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Abstract

Point clouds are used in various algorithms in related fields, such as Visual Computing. Some of these algorithms
require high-quality normals as input. Computing these surface normals is often the job of a different algorithm.
Researchers have suggested vastly different algorithms over the years. Recent work focuses on using deep learn-
ing to estimate surface normals. It is important that these normal estimation algorithms perform well, as the other
algorithms rely on their quality. This means the normal estimation algorithms need to be robust against various
defects, including noise, outliers and differences in sampling density. Researches have proposed different mea-
sures to evaluate these normal estimation algorithms as well as how to produce synthetic test data to test against.
Synthetic test data is especially useful as it provides ground truth normals to test against and can be constructed
to contain a single or multiple defects with various strengths. Because of this, synthetic models are a valuable
addition to real-world test data. In this paper, we evaluate four different normal estimation algorithms. This
includes three regression based and one deep learning based method. We develop a tool to execute and compare
the selected normal estimation algorithms. Our goal is to use good measures and cover multiple defects with our
test data. In order to do this, we test the methods against various levels of noise and outliers. We use five different
synthetic point cloud models and a real-world point cloud to test against. This allows us to identify the strengths
and weaknesses of the tested methods.
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1 Introduction

Estimating surface normals of a point cloud is a much-researched area. Many key algorithms depend on surface
normals of high quality for input. These are, among others, surface reconstruction [HDD+92], geometric primitive
extraction [PKG03], anisotropic smoothing [LP05][CCZ+18]. The main problem is that in the presence of noise,
outliers, or a difference in sampling density, the estimation of the normals of a surface remains a highly complex
problem. This is especially true for sharp regions, such as the edges and corners of a point cloud.

Furthermore, these algorithms often estimate point-cloud surface normals in the magnitude of millions or even
larger. This means that they do not only need to produce high-quality normal estimations but also need to be
efficient. Thus, performance versus quality is something algorithms sometimes have to consider.

Most commonly used methods by normal estimation algorithms can be loosely categorized into regression-
based, Voronoi-based, and deep-learning methods [ZPLZ19; BM12]. According to Boulch and colleagues [BM12],
regression-based methods try to estimate a tangent plane or shapes, like spheres or jets, to a set of neighboring
points. They state that these methods are resilient to noise but sensitive to outliers. Recent research has focused
on improving this shortfall, as seen in the paper by Mura et al [MWP18]. They point out that regression-based
techniques can cause the smoothing of sharp features, resulting in inaccurate normals being estimated around
edges and corners. As they highlight, the estimate’s accuracy is determined by the size of the neighborhood;
a larger neighborhood creates a more noise-resistant result, but it also has the potential to make sharp features
appear even smoother [BM12].

Voronoi-based methods use a Voronoi diagram and the furthest vertex of the Voronoi cell to approximate the
normal [YWG+19]. The methods preserve sharp features and are reliable with differences in sampling density
[YWG+19; ZPLZ19]. Dey and Goswami [DG06] extended this method to make it more robust to noisy point
clouds. Still, Voronoi-based methods are often incapable of handling heavy noise [YWG+19; ZPLZ19]. Lui et
al. [LZC+15] proposed a method that produces reliable results that withstand noise and a difference in sampling
density. Still, it is much more computationally demanding than other available methods [YWG+19].

In recent years, methods that use deep learning techniques to estimate surface normals of unstructured point
clouds have emerged. However, implementing deep learning techniques remains difficult, especially when applied
to problems involving unstructured point clouds [BG20]. As with other fields using deep learning techniques,
these approaches need a big set of training samples with ground truth data to compare against [ZPLZ19]. If no
ground truth normals are available, training these methods can be challenging [ZPLZ19].
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2 Related Work

Klasing and colleagues compare in their paper [KAWB09] five different regression-based methods for range
sensing applications. They focus their analysis on the quality and performance of the different methods while
varying neighborhood size and noise strength. To estimate the quality, they use the mean normalized inner product
of the estimated normal and its ground truth equivalent. As the central point of their paper is to check if, for a
given algorithm, the increased computation time justifies the higher performance, they define a performance index
that depends on the quality, computation time, and the optimal time they wish the algorithm to have [KAWB09].
In contrast, we compare the execution time of the different methods, as we do not require that we can use the
algorithms in real-time scenarios. Klasing and colleagues prepare two test sets, one comprising synthetic box and
cylinder data. The second is a scanned point cloud scanned by a laser scanner [KAWB09].

In contrast, Dey et al. [DLS05] focus on comparing Voronoi-based methods. They expand on the evaluation
of just testing point clouds with a varying degree of noise by testing point clouds, which have some difference in
sampling density. This means they were generated by sampling a surface unevenly. Additionally, they tested point
clouds, which are generated by sampling a surface with high curvature in some areas. To compare the quality of
the computed results, they use the mean angular error, and the standard deviation [DLS05].

We use a different evaluator to compare the quality and the mean angular error between the estimated normal
and its ground truth equivalent. Using the angular error is easier to interpret than the inner product. Still, both
are equally meaningful, as our measure is just the arccosine of a normalized inner product. However, in contrast
to Klasing et al. [KAWB09] and Dey et al. [DLS05], we also use the median angular error as a measure, as it is
much more robust to outliers. Both of them do not test their chosen methods against outliers. But as they are an
important defect in point clouds, we decided to test their robustness against them.

A popular error measure is Root Mean Square (RMS), which was extended by Boulch and Renaud [BM12] to
Root Mean Square with threshold RMS τ as according to them, RMS favors smooth reconstruction everywhere,
including at edges. This means that a smooth edge has a lower error than having some normals with values from
the other side of the edge [BM12]. According to Boulch and Renaud, RMS τ considers any angular error above
the threshold τ as terrible by setting it to π

2 . They take τ = 10◦ in their examples [BM12]. Numerous papers,
such as Zhao et al. [ZPLZ19] or Cao et al. [CCZ+18], use RMS and RMS τ as it is widely regarded as a good
measure. In contrast, we use the percentage of points with an angular error of less than 10◦. This measure is
very similar as it is equivalent to calculating the percentage of points inside the threshold of RMS τ , which is the
percentage of points not penalized because of unwanted smoothing.

