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Zusammenfassung

In unserer Arbeit präsentieren wir eine neuartige, automatisierte Radiologie-spezifische

Bewertungsmetrik, die zur Evaluation von maschinell generierten Radiologieberich-

ten verwendet werden kann. Wir nutzen die bestehende, erfolgreiche COMETMetrik-

Architektur, welche wir für die Anwendung in der Radiologie anpassen und opti-

mieren. Mit dieser Architektur trainieren und veröffentlichen wir vier medizinisch

ausgerichtete Modell-Checkpoints, welche unter Verwendung verschiedener Kombi-

nationen von Encodern und Korpora von Radiologieberichten erstellt werden. Einer

der Modell-Checkpoints wird mithilfe von RadGraph, einem Radiologie Knowledge-

Graph, trainiert, und die von RadGraph abgeleiteten RadGraph F1- und RadCliQ-

Scores werden in unsere Parallel-Korpora integriert, um deren Qualität zu verbes-

sern. Unsere Auswertung der Ergebnisse zeigen, dass die entwickelte Metrik ei-

ne mittlere bis hohe Korrelation mit bereits etablierten Metriken wie BERTscore,

BLEU und S emb score aufweist, was auf ihre potenzielle Wirksamkeit als radiolo-

giespezifische Bewertungsmetrik hinweist.

Abstract

In our work, we propose a novel automated radiology-specific evaluation metric that

can be used for evaluating the performance of machine-generated radiology reports.

We utilize the existing successful COMET metric architecture, which we adapt and

optimize for use in the radiology domain. Using this architecture, we train and

publish four medically-oriented model checkpoints using various combinations of

encoders and corpora of radiology reports. One of the model checkpoints is trained

using RadGraph, a radiology knowledge graph, and the thereof-derived RadGraph

F1 and RadCliQ scores are integrated into our contributed parallel corpora to en-

hance their quality. Our results show that the developed metric exhibits a moderate

to high correlation with established metrics such as BERTscore, BLEU, and S emb

score, indicating its potential effectiveness as a radiology-specific evaluation metric.
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1 Introduction

1.1 Motivation

I am writing this thesis at the intersection between the Department of Informatics,

the Department of Computational Linguistics and the Department of Quantitative

Biomedicine at the University of Zurich. My thesis is part of a larger project called

≪Multimodal Multilingual Clinical NLP≫ conducted within the Krauthammer Lab

working together with the University Hospital of Zurich. I am extremely thankful

that I am able to contribute to an active research project and to have the possibility

to propose a new metric to aid the successful automatic generation of reports in the

radiology domain’s NLG and NLU applications.

1.2 Research Questions

This thesis has the intention to propose a new automatic metric for the evaluation

of automatically generated radiology annotation reports by improving upon existing

metrics built for other domains (both automatic like COMET (Crosslingual Opti-

mized Metric for Evaluation of Translation) [Rei et al., 2020] and classic like SPIDEr

(Semantic Propositional Image Description Evaluation) [Liu et al., 2017] or BLEU

[Papineni et al., 2002]) adding a radiology-specific knowledge graph called RadGraph

[Jain et al., 2021].

Our concrete research questions are as follows:

• RQ 1: Can an existing successful metric model architecture be adapted and

optimized to develop a novel radiology-specific metric for evaluating the quality

and accuracy of automatically generated radiology reports?

• RQ 2: To what extent does the integration of RadGraph, a radiology-specific

knowledge graph, impact the precision and dependability of the assessment

metric in evaluating the efficacy and accuracy of automatically generated ra-

diology reports?
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Chapter 1. Introduction

1.3 Thesis Structure

The opening chapter of this thesis serves as an introduction to the research topic

and the context in which it was conducted.

Chapter 2 aims to provide readers with the necessary background information re-

garding the technologies and terminologies used throughout the thesis. This chapter

reviews relevant literature and identifies key concepts and definitions. Additionally,

it discusses the latest trends and developments in the field to contextualize the

research and provide a comprehensive understanding of the research problem.

Chapter 3 describes the methodology used to develop the new metric. This chap-

ter presents the two approaches considered for developing the proposed metric and

elaborates on the selected approach, including the process of creating the data foun-

dation, selecting the appropriate model architecture, and performing the training.

The penultimate chapter 4 presents the results of the thesis, including a comparison

of the proposed metric with other commonly used metrics. This chapter provides

an analysis of the performance of the proposed metric, as well as its advantages and

limitations.

The final chapter 5 serves as the conclusion of this thesis, providing a reflection

on the research outcome and its implications. This chapter summarizes the main

findings and contributions of the research, and discusses its limitations and future

directions for further research.
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2 Background

2.1 Natural Language Generation

Natural Language Generation (NLG) is a rapidly growing subfield of Natural Lan-

guage Processing (NLP) research that focuses on generating coherent and grammat-

ically correct text in natural language. NLG technology has numerous applications,

including the automated generation of reports, letters, and poems, as well as summa-

rizing long articles, paraphrasing sentences, and performing automatic translation

[Gatt and Krahmer, 2018].

Even though it is difficult to get a complete and accurate definition of NLG [Evans

et al., 2002], there is usually a classification of tasks within NLG. There are two broad

categories: text-to-text generation and data-to-text generation [Gatt and Krahmer,

2018]. Text-to-text generation involves taking existing text and transforming it into

a well-formed new text, while data-to-text generation involves extracting informa-

tion from large volumes of structured or non-structured data (which doesn’t have

to be text but also images [Dong et al., 2022] or other media) gathered from var-

ious sources such as the internet or human interactions, and then generating new

text based on that information [Gatt and Krahmer, 2018]. Modern NLG systems

such as GPT-3 [Brown et al., 2020] and ChatGPT [OpenAI, 2022] have the ability

to deduce answers to complicated questions, which may have never been answered

in that exact way by a human before, making them good examples of data-to-text

systems (albeit without the multi modality, as these systems as for now do not allow

other inputs than text).

These NLG systems are powered by advanced Large Language Models (LLMs),

which are Deep Neural Network models that work by predicting the probability of

a given word or sequence of words appearing next in a given context [Bender et al.,

2021; Qiu et al., 2020]. LLMs have been instrumental in advancing the field of NLG,

allowing for more sophisticated and accurate text generation

As NLG technology continues to improve, it is expected to become even more preva-

lent in various industries, including critical applications such as in medicine.

3



Chapter 2. Background

2.2 Evaluation in NLG tasks

Evaluation metrics are crucial for assessing the performance of NLU and NLG sys-

tems. There are several types of metrics available for this purpose, with traditional

metrics being the most widely used due to their ease of calculation. These metrics

were originally developed for summarization and machine translation applications

but have since been extended to other NLU and NLG tasks. However, traditional

metrics have shown limitations in their correlation with human judgments [Blagec

et al., 2022; Sai et al., 2022]. Still, more than half of the recent publications in

NLP have been relying upon automated, mostly traditional metrics [Novikova et al.,

2017]. Because of that, Novikova et al. [2017] argued that there is a need for newer

evaluation metrics.

In the meantime, several new metrics appeared, but haven’t been able to rival the

traditional metrics. According to Leiter et al. [2022] those newer metrics haven’t

made their way into literature because they suffer among others from poor explain-

ability of their underlying models and the fact that they have been developed quite

recently and can therefore not be used as a benchmark with earlier publications

which only report traditional metric scores. In the following, we explain the differ-

ent types of metrics that are among the most popular in usage (according to Blagec

et al. [2022]) and give examples of them.

2.2.1 Word based (traditional) metrics

These metrics are based on lexical overlap or common subsequences of two texts.

Examples of such are:

BLEU (Bilingual Evaluation Understudy by Papineni et al. [2002])

A word-overlap metric for evaluating the quality of machine translation systems.

It compares the machine-generated output to one or more reference translations

(i.e. ground truth) and calculates a score based on the n-gram overlap between the

reference and machine-generated sentences. The BLEU score is calculated using the

following formula:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)

where BP is the brevity penalty, which adjusts the score based on the length of the

4



Chapter 2. Background

machine-generated output relative to the reference translations. The weights wn

and precision scores pn are used to calculate the n-gram overlap.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation by Lin [2004])

A set of word-overlap metrics for evaluating the quality of summarization systems.

It measures the n-gram overlap and longest common subsequence (LCS) between

the summary generated by the system and the reference summary. The ROUGE-N

(n-gram recall) score is calculated using the following formula:

ROUGE-N =

∑
S∈ReferenceSummaries

∑
gramn∈S

Countmatch(gramn)∑
S ∈ ReferenceSummaries

∑
gramn∈S

Count(gramn)

where gramn is an n-gram of length n, Countmatch(gramn) is the number of times

an n-gram gramn appears in both the generated summary and the reference sum-

mary(s), and Count(gramn), which is the total number of times an n-gram gramn

appears in the reference summary(s).

ROUGE has several other variants:

• ROUGE-1 and ROUGE-2 compute the overlap of unigrams and bigrams be-

tween the generated and reference summaries, respectively.

