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Executive Summary

This thesis represents a comprehensive overview of the current state of affairs in the class of rough
stochastic volatility models. The analysis spans from the theoretical derivation of two prominent
instances of the class, the rough Bergomi (rBergomi, Bayer et al. (2016)) and rough Heston (rHeston,
Jaisson and Rosenbaum (2016)) models, to rigorous empirical calibration experiments carried out
on the SPX and VIX financial markets. Inspired by the celebrated joint SPX & VIX calibration
problem, the aim of the study is to consolidate and extend previous findings as well as shine a light
on critical volatility modelling details that might have been overlooked in the past.

Starting at the origins of fractional stochastic volatility modelling laid by Comte and Renault
(1998), the progression towards rough fractional stochastic volatility models is explained through the
timely evolution of empirical findings prompted by the need and desire to parsimoniously recover
key stylised facts observed in volatility time series. The paradigm was formally established in the
seminal paper of Gatheral et al. (2018) with the introduction of the Rough Fraction Stochastic
Volatility model (RFSV), a natural mathematical representation of the microstructural foundations
identified in the irregularities of high-frequency volatility paths. The main results of the paper are
replicated on more recent data as to explain the logistics behind the precursor to all rough volatility
models. A special focus is given to the construction and evolution of the Hurst index, which defines
their fractional Brownian Motion (fBM) volatility drivers. As an element of novelty, attention is
drawn to the comparative evolution of Hurst index estimates against VIX levels.

The two classic option pricing models of Bergomi (Bergomi (2005)) and Heston (Heston (1993))
are revisited under the rough volatility paradigm. The re-phrasing is the subject of multiple ap-
plications of standard stochastic analysis results that are elaborated on so to highlight derivation
assumptions that may hinder or explain the models’ practical usage. The efficient pricing of both
models is described, namely an adaption of the Hybrid Monte Carlo simulation scheme for Brownian
semistationary processes (Bennedsen et al. (2017)) to rBergomi and a close to instantaneous Fourier
inversion technique via rational Padé approximation theory (Gatheral and Radoičić (2019)) adopted
for rHeston. The fact that both models are defined by sets of only 3 time-homogeneous theoretical
parameters alongside a forward variance curve (external market information) parameter, facilitates
the manual calibration to SPX and VIX volatility smiles and surfaces. The rHeston model is manu-
ally calibrated to the VIX option market potentially for the first time in known literature. Although
the results of Bayer et al. (2016) and El Euch et al. (2019) serve as benchmark, the manual calibration
procedure has been modified in order to handle the forward variance curve as a purely theoretical
quantity rather than approximating it from variance swap data. The discussion which ensues is
of great relevance for the forthcoming deep learning implementations and importantly brings into
question what a better- or worse-off performance than the one attained with the original method
might mean in terms of the models’ well-definedness.

Traditional pricing methods and manual calibration are memory- and time-intensive computa-
tional procedures that render most stochastic volatility models unsuited to broad industry adoption.
Recent developments in the emerging field of deep learning technologies offer a potential resolve
to the shortcoming by replacing costly pricing map evaluations from model parameters to afferent
Black-Scholes implied volatilities (IVs), or vice-versa, with almost instantaneous feed-forward runs of
an artificial neural network approximation, the so-called deep IV (pricing) map. Different calibration
approaches distinguish themselves based on how the map is defined. The one-step approach, also
known as the prices-to-model parameters (PtM) method, has re-kindled researcher’s active interest
in deep pricing techniques with the breakthrough paper of Hernandez (2016). It seeks to solve the
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so-called inverse pricing problem by learning the inverse pricing map from market IVs to model para-
meters. Feeding market option data into the deep pricer amounts to a complete calibration routine
as it directly returns calibrated model parameters. Despite the great promise of the concept, both
Hernandez and later on the extensive research of Bayer et al. (2019) reveal a subpar performance on
unseen data. For this reason, the alternative two-step approach, i.e. the model parameters-to-prices
method (MtP) has been elected towards deep calibration. The procedure combines traditional pri-
cing methods with a standard calibration routine such as Levenberg-Marquardt (Levenberg (1944),
Marquardt (1963)), the latter of which may benefit from the automatic differentiability of the net-
work that promptly renders accurate Jacobian approximations (Bayer and Stemper (2018)). The
only downside to the two-step approach is the resource-intensive synthetic data generation process
which, however, is a one-off procedure.