Our work strongly relates with Mura et al.’s [MWP18] because we implemented their method using C++ and
compared it with a range of other methods. We adopted their evaluation method and the shape of their synthetic
models to compare our results with theirs. Besides the models proposed by Mura et al., we introduce a more
complex synthetic model with higher surface detail and structural complexity. The synthetic models they used
are simple shapes with no surface detail [MWP18]. Furthermore, we build upon their evaluation by testing the
method against a state-of-the-art deep learning-based method.

2



3 Technical Solution

In our choice of algorithms to test robust normal estimation against, we looked at popular C++ libraries that work
with point clouds. We used the Point Cloud Library (PCL) [RC11] and the Computational Geometry Algorithms
Library (CGAL) [The23a].

According to Rusu and Coisins, PCL is ”a fully templated, modern C++ library for 3D point cloud pro-
cessin” [RC11, p. 1]. Their normal estimation algorithm is based on Principal Component Analysis (PCA)
[11].

CGAL is described as, ”a software project that provides easy access to efficient and reliable geometric algo-
rithms in the form of a C++ library” [The23b, para. 1]. According to their documentation, the library provides
three different algorithms for estimating surface normals [AGJ+23]. They describe the different methods as
jet_estimate_normals(), pca_estimate_normals() and vcm_estimate_normals().

The method jet_estimate_normals() estimates a normal by fitting a jet surface over its nearest neighbors
[AGJ+23]. The method pca_estimate_normals() is based on the same theory as the algorithm used by PCL
[AGJ+23]. vcm_estimate_normals() is a Voronoi-based method based on the article by Merigot and their
colleagues [MOG11] [AGJ+23].

We decided to use jet_estimate_normals() to test against. This is becase we already had a PCA-based
method, and we could not produce adequate results with the Voronoi-based method while using the same fixed
number of the nearest neighbors as in the paper by Mura et al. [MWP18]. To ensure comparability with the results
of Mura et al. [MWP18], we used the same fixed number of neighbors as in their paper.

For the deep learning method, we decided to use DeepFit by Ben-Shabat and Gould [BG20], as it is a very
recent method and an expansion of a jet-estimation method.

3.1 Principal Component Analysis

We will present a similar explanation as presented in the paper by Shakarji and Srinivasan [SS13]. The normal
to a query point p of a surface can be determined by the normal of the tangent plane to the surface at the query
point p. Given a finite set of points Nk

p = {xi = (xi, yi, zi) : i = 1, 2, ..., k} form the neighborhood of the query
point, the tangent plane can be estimated by the plane minimizing the total squared distance to the points from
the neighborhood. Such a plane is called a least-square fitted plane to the set Nk

p .
To determine the least-square fitting plane to a set of points Nk

x , let w1, w2, ..., wN be the corresponding positive
weights, x = (x, y, z) be an arbitrary point on the least square fitted plane, and a = (a, b, c) the normal of the
plane. Then, Shakarji and Srinivasan [SS13] define the signed orthogonal distance function of a point xi to the
plane as:

di = a · (pi − x).

Shakarji and Srinivasan [SS13] define the weighted centroid, which lies on the least square-fitted plane con-
strained to have the normal a:

x̄ = (x̄, ȳ, z̄) =

∑k
i=1wixi∑k
i=1wi

.

To show that the centroid lies on the least square-fitted plane, they use the definition of the plane a · x− d = 0,
where d is the signed distance from the plane to the origin. They define the distance of a point x to the plane as
dplane(x) = a · x − d. With this, Shakarji and Srinivasan [SS13] define the weighted sum of squares objective
function for a plane with a normal vector a as:
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3.1. PRINCIPAL COMPONENT ANALYSIS

F (d) =
k∑

i=1

wi(a · xi − d)2

Shakarji and Srinivasan [SS13] find the first derivative of F ′(d) to be defined by F ′(d) = −2
∑N

i=1wi(a·xi−d)
and the second derivative to be defined by by F ′′(d) = 2

∑N
i=1wi > 0.

The second derivative of F (d) being strictly positive implies that if there exists a point at which the first
derivative is equal to zero, we find a global minimum at this point [SS13]. They then solve for d by distributing
the summation:

d =

∑k
i=1wi(a · xi)∑k

i=1wi

= a ·

(∑k
i=1wixi∑k
i=1wi

)
= a · x̄.

This shows that at the least square solution, the weighted centroid must lie on the plane as a · x̄−d = 0 [SS13].
As the centroid of the point lies on the solution of the least square-fitted plane, they use the centroid as the

guaranteed point on the plane and get the new objective function:

F∗(d) =
k∑

i=1

wi(a · xi − d)2.

This problem can be solved using Lagrange multipliers. We want to minimize F∗(x) subject to the constraint
G(a) = 0 = |a|2 − 1 [SS13]. They find that the gradients of F and G are defined as:

∇F∗(d) =

∂F
∂a
∂F
∂b
∂F
∂c

 =


∑N

i=1wi[a · (xi − x̄)](xi − x̄)∑N
i=1wi[a · (xi − x̄)](yi − ȳ)∑N
i=1wi[a · (xi − x̄)](zi − z̄)


∇G = 2a.

According to Shakarji and Srinivasan [SS13], the minimum occurs at the point where ∇F∗ = λ∇G,λ ∈ R
and we can write∇F∗ = 2La = 2(M⊤M)a, where M is defined as the k × 3 matrix given by:

M =


√
w1(x1 − x̄)

√
w1(y1 − ȳ)

√
w1(z1 − z̄)√

w2(x2 − x̄)
√
w2(y2 − ȳ)

√
w2(z2 − z̄)

...
...

...√
wN (xN − x̄) √wN (yN − ȳ) √wN (zN − z̄)


With this, they define the 3× 3 eigenvector problem:

L

ab
c

 = λ

ab
c

 .

Solving this 3× 3 eigenvector problem gives us the direction of the fitted plane, which can be done this using
well-known methods, such as Jacobi iterations [Sha98]. Shakarji and Srinivasan [SS13] further explains that as
the eigenvectors of M⊤M are also the singular vectors of M, we could also apply singular value decomposition
to gain better numerical results.

The question remains of how to select the correct eigenvector. For this, they write the normal equations as
follows:

k∑
i=1

wi(xi − x̄)[a · (xi − x̄)] = λa
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3.2. ROBUST NORMAL ESTIMATION

k∑
i=1

wi(yi − ȳ)[a · (xi − x̄)] = λb

k∑
i=1

wi(zi − z̄)[a · (xi − x̄)] = λc

Multiplying these equations by a, b and c, respectively, gives [SS13]:

N∑
i=1

wi[a · (xi − x̄)]2 = λ|a|2 = λ.

