network [s] Simulation [s]
22 35 1,511,475 0.088 106.115 0.209 95.823

60 61 4,448,708 0.105 219.602 0.454 341.589
197 153 14,729,593 0.687 1,005.106 5.381 2,759.167
470 380 34,394,480 4.414 3,779.267 160.320 85,672.949

Table 5.2: MPI vs. Single-Thread: Execution Times

Table [5.2] presents a comparative analysis of the network building and simulation times
across various network sizes, both with and without MPI enabled. Upon examination of
this table, it becomes evident that beyond a certain network size and traffic load, the
EDDD variant with MPI enabled demonstrates greater efficiency than the variant with-
out MPI. Expanding upon the simulation execution time, it is noted that this breakpoint
arises when the proportion of cross-rank links is minimal compared to all the links. Ob-
serving the first row of Table |5.2], it is apparent that it involves a scant number of clients.
Utilizing the same scenario as in Listing 57 nodes are distributed across 10 countries,
implying an average of merely five nodes within a country producing traffic. The result
suggests that the advantage of parallelizing the traffic simulation within a country does
not surmount the disadvantage associated with the requirement to synchronize and pass
all messages transferred to another country. Nonetheless, this advantage outweighs the
disadvantage when the involvement escalates to 121 nodes. At this juncture, it is observed
that the simulation duration is lower in the MPI-enabled configuration.
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Figure 5.16: Performance by Network Nodes

This benefit of parallelizing a country’s simulation grows as the network expands; while
the execution time for the simulation for 121 nodes diminishes by 35%, for 350 nodes, it
reduces by 64%. In the final example involving 850 nodes, the simulation time reduces by

96%.

Focusing on the network-building phase is invariably quicker when conducted in parallel.
The network topology must be constructed on each node to build the routing tables.
However, the applications, which constitute the more computationally intensive task, are
only installed on the rank assigned to the node. This facilitates the parallel installation
of applications, invariably leading to faster network-building times.

5.5.2 Scalability

The scalability of EDDD is a critical requirement, particularly in generating sizable
datasets. The scenarios can scale in two distinct directions. The network topology can pri-
marily expand, accommodating increasing network nodes composed of routers and clients.
Secondly, the simulation duration may be extended, implicating increased transmission
packets. This section aims to scrutinize the performance of both these scalability vectors.

Considering the network topology, it comprises two key elements: the number of routers
and the number of clients. For evaluative purposes, an initial examination is conducted,
focusing solely on the scalability of the clients. The configuration parameter, referred to
as clientFactor, determines the number of clients on an access network. Therefore, the
modification of this parameter solely affects the number of clients and leaves the number
of routers untouched. Figure illustrates the correlation between the network build-
ing and simulation time and the number of clients. The observed data demonstrates a
linear relationship between the number of clients involved and the simulation and net-
work construction durations. This suggests that as the client count increases, there is a
proportional increase in the time taken for the simulation and network-building processes.
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Figure 5.17: Performance by Number of Packets transmitted

However, this scenario might not realistically depict real-world circumstances. Typically,
to more accurately represent a network akin to the real-world scale, the number of routers
and clients would need to scale. Figure depicts the scalability of EDDD when both
these elements increase. One of the immediate observations made from these results is
that the time taken for network construction is significantly elevated compared to previous
results, attributable to the increased number of routers involved and the necessity for
larger routing table creation. On the other hand, the increase in simulation duration
is relatively nominal when additional routers are included in the process. Furthermore,
the curve representing the duration of the network-building phase demonstrates a slightly
disproportionate growth. On the contrary, the simulation duration appears to scale almost
linearly with the number of clients and does seem to be influenced by the number of routers
traversed by a packet. Given that the simulation duration is significantly longer than the
building phase, the slightly disproportionate increase in the building phase is negligible.
Therefore, EDDD exhibits linear scalability concerning the size of the network.

The secondary scalability direction of EDDD lies in the number of transmitted packets.
The simulation duration is altered in an evaluative scenario portrayed in Figure[5.17] This
leads to a scenario with identical clients and routers, albeit more transmitted packets. The
simulation duration in which these packets are transmitted correlates with the number
of packets sent. The evaluation performed on the mentioned hardware reveals that, on
average, simulating a single packet takes approximately 8ms.

The primary influence on the execution duration of EDDD is the simulation phase, with
the number of nodes within the network being a secondary influence. In summary, the
simulation duration exhibits linear scalability concerning the number of involved nodes
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and the simulation duration.