Two-step calibration may be formulated either point- or grid-wise, depending on how the pricing
map is parameterised. Respectively, option information such as strikes and maturities may either be
cast as input parameters of the pricing map alongside model parameters (Bayer and Stemper (2018)),
or be pre-set across a fixed strike-maturity grid on which the full model-induced IV surface is learnt
”pixel by pixel” (Horvath et al. (2021)). Both of those pioneering methods are hereby considered for
evaluation against their benchmark results. The findings of Bayer and Stemper (2018) are replicated
for rBergomi and extended to what is potentially the first implementation of the point-based approach
for rHeston. The predictive performance of the learnt IV maps on previously unseen synthetic data
is oftentimes superior to what has been reported in the source material. However, deep point-based
calibration to the SPX and VIX options proves rather unsatisfactory. The results highlight a major
limitation of the approach in that there is insufficient expert knowledge of the model parameters’
prior distributions and joint behaviour to effectively sample a representative training set point-wise.
Grid-based calibration on the other hand turns out to be an extremely powerful tool. Under the
network design proposed in the empirical research work of Rømer (2022), a main source of inspiration
and ambitious benchmark for this report, extremely accurate replications of SPX volatility dynamics
are attainable with either model. What is more, it turns out that rHeston can in fact be calibrated
to the VIX, albeit not jointly with the SPX. A marginal yet guaranteed, consistent improvement
over the calibration procedure proposed in Rømer (2022) has been identified. The idea is to calibrate
the deep model to an IV surface using a piecewise constant parameterisation of the forward variance
curve to begin with, then, keeping the optimised time-homogeneous parameters constant, to perform
a second calibration, this time specifially of the forward variance curve to each individual IV slice
of the full surface in turn. The procedure might be dubbed ”grid-based deep calibration with a free
forward variance curve”.

In closing, rough volatility models are a truly captivating research area in quantitative finance.
They provide the most accurate descriptions of volatility dynamics known to date. Some of the
greatest derivatives pricing and hedging advancements in recent years are attributed to early repres-
entatives of the rough volatility class, leaving ample scope for the paradigm’s untapped potential to
be exploited further. By deploying the latest deep learning advancements to leverage the full math-
ematical properties of two prominent models, there is little room for interpretation that their aptness
to capture the dynamics of the SPX and VIX European option markets is a nearly exhausted research
question. Although neither model is capable of jointly calibrating the indices, the present compre-
hensive empirical study reinforces their ability to fit the SPX volatility surface remarkably well, and
reveals the previously unrecognised capacity of the latter do also so for the VIX. Another pivotal
finding concerns the high regularity of VIX volatility paths, hereby identified as close to that of a
standard Brownian Motion and profoundly antithetic to SPX volatility drivers. It might of course be



the case that the cryptic interplay between either model’s parameters generates precise volatility fits
at the expense of the parameters - such as the Hurst exponent indicative of volatility path roughness
- losing their original significance. The empirical results cannot completely rule out that this is the
case, meaning that the true roughness of volatility paths may after all be shared between the SPX
and VIX. On the other hand, it is equally unclear whether the most recent development, the quad-
ratic rough Heston extension (Gatheral et al. (2020)) which was shown to solve the joint calibration
problem on several handpicked daily option chains, is not afflicted by the same fundamental change
in model parameters’ physical interpretation through calibration. Which, if either rough volatility
model captures the true financial market behaviour, is a question left to future research.
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