This means F∗(x) = λ and, because we try to minimize F∗, the correct solution corresponds to the smallest
eigenvalue value [SS13].

In their paper [HDD+92] by Hoppe et al., they demonstrate that the normal vector a to the least square fitted
plane at the query point p together with the centroid x̄ can be determined using principal component analysis. For
this, they find the symmetric 3× 3 covariance matrix defined by:

C =
∑

xi∈N k
p

(xi − x̄)⊗ (xi − x̄)

For the vectors a = {a1, a2, ..., an} and b = {b1, b2, ..., bm}, the outer product a ⊗ b is the n × m Matrix
such that aij = ai · bj [HDD+92]. They then compute the eigenvalues and corresponding eigenvectors for the
covariance matrix C. The correct eigenvector that determines a is the eigenvector corresponding to the smallest
eigenvalue, much like when using Lagrange multipliers [HDD+92].

3.2 Robust Normal Estimation

We can categorize Robust Normal Estimation by Mura et al. [MWP18] as a regression-based method, as PCA is
a big part of its normal estimation procedure.

Figure 3.1: Visual overview of the robust normal estimation pipeline. First, an initial estimated normal is com-
puted using PCA and its local neighborhood. A sub-region around the initial normal is defined where
the correct normal lies with a certain percentage (a). Next, the sub-region is discretized, and for each
patch, a candidate normal is defined that starts at the query point and ends in the center of the patch.
The best candidate normal is selected based on the smallest median distance of the points in the neigh-
borhood to the tangent plane defined by the candidate normal and the query point (b). Lastly, the final
normal is computed by iteratively applying PCA to a set of inliers (c) [MWP18].

Given a query point p, its neighborhood Nk
x and the complete normal space where the normal of point p could

lie, Mura et al. [MWP18] want to define a sub-region of the normal space where the correct normal lies with a
high probability. To do this, they divide the computed sub-region into discrete patches; each patch represents a
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3.2. ROBUST NORMAL ESTIMATION

plane with a certain orientation defined by a normal vector. From this set of patches, they select the patch that, as
a tangent plane of point p, has the least median distance to the point in the neighborhood. Given this best tangent
plane, Murea et al. [MWP18] robustly select the inlier points and use them to compute a final estimated normal
using PCA iteratively. An overview of the pipeline can be seen in Figure 3.1.

3.2.1 Limit sample space

Mura et al. [MWP18] start with an initial normal ñ generated by the PCA of the k nearest neighbors N k
p for

a query point p. Mura et al. [MWP18] then make use of Mitra and Nguyen’s [MN03] findings, in which they
propose an upper bound for the maximum angular error α of the initial normal ñ and the correct normal n∗
[MWP18]:

α ≤ c1κr + c2
σn√
ϵρr2

+ c3
σ2
n

r2
. (3.1)

The bound depends on the curvature κ, the search radius r, the noise scale σn, and the sampling density ρ. It
further depends on the constants c1, c2, and c3 and the error tolerance ϵ. In contrast to Mitra and Nguyen [MN03],
which use the bound to compute a varying search radius, Mura et al. [MWP18] use the bound to limit the normal
space where the correct normal could lie to a solid angle around the initial normal ñ.

Mura et al. [MWP18] then further improve the estimates for the curvature and sampling density specified
by Mitra and Nguyen [MNG04] in an extension of their work. They did this because, in the initial definition,
the curvature does not depend on the local noise level, which makes it unstable in noisy, planer neighborhoods.
Because the curvature uses the mean in its formula, it is not robust to outliers. In the initial definition, the sampling
density only depends on the query point and its k-th neighbor. Noise or outliers can make this estimate unreliable
if one point is affected.

Mura et al. [MWP18] define the improved estimator for curvature as the ratio between the smallest eigenvalue
λ1 and the sum of all three eigenvalues:

κ = max(
λ1

λ1 + λ2 + λ3
− σn, 0).

By subtracting the estimated noise scale σn, they compensate for noise encoded in the eigenvalues and make
the estimator more robust to noise because of the inherent low-pass filtering [MWP18].

Mura et al. [MWP18] estimate the noise scale σn as the median distance of the points in the neighborhoodN k
p

to the least square fitted plane [MWP18]. The improved estimator for the sampling density is very similar, but
they use dmed, the median distance from the query point to its k neighbors N k

p instead of the mean distance:

ρ = 2 · k

πd2med

.

Using this equality, they define a sub-region of the normal space around the initial normal with a solid angle
α, in which the correct normal lies with a probability of 1 − ϵ. Mura et al. [MWP18] set the error tolerance ϵ to
0.005. This means the correct normal lies in the sub-region with a probability of 99.5%.

3.2.2 Selection of Best Discrete Normal

Given this sub-region of the normal space around the initial normal, Mura et al. [MWP18] want to further
discretize this sub-region. They get the area on the surface of the discrete unit sphere, spanned by α around
the point where the first normal is facing. They then use a well-established accumulator design introduced by
Borrmann et al. [BELN11]. The accumulator is designed to first divide the discrete unit sphere into Ns horizontal
slices. Each slice is bounded by two latitudes and covers an angle of π

Ns+1 [MWP18]. To ensure that each patch
has roughly the same area, the number of subdivisions of each slice must be varied depending on the latitude. This
is because the longitude length depends on its latitude, and the longitude at the equator is the largest [BELN11].
Mura et al. [MWP18] then set, like Borrmann et al. [BELN11], the number of subdivisions at the equator to 2 ·Ns
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3.2. ROBUST NORMAL ESTIMATION

[MWP18]. In contrast to Borrmann et al. [BELN11], Mura et al. [MWP18] define two additional patches of an
angle 1

2 ·
π

Ns+1 at each of the two poles.
Given this discretization of the discrete unit sphere, we then need to extract the set patches that correspond to

the solid angle α around the initial normal ñ [MWP18]. The method used by Mura et al. [MWP18] to extract these
patches was not further specified, which is why we developed a method ourselves. To do this, we first compare
the polar angle of each patch corner to the polar angle of the initial normal ñ. This gives us at least one patch for
every possible initial normal. We then further check if a corner of any other patch lies inside the sub-region by
comparing the angle between the corners of a patch and the initial normal ñ. We consider the patch if the angle
is smaller than α for any corner. This provides us with most patches that overlap with the surface area except for
a small subset of extreme cases. This is if the initial normal does not point to a point in the patch, and the initial
normal lies between the patch corners when looking at just one of the polar axis. Furthermore, the patch corner
lies outside the surface segment. Then the corner points in the other polar axis lie between the polar angle of the
initial normal in this axis ±α we would not consider the patch, even though the patch would intersect the surface
segment. We obtained slightly worse results if we did not check for partial overlap.