5.6 Discussion

The primary objective of this thesis centers around constructing a system capable of gen-
erating distributed datasets. This involves the incorporation of diverse configurability to
facilitate the generation of a variety of datasets. These datasets span a wide array of
different topologies and traffic patterns. A key feature of the configuration allows repli-
cating real DDoS attacks and adapting to new ones. Besides DDoS traffic, the generation
of legitimate traffic is equally significant. The system must then allow the decision on
which nodes the distributed datasets are recorded.

This thesis successfully fulfills these general objectives. The connected countries approach
delineated in Section proves an excellent method for creating a collection of distinct
network topologies. All network components required in Section [2.2.3.3] are implemented,
and the whole traffic journey is modeled with them. Only the non-existent firewall still
offers room for an extension of the network model. Likewise, the requirement for anony-
mous [P addresses was met by assigning them to a test range to protect the privacy of
the real IP addresses used, even though this contradicts a completely realistic dataset
(cf. Section [2.2.3.2]). Furthermore, the network topology configuration within the config
file presents an intuitive interface for creating custom topologies. As validated in Sec-
tion this approach facilitates the creation of custom topologies and recreating real-
world topologies. This adaptability permits the design of more refined targeted scenarios
that yield usable and valid topologies for comparable real-world situations. A crucial ad-
vantage of this system is the scalability of the network, where two parameters manage the
scaled representation of the routing network and its clients. This feature ensures that an
accurate simulation of the desired network size is achievable while reflecting a real-world
scenario. Specifically, even as the number of represented nodes within a country decreases
through scaling, the distances and routing hops between the countries remain constant.

The configuration file additionally allows the selection of the DDoS attack type to be
replicated. It controls the traffic distribution and how much each simulated country
contributes to legitimate and benign traffic. Finally, this configuration file can also select
the nodes at which the distributed datasets are generated. The emulator, therefore,
effectively fulfills the criteria of being reconfigurable and accommodating diverse types
of DDoS attacks. Its capacity to adapt network topologies provides an advantage in
modeling a broad spectrum of scenarios.

However, even though two types of attacks can be replicated, they do not represent the full
spectrum of these attacks. All traffic-generating applications installed on the nodes are
configured and fine-tuned to match the original datasets’ behaviors closely. The ICMP
Flood attack relies on the CAIDA dataset [14], the SYN Flood attack on the dataset
collection [37], and the legitimate traffic on the CIC dataset [28]. Notably, not every
ICMP flood attack mirrors the CAIDA dataset exactly and generally, a dataset does not
stand for all traffic of this type. This fact underlies why the attack duration is determined
by the attack itself, with all attacker properties derived from the dataset.
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However, the current implementation of EDDD presents a significant drawback in its
strong coupledness. It cannot generate new datasets with variations in attack type and
attacker persistence, as the applications lean more towards replicating attacks rather than
producing new behaviors. Still, it satisfies the fundamental need to capture all traffic,
encompassing benign and attack traffic. Moreover, it offers the flexibility to manually
disable either the attack traffic or legitimate traffic, thus enabling the creation of a labeled
dataset for both legitimate and attack traffic.

Performance forms another essential requirement of the system. As shown in Section[5.5.2]
the simulation duration scales linearly with the number of clients involved and the number
of transmitted packets. The size of the network itself when the building is very perfor-
mant, making this duration negligible when compared to the simulation of the traffic.
EDDD, relying on the underlying NS3, runs in O(n), where n is the number of pack-
ets sent, determined by the attack type and the number of clients involved. This linear
scaling enables the estimation of the simulation duration for new scenarios when having
execution time data about scenarios on a smaller scale on the same runtime machine.
Moreover, with parallelism, the simulation execution time can be drastically reduced.
However, it is important to note that the scaling advantage of parallelism does not con-
tinue indefinitely with the increasing number of cores involved. This means that users
do not need to invest in ultra-high-core CPUs for efficient simulation. Such characteristic
renders EDDD predictable and a viable choice for generating new datasets. With proper
planning, the creation of datasets can be scheduled to span several hours or even days,
providing flexibility and foresight in the data generation process.

EDDD provides considerable ease of use. Although setting up NS3 as the underlying
simulation engine and configuring everything can be challenging, the installation script
simplifies this process, saving time and making EDDD accessible to a wider user base. It
is also feasible to deploy it automatically in the cloud thanks to this script and no man-
ual setup. A user-friendly configuration file allows for configuration in a comprehensible
format. Should any configurations be incorrect, EDDD is programmed to abort the oper-
ation and issue a meaningful error message. This immediate feedback mechanism allows
users to swiftly identify and fix misconfigurations, promoting efficient troubleshooting and
contributing to a more seamless user experience.