• ROUGE-L considers the longest common subsequence (LCS) between the gen-

erated and reference summaries, which is the longest sequence of words that

appear in the same order in both summaries.

• ROUGE-S is a skip-bigram variant that takes into account the skipping of

words between two words that appear consecutively in a sequence.

METEOR (Metric for Evaluation of Translation with Explicit ORdering by Baner-

jee and Lavie [2005])

A metric for evaluating machine translation systems. It compares the machine-

generated output to one or more reference translations and calculates a score based

on the number and the alignment of matched words. The score is calculated as

follows:

METEOR = (1− p) ·M+ p · Palign

where M is the unigram precision and recall scores, weighted equally, and Palign

is the alignment-based precision score, which is a function of the number of word

matches and the number of alignment errors. The hyperparameter p determines the

5



Chapter 2. Background

weight given to the alignment-based score.

SPICE (Semantic Propositional Image Caption Evaluation by Anderson et al.

[2016])

An evaluation metric for image captioning that measures the semantic similarity

between a generated caption and a reference caption. SPICE considers the scene

graph structure of the image, which describes the objects in the image and their

relationships, and uses it to create semantic propositions. These propositions cap-

ture the meaning of the image and serve as a basis for comparing the generated and

reference captions. ∑
p∈propositions(Ii)

min (Countgen(p),Countref(p)) · f(p)

where N is the number of images, Countgen(t) and Countref(t) are the counts of term

t in the generated and reference captions, respectively, and propositions(Ii) is the

set of semantic propositions for image Ii. The function f(p) computes the weight of

each semantic proposition p based on its salience score, which reflects how important

the proposition is in describing the image.

2.2.2 Language model based metrics

These metrics are based on machine learning models / neural networks.

Examples include:

BLEURT (Bilingual Evaluation Understudy with Representations for Transform-

ers by Sellam et al. [2020])

A variant of the BLEU metric used to evaluate the quality of machine translation

output by comparing it to human translations. BLEURT is based on the Trans-

former architecture, commonly used in natural language processing tasks. The met-

ric uses pre-trained Transformer models to generate sentence-level representations,

which are then used to compute a similarity score between the machine-translated

output and the human translation.

BERTScore (by Zhang et al. [2020a])

A metric to evaluate the similarity between two pieces of text. It uses a pre-trained

BERT (Bidirectional Encoder Representations from Transformers) model to encode

6



Chapter 2. Background

the two pieces of text and measure their similarity based on their contextualized

embeddings.

COMET (Cross-lingual Optimized Metric for Evaluation of Translation by Rei et al.

[2020])

A machine learning based metric for evaluating machine translation systems. COMET

is trained on human judgments of translation quality and uses a neural network to

predict the quality of a translation based on its similarity to human translations.

2.3 Current state of metrics in medical image report

generation

Various automatic and semi-automatic metrics have been developed for evaluating

the quality and accuracy of reports generated from medical images. These metrics

often emerge from recent publications on report generation, which aim to establish

more relevant evaluation measures in addition to traditional ones such as BLEU and

ROUGE.

Two such metrics include Medical abnormality terminology detection by Li et al.

[2018] andMeSH accuracy by Huang et al. [2019]. The former measures the accuracy

and error rate of a system’s ability to identify common medical abnormalities in a

report, while the latter calculates the accuracy of a report ”[. . . ] as the ratio of the

number of MeSH correctly generated by a model to the number of all MeSH in the

groundtruth [sic] [. . . ]” [Huang et al., 2019, p. 154813]

Another metric, Medical Image Report Quality Index by Zhang et al. [2020b], uti-

lizes multiple criteria to assess the quality of medical image reports, including the

relevance of medical terms, syntactic structure, and semantic coherence. This ap-

proach is similar to the Anatomical Relevance Score (ARS) metric developed by

Alsharid et al. [2019] for ultrasound image captioning. ARS, which is a type of F1

score, evaluates the anatomical relevance of report sentences by comparing them to

a reference standard.

Even though those metrics exist, they are not widely adopted, and even new publi-

cations mostly rely on traditional NLP metrics, which are not considering medical

aspects and thus give less meaningful evaluations than specialized metrics could be

[Messina et al., 2022].

7



Chapter 2. Background

2.4 What makes a good metric?

When evaluating the performance of natural language generation systems for image

captioning tasks in medical radiography, it is important to consider the unique

properties of radiology reports.

For classic image captioning, Sai et al. [2022] propose to take into account factors

such as evaluating the fluency of the style, the coverage of all important entities on

the image, and their relationship amongst them. They also argue metrics should

not be favoring long captions with unnecessary details over short and concise ones.

While these guidelines by Sai et al. [2022] for metrics in classic image captioning

tasks (in their example a Photo of a city street), provide a useful starting point,

they may not be sufficient to capture the specific requirements of radiology reports.

Radiology reports need to reflect important properties of the entities depicted in

the scan. They are narratives consisting of multiple sentences, including the exact

position and severity of abnormalities, as well as concluding remarks summarizing

the most prominent observations. Radiology report generation is a more challenging

task, as the reports have their own distinctive characteristics and demand accurate

clinical descriptions [Langlotz, 2015]. As current metrics like BLEU are not captur-

ing those specific properties, there is a need for domain-specific metrics that take into

account the unique properties and requirements of radiology reports [Chen et al.,

2020].

In summary, a good metric for evaluating natural language generation systems for

radiology report generation should take into account not only the fluency and cov-

erage of the generated text but also its adherence to the required structure and the

accuracy of the medical information it conveys.

2.5 Ranking-based human evaluation

Callison-Burch et al. [2007] compare commonly used evaluation methods based on

their inter-annotator agreement performance and the time it takes to complete the

evaluation.

In the past, metrics have been evaluated by using the model-assigned score for each

text and then comparing this score to a score that the human evaluator gave the

same text (e.g. on the quality of a generated report in our case).

Humans are, however, not very good at assigning precise scores to a text so the

8



Chapter 2. Background

approach that the authors discovered to be more effective is to task the human

evaluators with ranking a number of texts (in their case 5) by their overall quality

and then compare this ranking to the scores outputted by the model. This resulted

in a higher inter-annotator agreement compared to the previous methods [Callison-

Burch et al., 2007].

2.6 A radiology-specific knowledge Graph

In a 2021 publication by Jain et al. the authors implement a radiology-specific

knowledge graph. RadGraph extracts the two types of entities Anatomy (ANAT)

and Observation (OBS) together with one of three certainty quantifiers definitely

present (DP), uncertain (U) and definitely absent (DA) (see Table 1). Furthermore,

three relationships that can be attributed to the entities are acquired, specifically:

suggestive of, located at, and modify (see Table 2).

The knowledge graph was trained using data from radiology reports, which were

annotated by board-certified radiologists using the aforementioned schema of entities

and relations.

RadGraph is designed to support various NLP tasks, such as information extraction

and text classification, and can be used to generate structured radiology reports. The

system has been evaluated on a dataset of radiology reports and has demonstrated

promising results in terms of accuracy and efficiency [Jain et al., 2021].

An example of a RadGraph annotation can be seen in Figure 1, where a radiology

report has been processed to identify the relevant entities and their relationships in

the form of a graph.

RadGraph is publicly available on PhysioNet [Goldberger et al., 2000] under certain

conditions 1.

1The PhysioNet data use agreement contains, among others, the following points [PhysioNet]:

1. The user will not share the data

2. the user will make no attempt to re-identify individuals

3. any publication that makes use of the data will also make the relevant code available.

9
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Chapter 2. Background

ANAT
“[. . . ] an anatomical body part that occurs in a radiology report, such as
a ‘lung’.” [Jain et al., 2021, p. 4]

OBS
“[. . . ] observations made when referring to the associated radiology
image [. . . ] associated with visual features, identifiable pathophysiologic
processes, or diagnostic disease classifications.” [Jain et al., 2021, p. 4]

Table 1: Entities as defined in the RadGraph dataset

suggestive of
(Observation,
Observation)

“[. . . ] is a relation between two Observation entities indicating
that the presence of the second Observation is inferred from that
of the first Observation.” [Jain et al., 2021, p. 4]

located at
(Observation,
Anatomy)

“[. . . ] is a relation between an Observation entity and an
Anatomy entity indicating that the Observation is related to the
Anatomy. While Located At often refers to location, it can also
be used to describe other relations between an Observation and
an Anatomy.” [Jain et al., 2021, p. 4]

modify

(Observation,
Observation) or
(Anatomy,
Anatomy)

“[. . . ] is a relation between two Observation entities or two
Anatomy entities indicating that the first entity modifies the
scope of, or quantifies the degree of, the second entity. As a
result, all Observation modifiers are annotated as Observation
entities, and all Anatomy modifiers are annotated as Anatomy
entities for simplicity.” [Jain et al., 2021, p. 4]

Table 2: Relations as defined in the RadGraph dataset

10



Chapter 2. Background

Figure 1: Example annotation using RadGraph labels and entities (image provided
by the authors Jain et al. [2021])
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3 Metric Proposition

As we have seen, there is a need for more specific and reliable metrics for evaluating

the accuracy of texts, in particular image captions in the medical field. In our work,

we focus specifically on radiology reports and therefore considered two different

approaches for developing a new metric:

At first, we were considering an approach involving RadGraph [Jain et al., 2021] or a

similar knowledge graph such as Abstract Meaning Representation (AMR) [Knight

et al., 2014] to derive graphs for both the generated radiology reports and their

corresponding ground truth. These graphs provide a structured and interpretable

representation of the semantic meaning of the reports. Subsequently, we would

employ graph similarity measures (e.g. sub-graph comparison) to compare the graph

of the generated report with that of the ground truth, which would allow us to derive

a numeric score of graph similarity. This score provides a quantitative measure

of how well the generated report matches the ground truth, allowing for a more

objective and consistent evaluation of report accuracy.