Mura et al. [MWP18] then get from each selected patch a candidate normal ñj , which is the vector that starts
at the center of the unit sphere and ends at the center of each patch. For each candidate normal, They compute the
median distance of the neighbors to the plane described by the candidate normal and the query point. The best
(discrete) candidate normal is then selected by the minimal median distance [MWP18]:

n̂ = arg min
ñj

median(distances(plane(ñj , p),N k
p )).

3.2.3 Robust computation of the final normal

The next step in the method described by Mura et al. [MWP18] is to apply an iterative procedure to refine the best
(discrete) candidate normal in the restricted sub-region of the complete normal space. The algorithm to obtain the
final normal n∗ is described in Algorithm 1.

Algorithm 1 Iterative refinement of best discrete candidate normal

Require: n̂: best (discrete) normal, p : query point, ϵn ≥ 0
n← n̂
i← 0
while i ̸= 3 do
D ← distances(plane(n, p),N k

p )
dmed ← median(D)
I ← {xj ∈ N k

p |dj ≤ dmed} ⊂ N k
p

nprev ← n
n← PCA of I
if nprev · n > 1− ϵn then

break
end if
i← i+ 1

end while
n∗ ← n

Mura et al. set the small constant ϵn to 1−4 and they end the algorithm once the refined normal has not deviated
much from the normal prior to the current refinement step (i.e. if the dot product is almost 1)[MWP18]. They
found that a maximum of 3 iterations suffices to achieve good results. With this simple procedure, they get a
robust final normal n∗ for a query point x [MWP18].

7



3.3. CGAL: JET-ESTIMATION

3.3 CGAL: jet-estimation

The general idea is to fit a polynomial to a surface described by the neighborhood, which makes it a regression-
based method. We base our explanation of the method on the paper by Cazals and Pouget [CP05] and refer
the interested reader to their paper for a more detailed explanation and further findings. According to Cazals
and Pouget [CP05], we can locally write any regular embedded smooth surface as the graph of a bivariate height
function that calculates the z coordinate based on x and y. They expand this height function as a Taylor expansion
JvecB,n of order n and with coefficients B:

f(x, y) = JS,n(x, y) +O(||(x, y)||n+1).

JvecS,n is called a jet of degree n, also noted as n-jet [CP05]. They state that since an n-jet has n+1 monomials
of degree i, the n-jet has Nn = 1+ 2+ ...+ (n+ 1) = (n+ 1)(n+ 2)/2 terms. Cazals and Pouget [CP05] state
that from the 1-jet, we can compute the tangent space from the 2-jet, the curvature information, and so on. Their
method is to fit the n-jet to a set of k points in a neighborhood Nk

p of a query point p. The point p is not required
to be in the set of neighbors, and we can assume that it lies at the origin of the coordinate system [CP05]. Cazals
and Pouget [CP05] suggested that the issue of fitting an n-jet to a neighborhood of k nearby points can be solved
using interpolation or approximation.

Interpolation finds a polynomial that exactly fits the set of neighbors [CP05]. They then try to find the n-jet
JA,n with coefficients A, such that for any point (xi, yi, zi) ∈ Nk

p , i ∈ {1, ..., k}:

f(xi, yi) = JS,n(xi, yi) +O(||(xi, yi)||n+1) = JA,n(xi, yi). (3.2)

Approximation, conversely, tries to approximate the height function without the need to reach the exact solution
[CP05]. Cazals and Pouget [CP05] use least-squares approximation, which minimizes the sum of square errors
between the values of the height function and the sought jet. They propose the following objective function to
minimize:

N∑
i=1

(JA,n(xi, yi)− f(xi, yi))
2. (3.3)

These problems can be written in the same matrix form [CP05]. Cazals and Pouget [CP05] first write the
jet in the polynomial basis comprising the monomials xiyi. They then further specify A to be the Nn-vector of
coefficients of the solution jet

A = (A0,0, A1,0, A0,1, ..., A0,n)
⊤.

and B is the k-vector of the ordinates zi = f(xi, yi),

B = (z1, z2, ..., zk)
⊤ = (JB,n(xi, yi) +O(||(xi, yi||n+1)i=1,...,N .

Cazals and Pouget [CP05] then compute the k ×Nn Vander-monde matrix:

M = (1, xi, yi, x
2
i , ..., xiy

n−1
i , yni )i=1,...,k

According to Cazals and Pouget [CP05], the number of points matches the number of parameters in the case of
interpolation. They then rewrite the Equation 3.2 using M:

MA = B.

For approximation, M is a rectangular k ×Nn matrix and they rewrite Equation 3.3 as [CP05]:

min||MA− B||2
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3.4. DEEPFIT

Interpolation is a great choice if the data points match the number of terms, with the benefit that all used data
points are guaranteed to lie on the calculated jet [CP05]. However, the approximation is preferable in the presence
of heavy noise [CP05]. Furthermore, if the neighborhood is scarcely populated (i.e. Nn > k), the approximation
is also preferred, as we might not be able to find an exact solution [BG20].

3.4 Deepfit

Noise and outliers heavily reduce the fitting accuracy of jet-fitting [BG20]. To overcome this, Ben-Shabat and
Gould [BG20] expand the problem to a weighted least square problem. They define the optimization problem
where W ∈ Rk×k is a diagonal weight matrix W = diag(w1, w2, ..., wk) as follows:

β = arg min
A∈RNn

∥W
1
2 (MA−B∥2.

