
Deferral - High-Volume
Decentralized Blockchain-Based

Referral Systems

Tobias Boner
Zurich, Switzerland

Student ID: 17-707-878

Supervisor: Dr. Bruno Rodrigues, Dr. Thomas Bocek, Prof. Dr.
Burkhard Stiller

Date of Submission: May 15, 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmuehlestrasse 14, CH-8050 Zurich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

The rise of digital marketing has holistically reshaped and influenced many aspects of the
marketing field and is characterized by modern technologies. During the process, existing
disciplines, such as referral marketing, have been transformed to employ large automated
systems dealing with high volumes of users and data representing the marketing interests
of companies across diverse industries. However, most of these systems rely on centralized
architectures and thus miss out on potential advantages a decentralized approach could
bring. Decentralized referral systems could provide trust and transparency and tackle
known issues such as complex and expensive payout processes of referral rewards.

This thesis aims to investigate and evaluate the feasibility of a high-volume decentralized
referral system. The main requirements of such a system are defined in the current con-
text, and its solution architecture is outlined. Thereby, multiple blockchain-based solution
designs are developed to compare and showcase decentralized referral systems with vary-
ing complexities. The different solution prototypes are implemented as smart contracts.
The smart contracts are tested and analyzed concerning their costs and performance in
exemplary evaluations involving high volumes of participating users. In the best-case sce-
nario, the final Deferral solution, including several tested and evaluated smart contracts,
can serve as a framework for designing and implementing blockchain-based decentralized
referral systems.

Conclusively, the examination of the generated results confirms the feasibility of a high-
volume decentralized and blockchain-based referral system from a technical point of view.
Furthermore, the challenges of implementing and operating such a system in a real-world
environment, including the interdependence of the technical and conceptual or economical
design, are discussed. Finally, the implications of varying degrees of decentralization
among the different components of the Deferral solution are reviewed.

i

ii

Zusammenfassung

Der Fortschritt und Aufstieg des digitalen Marketings haben weite Teile der Marketing-
landschaft beeinflusst und zum Einsatz von modernen Technologien geführt. Dabei wurde
in bestehenden Disziplinen wie dem Referral Marketing große automatisierte Systeme
eingebaut, um mit den wachsenden Mengen von Nutzern und Daten umzugehen und die
Marketinginteressen von verschiedensten Unternehmen zu vertreten. Die meisten dieser
Systeme beruhen auf zentralisierten Architekturen und können so die potenziellen Vortei-
le, die ein dezentraler Ansatz bringen könnte, nicht nutzen. Dezentrale Systeme könnten
Vertrauen und Transparenz schaffen und bekannte Probleme wie die komplexen und teu-
ren Auszahlungsprozesse von Referral Prämien lösen.

Ziel dieser Arbeit ist es daher, die Umsetzbarkeit eines dezentralen Referral Marketing
Systems zu untersuchen und zu evaluieren. Dabei werden die wichtigsten Anforderungen
an ein solches System im aktuellen Kontext definiert und eine Lösungsarchitektur auf-
gezeigt. Darüber hinaus werden mehrere Blockchain-basierte Lösungen entwickelt und in
Form von Smart-Contract-Prototypen implementiert. Die letztendliche Deferral Lösung
umfasst mehrere Smart Contracts. Diese werden im Hinblick auf ihre Kosten und ihre Lei-
stung im Umgang mit grossen Volumen von Nutzern und Daten getestet und bewertet.

Die Untersuchung der Ergebnisse bestätigt abschließend die technische Umsetzbarkeit ei-
nes solchen dezentralen und Blockchain-basierten Referral Systems. Darüber hinaus wer-
den die Herausforderungen bei der Implementierung und dem Betrieb eines solchen Sy-
stems in einer realen Umgebung, einschließlich der Wechselbeziehung des technischen und
konzeptionellen bzw. wirtschaftlichen Designs, diskutiert. Zum Schluss werden die Aus-
wirkungen unterschiedlicher Dezentralisierungsgrade der verschiedenen Komponenten der
Deferral Lösung untersucht.

iii

iv

Acknowledgments

The author of this thesis, Tobias Boner, would like to thank all the people who were
involved in and supported this thesis. Special thanks are expressed to the supervisors of
this thesis for their continuous, constructive, and helpful feedback throughout the whole
process of this work.

v

vi

Contents

Abstract i

Acknowledgments v

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Goals . 3

1.3 Methodology . 4

1.4 Thesis Outline . 4

2 Background 5

2.1 Digital Referral Marketing . 5

2.2 Referral Programs and Systems . 5

2.2.1 Examples of Referral Programs . 6

2.3 Technical Foundations and Concepts . 8

2.3.1 Decentralization vs Centralization 8

2.3.2 Blockchain Systems . 9

2.3.3 Smart Contracts . 10

2.3.4 Ethereum Virtual Machine . 10

2.3.5 EVM Values and Units . 10

2.3.6 Layer-2 Solutions . 11

2.3.7 Blockchain Oracles . 11

2.3.8 Decentralized Finance . 11

vii

viii CONTENTS

3 Related Work 13

3.1 Design of Referral Programs and Systems 13

3.1.1 Conceptual Design of Referral Programs 13

3.1.2 Technical Design of Referral Systems 17

3.2 Evaluation of Referral Programs and Systems 17

3.3 Classification of Referral Systems . 18

3.3.1 Qualified Users . 18

3.3.2 Allocation of Rewards . 18

3.3.3 Reward Levels . 18

3.4 Decentralized Referral Systems . 19

3.4.1 Existing Decentralized Solutions . 19

3.4.2 The Blockchain Trilemma . 26

4 Design and Architecture 29

4.1 Requirements . 29

4.2 Solution Requirements . 31

4.3 Referral Payments . 32

4.4 Deferral - Solution Architecture and Design 33

4.4.1 Referral Payment Evaluator . 33

4.4.2 Deferral Solution . 34

4.5 Evaluation Metrics and Measures . 44

4.5.1 Costs . 44

4.5.2 Performance and Scalability . 44

4.5.3 Security . 44

CONTENTS ix

5 Deferral - Implementation 45

5.1 Development Environment and Setup . 45

5.1.1 Solution Technology Stack . 45

5.1.2 Continuous Integration . 47

5.1.3 Repository and Folder Structure . 47

5.2 Referral Evaluator Smart Contracts . 48

5.2.1 Referral Payment Transmitter Contracts 49

5.2.2 Referral Payment Quantity Evaluator Contracts 53

5.2.3 Referral Payment Value Evaluator Contracts 57

5.2.4 Referral Payment Multilevel Reward Evaluator Contracts 62

5.2.5 Referral Payment Multilevel Token Reward Evaluator Contracts . . 68

5.3 Tests and Testing . 69

5.4 Scripts . 72

5.4.1 Deployment Scripts . 72

5.4.2 Evaluation Scripts . 73

5.4.3 Visualization Scripts . 75

5.4.4 Shell Scripts . 75

6 Evaluation and Discussion 77

6.1 Test Coverage and Security . 77

6.2 Costs and Performance . 78

6.2.1 Evaluation Method and Data . 79

6.2.2 Solution Contract Evaluation . 83

6.2.3 Overall Evaluation . 100

6.3 Discussion . 109

6.3.1 Solution Requirements . 109

6.3.2 Feasibility and Real World Applicability 111

6.3.3 Decentralization . 114

x CONTENTS

7 Final Considerations 117

7.1 Summary . 117

7.2 Conclusion . 118

7.3 Limitations and Future Work . 119

Bibliography 120

Abbreviations 129

List of Figures 129

List of Tables 136

List of Listings 138

A Contents of the CD 141

B Installation Guidelines 143

B.1 Deferral Repository . 143

B.1.1 Environment Variables . 144

B.1.2 Hardhat Setup and Configuration 144

B.2 Deferral Visualizations Repository . 144

B.2.1 Prerequisites . 144

B.2.2 Setup Submodule Repository . 144

B.2.3 Setup Virtual Environment . 145

B.2.4 Installing Dependencies . 145

B.2.5 Environment Variables . 145

CONTENTS xi

C Code and Documentation 147

C.1 V1ReferralPaymentTransmitter . 147

C.2 V1ReferralPaymentQuantityUpgradable 148

C.3 V2ReferralPaymentQuantityUpgradable 149

C.4 V1ReferralPaymentValueUpgradable . 150

C.5 V2ReferralPaymentValueUpgradable . 151

C.6 V3ReferralPaymentValueUpgradable . 152

C.7 V1ReferralMultilevelRewardsUpgradable 153

C.8 V1ReferralMultilevelTokenRewardsUpgradable 155

D Evaluation - Results and Visualizations 159

D.1 Referral Payment Transmitter Evaluation Results 159

D.2 Referral Payment Quantity Evaluator Evaluation Results 162

D.3 Referral Payment Value Evaluator Evaluation Results 165

D.4 Referral Payment Multilevel Reward Evaluator Evaluation Results 171

D.5 Referral Payment Multilevel Token Reward Evaluator Evaluation Results . 173

D.6 Deferral Solutions - Fiat Costs Results . 176

D.7 Overall Results and Visualizations . 179

D.7.1 Overall Gas Used Metrics . 179

D.7.2 Overall Gas Cost Metrics . 180

D.7.3 Overall Fiat Cost Metrics . 182

D.7.4 Historic Evaluation Results and Visualizations 184

xii CONTENTS

Chapter 1

Introduction

Today’s world and its modern societies are affected and shaped by the advancements of
digitization more than ever before. As a logical consequence, economies and industries
around the globe had and still have to adapt to increasingly digital environments and
shift to more topical ways of operating. The field of sales and marketing serves as a
textbook example of this paradigm change. For minor and global businesses, well-known
sales and marketing techniques have been superseded by novel solutions enabled through
technological progress [125]. Research has addressed the impact on sales technology and
automation [1, 147]. The same applies to the marketing sector, which has evolved and
changed drastically through the advancements of digitization. As a result, new means
and forms of technical innovations have found their way into marketing.

Generally, marketing is known to be a dynamic and multifaceted area continuously chang-
ing and adapting to new trends and developments [110]. Many traditional aspects of
marketing have transitioned to the world of digital marketing. Corresponding to the
American Marketing Association (AMA) marketing methods or practices that utilize any
form of computer can be subsumed under the term of digital marketing [8]. Essentially,
digital marketing implies practices and activities supported and enabled through digital
technologies and channels [103, 121]. Within this era, novel opportunities such as on-
line platforms or ads, Social Media Marketing (SMM), User-Generated Content (UGC),
affiliate marketing or Search Engine Optimization (SEO) have emerged [8, 86].

Apart from that, existing well-known disciplines such as Word of Mouth (WOM) or referral
marketing have been modernized and transformed in line with the uptrend of digital
marketing. WOM and referral marketing are long familiar to the marketing industry and
were common terms before. WOM marketing which has been outlined as the personal
communication between two or more people concerning a product or service [11, 118], is
said to have a significant impact on people’s behavior and decisions [28]. The same applies
to referral or customer referral marketing, which is inherently related to WOM [145].

Referral marketing describes the interaction between existing customers and potential new
customers referred to a product or service of any firm or business [145]. In connection with
spreading digitization, the importance of modern referral marketing for companies and
firms is increasing and expected to grow further in the future [21, 28, 72]. Like most aspects

1

2 CHAPTER 1. INTRODUCTION

of digital marketing, modern referral marketing is closely connected to other growing areas
like SMM, UGC, and affiliate marketing, in between which the borders are often fluent.
Originally, referral marketing has mainly been applied in offline settings by different firms
and businesses [19]. By contrast, today’s referral marketing programs and systems are
digital and occur in online settings around the world by incorporating modern technologies
[26, 71, 72]. Thereon, various services and platforms are more frequently engaging in
referral marketing by starting and implementing referral programs and systems [60, 149].

1.1 Motivation

Digital marketing has altered the magnitude of referral programs and systems as customers
participating in modern programs have substantially more reach and opportunities than
was originally possible with more traditional means of communication [26, 72]. Hence,
aspects including planning, designing, implementing, and sustaining a referral program
have become more extensive and challenging. As a result, modern referral programs
increasingly refer to large, automated systems that can encompass all these aspects. With
more customers, i.e., users in the case of online referral systems, more referrals can be
completed, bringing new participants to the program. Consequently, more transactions
must be processed, and the number of potential rewards that users can be rewarded as
incentives for new referrals is growing accordingly [28, 60].

After all, the volume of transactions and data that must be stored and processed is
increasing. These trends pose several challenges to modern referral marketing, but at
the same time also open doors for new ways to transpose such referral programs and
systems. On the one hand, the referral system and its architecture must withstand the
conditions when dealing with high volumes of transactions and data. On the other hand,
the overall concept and design of the referral program and system must be technically and
economically reasonable to provide profitability, efficiency, and transparency to a system
that must scale to large numbers of users.

The design and concept of referral programs can vary in several aspects [19, 21, 65]. The
referral conditions can differ as referred customers may only have to sign up for a service
or buy a product, or further steps might be required for the involved parties to complete
the referral process. Concerning referral rewards, the type, the allocation between the
involved parties, or the amount of the rewards can differ [68, 149]. Additionally, the point
in time when rewards are distributed during the referral process can vary.

Traditionally, referral programs are implemented as centralized systems. Due to central-
ization, a referral system has to deal with several challenges and potential downsides.
Since the number of steps, transactions, and data accumulates with a growing user base,
systems can become more complex and non-transparent. Keeping referral systems simple
by providing transparency [87] and trust [80] to the customers is an important factor for
the success of the referral marketing of a firm [60]. To do so, the concept and structure of
a referral program must be well-designed and complemented by a trustworthy and trans-
parent architecture and implementation of a referral system. Moreover, depending on the
type, e.g., fiat money, and the distribution schedule, the reward payout can become slow

1.2. THESIS GOALS 3

and expensive as complex processes, like having a bank account or credit card, could be
required. During these processes, fees must be deducted for bank and credit card trans-
actions at each step which can impact the profitability and efficiency of a system. To
avoid paying fees, loyalty or referral points [21] are often distributed as rewards. Users
can collect these before being used or traded against some valuable item or service. Re-
ferral points mitigate the payout problems, yet complex processes like the distribution
of rewards might still be required at a later point. Nonetheless, the concept of digital
referral points opens the door for new ways of first distributing the rewards to the users
and then using and leveraging the rewards from there on. Referral points or tokens can be
stored, freely transferred, traded, and even exchanged without any central entity opening
the door for using existing Decentralized Finance (DeFi) ecosystems for this purpose [34,
122]. For instance, these decentralized financial systems and services could be leveraged
to trade and exchange referral rewards that could come as tokens with monetary value.
In other words, referral systems could be combined or integrated into the world of DeFi.

In this context, the thesis evaluates the design and feasibility of novel referral system
implementation methods. The primary objective is to examine and uncover potential
approaches for implementing a decentralized referral system within a solution architecture
that optimizes decentralization.

1.2 Thesis Goals

The main goal of this thesis is the design and feasibility study of a decentralized high-
volume referral system. Therefore, large transactions and data volumes caused by lots of
participating users must be stored and transferred on decentralized systems. Yet, current
tried-and-tested approaches e.g., blockchain-based solutions, might reach their limits due
to the large amounts of data and complex calculations as they can become expensive in
these cases [108]. Hence, the focus lies on exploring potential solutions for this and related
problems and implementing hands-on prototypes.

Consequently, the following goals have been defined:

• Research on Referral Systems and Decentralized Solution Approaches: Research
on existing online and digital referral systems. Comparison of existing decentralized
solutions for the feasibility of such a system. Consideration of experimental solutions
and solution approaches in testing phases.

• Conception and Design of a Solution Architecture for a Referral System: Design
of a referral program and system that can serve as a base for the technical implemen-
tation. Depiction of suitable technical solution architectures. Definition of required
smart contracts and their token system.

• Solution Prototyping and Implementation: Implementation of prototype solutions
for decentralized referral systems. Development of tests such as unit or integration
tests whenever relevant to ensure the implementation’s quality and correctness.

4 CHAPTER 1. INTRODUCTION

• Evaluation and Discussion: Evaluation of the solution, including key factors like
costs or performance for the implemented prototypes. Qualitative comparison and
highlighting of advantages and disadvantages of the resulting prototypes. Discussion
of the feasibility of the design and usefulness of the developed solution.

1.3 Methodology

A general overview of related research or solutions is attained in the first step to accomplish
the stated goals. The second step focuses on related research and concepts that serve as a
comprehensive foundation for designing the referral program and constructing the solution
architecture. Within this process, examples of existing and comparable referral programs
are discussed.

Subsequently, the solution requirements are identified, and the solution design and archi-
tecture are examined. After, the focus shifts to technical research for potential decentral-
ized solution approaches. From there on, the solution prototypes and their architecture
are designed and eventually implemented. The design and implementation processes can
complement each other, as it may be necessary to test the feasibility of certain design con-
cepts with implemented prototypes to ensure their viability. Hence, the solution design
and architecture can still be adapted during the implementation phase and vice versa.
Moreover, aspects and factors of the systems that can be assessed to other comparable
systems are illustrated. Upon completion of the prototype implementation, the emphasis
turns to evaluating the implemented solutions. Finally, after the discussion of the results
and evaluation, a conclusion is drawn based on the findings of this thesis.

1.4 Thesis Outline

Following the introduction, Chapter 2 introduces fundamental knowledge of the current
context. Thereon, related literature and existing solutions or approaches connected to
the topic of this thesis are discussed in Chapter 3. In Chapter 4, the main requirements,
resulting design, the technical architecture of the prototypes, and solutions are presented.
Chapter 5 covers and describes how the solution prototypes are implemented and explains
the functioning behind the different components. Regarding the defined evaluation cri-
teria in Chapter 4, Chapter 6 discusses and evaluates the outcome of the designed and
implemented solutions. After all, Chapter 7 reviews the results and achievements of this
thesis.

Chapter 2

Background

The background chapter covers essential information to understand the relevant topics
adequately. It delineates the notion and implications of digital referral marketing as a
form of modern referral marketing in the context of digital marketing. In addition, the
terminology of referral programs and systems is outlined. Thereon, several modern-day
examples of referral programs are portrayed to give an idea of their typical structure and
design. Eventually, the fundamental technical concepts are discussed and introduced.

2.1 Digital Referral Marketing

In the context of this thesis, the terms digital referral marketing, modern referral market-
ing, or online referral marketing [60, 145] describe the same notion of referral marketing
in the era of digital marketing. Traditionally, referral marketing has been mentioned in
the same breath as WOM marketing since they are closely related to each other [21, 28].
Consequently, also modern WOM or Electronic Word of Mouth (EWOM) [26, 67] are
still inherently connected to digital referral marketing. Frequently these terms are used
interchangeably to describe the same concept or idea. Moreover, digital referral marketing
is strongly interconnected to newly emerged digital marketing areas such as SMM, UGC,
SEO, or affiliate marketing and many more [69, 86, 103]. Generally, referral marketing or
customer referral marketing describes practices and initiatives where existing customers
introduce or refer new customers to a product or service of a company or firm. Often the
involved parties are rewarded for their efforts by referral rewards [19, 68, 149]

2.2 Referral Programs and Systems

Usually, digital referral marketing is applied and implemented in referral programs (some-
times also denoted as customer referral, digital referral, social referral, or online referral
programs). Referral programs are the catalysts for referral marketing as they define the di-
mensions and requirements for the referral processes accomplished by the involved parties.

5

6 CHAPTER 2. BACKGROUND

The design and operation of referral programs entail multiple aspects like organization,
budget planning, identifying the right customers, or evaluation of the eventual success of
a program [77] that can vary in different ways [19, 65]. As mentioned before, in the case
of referral programs, these dimensions have and will increase to become more time- and
resource-intensive with the advancements in digital marketing. Hence, modern digital
referral programs are often referred to as whole referral systems.

In the context of this thesis, the term referral program comprises all aspects of the design
decisions of a digital referral marketing program except the underlying technical solu-
tion and implementation. The whole system, consisting of the technical solution and
implementation in combination with the referral program, is referred to as the referral
system. This specific separation is not universally applied [21]. However, the breakdown
is reasonable for this work as its primary focus is technical implementation.

2.2.1 Examples of Referral Programs

As referral programs and systems are becoming more prominent, there are incrementally
more good examples of such [88]. Even if many of the components mentioned above of
a referral program can vary, most programs are structured and designed similarly. To
give an idea of the design and structure of modern-day referral programs, the following
paragraphs review a few renowned examples.

2.2.1.1 Dropbox Referral Program

Dropbox [45] has one of the oldest digital referral programs often referenced when dis-
cussing digital referral programs [21, 72]. Due to its successful program, Dropbox saw
immense growth in its user base in a short period of time [87]. The program started in
2008 and is still active 15 years later [46].

The straightforward design is one of the success factors for the Dropbox referral program
[87]. The referring1 and the referred 2 Dropbox user receive additional storage space as
a reward for every successful referral process. Additionally, Dropbox provides separate
conditions or programs for different users. Dropbox Plus accounts can complete more
referrals and earn more rewards.

2.2.1.2 PayPal Referral Program

PayPal [100] is a service payment provider [101] that provides another often referenced
[21] referral program. The program has, similar to the Dropbox example, a simple design
and structure (cf. Figure 2.1) [79]. Upon a successful referral, both the referrer3 and the
referee4 get a predefined amount of fiat money as rewards to their PayPal wallet.

1The referring user is the person who starts the referral process and refers another person
2The referred user is the person who has been referred by the person who started the referral process
3The referring person are from now on also described as referrer
4The referred person are from now on also described as referee

2.2. REFERRAL PROGRAMS AND SYSTEMS 7

Figure 2.1: Screenshot of the PayPal Referral Process [99, 100]

2.2.1.3 Revolut Referral Programs

The list goes on with the referral programs of Revolut [117]. Revolut is a Financial
Technology (Fintech) company that offers an alternative to traditional bank accounts in
the form of a digital bank account on a mobile application [117]. First introduced in 2015,
Revolut is operating in various countries and offering its services on a global scale [119].
Therefore, Revolut has introduced multiple referral programs over time, varying in their
design and structure [82].

The goal and requirements for a successful referral or the rewards may differ depending
on the country for which a program was designed. Another characteristic of Revolut
referral programs is their temporal aspect, which forces users to complete the referral
process within a certain period. For instance, one program would reward the users with
fiat money, while for another program, a new or premium feature could be unlocked [82].

2.2.1.4 Coinbase Referral Program

The Coinbase [35] platform is a centralized exchange that allows the trading of cryptocur-
rencies [37] and offers a referral program to invite new users. Again, after the referred
user has completed all the necessary tasks [36], the referrer and referee become eligible
for the rewards. The Coinbase referral rewards consist of crypto assets that are directly
transferred to the wallets of the involved parties. However, In contrast to e.g., the ex-
ample of Dropbox, Coinbase does exclude premium users or accounts from their referral
program.

2.2.1.5 KuCoin Referral Program

KuCoin provides the last example of a referral program [74]. Like Coinbase, KuCoin
is another centralized exchange that enables cryptocurrency trading. Yet, the KuCoin
referral program differs from the Coinbase program. If referred users join the platform
and complete tasks, the referrer is rewarded with stars as reward tokens or items (cf.
Figure 2.2)[75]. Hence the more people a referrer invites and the more tasks the referees
complete, the more stars can be earned. However, several limits and guidelines exist on
how and when stars are distributed as rewards [76]. The earned stars can be used to buy
prizes. Prizes can have different sizes and usually include some amount and type of crypto
asset.

8 CHAPTER 2. BACKGROUND

Figure 2.2: Screenshot of the Requirements of the KuCoin Referral Program [74, 75]

2.3 Technical Foundations and Concepts

This section delves into the technical concepts essential for understanding and imple-
menting the eventual solutions. Thereon, the idea behind decentralized architectures and
systems is presented in the context of this thesis. Eventually, related topics, includ-
ing blockchain systems, Smart Contracts (SCs), as well as Decentralized Applications
(DApps), and the notion of DeFi, are covered.

2.3.1 Decentralization vs Centralization

The procedure of decentralization [142] or centralization [140] is applied in various indus-
tries and is not exclusive to the field of technology. Nonetheless, the upcoming sections
outline the implications of decentralization and centralization in the current context of
software systems and applications [113]. In particular, this includes decentralized and
centralized systems or architectures and solutions. In general, the architecture of a soft-
ware system is either considered to be centralized, e.g., with a traditional client-server
structure [141], or decentralized, e.g., in a Peer-To-Peer (P2P) based [144] system [44].

In some cases (cf. Drescher [44]), this differentiation is made between centralized and
distributed systems. Overall, decentralized or distributed systems terminology is not
fully consistent in the literature [137]. For one thing, the term distributed can describe
aspects such as the computing power of a system, which can be geographically distributed
among multiple machines. Thereon, centralized systems can be distributed as well [113].
Most modern centralized systems are distributed [40]. Conversely, the term distributed
can refer to the control and decision-making power distributed over the system or network
[44]. This case often describes the equivalent of a decentralized system. Sometimes, the
talk is also about distributed decentralized systems [29]. However, this conception can be
vague as well since often decentralized systems are, per se, seen as distributed. However,
for this thesis, only the differentiation between centralized and decentralized systems is
outlined and used from now on.

2.3.1.1 Centralized Systems

Essentially, centralized systems are characterized by a central entity or node that concen-
trates the authority over all the information, the data, the decision-making, and control at

2.3. TECHNICAL FOUNDATIONS AND CONCEPTS 9

a single midpoint of the system [143]. Other components of the system are dependent on
this central entity. While centralized systems can make clear and fast decisions and have
proven effective, they also provide a single point of failure and can be non-transparent
[29, 140]. There exist various examples as the majority of modern software systems are
centralized, e.g., Google [59], Meta5 [89], or Amazon [6], [113].

2.3.1.2 Decentralized Systems

Unlike centralized systems, decentralized systems have no single central authority [29,
44, 113]. Thus, information, data, and decision-making control are distributed to every
participating entity rather than having a central node with all the power and control
[143]. Among other advantages, decentralized systems can have a higher resilience or
reliability and fault tolerance by not exposing a single point of failure [44]. Several areas
and applications use decentralized systems. One example would be decentralized or dis-
tributed file-sharing systems or storage solutions like InterPlanetary File System (IPFS)
[66], or BitTorrent [24]. Decentralized Autonomous Organizations (DAOs) [53] is another
trending use case for decentralized architectures. Indeed, the most famous application
of decentralized systems can be found in Distributed Ledger Technology (DLT), such as
blockchains and blockchain-based cryptocurrencies.

2.3.1.3 Sybil Attacks

Sybil attacks were introduced by Douceur and refer to an attack or process where an
attacker creates various fake identities to find or exploit vulnerabilities in a system [43].
Sybil attacks have been investigated as harmful in decentralized networks or systems [70]
and on blockchain systems [23]. Moreover, Sybil attacks can be combined with other
attacks or security threats [152]. Especially in decentralized systems and environments, a
Sybil attack poses a potential security threat.

2.3.2 Blockchain Systems

Blockchain systems rely on the distributed ledger, or blockchain technology widely re-
searched in literature [3, 42, 113]. A distributed ledger or blockchain is a decentralized,
digital ledger of transactions that are trustfully and unalterably recorded, stored, and
verified across a network with the help of consensus algorithms [90]. There are several
attributes by which blockchain systems can be classified [44]. Depending on the reading
and consensus access a system offers, four different forms of blockchains or distributed
ledger systems can be determined. However, in most cases, the notion of a blockchain
inherently refers to a public and permissionless distributed ledger. Blockchains provide
traceability, immutability, distributed trust, security, and transparency in the form of a
decentralized system [58].

5Better known under its former name: Facebook

10 CHAPTER 2. BACKGROUND

Over time, blockchain systems have evolved and can be assigned into different eras [5,
124]. Initial solutions based on the first Bitcoin blockchain [92] have been followed by
smart contracts capable blockchains such as Ethereum [27] or the Binance Smart Chain
[22]. Additionally, modern solutions apply different or hybrid consensus algorithms to
mitigate or eliminate known disadvantages of blockchains [58, 108].

2.3.3 Smart Contracts

Smart Contracts are automated chunks of code that can be immutably stored and exe-
cuted on smart-contract-capable blockchains [54]. They provide a way to automatically
transfer digital assets based on predefined conditions securely, traceably, and trusted
between untrusted parties without needing a third-party intermediary [5, 27]. Not all
blockchains support smart contracts to the same degree and in the same way. Several
well-known blockchains that support smart contracts are Ethereum, the Binance Smart
Chain, and Solana. If a blockchain supports smart contracts, it can automate rules and
the distribution of assets in a decentralized way. Thereafter, smart contracts are the
foundation for designing, developing, and implementing DApps or DAOs. Use cases for
smart contracts can be found in several industries like healthcare, insurance, e-commerce,
or the Internet Of Things (IOT) area [91]. Moreover, the most famous and widespread
application of smart contracts until today is in the crypto sector i.e., in DeFi apps or
other cryptocurrency-based platforms.

2.3.4 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is the computer that is underlying the Ethereum
blockchain and protocol, enabling smart contracts [85, 148]. It compiles and executes
smart contract code [41]. The term gas is used as a unit to describe the computa-
tional effort the EVM requires to execute transactions. The EVM is not solely used on
the Ethereum blockchain and protocol. Multiple other EVM-based or EVM-compatible
blockchains utilize it, such as the Binance Smart Chain, Polygon, Arbitrum, Avalanche,
and more. The EVM is included in the implementation or in layers that are added to
make the blockchains compatible with the EVM. This enables these blockchains to support
smart contracts and DApps similar to Ethereum.

2.3.5 EVM Values and Units

The native cryptocurrency used on Ethereum is Ether (ETH) and has several subdenom-
inations [148]. Thereby, the smallest unit is called Wei. The following list shows the most
common units used for Ethereum values.

• Wei: Wei is the smallest unit of Ether.

• Gwei: Gwei (Giga-Wei) is a larger unit of Ether, where 1 Gwei equals 109 Wei.

2.3. TECHNICAL FOUNDATIONS AND CONCEPTS 11

• Ether: Ether is the largest unit and is equal to 1018 Wei or 109 Gwei.

Blockchains other than Ethereum that are EVM-based utilize the same unit system. How-
ever, sometimes the name of the main unit i.e., , Ether in the case of Ethereum, is adapted.
For example, in the EVM-based blockchain Polygon, the native currency is called MATIC
[105]. Thus, one MATIC equals 1018 Wei on the Polygon chain.

2.3.6 Layer-2 Solutions

The term layer-2 solutions refers to blockchain solutions, protocols, or frameworks that
have been designed to address the known problem of blockchain scalability by handling
and executing transactions off-chain [56]. There exist multiple approaches and designs
for layer-2 solutions [124]. A few examples of existing layer-2 blockchains are Polygon,
Arbitrum, or Optimism. Moreover, layer-2 blockchains often have lower gas prices due to
the reduced load, faster transactions, and overall improved efficiency [56, 124].

2.3.7 Blockchain Oracles

Blockchain oracles provide external off-chain data to blockchains and on-chain smart con-
tracts [139]. Oracles are not the source of external data but rather the layer that collects,
queries, verifies, or authenticates external off-chain data from various sources. This data
is then fed to smart contracts on the blockchain. Blockchain oracles can be classified
according to their data source, information direction, or degree of trust [20]. Inside
blockchain-based systems and applications, oracles can represent potentially untrusted
components as they might deliver inaccurate, corrupt, or malicious data from external
sources that influence decisions on immutable smart contracts [30]. This predicament is
generally known and discussed as the blockchain oracle problem [4, 30, 31]. Especially in
the case of centralized blockchain oracle services, it is hard to ensure that the data and
the oracle itself are trustworthy and impartial. Thus, approaches and solutions exist that
aim to provide decentralized blockchain oracles [2]. Overall there exist various known ap-
proaches implementing centralized as well as decentralized solutions for blockchain oracles
[2, 33, 102, 131]

2.3.8 Decentralized Finance

Decentralized finance, short DeFi, describes decentralized platforms and applications that
provide blockchain- and smart contract-based financial infrastructure or services [122].
Within the crypto world, including digital assets and cryptocurrency markets, the DeFi
sector has been growing significantly in recent years [111]. Empowered through decen-
tralized smart contracts and blockchains, DeFi aims to supersede financial intermediaries
as they are present in the traditional financial markets of today [112]. DeFi applications
and platforms have various business models, including decentralized currencies, payment
services, and fundraising [34]. Thereunder, Decentralized Exchanges (DEX) like Uniswap

12 CHAPTER 2. BACKGROUND

[136], or Sushiswap [130] probably are the most known representatives for DeFi. A DEX
allows users to trade, transfer and exchange digital assets.

Chapter 3

Related Work

The following sections explore existing literature and relevant work around referral mar-
keting programs and systems. The main attention is on the design of referral programs
and systems. More precisely, on the conceptual design of referral programs and the tech-
nical design or architecture of referral systems. Furthermore, it is discussed how referral
programs and systems can be evaluated. Eventually, the focus shifts to existing solutions,
approaches, and challenges arising in decentralized referral systems.

3.1 Design of Referral Programs and Systems

The following section is divided into two parts. First, the conceptual design of referral
programs is covered and examined. The conceptual design contains all components of
a referral program’s design and structure but the technical aspects and architecture or
details about their implementation. These are discussed in a separate paragraph dealing
with the technical design of referral programs, i.e., the design of the referral system.

3.1.1 Conceptual Design of Referral Programs

As suggested earlier (cf. Section 1.1), designing referral programs includes multiple com-
ponents. There exists various literature investigating these aspects. Yet some aspects are
more popular than others. To begin with, the work of Berman provides a comprehensive
summary, including an eight-step overview (cf. Figure 3.1) that describes the topics which
have to be considered when designing a referral program [21]. However, not all aspects of
Berman are equally relevant for the case of this thesis.

3.1.1.1 Organization and Planning

The first two steps of the process (cf. Figure 3.1) describe the organization and the
budget planning of a referral program [21]. The organization of a referral program inside

13

14 CHAPTER 3. RELATED WORK

Figure 3.1: Own Illustration of the Eight-Step Process According to Berman [21]

a firm and the corresponding resources, as well as decisions about outsourcing, according
to Berman [21], are not relevant in the current context. Moreover, this academic thesis
has no genuine budget constraints regarding concrete planning costs. Nevertheless, reward
costs for the conceptual design of the program or administration costs for the implemented
software emerging from the chosen technical design must be considered.

3.1.1.2 Targeting and Selecting Referral Customers

When designing a referral program, selecting and targeting the right customers is vital.
Apart from Berman, other research has covered this topic. Thereby, the value of cus-
tomer referrals is often investigated [39, 63, 64]. Based on the work of Kumar et al. [78],
Kumar, Petersen, and Leone calculate a Customer Referral Value (CRV) and argue how
both Customer Lifetime Value (CLV), as well as CRV, should be considered to identify
lucrative customers for referral systems [77]. Furthermore, Schmitt, Skiera, and Bulte in-
vestigate factors like contribution margin, retention rate, and value of referred customers
compared to non-referred customers [123]. Eventually, the customers or users of a referral
program or system are a key element to consider when designing a referral program. The
customers’ expected motivation and attitude can mutually influence and be influenced by
other components of a referral program’s design, like the definition of rewards [25].

3.1.1.3 Referral Rewards

Referral Rewards have been thoroughly researched since they can significantly influence
the outcome and design of referral programs. The allocation of rewards and its effects are
explored together with the motivation and attitude of customers towards referrals [25, 68],
pricing decisions and strategy of a product or service [25, 60, 149], or the conversion rates

3.1. DESIGN OF REFERRAL PROGRAMS AND SYSTEMS 15

and the total number of referrals [68]. Generally, there are three different approaches to
the design of reward allocation:

• Rewarding the Referrer: Only the referrer receives the reward. The referee does
not receive a reward.

• Sharing the Reward: The reward is shared between the referrer and the referee.
There can be different distributions of the reward when sharing, but usually, the
split is equal.

• Rewarding the Referee: Only the referee receives the reward. The referrer does not
receive a reward.

On the one hand, rewarding the referee or equally shared rewards can lead to higher
conversion rates, while on the other hand, prioritizing the referrer can cause more refer-
rals but diminish the conversion rate as Jung et al. illustrate [68]. Universally, firms or
companies should consider testing which design works best for their targeted customers
as the allocation might be dynamically adjusted or set arbitrarily [21]. The allocation of
rewards is relevant for this thesis and the eventual solution as it can have effects on the
conceptual and especially technical design, e.g., the distribution of rewards.

When and how to distribute rewards to the participants presents another design decision
that can vary [19]. Thus, it is important to define and clarify the distribution schedule,
e.g., if rewards are paid out after every successful referral or only after a specific number
of successful referrals.

Furthermore, the type and form of reward play an important role in the distribution of
rewards. Referral rewards can come in the form of monetary incentives like fiat money and
credits or crypto assets, vouchers or discounts, premium features or services, and many
more [19, 21, 73]. The type and form consequently impact the distribution of the rewards
to the eligible parties. For example, physical referral rewards like a vase or a teacup
would be costlier to distribute than non-tangible bounties like additional storage space
[46, 87]. Thereon, it is interesting to assess the examples of existing referral programs
in section 2.2.1. These programs reward users with bounties or products based on their
main business area. Dropbox offers additional storage [46]. PayPal, a payment service
provider, and Revolut, a digital bank, offer fiat money as rewards [99, 116]. Moreover, the
two centralized cryptocurrency exchanges, Coinbase and KuCoin, incentivize their users
with crypto assets to complete their referral processes [36, 75]. Lastly, this also shows
how the forms of rewards these companies have defined for their referral programs allow
them to distribute the rewards efficiently to their customers.

Altogether, design decisions around referral rewards and their impacts should be well
thought out and specified in the conditions or rules of a referral program to provide
clarity for the participants.

16 CHAPTER 3. RELATED WORK

3.1.1.4 Program Conditions and Requirements

The structure and rules of a referral program are defined by its conditions. A refer-
ral program’s conditions should outline the concept and design decisions relevant to the
participating customers. Thus, the conditions specify components like when a referral
process is considered a success, who is eligible for referral rewards, how much rewards
can be earned, how and when they are distributed, what actions are required by the par-
ticipants or also general terms and restrictions [21]. Based on the program’s conditions,
participating customers complete several tasks and actions to fulfill all requirements to
become eligible for rewards. On the one hand, these actions and requirements can be
short-lived and simple, like in the aforementioned example of Dropbox, where referred
users have to sign up for the platform (cf. Dropbox example section2.2.1.1). On the
other hand, more steps, such as connecting a bank account or credit card or completing
a certain amount of transactions and payments (cf. Section 2.2.1), can be required to
receive rewards. Additionally, the conditions of a referral program must be well-designed
and suitable for the company’s use case.

Lacking conditions and rules for a referral program can open the door for malicious ac-
tivities and referral fraud [9]. Not only in the current context but for modern referral
programs in general are the conditions and rules of a modern referral program vital to the
underlying technical implementation since they define the requirements for the evaluation
of the referral process as well as the distribution of the rewards. In this context, this thesis
explores the implications of decentralization on the design of referral program conditions
(cf. Chapter 4). Thereon, the referral conditions play an essential role and must consider
aspects and challenges that can arise in decentralized environments.

3.1.1.5 Referral Channels and Program Content

Berman [21] demonstrates three other design aspects of referral programs (cf. Figure
3.1). Decisions about the program software (cf. Section 3.1.2) or the evaluation of a
referral program or system (cf. Section 3.2) are discussed in the upcoming sections. For
this thesis, the definition of a program’s content and promotion channels [21] is the last
component that is illustrated as part of the conceptual design.

Promotional channels and contents shape a referral program’s User Experience (UX).
Simplicity and UX are key components for a successful referral program [79, 87]. Hence,
the impact of referral channels and communication tools have been researched regarding
referral propensity 1[72]. In fact, even minor elements like the naming of a program can
impact the results of a referral program [138]. For this thesis, the focus lies on the technical
architecture and implementation. Still, for future work, the UX and related aspects of
the implementation can play an important role.

1How likely it is for a consumer to refer another consumer cf. [72]

3.2. EVALUATION OF REFERRAL PROGRAMS AND SYSTEMS 17

3.1.2 Technical Design of Referral Systems

Regarding related literature that covers the design and technical architecture of referral
programs, i.e., the design of referral systems, there is little to no existing work. Yet,
especially with modern and automated referral systems, the software and the technical
architecture are important parts of a referral system that handle various tasks [21]. Gener-
ating referral codes, selecting and contacting the right customers, tracking and evaluating
referrals, computing and distributing rewards, or evaluating the costs and results are a
few examples of things that can be handled by the referral system. Nonetheless, not all
of these aspects are relevant for a technical solution in the current decentralized con-
text. Chapter 4 goes into more detail and elaborates on which functionalities are being
implemented as part of the final solution.

Berman [21] lists a few examples of software packages for referrals like Ambassador [7]
or ReferralCandy [114] and there exist more [81, 83]. However, their architecture and
implementation are not open-source, as it is part of their business secret. The situation
is similar with regard to the architecture and implementation of the examples mentioned
in section 2.2.1. On this ground, it can be assumed that these referral systems are im-
plemented based on centralized architectures. Thereon, all the logic, and functionality of
the referral programs are handled by central servers [3]. Against this backdrop, this thesis
feasibility study of a decentralized referral system might disclose interesting insights and
arguments for or against this imbalanced current situation.

3.2 Evaluation of Referral Programs and Systems

Various metrics can be computed and collected to evaluate a referral program’s success
or ill success. Frequently, customer-related measures, such as the total number of partic-
ipants or referrals, the CLV and CRV [63, 77], the conversion and retention rates [123],
or acquisition costs [65] for referred customers compared to non-refereed customers are
monitored. At the same time, revenues and expenses can be considered to determine the
efficiency of a referral program [71] In addition, it is important to assess the positive ef-
fects of referral programs against the overall value or benefits that result for the company
or firm behind the program [21].