While working on this thesis, two papers were presented by Delbrouck et al. [2022]

and Yu et al. [2022], respectively, which employed an approach similar to the one

we were about to propose. In light of that, we decided to no longer pursue this

direction and instead focus on a second approach. We directly incorporate the two

new evaluation measures (RadGraph F1 and RadCliQ) proposed by Yu et al. [2022]

into our model architecture to build a stable parallel corpus and training foundation

for our automatic approach.

As the second approach, we decided to use an automatic model evaluation method

that involves training a neural network on a parallel corpus of radiology reports.

Specifically, we use the referenceless quality estimation (QE) metric architecture

proposed by Rei et al. [2020], which does not require a reference input (see Table 3

for the mapping of inputs). The architecture of the QE metric consists of a pooling

layer that aggregates the word embeddings of the radiology report, followed by a

feed-forward neural network that maps the pooled representation to a scalar quality

score. The network is trained using mean square error as the loss function, with the
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quality score being predicted based on the similarity between the embeddings of the

generated report and those of a reference report.

In order to train the model, a parallel corpus was constructed using the Indiana

University X-Ray (IU X-Ray) dataset [Demner-Fushman et al., 2016], a widely uti-

lized dataset within the radiology domain. The IU X-Ray dataset contains one to

two chest X-Ray scans per data point, along with accompanying reports of actual

findings, brief summaries of these findings (referred to as the ”impression”), and as-

signed Medical Subject Headings (MeSH) labels. MeSH is a controlled vocabulary

used by the National Library of Medicine database to index and organize biomedical

information [National Library of Medicine, 2023]. These terms are used to catego-

rize medical articles based on their content and encompass a broad range of medical

topics, including anatomy, diseases, drugs, and procedures. An example can be seen

in Figure 2.

Figure 2: An example report showing the two images and the MeSH, findings and
impression columns (Image constructed by the author with the data from

Demner-Fushman et al. [2016]).

Once the model is trained, we can use it to evaluate the accuracy of a generated

report by comparing the output score, which provides a quantitative measure of the

similarity between the generated report and the ground truth. This score can be

used to assess the accuracy of the generated report.

3.1 Automated Metric based on Parallel Corpus

The main approach we explore to develop our radiology-specialized metric is to use

the COMET evaluation architecture by Unbabel AI [2020] (based on the work by
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Rei et al. [2020]) and train our own model on radiology data with a focus on the

technicalities that medical metrics must follow as outlined in section 2.4.

3.1.1 Available metric architectures

The COMET neural evaluation framework by Unbabel provides three different met-

ric model types that can be used to develop novel metrics [Unbabel AI, 2020]:

• Regression metric: Given a source, hypothesis and reference performing a

regression task to assign a quality score to a hypothesis.

• Referenceless metric: Given only a source and hypothesis, performing a quality

estimation.

• Ranking metric: Given a source, a negative example, a positive example,

and a reference, arranging the embedding space to give greater importance to

positive examples and less attention to negative ones.

We are focusing on the referenceless Metric as our targeted input data will be con-

sisting of two radiology reports, one ground truth (i.e. the source), and one model

generated (i.e. the hypothesis). The architecture for the referenceless Metric is

visualized in Figure 3.

Figure 3: Model architecture for the referenceless metric in the COMET Framework
(Image provided by Unbabel AI [2020]).
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3.2 Parallel Corpus

Because the COMET architecture is built for assessing the quality of Machine Trans-

lation it requires a parallel corpus of source (i.e. the original text), hypothesis (i.e.

the machine translation), and reference (i.e. the correct translation of the source)

as input to train the model. In our case, we propose the mapping of these input

concepts from the machine translation to report generation space as seen in table 3.

Input Machine Translation Report Generation

Source Original Text (Source Language) Human-written report

Hypothesis (1...n)
Machine Translation (Target
Language)

Model Generated Report

Reference Correct Translation (Target Language)
Human-corrected version of the
generated report (not needed for our
referenceless approach)

Table 3: Mapping proposition of COMET Architectures’ input parameters to the
report generation problem space

To ensure the reliability of our model, we require a sufficiently large number of

reports for training. To construct the training data for our metric, we propose a

parallel corpus of similar reports. We used the Indiana University X-Ray Collection

as our initial dataset [Demner-Fushman et al., 2016]. To increase the likelihood of

having similar reports and to reduce the number of reports to process, we performed

a K-Means clustering, as described in subsection 3.2.1. This clustering process al-

lowed us to take the cross-product of each cluster, instead of the entire dataset,

thereby reducing computational load and the amount of data to score.

Next, we scored the similarity of reports in relation to all other reports in the

same cluster, as explained in subsection 3.2.3. We partitioned the resulting dataset

into test and train sets, ensuring an equitable distribution of normal and abnor-

mal reports, as detailed in subsection 3.2.2. The output was a parallel corpus of

reports that were similar to each other. This parallel corpus served as input for the

referenceless QE framework proposed by Unbabel AI [2020]; Jain et al. [2021].

3.2.1 Clustering

We looked at clustering the IU X-Ray reports based on two different columns:
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1. Using the impression column of the report

2. Using the combined Medical Subject Headings (MeSH) columns (type:

major) of the report

The MeSH column in the IU X-Ray dataset contains major and automatic labels.

MeSH is a controlled vocabulary used to index and organize biomedical information

in the National Library of Medicine database. MeSH terms are assigned to medical

articles to describe the content of the article, and the MeSH vocabulary covers vari-

ous aspects of medicine, such as anatomy, diseases, drugs, and procedures, to name

a few [National Library of Medicine, 2023]. In IU X-Ray the Major MeSH labels

are assigned by human experts with medical knowledge by using expert judgment.

Automatic MeSH labels, on the other hand, are generated using an NLP system

that extracts keywords from the findings in the reports associated with each X-ray

image. Type Major MeSH labels are therefore considered to be more reliable than

automatic MeSH labels.

To create the combined MeSH column for our clustering, we concatenated all major

MeSH labels and discarded all automatic ones. We also removed the MeSH values

”no indexing” and ”technical quality of image unsatisfactory” from our MeSH col-

umn, as they are not representative of the dimensions we want to cluster on. We

aimed to cluster the reports based on the actual abnormality and not based on a

technical label related to the image quality or indexing.

To prepare the data for clustering on the impression column, we removed all reports

with a MeSH of ”major: normal” and ”major: No Indexing” as we want to keep

all normal reports in one cluster and the abnormal ones clustered by type. We

introduced this step after the first try of clusters showed that the majority of terms

in all clusters were dominated by different ”normal” terms (e.g. ”no acute findings”,

”no acute disease”, etc.)

For determining the optimal number of clusters to use, we followed the following

steps:

1. Using a TF-IDF (Term Frequency-Inverse Document Frequency) Vectorizer to

transform the MeSH and Impression columns respectively into vectors.

2. Apply a TruncatedSVD (Singular Value Decomposition) and Normalizer (both

from sklearn) to reduce the dimensionality of the data.

3. Run K-means clustering for each cluster n with 2 ≤ n ≤ 40 on the transformed

data.
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4. Calculate Silhouette, Elbow, and Calinski-Harabasz scores for each number of

clusters n.

The Silhouette Score measures how well each object fits within its own cluster

compared to other clusters. It is calculated as the difference between the

average distance of an object to all other objects in its own cluster and the

average distance to all objects in the nearest cluster. A higher Silhouette Score

indicates better-defined clusters.

The Elbow score measures the amount of variance explained by a clustering

algorithm as a function of the number of clusters. It aids in determining

the optimal number of clusters by identifying the point where adding more

clusters would only lead to marginal improvement in the explained variance.

The optimal number of clusters is often identified as the ”elbow point” where

the rate of variance explained starts to level off.

The Calinski-Harabasz score (also known as the variance ratio criterion) mea-

sures the ratio of between-cluster variance to within-cluster variance. It pro-

vides a measure of how well-separated the clusters are, with higher scores

indicating more distinct clusters. This score is particularly useful for complex

datasets where the optimal number of clusters is not immediately apparent

[Caliński and Harabasz, 1974]. Like the Silhouette and Elbow scores, a higher

Calinski-Harabasz score indicates better clustering.