The component-oriented design of the traffic-generating applications allows EDDD to be
readily extended with new types of attacks. Modifications to the existing behavior of the
system and its traffic applications can also be easily implemented. These characteristics
underscore EDDD’s role as a solid foundation for generating distributed datasets, offering
a good level of initial capabilities. A key advantage undoubtedly rests in its straight-
forward and extensible structure. However, one critical prerequisite for anyone seeking
to expand EDDD is understanding the principles and strategies utilized in NS3. Such
knowledge is essential in manipulating and enhancing the system’s functionality, as the
platform’s architecture is tightly integrated with NS3’s methodologies. Despite this re-
quirement, the design and flexibility of EDDD affirm its potential to be an instrumental
tool in distributed dataset generation.

The novelty of EDDD resides in its ability to create distributed datasets, shifting from
the current target-centric datasets. EDDD also offers a unique system for generating
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real-world representable network topologies with accurate pings between nodes, all con-
figurable through a straightforward configuration file. However, the limitation of being
unable to create new datasets with unseen behavior can also be perceived as revolutionary.
It establishes the feasibility of generating a distributed version of a centralized dataset
projected onto various network topologies and sizes. For instance, creating a distributed
version of an attack related to the one portrayed in the CAIDA dataset and a distributed
version for the SYN flood dataset is possible.

With its current features, EDDD can be employed for selected scenarios. Although it
already presents a solid foundation for simulating additional traffic types to create further
distributed datasets from custom network topology, it also displays potential for future
expansions. One such potential expansion lies in its simple and extensible structure.
However, a prerequisite for anyone aiming to extend EDDD is a deep understanding of
the principles and approaches taken in NS3.

In summary, while EDDD is beneficial in its current form, its true value lies in its potential
for future development and expansion. It demonstrates the potential for a paradigm shift
in generating distributed datasets, offering a base for further advancements in this area.



Chapter 6

Final Considerations

6.1 Summary

The focus of this thesis revolves around the creation of a unique emulator, referred to as the
Emulator for Distributed Denial of Service Datasets (EDDD). The development of EDDD
addresses the limitations found in existing DDoS datasets, specifically the restrictions
presented by their centralized approach. This work presents a marked departure from
this centralized viewpoint, enabling a broader, distributed examination of DDoS attacks
and their dynamics.

The EDDD is founded on the Network Simulator 3 (NS3) platform, benefitting from the
inherent flexibility of an open-source system that allows for potential future expansions.
Despite the complexity associated with the platform, successful navigation of these intri-
cacies has led to the development of a versatile and adjustable emulator. The EDDD’s
design and architecture encompass interchangeable components, offering flexibility in the
generation of varied network topologies and a spectrum of DDoS scenarios.

The current iteration of the EDDD is capable of producing SYN flood traffic, ICMP flood
traffic, and legitimate traffic, based on existing datasets. Its comprehensive configuration
for network structure allows for the generation of realistic topologies that can span multiple
countries. Furthermore, the system captures all traffic, not only attack traffic, modeling
the complete journey from origin to destination, thereby offering a complete view of the
network dynamics involved in DDoS attacks.

In the process of evaluating EDDD, the emulator-generated traffic was comprehensively
compared to the original centralized datasets, revealing the superior insights provided by
the distributed approach. The performance analysis indicated the linear scalability of the
system, with execution time scaling linearly with the number of packets sent.

EDDD outputs datasets in pcap format, facilitating straightforward analysis by widely
used tools in the cybersecurity domain. The system also provides a simple command-
line interface, complemented by a configuration file that allows easy adjustments to the
parameters.
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To summarize, this thesis has introduced EDDD as a significant contribution to the realm
of DDoS research. It facilitates a more comprehensive exploration of DDoS attacks from
a distributed viewpoint, marking a significant improvement over the limitations of the
centralized approach. EDDD'’s open-source foundation and modular architecture provide
a solid basis for future enhancements and add substantial value to the understanding of
DDoS attack dynamics.

6.2 Conclusions

In this thesis, a tool titled Emulator for Distributed DDoS Datasets (EDDD) was suc-
cessfully developed, that allows for the generation of distributed DDoS datasets. This
accomplishment emanated from a series of meticulously made decisions, informed by prior
research, meticulous design processes, and thoughtfully planned implementation strate-
gies. These were further subjected to evaluations, all directed towards the fundamental
objective of creating a solid initial version of such a tool.