However, no existing literature covers the evaluation of technical aspects of modern referral
systems. As stated in the previous section (cf. Section 3.2), this is no surprise since
commercial referral systems and their implementation are not open-source. Nonetheless,
there are metrics and ways decentralized solutions can be evaluated in general regarding
their costs and performance [124, 153]. More details about how the outcome of this work
is evaluated and compared is discussed in Chapter 4 and 6

18 CHAPTER 3. RELATED WORK

3.3 Classification of Referral Systems

Referral programs or systems can be classified in different ways [21]. The separation can
be made with regard to the allocation of rewards e.g., one-sided or equal split of rewards,
the purpose behind a program e.g., refer potential new employees or a product, or other
design aspects that have been discussed in the previous sections (cf. Section 3.1.1 or
3.1.2). For this thesis, three different characteristics are considered for differentiating
referral systems and their design. They are classified regarding qualified users i.e., who
can join a program and refer users via the system, allocation of the rewards, and in terms
of reward levels i.e., on how many levels rewards can be distributed.

3.3.1 Qualified Users

The notion of qualified users refers to the type and kind of users who are allowed or
admitted to participate in a referral system. There can be limitations on the referring as
well as the referred users. However, in most cases, restrictions on the people or users who
can be referred would be counterproductive to the general goal of referral marketing.

• Referring Users / Referrers: Who and what kind of users are allowed to refer
other users? e.g., only a few selected or approved users, only current customers, or
anyone, can participate i.e., no limitations on the referring users.

• Referred Users / Referees: Who and what kind of users are allowed to be referred?
Most of the time, anyone is allowed to participate as everyone could be a potential
new user i.e., no restrictions for referred users.

3.3.2 Allocation of Rewards

Referral systems can also be classified by how the rewards are allocated and distributed
to the involved parties (cf. Section 3.1.1.3). For the current context, referral systems are
classified as having either a one-sided or two-sided reward allocation.

• One-Sided Reward Allocation: Either the referrer or the Referee receives rewards,
but not both.

• Two-Sided Reward Allocation: Both parties receive rewards. Thereby the ratio of
the split can vary.

3.3.3 Reward Levels

The third criteria to classify referral systems in this context are reward levels. Depending
on the reward level of a referral system i.e., on how many levels the rewards are distributed,
a system is either classified as single-level or as multilevel.

3.4. DECENTRALIZED REFERRAL SYSTEMS 19

The main characteristic of multilevel referral systems is that rewards can be distributed on
more than one level. Referred users can refer new users, who in turn can again refer users,
and so on. Consequently, a referral chain is formed containing and storing the different
levels or tiers of referrals. Referral rewards can then be distributed over this chain and
along multiple levels to previous referrers. However, most referral systems include only
one level of rewards. Hence, only the two involved parties on the first level are rewarded
i.e., the referrer and or the referee.

• Single-Level Referral System: Rewards are assigned and distributed on one level
only. For example, only to the referrer and the referee.

• Multilevel Referral Systems: Rewards are assigned and distributed on more than
one level. Hence, previous referrers along the referral chain also receive rewards
when referred users refer new users.

This classification aims to help differentiate and arrange existing referral programs or
systems as well as the upcoming solutions in the context of this thesis.

3.4 Decentralized Referral Systems

Until this point, academic literature has not covered the possibility and design of de-
centralized referral systems or their evaluation. However, there exist projects that have
implemented decentralized referral programs or related solutions. This section introduces
three of these examples and their approaches and design. In addition, this section ad-
dresses research that provides insights into how to realize a decentralized referral system.
To be more precise, it contextualizes the blockchain scalability trilemma into the current
problem statement of decentralized referral systems dealing with potentially high volumes
of data and transactions.

3.4.1 Existing Decentralized Solutions

Besides academic literature and work, a few projects are trying to provide ways for de-
centralized referral marketing. Three of these examples, namely Attrace [18], Energi [50],
and RefToken [115] are outlined in the following paragraphs. Other than these, there are
potentially more projects around this topic that can be found. However, many of these
projects are only in the testing stages, outdated, or do not have proper documentation
where more details about their functioning can be found.

3.4.1.1 Attrace Referral Protocol

Attrace [18] provides a referral protocol targeted for Web3 [146], where users can share
referral links to earn rewards and promote existing crypto projects. The Attrace protocol

20 CHAPTER 3. RELATED WORK

Figure 3.2: Own Illustration of the Farm Creation Process by Attrace [18]

powers a decentralized referral platform based on smart contracts and blockchain oracles
[12]. Attrace aims to help increase transparency and trust and allows for lower fees and
faster payments than traditional marketing.

Attrace Referral Farms: On the Attrace web platform, users i.e., project owners, can
create so-called referral farms [17], in which they have to define a crypto project or Non-
Fungible-Token (NFT) that they want to refer. For this farm, they have to define several
conditions, like the type of crypto asset for the reward, the number of daily rewards
available, and a marketplace where the promoted crypto asset can be traded. Thereafter,
the project owner has to deposit the rewards to the farm and receives a referral link that
can be shared with others. The Attrace referral farm creation process is illustrated in
Figure 3.2. The setup of referral farms is handled decentrally by the ReferalFarms smart
contract, which Attrace has deployed to the Ethereum blockchain.

Promoters / Referrers: Next, Attrace users or referrers can select crypto projects and
farms they want to promote. To become a promoter of a farm i.e., a crypto project, they
have to sign in to Attrace with their crypto wallet. Thereon, they receive a referral link
that can be shared with potential buyers and other users.

Buyers / Referees: Users who have been referred to a crypto project are called buyers
by Attrace. A referral process is completed once buyers have followed the referral link,
signed in with their wallet, and bought the promoted crypto asset on the marketplace,
which has been specified in the setup of the referral form.

3.4. DECENTRALIZED REFERRAL SYSTEMS 21

Oracles / Referral Evaluation: After the completion, the referral process and the value
added to the promoted crypto project are periodically evaluated by the Attrace oracles
[16]. Attrace oracles are organized as an off-chain network that does not require paying
gas fees for made transactions. The main function of the oracle nodes is to observe,
collect, evaluate, and calculate relevant data about the referral processes and the spread of
rewards, which is then delivered to the ReferalFarms contract (cf. Section 2.3.7). Hence,
the oracles evaluate the referral process and the calculated rewards to the responsible,
smart contract. Eventually, Attrace oracle nodes are envisioned to be part of a public and
decentralized oracle network that everyone can join after staking the required amount
of $ATTR tokens [15]. The $ATTR token is a native utility and governance token by
Attrace [14]. However, according to their roadmap [13], the oracle network is not yet
public. Therefore, the evaluation of the referral processes is also not open-source. Hence,
as of today, the Attrace solution is not completely decentralized.

Rewards: The calculated Attrace referral rewards are assigned to the promoter as well as
to the buyer with regard to the conditions and proportions of the referral farm. Rewards
are distributed by the ReferalFarms contract based on the results that have been defined
with the help of the oracles.

In conclusion, Attrace aims to provide a decentralized referral program. Users can buy
crypto tokens or NFTs via a predefined marketplace. The ReferalFarms smart contract,
together with the first versions of referral farms and deals, are already available and ready
to use on their platform [18]. Still, this is only the first of a dozen milestones that Attrace
has defined in their roadmap to provide a fully decentralized referral protocol [13]. The
Attrace referral system has no restrictions concerning qualified users, the reward allocation
is two-sided, and the system distributes rewards over one level (cf. Section 3.3). Attrace
plans to achieve decentralization through smart contracts on the Ethereum chain and
a public oracle network. Nevertheless, even if referral and reward data may be stored
decentrally, with the evaluation of the referral processes and the calculation of rewards,
major parts of their system are not yet decentralized and are also not open-source.

3.4.1.2 Energiswap Affiliate Program

Energiswap [49] is a DEX based on the Energi blockchain that serves as the base for the
Energi World ecosystem [51]. The Energi ecosystem offers its own blockchain oriented and
compatible with Ethereum, including EVM compatibility, virtually negligible fees, and
other features [48]. Thus, smart contracts written for Ethereum also work when deployed
on the Energi blockchain. In addition, Energi provides a block explorer to observe Energi
transactions and a bridge that allows transferring assets between the Ethereum and Energi
blockchains. Recently, Energi launched a decentralized referral or affiliate program within
their Energiswap DEX [50].

Affiliate / Referral Conditions: Users can participate in the program via an affiliate page
on the Energiswap web platform [49], where they can get a referral link to share with
others (cf. Top in Figure 3.3). Referred users can follow the link and are directed to the
same affiliate page again, but this time with the pre-filled address of the referring user
(cf. Bottom in Figure 3.3). To accept an affiliate link, referees or referred users have to

22 CHAPTER 3. RELATED WORK

Figure 3.3: Screenshots of the Energiswap Affiliate Platform [49]

execute a Set Referral (Address) transaction to enter the referral process and redeem
their potential discounts for future trades (cf. Left in Figure 3.4). The transaction costs
gas fees (cf. Right in Figure 3.4) and stores the resulting referral connection on the Energi
blockchain. Thus, acceptance of affiliate invitations via the links is decentrally tracked
and stored.

Thereon referred users permanently receive a 10% discount on the trading fees for their
Liquidity Provider (LP) transactions on the Energiswap DEX. Conversely, the referrer
benefits by receiving a 10% commission on trading fees paid and caused by LP transac-
tions that their referred users have made on the DEX (cf. Figure 3.5 A). In this case, these
discounts and commissions on made transactions are the rewards of the Energiswap af-
filiate program. Energiswap discounts and commissions are automatically calculated and
applied or paid out to the eligible users by their referral system in a decentralized way [50].
In addition, the commissions are paid in the cryptocurrency used at every transaction’s
start. For instance, if a referred user trades cryptocurrency (A) for a cryptocurrency (B)
on the Energiswap DEX, the commissions are paid out as assets of cryptocurrency (A).

Multi-Tier Rewards: The Energiswap affiliate or referral program provides multi-tier
commissions [50]. Hence referrals can be made over multiple levels. Thereon, if users
referred in the first place refer more users who join the program, the second tier receives
a 5% discount or commission (cf. Figure 3.5 B). The same concept applies to the third
tier of referrals, where the percentage for commissions and discounts is 3% (cf. Figure 3.5
C). Eventually, this builds a referral chain that further rewards users.

3.4. DECENTRALIZED REFERRAL SYSTEMS 23

Figure 3.4: Screenshots of the Energiswap Referral Acceptance Transaction [49]

Figure 3.5: Own Illustration of the Multi-Tier Energi Referral Flow [50]

24 CHAPTER 3. RELATED WORK

Eventually, the Energiswap program provides a multilevel referral system with two-sided
rewards and allows everyone to participate (cf. Section 3.3). In contrast to Attrace [18],
which works with different exchanges e.g., Uniswap or Sushiswap, the Energi affiliate
program is incorporated into the Energiswap DEX [50]. The referral system stores every
user’s referral chain on their Energi blockchain. Additionally, they have deployed smart
contracts for reward allocation and distribution. Yet, in-depth documentation about
these smart contracts, including more details about the decentralized evaluation of referral
processes or the calculation and distribution of rewards, seems not to be available at first
sight. This could be done on purpose since, except for their affiliate program, Energi [51]
provides various open-source documentation about other components of their ecosystem
[47]. Moreover, further research and exploration of the Energi blockchain might reveal
more information about the deployed smart contracts and their details.

3.4.1.3 RefToken

RefToken [115] is or was a solution built to provide a decentralized referral platform. As
of today, their platform is no longer available due to several reasons [10]. Still, RefToken
has published a whitepaper [120] and a yellow paper [84] describing their initial business
plan and technical details and architecture.

The RefToken solution is a blockchain-based affiliate marketing platform with the pur-
pose of promoting mainly DApps and Initial Coin Offerings (ICOs) [120]. To achieve
this, governance and evaluation of the referral processes are handled by smart contracts
deployed to the Ethereum chain by RefToken. All referral-relevant data are immutably
stored on the blockchain to allow tracking and prevention of referral fraud. Additionally,
their smart contracts enable automatic and instant rewards payout to all eligible parties.

The following sections describe the different parties involved in the RefToken referral
process and how the referral flow is outlined by RefToken in their yellow paper [84].
Moreover, the different smart contracts are described. Generally, three different parties
are involved in the referral process according to RefToken (cf. Figure 3.6 A, B, and D).

Merchants / Program Providers: On the RefToken platform, merchants i.e., companies
or firms, can register and create deals that are then open for affiliates e.g., referrers, to
apply for (cf. Figure 3.6 A). A merchant admin website allows merchants to register and
log in to create these deals. Besides, the merchants have more features and customization
options available on their admin site [84].

For every published deal on their platform, RefToken deploys a deal-affiliate link smart
contract containing details and conditions for the referrals. These contracts deployed
to Ethereum include details about the deals, like the total amount of available rewards
or deal deadlines. Referral rewards are always defined and eventually paid out as REF
tokens, a cryptocurrency issued by RefToken.

The deal-affiliate link smart contract stores all the information about the deals and the
approved affiliates, as the name implies. The contract also includes functions to update
the authorized affiliates, edit deal details, or add custom conditions for certain affiliates.

3.4. DECENTRALIZED REFERRAL SYSTEMS 25

Figure 3.6: Extended Illustration of the RefToken Platform Flow According to RefToken [84, 115]

Affiliates / Referrers: Users who want to promote and refer the merchant’s DApps or
ICOs could then apply to become affiliates of the respective deals of a merchant [84]. Like
the merchants, affiliates have their own admin platform where they can register, log in, and
apply for deals. Thereby, affiliate users also have the possibility to apply for custom deals
and negotiate the terms and conditions for referrals directly with the merchants. Every
affiliate or referrer has to be accepted or approved by the deal’s merchant. Furthermore,
as long as the deal-affiliate link contract of a specific deal would still have funds left for
referrals, new users can apply to become eligible to promote the deal (cf. Figure 3.6 B).
After the approval, affiliates can promote the deals in order to reach the final clients by
themselves or via other channels like ads or social media (cf. Figure 3.6 C).

Final Clients / Referees: Referred by the affiliates, the final clients i.e., referees, can sign-
up, buy something or in any other way make use of the merchant’s DApps or participate
in their ICO (cf. Figure 3.6 D). Eventually, as the final clients interact or engage with the
merchant’s DApps or buy coins in an ICO, the affiliates are automatically rewarded by the
deployed deal-affiliate link contract. According to the conditions stored in the contract,
the affiliates would receive different amounts of REF tokens. Besides, RefToken would
also try to track the interaction of final clients coming from affiliates in their off-chain
database (cf. Figure 3.6 D).

RefToken Smart Contracts: RefToken describes four different kinds of contracts that have
to be deployed for their platform [84]. The first two contracts are the token definition
and the token exchange contracts, which are needed for the issuance and operation of the
REF token. The third deal-affiliate link contract has been discussed before. Last, the
fourth type of contract considers the conditions of the deal.

RefToken describes the deal-conditions contracts as a set of multiple contracts with the
purpose of covering and evaluating all the referral conditions of the different deals avail-
able on the RefToken platform. Hence, deal (A) might need a different deal-conditions
contract than deal (B) since the referral conditions and evaluation between these two

26 CHAPTER 3. RELATED WORK

Figure 3.7: Own Illustration of the Blockchain Scalability Trilemma According to Sguanci, Spatafora,
and Vergani [124]

deals differ. For example, a deal-conditions contract could require functionality to count
the number of deposits to a particular address. RefToken mentions one example of an
ICO contribution deal-conditions contract and outlines a potential deal flow for this case
in their yellow paper [84]. Other than that, there is no more documentation about how
the deal-conditions contract could enable the evaluation of the different referral processes
or deals in a decentralized way.

After all, RefToken includes and outlines several interesting aspects of how a decentralized
referral program could be realized. In their white [120] and yellow paper [84], they explain
several aspects of their solution. Nevertheless, the platform can not be tested and tried
out as the project is no longer running, and the different platforms are not available [10].
Moreover, the project seemed to be only in its early stages, which can also be seen in the
available documentation.

3.4.2 The Blockchain Trilemma

This section covers the last important and related aspect discussed in this chapter. The
blockchain or the blockchain scalability trilemma refers to the problematic limitation or
trade-off for blockchain systems with regard to their scalability, security, and decentral-
ization [150]. Only two of these three aspects can be reached by blockchain systems (cf.
Figure 3.7). As the scalability of blockchain systems has been identified as the major
problem, this topic has been addressed in various research [108, 153]. In order to address
the limitations of blockchain scalability, novel approaches, and solutions have been and are
still being researched in connection with blockchain technology [124]. Still, the trade-off
between the desired properties has to be made as no silver bullet for solving the trilemma
has been found so far.

3.4. DECENTRALIZED REFERRAL SYSTEMS 27

In the context of this thesis, the feasibility of a decentralized high-volume referral system
is investigated. Hence the degree of decentralization and scalability are important for the
final solution. However, the trilemma already shows at this point. The solution must be
secure since only a secure solution can underpin the eventual feasibility of a decentralized
referral system in a real-world environment.

28 CHAPTER 3. RELATED WORK

In summary, this chapter delves into various aspects of designing, evaluating, and imple-
menting referral programs and systems. In terms of the design, existing literature covering
conceptual design aspects has been outlined (cf. Section 3.1.1). Moreover, the differenti-
ation that was made between referral programs and referral systems, or conceptual and
technical design respectively, (cf. Section 2.2) shows that there is little to no research
when it comes to the technical design of referral systems (cf. Section 3.1.2). Based on the
previous two chapters, the scarcity of availability or documentation about non-centralized
referral programs or systems is illustrated broadly. This gap becomes more prominent as
there is also a notable absence of academic literature and technical documentation in the
context of especially decentralized referral systems.

However, this chapter has introduced projects that try to provide solutions for decen-
tralized referral systems (cf. Section 3.4). At this point, it is to mention that there
might be other approaches or related solutions for decentralized referral systems, which
have not been considered within the scope of this thesis. The three covered projects,
namely Attrace [18], Energi [51], and RefToken [115], show various similarities but also
differences in their approaches to solving the challenge of decentralized referral systems.
All the projects have been started recently and are in their early stages. The available
documentation for these projects provides insights into a few concepts that can be used
for the design of decentralized referral systems. Nevertheless, these projects’ overall doc-
umentation, design, and implementation remain lacking and sometimes non-transparent.
Still, the general interest and desire for solutions for decentralized referral systems show
within these projects.

With that in mind, this thesis aims to fill the gap and provide a contribution to academic
work about decentralized referral systems’ feasibility and provide transparent and exten-
sive documentation about their technical design and implementation as well as challenges
and implications for a potential application in real-world conditions.

Chapter 4

Design and Architecture

The design chapter covers and outlines the main requirements and the design of the
final solution architecture for this thesis. In the first step, the primary requirements
for decentralized referral systems are elaborated on and discussed within the scope of a
decentralized environment. Thereon, the architecture, and design for eventual solutions
are introduced and presented. After depicting the solution prototypes against the defined
requirements, metrics and measures relevant to their evaluation are described.

4.1 Requirements

As discussed in the last chapter (cf. Chapter 3), there is little to no documentation avail-
able about the technical requirements of decentralized referral systems. Therefore, this
thesis defines two fundamental requirements for referral systems or decentralized referral
systems that must be fulfilled by any technical solution to be considered a referral system.
Besides other important aspects that can be handled by a referral system (Section 3.1.2),
these two specifications have to be met by the final solution in the context of this thesis:

• Referral Process Evaluation: The system must be able to recognize, track and
evaluate multiple referral processes, including two or more users. Consequently, the
system must be aware of the progress and state of every started referral process and
determine which processes have been completed either successfully or unsuccessfully.
Moreover, the system must be able to define the parties i.e., users who have become
eligible for potential referral rewards. Furthermore, the type and amount of reward
to be distributed must be determined.

• Distribution of Rewards: The potential rewards of a referral process defined by the
system and referral process evaluation in the first place must be distributed correctly
to all eligible parties.

29

30 CHAPTER 4. DESIGN AND ARCHITECTURE

Figure 4.1: Design of a Trivial Decentralized Referral System

Based on these two requirements, designing a trivial but legitimate solution for a decen-
tralized referral system is already possible. Figure 3.2 outlines a straightforward decen-
tralized referral system oriented at the previously introduced referral program of Dropbox
(cf. Section 2.2.1.1).

In this referral system, a decentrally deployed referral smart contract would handle the
evaluation of referral processes and the distribution of rewards. Participants i.e., referees,
could send a transaction to the smart contract with information about another user who
has referred the participant i.e., the referrer. To keep it very simple, referees would com-
plete the referral process after sending that first transaction with the required information
about the referrer to the smart contract. Hence, the referral process or the referral con-
ditions would imitate a registration process similar to the requirements of the Dropbox
referral program (cf. Section 2.2.1.1). The process or registration is evaluated and marked
as completed as the referral smart contract records the transaction. After the completion,
a predefined reward could be distributed or sent by the smart contract via the blockchain
to the referrer. The referee transaction i.e., registration would have been evaluated, and
the referrer would have received a referral reward based on the decentralized referral smart
contract. Thus, the defined requirements would have been met (cf. Figure 4.1).

However, this example shines a light on one of the most crucial challenges or requirements
for the eventual solution of this thesis. Since a decentralized referral system naturally
operates in a decentralized environment, the term of a user of such a system is not syn-
onymous with a user in a centralized referral system. A user usually corresponds to a
single person in a centralized referral system. Additionally, in centralized environments,
multiple ways exist to ensure or verify a one-to-one relationship between a referral system
participant and a real person. However, in this example of a decentralized referral system,
users refer to accounts or addresses on a blockchain (cf. Figure 4.2). Hence, a single per-
son or wallet holder i.e., person can have multiple accounts or addresses. Consequently,
a single person could participate as referee and referrer simultaneously and drain all the
rewards of the referral smart contract. As a result, a trivial Dropbox-like decentralized

4.2. SOLUTION REQUIREMENTS 31

Figure 4.2: Decentralized Users i.e., Addresses in a Decentralized Referral System

referral system similar to the one outlined in Figure 4.2 would be very easy to exploit and
vulnerable to Sybil attacks (cf. Section 2.3.1.3) for example.

Ultimately, the system providers i.e., smart contract owners, are not directly endangered
by such Sybil attacks, as the referral rewards would consistently be distributed across
multiple addresses in every scenario. Nevertheless, such a referral system would miss
its primary marketing purpose and objective if the program and rewards solely benefit
one malicious individual. Eventually, the architecture and design depicted in Figure 4.2
represent a logical but ultimately infeasible solution.

4.2 Solution Requirements

The previous section has exemplified a vital problem or requirement of decentralized re-
ferral systems. In a decentralized environment, additional security risks can invalidate the
design of well-known referral systems or programs. Consequently, the design and referral
conditions must be adapted to resist threats and attacks in decentralized environments.
In this context, the final solution requirements for a decentralized referral system have to
be adapted:

• Referral Process Evaluation: The system must be able to recognize, track and
evaluate multiple referral processes, including two or more users. Consequently, the
system must be aware of the progress and state of every started referral process and
determine which processes have been completed either successfully or unsuccessfully.
Moreover, the system must be able to, on the one hand, define the parties i.e.,
users who have become eligible for potential referral rewards. On the other hand,
determine the type and amount of reward to be distributed.

• Distribution of Rewards: The potential rewards of a referral process defined by the
system and referral process evaluation in the first place must be distributed correctly
to all eligible parties.

32 CHAPTER 4. DESIGN AND ARCHITECTURE

• Adapted and Secure Design for Decentralized Environments: The solution or sys-
tem must be secure and impervious to decentralized security threats like Sybil at-
tacks or other threats.

Besides, other requirements can be important for the success and quality of a referral sys-
tem (cf. Section 3.1). Many essential qualities, like usability, accessibility, transparency of
the referral conditions, clear feedback during the process, trust, and others, are related to
the UX of referral systems. If applicable, these requirements also should be considered for
the final solution prototypes and their implementation. Certainly, the main requirements
covering more the technical aspect and architecture are prioritized.

4.3 Referral Payments

The architecture illustrated in Section 4.1 (cf. Figure 4.2) meets two of the three solution
requirements. The remaining challenge to be tackled is enhancing resistance against
malicious users that can invalidate the purpose and effect of such a referral system or
program. Essentially, there are two strategies for addressing this issue.

The first approach is restricting access to the referral system by regulating users and en-
suring each real-world person can only participate once, using a single address or any other
form of identification in the program. While this can be relatively simple in centralized
environments, it becomes a much more complex task in decentralized systems. Although
there are methods to include this in decentralized systems e.g., using blockchain oracles
and off-chain data (cf. Section 2.3.7 or 3.4), these solutions can introduce centralized
elements into the system, compromising the overall degree of decentralization.

The second approach is comparably more straightforward. Malicious actors exploit a
system’s vulnerabilities only when they can derive some form of usually financial benefit.
Hence, adapting the design and architecture to make exploiting the system unprofitable
or unattractive for users can prevent attacks similar to the previously discussed access
control or restriction. Financial disincentives are a common approach to ensure security
by design in decentralized environments. Moreover, this method does not result in any
compromises in the system’s degree of decentralization. As the ultimate goal is to create
a solution that is as decentralized as possible, this second approach appears to be more
suitable in the context of this thesis.

The proposed design solution involves allowing only referral payments or payment transac-
tions within the referral process. The concept of referral payment transactions is depicted
in Figure 4.3. Essentially, every referral transaction must include some form of financial
assets to ensure the negative stimulus of these transactions for malicious users. There
are no effects on the referral process related to how referees and referrers communicate or
refer each other (cf. Figure 4.3 A).

Thereon, instead of arbitrary transactions e.g., register transactions as illustrated in Fig-
ure 4.2, each transaction represents a payment and thus includes assets transferred from

4.4. DEFERRAL - SOLUTION ARCHITECTURE AND DESIGN 33

Figure 4.3: Conceptual Design of Referral Payment Transactions

the participating referee to another address (cf. Figure 4.3 B). Consequently, participa-
tion in the referral system and sending transactions comes with costs. Such payment
transactions have been, and continue to be, a common measure or requirement in vari-
ous referral program conditions (cf. Section 2.2.1.3). In this way, the referral process is
connected to user payments when purchasing any service or product. Legitimate users
can benefit from the referral program and potential rewards as cash back for purchases
(cf. Figure 4.3 C). Malicious users, conversely, are unlikely to exploit the system since
every referral payment transaction is associated with costs. Ultimately, it is possible to
implement a design where the rewards do not outweigh the costs of the payment and
therefore discourage potential Sybil attacks.

4.4 Deferral - Solution Architecture and Design

This section outlines Deferral, including its fundamental architecture for decentralized
referral systems and the design of the different solution contracts. The Deferral solution
relates not only to one design but to a set of potential solution designs for smart contracts
that share a common architecture. They differ in a few aspects related to their design,
especially from the technical implementation point of view. However, a common base
architecture is shared among all the solution designs. A more technical deep-dive into the
various prototype designs and implementations can be found in Chapter 5.

4.4.1 Referral Payment Evaluator

The final solution architecture is displayed in Figure 4.4 and extends to the concept of re-
ferral payments (cf. Figure 4.3). The fundamental solution architecture remains straight-
forward. At the core of the architecture is the referral payment evaluator component.

34 CHAPTER 4. DESIGN AND ARCHITECTURE

Figure 4.4: Deferral Solution Architecture

The referral payment evaluator is a smart contract that can be deployed decentrally on a
blockchain that supports smart contracts (cf. Chapter 2). The evaluator smart contract
fulfills multiple functions.

Firstly, it acts as a kind of proxy or transmitter for the payment transactions received
by the referees (cf. Figure 4.3 B). Referral payment transactions sent to the contract
are accepted or declined and subsequently forwarded to an address, i.e., a user, stored
on the contract (cf. Figure 4.3 C). This receiver represents the wallet or account of
the company responsible for the referral system, which would deploy and operate it. The
referral payment evaluator contract is designed to implement the referral payment concept
discussed before. A referral system with this chosen design can be implemented in any
use case or scenario where a company accepts cryptocurrency payments.

Second, the evaluator smart contract is responsible for evaluating the referral process.
Based on the recorded payment transactions, it collects the data necessary to evaluate
the referral processes against the defined referral conditions. The design of the referral
conditions is discussed in more detail in the upcoming sections. Lastly, the referral pay-
ment evaluator contract is also responsible for distributing the rewards. The users or
addresses eligible for rewards and the number of rewards are determined by the process
evaluation and eventually distributed by the smart contract.

Besides the referral payment evaluator component i.e., smart contract, other entities
exist in the solution architecture e.g., the receiver, referrer, or referee. However, most
solution designs introduced in the next section mainly affect the referral payment evaluator
contract and its implementation.

4.4.2 Deferral Solution

The Deferral solution design comprises multiple smart contracts representing different ap-
proaches or solutions for decentralized referral systems. The first solution contract starts

4.4. DEFERRAL - SOLUTION ARCHITECTURE AND DESIGN 35

with a simple design and is gradually enhanced with features for extending the contract’s
process evaluation or reward distribution logic. Thereon, all major changes inside a con-
tract would lead to a new version of a Deferral solution contract. The versioning of the
different contracts is based on changes made either from a logical perspective, such as
when functionality was added or removed from the contract, or from an implementation
standpoint, where the code was changed, but the underlying logic remained the same.
This chapter does not cover the implementation and code changes between the different
contract versions. These aspects are discussed and evaluated in Chapters 5 and 6, respec-
tively. With this approach, each contract represents a distinct version of a solution design.
Preserving the different contract versions is beneficial for the evaluation as it allows the
different contracts to be assessed against one another.

The subsequent sections define the various solution designs and smart contract versions.
The design and functionality are explained for each solution with an overview of the
referral conditions and a solution classification according to Section 3.3.

4.4.2.1 Referral Payment Transmitters

The first set of solution contracts and their design is referred to as referral payment
transmitters. In total, there are three versions of referral payment transmitter contracts.
Version one of the payment transmitter smart contracts served as a proof of concept for the
solution architecture and thus is kept simple. This contract’s main and only function is to
accept payment from referees and forward a proportion to the receiver and another to the
referrer. The contract design is depicted in Figure 4.5. The functionality of forwarding or
transmitting a payment to a receiver is essential and shared among all upcoming solution
contracts. The exact amount of the payment, the amount of the referral reward, and the
address of the payment receiver are stored on the contract. Besides that, there is no other
data stored on the transmitter contract. The payment amount and referral reward are
stored as absolute numbers. All these values are fixed and can only be adjusted by the
contract owner. The payment amount must always be bigger than the referral reward
amount. Referees have to send a referral payment transaction to the smart contract. In
this case, the payment transaction must send the exact amount of a native cryptocurrency
asset set on the contract e.g., 5 ETH in the case of Ethereum, and include a valid address
in the transaction data representing the user who referred them (cf. Figure 4.5). The
address included in the transaction represents the referrer or the referrer’s address.

Based on the incoming referral transactions, the assets are either forwarded as a payment
to the receiver’s address or sent to the referrer’s address as a reward. Further, Figure 4.5
sequentially portrays how the referral payment transaction triggers the forwarding of the
payment and distribution of the rewards always within the same transaction execution
(cf. [1] marked red in Figure 4.5).

Referral Conditions: The referral conditions for the referral payment transmitter solu-
tion design are very clear. Referees must send a referral payment transaction to the
contract, including a valid referrer address and the exact amount of cryptocurrency asset
required and defined by the contract. If the transaction succeeds, the referral conditions
are fulfilled, and a predefined proportion of the payment amount is sent to the referrer’s

36 CHAPTER 4. DESIGN AND ARCHITECTURE

Figure 4.5: Solution Design for the Referral Payment Transmitter Architecture

address as a referral reward. The rest of the payment amount is forwarded to the re-
ceiver’s address. Hence the referral system contract operates as a trivial payment proxy
or transmitter. This kind of logic is used as a base and included in some form in all
solution designs that is discussed in the upcoming sections.

Referral System Classification: The referral payment transmitter solution has no restric-
tion regarding qualified users that can participate in the referral system e.g., every valid
address can be used as a referrer address. The allocation of the rewards is one-sided, as
only the referrer receives a proportion of the payment. Lastly, the reward distribution
only happens on one level as only one referrer receives rewards, and no referral chain is
formed, including multiple levels of referrer addresses.

Moreover, there is a second and third version of payment transmitter contracts. These con-
tracts have the same logic and functionality as version one but incorporate an upgradable
pattern [97]. Detailed information about the upgradable pattern and its implementation
can be found in Section 5.2.1. A key aspect of these upgradable contracts from a design
point of view is their ability to allow the contract owner to modify and update the con-
tract’s implementation post-deployment, unlike regular smart contracts, which cannot be
altered once deployed.

Consequently, this introduces a certain level of centralization to the contracts and the
referral system. With upgradable smart contracts, there is a trade-off between the flexi-
bility and security provided, which enable fixing bugs or adapting referral conditions after
the deployment, and the potential for misuse or changes that could negatively impact the
referral systems functionality and its users. From here on, all contracts are implemented
with the upgradable pattern, accepting a certain degree of centralization. Implement-
ing security advantages primarily drove the decision to use upgradable smart contacts.
However, all contracts could easily be adapted and implemented without an upgradable
pattern, removing the accepted degree of centralization.

4.4. DEFERRAL - SOLUTION ARCHITECTURE AND DESIGN 37

4.4.2.2 Referral Payment Quantity Evaluators

Extending on the referral payment transmitter design, the referral payment quantity so-
lution introduces a few changes and extensions. Both of the referral payment quantity
contracts are upgradable as well [97]. The contracts store the receiver address and the rel-
ative proportion of the payment amount distributed to the referrers as percentage values
on the contract. Additionally, the contract stores the payment quantity threshold value.
The payment quantity threshold value is used to evaluate the referral process.

The main difference between the payment transmitter and payment quantity contracts
lies in the referral conditions or the evaluation of the referral process. As for the pay-
ment transmitters, every process was completed after one successful payment that sent
an exact predefined amount of crypto assets. In this solution design, referral payment
transactions no longer require sending a predefined amount of crypto assets. Instead, the
referral processes are only complete if referees have made more payments as defined in the
payment quantity threshold value. For instance, if the payment quantity threshold is two,
the referee has completed the referral process with the third payment transaction. How-
ever, in this case, there are no requirements or limitations for the value sent within each
payment. Within this transaction that exceeds the threshold value, the referral process is
evaluated as complete, and the rewards are distributed to the referrer. In Figure 4.6, this
is illustrated as the referral payment transaction, and forwarding of the payment always
occurs in every referral transaction (cf. [1] in Figure 4.6). Nonetheless, the distribution
of the referral rewards only happens if the referral process has been completed (cf. [2] in
Figure 4.6).

In a scenario where the referral process is completed within the first referral payment
transaction e.g., the payment quantity threshold value is set to zero, the sequential flow
of the referral process (cf. marked red in Figure 4.6) would be equal to the referral
payment transmitter design discussed before (cf. marked red in Figure 4.5).

The rewards are calculated from the total and accumulated value the referee has sent over
all the recorded transactions and the reward percentage value defined on the contract.
For example, suppose the referee has sent a total of 600 ETH over three transactions and
the payment value threshold is two, and the referral reward is set to 10%. In that case,
the contract sends 60 ETH to the referrer’s address within the third referral payment
transaction (cf. Figure 4.6).

Therefore, the contract has to store additional data about the referral payment transac-
tions of every user. The contract stores the corresponding referrer address provided for
every referee’s address during the first referral transaction. It always stores the referrer
address sent within the initial payment transaction. Hence, if a referee changes the re-
ferrer’s address during one of the later referral payment transactions, it does not affect
the referral process. Additionally, it keeps track of the total payment value and quantity
across all the transactions a particular referee executes. Referees cannot set their address
as the referrer’s, as the two must be distinct. Further, the contract stores if the referral
process has already been completed for a particular referee address. Once a referee com-
pletes the referral process, their address becomes ineligible for sending further payment
transactions to the referral payment quantity contract.

38 CHAPTER 4. DESIGN AND ARCHITECTURE

Figure 4.6: Solution Design for the Referral Payment Quantity Architecture

Referral Conditions: The referral conditions for the referral payment quantity contracts
require the users i.e., referees, to send x + 1 payment transactions where x is the payment
quantity threshold set and stored on the contract. At this point, it is to say that the
contract owner can update the value for the payment quantity threshold. As a result,
the referral conditions can change during the referral process. From an implementation
point of view, this has no effect as the contract and referral process still work correctly
and as expected. However, the flexibility this provides to the program provider i.e.,
contract owner, could confuse the user side. The ability to change this value could also
be prevented, and the contract could be adapted. The resulting trade-off and discussion
are similar to the argument about using upgradable contracts.

Referral System Classification: Regarding classification, the referral payment quantity
contracts remain almost identical to the previous referral payment transmitters. The re-
ward allocation is one-sided, and the distribution happens on one reward level. Regarding
qualified users, there is one small difference: referees cannot refer themselves, which was
not present in the first version of the referral payment transmitter contract. However, the
third version of the referral payment transmitter has also already introduced this small
limitation concerning qualified users.

4.4.2.3 Referral Payment Value Evaluators

The next category of solution designs is referred to as referral payment value evaluators.
Especially the first version of the referral payment value contract is very similar to the
previously discussed referral payment quantity contracts. They store the same values on
the contract, with one exception. A payment value threshold value replaces the payment
quantity threshold value. This payment value threshold is used uniformly for the referral
process evaluation. The referees must send payment transactions with a total accumulated
value exceeding the contract’s defined payment value threshold. The referral process is
completed with the first payment transaction, where the total payment value exceeds the

4.4. DEFERRAL - SOLUTION ARCHITECTURE AND DESIGN 39

Figure 4.7: Solution Design for V2 of the Referral Payment Value Architecture

Figure 4.8: Solution Design for V3 of the Referral Payment Value Architecture

threshold value. Other than that, the data stored and the rest of the functionality are the
same as described above for the referral payment quantity contracts (cf. Figure 4.6).

The second and the third referral payment value contracts differ slightly from the first
version. In the second version, the referral rewards are not sent directly and within the
same payment transaction that completes the referral process. Instead, the referral reward
amount is stored for eligible referrer addresses on the contract. Hence if the referee has
completed the process, the corresponding referrer can send a claim transaction to the
contract to claim and receive the rewards (cf. [2A] and [2B] in Figure 4.7). This includes
an additional step between the completion of the referral process and the distribution
of the rewards. Thereby, the reward distribution is slowed down and must be initiated
explicitly by the user. More about the effects and implications of this design change is
discussed in Chapters 5 and 6.

40 CHAPTER 4. DESIGN AND ARCHITECTURE

The third version of the contract introduces a more flexible reward distribution system by
incorporating a referee reward percentage. It allows both the referrer and the referee to
benefit from the referral process. The contract stores a referee referral reward percentage
value. This referee reward percentage value defines the proportion of the referral reward
distributed to the referee. Hence, the referral reward is split between the referrer and the
referee based on the specified referee reward percentage (cf. Figure 4.8). The contract
calculates the reward for the referee by multiplying the referral reward with the referee
reward percentage, and the remaining reward is then distributed to the referrer. For
instance, if we assume a referee reward percentage value of 25% and take the example
form above where the referral reward for the referrer is 60 ETH, the referee would receive
15 ETH, and the referrer would receive 45 ETH. Therefore the referral system ensures
that both parties benefit from the referral rewards. Furthermore, by adjusting the referee
reward percentage value, the contract can distribute rewards exclusively to the referrer
when set to 0% or to the referee when set to 100%. This flexibility allows this contract
version to adapt to different use cases and requirements.

Referral Conditions: The referral conditions are the same for all versions of the payment
value contracts. Compared to the referral payment quantity contracts, the referral con-
ditions require the total accumulated value of all payment transactions per referee to be
greater than y, where y is the payment value threshold set on the contract.

Referral System Classification: Concerning the classification, versions one and two can be
classified similarly to the previous solution contracts. They imply the same limitations on
qualified users, one-sided reward allocation, and single-level reward distribution. Never-
theless, version three of the payment value evaluator contracts introduces the possibility
of adjusting the reward allocation arbitrarily with the referee reward percentage value
stored on the contract. Thus, the reward allocation can be either one-sided or two-sided.

4.4.2.4 Referral Payment Multilevel Reward Evaluators

The multilevel reward evaluator contracts combine referral process evaluation character-
istics from the referral payment quantity and value contracts. Further, they introduce
new functionality concerning reward distribution. This solution design combines the re-
ferral conditions from the payment quantity and payment value contracts. Hence, the
contract stores both a payment quantity and a threshold value. To complete a referral
process, a referee has to send a certain amount of payment transactions that, on the one
hand, surpass the defined payment quantity threshold in terms of transactions sent and,
on the other hand, exceed the payment value limit in terms of total accumulated value
sent through the payments.

There are two versions of referral payment multilevel reward evaluator contracts. Both
versions’ main functionality is distributing rewards to the most recent referrer and multiple
previous referrers. Hence, as the name implies, the referral rewards are distributed on
multiple referral levels. For example, if user (A) is referred by user (B), who was in turn
referred by user (C), upon completion of the referral process by user (A), both user (B)
(referrer of user A) and user (C) (referrer of user B) receive a portion of the referral rewards
(cf. Figure 4.9). This creates a referral chain including all prior referrers, with rewards

4.4. DEFERRAL - SOLUTION ARCHITECTURE AND DESIGN 41

Figure 4.9: Solution Design for V1 of the Referral Payment Multilevel Rewards Architecture

distributed along the chain. Although different reward distributions could be employed
for each level, the rewards are equally split among all eligible referrers. Consequently, if
the referral reward in this example is 60 ETH, both users (B) and (C) would receive 30
ETH each.

In the case of the first version of the multilevel rewards contract, there is no restriction
on the length of the referral chain. As a result, rewards are distributed to all previous
referrers up until the initial i.e., root referrer. Especially with very large referral chains,
this can become problematic and inefficient. A detailed evaluation of the implications of
this design choice and the impact of long referral chains can be found in Chapter 6.

The second version of the multilevel rewards contracts incorporates two additional fea-
tures. Firstly, it reintroduces a referee reward percentage value, enabling two-sided referral
rewards similar to the third version of the referral payment value contracts (cf. Sec-
tion 4.4.2.3). Secondly, it includes a maximum reward level value stored on the contract.
This value determines the maximum length of the referral chain for reward distribution
i.e., to how many previous referrers the rewards are distributed (cf. Figure 4.10).