5. Visual inspection of Figure 4 and the resulting cluster contents for the different

amounts of clusters (e.g. Table 4) to determine the optimal number of clusters

to fit the report data. You can find the complete list of scores in the appendix

(Table 12 and Table 13).

In this step, we used the three scores together to get a more complete picture

than we would get by just looking at one score.

For the impression column, we can see, that the Calinski-Harabasz Score stays

relatively even with a slight decline until 20 clusters and the Silhouette Score takes a

steep incline and then flattens after 10 clusters which are also close to the slight elbow

of the inertia. As the Calinski-Harabasz Score is less relevant for the impression

column as the data it contains is plain sentences with great variance, we weighted

the two other scores higher and experimented with 12 ≤ n ≤ 15 and got the best-

defined results at n = 14.

For the MeSH column we observe, that the Calinski-Harabasz Score takes a very

steep decline until 5 clusters. The Silhouette Score starts slow and then climbs
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(a) Impression Column (b) MeSH Column

Figure 4: Silhouette score (red), Elbow score/inertia (blue), and Calinski-Harabasz
score (green) for increasing amounts of clusters on the two columns MeSH
and Impression (the data backing this figure can be found in Appendix A:

Table 12 and Table 13)

evenly starting at 5 clusters until 37 clusters. The Elbow score has an even and

slow downward slope. We focus most on Calinski-Harabasz for the MeSH column,

as the contents of it are more complex and nuanced (i.e. usually anatomy with

different quantifiers), and don’t follow a natural sentence structure. We therefore

experimented with 2 ≤ n ≤ 12 and achieved best results with n = 6

We can see that with those cluster numbers, MeSH clusters are in general better

defined (+300% higher starting silhouette score and +300% higher starting Calinski-

Harabasz score)

Using the optimal number of clusters, we ran the K-means (random state : 0, n init :

5) and K-modes random state : 0, init : Cao, n init : 5) algorithms to cluster the

reports. Unfortunately, the latter algorithm did not produce useful clusters, so we

focused on K-Means.

Looking at the principle component analysis (PCA) for the resulting clusters, we

came to the following conclusions:

For the MeSH Clustering the normal reports are all grouped in one cluster, which is

beneficial to our goal of creating a balanced corpus of normal and abnormal reports.

For both impression and MeSH there the clusters look well defined at 4 clusters each

(see: Figure 5) but according to our score inspection, the values number of clusters

for the impression should be higher.
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We ran our PCA also for the number of Clusters specified above for the two columns,

the resulting clusters can also be seen in Figure 5. The most prominent labels for

each cluster are shown in Table 4.

(a) Impression n = 4: Cluster 2 is signifi-
cantly bigger than the other clusters.

(b) MeSH n = 4: The outlier cluster 1 con-
tains the normal reports.

(c) Impression n = 14: The clusters are
not very well defined. Cluster 7 are the
normal reports (i.e. ”Normal chest” la-

bel).

(d) MeSH n = 6: Outlier (Cluster 1) are
the normal reports. Clusters 2 and 3
are well defined, 4 and 5 have a lot of

overlap.

Figure 5: Visualization of the clusters generated by KMeans using PCA with
nMeSH = nImpression = 4 clusters in the first row and nMeSH = 6 clus-
ters and nImpression = 14 in the second row. The data has been reduced

to two dimensions using PCA and the clusters are color-coded.

The analysis indicates that the impression clusters primarily consist of normal find-

ings (e.g., ”no acute/active [. . . ]”, ”Clear [. . . ]”) across all clusters. To achieve

cleaner impression clusters, we attempted to remove such instances using a combi-

nation of filters based on the MeSH and impression columns. We first tried removing

all rows with MeSH label ”normal” and ”No Indexing” to reintroduce them as one

single cluster after the remaining reports had been clustered on less normal impres-
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ID Most prominent term Second most prominent term

Impression Clusters

0 No acute cardiopulmonary abnormalities. No acute cardiopulmonary abnormalities. .

1 No acute disease. No acute cardiopulmonary disease.

2 Negative for acute abnormality.
Negative for acute cardiopulmonary
abnormality.

3 No acute cardiopulmonary abnormality. No acute cardiopulmonary abnormality. .

4
No acute radiographic cardiopulmonary
process.

No acute cardiopulmonary process.

5 No active disease. No evidence of active disease.

6 No acute intrathoracic abnormality. Emphysema without acute disease.

7 Normal chest Normal chest.

8 No acute cardiopulmonary findings. No acute cardiopulmonary findings. .

9 No acute pulmonary disease. No acute pulmonary abnormality.

10 Low lung volumes, otherwise clear.
XXXX change. Hypoinflation with no visible
active cardiopulmonary disease.

11 Right upper lobe pneumonia.
No focal lung opacity, pleural effusion of
pneumothorax.

12 Clear lungs.
Clear lungs. No acute cardiopulmonary
abnormality. .

13 No acute cardiopulmonary finding.
No acute cardiopulmonary finding.
Emphysema and atherosclerosis.

MeSH Clusters

0 normal No value

1 lung/hypoinflation lung/hypoinflation markings/bronchovascular

2 granulomatous disease cardiomegaly/mild

3 thoracic vertebrae/degenerative/mild thoracic vertebrae/degenerative

4 calcified granuloma/lung/base/right calcified granuloma/lung/base/left

5 calcified granuloma/lung/upper lobe/left calcified granuloma/lung/upper lobe/right

Table 4: The most common and second most common terms for each cluster in
Impression and MeSH Clusters by numeric cluster Identifier (ID)
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sion terms. Unfortunately the resulting clusters still contained mainly variations of

the aforementioned ”no acute/active [. . . ]” sentences. Therefore we tried removing

rows containing these terms in the impression column. However, after applying all

the filters, only 1049 out of the original 3414 rows remained, with clusters contain-

ing 100 reports or less, which lead us to focus mainly on the MeSH clusters for the

further creation of the corpus.

df [ ’mesh−0 ’ ] != ” { ’ type ’ : ’ major ’ , ’ l a b e l ’ : ’ normal ’} ”
df [ ’mesh−0 ’ ] != ” { ’ type ’ : ’ major ’ , ’ l a b e l ’ : ’No Indexing ’} ”
not df [ ’IMPRESSION ’ ] . str . c onta in s ( ”No acute ” , case=False ) .

not df [ ’IMPRESSION ’ ] . str . c onta in s ( ”No ac t i v e ” , case=False ) .

Listing 3.1: Filters applied to the data to obtain cleaner impression clusters

3.2.2 Data Preparation

To prepare for the training and validation of our referenceless QE metric, we per-

formed the following steps:

We removed single word or empty reports, as these reports do not contain enough

information to be useful for training or validation and can lead to breaking the

RadGraph modeling code we rely on to score our parallel corpus.

To avoid bias towards normal reports, which make up one-third of the IU X-Ray

dataset, we balanced the dataset by including an equal number of normal and ab-

normal reports. This was achieved by looking at the clustering of the reports. As

for the MeSH-clustering, all normal reports are in the same cluster (because of them

having the MeSH tag major: normal. We are selecting at most n normal reports out

of that cluster to include in the completed parallel corpus, where n is the maximum

number of abnormal reports in the largest cluster of said reports.

To evaluate the effectiveness of the balanced dataset, we compared the results of

our QE metric when trained on this dataset to those obtained from a random 80/20

split of the original dataset (see chapter 4).
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3.2.3 Similarity Scoring

3.2.3.1 Method 1: BERTalign

We first looked at scoring our corpus using BERTalign by Liu and Zhu [2022], a

sentence-aligner that works by first encoding each sentence into a sequence of em-

beddings and then computing a similarity score between each pair of embeddings.

The alignment is ultimately obtained by maximizing a joint probability that con-

siders both the similarity scores and the length of the aligned phrases. We were

able to match some of the reports but with very low accuracy. We considered all re-

ports, that have the same impression column to be part of our gold-standard parallel

corpus. Unfortunately, not even half of the matches produced by BERTalign were

found in the gold-standard. To improve the method we tried replacing the encoding

layer from standard BERT with the BioClinical BERT encoder from Alsentzer et al.

[2019]. This improved the results by a small margin but did not yield a much better

matching in total.

3.2.3.2 Method 2: RadCliQ (Radiology Report Clinical Quality)

The RadCliQ Metric is a novel evaluation measure for the similarity of clinical

reports, which leverages the BLEU-2 score and the RadGraph F1 metric. The latter

””computes the overlap in clinical entities and relations that RadGraph extracts

from machine- and human-generated reports” [Yu et al., 2022, p. 4]. To assess

the similarity between reports within the same cluster, we adopted the RadCliQ

Metric. The input to the inference process consists of two files, one containing the

source reports and the other containing the reference reports. Each row in these

files corresponds to a unique study ID, which is employed to match the source and

reference reports. The output of this process is a table, where each row contains the

source report, its corresponding study ID, and the following four evaluation scores:

BLEU-2, BERTscore, CheXbert labeled vector similarity (s emb Score) [Smit et al.,

2020], and Radgraph F1, as well as the RadCliQ score.