Ben-Shabat and Gould [BG20] propose to train a neural network to estimate the weight of each neighbor of a
query point. They work with a query point p from the input point cloud and then calculate the k-nearest neighbors
N k

p . They then feed N k
p into a PointNet, a novel deep learning network that directly consumes point clouds

[RHML17]. This gives them a global point cloud representation G(N k
p ). They draw out local representations

from an intermediate layer for all the points pj ∈ N k
p to get g(pj). Ben-Shabat and Gould [BG20] state, that

”these representations are then concatenated and fed into a multi-layer perceptron h(·) followed by a sigmoid
activation function”. The sigmoid activation function limits the output values between 0 and 1 [BG20]. With this,
they get a weight per point and can construct the diagonal point-weight matrix W defined as:

wj = sigmoid(h(G(N k
p ), g(pj))) + ϵ.

ϵ is a small constant that they add for numerical stability. They then compute the estimated normal using
weighted n-jet estimation.

They then define a custom local consistency loss function for backpropagation while training the neural net-
work. Their loss function comprises two terms. They call them a weighted normal difference term and a reg-
ularization term. Ben-Shabat and Gould [BG20] state, that ”The weighted normal difference term computes a
weighted average of the sine of the angle between the ground truth normal and the estimated normal at every
local neighborhood point”. To compute the normal at every local neighborhood point, they convert the n-jet to
the implicit surface form F (x, y, z) = 0. They then compute the normal at each neighboring point pj with:

nj =
∇F
||∇F ||

∣∣∣∣
pj

=
(−βi ∂M

⊤

∂x , βi
∂M⊤

∂y , 1)

||∇F ||

∣∣∣∣∣
pj

.

Ben-Shabat and Gould [BG20] then add a regularization term because if the neighboring point pj do not lie on
the surface it is possible that the point weights reach all zero. The regularization term computes the average log
of all weights [BG20]. With this, they define the consistency loss for a query point xi where nGT is the ground
truth normal:

Lcon =
1

k

− k∑
j=1

log(wj) +
k∑

j=1

wj |nGT × nj |

 . (3.4)

The complete loss function is defined by the sin loss between the estimated unoriented normal and the ground
truth normal at the query point, the consistency loss Equation 3.4, and PointNet’s transformation matrix regular-
ization terms Lreg = |I − AA⊤| [BG20]. They use weighing factors α1 and α2 that were chosen empirically
[BG20]. They define the complete loss function, thus:

Ltot = |NGT ×Ni|+ α1Lcon + α2Lreg.

9



4 Implementation

We implemented a visualization/estimation application in C++ and GLFW [23]. The goal was to use this applica-
tion to execute the different methods, visualize the point cloud with the estimated normals and evaluate the results
against ground truth if available. We based the application on a template provided by the Lecture on Computer
Graphics at the University of Zurich by Renato Pajarola and parts from the web book “Learn OpenGL” by Joey
de Vries [dVri14].

We use the open-source library Dear ImGui [14] to visualize UI elements. We use an open-source header file
browser implementation for Dear ImGui [img19] and an implementation for progress indicators [zfe18].

The application creates an instance of NormalViewer is created on startup, which is a subclass of GLApp. This
class handles the general setup of GLFW, glad, and Dear ImGui, and creates the required instances, like Camera

and PointCloudManger and contains the render loop. The goal was to render a point cloud and maybe other
objects to visualize results (i.e. arrows or lines to show normals). We created three components to handle the
rendering of an object: a Mesh component, a Material component and a RenderObject. The Mesh the component
handles the creation and the filling of the VertexArrayObject, VertexBufferObject, and ElementBufferObject. The
Material the component handles the shader program and its associated variables. And last but not least, the
RenderObject renders the set Mesh using the set Material.

Another main component is the aforementioned PointCloudManager. It handles the point cloud by loading it
with the PointCloudLoader executes a certain normal estimation method on the loaded point cloud or handles
which results are visible. This means swapping between the results of different normal estimation methods and
updating the estimated normals of the loaded point cloud.

The PointCloudManager creates a Mesh object to store the point cloud. The point cloud mesh object contains
a vertex (i.e. points) vector, color vector, normal vector, and ground truth normal vector. The class can then load
a point cloud using an instance of type PointCloudLoader. This class loads a point cloud from a path the user
can input via a file browser. The PointCloudLoader stores the data in provided vectors, which in this case, are
the vectors stored in the point cloud mesh object. The loaded data must at least include positional data of a point
and may include color and ground truth normal data.

We implemented all methods in static classes that contain a method called calculateNormals. The method
requires as input the set of points, the viewpoint (i.e. scanner position) to reorient the normals, and a Results
object to store the result and interim results. The methods handle the settings, such as the number of nearest
neighbors themselves.

The PointCloudManager has a vector of Result objects of size equal to the methods available. A Results
object contains a vector of settings used to run the normal estimation method, the stored completion times, results
such as the estimated normal, and evaluation data such as the mean or median angular error. The Results object
computes the evaluation data when the method evaluateResults is called. The PointCloudManager provides
the user with the possibility of selecting the method and then swapping the active Results object.
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5 Experimental Results

We created models similar to those of Mura et al. [MWP18] to ensure that our implementation of the robust
normal estimation method was comparable. This means we choose to test the model against a set of synthetic
and one real-world model. We represent the synthetic models together with their mesh representation and the
real-world model in Figure 5.1.

(a) Fandisk (100’047 points) (b) Box (99’999 points) (c) Icosahedron (100’000 points)

(d) Double Torus (100’001 points) (e) Dragon (99’754 points) (f) Office Room (2’780’160 points)

Figure 5.1: Overview of the test set without added defects. The point clouds (a)-(e) were randomly sampled form
the 3D mesh to their right.

We created the Box, Icosahedron, and double torus meshes using Blender [Ble18]. The mesh for creating the
fandisk [com14] and dragon [Sta14] model originated from the internet. We then used an open-source program
called CloudCompare [GPL] to create a point cloud by randomly sampling the surface of the mesh. This resulted
in a point cloud without noise or outliers and ground truth normals based on the normals of the original mesh.
We then corrupted the point clouds with noise by adding a vector in the direction of the ground truth normal. The
length of the vector is sampled from a normal (Gaussian) distribution with a mean of 0.0 and a standard deviation
σ = p ∗ dbb. p is a percentage (i.e. 0.1%), and dbb is the magnitude of the diagonal of the bounding box of the
mesh used to generate the point cloud. We used the oriented bounding box of the mesh to estimate the bounding
box and then extracted the diagonal length. We then added outliers to a certain percentage of point cloud points
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5.1. QUALITATIVE ANALYSIS

( i.e. 2.5% and 5%). This was done by adding an offset in an arbitrary direction with length sampled from a
uniform distribution between [5 · σ, dbb4 ].