In an exemplary scenario, user (1) is referred by user (2), who is then referred by user (3),
who is, in turn, referred by user (4), and so on. The maximum reward level value on the
contract is set to three. If user (1) completes the referral process, the referral rewards are
distributed to the three nearest referrers of user (1) up along the referral chain. Assuming
the total reward is 60 ETH and all of the rewards are distributed to the referrers i.e., the
referee reward percentage is set to 0%, user (2), user (3), and user (4), would each receive
a reward of 20 ETH. If the maximum reward level is six, starting from user (2) to user
(7), every referrer would receive 10 ETH.

If, in the same example, the referral contract has defined a referee reward percentage value
of greater than0%, e.g., 50%, 30 ETH would be sent to the referee who completed the

42 CHAPTER 4. DESIGN AND ARCHITECTURE

Figure 4.10: Solution Design for V2 of the Referral Payment Multilevel Rewards Architecture

process. The other 30 ETH would be distributed equally to the eligible referrers along
the referral chain (cf. Figure 4.10).

Referral Conditions: All versions of the referral payment multilevel reward contract re-
quire the referees to send x + 1 payment transactions where x is the payment quantity.
Additionally, the total accumulated value of all payment transactions per referee must be
greater than y, where y is the payment value threshold set on the contract. Thus, the
referral conditions combine the previous referral payment quantity and referral payment
value contract versions.

Referral System Classification: When examining the two multilevel reward contracts, it is
evident that they can be categorized as multilevel due to their distinct reward distribution.
Regarding reward allocation, version one permits only one-sided rewards, while version
two enables the distribution of two-sided rewards. The contract owner is responsible for
determining and setting the reward split.

Both multilevel reward contracts incorporate an additional constraint concerning qualified
users. Previously, the sole restriction was that referrers could not refer themselves, mean-
ing the referrer’s address could not match the referee’s address. This limitation remains
in place for these contracts. However, an additional restriction requires every referrer to
be a registered user who has done a payment transaction before i.e., a customer. This
specification dictates that every referrer must have completed a referral payment transac-
tion, registering their address on the contract without a corresponding referrer address. If
an address is registered on the contract without a referrer, it is considered a root referrer.
Hence, sending referral payment transactions to the contracts is now possible without a
referrer address to enable this functionality. For this kind of regular payment transac-
tion, all the sent assets are forwarded to the receiver, and the sender is registered as a
root referrer. Consequently, the multilevel rewards contracts impose a stricter criterion

4.4. DEFERRAL - SOLUTION ARCHITECTURE AND DESIGN 43

Figure 4.11: Solution Design for V1 of the Referral Token Multilevel Rewards Architecture

on qualified users who can become referrers. Only customers i.e., registered users, are
permitted to serve as referrers.

4.4.2.5 Referral Payment Multilevel Token Reward Evaluators

The final solution contract incorporates multilevel token rewards. It closely resembles
version two of the multilevel rewards contract. The primary distinction is that with this
design, an arbitrary ERC20 token can now be utilized as a cryptocurrency for referral
payments instead of native cryptocurrency assets. Consequently, both the forwarded pay-
ment and referral rewards are sent, received, and distributed in the form of an ERC20
token (cf. Figure 4.11). The multilevel token reward contract permits and accepts only
one predefined token. This ERC20 token must be stored on the contract. As opposed to
all previous solution designs updating the values used for evaluation of the referral process
e.g., payment quantity or value thresholds, the ERC20 currency token stored on the con-
tract cannot be updated after the initial creation of the referral contract. Changing the
currency token for ongoing referral processes and referral payments would lead to incon-
sistencies in the process evaluations and reward distribution. Apart from this difference,
the multilevel token reward design remains consistent with the previous solution.

Introducing the possibility of using an ERC20 token as the currency of the referral system
opens doors to additional use cases of such a system. For instance, multiple different com-
panies i.e., their referral systems could use the same ERC20 token as a reward. Thereby
users could earn the same rewards across multiple referral systems, which would create a
shared referral reward ecosystem. Such an ecosystem could open new doors for further
marketing activities. For instance, rewards in the form of ERC20 could be integrated into
the DeFi space, making the tokens tradable on a DEX.

44 CHAPTER 4. DESIGN AND ARCHITECTURE

Referral Conditions: The referral conditions outlined for the token multilevel reward
contract remain consistent with those previously detailed in Section 4.4.2.4.

Referral System Classification: Also, the classification stays the same compared to version
two of the multilevel reward contracts. The same restrictions apply to qualified users.
Rewards are allocated two-sided and are distributed on multiple levels.

4.5 Evaluation Metrics and Measures

Various similar and continuously extended solution designs have been introduced in the
previous sections. With multiple solution designs, it is crucial to have metrics and mea-
sures in place that can be used to evaluate and compare the contracts against each other.
These metrics can reveal benefits or inefficiencies about the different design choices for
the referral evaluator contracts. Consequently, this section discusses the evaluation mea-
sures that are important to consider within this thesis. Broadly, the significant factors
fall into three primary categories, cost, performance, and security. A detailed discussion
on the specific metrics employed for evaluating these categories, their application, and
measurement methods is conducted in Chapter 6.

4.5.1 Costs

Cost evaluation is fundamental for all the presented solution designs. The decentralized
referral systems in the form of smart contracts involve financial assets and require re-
sources to execute referral payment transactions as well as to provide and deploy the
referral contract. Hence, the costs of the referral systems can be evaluated from a user
and a provider perspective. Moreover, transactions on the blockchain unavoidably cause
costs. Different design decisions and implementations of the referral contracts initiate
varying costs. Thus, the transaction or deployment costs can help to identify the most
economically viable solution design.

4.5.2 Performance and Scalability

Consequently, the solutions must be analyzed in terms of performance and scalability.
Examining how the various contracts manage high volumes of participating users and the
resulting influx of referral payment transactions is vital. The analysis should consider
how the costs evolve and respond to the increased load and help identify bottlenecks and
areas for optimization of the solution design

4.5.3 Security

Conclusively, the security of each of the solutions cannot be overlooked. The implemen-
tation of the contracts should be inspected to identify potential vulnerabilities and attack
vectors, ensuring the selected solution’s resilience against hacks and malicious actors.

Chapter 5

Deferral - Implementation

This chapter dives into the implementation of the Deferral solution. All the different
solution designs and smart contracts outlined in Chapter 4 are discussed. To start with,
the development environment and setup, together with the solution technology stack
and the repository structure, are introduced. Afterwards, the Deferral smart contracts
code and implementation are illustrated and discussed. Lastly, other aspects of the final
solutions, including all the tests, scripts, and other source code that has been developed,
are presented.

5.1 Development Environment and Setup

The Deferral solution implemented as part of this thesis is organized and collected within
two GitHub Repositories. The two repositories contain all the implemented source code
and corresponding files relevant to the thesis. The main Deferral repository [132] entails
all the solution smart contracts, their tests, as well as various scripts for the deployment
and evaluation of the contracts and their results.

The second Deferral Visualization GitHub repository [133], is a submodule or subrepos-
itory of the main Deferral repository and includes all relevant scripts used for analyzing
and visualizing the generated results of the Deferral evaluation processes.

For more general information or details about the implementation, please refer directly
to the two repositories [132, 133] and their respective README.md files.

5.1.1 Solution Technology Stack

The following sections introduce the main technologies and solutions that have been used
during the implementation. In part, it outlines the reasoning behind the technology
decisions that have been made. For a complete overview of all the technologies used,
please refer to the GitHub repositories [132, 133].

45

46 CHAPTER 5. DEFERRAL - IMPLEMENTATION

5.1.1.1 Development Environment and Tools

Among others, the following technologies or tools have been used to support the develop-
ment of the Deferral Solution during the implementation phase:

• Hardhat: The Hardhat development environment has been used as it facilitates
building, testing, and deploying smart contracts onto different networks, including
local or test networks [61]. It provides Hardhat scripts for task automation and a
local Hardhat network that facilitates contract testing.

• TypeScript: The majority of the implemented code is written in TypeScript [135],
enabling a better development experience and maintainability while improving code
quality.

• Yarn: In combination with Hardhat, the yarn package manager [151] has been used
to integrate executable scripts that would allow for easier and quicker deployment,
evaluation, and testing of the developed smart contracts.

• Chat GPT: The Chat GPT AI model [94] has been used to support the imple-
mentation process by offering code suggestions, debugging assistance, producing
documentation, or answering technical questions.

5.1.1.2 Smart Contracts

For the Deferral solution smart contracts, the following technologies or tools have been
used:

• Solidity: All the smart contracts have been written in Solidity [127]. This allowed
for implementing EVM-compatible smart contracts that can be used and tested on
multiple blockchains within the broad and well-established Ethereum ecosystem.

• Solcover: Solcover [129] is a code coverage tool for Solidity contracts that enables
measuring and testing coverage for smart contracts.

• TypeChain: In combination with Hardhat [61], TypeScript [135] and Solidity [127]
TypeChain [134] has been used. TypeChain helps to create TypeScript bindings for
Ethereum smart contracts, providing type-safe interactions and reducing the risk of
errors.

5.1.1.3 Data Analysis and Visualization

Within the Deferral Visualizations sub-repository [133], the subsequent technologies have
been utilized:

• Python: For analyzing and visualizing the result data, Python has been used[109].

• Plotly: The Plotly graphing library [104] for Python has been used to create visu-
alizations.

5.1. DEVELOPMENT ENVIRONMENT AND SETUP 47

5.1.1.4 Code Quality and Linters

Eventually, the following supportive tools have ensured code quality during the develop-
ment of all the source code:

• ESLint: EsLint [52] offers linting utilities that help maintain code quality and enforce
coding standards.

• Solhint: Solhint [107] is a linter and code style checker for Solidity code, ensuring
smart contract code quality and adherence to best practices.

• Prettier: The Prettier code formatter [106] enforces consistent style across code
source files, improving readability and maintainability.

5.1.2 Continuous Integration

Within the Deferral repository [132], a Continuous Integration (CI) workflow is set up
using GitHub Actions [57] to run various checks and tests on the codebase automatically.
The CI job includes the following steps:

• Checkout the repository, install Node.js [93] and all the dependencies.

• Lint the code, compile the contracts and generate TypeChain [134] bindings

• Run all the Hardhat [61] smart contract tests and report the Solidity code coverage.

The workflow is defined in the .github/workflows/test.yml file and executed on work-
flow dispatch, pull requests, and pushes to the main branch in the Deferral repository.
This CI automation adds another layer of code quality and maintainability as all the code
that lies on the main branch complies with the code quality checks and smart contract
tests.

5.1.3 Repository and Folder Structure

To wrap up the development environment and setup, the overall project or folder structure
of the Deferral repository is broadly outlined to provide a better overview of the different
parts of the implementation. Again, only the most relevant folders are listed here. For
a complete overview, the GitHub repositories can be considered [132, 133]. The Deferral
project is structured as follows:

/

contracts/: all solution smart contracts

referral-evaluators/

48 CHAPTER 5. DEFERRAL - IMPLEMENTATION

referral-multilevel-token-rewards/

referral-payment-multilevel-rewards/

referral-payment-quantity/

referral-payment-transmitter/

referral-payment-value/

.../

helpers/: helper functions for testing, deployment, & evaluation of contracts

logs/: stores generated log files of deployments & evaluations of contracts

deployments/

evaluations/

results/: result data & visualizations used for the evaluation in Chap-

ter 6

scripts/: scripts for testing, deploying & evaluating contracts

deployment/

.../

evaluation/

.../

test/: all tests for the smart contracts grouped by their design

referral-multilevel-token-rewards/

referral-payment-multilevel-rewards/

referral-payment-quantity/

referral-payment-transmitter/

referral-payment-value/

.../

visualizations-deferral/: submodule for visualization & analysis code

5.2 Referral Evaluator Smart Contracts

Within the upcoming sections, the main components of the Deferral solution implementa-
tion, the prototype referral evaluator smart contracts, are reviewed and discussed. Similar
to Chapter 4 the multiple contracts are grouped by their underlying design. However, at
this point, the focus lies more on their technical implementation and the Solidity code.

For each of the contracts, a Unified Modeling Language (UML) class diagram has been
generated [126]. The class diagrams visually represent the contracts’ structures, vari-
ables, and functions combined with other features of the Solidity code. In this context,
a generate_contract_diagrams.sh shell script has been implemented to generate and
store UML visualizations of each contract automatically. The script can be found in the
Deferral repository [132]. Furthermore, for other excerpts or snippets of the Solidity code
that are shown in these sections, the complete source code can be found in the Deferral
repository as well. Further, examples of larger code listings showing details about the
implementation of the Solidity contracts can be found in the Appendix in Section C.

5.2. REFERRAL EVALUATOR SMART CONTRACTS 49

V1ReferralPaymentTransmitter
contracts/referral-evaluators/referral-payment-transmitter/V1ReferralPaymentTransmitter.sol

Public:
 receiver: address
 paymentAmount: uint256
 referralReward: uint256

External:
 <<payable>> forwardReferralPayment(_referrerAddress: address) <<exactAmount>>
Public:
 <<event>> Referral(referrer: address, referee: address)
 <<event>> ReceiverUpdated(oldReceiver: address, newReceiver: address)
 <<event>> PaymentAmountUpdated(oldPrice: uint256, newPrice: uint256)
 <<event>> ReferralRewardUpdated(oldReward: uint256, newReward: uint256)
 <<modifier>> exactAmount()
 constructor(_receiver: address, _amount: uint256, _referralReward: uint256)
 updateReceiverAddress(_newReceiverAddress: address) <<onlyOwner>>
 updatePaymentAmount(_newPaymentAmount: uint256) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>

Figure 5.1: UML Class Diagram of the V1ReferralPaymentTransmitter Contract

5.2.1 Referral Payment Transmitter Contracts

The referral payment transmitter referral contracts implement the simplest solution for a
decentralized referral system prototype as outlined in Section 4.4.2.1.

5.2.1.1 V1ReferralPaymentTransmitter

Figure 5.1 illustrates the implementation of the V1ReferralPaymentTransmitter smart
contract. It shows the three different variables that are stored on the contract. The pay-
mentAmount value defines the exact value that must be sent within every referral payment
transaction. Every referral transaction has to call the forwardReferralPayment function
and send the correct amount of native cryptocurrency assets. A valid _referrerAddress

argument must be included for the function call. The forwardReferralPayment function is
set as external i.e., can only be called by other contracts or accounts and accepts native
cryptocurrency assets as indicated by the payable keyword (cf. Figure 5.1).

1 contrac t V1ReferralPaymentTransmitter i s Ownable {
2 [. . .]
3 // modifier to guarantee the exact amount

4 modi f i e r exactAmount () {
5 requ i re (
6 msg . value == paymentAmount ,
7 "tx must send exact payment amount"

8) ;
9 ;
10 }
11 [. . .]
12 }

Listing 5.1: exactAmount Modifier of V1ReferralPaymentTransmitter

50 CHAPTER 5. DEFERRAL - IMPLEMENTATION

Furthermore, the function accepts payments only if they match the exact amount of assets
specified in the paymentAmount value stored on the contract. A custom exactAmount func-
tion modifier has been defined to achieve this. The implementation of this modifier and its
application in the forwardReferralPayment function can be observed in Listings 5.1 and
5.2 respectively. The code excerpts also show that the V1ReferralPaymentTransmitter
contract utilizes the Ownable contract template by OpenZeppelin [95]. The Ownable

template provides simple access control for the contract by defining a single owner of
the contract restricting certain public functions (cf. Figure 5.1) that can update values
stored on the contract to be performed only by the owner.

Moreover, the referralReward value defines the proportion of the paymentAmount that is
sent to the _referrerAddress account. Therein, the code enforces the referralReward
always to be smaller than the paymentAmount as it can be observed in Listings C.1 and
C.2. The receiver address stored on the contract specifies the target account for receiving
the referral payments.

1 contrac t V1ReferralPaymentTransmitter i s Ownable {
2 [. . .]
3
4 // forward paymentAmount to the receiver and send referralReward to

↪→ the referrerAddress

5 f unc t i on forwardReferralPayment (
6 address payable r e f e r r e rAdd r e s s
7) ex te rna l payable exactAmount {
8 uint256 receiverAmount = msg . value − r e f e r ra lReward ;
9 uint256 referrerRewardAmount = msg . value − receiverAmount ;

10 // forward payment to receiver

11 r e c e i v e r . t r an s f e r (receiverAmount) ;
12 // send referral rewards to referrer

13 r e f e r r e rAdd r e s s . t r an s f e r (referrerRewardAmount) ;
14 emit Re f e r r a l (r e f e r r e rAddr e s s , msg . sender) ;
15 }
16
17 [. . .]
18 }

Listing 5.2: forwardReferralPayment Function of V1ReferralPaymentTransmitter

Eventually, Figure 5.1 also depicts the various events that are used and emitted in
the V1ReferralPaymentTransmitter contract. The names of the different events im-
ply on which occasion they are emitted. For instance, as can be seen in Listing 5.2, the
Referral event is emitted every time a referral process i.e., referral payment is com-
pleted. The primary purpose of events is to log information about the happenings of
the V1ReferralPaymentTransmitter contract to the blockchain. Nonetheless, the events

defined in this as well as all the other smart contracts implemented, have not been further
utilized in this thesis.

5.2. REFERRAL EVALUATOR SMART CONTRACTS 51

V2ReferralPaymentTransmitterUpgradable
contracts/referral-evaluators/referral-payment-transmitter/V2ReferralPaymentTransmitterUpgradable.sol

Public:
 receiver: address
 paymentAmount: uint256
 referralReward: uint256

Public:
 initialize(_receiver: address, _amount: uint256, _referralReward: uint256) <<initializer>>

Figure 5.2: UML Class Diagram of the V2ReferralPaymentTransmitterUpgradable Contract

5.2.1.2 V2ReferralPaymentTransmitterUpgradable

As discussed in Section 4.4.2.1, the V2ReferralPaymentTransmitterUpgradable imple-
ments the upgrades pattern by OpenZeppelin [97]. To do so, the contract utilizes the
Initializable template [96]. This template allows secure and seamless improvements
to smart contracts that have already been deployed to the blockchain.

1 contrac t V2ReferralPaymentTransmitterUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 // upgradable -contracts initializer --> set receiver address and

↪→ referral conditions

4 f unc t i on i n i t i a l i z e (
5 address payable r e c e i v e r ,
6 uint256 amount ,
7 uint256 r e f e r ra lReward
8) pub l i c i n i t i a l i z e r {
9 // set owner

10 Ownable in i t () ;
11 requ i re (
12 amount > re f e r ra lReward ,
13 "reward must be portion of paymentAmount"

14) ;
15 r e c e i v e r = r e c e i v e r ;
16 paymentAmount = amount ;
17 re f e r ra lReward = re f e r ra lReward ;
18 }
19 [. . .]
20 }

Listing 5.3: initialize Function of V2ReferralPaymentTransmitterUpgradable

In comparison to the first version contract, the V2ReferralPaymentTransmitterUpgradable
has no constructor method (cf. Listing C.1). Instead, in order to implement the upgrad-
able pattern, it includes an initialize function (cf. Figures 5.1 and 5.2). Inside the
initialize method, the contract variables that are stored on the proxy contract are set,
and the OwnableUpgradeable template is initialized, as can be observed in Listing 5.3.
The OwnableUpgradeable provides the same functionality as the Ownable template im-
plemented in the V1ReferralPaymentTransmitter contract but adjusted to work with the
Initializable template.

52 CHAPTER 5. DEFERRAL - IMPLEMENTATION

V3ReferralPaymentTransmitterUpgradable
contracts/referral-evaluators/referral-payment-transmitter/V3ReferralPaymentTransmitterUpgradable.sol

Public:
 receiver: address
 paymentAmount: uint256
 referralReward: uint256

External:
 <<payable>> forwardReferralPayment(_referrerAddress: address) <<exactAmount>>
Public:
 <<event>> Referral(referrer: address, referee: address)
 <<event>> ReceiverUpdated(oldReceiver: address, newReceiver: address)
 <<event>> PaymentAmountUpdated(oldPrice: uint256, newPrice: uint256)
 <<event>> ReferralRewardUpdated(oldReward: uint256, newReward: uint256)
 <<modifier>> exactAmount()
 initialize(_receiver: address, _amount: uint256, _referralReward: uint256) <<initializer>>
 updateReceiverAddress(_newReceiverAddress: address) <<onlyOwner>>
 updatePaymentAmount(_newPaymentAmount: uint256) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>

Figure 5.3: UML Class Diagram of the V3ReferralPaymentTransmitterUpgradable Contract

When deploying an upgradable or initializable smart contract, a proxy and implemen-

tation contract are deployed to work together and enable upgradeability. Therein, the
proxy contract stores the state variables and delegates all function calls to the imple-

mentation contract, which contains the contract logic. Once an upgrade is needed, the
proxy’s reference value to the implementation contract is updated. After the update, the
proxy contract points and delegates all calls to a new implementation contract. In this
way, the stored state is preserved in the proxy contract, while the logic can be upgraded
in a new implementation contract.

The primary purpose of the V2ReferralPaymentTransmitterUpgradable implementation
was to test the upgradable pattern. Hence, it misses the logic required to provide a
decentralized referral system. This functionality is incorporated again in the third version
of the referral payment transmitter contracts.

5.2.1.3 V3ReferralPaymentTransmitterUpgradable

The V3ReferralPaymentTransmitterUpgradable contract (cf. Figure 5.3) replicates the
logic and referral process of the V1ReferralPaymentTransmitter, as described in Section
5.2.1.1. It also implements the upgradable pattern introduced in the previous section for
the V2ReferralPaymentTransmitterUpgradable contract (cf. Listing 5.3). After all, it
presents the final and upgradable version of the referral system implementing the referral
payment transmitter design. The complete implementation of this contract can be found
in the Deferral main repository [132].

5.2. REFERRAL EVALUATOR SMART CONTRACTS 53

<<Struct>>
ReferralProcess

contracts/referral-evaluators/referral-payment-quantity/V1ReferralPaymentQuantityUpgradable.sol

referralProcessCompleted: bool
referrerAddressHasBeenSet: bool
referrerAddress: address
paymentsValue: uint256
paymentsQuantity: uint256

V1ReferralPaymentQuantityUpgradable
contracts/referral-evaluators/referral-payment-quantity/V1ReferralPaymentQuantityUpgradable.sol

Public:
 receiverAddress: address
 rewardPercentage: uint256
 paymentsQuantityThreshold: uint256
 refereeProcessMapping: mapping(address=>ReferralProcess)

Internal:
 setReferrerAddress(_refereeAddress: address, _referrerAddress: address)
 evaluateProcess(_referee: address)
 update(_referee: address, _referrer: address, _amount: uint)
External:
 <<payable>> registerReferralPayment(_referrerAddress: address)
Public:
 <<event>> ReferralCompleted(referee: address, referrer: address)
 <<event>> ReferralConditionsUpdated(referee: address)
 <<event>> ReceiverUpdated(newReceiver: address)
 <<event>> RewardUpdated(newReward: uint256)
 <<event>> QuantityThresholdUpdated(newQuantityThreshold: uint256)
 initialize(_receiver: address, _rewardPercentage: uint256, _paymentsQuantityThreshold: uint256) <<initializer>>
 updateReceiverAddress(_updatedReceiverAddress: address) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>
 updateQuantityThreshold(_newPaymentsQuantityThreshold: uint256) <<onlyOwner>>
 getBalance(): uint

Figure 5.4: UML Class Diagram of the V1ReferralPaymentQuantityUpgradable Contract

5.2.2 Referral Payment Quantity Evaluator Contracts

As discussed in Section 4.4.2.2, the referral payment quantity evaluator contracts in-
troduce an extended referral system applying a more complex evaluation of the referral
process. Both versions entail the same logic and functionality. Nevertheless, they differ
in their implementation.

5.2.2.1 V1ReferralPaymentQuantityUpgradable

The components of the V1ReferralPaymentQuantityUpgradable contract implementation
are shown in Figure 5.4. Part of it is the registerReferralPayment method, which
accepts and registers referral payments. As can be perceived in the corresponding UML
class diagram (cf. Figure 5.4), this function no more implements a custom modifier for
the exact amount of native assets that must be sent within the referral transaction.

54 CHAPTER 5. DEFERRAL - IMPLEMENTATION

As the V1ReferralPaymentQuantityUpgradable contract is designed to evaluate the re-
ferral process of referees by the number i.e., quantity of referral payment transactions
a referee has completed, it stores a mapping named refereeProcessMapping (cf. List-
ing 5.4). In this mapping, every referee address is mapped to a ReferralProcess struct.

1 contrac t V1ReferralPaymentQuantityUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 // mapping for referees including their data for referral conditions

↪→ progress

4 mapping (address => Re f e r r a lP ro c e s s) pub l i c re fereeProcessMapping ;
5 [. . .]
6 }

Listing 5.4: refereeProcessMapping of the V1ReferralPaymentQuantityUpgradable

The ReferralProcess struct is a custom data type that allows to store and manage
multiple variables related to the referral process of every referee under a single entity (cf.
Figure 5.4). Listing 5.5 outlines the definition of the ReferralProcess struct. The five
different struct values stored within the refereeProcessMapping are required for the
contract to evaluate the referral process. In the course of every incoming referral payment
transaction, these values are updated by the internal update function before they are
evaluated to see if the process has been completed.

1 contrac t V1ReferralPaymentQuantityUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 s t ru c t Re f e r r a lP ro c e s s {
4 // set true if the referral has been successful & rewards have been

↪→ paid out

5 bool r e f e r ra lProce s sComple t ed ;
6 // set true if the referrer address has been set

7 bool re fe r rerAddressHasBeenSet ;
8 address payable r e f e r r e rAdd r e s s ;
9 uint256 paymentsValue ;

10 uint256 paymentsQuantity ;
11 }
12 [. . .]
13 }

Listing 5.5: ReferralProcess Struct of V1ReferralPaymentQuantityUpgradable

A referee’s referral process is evaluated within the evaluateProcess method. Listing 5.6
indicates how the referral process data is evaluated in the evaluateProcess method.
Moreover, Listing 5.7 shows the registerReferralPayment function of the contract and
how the evaluateProcess method is called in every referral transaction after the process
data has been updated.

1 contrac t V1ReferralPaymentQuantityUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on eva lua teProce s s (address r e f e r e e) i n t e r n a l {
4 Re f e r r a lP ro c e s s s torage cur r entProce s s = re fereeProcessMapping [
5 r e f e r e e

5.2. REFERRAL EVALUATOR SMART CONTRACTS 55

6] ;
7 // require referrer address has been set

8 requ i re (
9 cur r entProce s s . re ferrerAddressHasBeenSet ,
10 "Referrer Address has not been set for this referee"

11) ;
12
13 i f (cu r r entProce s s . paymentsQuantity > paymentsQuantityThreshold) {
14 uint256 calculatedReward = (cur r entProce s s . paymentsValue / 100)

↪→ ∗
15 rewardPercentage ;
16 requ i re (
17 address (t h i s) . balance >= calculatedReward ,
18 "Contract has not enough funds to pay rewards"

19) ;
20 cur r entProce s s . r e f e r r e rAdd r e s s . t r an s f e r (calculatedReward) ;
21 cur r entProce s s . r e f e r ra lProce s sComple t ed = true ;
22 emit Referra lCompleted (r e f e r e e , cu r r entProce s s . r e f e r r e rAdd r e s s

↪→) ;
23 }
24 }
25 [. . .]
26 }

Listing 5.6: evaluateProcess Function of V1ReferralPaymentQuantityUpgradable

Besides the evaluateProcess function, there are two other internal methods imple-
mented in the V1ReferralPaymentQuantityUpgradable contract (cf. Figure 5.4). Inter-
nal methods can only be called within the contract itself.

1 contrac t V1ReferralPaymentQuantityUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 // register & forward payment and update referral process data

4 f unc t i on r eg i s t e rRe f e r ra lPayment (
5 address payable r e f e r r e rAdd r e s s
6) exte rna l payable {
7 requ i re (msg . sender != r e f e r r e rAddr e s s , "Sender cannot be referrer"

↪→) ;
8 // get current referee process data

9 Re f e r r a lP ro c e s s s torage cur r entProce s s = re fereeProcessMapping [
10 msg . sender
11] ;
12
13 // referral process must not be completed

14 requ i re (
15 ! cur r entProce s s . r e f e r ra lProces sComple ted ,
16 "Referral process has been completed for this address"

17) ;
18 // update progress

19 update (msg . sender , r e f e r r e rAddr e s s , msg . value) ;
20 // calculate reward and payment prices

21 uint256 reward = (msg . value / 100) ∗ rewardPercentage ;
22 uint256 receiverAmount = msg . value − reward ;
23 // evaluate referral progress and if complete payout rewards

24 eva lua teProce s s (msg . sender) ;

56 CHAPTER 5. DEFERRAL - IMPLEMENTATION

<<Struct>>
ReferralProcess

contracts/referral-evaluators/referral-payment-quantity/V2ReferralPaymentQuantityUpgradable.sol

referralProcessCompleted: bool
referrerAddressHasBeenSet: bool
referrerAddress: address
paymentsValue: uint256
paymentsQuantity: uint256

V2ReferralPaymentQuantityUpgradable
contracts/referral-evaluators/referral-payment-quantity/V2ReferralPaymentQuantityUpgradable.sol

Public:
 receiverAddress: address
 rewardPercentage: uint256
 paymentsQuantityThreshold: uint256
 refereeProcessMapping: mapping(address=>ReferralProcess)

External:
 <<payable>> registerReferralPayment(_referrerAddress: address)
Public:
 <<event>> ReferralCompleted(referee: address, referrer: address)
 <<event>> ReferralConditionsUpdated(referee: address)
 <<event>> ReceiverUpdated(newReceiver: address)
 <<event>> RewardUpdated(newReward: uint256)
 <<event>> QuantityThresholdUpdated(newQuantityThreshold: uint256)
 initialize(_receiver: address, _rewardPercentage: uint256, _paymentsQuantityThreshold: uint256) <<initializer>>
 updateReceiverAddress(_updatedReceiverAddress: address) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>
 updateQuantityThreshold(_newPaymentsQuantityThreshold: uint256) <<onlyOwner>>
 getBalance(): uint

Figure 5.5: UML Class Diagram of the V2ReferralPaymentQuantityUpgradable Contract

25 // forward payment to receiver

26 r e c e i ve rAddre s s . t r an s f e r (receiverAmount) ;
27 }
28 [. . .]
29 }

Listing 5.7: registerReferralPayment Function of V1ReferralPaymentQuantityUpgradable

As covered in Section 4.4.2.2, a referral process is completed if the paymentsQuantity

value stored in the ReferralProcess struct exceeds the paymentsQuantityThreshold
stored on the contract. Therein, the evaluateProcess method calculates the referral re-
ward amount based on the total paymentValue, which has been continuously stored and
updated in the ReferralProcess struct of the corresponding referee (cf. Listing 5.6).
To calculate the eventual rewards, the rewardPercentage value that is stored on the
contract is multiplied by the total paymentValue of the ReferralProcess struct. In
addition, the rewardPercentage is restricted by the contract’s implementation to repre-
sent a percentage value as can be seen in the initialize and updateReferralReward and
initialize functions in Listings C.3 and C.4. Lastly, as part of the evaluateProcess

method, the calculated reward is sent to the corresponding referrer of the referee who has
completed the process, and the referral process is marked as completed (cf. Listing 5.6).

5.2. REFERRAL EVALUATOR SMART CONTRACTS 57

5.2.2.2 V2ReferralPaymentQuantityUpgradable

The V2ReferralPaymentQuantityUpgradable contract implements the same logic and func-
tionality as version one of the referral payment quantity contracts. However, the UML
class diagram in Figure 5.5 delineates that instead of splitting up the functionality in
separate and internal functions as it has been done in version one, the contract keeps all
the logic in fewer but therefore, larger functions. The registerReferralPayment func-
tion of the V2ReferralPaymentQuantityUpgradable contract shown in in the Appendix in
Listing C.5 exemplifies this.

While this approach can negatively affect the readability of the contract, especially with
larger and more complex code, it can have benefits regarding costs. The effects on the costs
of this approach for implementing the V2ReferralPaymentQuantityUpgradable contract
are discussed in the upcoming Chapter 6.

5.2.3 Referral Payment Value Evaluator Contracts

The referral payment value evaluator contracts follow a similar design as the referral
payment quantity evaluator contracts discussed before (cf. Section 4.4.2.3). Further,
version two and version three of the payment value evaluator contracts include extended
functionality in terms of the reward allocation and the reward distribution.

5.2.3.1 V1ReferralPaymentValueUpgradable

To begin with, the implementation of the V1ReferralPaymentValueUpgradable contracts
is comparable to version two of the referral payment quantity contracts. Instead of storing
a quantity threshold value to evaluate the number of referral payments done, it saves the
paymentsValueThreshold value on the contract.(cf. Figure 5.6). This value is used to
evaluate the referral process not only within this version of the contract but also in versions
two and three, which are covered in the upcoming sections.

The paymentsValueThreshold is utilized in the registerReferralPayment function
to evaluate the referral process, as can be observed in Listing C.6. Therein the pay-

mentsValue variable of the ReferralProcess struct is compared to the paymentsVal-

ueThreshold.

Apart from that, the contract’s implementation follows the code of version two of the
referral payment quantity contracts, as outlined previously (cf. Section 5.2.2.2).

5.2.3.2 V2ReferralPaymentValueUpgradable

Next, the UML class diagram in Figure 5.7 demonstrates how version two of the referral
payment value contracts differs from version one. Version two of the contract implements

58 CHAPTER 5. DEFERRAL - IMPLEMENTATION

<<Struct>>
ReferralProcess

contracts/referral-evaluators/referral-payment-value/V1ReferralPaymentValueUpgradable.sol

referralProcessCompleted: bool
referrerAddressHasBeenSet: bool
referrerAddress: address
paymentsValue: uint256
paymentsQuantity: uint256

V1ReferralPaymentValueUpgradable
contracts/referral-evaluators/referral-payment-value/V1ReferralPaymentValueUpgradable.sol

Public:
 receiverAddress: address
 rewardPercentage: uint256
 paymentsValueThreshold: uint256
 refereeProcessMapping: mapping(address=>ReferralProcess)

External:
 <<payable>> registerReferralPayment(_referrerAddress: address)
Public:
 <<event>> ReferralCompleted(referee: address, referrer: address)
 <<event>> ReferralConditionsUpdated(referee: address)
 <<event>> ReceiverUpdated(newReceiver: address)
 <<event>> RewardUpdated(newReward: uint256)
 <<event>> ValueThresholdUpdated(newValueThreshold: uint256)
 initialize(_receiver: address, _rewardPercentage: uint256, _paymentsValueThreshold: uint256) <<initializer>>
 updateReceiverAddress(_updatedReceiverAddress: address) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>
 updateValueThreshold(_newPaymentsValueThreshold: uint256) <<onlyOwner>>
 getBalance(): uint

Figure 5.6: UML Class Diagram of the V1ReferralPaymentValueUpgradable Contract

5.2. REFERRAL EVALUATOR SMART CONTRACTS 59

<<Struct>>
ReferralProcess

contracts/referral-evaluators/referral-payment-value/V2ReferralPaymentValueUpgradable.sol

referralProcessCompleted: bool
referrerAddressHasBeenSet: bool
referrerAddress: address
paymentsValue: uint256
paymentsQuantity: uint256

V2ReferralPaymentValueUpgradable
contracts/referral-evaluators/referral-payment-value/V2ReferralPaymentValueUpgradable.sol

Public:
 receiverAddress: address
 rewardPercentage: uint256
 paymentsValueThreshold: uint256
 refereeProcessMapping: mapping(address=>ReferralProcess)
 claimableRewardMapping: mapping(address=>uint256)

External:
 <<payable>> registerReferralPayment(_referrerAddress: address)
Public:
 <<event>> ReferralCompleted(referee: address, referrer: address)
 <<event>> ReferralConditionsUpdated(referee: address)
 <<event>> ReceiverUpdated(newReceiver: address)
 <<event>> RewardUpdated(newReward: uint256)
 <<event>> ValueThresholdUpdated(newValueThreshold: uint256)
 <<event>> ReferralRewardsAllocated(allocatedAddress: address)
 <<event>> ClaimedRewards(claimerAddress: address, amount: uint256)
 claimRewards()
 initialize(_receiver: address, _rewardPercentage: uint256, _valueThreshold: uint256) <<initializer>>
 updateReceiverAddress(_updatedReceiverAddress: address) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>
 updateValueThreshold(_newValueThreshold: uint256) <<onlyOwner>>
 getBalance(): uint

Figure 5.7: UML Class Diagram of the V2ReferralPaymentValueUpgradable Contract

60 CHAPTER 5. DEFERRAL - IMPLEMENTATION

an additional feature related to the reward distribution. Therefore, there are two main
differences in the implementation of this version.

The V2ReferralPaymentValueUpgradable contract stores an additional mapping named
claimableRewardMapping, as it is illustrated in Figure 5.7. This mapping assigns a
positive numeric uint256 value to an address. The value saved for each address in this
mapping represents the reward that is claimable on the contract. Claimable rewards can
be collected or claimed by the users with the respective addresses that are assigned to
the value in the claimableRewardMapping.

1 contrac t V2ReferralPaymentValueUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on claimRewards () pub l i c {
4 uint256 rewards = claimableRewardMapping [msg . sender] ;
5 requ i re (rewards > 0 , "No rewards to claim") ;
6 claimableRewardMapping [msg . sender] = 0 ;
7 payable (msg . sender) . t r an s f e r (rewards) ;
8 emit ClaimedRewards (msg . sender , rewards) ;
9 }

10 [. . .]
11 }

Listing 5.8: claimRewards Function of V2ReferralPaymentValueUpgradable

Consequently, the contract also does not send the rewards directly to the eligible users in
the registerReferralPayment method, as implemented in the previous contracts. The
V2ReferralPaymentValueUpgradable contract keeps and stores the assets i.e., the amount
of reward an address is eligible for in the claimableRewardMapping. If the register-

ReferralPayment function in Listing C.7 is compared with previous implementations of
this functions e.g., in Listing C.6, the difference becomes evident.

Users can check whether they can claim any rewards in the mapping. If users are eligible
for rewards, they can call the claimRewards function of the contract to retrieve their
referral rewards (cf. Listing 5.6).

5.2.3.3 V3ReferralPaymentValueUpgradable

The features added in version two for the reward distribution are not implemented for ver-
sion three of the referral payment value contracts. Thus, the reward distribution is handled
as it was done before in version one. Nonetheless, the V3ReferralPaymentValueUpgradable
contract implements the functionality to adapt the reward allocation. This is achieved by
storing a refereeRewardPercentage variable on the contract and adapting the regis-

terReferralPayment function of the contract (cf. Figure 5.7). The refereeRewardPer-
centage is also restricted to be a percentage value.

As it can be observed in Listing C.8, based on the calculatedTotalReward, the reward-
Percentage and the refereeRewardPercentage, the rewards for the referrer and the
referee are calculated in the registerReferralPayment function if a referral process has

5.2. REFERRAL EVALUATOR SMART CONTRACTS 61

<<Struct>>
ReferralProcess

contracts/referral-evaluators/referral-payment-value/V3ReferralPaymentValueUpgradable.sol

referralProcessCompleted: bool
referrerAddressHasBeenSet: bool
referrerAddress: address
paymentsValue: uint256
paymentsQuantity: uint256

V3ReferralPaymentValueUpgradable
contracts/referral-evaluators/referral-payment-value/V3ReferralPaymentValueUpgradable.sol

Public:
 receiverAddress: address
 rewardPercentage: uint256
 refereeRewardPercentage: uint256
 paymentsValueThreshold: uint256
 refereeProcessMapping: mapping(address=>ReferralProcess)

External:
 <<payable>> registerReferralPayment(_referrerAddress: address)
Public:
 <<event>> ReferralCompleted(referee: address, referrer: address)
 <<event>> ReferralConditionsUpdated(referee: address)
 <<event>> ReceiverUpdated(newReceiver: address)
 <<event>> RewardUpdated(newReward: uint256)
 <<event>> ValueThresholdUpdated(newValueThreshold: uint256)
 <<event>> RefereeRewardAllocationPercentageChanged(newRefereeRewardAllocation: uint256)
 <<event>> RefereeRewardsDistributed(distributedAddress: address)
 <<event>> ReferrerRewardsDistributed(distributedAddress: address)
 initialize(_receiver: address, _rewardPercentage: uint256, _refereeRewardAllocationPercentage: uint256, _valueThreshold: uint256) <<initializer>>
 updateReceiverAddress(_updatedReceiverAddress: address) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>
 updateValueThreshold(_newValueThreshold: uint256) <<onlyOwner>>
 updateRefereeReward(_newRefereeRewardAllocationPercentage: uint256) <<onlyOwner>>
 getBalance(): uint

Figure 5.8: UML Class Diagram of the V3ReferralPaymentValueUpgradable Solidity Contract

62 CHAPTER 5. DEFERRAL - IMPLEMENTATION

<<Struct>>
ReferralProcess

contracts/referral-evaluators/referral-payment-multilevel-rewards/V1ReferralMultilevelRewardsUpgradable.sol

isRoot: bool
referralProcessCompleted: bool
referrerAddressHasBeenSet: bool
parentReferrerAddress: address
paymentsValue: uint256
paymentsQuantity: uint256

V1ReferralMultilevelRewardsUpgradable
contracts/referral-evaluators/referral-payment-multilevel-rewards/V1ReferralMultilevelRewardsUpgradable.sol

Public:
 receiverAddress: address
 rewardPercentage: uint256
 paymentsQuantityThreshold: uint256
 paymentsValueThreshold: uint256
 refereeProcessMapping: mapping(address=>ReferralProcess)

Internal:
 updateReferralProcess(_referee: address, _referrer: address, _paymentValue: uint)
 evaluateReferralProcess(_referee: address)
 distributeRewards(_referee: address)
 getAllParentReferrerAddresses(_referee: address): address[]
 forwardPayment(_paymentValue: uint256)
External:
 <<payable>> registerReferralPayment()
 <<payable>> registerReferralPayment(_referrerAddress: address)
Public:
 <<event>> PaymentReferralCreated(owner: address, receiverAddress: address)
 <<event>> ReferralCompleted(referee: address)
 <<event>> ReferralRewardsDistributed(referrer: address)
 <<event>> ReferralConditionsUpdated(referee: address)
 <<event>> RootReferrerRegistered(rootAddress: address)
 <<event>> ReceiverAddressChanged(newReceiver: address)
 <<event>> RewardPercentageChanged(newReward: uint256)
 <<event>> PaymentsValueThresholdChanged(newValueThreshold: uint256)
 <<event>> PaymentsQuantityThresholdChanged(newQuantityThreshold: uint256)
 initialize(_receiverAddress: address, _rewardPercentage: uint256, _paymentsQuantityThreshold: uint256, _paymentsValueThreshold: uint256) <<initializer>>
 getBalance(): uint
 updateReceiverAddress(_updatedReceiverAddress: address) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>
 updatePaymentsQuantityThreshold(_newPaymentsQuantityThreshold: uint256) <<onlyOwner>>
 updatePaymentsValueThreshold(_newPaymentsValueThreshold: uint256) <<onlyOwner>>

Figure 5.9: UML Class Diagram of the V1ReferralMultilevelRewardsUpgradable Contract

been evaluated as completed. Thereafter, the resulting and potentially two-sided rewards
are sent to the referrer as well as the referee.