From our RadGraph inference on the IU X-Ray dataset, we can see that RadGraph

recognized on average 17.3 entities and 10.7 relations in the reports (see Table 5).

Initially, we developed a parallel corpus by selecting the top-scored (i.e. most similar)

match for each report (based on the RadGraph metric), resulting in a corpus that

encompasses all reports of the cleaned IU X-Ray dataset at least once (i.e. the

corpus size is equal to the size of the cleaned IU X-Ray dataset and each report in

the dataset has one corresponding report, which matches best in terms of similarity).

22



Chapter 3. Metric Proposition

RadGraph Entity Relation

Count F1 Count F1

Average 17.300 0.286 10.688 0.118

Table 5: The average count of RadGraph relations and entities including their cor-
responding F1 score for the inference run to obtain the RadCliQ score

To further explore the space of possibilities, we explored the generation of a sec-

ondary parallel corpus with a different approach: We allow the appearance of multi-

ple instances of single reports in the corpus, in the event that they have multiple best

matches. Conversely, we intended to limit the corpus by applying a score threshold

so as to not artificially blow up the corpus. In this configuration, only a subset of all

cleaned reports is still in the corpus. To obtain the most similar reports, we select

the rows with the highest scores in the CXR (RadCliQ) combined metric evaluation.

These selected reports are again corrected to include an equal share of normal and

abnormal reports.

3.2.4 Train/Test Split

After having created the parallel corpus we divided it into two distinct subsets, a

training set and a test set. We created a random split of 80/20 using the pandas

method sample with random state : 0 to extract 20% of the data into the test set

and keep the remaining 80% as the training set. This ensured that our model can be

trained and evaluated on two distinct sets of data. With the training process in mind,

we also split the training data set further into two subsets, the primary training set

and the validation subset, using the same 80/20 split to sample (random state : 0)

the validation data out of the training set. This validation set is provided to the

model trainer to fine-tune its hyper-parameters on each epoch.

The complete large-scale corpus of reports has comprised a total of 737,015 rows.

After applying the filtering process to pick the top 10% of the corpus, the filtered

output corpus resulted in a size of 73,692 rows.

The further split of the filtered corpus into the three subsets resulted in the training

set containing 47,163 rows, the validation set containing 11,792 rows, and the testing

set containing 14,739 rows (see Table 6).
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Corpus Total rows

Raw Corpus 737,015

Filtered (Top 10%) 73,692

Training 47,163

Validation 11,792

Testing 14,739

Table 6: The size of the different resulting corpora

The final corpora all consist of 12 columns: report id (integer), report (string),

mesh (string), reference report id (integer), reference report (string), reference mesh

(string), study id (integer), bleu score (float), bert score (float), semb score (float),

radgraph combined (float), and cxr metric score (float).

3.3 Training our Metric Model

In our thesis, we employ the COMET Architecture by Unbabel AI [2020] to train a

proof-of-concept metric. To implement the training process, we followed the authors’

recommendations and utilized PyTorch lightning configuration files. The complete

list of parameters used in the configuration files is provided in Appendix B.

Most importantly, during the training of our model, we configured the early stopping

and model checkpoints to monitor and optimize the Kendall Tau value, which is a

commonly used measure of the correlation between two ranked lists to evaluate the

similarity between the predicted and ground truth rankings. By optimizing the

Kendall Tau value, our model learns to predict semantic similarity scores that are

more similar to the ground truth scores we see in the parallel corpus, which helps

improve the accuracy and robustness of the model’s predictions.

Initially, we set the maximum number of training epochs to 5. However, we observed

that during the training process, we consistently reached the maximum number

without triggering early stopping, prompting us to increase the maximum number

of epochs first to 20 and eventually to 40 epochs, which in return yielded much

higher Kendall Tau values (see section 4.2 and Table 7 for details).

We have trained our model on both the parallel corpus based on the impression

clusters and on the one based on the MeSH clusters. But as the MeSH corpus
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quickly outperformed the impression corpus on the correlation to other metrics, we

are focusing on the latter.

Furthermore, we investigated the performance impact of replacing the encoder layer

in the COMET Architecture from the default XLM-RoBERTa [Conneau et al., 2020]

to BioClinical BERT [Alsentzer et al., 2019]. Also, for the top 10% corpus we

compared the performance of training the model on the RadCliQ Score vs. on the

RadGraph F1 score.
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4 Results

4.1 Parallel Corupus Validation

Our motivation for providing a parallel corpus is to assist future researchers in

training their own metrics using a ”Source - Reference’ model architecture in their

research. The parallel corpus built on RadGraph F1 Similarity offers the advantages

of this graph-based method without the need for a long wait. Although the inference

time of RadGraph F1 is about 5x longer compared to the proof-of-concept model

we present based on the COMET architecture, the scores our model outputs still

show a high correlation with RadGraph F1, making our model a faster alternative.

To ensure the quality of our corpus, we have compared the exact overlap on MeSH

labels among source and reference reports (i.e. the number of overlapping tokens).

Our analysis of the Top 10% corpus revealed that 80.2% of the rows had overlap in

their MeSH labels, with 46.9% having one token overlapping and 33.3% having more

than one. Only 19.83% of rows had no exact overlaps in MeSH tokens. Similarly,

when we examined the extent of overlap between MeSH labels in the complete corpus

(i.e. among all scores), we found that 34.20% of rows had no overlap between their

MeSH labels. In contrast, 31.69% of rows had only one overlap, and 34.11% had

more than one overlap between their MeSH labels. We, therefore, see that the scores

in the Top 10% corpus reflect the contents of the reports well. The complete chart

of scores can be found in Figure 6.

4.2 Trained Model Checkpoints

During our experiments with different clustering and similarity score methods, we

have generated many parallel corpora and also already trained several models to

benchmark their performance. Out of all models, we have decided to focus on a

couple of best-performing checkpoints (based on the highest Kendall τ value while

training) in our evaluation (see Table 7). We used our two corpora (best match and

top 10% as described in subsection 3.2.3) and combined them each once with the
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(a) Complete Corpus: Rows with zero
overlap form the largest group

(b) Top 10% Corpus: Most rows have one
overlapping token.

Figure 6: Visualization of the overlap of MeSH tokens in the two corpora

XLM-RoBERTa [Conneau et al., 2020] encoder layer and once with the medical-

specific BioClinical BERT [Alsentzer et al., 2019]. Also, as already discussed, we

trained the models on two scores: Once on the Radgraph F1 score, and once on the

RadCliQ metric score to compare how they differ in correlation performance.

It is important to notice, that the RadCliQ score is a measure of how many

errors a report will contain [Yu et al., 2022] (i.e. lower is better) and

RadGraph F1 is a measure of graph similarity (i.e. higher is better). Our

model checkpoints will behave accordingly when giving their predicted scores.

We trained the following checkpoints (see also Table 7):

Match XLM-R RadCliQ Based on the Best Match corpus, with XLM-RoBERTa as

the encoder layer and RadCliQ as the training score. A lower score indicates

a better report. The Scores are unbounded but typically fell within -3.5 and

+0.5 in our tests.

Match Clinic RadCliQ Based on the Best Match corpus, with BioClinical BERT as

the encoder layer and RadCliQ as the training score. A lower score indicates

a better report. The Scores are unbounded but typically fell within -3.5 and

+0.5 in our tests.

Top Clinic RadCliQ Based on the Top 10% corpus, with BioClinical BERT as the

encoder layer and RadCliQ as the training score. A lower score indicates a

better report. The Scores are unbounded but typically fell within -3.0 and

+1.5 in our tests.
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Top Clinic RadGraph Based on the Top 10% corpus, with BioClinical BERT as the

encoder layer and RadGraph F1 as the training score. A higher score indicates

a better report. The Scores are unbounded but typically fell within -0.2 and

+1.5 in our test.

Checkpoint name Encoder Corpus max(Kendallτ )

match xlm-r radcliq XLM-RoBERTa best match (RadCliQ-trained) 0.696 (Epoch 3)

match clinic radcliq BioClinical BERT best match (RadCliQ-trained) 0.714 (Epoch 10)

top clinic radcliq BioClinical BERT top 10% (RadCliQ-trained) 0.830 (Epoch 24)

top clinic radgraph BioClinical BERT top 10% (RadGraph F1-trained) 0.714 (Epoch 18)

Table 7: Best performing model Checkpoints used for evaluation

4.3 Evaluation

We evaluated the performance of our model metric using the test set of our parallel

corpus (as detailed in subsection 3.2.4) and a set of generated reports produced

by the R2Gen (Radiology Report Generation Chen et al. [2020]) and M2Tr (M2:

Meshed-Memory Transformer by Cornia et al. [2020]) models on the IU X-Ray

dataset.