A Faro Focus 3D laser range scanner was utilized by the Visualization and MultiMedia Lab (VMML) at the
University of Zurich to scan the real-world model ”2C05 2.ptx” which we refer to as Office Room [Mur16]. We
could use the provided model directly for PCL and robust normal estimation. However, CGAL and DeepFit threw
an exception when using this model. While experimenting with the data, we found that removing the points with
zero values in all dimensions allowed the two algorithms to terminate. We thus performed a cleanup for these
methods where we removed 62455 points.

We ran tests for PCL, CGAL, and robust normal estimation on a Lenovo X1 Carbon 9th Gen equipped with a
11th Gen Intel Core i7-1165G7 processor clocked at a max turbo frequency of 4.7 GHz using a total of 4 cores
and 32 GB DDR4 RAM using Manjaro Linux. These methods made use of GPU parallelization. We executed the
tests for DeepFit in a Anaconda [Ana23] environment on a different machine, as the DeepFit algorithm requires
a Cuda-compatible GPU. The second machine was a Windows 10 machine with a 8th Generation Intel Core i7
processor clocked at a max turbo frequency of 4.70 GHz using a total of 6 Cores. The machine used a Nividia
GeForce RTX 3090 and 64 GB DDR4 RAM.

We set the number of neighbors to 64 for all test methods. For the robust normal estimation, we set Ns = 16
and c1, c2 and c3 in Equation 3.1 to 1. For testing DeepFit we used the implementation of Ben-Shabat and Gould
[IG23]. , we first trained a model with the provided training- and validation set, which can be downloaded by
executing the python script get_data.py. We used the section for the training of the provided python script
run_DeepFit_single_experiment.py for this but changed the parameter N POINTS representing the num-
ber of the nearest neighbors to 64. We then used this model to estimate the normal for each point by using
compute_normals.py from their tutorial.

We qualitatively analyzed all models by examining the rendered point clouds using Phong-based shading. As
for the synthetic models, ground truth normal data is available to compare against; we did a qualitative evaluation.
We calculate the mean and median angular error and the percentage of points with an angular error less than 10◦.
As the methods only compute unoriented normals for a point, we compute the angular error twice using the
originaly estimated normal and the flipped normal. We then select the smaller of the two angular error as the
angular error of a estimated normal. We examined how well the models could tolerate noise and outliers and
analyzed their execution time.

5.1 Qualitative Analysis

When examining the results without noise displayed in Figure 5.1, we can evaluate how good a method is based
on various factors. There should be a prompt color change at the sharp features of a model, such as corners or
edges. The model’s flat planer regions should have a consistent color over the whole region. In curved regions,
the color should change continuously from one color to the other. And last but not least, the algorithm should
preserve surface details.

When looking at the cube model without noise, in Figure 5.1, we can see that PCL and CGAL both don’t
preserve sharp features by smoothing normals. Robust normal estimation preserves the sharp features well in
contrast but doesn’t result in a completely sharp edge. DeepFit results in a slight smoothing but not as strong
as PCL or CGAL. However, DeepFit does not result in completely sharp edges either. In all three methods, the
flat planar region is very uniform. This means all methods handle flat regions without noise very well. In round
regions, PCL, CGAL, and DeepFit perform well as they produce smooth transitions. Robust normal estimation,
however, produces band-like structures. We can observe this in the Fandisk in Figure 5.1. These are also present
when using ground truth normals but probably exist, as the original mesh can only estimate the curvature with a
finite amount of vertices. Thus, we can extrapolate that they are undesirable, and we count them negatively. No
algorithm preserves surface details very well. We can see this when looking at how well the surface details of
the dragon body in Figure 5.1 have been preserved. PCL and CGAL over smooth the normals way too much,
which results in the dragon model losing nearly all surface details. Only the strongest features, like the structure
on the belly, remain barely visible. Both robust normal estimation and DeepFit preserve more surface details, like
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5.2. QUANTITATIVE ANALYSIS

the belly structure in the front of the dragon model. However, the scale structure on the dragon’s body is not as
noticeable as in the ground truth data.

We then looked at how the methods compare if we add 0.1% noise to the models. The results are in Figure 5.2.
Adding this amount of noise does not seem to affect the precision regarding the sharp features of the methods.
PCL and CGAL again have problems with preserving sharp features. Robust normal estimation again results in
the best sharp features, and DeepFit again is somewhere in between them. If we look at flat regions, we can see
some differences from the previous tests. PCL and CGAL both result in more or less flat regions that are just
slightly noisy. This is visible in the flat regions of the icosahedron or the box model. Robust normal estimation
results in a quite noisy flat region, and DeepFit is again somewhere between the three. Regarding curved regions,
all methods produce smooth transitions, but the noisy flat region might overshadow the previously noted problem
regarding the banding of robust normal estimation. Adding noise doesn’t seem to affect the preservation of surface
details positively or negatively.

When examining a scene instead of a single model, it is necessary to consider more than just the aforementioned
factors to establish if a method performs well. In addition, we have to consider the boundary of different objects
(e.g. the table leg and the floor). We rendered the model Office Room using Phong-based shading and present it in
Figure 5.3. When looking at these results, we gain similar insights as when using synthetic models. If we compare
the door frame and the boundary between the wall and floor, we can see that PCL and CGAL over smooth the
edges, and robust normal estimation yields sharp edges. DeepFit has some smoothing and compared with previous
results, it produces the noisiest edges of all the three methods. In flat regions, all three methods perform similarly
well and produce properly oriented normals over the whole flat region. PCL, CGAL, and DeepFit again have
similarly good results in curved regions. Robust normal estimation comes very close but has some noise. It is
difficult to examine if the methods preserve surface details, as the point cloud density is too small for the elements
farther in the back, and the front elements do not have any strong surface details. There are occurrences of normals
of one object being affected by another object in all methods. PCL, CGAL, and DeepFit display this behavior the
most, and it is visible at the boundary between the items on the bookshelf and the shelf itself, or where the legs
of the chair meet the floor. For robust normal estimation, this behavior is just barely visible. Something unique to
DeepFit is the occurrence of outliers across the scene.