5.2.4 Referral Payment Multilevel Reward Evaluator Contracts

The referral payment multilevel evaluator contracts include and combine multiple different
aspects of the implementation of the referral payment quantity as well as value contracts.
Their main characteristic is related to the reward distribution, which can happen on
multiple levels as characterized before in Section 4.4.2.4.

Within the previous implementations of solution contracts that have been shown in the
sections before, it becomes apparent that the code inside the large functions e.g., for the
registerReferralPayment function in Listings C.6, C.7 or C.8, is getting increasingly
hard to overview and lacks readability. Based on this, and the fact that the payment
multilevel contracts combine and introduce new logic and functionality, the code in the
upcoming implementation is split into multiple methods again. Thereby, both versions of
the payment multilevel contracts incorporate several internal functions again to improve
the readability of the Solidity code.

5.2. REFERRAL EVALUATOR SMART CONTRACTS 63

5.2.4.1 V1ReferralMultilevelRewardsUpgradable

The UML class diagram of the V1ReferralMultilevelRewardsUpgradable contract in Fig-
ure 5.9 portrays that there is a paymentsQuantityThreshold value as well as a pay-

mentsValueThreshold stored on the contract. Listing 5.9 shows how these two values
are used to evaluate a referral process in the internal evaluateReferralProcess func-
tion. Thereby, the paymentsQuantityThreshold is assessed against the paymentsQuan-

tity and the paymentsValueThreshold against the paymentsValue values that are both
stored in the ReferralProcess struct.

1 contrac t V1Referra lMult i leve lRewardsUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable { [. . .]

2 f unc t i on eva l ua t eRe f e r r a lP ro c e s s (address r e f e r e e) i n t e r n a l {
3 Re f e r r a lP ro c e s s s torage r e f e r e eP r o c e s s = re fereeProcessMapping [
4 r e f e r e e
5] ;
6 // require referrer address has been set

7 requ i re (
8 r e f e r e eP r o c e s s . re ferrerAddressHasBeenSet ,
9 "Referrer Address has not been set for this referee"

10) ;
11 // check if thresholds for payments value and quantity are

↪→ surpassed

12 i f (
13 r e f e r e eP r o c e s s . paymentsValue > paymentsValueThreshold &&
14 r e f e r e eP r o c e s s . paymentsQuantity > paymentsQuantityThreshold
15) {
16 d i s t r ibuteRewards (r e f e r e e) ;
17 // referral process is completed

18 r e f e r e eP r o c e s s . r e f e r ra lProce s sComple t ed = true ;
19 emit Referra lCompleted (r e f e r e e) ;
20 }
21 }
22 [. . .]
23 }

Listing 5.9: evaluateReferralProcess Function of V1ReferralMultilevelRewardsUpgradable

On closer inspection of the UML class diagram, it also shows that the referral payment
multilevel reward contract implements two functions named registerReferralPayment.
The difference between these functions is that one requires a _referrerAddress argu-
ment of type address, and the other method has no function parameters (cf. Figure 5.9).
This Solidity concept, called function overloading [128], allows defining multiple functions
with the same name but different parameter types within a single contract. Thereon, the
appropriate function version is called based on the provided input arguments. The func-
tion overloading is needed since, as discussed in Section 4.4.2.4, the multilevel rewards
contracts design introduces the restriction that only customers i.e., registered users, can
be used as valid referrers. Hence, to become a registered user or customer, there must
be a possibility to execute payments to the contract without specifying a referrer ad-

dress. This is handled by the registerReferralPayment function overloading. Thus,
the first or empty registerReferralPayment function with no parameters as it is shown
in Listing C.9 registers the sender of the referral payment transaction in the refereeP-

64 CHAPTER 5. DEFERRAL - IMPLEMENTATION

rocessMapping as a root referrer. In addition, this function handles the case when the
sender has already been registered as a referee. Thereon, it just updates and evaluates the
referral process values in the ReferralProcess struct and forwards the payment to the
receiver. Hence, already registered referees can also send transactions without a referrer
address. Their corresponding referrer address has already been set within their first
transaction call of the registerReferralPayment that includes the _referrerAddress

parameter shown in Listing C.10.

1 contrac t V1Referra lMult i leve lRewardsUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on di s t r ibuteRewards (address r e f e r e e) i n t e r n a l {
4 Re f e r r a lP ro c e s s s torage completedProcess = re fereeProcessMapping [
5 r e f e r e e
6] ;
7 // calculate the reward for the referrer

8 uint256 ca l cu la tedRefe r re rReward = (completedProcess . paymentsValue
↪→ /

9 100) ∗ rewardPercentage ;
10 // get all address that are eligible for rewards

11 requ i re (
12 address (t h i s) . balance >= calcu latedReferrerReward ,
13 "Contract has not enough funds to pay rewards"

14) ;
15 // get all eligible referral addresses

16 address payable []
17 memory rewardAddresses = getAl lParentRe f e r r e rAddre s s e s (r e f e r e e

↪→) ;
18
19 // calculate reward per referrer

20 uint256 numberOfRewardAddresses = rewardAddresses . l ength ;
21
22 uint256 rewardProport ion = ca lcu la tedRefe r re rReward /
23 numberOfRewardAddresses ;
24
25 uint256 i = 0 ;
26 // distribute rewards to all referrers

27 whi le (i < numberOfRewardAddresses) {
28 rewardAddresses [i] . t r an s f e r (rewardProport ion) ;
29 emit Refer ra lRewardsDis t r ibuted (rewardAddresses [i]) ;
30 i++;
31 }
32 }
33 [. . .]
34 }

Listing 5.10: distributeRewards Function of V1ReferralMultilevelRewardsUpgradable

After all, to participate and become a valid referrer, users must either execute the empty
registerReferralPayment function outlined in Listing C.9 to become a root referrer or
call the regular registerReferralPayment with a valid referrer address and become a
referee as it is depicted in Listing C.10.

Furthermore, the two registerReferralPayment functions illustrated in Listings C.9
and C.10 call the evaluateReferralProcess function (cf. Listing 5.9) which in turn

5.2. REFERRAL EVALUATOR SMART CONTRACTS 65

<<Struct>>
ReferralProcess

contracts/referral-evaluators/referral-payment-multilevel-rewards/V2ReferralMultilevelRewardsUpgradable.sol

isRoot: bool
referralProcessCompleted: bool
referrerAddressHasBeenSet: bool
parentReferrerAddress: address
paymentsValue: uint256
paymentsQuantity: uint256

V2ReferralMultilevelRewardsUpgradable
contracts/referral-evaluators/referral-payment-multilevel-rewards/V2ReferralMultilevelRewardsUpgradable.sol

Public:
 receiverAddress: address
 rewardPercentage: uint256
 refereeRewardPercentage: uint256
 paymentsQuantityThreshold: uint256
 paymentsValueThreshold: uint256
 maxRewardLevels: uint256
 refereeProcessMapping: mapping(address=>ReferralProcess)

Internal:
 updateReferralProcess(_referee: address, _referrer: address, _paymentValue: uint256)
 evaluateReferralProcess(_referee: address)
 distributeRewards(_referee: address)
 getAllParentReferrerAddresses(_referee: address): (parentReferrerAddresses: address[])
 forwardPayment(_paymentValue: uint256)
External:
 <<payable>> registerReferralPayment()
 <<payable>> registerReferralPayment(_referrerAddress: address)
Public:
 <<event>> PaymentReferralCreated(owner: address, receiverAddress: address, referralPercentage: uint256)
 <<event>> ReferralCompleted(referee: address)
 <<event>> RefereeRewardsDistributed(refereeAddress: address, amount: uint256)
 <<event>> ReferralRewardsDistributed(distributedAddress: address, rewardAmount: uint256)
 <<event>> ReferralConditionsUpdated(referee: address)
 <<event>> RootReferrerRegistered(rootAddress: address)

<<event>> PaymentRegistered(sender: address, amount: uint256)
 <<event>> PaymentForwarded(receiverAddress: address, amount: uint256)
 <<event>> ReceiverAddressChanged(newReceiver: address)
 <<event>> RewardPercentageChanged(newReward: uint256)
 <<event>> RefereeRewardPercentageChanged(newRefereeRewardPercentage: uint256)
 <<event>> PaymentsValueThresholdChanged(newValueThreshold: uint256)
 <<event>> PaymentsQuantityThresholdChanged(newQuantityThreshold: uint256)
 <<event>> MaxRewardLevelsChanged(newMaxRewardLevels: uint256)
 initialize(_receiverAddress: address, _rewardPercentage: uint256, _refereeRewardPercentage: uint256, _paymentsQuantityThreshold: uint256, _paymentsValueThreshold: uint256, _maxRewardLevels: uint256) <<initializer>>
 getBalance(): uint
 updateReceiverAddress(_updatedReceiverAddress: address) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>
 updateRefereeReward(_newRefereeRewardPercentage: uint256) <<onlyOwner>>
 updatePaymentsQuantityThreshold(_newPaymentsQuantityThreshold: uint256) <<onlyOwner>>
 updatePaymentsValueThreshold(_newPaymentsValueThreshold: uint256) <<onlyOwner>>
 updateMaxRewardLevels(_newMaxRewardLevels: uint256) <<onlyOwner>>

Figure 5.10: UML Class Diagram of the V2ReferralMultilevelRewardsUpgradable Contract

executes the distributeRewards method if a referral process has been completed. The
distributeRewards method can be inspected in Listing 5.10. This internal function
implements the main functionality of the referral payment multilevel rewards contracts.
It calculates the total rewards and determines all the eligible rewardAddresses. The re-
wardAddresses are defined by the internal getAllParentReferrerAddresses function
that is delineated in Listing C.11.

The getAllParentReferrerAddresses method retrieves the parentReferrerAddress

for the referee address that has completed the process. The parentReferrerAddress

that is additionally stored in the ReferralProcess struct together with a flag value
isRoot that indicates whether the current user is a root referrer or not. Thereon, the
getAllParentReferrerAddresses method checks if the parent i.e., parentReferrerAd-
dress of the referee is a referee as well or if it is a root referrer. In this way, the function
determines all included referees and referrer addresses until a root referrer is found.

Eventually, the determined rewardAddresses are returned to the distributeRewards

function, which then splits the rewards equally and sends the reward proportions to all
eligible users (cf. Listing 5.10)

66 CHAPTER 5. DEFERRAL - IMPLEMENTATION

5.2.4.2 V2ReferralMultilevelRewardsUpgradable

Version two of the referral payment multilevel reward evaluator contracts incorporates
two additional features. Therefore the contract stores two additional values, as shown in
Figure 5.10.

1 contrac t V2Referra lMult i leve lRewardsUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on di s t r ibuteRewards (address r e f e r e e) i n t e r n a l {
4 Re f e r r a lP ro c e s s s torage re f e reeCompletedProcess =

↪→ re fereeProcessMapping [
5 r e f e r e e
6] ;
7
8 // calculate the total reward based on the referee payment value/

↪→ volume

9 uint256 ca lculatedTotalReward = (re f e reeCompletedProcess .
↪→ paymentsValue ∗

10 rewardPercentage) / 100 ;
11 requ i re (
12 address (t h i s) . balance >= calculatedTotalReward ,
13 "Contract has not enough funds to pay rewards"

14) ;
15
16 // calculate and distribute referee rewards

17 uint256 re fereeReward = (calculatedTotalReward ∗
18 re fereeRewardPercentage) / 100 ;
19 payable (r e f e r e e) . t r an s f e r (re fereeReward) ;
20 emit Refer ra lRewardsDis t r ibuted (r e f e r e e , re fereeReward) ;
21
22 // calculate remaining referrer rewards

23 uint256 re f e r re rReward = calculatedTotalReward − re fereeReward ;
24 // get all eligible referral addresses

25 address payable []
26 memory rewardAddresses = getAl lParentRe f e r r e rAddre s s e s (r e f e r e e

↪→) ;
27
28 // calculate reward per referrer in reward chain

29 uint256 numberOfRewardAddresses = rewardAddresses . l ength ;
30 uint256 re f e r re rRewardProport ion = re fe r re rReward /
31 numberOfRewardAddresses ;
32
33 // distribute rewards to all eligible referrers

34 f o r (uint256 i = 0 ; i < numberOfRewardAddresses ; i++) {
35 rewardAddresses [i] . t r an s f e r (re f e r re rRewardProport ion) ;
36 emit Refer ra lRewardsDis t r ibuted (
37 rewardAddresses [i] ,
38 re f e r re rRewardProport ion
39) ;
40 }
41 }
42 [. . .]
43 }

Listing 5.11: distributeRewards Function of V2ReferralMultilevelRewardsUpgradable

5.2. REFERRAL EVALUATOR SMART CONTRACTS 67

The refereeRewardPercentage value reintroduces the possibility to define and distribute
two-sided rewards, similar to what has been discussed in the implementation of the
V3ReferralPaymentValueUpgradable contract in Section 5.2.3.3. Listing 5.11 shows how
the amount of the reward that is sent to the referee upon completion is calculated in the
distributeRewards function.

1 contrac t V2Referra lMult i leve lRewardsUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on ge tA l lParentRe f e r r e rAddre s s e s (
4 address r e f e r e e
5) i n t e r n a l view returns (address payable [] memory

↪→ parentRe fe r r e rAddre s se s) {
6 uint256 length ;
7 address currentRe fe reeAddres s = r e f e r e e ;
8
9 // loop until get to root address OR maxRewardLevels is reached

10 whi le (
11 re fereeProcessMapping [currentRe fe reeAddres s] . i sRoot != true &&
12 l ength < maxRewardLevels
13) {
14 l ength++;
15 currentRe fe reeAddres s = re fereeProcessMapping [

↪→ currentRe fe reeAddres s]
16 . parentRe fe r re rAddres s ;
17 }
18
19 parentRe fe r r e rAddre s s e s = new address payable [] (l ength) ;
20
21 currentRe fe reeAddres s = r e f e r e e ;
22 f o r (uint256 i = 0 ; i < l ength ; i++) {
23 parentRe f e r r e rAddre s s e s [i] = re fereeProcessMapping [
24 currentRe fe reeAddres s
25] . parentRe fe r re rAddres s ;
26 currentRe fe reeAddres s = parentRe fe r r e rAddre s s e s [i] ;
27 }
28
29 return parentRe fe r r e rAddre s se s ;
30 }
31 [. . .]
32 }

Listing 5.12: getAllParentReferrerAddresses Function of V2ReferralMultilevelRewardsUpgradable

Moreover, the V2ReferralMultilevelRewardsUpgradable contract implements a maxRe-

wardLevels value. As it has been illustrated in the design of this contract (cf. Sec-
tion 4.4.2.4), this value is used to limit the number of referrers or parent referrers rewards
are distributed to. Thereby, the maxRewardLevels is applied in the getAllParentRe-

ferrerAddresses function as it is displayed in Listing 5.12.

Apart from these two additional features, there are no other major differences in the
implementation of versions one and two of the multilevel rewards contracts.

68 CHAPTER 5. DEFERRAL - IMPLEMENTATION

<<Struct>>
ReferralProcess

contracts/referral-evaluators/referral-multilevel-token-rewards/V1MultilevelTokenRewardsUpgradable.sol

isRoot: bool
referralProcessCompleted: bool
referrerAddressHasBeenSet: bool
parentReferrerAddress: address
paymentsValue: uint256
paymentsQuantity: uint256

V1ReferralMultilevelTokenRewardsUpgradable
contracts/referral-evaluators/referral-multilevel-token-rewards/V1MultilevelTokenRewardsUpgradable.sol

Public:
 token: IERC20
 receiverAddress: address
 rewardPercentage: uint256
 refereeRewardPercentage: uint256
 paymentsQuantityThreshold: uint256
 paymentsValueThreshold: uint256
 maxRewardLevels: uint256
 refereeProcessMapping: mapping(address=>ReferralProcess)

Internal:
 updateReferralProcess(_referee: address, _referrer: address, _paymentValue: uint256)
 evaluateReferralProcess(_referee: address)
 distributeRewards(_referee: address)
 getAllParentReferrerAddresses(_referee: address): (parentReferrerAddresses: address[])
 forwardPayment(_paymentValue: uint256)

External:
 registerReferralPayment(_paymentValue: uint256)
 registerReferralPayment(_referrerAddress: address, _paymentValue: uint256)

Public:
 <<event>> PaymentReferralCreated(token: IERC20, owner: address, receiverAddress: address, referralPercentage: uint256)
 <<event>> ReferralCompleted(referee: address)
 <<event>> RefereeRewardsDistributed(refereeAddress: address, amount: uint256)
 <<event>> ReferralRewardsDistributed(distributedAddress: address, rewardAmount: uint256)
 <<event>> ReferralConditionsUpdated(referee: address)
 <<event>> RootReferrerRegistered(rootAddress: address)
 <<event>> PaymentRegistered(sender: address, amount: uint256)
 <<event>> PaymentForwarded(receiverAddress: address, amount: uint256)
 <<event>> ReceiverAddressChanged(newReceiver: address)
 <<event>> RewardPercentageChanged(newReward: uint256)
 <<event>> RefereeRewardPercentageChanged(newRefereeRewardPercentage: uint256)
 <<event>> PaymentsValueThresholdChanged(newValueThreshold: uint256)
 <<event>> PaymentsQuantityThresholdChanged(newQuantityThreshold: uint256)
 <<event>> MaxRewardLevelsChanged(newMaxRewardLevels: uint256)
 initialize(_token: IERC20, _receiverAddress: address, _rewardPercentage: uint256, _refereeRewardPercentage: uint256, _paymentsQuantityThreshold: uint256, _paymentsValueThreshold: uint256, _maxRewardLevels: uint256) <<initializer>>
 getBalance(): uint
 updateReceiverAddress(_updatedReceiverAddress: address) <<onlyOwner>>
 updateReferralReward(_newReferralReward: uint256) <<onlyOwner>>
 updateRefereeReward(_newRefereeRewardPercentage: uint256) <<onlyOwner>>
 updatePaymentsQuantityThreshold(_newPaymentsQuantityThreshold: uint256) <<onlyOwner>>
 updatePaymentsValueThreshold(_newPaymentsValueThreshold: uint256) <<onlyOwner>>
 updateMaxRewardLevels(_newMaxRewardLevels: uint256) <<onlyOwner>>

Figure 5.11: UML Class Diagram of the V1ReferralMultilevelTokenRewardsUpgradable Contract

5.2.5 Referral Payment Multilevel Token Reward Evaluator Contracts

The V1ReferralMultilevelTokenRewardsUpgradable contract is the last Deferral solution
smart contract that has been implemented. The implementation of this token reward
contract follows the V2ReferralMultilevelRewardsUpgradable contract. However, this to-
ken reward contract is adapted so the referral process, including accepting payments and
distributing rewards, works with a defined ERC20 token instead of native assets.

5.2.5.1 V1ReferralMultilevelTokenRewardsUpgradable

Figure 5.11 shows that compared to version two of the multilevel rewards contract (cf.
Figure 5.10), there are not many differences in the UML class diagrams. This contract
additionally stores a token value on the contract. The token value defines the ERC20
token that is set and accepted as currency for referral payment transactions. Hence, users
can only execute payments sending assets of this ERC20 token. Moreover, the UML class
diagram shows that there is no update method for this token value compared to all other
variables stored on the contract (cf. Section 4.4.2.5).

Furthermore, Figure 5.11 reveals that multiple functions of the token contract had to be
adjusted e.g., by including a _paymentValue parameter that has to be passed to indicate
the amount of ERC20 tokens that is sent within the referral payment transaction. In con-
trast to the native assets, the information about the amount of ERC20 tokens sent within

5.3. TESTS AND TESTING 69

a transaction is not included in the default transaction data. Thus, the implementation
of functions like the two registerReferralPayment or the forwardPayment method had
to be slightly adjusted.

The small code changes can also be seen in Listing C.12 that outlines the registerRefer-
ralPayment function implementation. Therein, it can be seen how the amount of token
that is specified in the _paymentValue argument of the function called is transferred from
the sender to the contract. The V1ReferralMultilevelTokenRewardsUpgradable contract
then transfers a certain amount of these tokens further to the receiver. The remaining
tokens are kept on the contract until the referral process has been completed. Thereafter
the distributeRewards function, illustrated in Listing C.13, transfers the reward tokens
to all eligible referrers and or referees.

Using an ERC20 token as the referral system currency is the only functionality added
to the solution contract designs, which cannot be reverted or neutralized by setting or
updating the values on the contract. The two-sided reward distribution can be set or unset
by adjusting the refereeRewardPercentage value on the contract. Thus, by setting this
value to 0%, the reward allocation remains one-sided for the referrer only. The same
applies to the multilevel reward distribution. By setting the maxRewardLevels value to
equal 1, rewards are only paid out on one level. However, the token reward contract
cannot work with native cryptocurrency assets and all other contracts are incompatible
with using an ERC20 token for payments.

For further code or details about the implementation of the multilevel token rewards
contract or any other solution contract that has been covered in the last few sections,
please refer to the Deferral repository on GitHub [132].

5.3 Tests and Testing

All the presented solution smart contracts have been tested with the help of Hardhat
and its built-in local Hardhat network [62]. It is possible to run the tests on a different
network. Nonetheless, all tests have been outlined to be run and executed on the local
Hardhat network since the configured accounts or users in this network have enough funds
to test the referral system functionality of the different contracts.

1 [. . .]
2 "test" : "npx hardhat test --network hardhat" ,
3 "test-transmitter -v1" : "npx hardhat test test/referral -payment-

↪→ transmitter/V1ReferralPaymentTransmitter.test.ts" ,
4 "test-transmitter -v2" : "npx hardhat test test/referral -payment-

↪→ transmitter/V2ReferralPaymentTransmitter.test.ts" ,
5 "test-transmitter -v3" : "npx hardhat test test/referral -payment-

↪→ transmitter/V3ReferralPaymentTransmitter.test.ts" ,
6 "test-transmitter -upgrades" : "npx hardhat test test/referral -payment-

↪→ transmitter/UpgradableReferralPaymentTransmitters.test.ts" ,
7 "test-quantity -v1" : "npx hardhat test test/referral -payment-quantity/

↪→ V1ReferralPaymentQuantity.test.ts" ,
8 "test-quantity -v2" : "npx hardhat test test/referral -payment-quantity/

↪→ V2ReferralPaymentQuantity.test.ts" ,

70 CHAPTER 5. DEFERRAL - IMPLEMENTATION

9 "test-value-v1" : "npx hardhat test test/referral -payment-value/

↪→ V1ReferralPaymentValue.test.ts" ,
10 "test-value-v2" : "npx hardhat test test/referral -payment-value/

↪→ V2ReferralPaymentValue.test.ts" ,
11 "test-value-v3" : "npx hardhat test test/referral -payment-value/

↪→ V3ReferralPaymentValue.test.ts" ,
12 "test-multilevel -v1" : "npx hardhat test test/referral -payment-

↪→ multilevel -rewards/V1MultilevelRewardReferral.test.ts" ,
13 "test-multilevel -v2" : "npx hardhat test test/referral -payment-

↪→ multilevel -rewards/V2MultilevelRewardReferral.test.ts" ,
14 "test-token-multilevel -v1" : "npx hardhat test test/referral -multilevel -

↪→ token-rewards/V1MultilevelTokenRewardReferral.test.ts" ,
15 [. . .]
16 }

Listing 5.13: Excerpt of the Test Scripts in the package.json File

For every Solidity contract, a separate .test file that includes all test cases for a particular
contract has been implemented. Overall, a total of 188 test cases have been written in 12
separate test files for the 11 different solution smart contracts. Since a lot of functionality
is shared among the different contracts, the test files often share lines of duplicated code
or test cases. Nevertheless, it was important to test each solution contract individually.
Thereby, if the implementation of any of the contracts was adapted or modified, it could
easily be checked if the referral system still operated as intended with the help of the
different test cases. The bigger the logic and features included in a contract, the more
code and test cases in the corresponding test file had to be implemented. Information
about the test coverage is discussed in the upcoming Chapter 6.

1 [. . .]
2 i t (‘ ${CONTRACTNAME} should update the r e f e r r a l p roce s s data c o r r e c t l y

↪→ during the uncompleted r e f e r r a l process ‘ , async () => {
3 const { r e f e r r e r , r e f e r e e , proxyContract } = await l oadFixture (
4 proce s sTes t ingF ix tu r e
5) ;
6 const i n i t i a l B a l a n c e : BigNumber = await r e f e r r e r . getBalance () ;
7 // execute n payments in order for the referral process to NOT be

↪→ completed

8 await executeReferra lPayment ({
9 execut i ons : ptPaymentsQuantityThreshold . toNumber () ,

10 r e f e r e e ,
11 r e f e r r e r ,
12 proxyContract ,
13 paymentValue : ptPaymentAmount ,
14 }) ;
15 const r e f e r ra lProce s sMapp ing = await proxyContract .

↪→ re fereeProcessMapping (
16 r e f e r e e . address
17) ;
18 // assert data is updated correctly

19 expect (r e f e r ra lProce s sMapp ing . r e f e r ra lProce s sComple t ed) . to . equal (
↪→ f a l s e) ;

20 expect (r e f e r ra lProce s sMapp ing . re fe r rerAddressHasBeenSet) . to . equal (
↪→ true) ;

21 expect (r e f e r ra lProce s sMapp ing . r e f e r r e rAdd r e s s) . to . equal (r e f e r r e r .
↪→ address) ;

5.3. TESTS AND TESTING 71

22 expect (r e f e r ra lProce s sMapp ing . paymentsValue) . to . equal (
23 ptPaymentAmount . mul (ptPaymentsQuantityThreshold)
24) ;
25 expect (r e f e r ra lProce s sMapp ing . paymentsQuantity) . to . equal (
26 ptPaymentsQuantityThreshold
27) ;
28 // assert reward has not been paid out

29 const a f t e rRe f e r r e rBa l an c e : BigNumber = await r e f e r r e r . getBalance () ;
30 const contractBa lance : BigNumber = await proxyContract . getBalance () ;
31
32 // assert balances are correct afterwards

33 expect (a f t e rRe f e r r e rBa l anc e) . to . be . c loseTo (
34 i n i t i a lBa l a n c e ,
35 TEST PRECISION DELTA
36) ;
37 expect (contractBa lance) . to . be . c loseTo (
38 ptPaymentAmount
39 . mul (ptRewardPercentage)
40 . div (100)
41 . mul (ptPaymentsQuantityThreshold) ,
42 TEST PRECISION DELTA
43) ;
44 }) ;
45 [. . .]
46 }

Listing 5.14: Example Test Case of the V1ReferralPaymentQuantity.test.ts Test File

An exemplary test case is shown in Listing 5.14. The displayed case tests if the Refer-

ralProcess data that is stored for every referee is updated correctly during the execution
of referral payment transactions where the referral process has not been completed yet
for the V1ReferralPaymentQuantityUpgradable Solidity contract.

For every referral contract i.e., referral system, test cases covering the contract deploy-
ment, updating or changing the values stored on the contract, the functionality of the
different methods, including function modifiers, and all the logic and processes of the
respective referral process have been implemented. All the Hardhat test cases can be ex-
ecuted by using the Command Line Interface (CLI). The npx hardhat test -network

hardhat command runs all test cases in the local Hardhat network. This command also
shows how the tests can be run with different -network flags on any other network that
has been defined in the hardhat.config.ts setup file. A single test file can be run by
using the npx hardhat test test/test-file.test.ts command. Lastly, for a better
and quicker developer experience, several yarn [151] scripts have been defined to run the
different test files individually. Listing 5.13 shows an excerpt of the package.json file
with the different yarn test scripts.

For more information about the test setup or the general Hardhat setup of the Deferral
project, the respective README.md files in the Deferral repository [132] or the official
Hardhat documentation [61] can be consulted.

72 CHAPTER 5. DEFERRAL - IMPLEMENTATION

5.4 Scripts

Alongside the referral smart contracts, several scripts have been implemented as part of
the solution of this thesis. All the implemented scripts are included in the Deferral [132]
and the Deferral visualizations [133] GitHub repositories.

The scripts have been implemented to either deploy the contracts, evaluate the perfor-
mance of the referral systems, or visualize the results of the evaluations. The deployment
and evaluation scripts have been implemented in TypeScript [135] and can be run via the
CLI using Hardhat [61]. The visualization scripts are written in Python [109]. In the
following sections, the different types of scripts are quickly introduced.

5.4.1 Deployment Scripts

The deployment scripts’ main purpose is to test if the Solidity smart contracts could
be used and deployed to the different networks configured in the Hardhat environment.
Hence, besides the ability to deploy a contract via the CLI, they also support the testing
of the deployment of the contracts. Again, for every solution contract, there is a separate
deployment script. Thus, there are 11 deployment scripts in total.

The deployment scripts can be executed with Hardhat via the CLI. The hardhat run

scripts/deployment/script-file-name.ts command executes a specific deployment
script. As has been done before for the tests, multiple yarn scripts have been added to
the package.json file to facilitate the deployment of the different contracts.

1 [
2 {
3 "id" : 0 ,
4 "date" : "2023-04-27T14:12:36.861Z" ,
5 "contract" : "V1ReferralMultilevelRewardsUpgradable" ,
6 "contractAddress" : "0x0549a3532Bd73C3F1b48c61beD23682095B4f502" ,
7 "signer" : "0x43b3E4bc4443cb32242b283DF4f2aF9AAe77C4DB" ,
8 "gasUsed" : "728329" ,
9 "effectiveGasPrice" : "1679631005" ,

10 "cost" : "1223323970240645" ,
11 "durationInMs" : 741.1912080002949
12 } ,
13 {
14 "id" : 1 ,
15 "date" : "2023-04-27T14:14:35.915Z" ,
16 "contract" : "V1ReferralMultilevelRewardsUpgradable" ,
17 "contractAddress" : "0x0549a3532Bd73C3F1b48c61beD23682095B4f502" ,
18 "signer" : "0x43b3E4bc4443cb32242b283DF4f2aF9AAe77C4DB" ,
19 "gasUsed" : "728329" ,
20 "effectiveGasPrice" : "1679631005" ,
21 "cost" : "1223323970240645" ,
22 "durationInMs" : 692.9108750000596
23 }
24]

Listing 5.15: V1ReferralMultilevelRewardsUpgradable Deplyoment Log File

5.4. SCRIPTS 73

One additional feature that is included in all the deployment, as well as evaluation scripts,
is logging. For every contract that is deployed via its deployment script, certain metrics
are recorded and stored in a .json file that is automatically created and stored inside the
logs/deployments/ directory on the local machine. The log files are further arranged by
the network a contract has been deployed to.

Listing 5.15 shows the log file for the deployments of version one of the multilevel rewards
contract after the corresponding deployment script has been executed twice on the Hard-
hat network. It shows the different metrics that are recorded for every contract deploy-
ment. Among others, the metrics include the date, contractAddress, gasUsed, du-

rationInMs and other information about the contract deployment. Eventually, the result-
ing deployment log file of the V1ReferralMultilevelRewardsUpgradable contract deploy-
ment is located in the referral-payment-multilevel-rewards/Hardhat-Local_31337/
folder inside the logs/deployments/ directory as mentioned before. If this contract is
deployed on the same network again, this file or list is extended with the newly recorded
data and information of this deployment.

5.4.2 Evaluation Scripts

The evaluation scripts are the most important scripts. They are responsible for evaluating
the solution smart contracts and generating and collecting data about their performance
which can then be analyzed and visualized. Hence, the evaluation scripts generate the
results data that are used as a foundation for the evaluation and discussions in Chapter 6.
However, the scripts are implemented to be easily executed and can generate new results
data quickly. In total, there are 10 different evaluation scripts.

In every evaluation script, the corresponding Solidity smart contract is deployed to the
Hardhat network. In addition, the gas costs and fiat prices for different evaluation
blockchains are fetched and retrieved within every evaluation script. The different eval-
uation blockchains and how these values are used are covered in the next chapter (cf.
Chapter 6). Thereon, a certain amount of user or Hardhat accounts are initialized and set
up. These accounts represent the users of the referral system. A few of these accounts are
used to represent the deployer of the contract, the receiver of the payments, or, in some
cases, the initial root referrer. All the remaining accounts represent users i.e., referees
and referrers of the referral system. Thus, in an example where the evaluation is done
with ten users, two or three accounts, depending on the evaluated solution contract, are
used to represent the contract deployer, the payment receiver, and, if required, the root
referrer. Consequently, in this evaluation run, seven or eight users participate as referees
and complete the referral process.

The number of users is defined by the NUMBER_OF_EVALUATION_ACCOUNTS env variable
that can be stored in a .env file. More instructions about the env variables and the .env
file can be found in the README.md file in the Deferral repository [132].

All the evaluation scripts can also be executed with Hardhat. To execute a contract-
specific evaluation, the hardhat run scripts/evaluation/evaluation-file-name.ts

command can be run via the CLI. Within the CLI command, the number of users can also

74 CHAPTER 5. DEFERRAL - IMPLEMENTATION

be adapted by adding USE_EVALUATION_ACCOUNTS=true and NUMBER_OF_EVALUATION_ACCOUNTS=x
statements to the Hardhat command, where x represents the number of total users for
the evaluation run.

1 [. . .]
2 // number of txs per user to complete the referral process

3 const txsPerUser = QUANTITY THRESHOLD. toNumber () + 1 ;
4
5 // -1 since we need a referrer for every referee

6 const l o o p I t e r a t i o n s = numberOfUsers − 1 ;
7
8 // execute transactions for signers

9 f o r (l e t i = 0 ; i < l o o p I t e r a t i o n s ; i++) {
10 const r e f e r e eUs e r = use r s [i] ;
11
12 // referrer user (addressed used as referrer address)

13 const r e f e r r e rU s e r = use r s [i + 1] ;
14 // execute required amount of txs per user to complete referral

15 f o r (l e t j = 0 ; j < txsPerUser ; j++) {
16 // referee user (executes the txs)

17
18 const txStartTime = performance . now() ;
19
20 // execute the referral payment transactions / complete referral

↪→ process

21 const referralPaymentTx = await proxyContract
22 . connect (r e f e r e eUs e r)
23 . r eg i s t e rRe f e r ra lPayment (r e f e r r e rU s e r . address , {
24 value : PAYMENTAMOUNT,
25 }) ;
26 const txEndTime = performance . now() ;
27
28 // get referral process status

29 const mapping = await proxyContract . re fe reeProcessMapping (
30 r e f e r e eUs e r . address
31) ;
32 const r e f e r ra lComple ted : boolean = mapping . r e f e r ra lProce s sComple t ed ;
33
34 // calculate tx evaluation data, including gas costs and fiat prices

35 const txEvaluationData : Transact ionEvaluationValuesType =
36 await getTxEvaluationData (
37 txStartTime ,
38 txEndTime ,
39 referralPaymentTx ,
40 bnGasPricesInWei ,
41 f i a t P r i c e s
42) ;
43 [. . .]

Listing 5.16: Excerpt of the V1ReferralPaymentQuantityUpgradable Evaluation Script

Every evaluation follows the same procedure adapted to the implementation of the corre-
sponding referral contract. An excerpt of the evaluation script for the V1ReferralPayment-
QuantityUpgradable contract is illustrated in Listing 5.16. The evaluation script com-
pletes a referral process for all users based on the referral conditions defined by the argu-
ments and values used during the contract deployment.

5.4. SCRIPTS 75

Hence, if it takes three transactions to complete a referral process, since e.g., the payment
quantity threshold in the referral conditions is set to two, three transactions are executed
for every user. Otherwise, if only one transaction is required to complete the referral
process for the evaluation of a simple payment transmitter referral contract, only one
transaction is executed. Thus, the number of transactions executed per user depends on
the number of referral payment transactions that are required to complete the referral
process (cf. txsPerUser value in Listing 5.16). The contract’s deployment arguments
i.e., the referral conditions, can be set in the code itself and are implemented so they can
easily be adjusted.

As outlined before for the deployment scripts, the evaluation scripts create and store local
log files that collect data about the different evaluation processes and transactions. The
only difference is that the evaluation log files are stored and located in the logs/evalu-
ations/ directory. More details and information about what exact data and evaluation
metrics are collected and how they are calculated are discussed in the upcoming Chapter 6.

5.4.3 Visualization Scripts

The visualization scripts help to visualize the data generated from the contract evaluation
and the evaluation scripts. The scripts and their complete implementation can be found
in the Deferral Visualizations submodule repository [133]. The data was arranged within
these scripts and eventually visualized into several charts using Plotly [104]. In total,
there are four Python visualization scripts.

First, there is the transaction_evaluations_script which loads and reads the trans-
action evaluation data of all results and visualizes the recorded and executed referral
payment transaction. Next, the evaluation_runs_evaluation_script evaluates the re-
sult data of the evaluation runs made with multiple numbers of users. Further, there is
a overall_evaluation_script script that produces visualizations useful for the overall
evaluation and analysis of the results.

Last, there is the historic_price_evaluation_script, which not only visualizes but
also analyses and fetches historic gas price and cryptocurrency price data via the Owloracle
API [98]. More details about the evaluation done in the visualization scripts can be found
directly in the code or in the README.md file of the visualization repository [133].

5.4.4 Shell Scripts

Lastly, a few different shell scripts have been implemented. These scripts are not relevant
to the final solution of this thesis. However, they improve the developer experience for
deploying and evaluating the solution contracts. Broadly, the deploy.sh script executes
all the deploy statements at once so all the contracts can be deployed by running one
command in the CLI. Moreover, especially the evaluate.sh shell script makes evaluating
the different contracts more straightforward. This script offers the possibility to adjust
the number of users in an array with values representing the number of users that should

76 CHAPTER 5. DEFERRAL - IMPLEMENTATION

be used in a complete evaluation run. In a complete evaluation run, all evaluation scripts
are executed once with the corresponding number of test users. For the visualizations,
a generate_visualization_results.sh script has been implemented, which runs all
three Python visualization scripts at the same time.

Chapter 6

Evaluation and Discussion

Within this chapter, the Deferral solution, including the various referral smart contracts,
is evaluated. In the process, the results of the evaluation are discussed before they are
assessed against the overall goal and solution requirements of this thesis. Eventually, the
results and final solution of this thesis are reviewed again in a broader scope within the
context of decentralized referral systems.

To begin with, the security of the referral smart contracts is evaluated by having a look
at the resulting test metrics. Thereafter, the primary focus lies on the analysis and
comparison of the data generated by the evaluation scripts (cf. Section 5.4.2). Based
on this evaluation data, the different smart contract solutions are benchmarked with
regard to costs and performance. The contracts are evaluated first versus the different
versions within the same solution design and second across all different solution designs
and contracts that have been introduced in Chapter 4.

6.1 Test Coverage and Security

The security of the Deferral solution and its different smart contracts is mainly ensured
by the Hardhat tests. As it has been discussed in Section 5.3, a number of test cases have
been implemented to assess the functionality and security of the contracts. Thereby the
test results that are outlined in Table 6.1 show the overall coverage for the corresponding
Solidity smart contract implementations. The code coverage is split up into measures for
statements, branches, functions, and lines coverage.

In Table 6.1, it can be observed that, aside from branch coverage, all other coverage metrics
achieve 100%. In summary, this demonstrates a well-tested evaluation of the security of
smart contracts. Nonetheless, it is important to note that the test cases primarily focus
on examining the basic functionalities of smart contracts, including completion and cycle
through the referral process. Therein the execution and evaluation of referral payments, as
well as the accurate reward distribution, is prioritized. The test cases are mainly designed
to assess the feasibility of the solution contracts within the context of this thesis, assuming
a happy path for the referral process in general.

77

78 CHAPTER 6. EVALUATION AND DISCUSSION

Referral Contract
Test Coverage

% Stmts % Branch % Funcs % Lines

referral-multilevel-token-rewards/ 100 90.74 100 100
V1MultilevelTokenRewardsUpgradable 100 90.74 100 100

referral-payment-multilevel-rewards/ 100 90 100 100
V1ReferralMultilevelRewardsUpgradable 100 86.84 100 100
V2ReferralMultilevelRewardsUpgradable 100 92.31 100 100

referral-payment-quantity/ 100 86 100 100
V1ReferralPaymentQuantityUpgradable 100 84.62 100 100
V2ReferralPaymentQuantityUpgradable 100 87.5 100 100

referral-payment-transmitter/ 100 95 100 100
V1ReferralPaymentTransmitter 100 100 100 100
V2ReferralPaymentTransmitterUpgradable 100 75 100 100
V3ReferralPaymentTransmitterUpgradable 100 95 100 100

referral-payment-value/ 100 89.47 100 100
V1ReferralPaymentValueUpgradable 100 87.5 100 100
V2ReferralPaymentValueUpgradable 100 91.67 100 100
V3ReferralPaymentValueUpgradable 100 89.29 100 100

All files 100 90 100 100

Table 6.1: Test Coverage Report for all the Referral Smart Contracts

Although the test coverage results lend support to the feasibility of the Deferral solutions,
further testing needs to be done to improve the security of the smart contracts. The
test cases do not inherently offer a comprehensive testing of the referral process and all
potential edge cases, which is also reflected in the branch coverage that hovers around 90%
(cf. Table 6.1). Further, to improve the security of the Solidity smart contracts beyond
the achieved high test coverage, it would be essential to conduct thorough peer code
reviews and perform other verification e.g., in the form of professional security reviews.
Eventually, the progressions to a real-world applicable integration of these solutions as
a decentralized referral system, and various additional aspects, including end-to-end and
real user tests, would be required.