Both of those mentioned models have been recently developed and are using a

Transformer-based architecture. R2Gen has been specifically developed for Radiol-

ogy Report generation, whereas M2Tr is a general image captioning model. They

have both achieved good results either on IU X-Ray (for R2Gen) or the more general

image captioning COCO dataset (Common Objects in Context by Lin et al. [2014]

for M2Tr) [Chen et al., 2020; Cornia et al., 2020].

Unfortunately for the duration of this thesis, we did not get the chance to talk

to field professionals and obtain a ranking of reports to compare to our scores (as

described in section 2.5) for assessing the correlation of a proposed metric with

human judgment. We therefore are evaluating the performance of our metric by

examining its correlation with established metric scores claming to have high cor-

relation with human judgment. The Pearson correlation coefficient [Pearson, 1896]

and Spearman’s rank correlation coefficient [Spearman, 1910] were used as evalua-

tion measures. Both assess the strength and direction of the relationship between

two variables. Unlike Pearson correlation, which measures the linear relationship

between two variables, Spearman correlation can capture non-linear relationships

as well. Earlier works using and comparing the two correlation measures suggest
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Spearman’s corelation to be more stable and less variable than Pearson’s [de Winter

et al., 2016; Halawi et al., 2012]. The coefficient values are in the range [−1, 1], with

a value of -1 being a perfectly negative correlation and +1 indicating a perfectly

positive correlation. If the correlation coefficient is 0, there is no correlation at all.

To provide a comprehensive comparison, we calculated the traditional BLEU-2

Score, as well as the newer scores BERTScore [Zhang et al., 2020a] and S emb

Score (CheXbert, Smit et al. [2020]). Yu et al. [2022] establish the hierarchy of

overlap with human (i.e. radiologist) judgement to be as follows (from high to low):

1. RadGraph F1

2. BERTScore

3. BLEU-2

4. S emb (CheXbert)

Because of that, we were particularly interested in seeing how well our model would

perform in relation to RadGraph F1 and BERTscore metrics. Given that our model

was trained on RadCliQ, which is a combination of RadGraph F1 and BLEU-2, we

would anticipate a high correlation with these two metrics. For this reason, we also

evaluate the model checkpoint trained directly on RadGraph F1 instead of RadCliQ

to explore the performance difference.

4.3.1 Evaluating on the test corpus

The performance evaluation on the test dataset of the parallel corpus was conducted

by splitting the report and reference report column into two text files, src and hyp1,

respectively, for inference. Additionally, the precalculated BLEU-2, BERTscore, and

S emb scores were extracted from the parallel corpus into a separate dataframe.

We then performed the inference on the two files using the different model check-

points we listed in Table 7 to obtain the predicted ”RadEval” scores.

Note: Our RadCliQ-trained checkpoints predict the number of errors in the hy-

pothesis report (i.e. lower is better) whereas our RadGraph-trained checkpoints

predict the similarity (i.e. higher is better). The RadCliQ-trained checkpoints will

therefore have a negative correlation with the other metrics (BLEU-2, BERTScore,

S emb, and the RadGraph F1-trained checkpoint’s predictions). To ensure consis-

tency when comparing the two types of checkpoints, we multiply the RadCliQ scores

by -1, so that all correlation values are positive.
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Subsequently, we calculated the two correlation values (Pearson and Spearman) be-

tween our RadEval Score and the other metrics’ scores for the different checkpoints.

For easier reading, we normalized the values by representing the correlation scores

as percentages in the paragraphs going forward. This means 0.1 correlation is rep-

resented as 10%.

Furthermore, when referring to correlation scores in the paragraphs of this subsec-

tion, we are referencing Spearman correlation if not explicitly marked otherwise.

A detailed summary of the scores (including Pearson) can be found in Table 8. We

have not included the scores on which the checkpoints were trained when determining

the highest and second-highest scores.

Model BLEU-2 BERTscore S emb RadGraph F1 RadCliQ

Pearson Correlation

Match XLM-R RadCliQ 90.23% 74.07% 31.01% 84.82% 97.37%

Match Clinic RadCliQ 91.36% 74.84% 31.03% 84.75% 98.08%

Top Clinic RadCliQ 91.16% 74.11% 30.75% 84.23% 97.71%

Top Clinic RadGraph 61.52% 62.29% 29.07% 95.41% 83.80%

Spearman Correlation

Match XLM-R RadCliQ 86.26% 66.98% 27.75% 71.38% 95.37%

Match Clinic RadCliQ 87.99% 67.80% 27.80% 71.05% 96.52%

Top Clinic RadCliQ 88.76% 67.03% 27.45% 67.22% 95.51%

Top Clinic RadGraph 41.35% 48.86% 24.45% 87.92% 67.57%

Table 8: Correlations between the RadEval score of our model checkpoints and the
other metrics based on the test dataset of our parallel corpus. The highest
correlation (both negative and positive) is marked in bold and the
second highest (both negative and positive) in italics. The score on which

the specific model checkpoint was trained is printed in light grey.

After completing the evaluation process and looking at the Spearman correlation

scores, we found that all RadCliQ-trained models (Match Clinic RadCliQ, Match

XLM-R RadCliQ and Top Clinic RadCliQ) exhibited a high correlation of over

85% with the BLEU-2 score, which was according to our anticipation as described

above. Additionally, these model checkpoints showed the second-highest correlation

of approximately 69% with the RadGraph F1 score, which was also in line with our

initial expectations.
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Interestingly, we found that our RadCliQ-trained models also displayed a reasonably

high correlation of approximately 67% with the BERTscore metric.

The RadGraph F1-trained checkpoint (Top Clinic RadGraph) on the other hand

showed the highest correlation with the RadCliQ score at 67.57% and the second

highest correlation with BERTscore at 48.86%, with BLEU-2 following at 41.35%.

It is worth noting that none of our model checkpoints exhibited a high correlation

with the S emb score, with correlations ranging between 24% and 28%.

Even though the correlation with BLEU-2 for the RadGraph F1-trained check-

point was much lower compared to the RadCliQ-trained checkpoints (-45 percentage

points), the RadGraph F1-trained checkpoint also showed a lower correlation with

BERTscore (-19 percentage points) and S emb score (-3 percentage points) at the

same time, albeit less drastic than the drop in BLEU-2 correlation.

A visual representation of the difference in the correlation matrices between the

RadCliQ-trained and RadGraph F1-trained checkpoints is shown in Figure 7.

(a) Top Clinic RadCliQ: Most correla-
tion with BLEU and second most with

BERTscore

(b) Top Clinic RadGraph: Better cor-
relation with BERTScore than BLEU,

highest with RadCliQ

Figure 7: Comparison of Spearman correlations for the Model Checkpoints trained
on RadCliQ (left) and RadGraph F1 (right) scores. Both based on the

Top 10% corpus with BioClinical BERT

4.3.2 Evaluating on generated reports

We used the generated reports for IU X-Ray images created by the two models

R2Gen [Chen et al., 2020] and M2Tr [Cornia et al., 2020]. For each model, we had
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590 reports at our disposal, which contained, on every row in the data, the ground

truth report, the predicted report as well as the BLEU-4 score for said prediction.

It needs to be noted, that the size of the parallel corpus test data evaluated in

subsection 4.3.1 is a lot (13’000 more reports) larger than this set of generated

reports.

We followed the same sequence as for the parallel corpus test to do the inference and

get the RadEval score. We included the model-provided BLEU-4 score alongside

BLEU-2 and the other scores in the detailed Table 9 to maintain comparability

between the scores for the generated reports and the scores for the parallel corpus

test dataset in Table 8.

As before, we multiply the RadCliQ scores by -1, such that all correlation values

are positive and we normalized the values by representing them as percentages in

the paragraphs going forward. Furthermore, when referring to correlation scores in

the paragraphs of this subsection, we are referencing Spearman correlation if not

explicitly marked otherwise.

(a) R2Gen generated reports (Top
Clinic RadCliQ): Slightly lower correla-
tions in general and particularly low cor-

relation with RadGraph F1.

(b) M2Tr generated reports (Top Clinic
RadCliQ): Lowest correlation with
S emb score but even correlations in

general.