5.2 Quantitative Analysis

As ground truth data was available to compare against, we were able to exactly measure the angular error between
the estimated normal and the ground truth. We visualized the results without noise in Figure 5.4 and with 0.1%
noise in Fig. 5.5. A green dot represents a point with an angular error less than 5◦, blue an angular error greater
or equal to 5◦ but less or equal to 10◦, and red represents an angular error more than 10◦.

As mentioned in the qualitative analysis, PCL and CGAL don’t preserve sharp features very well. We can
see this in Figures 5.4 and Figure 5.5 in the Fandisk, Box, Icosahedron, and double torus model. Both methods
produce large (red) bands of high error areas around the sharp features of the model. Robust normal estimation
preserves them really well, which is visible by the small number of points with high angular error. DeepFit
produces also a lot of points with high angular error at the sharp features of the model but far fewer than PCL
or CGAL. We can also see that PCL and CGAL produce good results for the flat regions of the model with
and without noise. Robust normal estimation and DeepFit only produce good results in the tests without noise;
especially, robust normal estimation has a high amount of points (blue) with angular error ≥ 5◦ in the flat regions
of the model. DeepFit also has some points with angular error ≥ 5◦ but not nearly as many. Similarly to before,
the data also shows that PCL, and CGAL have good results in the curved areas of the model. However, we can
again see that DeepFit and even more robust normal estimation have some points (blue) with an angular error of
more than 5◦ in the curved areas of the model, notably in the Fandisk model in Figure 5.4. For PCL and CGAL,
adding noise only results in a small degradation of the quality in curved regions of the model, which we can see
in the Fandisk model in Figure 5.5, that only results in a small number of additional points with angular error
≥ 5◦. We see an overall increase in angular errors with robust normal estimation and DeepFit when adding noise,
but curved regions do not display an additional decrease in quality to the rest of the model. When looking at the
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Table 5.1: Qualitative analysis of the normal estimation on synthetic data without noise
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Table 5.2: Qualitative analysis of the normal estimation on synthetic data with 0.1% noise
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5.2. QUANTITATIVE ANALYSIS

PCL CGAL

Robust DeepFit

Table 5.3: Render of the real-world model Office Room with phong base shading for all four methods.

dragon model, all methods produce a high amount of angular errors, especially between ≥ 5◦ and ≤ 10◦ (blue),
this is because the dragon model has high surface details that all four methods cannot reproduce. Adding noise
seems to affect mainly DeepFit and, in particular, robust normal estimation, which results in a sharp increase in
the number and severity of points with angular errors.

We also computed the mean, median angular error, and the percentage of points with an angular error < 10◦

for all models with 0.1% noise. We represent this data in Table 5.6. A low mean and median value and a high
percentage of points with angular error < 10◦ are considered good. PCL and CGAL have similar results in all
methods over all three metrics. Both methods have a very low mean and median values, which results from the
good results in the flat and curved regions of the model. The percentage of points with angular error < 10◦ is
lower than robust normal estimation. This is because of the areas of high angular error around the sharp features
of the model. The robust normal estimation has higher mean and median values because of the noisy flat regions,
but a much lower percentage of points with angular error < 10◦ because the method does not produce many
points with high angular error except a few at the sharp features of the method. DeepFit produces results between
robust normal estimation and PCL or CGAL.

We can see the execution time of the different methods in Figure 5.7. We turned off parallel computing while
we were running these tests since DeepFit did not have it. PCL is by far the most efficient of the four methods.
CGAL and robust normal estimation have similar execution times, but it looks like CGAL scales better with an
increase in the number of points, however, further investigation is necessary. DeepFit is by far the slowest, but
it is likely that this is in part because the method was implemented in Python, whereas the other methods could
benefit from the higher efficiency of C++.

16
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Table 5.4: Quantitative Analysis of the angular error between estimated normals and the ground truth normals on
synthetic data without noise. The color green depicts angular errors < 5◦, blue angular errors between
≥ 5◦ and ≤ 10◦ and red angular errors > 10◦

5.3 Robustness

To evaluate the robustness to noise and outliers, we varied these parameters for the box model by performing
tests with 2.5% or 5.0% outliers combined with 0.2% or 0.4% noise respectively. We visualized the results with
deviation to ground truth in Figure 5.8 for PCL and CGAL and in Figure 5.9 for robust normal estimation and
DeepFit. We calculate the mean and median angular error and the percentage of points with an angular error
< 10◦ in Figure 5.10.

We can determine that doubling the number of outliers has nearly no effect on the quality of the results. This
is true for the visual results (i.e. going from the first line to the second in a Figure 5.8 and Figure 5.9) but also
for the mean, median and percentage. For example, let’s look at robust normal estimation and double the number
of outliers from 2.5% to 5.0% in the model with 0.4% noise. The mean only increases by 0.15, the median by
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Table 5.5: Quantitative Analysis of the angular error between estimated normals and the ground truth normals
on synthetic data with 0.1% noise. The color green depicts angular errors < 5◦, blue angular errors
between ≥ 5◦ and ≤ 10◦ and red angular errors > 10◦

1.21 and the percentage decreases by 0.19%. We can observe similar small changes for the other methods with
0.2% noise. If we double the noise from 0.2% to 0.4% with 2.5% outliers, we can observe a sharp decline in
the quality of all methods. The mean of CGAL and PCL increases by a factor of ∼ 2.15, the median by a factor
of ∼ 1.25 and the percentage decreases by a factor of ∼ 0.81. If we look at the robust normal estimation, the
mean increases by a factor of ∼ 2.19, the mean by a factor of ∼ 1.92, and the percentage decreases by a factor of
∼ 0.35. DeepFit finds itself somewhere in the middle, the mean increases by a factor of ∼ 2.09, the median by
a factor of ∼ 1.69, and the percentage decrease by a factor of ∼ 0.56. We can conclude that an increase in noise
affects robust normal estimation the most. Noise affects the quality of the results computed with DeepFit, but not
as much as the robust normal estimation. PCL and CGAL seem quite robust to noise compared to the other two
methods. All methods seem similarly robust to an increase in the number of outliers.
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5.4. COMPARING ROBUST NORMAL ESTIMATION