After all, the comprehensive test cases implemented using Hardhat and the high test
coverage they achieve endorse the feasibility of the Deferral solution in terms of security
while leaving room for future improvements.

6.2 Costs and Performance

The main part of the Deferral solution evaluation deals with the costs and performance
of the implemented Solidity smart contracts and their different designs. Therein the
emphasis is placed on two aspects. First, the individual solution contracts grouped by
their solution designs are discussed and evaluated. Here, the focus lies mainly on the
costs concerning the collected gas used values. Still, all the other collected and calculated
evaluation measures (cf. Section 6.2.1) are either attached in the Appendix or can be

6.2. COSTS AND PERFORMANCE 79

found in the results folder in the Deferral repository [132].

Second, the overall results are evaluated across all the different solution contracts. This
broader evaluation incorporates external aspects such as gas and fiat prices and the re-
sulting calculated evaluation metrics. More information about the evaluation method,
including the detailed data and metrics collected and fetched for the evaluation, is intro-
duced in the upcoming Section 6.2.1.

In general, the data used for the evaluations comes from two main sources. On the
one hand, the data collected and generated by the evaluation (cf. Section 5.4.2) and
visualization (cf. Section 5.4.3) scripts are analyzed. The evaluation data and metrics
are established in the upcoming section extending on Section 5.4.2. On the other hand,
the output of the Hardhat Gas Reporter plugin [32] is considered and analyzed against
the results of the evaluation scripts. The plugin integrates with the Hardhat testing
framework and collects data during the execution of the implemented test cases. The
reported output provides insights into the efficiency of the Deferral smart contracts. In
addition, external data for the gas and fiat prices or historic data is fetched from different
Application Programming Interfaces (APIs).

6.2.1 Evaluation Method and Data

The evaluation scripts include several configurations and combine different measures and
metrics. First of all, data about the gas prices for different EVM-based blockchains are
fetched. These blockchains have been predefined to be used for the evaluation process
and are all EVM-based. The following list shows the defined EVM-based evaluation
blockchains and their native cryptocurrencies:

• Ethereum: The native currency of Ethereum is Ether (ETH).

• Binance Smart Chain: The native currency of Binance Smart Chain is Binance
Coin (BNB).

• Polygon: A Layer-2 solution where the native currency is MATIC (MATIC).

• Arbitrum: A Layer-2 solution where the native currency is Ether (ETH) e.g., the
gas fees are paid in Ether.

• Optimism: A Layer-2 solution where the native currency is is Ether (ETH) e.g.,
the gas fees are paid in Ether.

• Avalanche: The native currency of Avalanche is AVAX (AVAX).

• Goerli: An Ethereum testnet where the native currency is Goerli Ether (gETH).

In EVM-based evaluation blockchains, gas refers to the unit of measurement required to
quantify the computational effort needed to execute transactions (cf. Section 2.3.4). The
gas used for a transaction is the foundation that, in combination with the gas price, defines

80 CHAPTER 6. EVALUATION AND DISCUSSION

how expensive the execution of that particular transaction on a certain blockchain is.
EVM-based blockchains share the same principle of gas and use the EVM to execute smart
contracts. Thus, the gas used for specific transactions, operations, and computations
undertaken on a Solidity smart contract is the same or similar on two different EVM-
based blockchains. Within the context of this thesis, the gas used metric is expected
to be identical on all the outlined EVM-based evaluation chains for the generation and
evaluation of the results. Nevertheless, the gas costs, which are the product of the gas used
and the gas price of a particular chain, can significantly vary across different EVM-based
blockchains.

6.2.1.1 Gas Prices

The gas price on a particular blockchain represents the cost of one unit of gas on that
blockchain. Factors such as the network occupancy rate or user demand can impact
the gas price on a particular blockchain. Gas is usually paid in the native currency
of the blockchain. For example, on Ethereum, one gas could cost 10 Ether, and on the
Binance Smart Chain, one gas could cost 5 BNB. Several layer-2 solutions chains, including
Arbitrum or Optimism, also use Ether to pay gas fees. Other layer-2 solutions, such as
Polygon, have their own native currency e.g., MATIC, to pay the gas fees. Furthermore,
gas prices are usually lower on layer-2 solution blockchains (cf. Section 2.3.6) such as
Polygon, Arbitrum, or Optimism.

In general, gas prices are not the same across different blockchains and can heavily fluc-
tuate over time on the same blockchain. Therefore, even if the gas used for a transaction
execution stays the same across EVM-based blockchains, the different gas prices imply how
much a transaction costs on a certain chain. Consequently, it is important for the evalu-
ation to get the current gas prices of the different evaluation chains. The gas prices are
fetched with the help of Ethers.js [55]. However, gas prices and the resulting calculated
gas costs of transactions can be misleading as they are represented in the corresponding
cryptocurrency of the blockchain. Thus, they often do not share a common denominator.

6.2.1.2 Fiat and Cryptocurrency Prices

After the gas prices have been retrieved for the different evaluation chains, the evaluation
process continues by fetching the prices for the different native cryptocurrencies. The
price or fiat price of native cryptocurrencies of a specific blockchain refers to their value
when exchanged for other currencies, such as USD or Euros. Consequently, fiat prices
across different blockchains can share the same fiat denominator e.g., the price in USD.

Again cryptocurrency prices can be very volatile due to known factors like supply and
demand, the general market situation, investor sentiment, and many other conditions.
For retrieving the cryptocurrency prices during the evaluation, the CoinGecko API is
used [38].

6.2. COSTS AND PERFORMANCE 81

6.2.1.3 Evaluation Metrics

After the data for the gas prices as well as cryptocurrency prices of all the evaluation
chains have been collected, the evaluation continues with the actual assessment of the
referral systems i.e., smart contracts. First, the participating users are initialized and
set up. The number of users is an independent variable and another important factor for
the evaluation. A Deferral solution contract i.e., referral system, may deal with the load
and respond differently if there are increasingly more users participating or accessing the
system. In this case, the effect of the number of users is evaluated primarily based on cost
and duration while giving less consideration to factors such as transaction throughput,
latency, or frequency of the different evaluation blockchains.

With each of the different defined numbers of users, an evaluation run is executed. An
evaluation run refers to one complete execution of the referral script (cf. Section 5.4.2)
with a particular number of users that are completing the referral process. As part of an
evaluation run, data and metrics are collected twofold.

First, transaction evaluation data is gathered for every executed referral payment trans-
action and stored in log files for later analysis and evaluation. The following metrics and
indicators are stored for every referral payment transaction execution:

• Transaction Evaluation Metrics:

– UserSignerAddress: Address of the user executing the referral payment trans-
action.

– UserIteration: Identifier for the user count.

– UserTxIteration: Identifier for the transaction count of the same user.

– DurationInMs: Duration of the referral payment transaction in milliseconds.

– GasUsed: Amount of gas used for the execution of the referral payment trans-
action.

– GasCost: Gas cost (gasUsed∗gasPrice) for every transaction for all evaluation
chains based on the respective gas price of a chain. Depending on the execution
date and time, these values can fluctuate.

– FiatCost: Fiat cost (gasCost ∗ fiatPrice) for every transaction for all evalu-
ation chains based on the defined fiat currency and respective fiat price of a
chain. Depending on the execution date and time, these values can fluctuate.

Based on these measures and metrics, the referral payment transactions within one com-
plete evaluation run can be analyzed. The following metrics and measurements are col-
lected and calculated for every evaluation run:

• Evaluation (Run) Metrics:

– ID: Identifier for the evaluation run.

– ContractName: Name of the evaluated referral smart contract.

82 CHAPTER 6. EVALUATION AND DISCUSSION

– Network: Network identifier where the contract was evaluated.

– Date: Execution date and timestamp of the evaluation.

– DurationInMS: Duration of the whole evaluation run in milliseconds.

– EtherUnit: EVM Unit used for the values in the scripts (cf. Section 2.3.5).

– ContractParameters: Parameter the evaluated referral contract was deployed
with.

– FiatPriceCurrency: The defined currency for fetching the fiat price values e.g.,
USD.

– ChainFiatPrices: Recorded fiat prices of the defined evaluation blockchains.
Depending on the Date, these values can fluctuate.

– ChainGasPrices: Recorded gas prices of the defined evaluation blockchains.
Depending on the Date, these values can fluctuate.

– NumberOfUsers: Total number of users involved in the evaluation run.

– Metrics: Calculated metrics including avg, min, max, median and sum, of
all transaction evaluation metrics recorded, e.g., durationInMs, gasUsed,

gasCost, fiatCost, etc..., for all executed payment transactions within one
particular evaluation run.

– Data: All recorded transactions and the collected transaction evaluation data.
This data is used to calculate the metrics of an evaluation run

Consequently, if three evaluation runs are done with 10, 20, and 30 users, the evaluation
log files include three entries that each entail the evaluation run metrics and measures
shown in this list as well as all the transaction evaluation metrics outlined in the list
before.

6.2.1.4 Historic Gas and Fiat Price and Cost Data

Furthermore, it is important to consider that components such as the gas or fiat prices used
for the calculation of these evaluation metrics, and the result data can heavily fluctuate
depending on the date and time of the execution of the evaluation scripts. As a result, to
better estimate and assess the results related to the fetched gas and fiat prices, a separate
script collects and evaluates historic data of these values (cf. Section 5.4.3). Thereby, the
gas prices, as well as fiat prices, were retrieved and fetched for a certain period of time.

The historic gas and fiat prices are fetched with the help of the Owloracle API [98].
The fetched data for the gas prices as well as token prices i.e., cryptocurrency prices,
record different measurements for these metrics. Among others, the Owloracle API data
includes the low and high measures for a chosen timeframe. For the current evaluation,
the timeframe is set to be one day. Hence, the low or high values indicate the lowest or
highest values e.g., gas or fiat price recorded on one particular day. For the upcoming
evaluation of the historic gas and fiat price data, the low value is considered.

Based on the recorded historic gas as well as fiat prices, it is possible to calculate the
transaction costs over time for the different solution smart contracts. Hence, any recorded

6.2. COSTS AND PERFORMANCE 83

metric related to the gas used can be taken and multiplied by the historic gas and fiat
prices for the respective chain. The process for the calculation remains the same, but the
gas used value that is utilized is multiplied by the historic gas prices over time instead
of the single gas price, which was recorded during the execution of the evaluation script.
Based on these historic gas costs, the fiat costs can be calculated. For example, the
average gas used per transaction for an evaluation run of a Deferral solution contract can
be used to display the average gas and fiat prices over time for this contract.

After all, the historic price evaluation aims to accentuate how the values for gas prices
and costs, as well as fiat prices and costs, must be treated with caution. The primary
metric, which should remain the most consistent, is the gas used metric. The gas costs
and fiat costs that are calculated based on these values should mainly serve as a point
of reference for a better and more straightforward understanding of the results when it
comes to the costs.

6.2.1.5 Evaluation Configuration and Results

All the generated result data, including the applied evaluation configurations, can be
found in the results directory of the Deferral repository [132]. The results folder
contains separate directories for the result data i.e., results/result-data and the result
visualizations and analysis i.e., results/result-visualizations.

The results have been generated on the 5th of May 2023 by executing the evaluation scripts
with 10, 100, and 500 participating users on the local Hardhat network. To calculate the
fiat costs, all the fetched gas costs and gas usage values were converted into USD as
a reference fiat currency. For the historic data, the timeframe was set to be one day.
Thereby, gas and fiat price data were fetched for the time period from the end of January
2023 to the beginning of May 2023. For the analysis and evaluation, the lowest price entry
on each day was used.

For all further details and configurations applied for the evaluation in this context, please
refer to the evaluation scripts or the generated result data files in the Deferral repository
[132].

6.2.2 Solution Contract Evaluation

The upcoming sections analyze the generated evaluation data and evaluate the individ-
ual results for all the Deferral solution contracts. Thereby, the different versions of the
same design are evaluated against each other as well as compared to the previous design
solutions and the corresponding contracts.

84 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.1: GasUsed Across the Evaluations of V1ReferralPaymentTransmitter

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

8 48 555 48 545 48 557 48 557
98 48 556 48 545 48 557 48 557
498 48 555 48 533 48 557 48 557

Table 6.2: GasUsed for Evaluation Runs of V1ReferralPaymentTransmitter

6.2.2.1 Referral Payment Transmitter Contracts

Starting with version one of the referral payment transmitter contracts, Figure 6.1 displays
the gas used per referral payment transaction within and across all three executed eval-
uation runs. Therein, it can be observed how the gas used remains consistent at around
50 000 gas among all referral transaction executions. Having a look at the calculated gas
used metrics illustrated in Table 6.2 it shows how every executed referral payment trans-
action on the V1ReferralPaymentTransmitter contract fairly accurately uses the same
amount of gas. Thus, the gas used is not affected by an increasing number of users and
stays consistent.

With regard to the duration of the different referral transactions, the data in Figure D.1
does not show the same clear picture compared to the gas used. In general, the result data
concerning the transaction duration often includes outliers where no clear explanations
can be found. However, at a rougher estimate and with the exception of several outliers,
the transaction duration underlines the trend for consistent transaction durations, which
can be seen in the gas used results across the evaluation of version one of the referral
payment transmitter contracts.

6.2. COSTS AND PERFORMANCE 85

Figure 6.2: Screenshot of the Gas Reporter Output for V1ReferralPaymentTransmitter

Chain Gas Price in Gwei

BSC 3,0
Mainnet 78,975 115 466
Polygon-Mainnet 253,532 861 146
Arbitrum-Mainnet 0,1
Optimism-Mainnet 0,001
Avalanche 25,0
Goerli 1 076,663 332 944

Table 6.3: Evaluation Chain Gas Price Results for V1ReferralPaymentTransmitter

These results are backed by the Hardhat gas reporter output collected during the contract
testing that is displayed in Figure 6.2. It shows the same average gas used for the referral
payment transactions i.e., for the fowardReferralPayment function. Furthermore, the
gas reporter output displays the gas cost (34 Gwei per gas cf. Section 2.3.5) and the
average cost of a referral transaction in USD (3,15) on the Ethereum blockchain. These
Ethereum gas costs and fiat costs can also be observed in the generated result data.
However, the generated result data displays a way higher average fiat cost on Ethereum
per referral transaction of more than 7 USD, as it can be seen in Table D.4. This table
outlines the metrics for the calculated transaction costs in USD recorded in the evaluation
run with 500 i.e., 498 participating users. This discrepancy is caused by the different gas
prices and costs that were used for the calculations. Furthermore, as it can be assessed in
Table 6.3, which illustrates the gas prices (in Gwei) recorded in the result data, the gas
price for Ethereum i.e., Mainnet (79 Gwei) is more than double the gas price shown in
the gas reporter output (34 Gwei in Figure 6.2). These results demonstrate again why the
results for the gas costs and fiat costs e.g., costs in USD, must be treated and evaluated
with caution.

For the upcoming evaluation sections focus lies on the collected and calculated gas used
metrics. The collected gas and fiat prices and cost results are not displayed for every indi-
vidual solution contract. Nonetheless, as the gas cost is the product of the gas prices and
the gas used, these values can be inferred from the shown values and inspected in the result

86 CHAPTER 6. EVALUATION AND DISCUSSION

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

8 55 914 55 904 55 916 55 916
98 55 915 55 904 55 916 55 916
498 55 914 55 892 55 916 55 916

Table 6.4: GasUsed for Evaluation Runs of V3ReferralPaymentTransmitterUpgradable

data. The same goes for the fiat costs that are calculated based on the fiat prices and the
gas costs. If required, these calculated result values for all individual smart contract eval-
uations can be inspected in the result data and visualization files [132]. As an overview of
the prices in USD can be helpful, these values are attached in the Appendix in Section D.6
as well. Eventually, the gas and fiat price results are discussed later in this chapter during
the overall evaluation for a few selected solution contracts (cf. Section 6.2.3). Conse-
quently, based on the evaluation results for the V1ReferralPaymentTransmitter solution
contract, it can be stated that the performance in terms of transaction cost and duration
is not negatively affected by the increased volume of users participating in the system.

When it comes to the V3ReferralPaymentTransmitterUpgradable solution contract, the
evaluation shows proportionate results to version one. The main difference is that for the
amount of gas used per transaction, the results range slightly higher at around 56 000 gas,
as Table 6.4 portrays. This increase in gas used is attributable to the upgrades pattern
[97] that was implemented in version three of the referral payment transmitter contracts.
Hence, the achieved flexibility in terms of contract deployment and implementation comes
with a small but certain increase in transaction costs. Furthermore, the other results and
visualizations for the V3ReferralPaymentTransmitterUpgradable contract show no further
peculiarities. More results and visualizations of the evaluation data of version thee of the
referral payment transmitter contract can be found in the Appendix in Section D.1 (cf.
Figure D.2, D.3 and D.4, and Table D.5).

6.2.2.2 Referral Payment Quantity Evaluator Contracts

The results for the two referral payment quantity evaluator contracts show a different
image compared to the referral payment transmitter design. First of all, Figure 6.3 depicts
how the gas used for the execution is no more consistent with regard to the transactions
within a single evaluation run. However, across all three evaluation runs, the gas used
for the transactions evolves similarly. Thus, also for this solution design, the increased
volume of participating users does show no negative effect on the gas used for the referral
payment transactions.

Figure 6.4 shows the values are consistent if the gas used for transactions is analyzed
per user iteration. The main finding is demonstrated in Figure 6.5 where the gas used
is shown per user transactions. Therein, it can be seen how the first transactions of all
the users are the most expensive in terms of gas used, followed by their third i.e., last
referral payment transaction. The second or the middle transaction, in this case, requires
the least amount of gas.

6.2. COSTS AND PERFORMANCE 87

Figure 6.3: Gas Used per Transaction Across the Evaluations of V1ReferralPaymentQuantityUpgradable

Figure 6.4: GasUsed per UserIteration Across the Evaluations of V1ReferralPaymentQuantityUpgradable

88 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.5: GasUsed per UserTxIteration Across the Evaluations of
V1ReferralPaymentQuantityUpgradable

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

8 82 484 59 508 113 900 74 038
98 82 485 59 508 113 900 74 038
498 82 484 59 496 113 900 74 038

Table 6.5: GasUsed for Evaluation Runs of V1ReferralPaymentQuantityUpgradable

A closer look at the implementation and flow of the referral processes for the referral
payment quantity evaluator contracts clarifies these differences. On the one hand, with
the first referral payment transaction, the user and corresponding referral process data
are registered i.e., stored on the smart contract. Smart contract transactions or EVM
operations that change any value from a zero to any other non-zero value are more expen-
sive than operations where a value’s zeroness is not altered [148]. The gas used values for
smart contract operations on the EVM and a fee schedule overview can be found in the
Ethereum yellow paper [148]. Thus, the initial storage of the user referral process data
in the first referral payment transaction of every user is more expensive in terms of gas
used than the second transaction, where values are only updated i.e., their zeroness is not
changed.

On the other hand, the disparity in gas used between the second and the third user
transaction (cf. Figure 6.5) is caused by the completion of the referral process within the
third transaction and the resulting distribution of the referral rewards. The sending of the
rewards causes extra costs in terms of gas used compared to only updating the referral
process data in the second transaction. It is interesting to see that the first transaction,

6.2. COSTS AND PERFORMANCE 89

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

8 81 865 58 850 113 242 73 499
98 81 866 58 850 113 242 73 499
498 81 866 58 838 113 242 73 499

Table 6.6: GasUsed for Evaluation Runs of V2ReferralPaymentQuantityUpgradable

which initiates the storage of the referral process data for the users, is the most expensive
in this case.

The small differences in the implementation approaches used for versions one and two
of the referral payment evaluator contracts that were introduced in Section 5.2.2 can be
spotted in Tables 6.5 and 6.6. Comparing the two tables shows that the average gas used
for version two of the contracts is marginally smaller. The outputs of the gas reporter for
the two contracts confirm this evaluation result (cf. Figures D.5 and D.6 in the Appendix
in Section D.2).

Furthermore, the remaining values shown in the gas reporter outputs, especially the av-
erage gas used, are not really comparable in this case since the configuration of the tests
that is essential for the results for the gas reporter differs from the configuration and
parameters applied in the evaluation scripts. After all, neglecting the readability of the
implemented Solidity code and writing bigger but fewer functions on the contract brings
a small advantage in terms of gas used. Whether this small cost advantage is worth the
compromises of the code readability or not is debatable.

With regard to the duration metrics, there are no specificities or trends that can be identi-
fied. Eventually, the functionality that is added to the payment quantity evaluator referral
systems compared to the referral payment transmitter solutions can be well observed in
the presented results in terms of gas used. Further results and visualizations of the evalu-
ation data of the referral payment quantity evaluator contracts can again be found in the
Appendix in Section D.2 or in the results folder in the Deferral repository [132].

6.2.2.3 Referral Payment Value Evaluator Contracts

The results for the V1ReferralPaymentValueUpgradable referral contract are very similar
to the results that were discussed for the V2ReferralPaymentQuantityUpgradable con-
tract. Figure 6.6 illustrates again the differences in terms of gas used between the initial
referral payment transactions and the final transactions. This time, as the referral pro-
cess requires four transactions per user to be completed, it can be observed how all other
transactions that do not initiate or complete a user’s referral process utilize a consistent
amount of gas.

Considering the V2ReferralPaymentValueUpgradable contract, the evaluation results show
that the approach of claimable rewards and the added functionality cause additional costs
in terms of gas used for the final transaction, which completes the referral process (cf.
Tables D.1 and D.2 in the Appendix Section D.3)). As has been shown before, initializing

90 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.6: GasUsed per UserTxIteration Across the Evaluations of V1ReferralPaymentValueUpgradable

or storing new data, that in this case is done by keeping track of the claimable rewards
for users, utilizes more gas than directly sending and distributing the rewards within the
final transaction [148]. Hence, the design and implementation of version two of the refer-
ral payment quantity evaluator contracts require more gas than version one. To be more
precise, the transaction that completes the referral process requires more gas in version
two of the contract than in version one (cf. Figure 6.7). This is also noteworthy since,
in the evaluation process of the V2ReferralPaymentValueUpgradable contract, the users
have completed the referral process but have not yet received the rewards, as they must
be claimed within an additional transaction.

The results for the V3ReferralPaymentValueUpgradable contract show essentially the
same picture as the V2ReferralPaymentValueUpgradable results when they are compared
to the results for version one. Again, as the final referral payment transaction completes
the referral process and, this time, must distribute two-sided referral rewards i.e., two
send operations to two different users, it requires more gas (cf. Figure 6.8).

Comparing version three to version two, it shows that the claimable rewards functionality
in the final transactions of version two utilizes more than 600 000 gas (cf. Figure 6.7) in
contrast to the two-sided reward distribution in the complete transaction of version three
which uses less than 600 000 gas (cf. Figure 6.8). Consequently, the design including
claimable rewards in version two utilizes the most gas, although the users have not received
the rewards yet. The transaction for claiming rewards would add additional costs to the
user side (cf. Figure D.13) that have not been considered in the evaluation process.

These findings also align with the results shown in the gas reporter outputs (cf. Fig-
ures D.10, D.13 and D.16 in the Appendix in Section D.3). Nonetheless, the exact values

6.2. COSTS AND PERFORMANCE 91

Figure 6.7: GasUsed per UserTxIteration Across the Evaluations of V2ReferralPaymentValueUpgradable

Figure 6.8: GasUsed per UserTxIteration Across the Evaluations of V3ReferralPaymentValueUpgradable

92 CHAPTER 6. EVALUATION AND DISCUSSION

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

7 95 711 61 800 136 686 108 990
97 303 457 61 800 1 383 025 116 302
497 1 226 711 61 800 6 922 694 116 302

Table 6.7: GasUsed for Evaluation Runs of V1ReferralMultilevelRewardsUpgradable

in the gas reporter outputs can again not be compared as the configuration and parameters
applied in the evaluation scripts differ from the values used in the tests.

In conclusion, for the referral payment value evaluator solutions, it can be stated that
they are not affected by the increasing volume of participating users. The tracked and
evaluated transaction durations also did not bring any special insights. Moreover, the
added functionalities related to the reward distribution and allocation come with addi-
tional costs (cf. Tables in the Appendix in Section D.3). Therein, the two-sided reward
allocation functionality is more cost-efficient than the claimable rewards functionality as
it does not require storing additional values on the smart contract.

6.2.2.4 Referral Payment Multilevel Reward Evaluator Contracts

The evaluation results for the two referral payment multilevel reward evaluator contracts
reveal various insights. As this solution design is more complex than the previously
discussed Deferral solutions, it could be expected that the average costs in terms of gas
used would be higher for these contracts.

This is confirmed in Table 6.7 that shows an average gas used value of around 96 000 gas for
the evaluation run with 10 i.e., 7 involved users. Over and above, Table 6.7 illustrates the
big differences in gas used metrics between the three evaluation run. Therein, the average
and maximum gas used metrics are increasingly higher the more users are involved in the
referral system.

By having a look at the gas used for the individual transactions within the three evaluation
runs in Figure 6.9, it can be observed how every third transaction is increasing in cost the
more users are involved. Thus, especially in the evaluation runs with 100 and 500 users,
the distributions of the gas used per transaction are skewed extremely negatively. The
same pattern shows for the duration of the transactions, which are depicted in Figure 6.10.

As a result, the gas used and the duration of the referral payment transactions are higher
for users that participate later in the referral system. This trend is also demonstrated in
Figures 6.11 and 6.12 which show the gas used and duration per transactions per user.

For instance, it takes longer and is more expensive for user (10) than for user (1) to
complete the referral process on the V1ReferralMultilevelRewardsUpgradable contract.
In the case of a couple of hundreds of users who are participating and completing the
referral process, the difference in terms of gas used for the final transaction of a user to
complete the process can grow to several millions and would grow even further with more
participating users (cf. Figures 6.11 and 6.12).

6.2. COSTS AND PERFORMANCE 93

Figure 6.9: GasUsed per Transaction Across the Evaluations of V1ReferralMultilevelRewardsUpgradable

Figure 6.10: DurationInMs per Transaction Across the Evaluations of
V1ReferralMultilevelRewardsUpgradable

94 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.11: GasUsed per UserIteration for the Evaluations of V1ReferralMultilevelRewardsUpgradable

Figure 6.12: DurationInMs per UserIteration for the Evaluations of
V1ReferralMultilevelRewardsUpgradable

6.2. COSTS AND PERFORMANCE 95

Figure 6.13: GasUsed per UserTxIteration Across the Evaluations of
V1ReferralMultilevelRewardsUpgradable

The results of the evaluation of the V1ReferralMultilevelRewardsUpgradable referral sys-
tem clearly show the impact of the multilevel reward distribution functionality that was
added. As outlined before in Sections 4.4.2.4 and 5.2.4 the contract splits the rewards
and distributes the assets to all related referrers in the referral chain. In the evaluation
process for this contract, all involved users refer each other and thus create a referral chain
with the length of the number of users involved in the evaluation process. Hence, within
the final transaction of user (1), the rewards must only be sent to one previous referrer.
However, for user (10), there are already ten previous referrers that receive rewards. As
a result, the final transaction of user (10) requires more gas since the assets must be sent
to ten different other users. Due to this functionality, the costs and durations of the com-
pleted transactions for the participants increase with higher volumes of users. Further,
these transactions take longer to execute as more send operations have to be performed
by the contract. This trend is well outlined in Figures 6.11 and 6.12 which show the gas
used and durations grouped per user.

Apart from this, it is interesting to analyze the gas used and duration per transaction
grouped by the user transaction iteration, as it is outlined in Figures 6.13 and 6.14. In
Figure 6.13, the same pattern that has been shown in the referral payment quantity and
value evaluators can be identified. For the evaluation run with 10 i.e., 7 users, the initial
transactions that start the referral process require more gas than the final transactions
that complete the referral process and distribute the rewards. However, in the same graph
with 7 users, it can also be recognized how the stacked bars for the third transaction
increasingly get bigger with higher numbers of users. Thereafter, in the chart for the
evaluation run with 100 i.e., 97 users, the gas used per transaction iteration of the third

96 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.14: DurationInMs per UserTxIteration Across the Evaluations of
V1ReferralMultilevelRewardsUpgradable

and final transactions has already noticeably outgrown the gas required for the initial
transaction. This result is further underlined in the visualization for the evaluation run
with 500 i.e., 497 users, where the bars for the first and second transactions are barely
visible anymore compared to the costs in terms of gas used for the final transactions. This
illustrates how the cost of distributing reward assets can surpass the gas costs required
for storing or initiating the referral process data when there are multiple users to whom
referral rewards must be distributed.

Eventually, it can be declared that the V1ReferralMultilevelRewardsUpgradable contract
is significantly affected by the volume the referral system has to handle. More users
participating in the referral system imply more costs and thus has a negative effect on the
cost as well as the performance in terms of the duration.

For version two of the referral payment multilevel rewards contract, two additional features
have been included compared to version one (cf. Sections 4.4.2.4 and 5.2.4). The effect
of the maximum referral reward level that could be defined to set a limit on the length
of the referral chain for the reward distribution can clearly be identified in the results of
version two if they are compared to the results of version one.

First, Table 6.8 outlines how the metrics for the gas used are again more consistent across
the different evaluation runs compared to the metrics for version one in Table 6.7. The
same finding appears in Figure 6.15, which shows the gas used for the different transactions
within the different evaluation runs.

Furthermore, on closer inspection of Figure 6.16, it clarifies that the transaction costs

6.2. COSTS AND PERFORMANCE 97

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

7 100 338 64 594 125 914 118 974
97 103 088 64 594 125 914 119 096
497 103 211 64 594 125 914 119 096

Table 6.8: GasUsed for Evaluation Runs of V2ReferralMultilevelRewardsUpgradable

Figure 6.15: GasUsed per Transaction Across the Evaluations of V2ReferralMultilevelRewardsUpgradable

98 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.16: GasUsed per UserIteration for the Evaluations of V2ReferralMultilevelRewardsUpgradable

per user are consistent and the same again for almost all participating users. Since the
maximum reward level is set to three for the evaluation of this contract, the rewards are
distributed to three prior referrers at most. The reward chain is still built the same way
and includes all participating users. However, the reward distribution is limited in this
version of the contract. Thus, within every final transaction of all users, the rewards must
be sent to three prior referrers. The only exceptions are the first two users. For these two
users, their referral chain includes only one or two previous referrers. As a result, their
final transactions require slightly less gas than all the other users with a referral chain of
three or more users. This pattern can be spotted in Figure 6.16 as well as in Figure 6.17.

Moreover, in the evaluation run with 10 i.e., 7 users in Figure 6.17, it can be observed
how the gas used for the final transaction that distributes the rewards exceeds the costs
of the initial transaction that stores the referral process data. This is also the case in the
other two evaluation runs. Nonetheless, it can not be recognized in these visualizations
by the bare eye. On closer examination of the stacked bars, it can be seen that the final
transaction of user (1), which has to distribute rewards to only one referrer, is cheaper in
terms of gas used than the initial storage transaction of user (1). For the second user, this
is still the case. Nevertheless, the final transaction uses already basically the same amount
of gas as the initial transaction in the case of user (2). The exact costs in terms of gas used
for the first four users are also displayed in Table 6.9. For user (3), it can be observed that
the final transaction requires more gas than the initial transactions. The same applies to
user (4) and to all further users since, for all these users, the referral rewards are sent to
three previous referrers. Consequently, this case outlines well how the distribution of the
rewards can require more gas than the initiation of the referral process data if the rewards
must be distributed to multiple other users. Another detail to mention at this point is

6.2. COSTS AND PERFORMANCE 99

Figure 6.17: GasUsed per UserTxIteration Across the Evaluations of
V2ReferralMultilevelRewardsUpgradable

User ID Initial TX gasUsed Second TX gasUsed Final TX gasUsed

User 1 118 974 64 594 97 133
User 2 119 096 64 716 111 529
User 3 119 096 64 716 125 803
User 4 119 084 64 704 125 902

Table 6.9: GasUsed per Transaction for the first 4 Users in the Evaluation run with 10 i.e., 7 Users for
V2ReferralMultilevelRewardsUpgradable

that the V2ReferralMultilevelRewardsUpgradable also reintroduces the functionality for
two-sided rewards. Hence, within the final transaction, the rewards are not only sent
to a maximum of three previous referrers but also to the referee. Therefore, the final
transactions from user (3) onward perform a total of four send operations for the reward
distribution. Thus, as can be observed for user (2) and user (3) in Table 6.9, the threshold
where the final transaction becomes more expensive than the initial transaction in this
context lies between three send operations for the final transaction of user (2) and four
send operations for the final transaction of user (3).

For the two multilevel reward evaluator contracts, the discussed findings from the evalu-
ation scripts are not confirmed by the gas reporter outputs (cf. Figures D.19 and D.20
in the Appendix in Section D.4). This can mainly be attributed to two reasons. First, as
mentioned before, the gas reporter differs from the configuration and parameters utilized
in the evaluation scripts. Hence, in the tests, the length of the created referral chain
is not comparable to the one in the evaluation scripts, especially for higher volumes of
users. Second, the gas reporter evaluates the gas used metrics for every called function

100 CHAPTER 6. EVALUATION AND DISCUSSION

individually. Therefore as the multilevel reward contracts implement function overloading
(cf. Section 5.2.4.1), the results for referral payment transaction executions calling the
registerReferralPayment function are separated (cf. Figures D.19, and D.20)

Ultimately the evaluation results of the V2ReferralMultilevelRewardsUpgradable referral
system outline how the introduction of a maximum reward level for the distribution of
rewards can significantly reduce the negative effects caused by high volumes of partici-
pating users compared to version one of the referral payment multilevel rewards solution
design.

6.2.2.5 Referral Payment Multilevel Token Reward Evaluator Contracts

The main distinction between the V1ReferralMultilevelTokenRewardsUpgradable con-
tract compared to the V2ReferralMultilevelRewardsUpgradable discussed before has been
introduced in Sections 4.4.2.5 and 5.2.5.1. The difference of using an ERC20 as reward
currency in this referral system instead of native crypto assets also shows in the results.

As illustrated in Table 6.10, the cost metrics in terms of gas used are higher compared to
the values in Table 6.8. These results could be expected as it is generally more expensive
to transfer and send assets of any ERC20 token compared to native cryptocurrency assets
of any EVM-based blockchain. Transferring an ERC20 token involves interacting with a
smart contract, which adds computational effort compared to a simpler transfer of native
assets. When distributing or sending an ERC20 token, a smart contract must execute
several functions to update the token balances of the sender and the receiver and perform
additional checks to assess the validity of a transfer.

The results of the evaluation of the V1ReferralMultilevelTokenRewardsUpgradable display
basically the same patterns as the results for version two of the referral payment multilevel
reward evaluator discussed before. The same applies to the gas reporter outputs. These
results and visualizations can be found in the Appendix in Section D.5.

6.2.3 Overall Evaluation

After all the evaluation results for the individual Deferral smart contracts and the different
solution designs have been talked over, the overall view of the evaluation results can be
considered.

So far, it showed how with increasing complexity and functionality, the costs concerning

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

7 125 878 89 471 161 073 143 961
97 126 617 89 471 161 073 143 973
497 126 650 89 471 161 073 143 973

Table 6.10: GasUsed for Evaluation Runs of V1ReferralMultilevelTokenRewardsUpgradable

6.2. COSTS AND PERFORMANCE 101

Figure 6.18: Overall Average Gas Used per Transaction Across All Deferral Contracts

gas used for referral payment transactions on the Solidity smart contracts increased. In
this context, Figure 6.18 gives an overview of this trend by displaying the average gas used
per transaction for all Deferral solution contracts regarding the evaluation runs done with
500 users. In this figure, the discussed findings bear out again. It can be observed how the
average gas used per transaction is the lowest value for the referral payment transmitter
design, as these contracts provide the simplest versions for referral systems. Thereon,
the results are very similar and close for all versions of the referral payment quantity
and referral payment value evaluator contracts. Eventually, the multilevel rewards and
multilevel token rewards transactions require the most gas. This is no surprise, given
that they integrate functionalities from both the referral payment value and quantity
evaluator contracts while also facilitating multilevel reward distributions. At this point,
it is important to keep in mind that these results, as well as all other presented results,
can be subject to change in further evaluations if the contract configurations are adjusted
e.g., the referral conditions defined on the contracts are changed in the evaluation scripts.

In addition, Table 6.11 illustrates the gas used for the initial deployment of the different
contracts. Therein, a similar picture shows that larger and more complex contracts which
implement more functionality require more gas to be deployed. Furthermore, Figure 6.18
emphasizes again that version one of the multilevel reward contracts is the only solution
that shows negative effects when dealing with a high volume of users. The figure shows
the most extreme case as it depicts the evaluation run with the highest volume of users.
In this case, the V1ReferralMultilevelRewardsUpgradable contract, on average, roughly
requires ten times the gas that is used by the second most solution contract. However,
only concerning deployment costs (cf. Table 6.11), this cannot be seen since, for the
deployment of a contract, the impact of high volumes of users does not show.

102 CHAPTER 6. EVALUATION AND DISCUSSION

Deferral Contract Deployments GasUsed

V1ReferralPaymentTransmitter 500 213
V3ReferralPaymentTransmitterUpgradable 554 099
V1ReferralPaymentValueUpgradable 690 041
V2ReferralPaymentQuantityUpgradable 690 041
V1ReferralPaymentQuantityUpgradable 750 116
V2ReferralPaymentValueUpgradable 741 038
V3ReferralPaymentValueUpgradable 777 322
V1ReferralMultilevelRewardsUpgradable 1 030 918
V2ReferralMultilevelRewardsUpgradable 1 249 422
V1ReferralMultilevelTokenRewardsUpgradable 1 411 504

Table 6.11: Gas Reporter Output Showing GasUsed for the Deferral Contract Deployments

6.2.3.1 Gas and Fiat Costs Evaluation

Furthermore, the evaluation results across all the solution smart contracts can be reviewed,
focusing on the gas costs required on the different evaluation chains and the resulting fiat
costs in USD for the calculated gas used metrics. These results can also be found for all
the individual contracts either in the Appendix in Section D.6 or in the result data [132].

In that regard, Figure 6.19 illustrates the gas cost calculated based on the recorded gas
used values (cf. Figure 6.18). It includes data for all solution contracts across all eval-
uation chains coming from the evaluation run results where the referral processes were exe-
cuted with 500 users. Moreover, in Figure 6.19, the V1ReferralMultilevelRewardsUpgradable
contract, as well as the gas costs for the Goerli testnet, are omitted for better visibility.
The two visualizations, including these values, can be found in the Appendix in Sec-
tion D.7(cf. Figures D.30 and D.31). Eventually, Table D.14 displays the same gas cost
values as numbers.

By observing the results shown in Figure 6.19, it clarifies which blockchains have the
highest gas costs among the chosen evaluation chains. Therein, Polygon has the highest
gas costs in Gwei, followed by the Ethereum Mainnet. On the other end, the Optimism
chain implies the lowest gas costs before the Binance Smart Chain (cf. Table D.14). As
mentioned before (cf. Section 6.2.1.1), the gas cost results can be misleading. They are
based on gas prices and cannot be compared with each other as they represent the respec-
tive value in the native cryptocurrency of the corresponding blockchain. Consequently,
to reduce these values to a common denominator again, the calculated fiat costs in USD
must be examined.

The actual costs in USD show a different picture compared to the gas costs but differ
significantly across the different evaluation blockchains as well. Within Figure 6.20, the
V1ReferralMultilevelRewardsUpgradable contract is again excluded for better visibility.
The unfiltered visualization (cf. Figure D.32) is attached in the Appendix together with
Table D.15 which portrays the exact fiat cost values in USD as numbers. The results in
Figure 6.20 demonstrate how the Ethereum Mainnet is by far the most expensive out of
all the selected evaluation chains. The difference is too big to observe the results of the

6.2. COSTS AND PERFORMANCE 103

Figure 6.19: Filtered Overall Average Gas Costs in Gwei per Contract per Evaluation Chain

other evaluation chains in Figure 6.20. Consequently, the fiat prices in USD have been
outlined again in Figure 6.21 without the Ethereum chain.

By analyzing Figure 6.21 or the rounded values in Table D.15, the Binance Smart Chain
can be identified as the second most expensive chain, followed by Avalanche, which is
only about half as expensive as Binance. Thereafter, the results of all three layer-2
evaluation chains confirm their reputation as cheaper alternatives. Polygon, which has
had the highest gas costs in Gwei before (cf. Figure 6.19), is the most expensive chain
before Arbitrum and eventually Optimism. Further, even if the Goerli testnet is not
a relevant case for investigating the real-world feasibility of the solutions since Goerli
Ethers have no real monetary value, it is still interesting to see that the testnet would
be more expensive than the Optimism layer-2 solution. Moreover, the rounded fiat costs
on Optimism (cf. Table D.15) show zero for all Deferral solution contracts but for the
most expensive V1ReferralMultilevelRewardsUpgradable contract. For this contract, the
average rounded transaction costs are displayed as 0,002 USD. For comparison, the average
costs for the same contract on Ethereum are over 200 USD.

Eventually, Figure D.32 and Table D.15 highlight two main aspects. First, the costs in
USD of version one of the multilevel reward contract increase significantly, with more
users participating compared to the other solution contracts. And second, Ethereum is
by far the most expensive blockchain solution concerning transaction costs in USD for all
the Deferral referral systems.

104 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.20: Filtered Overall Average Fiat Costs in USD per Contract per Evaluation Chain

Figure 6.21: Filtered Overall Average Fiat Costs in USD per Contract per Evaluation Chain Without
Ethereum

6.2. COSTS AND PERFORMANCE 105

Figure 6.22: Gas Prices in Gwei Over Time per Evaluation Chain

6.2.3.2 Historical Gas and Fiat Price Evaluation

The historical gas and fiat prices of the evaluation chains depicted in Figures 6.22 and
6.23 underscore how the evaluation results of this thesis could vary if the underlying price
values were recorded on a different day. The shown high volatility of gas and fiat prices
is an important factor to consider when evaluating the results of this thesis.