Figure 8: Comparison of Spearman Correlations for the Model Checkpoints trained
on RadCliQ (left) and RadGraph F1 (right) scores. Both based on the

Top 10% corpus with BioClinical BERT

Looking at the correlation when inference is run on our two model-generated datasets,

we can see a much different set of correlations than we had on the parallel corpus

test dataset. We still see a high correlation with both BLEU scores for the RadCliQ-

trained (Match Clinic RadCliQ, Match XLM-R RadCliQ, and Top Clinic RadCliQ)
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Model BLEU-4 BLEU-2 BERTscore S emb RadGraph F1 RadCliQ

Pearson Correlation

R2Gen reports

Match XLM-R RadCliQ 84.57% 92.89% 86.19% 55.30% 22.80% 73.22%

Match Clinic RadCliQ 87.03% 93.95% 87.24% 54.51% 18.64% 70.98%

Top Clinic RadCliQ 92.08% 91.96% 81.49% 48.32% 17.40% 68.88%

Top Clinic RadGraph 83.76% 83.57% 78.26% 45.63% 12.57% 60.35%

M2Tr reports

Match XLM-R RadCliQ 81.21% 90.49% 83.19% 51.29% 90.85% 97.51%

Match Clinic RadCliQ 83.64% 92.05% 85.55% 49.30% 80.42% 92.34%

Top Clinic RadCliQ 88.62% 89.11% 78.76% 44.68% 72.97% 86.60%

Top Clinic RadGraph 76.48% 79.45% 75.91% 40.90% 77.47% 84.30%

Spearman Correlation

R2Gen reports

Match XLM-R RadCliQ 78.08% 86.85% 79.54% 52.69% 24.74% 66.37%

Match Clinic RadCliQ 81.84% 88.94% 80.95% 51.95% 19.36% 63.03%

Top Clinic RadCliQ 77.17% 85.81% 76.63% 47.36% 14.52% 58.00%

Top Clinic RadGraph 61.37% 66.33% 65.09% 39.09% 5.17% 40.96%

M2Tr reports

Match XLM-R RadCliQ 74.71% 84.88% 76.58% 47.66% 85.90% 95.28%

Match Clinic RadCliQ 79.72% 87.60% 79.83% 45.54% 71.73% 87.70%

Top Clinic RadCliQ 73.50% 83.51% 74.55% 43.90% 60.46% 78.58%

Top Clinic RadGraph 58.12% 64.29% 64.01% 33.64% 65.60% 71.76%

Table 9: Correlation between the RadEval score of our model checkpoints and the
other metrics based on the generated reports by M2Tr and R2Gen. The
highest correlation is marked in bold and the second highest in italics.
The score on which the specific model checkpoint was trained is printed in

light grey.
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checkpoints, with correlations ranging from 73% to 86% on both R2Gen and M2Tr

reports. For the same checkpoints however, we see a strong difference in correlation

towards the other metrics when looking at the two generation models: For R2Gen

we see a really low correlation with RadGraph F1 with values ranging from 14% to

25%. For M2Tr on the other hand we note between 60% and 85%. It is also worth

noting, that R2Gen has the lowest correlation (5.17%) with RadGraph F1 for the

model checkpoint (Top Clinic RadGraph), which was trained on the said score.

Correlation with BERTscore and S emb scores are generally higher than the values

we have seen when evaluating the parallel corpus test dataset with values ranging

from 33% up to 53% for S emb score and 64% to 80% for BERTscore.

When looking at the RadGraph F1-trained checkpoint for both generation models,

we no longer see the consistently bad correlation with BLEU-2 and BERTscore

but instead, they are aligning more closely with the correlation values of the other

RadCliQ-trained model checkpoints, being at most 19 percentage points away from

the highest value for BLEU-2 of the RadCliQ-trained checkpoints and at most 11

percentage points for BERTscore. Compared to the maximal distance in scores

for the parallel corpus test dataset of 45 percentage points for BLEU-2 and 19

percentage points for BERTscore.

For the S emb score on the other hand we see a more steep decline in scores looking

at the generated reports’ evaluation, with a maximal drop of 10 percentage points,

compared to the parallel corpus test dataset, where the maximal drop is of just 3

percentage points.

We assembled the mean, standard deviation, minimum, maximum, and quartile

values for the spearman correlation values of each metric over all checkpoints and

both setups (parallel corpus test dataset and generated reports dataset) in Table 10.

4.4 Interpreting the scores

Upon analyzing the Spearman correlation values, particularly for RadGraph F1 and

BERTscore metrics, we observed that among the four metric checkpoints, those

trained on RadCliQ (Match XLM-R RadCliQ, Match Clinic RadCliQ, and Top

Clinic RadCliQ) performed reasonably well on both test dataset of the parallel

corpus and the generated reports datasets (R2Gen and M2Tr). The RadCliQ-trained

checkpoints showed a more consistent correlation with the other metrics when scored

on the test dataset of the parallel corpus.
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BLEU-2 BERTScore S emb RadGraph F1 RadCliQ (-1) BLEU-4

count 12 12 12 9 3 8

mean 0.794 0.707 0.391 0.540 0.601 0.731

std 0.146 0.092 0.104 0.268 0.167 0.087

min 0.413 0.489 0.244 0.145 0.410 0.581

25% 0.792 0.665 0.278 0.247 0.543 0.705

50% 0.860 0.712 0.415 0.672 0.676 0.759

75% 0.877 0.774 0.474 0.714 0.697 0.785

max 0.889 0.809 0.527 0.859 0.718 0.818

Table 10: Summary statistics for different metrics. The statistics presented include
count, mean, standard deviation, minimum, maximum, and quartile val-
ues. The score on which the specific model checkpoint was trained has

been removed.

Among the generated reports datasets, we found that the correlation values for

inference on the M2Tr dataset were substantially higher, particularly for RadGraph

F1, surpassing the correlation values observed for this checkpoint on the test dataset

of the parallel corpus. Conversely, for the R2Gen generated dataset, the correlation

with RadGraph was considerably low compared to other metrics.

Furthermore, our RadGraph F1 checkpoint generally demonstrated good perfor-

mance on the generated reports compared to its performance on the test dataset.

This is evident from the higher correlation observed with BERTscore and BLEU-2/4,

while the correlation values on target metrics for the RadCliQ-trained checkpoints

remained relatively consistent among the two datasets.

We observed that the performance of our metric on the generated reports was slightly

better compared to the test set of the parallel corpus, as the former exhibited a

smaller difference in correlation values between BERTscore and BLEU-2/4 as well

as much higher correlation with S emb score.

To create a performance score that aligns with the desired correlation pattern

(greater correlation with metrics that Yu et al. [2022] has defined as being more

closely linked to human judgment), we propose two weighted performance scores

for our model checkpoints, denoted as SRadCliQ and SRadGraph. These scores are cal-

culated by excluding the score that each checkpoint was trained on and using a

weighted sum of the remaining metrics. The weights are set to start at 2.5 (Rad-

Graph F1) and then decrease in 0.5 steps until 1.0 (S emb) for RadCliQ-trained
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checkpoints. In the case of SRadGraph, we set the weight for the RadCliQ correlation

to 2.0, which is the average of wBLEU2 and wRadGraphF1
, to avoid double-counting

BLEU2 (since RadCliQ is a combination of BLEU2 and RadGraphF1).

SRadCliQ =
2.5× RadGraphF1 + 2.0× BERTScore + 1.5× BLEU2 + 1.0× S emb

max(RadGraphF1,BERTScore,BLEU2, S emb)

SRadGraph =
2.0× RadCliQ−1 + 2.0× BERTScore + 1.5× BLEU2 + 1.0× S emb

max(RadCliQ−1,BERTScore,BLEU2, S emb)

where BLEU2, BERTScore, S emb, RadGraphF1 and RadCliQ(−1) are the cor-

relation values for said model, and the numbers are the weights assigned to each

metric. The max function in the denominator is used to normalize the weighted

sum of the correlations.

It should be noted that the weighted score used in this analysis was proposed by

us and it has not been validated whether this score is meaningful or effective for

evaluating the performance of the model checkpoints. Therefore, the results of this

analysis should be interpreted with caution, and further research is needed to de-

termine the validity of this approach.

experiment dataset SRadCliQ SRadGraph

Match XLM-R RadCliQ M2Tr 6.320 n/a

Top Clinic RadGraph M2Tr n/a 5.597

Match Clinic RadCliQ M2Tr 5.889 n/a

Top Clinic RadCliQ M2Tr 5.621 n/a

Match XLM-R RadCliQ Parallel Corpus 5.444 n/a

Match Clinic RadCliQ Parallel Corpus 5.376 n/a

Top Clinic RadGraph R2Gen n/a 5.287

Top Clinic RadCliQ Parallel Corpus 5.213 n/a

Top Clinic RadGraph Parallel Corpus n/a 4.726

Match XLM-R RadCliQ R2Gen 4.650 n/a

Match Clinic RadCliQ R2Gen 4.449 n/a

Top Clinic RadCliQ R2Gen 4.261 n/a

Table 11: Weighted scores for all checkpoints on the different datasets. For
the RadCliQ-trained checkpoints, we calculate SRadCliQ and for the

RadGraph-trained checkpoints, we calculate SRadGraph

Utilizing the correlation scores, an attempt can be made to establish a performance

hierarchy for the model checkpoints. The results indicate that the Match XLM-R

RadCliQ checkpoint had the best performance for M2Tr output and the test dataset
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of the parallel corpus, as well as the second-best on the R2Gen output, with a mean

score of 5.47. Following this is the Match Clinic RadCliQ with a mean score of 5.24

(ranking third on M2Tr, second on the parallel corpus test dataset, and third on

R2Gen). The Top Clinic RadCliQ had the lowest mean score of 5.032 and performed

worst on the two generated datasets and came in third on the parallel corpus test

dataset. Top Clinic RadGraph came in best on R2Gen data, second on M2Tr data,

and last on the parallel corpus data with a mean score of 5.20 (see Figure 9).