Method Fandisk Box Icosahedron Double Torus Dragon

CGAL

Mean 1.79 1.53 1.55 1.99 6.44

Median 5.93 3.93 3.24 7.02 9.47

< 10◦ 84.46% 91.49% 90.11% 81.12% 68.84%

PCL

Mean 1.79 1.50 1.53 1.97 6.58

Median 5.78 3.83 3.21 6.89 9.60

< 10◦ 83.97% 91.17% 90.17% 80.40% 68.30%

Robust

Mean 3.91 4.17 3.77 4.65 7.89

Median 6.25 5.64 5.03 7.74 11.21

< 10◦ 92.80% 95.71% 93.42% 90.22% 62.11%

DeepFit

Mean 3.32 2.75 2.72 3.05 6.16

Median 7.02 5.16 4.60 7.57 9.32

< 10◦ 85.93% 91.31% 89.78% 84.36% 72.39%

Table 5.6: Quantitative Analysis of the mean and median angular error in degrees as well as the percentage of
points with an angular error < 10◦ on synthetic data with 0.1% noise.

Model CGAL PCL Robust DeepFit

Box (249’999 points) 10.1 1.1 13.2 248.7

Box (500’001 points) 17.7 2.2 32.8 487.1

Double Torus (249’994 points) 7.3 3.0 12.7 243.1

Double Torus (499’998 points) 14.8 2.0 28.0 433.7

Table 5.7: Computation time of CGAL, PCL, robust normal estimation (Robust), and DeepFit. The methods were
executed without multi-core with all timings in seconds

5.4 Comparing robust normal estimation

We can also compare our implementation of robust normal estimation to the results from Mura et al. [MWP18].
This is possible because we choose similar models and methods to create them. We can compare our results from
Figure 5.6, of the emphFandisk, Box, Icosahedron, and Double Torus model with 0.1% noise to theirs. We can see
that both implementations have very similar results regarding the percentage of points with an angular error < 10◦.
Mura et al. [MWP18] report percentage values of 92.06%, 96.86%, 93.58%, and 90.90% respectively [MWP18].
Because of this and the visualized quantitative analysis regarding angular deviation, we can conclude that both
implementations have similarly good edge-preserving capabilities.

The mean and median values are, however, much higher in our implementation. They report mean values of
4.56, 2.55, 3.16, and 5.04 and median values of 2.10, 1.20, 1.85, and 2.06 for the Fandisk, Box, Icosahedron, and
Double Torus model respectively [MWP18]. This is also visible in their results for the robustness to noise and
outliers. As we do not have access to their original test data and there is no overlap with the other test methods,
we cannot exclude that there is not a fundamental difference in the test data, even though our objective was to
replicate the test data as closely as possible. It is likely that there is at least one difference in the implementation,
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Table 5.8: Analysis of robustness to noise and outliers of the method PCL and CGAL. The color green depicts
angular errors < 5◦, blue angular errors between ≥ 5◦ and ≤ 10◦ and red angular errors > 10◦

2
.5
%

ou
tli

er
s

5
.0
%

ou
tli

er
s

σ = 0.2% · dBB σ = 0.4% · dBB σ = 0.2% · dBB σ = 0.4% · dBB

Robust DeepFit

Table 5.9: Analysis of robustness to noise and outliers on the Box model of the method robust normal estimation
(Robust) and DeepFit. The color green depicts angular errors < 5◦, blue angular errors between ≥ 5◦

and ≤ 10◦ and red angular errors > 10◦

as they did not specify how to extract the patches of the accumulator that overlap with the limited sample space.
We cannot exclude that there are further differences as we do not have access to their original implementation.
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5.4. COMPARING ROBUST NORMAL ESTIMATION

Method p = 0.2%, 2.5% outl. p = 0.2%, 5.0% outl. p = 0.4%, 2.5% outl. p = 0.4%, 5.0% outl.

CGAL

Mean 3.2 3.24 6.98 7.07

Median 6.80 8.12 10.83 12.06

< 10◦ 88.82% 87.00% 71.02% 69.79%

PCL

Mean 3.16 3.20 6.89 6.96

Median 6.74 8.01 10.72 11.89

< 10◦ 88.69% 86.88% 71.97% 70.72%

Robust

Mean 7.91 7.90 17.33 17.48

Median 11.74 13.06 22.49 23.70

< 10◦ 65.63% 65.16% 22.73% 22.54%

DeepFit

Mean 5.14 5.00 10.73 10.57

Median 8.75 9.39 14.80 15.20

< 10◦ 81.92% 81.91% 45.94% 46.79%

Table 5.10: Analysis regarding robustness to noise and outliers on the Box model. The mean and median angular
error in degrees, as well as the percentage of points with an angular error < 10◦, are displayed.
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6 Conclusion and Discussion

We have presented a comparison of our implementation of the robust normal estimation method by Mura et al.
with two widely used, namely PCA and CGAL, and a state-of-the-art deep learning normal estimation method
called DeepFit. We tested the methods with various levels of noise and outliers on five different synthetic models
where ground truth data was available. Thus, we examined the mean and median angular error and the percentage
of points with an angular error less than 10◦. We tested the methods with a real-world point cloud by examining
the rendered result using phong-based shading. We improved on the testing by Mura et al. by including an
additional model with high detail. Our results have shown that our implementation of robust normal estimation
has the highest precision in estimating normals at the sharp features of the model, but is also the most unstable in
the presence of noise. We have shown that PCL and CGAL do not preserve sharp features well in contrast to the
other two methods, but are the most robust regarding noise. Our examination has shown that the results of DeepFit
fall somewhere between the other three methods. We have also shown that all four methods are similarly robust
to outliers. PCL was the fastest in terms of execution time, while CGAL and robust normal estimation were very
close together with both having adequate results. DeepFit was lagging far behind regarding execution time. We
did not test the methods against a difference in sampling density. Furthermore, we did not evaluate how varying
the number of the nearest neighbors affects the quality of the methods. We leave both questions for future work.
In conclusion, the data suggest that PCL or CGAL is the best choice for models that have large flat or curved
surfaces and few sharp features or details that need to be preserved. We have shown that our implementation of
robust normal estimation is beneficial for models that are less noisy and need high precision at the sharp features.
We have also shown that DeepFit can give generally good results, but it cannot outperform the other methods in
any one area, so it is best used if overall good performance is required.
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