Figure 6.22 depicts the gas prices in Gwei for multiple evaluation chains. Thereby, it
can be observed how especially the gas prices of Polygon and Ethereum vary heavily
within the evaluated timespan. For other chains, such as Avalanche, Binance, Arbitrum,
or Optimism, the gas prices are more consistent or at least have a much lower variance
compared to Polygon or Ethereum.

Having a look at the fiat prices over the same timespan, Figure 6.23 shows how the
Ethereum fiat price significantly fluctuates as well. However, for the Polygon layer-2
blockchain, which showed volatile gas prices (cf. Figure 6.22), the price in USD is stable
over time. This can be seen better in Figure 6.24, where the chains which have Ether as
a native currency are excluded. All the prices shown in Figure 6.23 refer to one default
unit of the corresponding chain. For instance, the price of one MATIC on Polygon, one
Ether on Ethereum, or one BNB on Binance. Moreover, Figure 6.22 highlights how the
Arbitrum and Optimism chains also use Ether as a native cryptocurrency. Consequently,
the lines of the prices for Ethereum, Arbitrum, and Optimism overlap in Figure 6.22 and
cannot be distinguished. Eventually, the big price differences which have been shown
before concerning costs in USD between the different evaluation chains are emphasized
again.

106 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.23: Fiat Prices in USD of Evaluation Chains Over Time

Figure 6.24: Filtered Fiat Prices in USD of Evaluation Chains Over Time

6.2. COSTS AND PERFORMANCE 107

Figure 6.25: Historic Avg Gas Costs in Gwei Over Time for V2ReferralMultilevelRewardsUpgradable

So far, all evaluation results which are related or calculated by using either the gas price
of a specific evaluation chain or its cryptocurrency fiat price demonstrate only a snapshot.
This snapshot is based on the gas and fiat price values that were fetched and recorded
during the execution of the evaluation scripts. Therefore, the previous section gave an
overview of how the external and varying values of gas, as well as fiat prices, developed
over time. Based on the values shown in Figures 6.22 and 6.23, the gas and fiat costs of
the different solution contracts can be recalculated to display the transaction costs for any
Deferral solution contract in the form of gas and fiat costs over time.(cf. Section 6.2.1.4).

At this point, the results for the historic gas and fiat costs for version two of the multilevel
referral rewards contract are displayed and discussed. More results for a few selected
contracts can be found in the Appendix in Section D.7.4.

Figure 6.25 displays the average transaction gas costs in Gwei for the evaluation run
executed with 500 users of version two of the multilevel rewards contracts. Thereby, the
average gas used metric of 103 211 is multiplied by the historic gas prices displayed in
Figure 6.22. Eventually, the results in these two figures show the same pattern.

Correspondingly, in Figure 6.26 the historic average transaction costs in USD for the
V2ReferralMultilevelRewardsUpgradable contract evaluation run executed with 500 users
can be observed. Table D.15 portrays how the average transaction costs on Ethereum is
almost 17 USD. As mentioned before, the evaluation result data was generated on the
5th of May 2023. A closer inspection of the Ethereum costs in Figure 6.26 confirms this
insight around this date. This highlights how the eventual transaction costs concerning
gas and fiat prices for the evaluation results of this thesis could vary. For instance, if
the evaluation had been conducted two weeks earlier, the transaction costs in USD on

108 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.26: Historic Avg Costs in USD Over Time for V2ReferralMultilevelRewardsUpgradable

Figure 6.27: Filtered Historic Avg Costs in USD Over Time for V2ReferralMultilevelRewardsUpgradable

6.3. DISCUSSION 109

Ethereum would have been only half as much, as illustrated in Figure 6.26.

Eventually, for better visibility, Figure 6.27 displays the same results again without the
Ethereum costs in USD. Thereby, the different average transaction costs over time for all
other evaluation chains can be inspected. Again, it shows how strongly the costs could
have changed over time, but this time at a much smaller scale in terms of costs in USD.
While the costs of the Polygon chain also fluctuate heavily, other evaluation chains show
more consistent costs over time. Therefore, if the evaluation had been performed on a
different date, the average transaction costs in USD on the Binance Smart Chain, for
instance, would not have exhibited many different values.

After all, Section D.7.4 in the Appendix shows comparable outcomes for further selected
Deferral solution contracts. Nonetheless, in general, it emerges how these results are
mainly impacted by two factors. First, the cost value in terms of gas used is used as a
baseline for the gas and fiat costs calculations. Second, influences come from the fluctu-
ating external metrics, which are collected for the gas prices and cryptocurrency i.e., fiat
prices on various blockchains.

6.3 Discussion

In the previous sections, the results of the different Deferral solution contracts’ evaluations
have been displayed and analyzed. Thereby, different key factors, such as the costs in
terms of gas used or the performance with regard to the referral transaction duration,
have been examined for the individual smart contract solutions. Especially the metrics of
gas used for the referral payment transactions revealed various insights about the different
solutions, their design, and implementation. However, the results that could be observed
in terms of transaction duration were not as clear. Nonetheless, in general, they supported
the overall observations made during the evaluations of the gas used results.

Furthermore, the overall transaction costs concerning gas used, gas costs, as well as fiat
costs in USD have been evaluated across all solution contracts for the different evaluation
blockchains. Moreover, historic gas and cryptocurrency i.e., fiat price data, have been
taken into consideration to examine the resulting costs of the different contracts over a
certain time span. Building on these results and findings, the big picture of the Deferral
solution can be analyzed.

6.3.1 Solution Requirements

Back in Section 4.2, three requirements that must be met and fulfilled by any solution
referral system for this thesis have been introduced. First, a solution should be able
to track and evaluate multiple referral processes of different users and evaluate these
according to the defined referral conditions. Therein the eligible users and the amount of
rewards they receive should be determined.

Ultimately, all presented Deferral smart contracts fulfill this requirement. As has been

110 CHAPTER 6. EVALUATION AND DISCUSSION

outlined in this thesis, the various solution designs have different mechanisms to define
referral conditions and to examine and evaluate the referral processes (cf. Sections 4.4 and
5.2). In addition, all but one solution contract allow the referral conditions to be updated
without interrupting or disrupting the ongoing referral processes. Changing the referral
conditions on the go could prove functional for companies that launched and operate the
referral system but could, at the same time, have negative effects on the user experience.
However, updating the referral conditions could be easily prevented with minor adjust-
ments to the presented solution implementations. The two main features or measures for
the evaluation of the referral processes have been shown to be the accumulated value of
referral payments and their quantity. Thus, for most of the solution contracts, thresholds
for either one or both of these values must be surpassed by referees to become eligible
for rewards. In most cases, the amount of the rewards is then defined as a percentage of
the total value of all payments. Users can become eligible if they are referrers or if they
are the referees who completed the process. Moreover, prior referrers can become eligible
for rewards if the referral system i.e., smart contract, has implemented multilevel reward
functionalities.

Next, solution contracts must be able to distribute the rewards to eligible users who have
been determined by the evaluation processes. Considering this requirement, all Deferral
solutions are able to distribute the rewards to eligible users. Thereby the different solutions
have introduced the possibility of specifying one or two-sided reward allocations. Rewards
can either be distributed to the referee or the referrer only or to both sides. Therein, the
proportion of the rewards can be set arbitrarily. Beyond that, several solution contracts
have implemented the functionality to distribute rewards along multiple levels. Eventually,
it has shown that depending on how many levels and to how many users rewards are
distributed, the costs of either evaluating the process or distributing the rewards can be
higher.

After all, the last crucial solution requirement for all Deferral solution contracts is the
robustness and security of its design and implementation in a decentralized environment.
Therefore, all solution contracts are based on the referral payment concept (cf. Sec-
tion 4.3) and can be seen as a referral cash-back program or system. By only accepting
referral payment transactions where users must send cryptocurrency assets, the system
designs incorporate financial disincentives for potentially malicious users trying to exploit
a system. An additional design decision that has been introduced for the multilevel re-
wards referral evaluators requires referring users to be registered customers i.e., have made
previous referral payments themselves. This measure increases the barrier for users to use
another account or address controlled by themselves and thereby further preserves the
basic idea of a referral system in a decentralized environment. Lastly, the different smart
contract implementations have been well tested, ensuring the security and robustness of
the implementations to a certain degree (cf. Section 6.1)

At large, it can be noted that the Deferral solution contracts fulfill all the solution re-
quirements to be considered a decentralized referral system in the current context. Nev-
ertheless, the main goal of this thesis includes conducting and evaluating the feasibility
of a decentralized referral system dealing with high volumes (cf. Section 1.2). To do so,
the applicability of the presented solutions must be assessed and discussed in the context
of real-world scenarios.

6.3. DISCUSSION 111

6.3.2 Feasibility and Real World Applicability

By fulfilling all the defined solution requirements, the different referral systems have al-
ready contributed to their feasibility from a technical point of view. Yet, aside from the
technical design and implementation, other factors, such as the conceptual design, play
important roles in the feasibility and success of referral systems (cf. Sections 3.1 and 4.2).

In a real-life use case, a Deferral smart contract would need to be integrated into a
functioning payment process flow of a company. Thus, in order for a company to deploy
and operate a Deferral referral system, it must accept payments for its products or services
in the form of cryptocurrencies or ERC20 tokens. This is crucial as the referral payments
are the foundation of the Deferral solution architecture. For the deployment of the referral
contract to a compatible blockchain, the company would represent the receiver address to
which the referral payments are forwarded to. All users i.e., customers of this company
could then participate in the referral system or program when they make purchases i.e.,
payments for a product or service they have bought. By participating in the referral
program, the customers could earn a cashback on their payments in the form of referral
rewards.

Apart from accepting cryptocurrency payments, the company would also have to offer a
corresponding user interface that enables access to the referral system. Through this user
interface, customers would be able to send their referral payments to the Deferral contract
and include the required information i.e., the referrer address. For any company that
already has the required cryptocurrency payment processes and flows in place, integrating
a Deferral solution contract would not come with a lot of additional costs and effort. The
user interface on the customer side could be kept straightforward. Nonetheless, to ensure
a good user experience, a potential user interface should consider incorporating short and
clear feedback cycles about the progress of any user and overall a good explanation of the
general referral conditions (cf. Chapter 3). Especially since, as outlined in Section 3.1,
the user experience can be a crucial factor for the success of a referral system.

6.3.2.1 Economic Design

Apart from the technical infrastructure, including suitable payment processes and ac-
cessible user interfaces, the economic design of a referral system i.e., its conditions and
rewards, is crucial for the feasibility as well (cf. Sections 3.1.1 and 3.1.2). Thereby, it is
important to define suitable rewards and practicable referral conditions.

For an exemplary company that wants to implement a Deferral decentralized referral
system, several steps would need to be considered. First of all, it must be assessed what
kind of referral payment users would perform. For instance, users might usually pay small
amounts to the company but frequently. As a result, it would not be optimal for the
company to choose a Deferral Solution with higher average gas costs per transaction, like
the V2ReferralMultilevelRewardsUpgradable solution. Moreover, if the referral conditions
were set to have a high payment value or payment quantity thresholds, participation in
the referral system would become less lucrative for the users.

112 CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.28: Ethereum Transaction Costs in USD per UserIteration for
V2ReferralMultilevelRewardsUpgradable

To get a better overview, an exemplary scenario including company (A) can be assumed.
Company (A) offers a subscription service for which users pay 20 USD on a monthly basis.
The 20 USD can be paid in cryptocurrencies. Now, company (A) wants to implement a
referral system to boost its customer engagement and potentially reach new customers. To
do so, they decide to deploy the V2ReferralMultilevelRewardsUpgradable contract to the
Ethereum chain. Based on the results and the collected gas and fiat prices, the deployment
of the contract could cost the company around 200 USD. The referral conditions of the
contract would be set in a similar way to the V2ReferralMultilevelRewardsUpgradable
evaluation configuration. Every user must make at least two payments for the subscription
of a total value of 20 USD or more. The referral reward, as well as the referee reward,
would be set to 50%, and the maximum reward level would be set to three. Consequently,
users would complete the referral process with the second subscription payment. Thereon,
the user and their referrers would each receive a cashback of 10 USD of the total 20 USD
reward.

Considering the gas and USD prices for Ether which have been used as a base for the
calculation of the results in this context, the costs per user shown in Figure 6.28 highlight
how this specific setup of the referral system and the rewards would be pointless for the
users i.e., customers of company (A). Since all the referral payment transaction costs are
paid by the user, it would cost the customers of the company (A) almost 50 USD to
execute the required referral payment transactions and complete the process. Compared
to the potential cashback referral reward of 20 USD, participation in the referral system
would not be profitable. Thus, customers would decide not to participate in the referral
system and execute regular payment transactions, which would be much cheaper in this

6.3. DISCUSSION 113

Figure 6.29: Binance Transaction Costs in USD per UserIteration for
V2ReferralMultilevelRewardsUpgradable

case.

However, company (A) choosing a different blockchain to deploy and operate the referral
smart contract in the same scenario would reveal a different picture. By using the Binance
Smart Chain, the costs for the users to complete the referral process would already have
gone down to less than one USD (cf. Figure 6.29). In comparison to the unchanged referral
reward of 20 USD, the same referral system on a different chain would become lucrative
for users. By choosing even cheaper blockchain alternatives e.g., Polygon, Arbitrum, or
Optimisms, the costs could be reduced even more. Eventually, this would also bring new
wiggle room for company (A) to adjust the referral rewards or conditions. For instance,
the participation would remain lucrative for customers even with a total referral reward
percentage of 20%. Nonetheless, by choosing less common or adopted chains, potential
users might be discouraged from participating.

This example portrays the challenges and trade-offs that would need to be considered when
implementing and deploying a Deferral solution contract in a real-world scenario. On the
one hand, it shows how the underlying technical implementation i.e., the technical design,
can influence the conceptual design i.e., referral rewards and conditions, and vice versa.
On the other hand, it exemplifies how the design, implementation, and operation of a
decentralized referral system also depend on the real-world environment and circumstances
relevant to the provider of the system e.g., company (A). For instance, in the example
scenario above, if company (A) would sell luxury products where users would pay larger
amounts within every payment transaction e.g., around 1 000 USD, the potentially higher
referral reward could also exceed the in comparison high costs for the referral payment
transactions on the Ethereum chain.

114 CHAPTER 6. EVALUATION AND DISCUSSION

Eventually, the economic design of a decentralized referral system in the current context
would always lead to a game of ping-pong where the appropriate setup and configuration
have to be found. Hence, it is always difficult to identify the optimal technical and
conceptual or economical design of such a referral system.

Other crucial aspects which further complicate these processes are the strongly changing
and fluctuating gas and cryptocurrency i.e., fiat prices, which have been discussed in
Sections 6.2.3.1 and 6.2.3.2. Hence, the costs that are associated with a Deferral solution
contract and a decentralized referral system can vary significantly in a short period of time
for both the users and the system providers i.e., the companies. Against this backdrop, the
functionality that allows system providers to update the referral conditions and rewards
for most of the presented Deferral solutions could be useful to react and adapt to changing
gas and fiat prices. In this way, the lucrativity of the referral system for users could be
ensured or at least supported to a certain degree.

6.3.2.2 Business Model

The previous section has provided one example of how a Deferral solution contract could
be used by companies. Besides, the Deferral solution and the Solidity contracts could also
be instituted as a white-label solution, offering decentralized referral systems as a service.

Thereby, companies that are interested in offering a decentralized referral system could
contact the Deferral institution and agree upon the referral conditions, rewards, and the
deployment environment e.g., the blockchain. Afterward, the Deferral contract could be
deployed with the defined conditions and corresponding receiver address of the company.
Users or customers of the company could still be directed to interact with the Deferral
contract through a user interface. Hence, the process would look very similar from a user
perspective. Additionally, with regards to the business model of the Deferral institution,
it would be straightforward to adopt the implementation of the Solidity smart contracts
and collect a small percentage of the referral payments or the distributed rewards as a
source of income. Nonetheless, further exploration in this direction is reserved for future
research.

6.3.3 Decentralization

Ultimately, it is worth reviewing the big picture of decentralized referral systems in the
context of the developed Deferral solution. Based on the presented results, it can be
discussed which components of the design and implementation of a decentralized referral
system are best suited for decentralization and what aspects could benefit from central-
ization.

As demonstrated in the evaluation section, the evaluation of the referral processes i.e.,
the storage of process-relevant data for each user on the smart contracts, has shown to be
costly in terms of gas used. Thus, storing and or evaluating the referral processes off-chain
could be considered to reduce the costs.

6.3. DISCUSSION 115

The Attrace [18] example, as discussed in Section 3.4.1.1, employs a similar approach
by using a blockchain oracle to track and evaluate data relevant to the referral process
evaluation and the eventual reward definition. Ideally, a decentralized oracle could be
incorporated to avoid introducing centralized components. However, a centralized oracle
can also be employed, as demonstrated by the Attrace example. Eventually, implementing
the evaluation of processes and determining eligible users and their rewards off-chain could
help reduce costs.

Regarding reward distribution, providing an off-chain alternative would be more chal-
lenging and not necessarily advantageous, particularly when rewards come in the form
of cryptocurrencies or ERC20 tokens. However, as the payout of rewards could become
increasingly expensive e.g., with deep referral chains for multilevel rewards, it may be
necessary to reconsider the on-chain reward distribution approach.

Moreover, it is worthwhile to compare the existing introduced solutions for decentralized
referral system approaches, such as Attrace [18] (cf. Section 3.4.1.1) and the Energi
affiliate program [50] (cf. Section 3.4.1.2), with the Deferral solution. Therein, both
Attrace and Energi incorporate the principle of referral payments, where the transactions
involve either purchasing cryptocurrencies, in the case of Attrace, or providing liquidity
on the Energiswap DEX.

At last, it can be maintained that the Deferral solution and all components of the resulting
referral system can remain fully decentralized as they are implemented on a smart contract
that can be deployed to a blockchain. Nonetheless, there is one notable exception. As
previously discussed (cf. Section 4.4.2.1), the use of upgradable contracts [97] introduces
a certain degree of centralization to the final solution, slightly diminishing the final level of
decentralization. However, all the solution contracts could also be implemented without
the upgradable functionality.

116 CHAPTER 6. EVALUATION AND DISCUSSION

Chapter 7

Final Considerations

7.1 Summary

Within this thesis, the subject of decentralized referral systems has been researched,
introducing related work covering essential components of the design and implementation
of referral systems and programs. It has been shown which components concerning the
conceptual and technical design must be considered when developing and implementing
a decentralized referral system. Existing solutions and approaches for centralized and
decentralized referral systems have been portrayed.

Furthermore, the solution architecture and design of the Deferral solution have been
conceptualized as a base for implementing decentralized referral systems in this context.
The developed solution comprises several solution designs and has implemented multiple
Solidity smart contracts that can represent the technical realization of a decentralized
referral system on a blockchain. The Deferral solution prototypes’ security, costs, and
performance have been tested and evaluated. Implications of high volumes of participating
users and fluctuating gas, as well as cryptocurrency i.e., fiat prices, on the transaction
costs, have been examined.

All relevant details have been documented and outlined in this thesis and in the two
corresponding GitHub repositories [132, 133]. Following the testing and evaluation of
the Deferral smart contracts, the results of the contract evaluations have been displayed,
analyzed, and discussed. At the same time, the generated results have been compared
across different suitable blockchains to establish benchmarks for gas and fiat costs calcu-
lated based on the underlying gas and cryptocurrency prices. The advantages and disad-
vantages of the different solution designs and their implementations have been outlined.
Additionally, the evaluation results have been embedded into historical data illustrating
the varying gas as well as fiat prices on different blockchains over time.

Thereafter, the feasibility of a decentralized referral system with a focus on technical
implementation and the defined solution requirements has been discussed. Moreover,
resting on the achieved results, the real-world practicability of a decentralized system
oriented at the Deferral solution has been debated. The consequential challenges and

117

118 CHAPTER 7. FINAL CONSIDERATIONS

issues caused by the volatile nature of gas and cryptocurrency prices have been exemplified.
Therein, it showed how these influencing factors would affect the costs of a system and,
eventually, the design decisions concerning both its technical implementation as well as
the related conceptual or economic design choices. Finally, the parallels between the
introduced existing solution approaches and the Deferral solution have been drawn, and
the resultant degree of decentralization has been reviewed.

7.2 Conclusion

In conclusion, the feasibility of a decentralized referral system can be confirmed within
the scope of this thesis. The multiple Deferral smart contract solutions present well-
tested and documented prototypes for the technical implementation and can be deployed
decentrally to different blockchains. Thereon, the evaluation process of this thesis has
uncovered several learnings and findings.

First, the analysis showed that the costs of referral transactions rise the more data is stored
and the more functionality is implemented on the evaluator smart contracts. Thereby, it
became clear how the initial storage of data is a main driving factor for costs. The distri-
bution of the rewards could be identified as the second large cost driver. Consequently,
it became evident that the start, as well as the completion of a decentralized referral
process, are associated with more costs than regular referral transactions that would only
update the data. Thus, depending on the contract implementation and the number of
users receiving rewards upon the completion of a referral process, either the starting or
the completing transaction is the most expensive for users.

Second, the evaluation demonstrated that for all but one solution smart contract, their
design is not negatively affected by high volumes of participating users concerning trans-
action costs. Thus, with the exception of the V1ReferralMultilevelRewardsUpgradable
contract, all solution contracts also represent a feasible referral system when dealing with
high volumes of users.

Furthermore, the results and evaluation of the gas and cryptocurrency i.e., fiat prices,
revealed the different cost structures depending on the chosen blockchain. This investi-
gation established how the volatility of these external prices, which are used to calculate
the transaction costs, can influence the resulting costs of a decentralized referral system.
Further, it became clear that the gas costs of a transaction can often be misinterpreted,
primarily due to inconsistencies in their units of measurement. In general, these findings
underlined that transaction cost results that are tied to gas and or fiat prices must be
interpreted with caution. Eventually, the incorporation of historical price data depicted
how fast the costs associated with decentralized referral system transactions can change.

Eventually, the discussion of the results established how complicated and multilayered
the design and implementation of a decentralized referral system can be. It was seen
that various environmental factors of a prospective company could influence the decision
related to the operation of such a system.

7.3. LIMITATIONS AND FUTURE WORK 119

The comparison of the Deferral solution to existing introduced approaches for decentral-
ized referral systems revealed several commonalities. Finally, the results pointed out what
components of the design and implementation could be established off-chain for further
improving the costs and performance of a decentralized referral system.

7.3 Limitations and Future Work

While the solution of this thesis aims to present a tested and documented framework
for the implementation of decentralized blockchain-based referral systems, it is important
to acknowledge the limitations that arose during the course of the research and imple-
mentation. Firstly, not all existing projects or related solutions for decentralized referral
systems in the fast-moving field of decentralized applications were covered and researched
within the scope of this thesis. Other areas or programs related to referral systems, such
as loyalty programs, could also entail helpful and relevant conceptual or technical aspects
and were not considered during this thesis. Secondly, the implemented solution smart
contracts were developed in Solidity. Hence they are only applicable to EVM-based and
Solidity-compatible blockchains. There are several limitations to the tests and evaluations
of the solution contracts. The smart contracts have not explicitly been tested on mainnet
blockchains due to the involved costs. The defined evaluation blockchains were used as
a reference point for transaction costs and not to test and execute the smart contracts.
Moreover, the impact of high volumes of data and transactions has been tested concern-
ing the number of users participating in the system. Thereby, two limitations could be
observed. On the one hand, no reference value for high volumes of participating users in
a decentralized referral system was considered during the evaluation phase. On the other
hand, important performance aspects such as the throughput, transaction frequency, or
block time of different blockchain networks have not been considered. Lastly, the imple-
mented solutions are prototypes and do not encompass all components required to operate
a referral system in a real-world environment. As a result, the Deferral solutions were not
tested with real users.

The presented results of this thesis and their limitations open up several possible paths for
future work. To begin with, the presented solution designs and implementations could be
extended concerning the referral process evaluation. Additional referral conditions e.g.,
a time constraint on the ongoing referral processes for the different contracts, could be
explored. Thereby, the architecture and designs of the smart contracts could be transposed
to incorporate off-chain data or functionality to further optimize costs. Next, it would
be interesting to explore and test the implemented smart contracts on other blockchain
platforms and ecosystems, such as Solana or Polkadot. Thereby, additional blockchains
could be included in the evaluation process. Moreover, performance metrics, such as the
transaction throughput of different blockchain networks, could be analyzed to evaluate
the impact of high volumes on the solution prototypes. Additionally, the results of this
thesis could be re-evaluated with higher numbers of participating users in future work.
The solution smart contracts could also be tested and applied in real-world use cases
on mainnet blockchains. Therein, a user interface for the Deferral contracts could be
implemented and evaluated with real users. After all, the business model of a potential

120 CHAPTER 7. FINAL CONSIDERATIONS

whitelabel Deferral solution, which offers decentralized referral systems as a service, could
be further investigated.

Bibliography

[1] Adam Rapp and Lisa Beeler. “The state of selling & sales management research: a
review and future research agenda”. In: Journal of Marketing Theory and Practice
29.1 (2021), pp. 37–50.

[2] John Adler et al. “Astraea: A Decentralized Blockchain Oracle”. In: 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). 2018, pp. 1145–1152.

[3] Shubhani Aggarwal and Neeraj Kumar. “Chapter Seven - Basics of blockchain”.
In: The Blockchain Technology for Secure and Smart Applications across Industry
Verticals. Ed. by Shubhani Aggarwal, Neeraj Kumar, and Pethuru Raj. Vol. 121.
Advances in Computers. 2021, pp. 129–146.

[4] Hamda Al-Breiki et al.“Trustworthy Blockchain Oracles: Review, Comparison, and
Open Research Challenges”. In: IEEE Access 8 (2020), pp. 85675–85685.

[5] Maher Alharby and Aad van Moorsel. “Blockchain-based Smart Contracts: A Sys-
tematic Mapping Study”. In: CoRR abs/1710.06372 (2017).

[6] Amazon. Amazon. [Online] https://www.amazon.com, last visit January 2023.
[7] Ambassador. Reduce acquisition costs and increase customer value with Ambas-

sador. [Online] https://www.getambassador.com, last visit January 2023.
[8] American Marketing Association. What is Digital Marketing? [Online] https :

//www.ama.org/pages/what-is-digital-marketing/, last visit December 2022.
[9] Andrew Reed, What Is Referral Fraud in Ecommerce? (And What You Can Do

About It). [Online] https://www.clean.io/blog/what-is-referral-fraud-
in-ecommerce-and-what-you-can-do-about-it, last visit January 2023.

[10] Alexander Anter. What happened to RefToken. [Online] https://reftoken.io/
blog/, last visit January 2023.

[11] Johan Arndt. “Role of Product-Related Conversations in the Diffusion of a New
Product”. In: Journal of Marketing Research 4.3 (1967), pp. 291–295.

[12] Attrace. Attrace Protocol. [Online] https://attrace.com/about, last visit Jan-
uary 2023.

[13] Attrace. Attrace Roadmap. [Online] https://attrace.com/about/roadmap, last
visit January 2023.

[14] Attrace. Attrace Token. [Online] https://attrace.com/about/attrace-token,
last visit January 2023.

[15] Attrace. Oracle Staking. [Online] https://attrace.com/about/tokenomics, last
visit January 2023.

121

https://www.amazon.com
https://www.getambassador.com
https://www.ama.org/pages/what-is-digital-marketing/
https://www.ama.org/pages/what-is-digital-marketing/
https://www.clean.io/blog/what-is-referral-fraud-in-ecommerce-and-what-you-can-do-about-it
https://www.clean.io/blog/what-is-referral-fraud-in-ecommerce-and-what-you-can-do-about-it
https://reftoken.io/blog/
https://reftoken.io/blog/
https://attrace.com/about
https://attrace.com/about/roadmap
https://attrace.com/about/attrace-token
https://attrace.com/about/tokenomics

122 BIBLIOGRAPHY

[16] Attrace. Oracles. [Online] https : / / attrace . com / about / oracles, last visit
January 2023.

[17] Attrace. Overview Attrace Referral Farms. [Online] https : / / medium . com /

attrace/overview- attrace- referral- farms- 52b2f88f05af, last visit Jan-
uary 2023.

[18] Attrace. Referral Protocol for Web3. [Online] https://attrace.com/, last visit
January 2023.

[19] Rodrigo Belo and Ting Li. “Social Referral Programs for Freemium Platforms”. In:
Management Science (Apr. 2022).

[20] Abdeljalil Beniiche. “A Study of Blockchain Oracles”. In: CoRR abs/2004.07140
(2020).

[21] Barry Berman. “Referral marketing: Harnessing the power of your customers”. In:
Business Horizons 59.1 (2016), pp. 19–28.

[22] Binance. BNB Chain. [Online] https://www.bnbchain.org/en, last visit May
2023.

[23] George Bissias et al. “Sybil-Resistant Mixing for Bitcoin”. In: Proceedings of the
13th Workshop on Privacy in the Electronic Society. WPES ’14. 2014, 149–158.

[24] BitTorrent. BitTorrent. [Online] https://www.bittorrent.com/, last visit Jan-
uary 2023.

[25] Eyal Biyalogorsky, Eitan Gerstner, and Barak Libai. “Customer Referral Manage-
ment: Optimal Reward Programs”. In: Marketing Science 20.1 (2001), pp. 82–95.

[26] Jacques Bughin, Jonathan Doogan, and Ole Jorgen Vetvik. “A new way to measure
word-of-mouth marketing”. In: McKinsey Quarterly 2.1 (2010), pp. 113–116.

[27] Vitalik Buterin et al. “A next-generation smart contract and decentralized appli-
cation platform”. In: white paper 3.37 (2014), pp. 2–1.

[28] Francis A. Buttle. “Word of mouth: understanding and managing referral market-
ing”. In: Journal of Strategic Marketing 6.3 (1998), pp. 241–254.

[29] Wei Cai et al. “Decentralized Applications: The Blockchain-Empowered Software
System”. In: IEEE Access 6 (2018), pp. 53019–53033.

[30] Giulio Caldarelli. “Understanding the Blockchain Oracle Problem: A Call for Ac-
tion”. In: Information 11.11 (2020).

[31] Giulio Caldarelli and Joshua Ellul. “The Blockchain Oracle Problem in Decentral-
ized Finance—A Multivocal Approach”. In: Applied Sciences 11.16 (2021).

[32] cgewecke - Christopher Gewecke. Hardhat Gas Reporter Plugin. [Online] https:
//github.com/cgewecke/hardhat-gas-reporter#readme, last visit April 2023.

[33] Chainlink. Securely connect smart contracts with off-chain data and services. [On-
line] https://chain.link, last visit January 2023.

[34] Yan Chen and Cristiano Bellavitis. “Blockchain disruption and decentralized fi-
nance: The rise of decentralized business models”. In: Journal of Business Ventur-
ing Insights 13 (2020), e00151.

[35] Coinbase. Buy & Sell Bitcoin, Ethereum, and more with trust. [Online] https:
//coinbase.com, last visit January 2023.

[36] Coinbase. The Coinbase referral program. [Online] https://help.coinbase.com/
en/coinbase/other-topics/other/the-coinbase-referral-program, last
visit January 2023.

https://attrace.com/about/oracles
https://medium.com/attrace/overview-attrace-referral-farms-52b2f88f05af
https://medium.com/attrace/overview-attrace-referral-farms-52b2f88f05af
https://attrace.com/
https://www.bnbchain.org/en
https://www.bittorrent.com/
https://github.com/cgewecke/hardhat-gas-reporter#readme
https://github.com/cgewecke/hardhat-gas-reporter#readme
https://chain.link
https://coinbase.com
https://coinbase.com
https://help.coinbase.com/en/coinbase/other-topics/other/the-coinbase-referral-program
https://help.coinbase.com/en/coinbase/other-topics/other/the-coinbase-referral-program

BIBLIOGRAPHY 123

[37] Coinbase. What is Coinbase? [Online] https : / / help . coinbase . com / en /

coinbase/getting-started/crypto-education/what-is-coinbase, last visit
January 2023.

[38] CoinGecko. CoinGecko API Documentation. [Online] https://www.coingecko.
com/de/api/documentation, last visit April 2023.

[39] Jens Cornelsen and Hermann Diller. “References within the context of customer
valuation”. In: IMP Conference (14th). Vol. 14. IMP. 1998.

[40] George Coulouris et al. Distributed Systems: Concepts and Design. 5th. 2011.
[41] Chris Dannen. Introducing Ethereum and solidity. Vol. 1. 2017.
[42] Massimo Di Pierro. “What Is the Blockchain?” In: Computing in Science Engi-

neering 19.5 (2017), pp. 92–95.
[43] John R. Douceur. “The Sybil Attack”. In: Peer-to-Peer Systems. Ed. by Peter

Druschel, Frans Kaashoek, and Antony Rowstron. 2002, pp. 251–260.
[44] Daniel Drescher. Blockchain Basics : A Non-Technical Introduction in 25 Steps.

2017.
[45] Dropbox. Dropbox Website. [Online] https://www.dropbox.com/, last visit Jan-

uary 2023.
[46] Dropbox. How to refer friends to Dropbox and get more storage space. [Online]

https://help.dropbox.com/storage-space/earn-space-referring-friends,
last visit January 2023.

[47] Energi. Energi GitHub. [Online] https://github.com/energicryptocurrency,
last visit January 2023.

[48] Energi. Energi Whitepaper - The Safest Blockchain in the World. [Online] https:
//eadn-wc01-5393995.nxedge.io/wp-content/uploads/2022/02/Energi-

White-Paper-February-2022.pdf, last visit January 2023. 2022.
[49] Energi. Energiswap - Decentralized Trading Powered by Energi. [Online] https:

//energiswap.exchange/, last visit January 2023.
[50] Energi. Energiswap Referral Program — the First Truly Decentralized Affiliate

Reward Offering in Crypto. [Online] https://medium.com/energi/energiswap-
referral- program- the- first- truly- decentralized- affiliate- reward-

offering-in-crypto-7e23437f13c7, last visit January 2023.
[51] Energi. The Safest Blockchain for Users Businesses You Everyone. [Online] https:

//energi.world/, last visit January 2023.
[52] ESLint. Find and fix problems in your JavaScript code. [Online] https://eslint.

org/, last visit April 2023.
[53] Ethereum. Decentralized Autonomous Organizations (DAOs). [Online] https://

ethereum.org/en/dao/, last visit January 2023.
[54] Ethereum. Introduction to Smart Contracts. [Online] https://ethereum.org/en/

developers/docs/smart-contracts/, last visit January 2023.
[55] Ethers. Ethers Documentation. [Online] https://docs.ethers.org/v5/, last visit

April 2023.
[56] Ankit Gangwal, Haripriya Ravali Gangavalli, and Apoorva Thirupathi. “A survey

of Layer-two blockchain protocols”. In: Journal of Network and Computer Appli-
cations 209 (2023), p. 103539.

[57] GitHub. GitHub Actions - Automate your workflow from idea to production. [On-
line] https://github.com/features/actions, last visit April 2023.

https://help.coinbase.com/en/coinbase/getting-started/crypto-education/what-is-coinbase
https://help.coinbase.com/en/coinbase/getting-started/crypto-education/what-is-coinbase
https://www.coingecko.com/de/api/documentation
https://www.coingecko.com/de/api/documentation
https://www.dropbox.com/
https://help.dropbox.com/storage-space/earn-space-referring-friends
https://github.com/energicryptocurrency
https://eadn-wc01-5393995.nxedge.io/wp-content/uploads/2022/02/Energi-White-Paper-February-2022.pdf
https://eadn-wc01-5393995.nxedge.io/wp-content/uploads/2022/02/Energi-White-Paper-February-2022.pdf
https://eadn-wc01-5393995.nxedge.io/wp-content/uploads/2022/02/Energi-White-Paper-February-2022.pdf
https://energiswap.exchange/
https://energiswap.exchange/
https://medium.com/energi/energiswap-referral-program-the-first-truly-decentralized-affiliate-reward-offering-in-crypto-7e23437f13c7
https://medium.com/energi/energiswap-referral-program-the-first-truly-decentralized-affiliate-reward-offering-in-crypto-7e23437f13c7
https://medium.com/energi/energiswap-referral-program-the-first-truly-decentralized-affiliate-reward-offering-in-crypto-7e23437f13c7
https://energi.world/
https://energi.world/
https://eslint.org/
https://eslint.org/
https://ethereum.org/en/dao/
https://ethereum.org/en/dao/
https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/
https://docs.ethers.org/v5/
https://github.com/features/actions

124 BIBLIOGRAPHY

[58] Julija Golosova and Andrejs Romanovs.“The Advantages and Disadvantages of the
Blockchain Technology”. In: 2018 IEEE 6th Workshop on Advances in Information,
Electronic and Electrical Engineering (AIEEE). 2018, pp. 1–6.

[59] Google. Google About. [Online] https://about.google/, last visit January 2023.
[60] Zhiling Guo. “Optimal decision making for online referral marketing”. In: Decision

Support Systems 52.2 (2012), pp. 373–383.
[61] Hardhat. Hardhat Documentation. [Online] https://hardhat.org/, last visit

April 2023.
[62] Hardhat. Testing Contracts. [Online] https://hardhat.org/tutorial/testing-

contracts, last visit April 2023.
[63] Sabrina Helm.“Calculating the value of customers’ referrals”. In: Managing Service

Quality 13 (Apr. 2003), pp. 124–133.
[64] Andreas Herrmann and Ralph Fürderer. “The Value of Passenger Car Customers”.

In: Customer Retention in the Automotive Industry: Quality, Satisfaction and Loy-
alty. Ed. by Michael D. Johnson et al. 1997, pp. 349–370.

[65] Kevin Hong et al. “On the Role of Fairness and Social Distance in Designing Ef-
fective Social Referral Systems”. In: MIS Quarterly 41 (Mar. 2017), pp. 787–809.

[66] IPFS. IPFS powers the Distributed Web. [Online] https://ipfs.tech/, last visit
January 2023.

[67] Elvira Ismagilova et al. Electronic Word of Mouth (EWOM) in the Marketing
Context: A State of the Art Analysis and Future Directions. 1st. 2017.

[68] Jaehwuen Jung et al.“Impact of Incentive Mechanism in Online Referral Programs:
Evidence from Randomized Field Experiments”. In: Journal of Management Infor-
mation Systems 38.1 (2021), pp. 59–81.

[69] P.K. Kannan and Hongshuang “Alice”Li. “Digital marketing: A framework, review
and research agenda”. In: International Journal of Research in Marketing 34.1
(2017), pp. 22–45.

[70] Chris Karlof and David Wagner. “Secure routing in wireless sensor networks: at-
tacks and countermeasures”. In: Ad Hoc Networks 1.2 (2003), pp. 293–315.

[71] Anastasii I. Klimin et al. “Referral program in the context of social capital and dig-
ital marketing methods”. In: Proceedings of the International Conference on Digital
Technologies in Logistics and Infrastructure (ICDTLI 2019). 2019/09, pp. 57–60.

[72] Antonia Köster, Christian Matt, and Thomas Hess. “Does the Source Matter? How
Referral Channels and Personal Communication Tools Affect Consumers’ Referral
Propensity”. In: Hawaii International Conference on System Sciences. 2017.

[73] Di Kuang, Xiao-Fei Li, and Wen-Wen Bi. “How to Effectively Design Referral
Rewards to Increase the Referral Likelihood for Green Products”. In: Sustainability
13.13 (2021).

[74] KuCoin. Earn free crypto. [Online] https://www.kucoin. com /land/task -
center, last visit January 2023.

[75] KuCoin. Invite Friends to Earn Stars. [Online] https : / / www . kucoin . com /

referral, last visit January 2023.
[76] KuCoin. Referral Program - Invite Friends to Earn Stars - FAQ. [Online] https:

//www.kucoin.com/de/support/8426175962393, last visit January 2023.
[77] V. Kumar, J. Andrew Petersen, and Robert P. Leone. “Driving Profitability by

Encouraging Customer Referrals: Who, When, and How”. In: Journal of Marketing
74.5 (2010), pp. 1–17.

https://about.google/
https://hardhat.org/
https://hardhat.org/tutorial/testing-contracts
https://hardhat.org/tutorial/testing-contracts
https://ipfs.tech/
https://www.kucoin.com/land/task-center
https://www.kucoin.com/land/task-center
https://www.kucoin.com/referral
https://www.kucoin.com/referral
https://www.kucoin.com/de/support/8426175962393
https://www.kucoin.com/de/support/8426175962393

BIBLIOGRAPHY 125

[78] V. Kumar et al. “The Power of CLV: Managing Customer Lifetime Value at IBM”.
In: Marketing Science 27.4 (2008), pp. 585–599.

[79] Amanda Laine. Insights from Inside the Infamous PayPal Referral Program. [On-
line] https://growsurf.com/blog/paypal-referral-program, last visit Jan-
uary 2023.

[80] Monica Law. “Customer referral management: the implications of social networks”.
In: The Service Industries Journal 28.5 (2008), pp. 669–683.

[81] Linktrust. The Most Trusted Platform in Performance Marketing. [Online] https:
//linktrust.com, last visit January 2023.

[82] Viral Loops. How Revolut grew 150x with referral marketing—a case study. [Online]
https://viral-loops.com/revolut-referral-marketing-case-study, last
visit January 2023.

[83] Viral Loops. Our Product. Offering a unique experience tailored to you. [Online]
https://viral-loops.com/product, last visit January 2023.

[84] Alexander Anter Manuel Granados and Jan Sammut. RefToken: A decentralized af-
filiate marketplace. [Online] https://reftoken.io/uploads/RefToken-Yellow-
Paper.pdf, last visit January 2023. 2017.

[85] Lodovica Marchesi et al. “Design Patterns for Gas Optimization in Ethereum”. In:
2020 IEEE International Workshop on Blockchain Oriented Software Engineering
(IWBOSE). 2020, pp. 9–15.

[86] F.J. Mart́ınez-López and D.L. López. Advances in Digital Marketing and eCom-
merce: Second International Conference, 2021. Springer Proceedings in Business
and Economics. 2021.

[87] Apostle Mengoulis. Dropbox grew 3900% with a simple referral program. Here’s
how! [Online] https://viral-loops.com/blog/dropbox-grew-3900-simple-
referral-program/, last visit January 2023.