One of the main takeaways from this thesis is the evident need of adopting a distributed
perspective when scrutinizing DDoS attacks. Existing DDoS datasets utilize a centralized
approach, which inherently limits the holistic comprehension of these intricate attack
scenarios, often crucial for IDS validation. The advent of EDDD signifies a noteworthy
step towards bridging this gap, offering a comprehensive view of DDoS attacks, thereby
enhancing early detection and mitigative action potential before the attack culminates at
its intended target.

In essence, the tool achieves its primary aim of generating DDoS datasets from a dis-
tributed viewpoint. Via its simplistic and structured configuration file, it facilitates the
selection of a multitude of attack parameters, network topologies, and attack scenarios,
thereby enabling the creation of diverse and realistic datasets. Nevertheless, its tight cou-
pling with the original datasets, which serve as models for recreating attack and legitimate
traffic, currently impedes the creation of entirely new, unseen attacks. Despite this limi-
tation, it presents the opportunity to disperse these original datasets across a user-defined
custom topology, thereby fulfilling its principal goal, as confirmed by the evaluation.

In the course of developing the emulation tool, the considerable potential of the open-
source network simulator NS3 became strikingly evident. NS3’s open-source nature was
instrumental in allowing EDDD to simulate an array of DDoS attacks and legitimate
traffic. Furthermore, it enabled the comprehensive configuration of network topologies,
replicating real-world networks spanning multiple countries. Its component-like architec-
ture presents an avenue for the future enhancement and extension of additional attack
scenarios and features.

Additionally, the tool’s straightforward command-line interface amplifies its applicabil-
ity, proving useful in both academic research and practical applications. The ease of
deployments, installations, and executions lends itself to automated operation of EDDD.

In conclusion, the journey of designing, implementing, and evaluating EDDD for gener-
ating distributed DDoS datasets has paved the path for a more in-depth comprehension
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of DDoS attack dynamics and has propelled the development of collaborative detection
and mitigation techniques for DDoS attacks forward. Furthermore, it has established a
sturdy foundation upon which future research in this field can build.

6.3 Future Work

Leveraging the capabilities of NS3, the simulation engine that EDDD is built upon, nu-
merous future expansions and improvements can be envisioned. As NS3 is an open-source
platform, it offers the flexibility for desired alterations and additions. However, such mod-
ifications require a detailed understanding of the inherent functionality of NS3 due to its
complexity and extensive under-the-hood features.

One of the intricate aspects of NS3 pertains to the parallel execution of simulations us-
ing MPI. It offers two simulation approaches - the default DistributedSimulator and the
NullMessageSimulator. The latter may potentially deliver superior performance in sce-
narios involving high connection counts crossing assigned nodes’ ranks. However, in the
context of EDDD, the NullMessageSimulator demonstrated unstable behaviour necessi-
tating a more profound understanding of its operation. Nevertheless, overcoming this
hurdle could enhance the system’s performance.

Furthermore, the modular design of EDDD provides an advantageous platform for future
extensions with new types of traffic. Currently, EDDD includes three implemented traffic
applications - ICMP flood attacks, SYN flood attacks, and legitimate traffic - which are
closely related to their source datasets. By reengineering these applications to be less
reliant on specific datasets and more generic or even configurable, EDDD’s functionality
can be significantly extended. Omne such improvement could be the inclusion of new
attack traffic applications that support IP spoofing and reflection attacks, even if the
latter are relatively less prevalent today. However, such extensions necessitate a deeper
understanding of NS3’s underlying principles.

The scope of potential enhancements also extends to the modeled system. Future work
could involve the implementation of firewalls with custom rules for specific nodes, or
simulating the performance implications of the traffic on implicated systems.

In summary, due to its open and modular structure, EDDD offers a promising base for
continued development and enhancements from its inaugural version. It poses the poten-
tial for incorporating new features, improving performance, and broadening its range of
simulated scenarios.
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Appendix A

Contents of the CD

The following deliverables are submitted for this thesis:

e Code:

— Contains the source code for EDDD, together with guidelines for its installa-
tion and usage. For convenience and enhanced accessibility, this is also made
available on GitHub [16].

e Thesis:

— ZIP file containing the source of the thesis
— PDF of the thesis
— Plain text files of the abstract in English and German
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Appendix B

Installation Guidelines

Detailed guidelines for the installation and usage of EDDD can be found in the README . md
of the respective repository [16].

1. Clone the repository:

git clone https://github.com/calvin-f/EDDD.git
cd EDDD

2. Install NS3 with its dependencies and integrate the EDDD module by executing:

install.sh

3. Adapt the configuration if desired by changing properties in input-config. json.

4. Run EDDD by executing:

run.sh
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