[88] Apostle Mengoulis. The best 100 referral marketing examples to get you inspired.
[Online] https : / / viral - loops . com / blog / 100 - referral - marketing -

examples/, last visit January 2023.
[89] Meta. Meta. [Online] https://www.meta.com, last visit January 2023.
[90] Du Mingxiao et al. “A review on consensus algorithm of blockchain”. In: 2017

IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2017,
pp. 2567–2572.

[91] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. “An
Overview of Smart Contract and Use Cases in Blockchain Technology”. In: 2018 9th
International Conference on Computing, Communication and Networking Tech-
nologies (ICCCNT). 2018, pp. 1–4.

[92] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentral-
ized Business Review (2008), p. 21260.

[93] Node.js. Node.js - an open-source, cross-platform JavaScript runtime environment.
[Online] https://nodejs.org/en, last visit April 2023.

[94] OpenAI. [Online] https://chat.openai.com/, last visit May 2023.
[95] OpenZeppelin. OpenZeppelin Contracts. [Online] https : / / github . com /

OpenZeppelin/openzeppelin- contracts/blob/master/contracts/access/

Ownable.sol, last visit April 2023.

https://growsurf.com/blog/paypal-referral-program
https://linktrust.com
https://linktrust.com
https://viral-loops.com/revolut-referral-marketing-case-study
https://viral-loops.com/product
https://reftoken.io/uploads/RefToken-Yellow-Paper.pdf
https://reftoken.io/uploads/RefToken-Yellow-Paper.pdf
https://viral-loops.com/blog/dropbox-grew-3900-simple-referral-program/
https://viral-loops.com/blog/dropbox-grew-3900-simple-referral-program/
https://viral-loops.com/blog/100-referral-marketing-examples/
https://viral-loops.com/blog/100-referral-marketing-examples/
https://www.meta.com
https://nodejs.org/en
https://chat.openai.com/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol

126 BIBLIOGRAPHY

[96] OpenZeppelin. OpenZeppelin Contracts. [Online] https : / / github . com /

OpenZeppelin / openzeppelin - upgrades / blob / master / packages / core /

contracts/Initializable.sol, last visit April 2023.
[97] OpenZeppelin. OpenZeppelin Docs - Upgrades. [Online] https : / / docs .

openzeppelin.com/upgrades, last visit April 2023.
[98] Owloracle. Owlracle API documentation. [Online] https://owlracle.info/docs,

last visit April 2023.
[99] PayPal. Refer a Friend. [Online] https://www.paypal.com/us/webapps/mpp/

invite/terms, last visit January 2023.
[100] PayPal. Shop. Send. Manage. [Online] https://www.paypal.com/us/home, last

visit January 2023.
[101] PayPal. What is PayPal? [Online] https://www.paypal.com/uk/webapps/mpp/

paypal-popup, last visit January 2023.
[102] Jack Peterson and Joseph Krug. “Augur: a decentralized, open-source platform for

prediction markets”. In: CoRR abs/1501.01042 (2015).
[103] Pierrre-Yann Dolbec. Digital Marketing Strategy. 2021.
[104] Plotly. Plotly Open Source Graphing Library for Python. [Online] https : / /

plotly.com/python/, last visit April 2023.
[105] Polygon. Polygon Technology. [Online] https://polygon.technology/, last visit

January 2023.
[106] Prettier. Prettier - An Opinionated Code Formatter. [Online] https://prettier.

io/, last visit April 2023.
[107] Protofire. Solhint. [Online] https://github.com/protofire/solhint, last visit

April 2023.
[108] Alex Pruden. Data Availability Scaling Blockchains. [Online] https : / /

zeroknowledge.fm/data-availability-scaling-blockchains/, last visit De-
cember 2022.

[109] Python. Python is a programming language that lets you work quickly and integrate
systems more effectively. [Online] https://www.python.org/, last visit April 2023.

[110] Rajagopal, Rajagopal. Transgenerational Marketing: Evolution, Expansion, and
Experience. Jan. 2020.

[111] Daniel Ramos and Gabriel Zanko. “A Review of the Current State of Decentral-
ized Finance as a Subsector of the Cryptocurrency Market”. In: MobileyourLife.
Available at https://www. mobileyourlife. com/research (2020).

[112] Daniel Ramos and Gabriel Zanko. “A Review of the Current State of Decentral-
ized Finance as a Subsector of the Cryptocurrency Market”. In: MobileyourLife.
Available at https://www. mobileyourlife. com/research (2020).

[113] Siraj Raval. Decentralized applications: harnessing Bitcoin’s blockchain technology.
2016.

[114] ReferralCandy. Grow your sales by word-of-mouth marketing. [Online] https://
www.referralcandy.com, last visit January 2023.

[115] RefToken. The World’s First Decentralized Affiliate Platform. [Online] https :
//reftoken.io/, last visit January 2023.

[116] Revolut. Getting started with Referral Campaign. [Online] https : / / help .

revolut.com/help/referrals/getting-started-with-referral-campaign,
last visit January 2023.

https://github.com/OpenZeppelin/openzeppelin-upgrades/blob/master/packages/core/contracts/Initializable.sol
https://github.com/OpenZeppelin/openzeppelin-upgrades/blob/master/packages/core/contracts/Initializable.sol
https://github.com/OpenZeppelin/openzeppelin-upgrades/blob/master/packages/core/contracts/Initializable.sol
https://docs.openzeppelin.com/upgrades
https://docs.openzeppelin.com/upgrades
https://owlracle.info/docs
https://www.paypal.com/us/webapps/mpp/invite/terms
https://www.paypal.com/us/webapps/mpp/invite/terms
https://www.paypal.com/us/home
https://www.paypal.com/uk/webapps/mpp/paypal-popup
https://www.paypal.com/uk/webapps/mpp/paypal-popup
https://plotly.com/python/
https://plotly.com/python/
https://polygon.technology/
https://prettier.io/
https://prettier.io/
https://github.com/protofire/solhint
https://zeroknowledge.fm/data-availability-scaling-blockchains/
https://zeroknowledge.fm/data-availability-scaling-blockchains/
https://www.python.org/
https://www.referralcandy.com
https://www.referralcandy.com
https://reftoken.io/
https://reftoken.io/
https://help.revolut.com/help/referrals/getting-started-with-referral-campaign
https://help.revolut.com/help/referrals/getting-started-with-referral-campaign

BIBLIOGRAPHY 127

[117] Revolut. One app, all things money. [Online] https://www.revolut.com, last
visit January 2023.

[118] Huaxia Rui, Yizao Liu, and Andrew B. Whinston. “Chatter matters: How twit-
ter can open the black box of online word-of-mouth”. In: ICIS 2010 Proceedings -
Thirty First International Conference on Information Systems. ICIS 2010 Proceed-
ings - Thirty First International Conference on Information Systems. Dec. 2010.

[119] Mary-Ann Russon. What is Revolut? [Online] https://www.bbc.com/news/
business-47768661, last visit January 2023.

[120] Jan Sammut and Alex Anter. RefToken - White Paper Business Plan. [Online]
https://reftoken.io/uploads/reftoken- whitepaper- 5.6.pdf, last visit
January 2023. 2017.

[121] Artur Sawicki. “Digital marketing”. In:World Scientific News 48 (2016), pp. 82–88.
[122] Fabian Schär. “Decentralized finance: On blockchain-and smart contract-based fi-

nancial markets”. In: FRB of St. Louis Review (2021).
[123] Philipp Schmitt, Bernd Skiera, and Christophe Van den Bulte. “Referral Programs

and Customer Value”. In: Journal of Marketing 75.1 (2011), pp. 46–59.
[124] Cosimo Sguanci, Roberto Spatafora, and Andrea Mario Vergani. “Layer 2

Blockchain Scaling: a Survey”. In: CoRR abs/2107.10881 (2021).
[125] Jagdip Singh et al. “Sales profession and professionals in the age of digitization and

artificial intelligence technologies: concepts, priorities, and questions”. In: Journal
of Personal Selling Sales Management 39 (Jan. 2019), pp. 1–21.

[126] sol2uml. A visualisation tool for Solidity contracts. [Online] https://github.com/
naddison36/sol2uml, last visit April 2023.

[127] Solidity. Solidity Documentation. [Online] https://soliditylang.org/, last visit
April 2023.

[128] Solidity. Solidity Documentation- Function Overloading. [Online] https://docs.
soliditylang.org/en/v0.8.19/contracts.html#function-overloading, last
visit April 2023.

[129] Solidity-Coverage. Code coverage for Solidity testing. [Online] https://github.
com/sc-forks/solidity-coverage, last visit April 2023.

[130] Sushiswap. Sushiswap Protocol. [Online] https://www.sushi.com/, last visit May
2023.

[131] Paul Sztorc.“Truthcoin”. In: peer-to-peer oracle system and prediction marketplace.
(2015).

[132] Tobias Boner. Deferral - Decentralized Referral Systems. [Online] https : / /

github.com/dydent/Deferral, last visit May 2023.
[133] Tobias Boner. Deferral Visualizations. [Online] https://github.com/dydent/

visualizations-deferral, last visit May 2023.
[134] TypeChain. TypeScript bindings for Ethereum smart contracts. [Online] https:

//github.com/dethcrypto/TypeChain#readme, last visit April 2023.
[135] TypeScript. TypeScript Documentation. [Online] https://www.typescriptlang.

org/, last visit April 2023.
[136] Uniswap. Uniswap Protocol. [Online] https://uniswap.org/, last visit May 2023.
[137] JP Vergne. “Decentralized vs. Distributed Organization: Blockchain, Machine

Learning and the Future of the Digital Platform”. In: Organization Theory 1.4
(2020), p. 2631787720977052.

https://www.revolut.com
https://www.bbc.com/news/business-47768661
https://www.bbc.com/news/business-47768661
https://reftoken.io/uploads/reftoken-whitepaper-5.6.pdf
https://github.com/naddison36/sol2uml
https://github.com/naddison36/sol2uml
https://soliditylang.org/
https://docs.soliditylang.org/en/v0.8.19/contracts.html#function-overloading
https://docs.soliditylang.org/en/v0.8.19/contracts.html#function-overloading
https://github.com/sc-forks/solidity-coverage
https://github.com/sc-forks/solidity-coverage
https://www.sushi.com/
https://github.com/dydent/Deferral
https://github.com/dydent/Deferral
https://github.com/dydent/visualizations-deferral
https://github.com/dydent/visualizations-deferral
https://github.com/dethcrypto/TypeChain#readme
https://github.com/dethcrypto/TypeChain#readme
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://uniswap.org/

128 BIBLIOGRAPHY

[138] Peeter Verlegh et al. “Receiver responses to rewarded referrals: The motive in-
ferences framework”. In: Journal of the Academy of Marketing Science 41 (Nov.
2013).

[139] Wikipedia. Blockchain Oracle. [Online] https : / / en . wikipedia . org / wiki /
Blockchain_oracle, last visit January 2023.

[140] Wikipedia. Centralisation. [Online] https : / / en . wikipedia . org / wiki /

Centralisation, last visit January 2023.
[141] Wikipedia. Client-Server Model. [Online] https://en.wikipedia.org/wiki/

Client-server_model, last visit January 2023.
[142] Wikipedia. Decentralization. [Online] https : / / en . wikipedia . org / wiki /

Decentralization, last visit January 2023.
[143] Wikipedia. Decentralized Systems. [Online] https://en.wikipedia.org/wiki/

Decentralised_system, last visit January 2023.
[144] Wikipedia. Peer-to-peer. [Online] https://en.wikipedia.org/wiki/Peer-to-

peer, last visit January 2023.
[145] Wikipedia. Referral Marketing. [Online] https://en.wikipedia.org/wiki/

Referral_marketing, last visit December 2022.
[146] Wikipedia. Web3. [Online] https://en.wikipedia.org/wiki/Web3, last visit

January 2023.
[147] Brian C. Williams and Christopher R. Plouffe. “Assessing the evolution of sales

knowledge: A 20-year content analysis”. In: Industrial Marketing Management 36.4
(2007), pp. 408–419.

[148] Gavin Wood.“Ethereum: A Secure Decentralised Generalised Transaction Ledger”.
In: Ethereum Project Yellow Paper Berlin Version Beacfbd (2022), p. 41.

[149] Ping Xiao, Christopher S. Tang, and Jochen Wirtz. “Optimizing referral reward
programs under impression management considerations”. In: European Journal of
Operational Research 215.3 (2011), pp. 730–739.

[150] Junfeng Xie et al. “A Survey on the Scalability of Blockchain Systems”. In: IEEE
Network 33.5 (2019), pp. 166–173.

[151] Yarn. Safe, stable, reproducible projects. [Online] https://yarnpkg.com/, last
visit April 2023.

[152] Shijie Zhang and Jong-Hyouk Lee. “Double-Spending With a Sybil Attack in the
Bitcoin Decentralized Network”. In: IEEE Transactions on Industrial Informatics
15.10 (2019), pp. 5715–5722.

[153] Qiheng Zhou et al. “Solutions to Scalability of Blockchain: A Survey”. In: IEEE
Access 8 (2020), pp. 16440–16455.

https://en.wikipedia.org/wiki/Blockchain_oracle
https://en.wikipedia.org/wiki/Blockchain_oracle
https://en.wikipedia.org/wiki/Centralisation
https://en.wikipedia.org/wiki/Centralisation
https://en.wikipedia.org/wiki/Client-server_model
https://en.wikipedia.org/wiki/Client-server_model
https://en.wikipedia.org/wiki/Decentralization
https://en.wikipedia.org/wiki/Decentralization
https://en.wikipedia.org/wiki/Decentralised_system
https://en.wikipedia.org/wiki/Decentralised_system
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Referral_marketing
https://en.wikipedia.org/wiki/Referral_marketing
https://en.wikipedia.org/wiki/Web3
https://yarnpkg.com/

Abbreviations

AMA American Marketing Association
API Application Programming Interface
CI Continuous Integration
CLI Command Line Interface
CLV Customer Lifetime Value
CRV Customer Referral Value
DAO Decentralized Autonomous Organization
DApp Decentralized Application
DeFi Decentralized Finance
DEX Decentralized Exchange
DLT Distributed Ledger Technology
EWOM Electronic Word of Mouth
EVM Ethereum Virtual Machine
Fintech Financial Technology
ICO Initial Coin Offering
IPFS InterPlanetary File System
IOT Internet of Things
LP Liquidity Provider
NFT Non Fungible Token
P2P Peer To Peer
SC Smart Contract
SEO Search Engine Optimization
SMM Social Media Marketing
UCG User Generated Content
UML Unified Modelling Language
USD US Dollars
UX User Experience
WOM Word of Mouth

129

130 ABBREVIATONS

List of Figures

2.1 Screenshot of the PayPal Referral Process [99, 100] 7

2.2 Screenshot of the Requirements of the KuCoin Referral Program [74, 75] . 8

3.1 Own Illustration of the Eight-Step Process According to Berman [21] . . . 14

3.2 Own Illustration of the Farm Creation Process by Attrace [18] 20

3.3 Screenshots of the Energiswap Affiliate Platform [49] 22

3.4 Screenshots of the Energiswap Referral Acceptance Transaction [49] 23

3.5 Own Illustration of the Multi-Tier Energi Referral Flow [50] 23

3.6 Extended Illustration of the RefToken Platform Flow According to RefTo-
ken [84, 115] . 25

3.7 Own Illustration of the Blockchain Scalability Trilemma According to
Sguanci, Spatafora, and Vergani [124] . 26

4.1 Design of a Trivial Decentralized Referral System 30

4.2 Decentralized Users i.e., Addresses in a Decentralized Referral System . . . 31

4.3 Conceptual Design of Referral Payment Transactions 33

4.4 Deferral Solution Architecture . 34

4.5 Solution Design for the Referral Payment Transmitter Architecture 36

4.6 Solution Design for the Referral Payment Quantity Architecture 38

4.7 Solution Design for V2 of the Referral Payment Value Architecture 39

4.8 Solution Design for V3 of the Referral Payment Value Architecture 39

4.9 Solution Design for V1 of the Referral Payment Multilevel Rewards Archi-
tecture . 41

131

132 LIST OF FIGURES

4.10 Solution Design for V2 of the Referral Payment Multilevel Rewards Archi-
tecture . 42

4.11 Solution Design for V1 of the Referral Token Multilevel Rewards Architecture 43

5.1 UML Class Diagram of the V1ReferralPaymentTransmitter Contract . . . 49

5.2 UML Class Diagram of the V2ReferralPaymentTransmitterUpgradable
Contract . 51

5.3 UML Class Diagram of the V3ReferralPaymentTransmitterUpgradable
Contract . 52

5.4 UML Class Diagram of the V1ReferralPaymentQuantityUpgradable Con-
tract . 53

5.5 UML Class Diagram of the V2ReferralPaymentQuantityUpgradable Con-
tract . 56

5.6 UML Class Diagram of the V1ReferralPaymentValueUpgradable Contract 58

5.7 UML Class Diagram of the V2ReferralPaymentValueUpgradable Contract 59

5.8 UML Class Diagram of the V3ReferralPaymentValueUpgradable Solidity
Contract . 61

5.9 UML Class Diagram of the V1ReferralMultilevelRewardsUpgradable Con-
tract . 62

5.10 UML Class Diagram of the V2ReferralMultilevelRewardsUpgradable Con-
tract . 65

5.11 UML Class Diagram of the V1ReferralMultilevelTokenRewardsUpgradable
Contract . 68

6.1 GasUsed Across the Evaluations of V1ReferralPaymentTransmitter 84

6.2 Screenshot of the Gas Reporter Output for V1ReferralPaymentTransmitter 85

6.3 Gas Used per Transaction Across the Evaluations of
V1ReferralPaymentQuantityUpgradable 87

6.4 GasUsed per UserIteration Across the Evaluations of
V1ReferralPaymentQuantityUpgradable 87

6.5 GasUsed per UserTxIteration Across the Evaluations of
V1ReferralPaymentQuantityUpgradable 88

6.6 GasUsed per UserTxIteration Across the Evaluations of
V1ReferralPaymentValueUpgradable . 90

LIST OF FIGURES 133

6.7 GasUsed per UserTxIteration Across the Evaluations of
V2ReferralPaymentValueUpgradable . 91

6.8 GasUsed per UserTxIteration Across the Evaluations of
V3ReferralPaymentValueUpgradable . 91

6.9 GasUsed per Transaction Across the Evaluations of
V1ReferralMultilevelRewardsUpgradable 93

6.10 DurationInMs per Transaction Across the Evaluations of
V1ReferralMultilevelRewardsUpgradable 93

6.11 GasUsed per UserIteration for the Evaluations of
V1ReferralMultilevelRewardsUpgradable 94

6.12 DurationInMs per UserIteration for the Evaluations of
V1ReferralMultilevelRewardsUpgradable 94

6.13 GasUsed per UserTxIteration Across the Evaluations of
V1ReferralMultilevelRewardsUpgradable 95

6.14 DurationInMs per UserTxIteration Across the Evaluations of
V1ReferralMultilevelRewardsUpgradable 96

6.15 GasUsed per Transaction Across the Evaluations of
V2ReferralMultilevelRewardsUpgradable 97

6.16 GasUsed per UserIteration for the Evaluations of
V2ReferralMultilevelRewardsUpgradable 98

6.17 GasUsed per UserTxIteration Across the Evaluations of
V2ReferralMultilevelRewardsUpgradable 99

6.18 Overall Average Gas Used per Transaction Across All Deferral Contracts . 101

6.19 Filtered Overall Average Gas Costs in Gwei per Contract per Evaluation
Chain . 103

6.20 Filtered Overall Average Fiat Costs in USD per Contract per Evaluation
Chain . 104

6.21 Filtered Overall Average Fiat Costs in USD per Contract per Evaluation
Chain Without Ethereum . 104

6.22 Gas Prices in Gwei Over Time per Evaluation Chain 105

6.23 Fiat Prices in USD of Evaluation Chains Over Time 106

6.24 Filtered Fiat Prices in USD of Evaluation Chains Over Time 106

6.25 Historic Avg Gas Costs in Gwei Over Time for
V2ReferralMultilevelRewardsUpgradable 107

134 LIST OF FIGURES

6.26 Historic Avg Costs in USD Over Time for
V2ReferralMultilevelRewardsUpgradable 108

6.27 Filtered Historic Avg Costs in USD Over Time for
V2ReferralMultilevelRewardsUpgradable 108

6.28 Ethereum Transaction Costs in USD per UserIteration for
V2ReferralMultilevelRewardsUpgradable 112

6.29 Binance Transaction Costs in USD per UserIteration for
V2ReferralMultilevelRewardsUpgradable 113

D.1 DurationInMs Across the Evaluations of V1ReferralPaymentTransmitter . 159

D.2 GasUsed Across Evaluations of V3ReferralPaymentTransmitterUpgradable 160

D.3 DurationInMs Across Evaluations of V3ReferralPaymentTransmitterUpgradable160

D.4 Screenshot of the Gas Reporter Output for
V3ReferralPaymentTransmitterUpgradable 161

D.5 Screenshot of the Gas Reporter Output for
V1ReferralPaymentQuantityUpgradable 162

D.6 Screenshot of the Gas Reporter Output for
V2ReferralPaymentQuantityUpgradable 162

D.7 GasUsed per Transaction Across the Evaluations of
V2ReferralPaymentQuantityUpgradable 163

D.8 GasUsed per UserIteration Across the Evaluations of
V2ReferralPaymentQuantityUpgradable 163

D.9 GasUsed per UserTxIteration Across the Evaluations of
V2ReferralPaymentQuantityUpgradable 164

D.10 Screenshot of the Gas Reporter Output for
V1ReferralPaymentValueUpgradable . 165

D.11 GasUsed per Transaction Across the Evaluations of
V1ReferralPaymentValueUpgradable . 166

D.12 GasUsed per UserIteration Across the Evaluations of
V1ReferralPaymentValueUpgradable . 167

D.13 Screenshot of the Gas Reporter Output for
V2ReferralPaymentValueUpgradable . 167

D.14 GasUsed per Transaction Across the Evaluations of
V2ReferralPaymentValueUpgradable . 168

LIST OF FIGURES 135

D.15 GasUsed per UserIteration Across the Evaluations of
V2ReferralPaymentValueUpgradable . 168

D.16 Screenshot of the Gas Reporter Output for
V3ReferralPaymentValueUpgradable . 169

D.17 GasUsed per Transaction Across the Evaluations of
V3ReferralPaymentValueUpgradable . 169

D.18 GasUsed per UserIteration Across the Evaluations of
V3ReferralPaymentValueUpgradable . 170

D.19 Screenshot of the Gas Reporter Output for
V1ReferralMultilevelRewardsUpgradable 171

D.20 Screenshot of the Gas Reporter Output for
V2ReferralMultilevelRewardsUpgradable 171

D.21 DurationInMs per Transaction Across the Evaluations of
V2ReferralMultilevelRewardsUpgradable 172

D.22 DurationInMs per UserIteration for the Evaluations of
V2ReferralMultilevelRewardsUpgradable 172

D.23 Screenshot of the Gas Reporter Output for
V1ReferralMultilevelTokenRewardsUpgradable 173

D.24 GasUsed per Transaction Across the Evaluations of
V1ReferralMultilevelTokenRewardsUpgradable 174

D.25 GasUsed per UserIteration Across the Evaluations of
V1ReferralMultilevelTokenRewardsUpgradable 174

D.26 GasUsed per UserTxIteration Across the Evaluations of
V1ReferralMultilevelTokenRewardsUpgradable 175

D.27 Overall Max Gas Used per Transaction for All Deferral Contracts 179

D.28 Overall Min Gas Used per Transaction for All Deferral Contracts 179

D.29 Overall Sum of Gas Used per Transaction for All Deferral Contracts 180

D.30 Unfiltered Overall Average Gas Costs in Gwei per Contract per Evaluation
Chain . 180

D.31 Contract Filtered Overall Average Gas Costs in Gwei per Contract per
Evaluation Chain . 182

D.32 Overall Average Fiat Costs in USD per Contract per Evaluation Chain . . 182

D.33 Historic Average Gas Costs in Gwei Over Time for
V1ReferralPaymentTransmitter . 184

136 LIST OF FIGURES

D.34 Historic Average Fiat Costs in USD Over Time for
V1ReferralPaymentTransmitter . 185

D.35 Historic Average Gas Costs in Gwei Over Time for
V1ReferralPaymentQuantityUpgradable 185

D.36 Historic Average Fiat Costs in USD Over Time for
V1ReferralPaymentQuantityUpgradable 186

D.37 Historic Average Gas Costs in Gwei Over Time for
V1ReferralPaymentValueUpgradable . 186

D.38 Historic Average Fiat Costs in USD Over Time for
V1ReferralPaymentValueUpgradable . 187

D.39 Historic Average Gas Costs in Gwei Over Time for
V1ReferralMultilevelRewardsUpgradable 187

D.40 Historic Average Fiat Costs in USD Over Time for
V1ReferralMultilevelRewardsUpgradable 188

D.41 Historic Average Gas Costs in Gwei Over Time for
V1ReferralMultilevelTokenRewardsUpgradable 188

D.42 Historic Average Fiat Costs in USD Over Time for
V1ReferralMultilevelTokenRewardsUpgradable 189

List of Tables

6.1 Test Coverage Report for all the Referral Smart Contracts 78

6.2 GasUsed for Evaluation Runs of V1ReferralPaymentTransmitter 84

6.3 Evaluation Chain Gas Price Results for V1ReferralPaymentTransmitter . . 85

6.4 GasUsed for Evaluation Runs of V3ReferralPaymentTransmitterUpgradable 86

6.5 GasUsed for Evaluation Runs of V1ReferralPaymentQuantityUpgradable . 88

6.6 GasUsed for Evaluation Runs of V2ReferralPaymentQuantityUpgradable . 89

6.7 GasUsed for Evaluation Runs of V1ReferralMultilevelRewardsUpgradable . 92

6.8 GasUsed for Evaluation Runs of V2ReferralMultilevelRewardsUpgradable . 97

6.9 GasUsed per Transaction for the first 4 Users in the Evaluation run with
10 i.e., 7 Users for V2ReferralMultilevelRewardsUpgradable 99

6.10 GasUsed for Evaluation Runs of V1ReferralMultilevelTokenRewardsUpgradable100

6.11 Gas Reporter Output Showing GasUsed for the Deferral Contract Deploy-
ments . 102

D.1 GasUsed for Evaluation Runs of V1ReferralPaymentValueUpgradable . . . 165

D.2 GasUsed for Evaluation Runs of V2ReferralPaymentValueUpgradable . . . 165

D.3 GasUsed for Evaluation Runs of V3ReferralPaymentValueUpgradable . . . 166

D.4 Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V1ReferralPaymentTransmitter . 176

D.5 Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V3ReferralPaymentTransmitterUpgradable 176

D.6 Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V1ReferralPaymentQuantityUpgradable 176

137

138 LIST OF TABLES

D.7 Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V2ReferralPaymentQuantityUpgradable 177

D.8 Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V1ReferralPaymentValueUpgradable . 177

D.9 Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V2ReferralPaymentValueUpgradable . 177

D.10 Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V3ReferralPaymentValueUpgradable . 177

D.11 Evaluation Fiat Costs Metrics (497 Users) Rounded to 3 Decimals for
V1ReferralMultilevelRewardsUpgradable 178

D.12 Evaluation Fiat Costs Metrics (497 Users) Rounded to 3 Decimals for
V2ReferralMultilevelRewardsUpgradable 178

D.13 Evaluation Fiat Costs Metrics (497 Users) Rounded to 3 Decimals for
V1ReferralMultilevelTokenRewardsUpgradable 178

D.14 Avg Gas Costs in Gwei Rounded to 3 Decimals Across all Contract Eval-
uations with 498 Users for All Evaluation Chains 181

D.15 Avg Fiat Costs in USD Rounded to 3 Decimals Across all Contract Eval-
uations with 498 Users for All Evaluation Chains 183

Listings

5.1 exactAmount Modifier of V1ReferralPaymentTransmitter 49
5.2 forwardReferralPayment Function of V1ReferralPaymentTransmitter . . 50
5.3 initialize Function of V2ReferralPaymentTransmitterUpgradable 51
5.4 refereeProcessMapping of the V1ReferralPaymentQuantityUpgradable . 54
5.5 ReferralProcess Struct of V1ReferralPaymentQuantityUpgradable . . . 54
5.6 evaluateProcess Function of V1ReferralPaymentQuantityUpgradable . . 54
5.7 registerReferralPayment Function of V1ReferralPaymentQuantityUpgradable 55
5.8 claimRewards Function of V2ReferralPaymentValueUpgradable 60
5.9 evaluateReferralProcess Function of V1ReferralMultilevelRewardsUpgradable 63
5.10 distributeRewards Function of V1ReferralMultilevelRewardsUpgradable . 64
5.11 distributeRewards Function of V2ReferralMultilevelRewardsUpgradable . 66
5.12 getAllParentReferrerAddresses Function of

V2ReferralMultilevelRewardsUpgradable 67
5.13 Excerpt of the Test Scripts in the package.json File 69
5.14 Example Test Case of the V1ReferralPaymentQuantity.test.ts Test File 70
5.15 V1ReferralMultilevelRewardsUpgradable Deplyoment Log File 72
5.16 Excerpt of the V1ReferralPaymentQuantityUpgradable Evaluation Script . 74
C.1 constructor Function of V1ReferralPaymentTransmitter 147
C.2 updatePaymentAmount Function of V1ReferralPaymentTransmitter 147
C.3 updateReferralReward Function of V1ReferralPaymentQuantityUpgradable148
C.4 initialize Function of V1ReferralPaymentQuantityUpgradable 148
C.5 registerReferralPayment Function of V2ReferralPaymentQuantityUpgradable149
C.6 registerReferralPayment Function of V1ReferralPaymentValueUpgradable150
C.7 registerReferralPayment Function of V2ReferralPaymentValueUpgradable151
C.8 registerReferralPayment Function of V3ReferralPaymentValueUpgradable152
C.9 registerReferralPayment Function Without Parameters of

V1ReferralMultilevelRewardsUpgradable 153
C.10 registerReferralPayment Function With Parameters of

V1ReferralMultilevelRewardsUpgradable 154
C.11 getAllParentReferrerAddresses Function of

V1ReferralMultilevelRewardsUpgradable 155
C.12 registerReferralPayment Function of V1ReferralMultilevelTokenRewardsUpgradable155
C.13 distributeRewards in V1 of the Token Reward Contract 156

139

140 LISTINGS

Appendix A

Contents of the CD

The following deliverables are submitted for this thesis:

• Code: ZIP file containing the source code of the two GitHub repositories [132, 133]

– Deferral Main Repository: Contains the source code and results data from the
main repository, which can also be found on GitHub [132].

– Deferral Visualization Repository: Contains the source code from the visualiza-
tion repository, which can also be found on GitHub [133]. The code is located
in the visualizations-deferral folder of the root Deferral directory.

• Thesis:

– PDF version of the thesis.

– ZIP file containing the source code of the thesis.

– Plain text files for the English and German versions of the abstract.

141

142 APPENDIX A. CONTENTS OF THE CD

Appendix B

Installation Guidelines

The complete installation guidelines and additional information for the two GitHub repos-
itories can be found in their respective README.md files [132, 133]. The most important
steps for the installation are also listed here. For further information, refer to the reposi-
tories on GitHub and their README.md files.

B.1 Deferral Repository

Follow these steps to set up and run the code locally. Ensure the latest version of Node.js
and yarn (using npm is also possible) are installed. Be aware that storing files program-
matically, done for the log file creation in the Deferral code, differs between Windows and,
Mac & Linux due to the differing syntax used for file paths. Hence, this can lead to errors
when using Windows. Therefore it is recommended to use Mac or Linux.

To install the Deferral repository, follow these steps:

1. Clone the repository:

git clone https://github.com/dydent/Deferral.git

2. Navigate into the project directory:

cd Deferral

3. Install the dependencies:

yarn install

143

144 APPENDIX B. INSTALLATION GUIDELINES

B.1.1 Environment Variables

It is necessary to create a local .env file containing key-value pairs of environment variables
the project requires.

The .env.example file shows examples of all the values that must be set up and includes
explanations for the different values.

B.1.2 Hardhat Setup and Configuration

The Hardhat project can be configured and adapted in the hardhat.config.ts file.
Hardhat can be used to execute the tests and the scripts. More details on this can
be found in the Hardhat documentation.

B.2 Deferral Visualizations Repository

First, follow the instructions below to set up a virtual environment and install the required
dependencies.

B.2.1 Prerequisites

• Python 3.x

• pip (included with Python 3.4 and later)

Be aware that file paths differ between Windows and Mac & Linux due to their differing
syntax. Hence, this can lead to errors in the code and scripts when using Windows.
Therefore it is recommended to use Mac or Linux.

B.2.2 Setup Submodule Repository

1. Clone this repository:

git clone https://github.com/dydent/visualizations-deferral

Ensure this repository is included and located in the root folder of the Deferral main repos-
itory [132]. To set up the main repository, follow the instructions in the corresponding
README.md file.

This repository can also be located in a different folder. However, the file and folder paths
used in the code must then be adjusted.

B.2. DEFERRAL VISUALIZATIONS REPOSITORY 145

B.2.3 Setup Virtual Environment

1. Open a terminal/command prompt and navigate to the project directory.

2. Run the following command to create a virtual environment:

• For Linux and macOS:

python3 -m venv myenv

• For Windows:

py -m venv myenv

Replace myenv with the desired name for your virtual environment directory.

3. Activate the virtual environment:

• For Linux and macOS:

source myenv/bin/activate

• For Windows:

myenv\Scripts\activate.bat

Make sure to replace myenv with the name of your virtual environment directory.

B.2.4 Installing Dependencies

With the virtual environment activated, run the following command to install the required
packages from the requirements.txt file:

pip install -r requirements.txt

B.2.5 Environment Variables

It is necessary to create a local .env file containing key-value pairs of environment variables
the project requires.

The .env.example file shows examples of all the values that must be set up and includes
explanations for the different values.

146 APPENDIX B. INSTALLATION GUIDELINES

Appendix C

Code and Documentation

All relevant source code files and other corresponding solution files can be found within the
Deferral GitHub repository [132] and the Deferral visualizations repository [133]. Other
than that, this section displays several code listing examples that were discussed in Chap-
ter 5. The listings are sorted by their corresponding solution smart contract.

C.1 V1ReferralPaymentTransmitter

1 contrac t V1ReferralPaymentTransmitter i s Ownable {
2 [. . .]
3 // constructor function to initialize receiver address and the referral

↪→ amounts --> i.e. referral conditions

4 cons t ruc tor (
5 address payable r e c e i v e r ,
6 uint256 amount ,
7 uint256 r e f e r ra lReward
8) {
9 requ i re (
10 amount > re f e r ra lReward ,
11 "reward must be portion of paymentAmount"

12) ;
13 r e c e i v e r = r e c e i v e r ;
14 paymentAmount = amount ;
15 re f e r ra lReward = re f e r ra lReward ;
16 }
17 [. . .]
18 }

Listing C.1: constructor Function of V1ReferralPaymentTransmitter

1 contrac t V1ReferralPaymentTransmitter i s Ownable {
2 [. . .]
3 // function to update the referral payment amount

4 f unc t i on updatePaymentAmount (uint256 newPaymentAmount) pub l i c
↪→ onlyOwner {

5 requ i re (

147

148 APPENDIX C. CODE AND DOCUMENTATION

6 re f e r ra lReward < newPaymentAmount ,
7 "reward must be portion of paymentAmount"

8) ;
9 uint256 oldPaymentAmount = paymentAmount ;

10 paymentAmount = newPaymentAmount ;
11 emit PaymentAmountUpdated (oldPaymentAmount , newPaymentAmount) ;
12 }
13 [. . .]
14 }

Listing C.2: updatePaymentAmount Function of V1ReferralPaymentTransmitter

C.2 V1ReferralPaymentQuantityUpgradable

1 contrac t V1ReferralPaymentQuantityUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on updateReferralReward (uint256 newReferralReward) pub l i c

↪→ onlyOwner {
4 requ i re (
5 newReferralReward >= 0 && newReferralReward <= 100 ,
6 "percentage value must be between 0 and 100"

7) ;
8 rewardPercentage = newReferralReward ;
9 emit RewardUpdated (newReferralReward) ;

10 }
11 [. . .]
12 }

Listing C.3: updateReferralReward Function of V1ReferralPaymentQuantityUpgradable

1 contrac t V1ReferralPaymentQuantityUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on i n i t i a l i z e (
4 address payable r e c e i v e r ,
5 uint256 rewardPercentage ,
6 uint256 paymentsQuantityThreshold
7) pub l i c i n i t i a l i z e r {
8 requ i re (
9 rewardPercentage >= 0 && rewardPercentage <= 100 ,

10 "percentage value must be between 0 and 100"

11) ;
12 Ownable in i t () ;
13 r e c e i ve rAddre s s = r e c e i v e r ;
14 rewardPercentage = rewardPercentage ;
15 paymentsQuantityThreshold = paymentsQuantityThreshold ;
16 }
17 [. . .]
18 }

Listing C.4: initialize Function of V1ReferralPaymentQuantityUpgradable

C.3. V2REFERRALPAYMENTQUANTITYUPGRADABLE 149

C.3 V2ReferralPaymentQuantityUpgradable

1 contrac t V2ReferralPaymentQuantityUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on r eg i s t e rRe f e r ra lPayment (address payable r e f e r r e rAdd r e s s)

↪→ exte rna l payable {
4 requ i re (msg . sender != r e f e r r e rAddr e s s , "Sender cannot be referrer"

↪→) ;
5 // get current referee process data

6 Re f e r r a lP ro c e s s s torage cur r entProce s s = re fereeProcessMapping [
7 msg . sender
8] ;
9 // referral process must not be completed

10 requ i re (
11 ! cur r entProce s s . r e f e r ra lProces sComple ted ,
12 "Referral process has been completed for this address"

13) ;
14 // set referrer address first time

15 i f (! cu r r entProce s s . re fe r rerAddressHasBeenSet) {
16 // update values

17 cur r entProce s s . r e f e r r e rAdd r e s s = r e f e r r e rAdd r e s s ;
18 cur r entProce s s . re fe r rerAddressHasBeenSet = true ;
19 }
20 // set and update values

21 cur r entProce s s . paymentsValue += msg . value ;
22 cur r entProce s s . paymentsQuantity += 1 ;
23 emit Referra lCondit ionsUpdated (msg . sender) ;
24 // evaluate referral process and progress

25 i f (cu r r entProce s s . paymentsQuantity > paymentsQuantityThreshold) {
26 uint256 calculatedReward = (cur r entProce s s . paymentsValue / 100)

↪→ ∗ rewardPercentage ;
27 i f (cu r r entProce s s . re fe r rerAddressHasBeenSet) {
28 requ i re (
29 address (t h i s) . balance >= calculatedReward ,
30 "Contract has not enough funds to pay rewards"

31) ;
32 cur r entProce s s . r e f e r r e rAdd r e s s . t r an s f e r (calculatedReward) ;
33 cur r entProce s s . r e f e r ra lProce s sComple t ed = true ;
34 emit Referra lCompleted (msg . sender , r e f e r r e rAdd r e s s) ;
35 }
36 }
37 // calculate reward and payment prices

38 uint256 reward = (msg . value / 100) ∗ rewardPercentage ;
39 uint256 receiverAmount = msg . value − reward ;
40 // forward payment to receiver

41 r e c e iv e rAddre s s . t r an s f e r (receiverAmount) ;
42 }
43 [. . .]
44 }

Listing C.5: registerReferralPayment Function of V2ReferralPaymentQuantityUpgradable

150 APPENDIX C. CODE AND DOCUMENTATION

C.4 V1ReferralPaymentValueUpgradable

1 contrac t V1ReferralPaymentValueUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 // register and forward referral payment tx

4 f unc t i on r eg i s t e rRe f e r ra lPayment (
5 address payable r e f e r r e rAdd r e s s
6) ex te rna l payable {
7 requ i re (msg . sender != r e f e r r e rAddr e s s , "Sender cannot be referrer"

↪→) ;
8 // get current referee process data

9 Re f e r r a lP ro c e s s s torage cur r entProce s s = re fereeProcessMapping [
10 msg . sender
11] ;
12 // referral process must not be completed

13 requ i re (
14 ! cur r entProce s s . r e f e r ra lProces sComple ted ,
15 "Referral process has been completed for this address"

16) ;
17 // set referrer address first time

18 i f (! cu r r entProce s s . re fe r rerAddressHasBeenSet) {
19 // update values

20 cur r entProce s s . r e f e r r e rAdd r e s s = r e f e r r e rAdd r e s s ;
21 cur r entProce s s . re fe r rerAddressHasBeenSet = true ;
22 }
23 // set and update values

24 cur r entProce s s . paymentsValue += msg . value ;
25 cur r entProce s s . paymentsQuantity += 1 ;
26 emit Referra lCondit ionsUpdated (msg . sender) ;
27 // evaluate referral process and progress

28 i f (cu r r entProce s s . paymentsValue > paymentsValueThreshold) {
29 uint256 calculatedReward = (cur r entProce s s . paymentsValue / 100)

↪→ ∗
30 rewardPercentage ;
31 i f (cu r r entProce s s . re fe r rerAddressHasBeenSet) {
32 requ i re (
33 address (t h i s) . balance >= calculatedReward ,
34 "Contract has not enough funds to pay rewards"

35) ;
36 cur r entProce s s . r e f e r r e rAdd r e s s . t r an s f e r (calculatedReward) ;
37 cur r entProce s s . r e f e r ra lProce s sComple t ed = true ;
38 emit Referra lCompleted (msg . sender , r e f e r r e rAdd r e s s) ;
39 }
40 }
41 // calculate reward and payment prices

42 uint256 reward = (msg . value / 100) ∗ rewardPercentage ;
43 uint256 receiverAmount = msg . value − reward ;
44 // forward payment to receiver

45 r e c e i ve rAddre s s . t r an s f e r (receiverAmount) ;
46 }
47 [. . .]
48 }

Listing C.6: registerReferralPayment Function of V1ReferralPaymentValueUpgradable

C.5. V2REFERRALPAYMENTVALUEUPGRADABLE 151

C.5 V2ReferralPaymentValueUpgradable

1 contrac t V2ReferralPaymentValueUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 // register and forward referral payment tx

4 f unc t i on r eg i s t e rRe f e r ra lPayment (
5 address payable r e f e r r e rAdd r e s s
6) exte rna l payable {
7 requ i re (msg . sender != r e f e r r e rAddr e s s , "Sender cannot be referrer"

↪→) ;
8 // get current referee process data

9 Re f e r r a lP ro c e s s s torage cur r entProce s s = re fereeProcessMapping [
10 msg . sender
11] ;
12 // referral process must not be completed

13 requ i re (
14 ! cur r entProce s s . r e f e r ra lProces sComple ted ,
15 "Referral process has been completed for this address"

16) ;
17
18 // set referrer address first time

19 i f (! cu r r entProce s s . re fe r rerAddressHasBeenSet) {
20 // update values

21 cur r entProce s s . r e f e r r e rAdd r e s s = r e f e r r e rAdd r e s s ;
22 cur r entProce s s . re fe r rerAddressHasBeenSet = true ;
23 }
24 // set and update values

25 cur r entProce s s . paymentsValue += msg . value ;
26 cur r entProce s s . paymentsQuantity += 1 ;
27 emit Referra lCondit ionsUpdated (msg . sender) ;
28 // evaluate referral process and progress

29 i f (cu r r entProce s s . paymentsValue > paymentsValueThreshold) {
30 uint256 calculatedReward = (cur r entProce s s . paymentsValue / 100)

↪→ ∗
31 rewardPercentage ;
32 i f (cu r r entProce s s . re fe r rerAddressHasBeenSet) {
33 claimableRewardMapping [r e f e r r e rAdd r e s s] +=

↪→ calculatedReward ;
34 emit Referra lRewardsAl located (r e f e r r e rAdd r e s s) ;
35 cur r entProce s s . r e f e r ra lProce s sComple t ed = true ;
36 emit Referra lCompleted (msg . sender , r e f e r r e rAdd r e s s) ;
37 }
38 }
39 // calculate reward and payment prices

40 uint256 reward = (msg . value / 100) ∗ rewardPercentage ;
41 uint256 receiverAmount = msg . value − reward ;
42 // forward payment to receiver

43 r e c e iv e rAddre s s . t r an s f e r (receiverAmount) ;
44 }
45 [. . .]
46 }

Listing C.7: registerReferralPayment Function of V2ReferralPaymentValueUpgradable

152 APPENDIX C. CODE AND DOCUMENTATION

C.6 V3ReferralPaymentValueUpgradable

1 contrac t V3ReferralPaymentValueUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 // forward paymentAmount to the receiver and send referralReward to the

↪→ referrerAddress

4 f unc t i on r eg i s t e rRe f e r ra lPayment (
5 address payable r e f e r r e rAdd r e s s
6) ex te rna l payable {
7 requ i re (msg . sender != r e f e r r e rAddr e s s , "Sender cannot be referrer"

↪→) ;
8 // get current referee process data

9 Re f e r r a lP ro c e s s s torage cur r entProce s s = re fereeProcessMapping [
10 msg . sender
11] ;
12 // referral process must not be completed

13 requ i re (
14 ! cur r entProce s s . r e f e r ra lProces sComple ted ,
15 "Referral process has been completed for this address"

16) ;
17
18 // set referrer address first time

19 i f (! cu r r entProce s s . re fe r rerAddressHasBeenSet) {
20 // update values

21 cur r entProce s s . r e f e r r e rAdd r e s s = r e f e r r e rAdd r e s s ;
22 cur r entProce s s . re fe r rerAddressHasBeenSet = true ;
23 }
24 // set and update values

25 cur r entProce s s . paymentsValue += msg . value ;
26 cur r entProce s s . paymentsQuantity += 1 ;
27 emit Referra lCondit ionsUpdated (msg . sender) ;
28 // evaluate referral process and progress

29 i f (cu r r entProce s s . paymentsValue > paymentsValueThreshold) {
30 // calculate the total reward based on the referee payment

↪→ value/volume

31 uint256 ca lculatedTotalReward = (cur r entProce s s . paymentsValue /
32 100) ∗ rewardPercentage ;
33 requ i re (
34 address (t h i s) . balance >= calculatedTotalReward ,
35 "Contract has not enough funds to pay rewards"

36) ;
37
38 // calculate referee & referrer rewards from total reward

39 uint256 re fereeReward = (calculatedTotalReward / 100) ∗
40 re fereeRewardPercentage ;
41 uint256 re f e r re rReward = calculatedTotalReward − re fereeReward ;
42
43 // if reward allocation is two sided send rewards to referee

44 i f (re fereeReward > 0 && refereeRewardPercentage > 0) {
45 payable (msg . sender) . t r an s f e r (re fereeReward) ;
46 emit RefereeRewardsDistr ibuted (msg . sender) ;
47 }
48 // mark process as completed

49 cur r entProce s s . r e f e r ra lProce s sComple t ed = true ;
50 emit Referra lCompleted (msg . sender , r e f e r r e rAdd r e s s) ;

C.7. V1REFERRALMULTILEVELREWARDSUPGRADABLE 153

51 // send rewards to referrer

52 r e f e r r e rAdd r e s s . t r an s f e r (re f e r re rReward) ;
53 emit Refer re rRewardsDis t r ibuted (r e f e r r e rAdd r e s s) ;
54 }
55 // calculate reward and payment prices

56 uint256 reward = (msg . value / 100) ∗ rewardPercentage ;
57 uint256 receiverAmount = msg . value − reward ;
58 // forward payment to receiver

59 r e c e iv e rAddre s s . t r an s f e r (receiverAmount) ;
60 }
61 [. . .]
62 }

Listing C.8: registerReferralPayment Function of V3ReferralPaymentValueUpgradable

C.7 V1ReferralMultilevelRewardsUpgradable

1 contrac t V1Referra lMult i leve lRewardsUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 // overload function for referral payments without a referrer address

4 f unc t i on r eg i s t e rRe f e r ra lPayment () exte rna l payable {
5 Re f e r r a lP ro c e s s s torage r e f e r e eP r o c e s s = re fereeProcessMapping [
6 msg . sender
7] ;
8 // check if sender is validly registered as referee --> update

↪→ referral process data and

9 i f (
10 ! r e f e r e eP r o c e s s . i sRoot && r e f e r e eP r o c e s s .

↪→ re fe r rerAddressHasBeenSet
11) {
12 // update referral process with payment

13 updateRe f e r ra lProce s s (
14 msg . sender ,
15 r e f e r e eP r o c e s s . parentReferrerAddress ,
16 msg . value
17) ;
18 // evaluate updated referral process

19 eva l ua t eRe f e r r a lP ro c e s s (msg . sender) ;
20 // forward value to the receiver address

21 forwardPayment (msg . value − (msg . value / 100) ∗ rewardPercentage
↪→) ;

22 }
23 // else sender is root or new root referrer

24 e l s e {
25 // if sender not yet registered as root --> register

26 i f (
27 ! r e f e r e eP r o c e s s . re fe r rerAddressHasBeenSet &&
28 ! r e f e r e eP r o c e s s . i sRoot
29) {
30 // register address as new root address

31 r e f e r e eP r o c e s s . i sRoot = true ;
32 emit RootRe fe r r e rReg i s t e r ed (msg . sender) ;
33 }

154 APPENDIX C. CODE AND DOCUMENTATION

34 // update data for root address

35 r e f e r e eP r o c e s s . paymentsValue += msg . value ;
36 r e f e r e eP r o c e s s . paymentsQuantity += 1 ;
37 // forward whole payment

38 forwardPayment (msg . value) ;
39 }
40 }
41 [. . .]
42 }

Listing C.9: registerReferralPayment Function Without Parameters of
V1ReferralMultilevelRewardsUpgradable

1 contrac t V1Referra lMult i leve lRewardsUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 // register & forward payment and update referral process data

4 f unc t i on r eg i s t e rRe f e r ra lPayment (
5 address payable r e f e r r e rAdd r e s s
6) ex te rna l payable {
7 requ i re (msg . sender != r e f e r r e rAddr e s s , "Sender cannot be referrer"

↪→) ;
8
9 // check preconditions for _referrerAddress

10
11 // get current referrer process data

12 Re f e r r a lP ro c e s s s torage r e f e r r e rP r o c e s s = re fereeProcessMapping [
13 r e f e r r e rAdd r e s s
14] ;
15 // referrer address must be registered address --< root referrer or

↪→ other registered referee

16 requ i re (
17 r e f e r r e rP r o c e s s . i sRoot | | r e f e r r e rP r o c e s s .

↪→ re ferrerAddressHasBeenSet ,
18 "Referrer must be a registered address"

19) ;
20
21 // check preconditions for sender address (referee)

22
23 // get current referee process data

24 Re f e r r a lP ro c e s s s torage cur r entProce s s = re fereeProcessMapping [
25 msg . sender
26] ;
27 // address cannot be root & referral process must not be completed

28 requ i re (! cu r r entProce s s . isRoot , "Root address cannot be a referee")
↪→ ;

29 requ i re (
30 ! cur r entProce s s . r e f e r ra lProces sComple ted ,
31 "Referral process has been completed for this address"

32) ;
33
34 // update referral process with payment

35 updateRe f e r ra lProce s s (msg . sender , r e f e r r e rAddr e s s , msg . value) ;
36 // evaluate updated referral process

37 eva l ua t eRe f e r r a lP ro c e s s (msg . sender) ;
38 // forward value to the receiver address

39 forwardPayment (msg . value − (msg . value / 100) ∗ rewardPercentage) ;

C.8. V1REFERRALMULTILEVELTOKENREWARDSUPGRADABLE 155

40 }
41 [. . .]
42 }

Listing C.10: registerReferralPayment Function With Parameters of
V1ReferralMultilevelRewardsUpgradable

1 contrac t V1Referra lMult i leve lRewardsUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on ge tA l lParentRe f e r r e rAddre s s e s (
4 address r e f e r e e
5) i n t e r n a l view returns (address payable [] memory) {
6 uint256 length = 0 ;
7 address currentRe fe reeAddres s = r e f e r e e ;
8 // loop until get to root address

9 whi le (re fereeProcessMapping [currentRe fe reeAddres s] . i sRoot != true)
↪→ {

10 l ength++;
11 currentRe fe reeAddres s = re fereeProcessMapping [

↪→ currentRe fe reeAddres s]
12 . parentRe fe r re rAddres s ;
13 }
14
15 address payable []
16 memory parentRe fe r r e rAddre s se s = new address payable [] (l ength) ;
17
18 currentRe fe reeAddres s = r e f e r e e ;
19 f o r (uint256 i = 0 ; i < l ength ; i++) {
20 parentRe f e r r e rAddre s s e s [i] = re fereeProcessMapping [
21 currentRe fe reeAddres s
22] . parentRe fe r re rAddres s ;
23 currentRe fe reeAddres s = parentRe fe r r e rAddre s s e s [i] ;
24 }
25
26 return parentRe fe r r e rAddre s se s ;
27 }
28 [. . .]
29 }

Listing C.11: getAllParentReferrerAddresses Function of V1ReferralMultilevelRewardsUpgradable

C.8 V1ReferralMultilevelTokenRewardsUpgradable

1 contrac t V1ReferralMult i levelTokenRewardsUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 // overload function for referral payments without a referrer

↪→ address

4 f unc t i on r eg i s t e rRe f e r ra lPayment (uint256 paymentValue) ex te rna l {
5 Re f e r r a lP ro c e s s s torage r e f e r e eP r o c e s s = re fereeProcessMapping [
6 msg . sender
7] ;
8 // referral process must not be completed

156 APPENDIX C. CODE AND DOCUMENTATION

9 requ i re (
10 ! r e f e r e eP r o c e s s . r e f e r ra lProces sComple ted ,
11 "Referral process has been completed for this address"

12) ;
13
14 // transfer tokens from payment to this contract

15 token . transferFrom (msg . sender , address (t h i s) , paymentValue) ;
16
17 // check if sender is validly registered as referee --> update

↪→ referral process data and

18 i f (
19 ! r e f e r e eP r o c e s s . i sRoot && r e f e r e eP r o c e s s .

↪→ re fe r rerAddressHasBeenSet
20) {
21 // update referral process with payment

22 updateRe f e r ra lProce s s (
23 msg . sender ,
24 r e f e r e eP r o c e s s . parentReferrerAddress ,
25 paymentValue
26) ;
27 // evaluate updated referral process

28 eva l ua t eRe f e r r a lP ro c e s s (msg . sender) ;
29
30 uint256 rewardPercentageValue = (paymentValue ∗

↪→ rewardPercentage) /
31 100 ;
32 uint256 paymentValueAfterReward = paymentValue −
33 rewardPercentageValue ;
34
35 // forward value to the receiver address

36 forwardPayment (paymentValueAfterReward) ;
37 }
38 // else sender is root or new root referrer

39 e l s e {
40 // if sender not yet registered as root --> register

41 i f (
42 ! r e f e r e eP r o c e s s . re fe r rerAddressHasBeenSet &&
43 ! r e f e r e eP r o c e s s . i sRoot
44) {
45 // register address as new root address

46 r e f e r e eP r o c e s s . i sRoot = true ;
47 emit RootRe fe r r e rReg i s t e r ed (msg . sender) ;
48 }
49 // update data for root address

50 r e f e r e eP r o c e s s . paymentsValue += paymentValue ;
51 r e f e r e eP r o c e s s . paymentsQuantity += 1 ;
52 // forward whole payment

53 forwardPayment (paymentValue) ;
54 }
55 emit PaymentRegistered (msg . sender , paymentValue) ;
56 }
57 [. . .]
58 }

Listing C.12: registerReferralPayment Function of V1ReferralMultilevelTokenRewardsUpgradable

C.8. V1REFERRALMULTILEVELTOKENREWARDSUPGRADABLE 157

1 contrac t V1ReferralMult i levelTokenRewardsUpgradable i s I n i t i a l i z a b l e ,
↪→ OwnableUpgradeable {

2 [. . .]
3 f unc t i on di s t r ibuteRewards (address r e f e r e e) i n t e r n a l {
4 Re f e r r a lP ro c e s s s torage re f e reeCompletedProcess =

↪→ re fereeProcessMapping [
5 r e f e r e e
6] ;
7
8 // calculate the total reward based on the referee payment value/

↪→ volume

9 uint256 ca lculatedTotalReward = (re f e reeCompletedProcess .
↪→ paymentsValue ∗

10 rewardPercentage) / 100 ;
11 requ i re (
12 token . balanceOf (address (t h i s)) >= calculatedTotalReward ,
13 "Contract has not enough funds to pay rewards"

14) ;
15
16 // calculate and distribute referee rewards

17 uint256 re fereeReward = (calculatedTotalReward ∗
18 re fereeRewardPercentage) / 100 ;
19 token . t r an s f e r (r e f e r e e , re fereeReward) ;
20 emit RefereeRewardsDistr ibuted (r e f e r e e , re fereeReward) ;
21
22 // calculate remaining referrer rewards

23 uint256 re f e r re rReward = calculatedTotalReward − re fereeReward ;
24 // get all eligible referral addresses

25 address payable []
26 memory rewardAddresses = getAl lParentRe f e r r e rAddre s s e s (r e f e r e e) ;
27
28 // calculate reward per referrer in reward chain

29 uint256 numberOfRewardAddresses = rewardAddresses . l ength ;
30 uint256 re f e r re rRewardProport ion = re fe r re rReward /
31 numberOfRewardAddresses ;
32
33 // distribute rewards to all eligible referrers

34 f o r (uint256 i = 0 ; i < numberOfRewardAddresses ; i++) {
35 token . t r an s f e r (rewardAddresses [i] , r e f e r re rRewardProport ion) ;
36 emit Refer ra lRewardsDis t r ibuted (
37 rewardAddresses [i] ,
38 re f e r re rRewardProport ion
39) ;
40 }
41 }
42 [. . .]
43 }

Listing C.13: distributeRewards in V1 of the Token Reward Contract

158 APPENDIX C. CODE AND DOCUMENTATION

Appendix D

Evaluation - Results and Visualizations

The following sections include further visualizations and results of the Deferral solution
evaluation. Thereby, the evaluation results showing the fiat prices for the different so-
lutions can be found in a separate section. Results and figures concerning the overall
evaluation and the historical gas and price data evaluation are also shown in separate
sections. For a complete overview of all result visualizations, refer to the data in the
results directory of the Deferral repository [132].

D.1 Referral Payment Transmitter Evaluation Results

Figure D.1: DurationInMs Across the Evaluations of V1ReferralPaymentTransmitter

159

160 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.2: GasUsed Across Evaluations of V3ReferralPaymentTransmitterUpgradable

Figure D.3: DurationInMs Across Evaluations of V3ReferralPaymentTransmitterUpgradable

D.1. REFERRAL PAYMENT TRANSMITTER EVALUATION RESULTS 161

Figure D.4: Screenshot of the Gas Reporter Output for V3ReferralPaymentTransmitterUpgradable

162 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

D.2 Referral Payment Quantity Evaluator Evaluation Re-

sults

Figure D.5: Screenshot of the Gas Reporter Output for V1ReferralPaymentQuantityUpgradable

Figure D.6: Screenshot of the Gas Reporter Output for V2ReferralPaymentQuantityUpgradable

D.2. REFERRAL PAYMENTQUANTITY EVALUATOR EVALUATION RESULTS163

Figure D.7: GasUsed per Transaction Across the Evaluations of V2ReferralPaymentQuantityUpgradable

Figure D.8: GasUsed per UserIteration Across the Evaluations of V2ReferralPaymentQuantityUpgradable

164 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.9: GasUsed per UserTxIteration Across the Evaluations of
V2ReferralPaymentQuantityUpgradable

D.3. REFERRAL PAYMENT VALUE EVALUATOR EVALUATION RESULTS 165

D.3 Referral Payment Value Evaluator Evaluation Results

Figure D.10: Screenshot of the Gas Reporter Output for V1ReferralPaymentValueUpgradable

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

8 76 136 58 872 113 264 66 196
98 76 137 58 872 113 264 66 196
498 76 137 58 860 113 264 66 190

Table D.1: GasUsed for Evaluation Runs of V1ReferralPaymentValueUpgradable

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

8 79 611 58 872 113 264 73 146
98 79 612 58 872 113 264 73 146
498 79 612 58 860 113 264 73 140

Table D.2: GasUsed for Evaluation Runs of V2ReferralPaymentValueUpgradable

166 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.11: GasUsed per Transaction Across the Evaluations of V1ReferralPaymentValueUpgradable

Nr. of Users Avg gasUsed Min gasUsed Max gasUsed Median gasUsed

8 78 978 58 850 113 242 71 901
98 78 978 58 850 113 242 71 901
498 78 978 58 838 113 242 71 895

Table D.3: GasUsed for Evaluation Runs of V3ReferralPaymentValueUpgradable

D.3. REFERRAL PAYMENT VALUE EVALUATOR EVALUATION RESULTS 167

Figure D.12: GasUsed per UserIteration Across the Evaluations of V1ReferralPaymentValueUpgradable

Figure D.13: Screenshot of the Gas Reporter Output for V2ReferralPaymentValueUpgradable

168 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.14: GasUsed per Transaction Across the Evaluations of V2ReferralPaymentValueUpgradable

Figure D.15: GasUsed per UserIteration Across the Evaluations of V2ReferralPaymentValueUpgradable

D.3. REFERRAL PAYMENT VALUE EVALUATOR EVALUATION RESULTS 169

Figure D.16: Screenshot of the Gas Reporter Output for V3ReferralPaymentValueUpgradable

Figure D.17: GasUsed per Transaction Across the Evaluations of V3ReferralPaymentValueUpgradable

170 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.18: GasUsed per UserIteration Across the Evaluations of V3ReferralPaymentValueUpgradable

D.4. REFERRAL PAYMENTMULTILEVEL REWARD EVALUATOR EVALUATION RESULTS171

D.4 Referral Payment Multilevel Reward Evaluator Evalu-

ation Results

Figure D.19: Screenshot of the Gas Reporter Output for V1ReferralMultilevelRewardsUpgradable

Figure D.20: Screenshot of the Gas Reporter Output for V2ReferralMultilevelRewardsUpgradable

172 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.21: DurationInMs per Transaction Across the Evaluations of
V2ReferralMultilevelRewardsUpgradable

Figure D.22: DurationInMs per UserIteration for the Evaluations of
V2ReferralMultilevelRewardsUpgradable

D.5. REFERRAL PAYMENTMULTILEVEL TOKEN REWARD EVALUATOR EVALUATION RESULTS173

D.5 Referral Payment Multilevel Token Reward Evaluator

Evaluation Results

Figure D.23: Screenshot of the Gas Reporter Output for V1ReferralMultilevelTokenRewardsUpgradable

174 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.24: GasUsed per Transaction Across the Evaluations of
V1ReferralMultilevelTokenRewardsUpgradable

Figure D.25: GasUsed per UserIteration Across the Evaluations of
V1ReferralMultilevelTokenRewardsUpgradable

D.5. REFERRAL PAYMENTMULTILEVEL TOKEN REWARD EVALUATOR EVALUATION RESULTS175

Figure D.26: GasUsed per UserTxIteration Across the Evaluations of
V1ReferralMultilevelTokenRewardsUpgradable

176 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

D.6 Deferral Solutions - Fiat Costs Results

The following sections outline the results for the fiat costs of the evaluation run with 500
users for all evaluated Deferral solutions contracts. For the underlying gas prices and gas
costs, as well as the complete results, refer to the complete result data in the Deferral
repository [132].

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 0,047 0,047 0,047 0,047 23,528
ethereumFiatCost 7,329 7,326 7,329 7,329 3 642,544
polygonMainnetFiatCost 0,012 0,012 0,012 0,012 5,804
arbitrumMainnetFiatCost 0,009 0,009 0,009 0,009 4,587
optimismMainnetFiatCost 0,0 0,0 0,0 0,0 0,045
avalancheFiatCost 0,021 0,021 0,021 0,021 10,262
goerliFiatCost 0,006 0,006 0,006 0,006 3,117

Table D.4: Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V1ReferralPaymentTransmitter

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 0,055 0,054 0,055 0,055 27,094
ethereumFiatCost 8,479 8,475 8,479 8,479 4 213,988
polygonMainnetFiatCost 0,014 0,014 0,014 0,014 7,07
arbitrumMainnetFiatCost 0,011 0,011 0,011 0,011 5,282
optimismMainnetFiatCost 0,0 0,0 0,0 0,0 0,052
avalancheFiatCost 0,024 0,024 0,024 0,024 11,818
goerliFiatCost 0,007 0,007 0,007 0,007 3,699

Table D.5: Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V3ReferralPaymentTransmitterUpgradable

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 0,08 0,058 0,111 0,072 119,907
ethereumFiatCost 12,182 8,787 16,822 10,935 18 163,518
polygonMainnetFiatCost 0,021 0,015 0,029 0,019 31,151
arbitrumMainnetFiatCost 0,016 0,011 0,022 0,014 23,378
optimismMainnetFiatCost 0,0 0,0 0,0 0,0 0,232
avalancheFiatCost 0,035 0,025 0,048 0,031 52,299
goerliFiatCost 0,011 0,008 0,015 0,01 16,416

Table D.6: Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V1ReferralPaymentQuantityUpgradable

D.6. DEFERRAL SOLUTIONS - FIAT COSTS RESULTS 177

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 0,08 0,057 0,11 0,072 119,008
ethereumFiatCost 12,447 8,946 17,218 11,175 18 558,713
polygonMainnetFiatCost 0,021 0,015 0,03 0,019 31,844
arbitrumMainnetFiatCost 0,016 0,011 0,022 0,014 23,203
optimismMainnetFiatCost 0,0 0,0 0,0 0,0 0,231
avalancheFiatCost 0,036 0,026 0,049 0,032 53,21
goerliFiatCost 0,011 0,008 0,016 0,01 17,01

Table D.7: Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V2ReferralPaymentQuantityUpgradable

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 0,074 0,057 0,11 0,065 147,572
ethereumFiatCost 12,646 9,776 18,813 10,994 25 140,568
polygonMainnetFiatCost 0,02 0,016 0,03 0,017 39,971
arbitrumMainnetFiatCost 0,014 0,011 0,022 0,013 28,772
optimismMainnetFiatCost 0,0 0,0 0,0 0,0 0,285
avalancheFiatCost 0,032 0,025 0,048 0,028 64,517
goerliFiatCost 0,01 0,008 0,015 0,009 19,513

Table D.8: Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V1ReferralPaymentValueUpgradable

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 0,078 0,057 0,11 0,071 154,308
ethereumFiatCost 14,523 10,737 20,661 13,342 28 871,107
polygonMainnetFiatCost 0,021 0,015 0,029 0,019 40,914
arbitrumMainnetFiatCost 0,015 0,011 0,022 0,014 30,085
optimismMainnetFiatCost 0,0 0,0 0,0 0,0 0,299
avalancheFiatCost 0,034 0,025 0,048 0,031 67,304
goerliFiatCost 0,01 0,007 0,014 0,009 18,967

Table D.9: Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V2ReferralPaymentValueUpgradable

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 0,077 0,057 0,11 0,07 153,08
ethereumFiatCost 13,505 10,061 19,364 12,294 26 848,081
polygonMainnetFiatCost 0,02 0,015 0,029 0,018 40,099
arbitrumMainnetFiatCost 0,015 0,011 0,022 0,014 29,846
optimismMainnetFiatCost 0,0 0,0 0,0 0,0 0,296
avalancheFiatCost 0,034 0,025 0,048 0,031 66,768
goerliFiatCost 0,011 0,008 0,016 0,01 21,592

Table D.10: Evaluation Fiat Costs Metrics (498 Users) Rounded to 3 Decimals for
V3ReferralPaymentValueUpgradable

178 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 1,196 0,06 6,749 0,113 1 776,07
ethereumFiatCost 202,967 10,225 1 145,401 19,243 301 405,738
polygonMainnetFiatCost 0,33 0,017 1,861 0,031 489,689
arbitrumMainnetFiatCost 0,233 0,012 1,316 0,022 346,294
optimismMainnetFiatCost 0,002 0,0 0,013 0,0 3,461
avalancheFiatCost 0,522 0,026 2,944 0,049 774,664
goerliFiatCost 0,153 0,008 0,865 0,015 227,659

Table D.11: Evaluation Fiat Costs Metrics (497 Users) Rounded to 3 Decimals for
V1ReferralMultilevelRewardsUpgradable

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 0,101 0,063 0,123 0,116 149,511
ethereumFiatCost 16,704 10,454 20,378 19,275 24 805,322
polygonMainnetFiatCost 0,025 0,016 0,031 0,029 37,184
arbitrumMainnetFiatCost 0,02 0,012 0,024 0,023 29,135
optimismMainnetFiatCost 0,0 0,0 0,0 0,0 0,29
avalancheFiatCost 0,044 0,028 0,054 0,051 65,613
goerliFiatCost 0,013 0,008 0,016 0,015 19,591

Table D.12: Evaluation Fiat Costs Metrics (497 Users) Rounded to 3 Decimals for
V2ReferralMultilevelRewardsUpgradable

Fiat Costs (in USD) Avg Min Max Median Sum

bscFiatCost 0,124 0,087 0,157 0,14 183,465
ethereumFiatCost 20,475 14,464 26,039 23,275 30 404,734
polygonMainnetFiatCost 0,031 0,022 0,039 0,035 45,425
arbitrumMainnetFiatCost 0,026 0,018 0,033 0,03 38,841
optimismMainnetFiatCost 0,0 0,0 0,0 0,0 0,356
avalancheFiatCost 0,055 0,039 0,07 0,063 82,147
goerliFiatCost 0,014 0,01 0,018 0,016 20,512

Table D.13: Evaluation Fiat Costs Metrics (497 Users) Rounded to 3 Decimals for
V1ReferralMultilevelTokenRewardsUpgradable

D.7. OVERALL RESULTS AND VISUALIZATIONS 179

D.7 Overall Results and Visualizations

The following sections include a selection of the overall results of the evaluation of all the
Deferral solution contracts. For further results and visualizations, refer to the GitHub
repositories [132, 133].

D.7.1 Overall Gas Used Metrics

Figure D.27: Overall Max Gas Used per Transaction for All Deferral Contracts

Figure D.28: Overall Min Gas Used per Transaction for All Deferral Contracts

180 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.29: Overall Sum of Gas Used per Transaction for All Deferral Contracts

D.7.2 Overall Gas Cost Metrics

Figure D.30: Unfiltered Overall Average Gas Costs in Gwei per Contract per Evaluation Chain

D.7. OVERALL RESULTS AND VISUALIZATIONS 181

D
ef
er
ra
l
C
o
n
tr
a
ct

B
in
a
n
ce

E
th

er
eu

m
P
o
ly
g
o
n

A
rb

it
ru

m
O
p
ti
m
is
m

A
v
a
la
n
ch

e
G
o
er
li
T
es
tn

et

V
2
R
ef
er
ra
lM

u
lt
il
ev

el
R
ew

a
rd

sU
p
g
ra
d
a
b
le

3
0
9
6
3
5
,0
2
4

8
7
8
6
9
5
9
,0
9
7

2
5
3
0
4
9
2
7
,6
5
3

1
0
3
2
1
,1
6
7

1
0
3
,2
1
2

2
5
9
5
9
9
3
,0
1
1

9
6
4
2
3
2
7
0
,4
5
3

V
1
R
ef
er
ra
lM

u
lt
il
ev

el
R
ew

a
rd

sU
p
g
ra
d
a
b
le

3
6
8
0
1
3
4
,6
5
1

1
0
6
7
6
9
5
7
5
,8
0
8

3
3
3
2
1
2
8
5
3
,3
8
9

1
2
2
6
7
1
,1
5
5

1
2
2
6
,7
1
2

3
0
6
6
7
7
8
8
,7
5
4

1
1
2
3
5
2
0
5
8
7
,3
4
6

V
1
R
ef
er
ra
lM

u
lt
il
ev

el
T
o
k
en

R
ew

a
rd

sU
p
g
ra
d
a
b
le

3
7
9
9
5
2
,3
4
5

1
0
7
7
0
4
7
7
,3
5
6

3
0
9
1
3
5
3
3
,8
8
9

1
3
7
5
9
,3
4
1

1
2
6
,6
5
1

3
2
5
0
1
5
9
,9
0
6

1
0
0
9
5
4
4
9
3
,7
2
4

V
1
R
ef
er
ra
lP
a
y
m
en

tT
ra
n
sm

it
te
r

1
4
5
6
6
7
,9
5
8

3
8
5
5
4
1
3
,4
7
8

1
1
8
0
0
1
5
9
,2
1
1

4
8
5
5
,5
9
9

4
8
,5
5
6

1
2
1
3
8
9
9
,6
4
8

4
5
9
6
0
3
3
6
,8
6

V
3
R
ef
er
ra
lP
a
y
m
en

tT
ra
n
sm

it
te
rU

p
g
ra
d
a
b
le

1
6
7
7
4
4
,9
5
8

4
4
6
0
2
5
2
,2
1
1

1
4
3
7
3
4
5
6
,1
1
3

5
5
9
1
,4
9
9

5
5
,9
1
5

1
3
9
7
8
7
4
,6
4
8

5
4
5
4
9
9
1
8
,7
3
2

V
2
R
ef
er
ra
lP
a
y
m
en

tQ
u
a
n
ti
ty
U
p
g
ra
d
a
b
le

2
4
5
5
9
9
,9
5
8

6
5
4
7
7
5
9
,1
0
7

2
1
5
8
1
4
4
6
,2
1
8

8
1
8
6
,6
6
5

8
1
,8
6
7

2
0
9
8
0
1
0
,3
8
5

8
3
6
0
6
4
4
0
,7
7
6

V
1
R
ef
er
ra
lP
a
y
m
en

tQ
u
a
n
ti
ty
U
p
g
ra
d
a
b
le

2
4
7
4
5
4
,9
5
8

6
4
0
8
3
2
9
,3
8

2
1
1
1
1
5
7
8
,8
4
9

8
2
4
8
,4
9
9

8
2
,4
8
5

2
0
6
2
1
2
4
,6
4
8

8
0
6
8
9
2
7
5
,1
4

V
1
R
ef
er
ra
lP
a
y
m
en

tV
a
lu
eU

p
g
ra
d
a
b
le

2
2
8
4
1
1
,7
0
8

6
6
5
2
4
4
3
,5
5
5

2
0
3
1
7
0
8
5
,5
4
8

7
6
1
3
,7
2
4

7
6
,1
3
7

1
9
0
7
8
8
1
,1
1
4

7
1
9
3
5
2
7
9
,0
7
6

V
3
R
ef
er
ra
lP
a
y
m
en

tV
a
lu
eU

p
g
ra
d
a
b
le

2
3
6
9
3
6
,2
0
8

7
1
0
4
2
6
8
,3
1
6

2
0
3
8
2
0
7
9
,9
1
2

7
8
9
7
,8
7
4

7
8
,9
7
9

1
9
7
4
4
6
8
,3
9
8

7
9
5
9
8
2
6
8
,7
1
4

V
2
R
ef
er
ra
lP
a
y
m
en

tV
a
lu
eU

p
g
ra
d
a
b
le

2
3
8
8
3
6
,7
0
8

7
6
3
9
5
8
1
,1
7
9

2
0
7
9
6
3
4
9
,8
8

7
9
6
1
,2
2
4

7
9
,6
1
2

1
9
9
0
3
0
5
,8
9
8

6
9
9
1
9
6
7
3
,9
1
1

T
ab

le
D
.1
4:

A
v
g
G
as

C
os
ts

in
G
w
ei

R
ou

n
d
ed

to
3
D
ec
im

a
ls

A
cr
o
ss

a
ll
C
o
n
tr
a
ct

E
va
lu
a
ti
o
n
s
w
it
h
4
9
8
U
se
rs

fo
r
A
ll
E
va
lu
a
ti
o
n
C
h
a
in
s

182 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.31: Contract Filtered Overall Average Gas Costs in Gwei per Contract per Evaluation Chain

D.7.3 Overall Fiat Cost Metrics

Figure D.32: Overall Average Fiat Costs in USD per Contract per Evaluation Chain

D.7. OVERALL RESULTS AND VISUALIZATIONS 183

D
ef
er
ra
l
C
on

tr
ac
t

B
in
an

ce
E
th
er
eu
m

P
ol
y
go

n
A
rb
it
ru
m

O
p
ti
m
is
m

A
va
la
n
ch
e

G
o
er
li
T
es
tn
et

V
2R

ef
er
ra
lM

u
lt
il
ev
el
R
ew

a
rd
sU

p
g
ra
d
a
b
le

0,
10

1
16

,7
04

0,
02

5
0,
02

0,
0

0,
04

4
0,
01

3

V
1R

ef
er
ra
lM

u
lt
il
ev
el
R
ew

a
rd
sU

p
g
ra
d
a
b
le

1,
19

6
20

2,
96

7
0,
33

0,
23

3
0,
00

2
0,
52

2
0,
15

3

V
1R

ef
er
ra
lM

u
lt
il
ev
el
T
ok
en
R
ew

a
rd
sU

p
gr
ad

ab
le

0,
12

4
20

,4
75

0,
03

1
0,
02

6
0,
0

0,
05

5
0,
01

4

V
1R

ef
er
ra
lP
ay
m
en
tT

ra
n
sm

it
te
r

0,
04

7
7,
32

9
0,
01

2
0,
00

9
0,
0

0,
02

1
0,
00

6

V
3R

ef
er
ra
lP
ay
m
en
tT

ra
n
sm

it
te
rU

p
gr
a
d
ab

le
0,
05

5
8,
47

9
0,
01

4
0,
01

1
0,
0

0,
02

4
0,
00

7

V
2R

ef
er
ra
lP
ay
m
en
tQ

u
a
n
ti
ty
U
p
g
ra
d
ab

le
0,
08

12
,4
47

0,
02

1
0,
01

6
0,
0

0,
03

6
0,
01

1

V
1R

ef
er
ra
lP
ay
m
en
tQ

u
a
n
ti
ty
U
p
g
ra
d
ab

le
0,
08

12
,1
82

0,
02

1
0,
01

6
0,
0

0,
03

5
0,
01

1

V
1R

ef
er
ra
lP
ay
m
en
tV

a
lu
eU

p
g
ra
d
a
b
le

0,
07

4
12

,6
46

0,
02

0,
01

4
0,
0

0,
03

2
0,
01

V
3R

ef
er
ra
lP
ay
m
en
tV

a
lu
eU

p
g
ra
d
a
b
le

0,
07

7
13

,5
05

0,
02

0,
01

5
0,
0

0,
03

4
0,
01

1

V
2R

ef
er
ra
lP
ay
m
en
tV

a
lu
eU

p
g
ra
d
a
b
le

0,
07

8
14

,5
23

0,
02

1
0,
01

5
0,
0

0,
03

4
0,
01

T
ab

le
D
.1
5:

A
v
g
F
ia
t
C
os
ts

in
U
S
D

R
ou

n
d
ed

to
3
D
ec
im

a
ls

A
cr
o
ss

a
ll
C
o
n
tr
a
ct

E
va
lu
a
ti
o
n
s
w
it
h
4
9
8
U
se
rs

fo
r
A
ll
E
va
lu
a
ti
o
n
C
h
a
in
s

184 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

D.7.4 Historic Evaluation Results and Visualizations

This section includes the evaluation results and visualizations that were created by con-
sidering historical gas and fiat price data for the average recorded gas used values of
all contracts for the evaluation run executed with 500 users. Not all visualizations of
all Deferral solution contracts are attached here. The complete result evaluation and
corresponding figures can be found in the Deferral repository [132].

Figure D.33: Historic Average Gas Costs in Gwei Over Time for V1ReferralPaymentTransmitter

D.7. OVERALL RESULTS AND VISUALIZATIONS 185

Figure D.34: Historic Average Fiat Costs in USD Over Time for V1ReferralPaymentTransmitter

Figure D.35: Historic Average Gas Costs in Gwei Over Time for V1ReferralPaymentQuantityUpgradable

186 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.36: Historic Average Fiat Costs in USD Over Time for V1ReferralPaymentQuantityUpgradable

Figure D.37: Historic Average Gas Costs in Gwei Over Time for V1ReferralPaymentValueUpgradable

D.7. OVERALL RESULTS AND VISUALIZATIONS 187

Figure D.38: Historic Average Fiat Costs in USD Over Time for V1ReferralPaymentValueUpgradable

Figure D.39: Historic Average Gas Costs in Gwei Over Time for V1ReferralMultilevelRewardsUpgradable

188 APPENDIX D. EVALUATION - RESULTS AND VISUALIZATIONS

Figure D.40: Historic Average Fiat Costs in USD Over Time for V1ReferralMultilevelRewardsUpgradable

Figure D.41: Historic Average Gas Costs in Gwei Over Time for
V1ReferralMultilevelTokenRewardsUpgradable

D.7. OVERALL RESULTS AND VISUALIZATIONS 189

Figure D.42: Historic Average Fiat Costs in USD Over Time for
V1ReferralMultilevelTokenRewardsUpgradable

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Goals
	Methodology
	Thesis Outline

	Background
	Digital Referral Marketing
	Referral Programs and Systems
	Examples of Referral Programs

	Technical Foundations and Concepts
	Decentralization vs Centralization
	Blockchain Systems
	Smart Contracts
	Ethereum Virtual Machine
	EVM Values and Units
	Layer-2 Solutions
	Blockchain Oracles
	Decentralized Finance

	Related Work
	Design of Referral Programs and Systems
	Conceptual Design of Referral Programs
	Technical Design of Referral Systems

	Evaluation of Referral Programs and Systems
	Classification of Referral Systems
	Qualified Users
	Allocation of Rewards
	Reward Levels

	Decentralized Referral Systems
	Existing Decentralized Solutions
	The Blockchain Trilemma

	Design and Architecture
	Requirements
	Solution Requirements
	Referral Payments
	Deferral - Solution Architecture and Design
	Referral Payment Evaluator
	Deferral Solution

	Evaluation Metrics and Measures
	Costs
	Performance and Scalability
	Security

	Deferral - Implementation
	Development Environment and Setup
	Solution Technology Stack
	Continuous Integration
	Repository and Folder Structure

	Referral Evaluator Smart Contracts
	Referral Payment Transmitter Contracts
	Referral Payment Quantity Evaluator Contracts
	Referral Payment Value Evaluator Contracts
	Referral Payment Multilevel Reward Evaluator Contracts
	Referral Payment Multilevel Token Reward Evaluator Contracts

	Tests and Testing
	Scripts
	Deployment Scripts
	Evaluation Scripts
	Visualization Scripts
	Shell Scripts

	Evaluation and Discussion
	Test Coverage and Security
	Costs and Performance
	Evaluation Method and Data
	Solution Contract Evaluation
	Overall Evaluation

	Discussion
	Solution Requirements
	Feasibility and Real World Applicability
	Decentralization

	Final Considerations
	Summary
	Conclusion
	Limitations and Future Work

	Bibliography
	Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Contents of the CD
	Installation Guidelines
	Deferral Repository
	Environment Variables
	Hardhat Setup and Configuration

	Deferral Visualizations Repository
	Prerequisites
	Setup Submodule Repository
	Setup Virtual Environment
	Installing Dependencies
	Environment Variables

	Code and Documentation
	V1ReferralPaymentTransmitter
	V1ReferralPaymentQuantityUpgradable
	V2ReferralPaymentQuantityUpgradable
	V1ReferralPaymentValueUpgradable
	V2ReferralPaymentValueUpgradable
	V3ReferralPaymentValueUpgradable
	V1ReferralMultilevelRewardsUpgradable
	V1ReferralMultilevelTokenRewardsUpgradable

	Evaluation - Results and Visualizations
	Referral Payment Transmitter Evaluation Results
	Referral Payment Quantity Evaluator Evaluation Results
	Referral Payment Value Evaluator Evaluation Results
	Referral Payment Multilevel Reward Evaluator Evaluation Results
	Referral Payment Multilevel Token Reward Evaluator Evaluation Results
	Deferral Solutions - Fiat Costs Results
	Overall Results and Visualizations
	Overall Gas Used Metrics
	Overall Gas Cost Metrics
	Overall Fiat Cost Metrics
	Historic Evaluation Results and Visualizations