Figure 9: Mean of the weighted scores over all three datasets
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5 Conclusion

The aim of our thesis was to investigate the feasibility of developing a new radiology-

specific evaluation metric. To achieve this goal, we pursued two research questions.

The first question focused on adapting and optimizing an existing, successful metric

from a non-radiology domain to fit our problem of evaluating generated radiology

reports. We used the architecture of the popular machine-translation evaluation

framework COMET by Unbabel AI to train our own metric on radiology data and

explored several optimization techniques such as encoder layer replacement using

a BioClinical BERT encoder and training on two types of scores (error count /

RadCliQ and graph similarity / RadGraph F1).

Additionally, we created several similarity-scored parallel corpora, which we used

as training data for our model checkpoints. Our correlation analysis shows that

the checkpoints generally correlate well with the other metrics we used to compare.

However, due to the absence of a human reference to evaluate the performance of

our metric in real-life conditions, we cannot claim with certainty that our metric

performs better than other popular metrics in the field. Nonetheless, our trained

metric showed moderate to high correlation with BERTscore and S emb score, which

suggests that it has the potential to be an effective radiology-specific evaluation

metric.

The second research question focused on whether the integration of a radiology-

specific knowledge graph could improve the evaluation quality. We answered this

question in two ways. Firstly, we trained one of our metric model checkpoints solely

on the RadGraph F1 score and compared its performance with the performance

of the other metric model checkpoints, which were trained on RadCliQ. Based on

our interpretation of the score hierarchy (see section 4.4), the RadGraph F1-trained

checkpoint performed well, particularly for generated reports, suggesting that Rad-

Graph F1 has the potential to be used standalone in an automatic setting. Secondly,

we incorporated the RadGraph F1 and RadCliQ scores into the parallel corpora and

validated them to demonstrate how filtering based on radiology-aware scores could

improve the quality of the corpus.
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In sum, we provide the following contributions to the scientific community: two par-

allel corpora that synthesize a ”source-reference” set of reports, four model check-

points to score generated radiology reports and compare them to the reference re-

ports, a proposed weighted score performance measure to evaluate the correlation

towards human judgement of developed metrics, and code to replicate our experi-

ments and further improve the model’s performance.

By providing these resources, we hope to facilitate future research and development

in the field of NLG for radiology and the medical domain in general. Moreover, we

hope that our proposed evaluation framework can be utilized as a benchmark for

evaluating the quality of generated radiology reports by other researchers.

We encourage the scientific community to utilize our resources to advance the state-

of-the-art in natural language generation for radiology reports and to further improve

the quality of generated reports for use in clinical practice.

5.1 Further Research

In future studies, it may be possible to enhance the clustering approach (subsec-

tion 3.2.1) by utilizing RadGraph during data preparation to extract anatomy labels

from the findings and cluster reports based on these labels. This could potentially

provide more comprehensive information about the reports than merely utilizing the

entire unprocessed MeSH column.

During our study in section 3.3, we did not conduct any hyper-parameter optimiza-

tion except for replacing the encoder and increasing the maximum epochs, leaving

it as a potential future research avenue to further enhance model performance.

As our evaluation framework was originally designed for machine translation, addi-

tional research could explore the use of model checkpoints to score translations of

radiology reports. Furthermore, there are two other model architectures available

when using COMET (see section 3.1). Future researchers could be looking into the

potential of training a ranking instead of a referenceless metric on our proposed

parallel corpus.

Currently, we only validate our metrics by measuring correlation using the newly

proposed weighted score performance measure. The next step in gaining a more

thorough understanding of model performance would be to include human evalua-

tion, as described in section 2.5. Moreover, our weighted performance score requires

further validation and testing.
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If at a future point, a big enough parallel corpus of machine- and human-generated

reports is being published, this corpus could be scored using the methods described

in subsection 3.2.3 and could potentially replace the parallel corpus we presented in

our work to improve the training data for the model.

We make our parallel corpora and code (see section 5.2) available to future re-

searchers for use in further works and for the possible training of evaluation models

on architectures other than COMET.

5.1.1 Outlook

Following the completion of the thesis, we intend to further investigate the sub-

ject matter and subsequently release a paper disclosing our findings later this year.

Part of this paper we will include a small study of human judgement correlation

in collaboration with radiologists from Kyoto University (京都大学) as part of the

inter-university academic exchange agreement with the University of Zurich.

5.2 Additional Material

The code for each step outlined in chapter 3 and chapter 4 has been made publicly

available on GitHub at github.com/amoscalamida/rad-eval.

The larger files (such as model checkpoints, parallel corpora, and score tables) have

been uploaded to SwitchDrive1 at drive.switch.ch/index.php/s/RW1362mGhhi8VY8

and can be downloaded under the same license terms as the original IU X-Ray data.

The contents of both repositories may be updated in the future to reflect new de-

velopments.

1SwitchDrive is a cloud storage and file-sharing service offered by SWITCH, a Swiss foundation
that provides IT infrastructure services for higher education institutions
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Glossary

Evaluation The process of measuring the effectiveness or quality of a system, metric,

or algorithm. In natural language processing, evaluation is commonly used to

compare the quality of machine-generated text with human-written text.

Machine learning A type of artificial intelligence that involves teaching machines

to learn from data and make predictions. Machine learning algorithms are

commonly used in natural language processing to optimize models and make

predictions.

Precision The proportion of relevant items among the total number of items re-

trieved or generated.

Recall The proportion of relevant items retrieved or generated among the total

number of relevant items in the corpus.

F1-score A measure of the performance of a system that combines both precision

and recall into a single score. F1-score is a balanced measure that takes into

account both the number of correct positive predictions and the number of

false negative predictions.

Parallel corpus A collection of texts, usually in multiple languages aligned for direct

comparison. A parallel corpus is often used in natural language processing to

train and evaluate machine translation and other language-related models.

Word embedding A technique used to represent words as vectors in a high-dimensional

space. Word embeddings are often used to improve the performance of ma-

chine learning models by capturing the semantic relationships between words.

Encoder Layer A component of neural network models, that is responsible for pro-

cessing input text and producing contextualized word representations. The

encoder layer typically consists of several stacked layers of self-attention and

feed-forward neural networks, and is trained on large corpora of text using

unsupervised learning techniques.
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Cluster Amount Silhouette Score Elbow Score Calinski Harabasz Score

2 0.1123 2615.6462 403.1788

3 0.1565 2397.0003 375.7110

4 0.2083 2181.2283 387.7774

5 0.2553 2023.7439 379.7914

6 0.2732 1916.1540 359.1262

7 0.3217 1775.6006 367.8817

8 0.3324 1714.6355 343.7689

9 0.3498 1642.0339 332.8517

10 0.3576 1584.2830 320.3707

11 0.3687 1536.7594 307.7021

12 0.3828 1479.0708 302.6347

13 0.3822 1464.7734 282.8111

14 0.3835 1434.4429 272.0363

15 0.3955 1389.6302 268.5154

16 0.4055 1348.2333 265.1993

17 0.4101 1331.8275 254.2322

18 0.4161 1305.8520 247.9447

19 0.4333 1279.1687 242.9247

20 0.4318 1259.8251 236.3508

21 0.4506 1230.3285 233.9220

22 0.4401 1217.2425 226.8507

23 0.4551 1194.3380 223.5873

24 0.4636 1185.5286 216.4887

25 0.4658 1165.7390 213.3289

26 0.4709 1140.7286 212.1999

27 0.4717 1137.6182 204.8926

28 0.4610 1118.5256 202.7565

29 0.4687 1120.6646 194.8534

30 0.4773 1092.9619 195.8080

31 0.4918 1069.8641 195.7486

32 0.4849 1081.8287 186.0754

33 0.4916 1064.2109 184.9423

34 0.4960 1047.2711 183.8442

35 0.5046 1033.6481 182.0471

36 0.5079 1014.7761 181.8789

37 0.5071 1010.3364 177.9641

38 0.5124 999.2764 176.0303

39 0.5067 987.6090 174.4223

Table 12: Cluster Scores for different amounts of clusters on the Impression Col-
umn of the Reports (see subsection 3.2.1 for details and Figure 4 for a

visualization).
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Cluster Amount Silhouette Score Elbow Score Calinski Harabasz Score

2 0.4013 1885.8854 1502.0259

3 0.4004 1774.6551 901.9194

4 0.4015 1713.2610 662.2957

5 0.4024 1653.3468 544.6356

6 0.4083 1604.4589 469.0691

7 0.4120 1555.5883 420.4176

8 0.4159 1513.4368 383.4765

9 0.4200 1479.0646 352.8658

10 0.4241 1443.4558 330.3829

11 0.4256 1416.5990 309.1715

12 0.4321 1383.9273 294.7217

13 0.4299 1368.2138 276.3505

14 0.4389 1329.9459 269.6799

15 0.4415 1311.4290 257.2134

16 0.4436 1286.4803 248.9243

17 0.4434 1266.0982 240.3790

18 0.4504 1238.4890 235.5478

19 0.4493 1223.7864 227.2723

20 0.4513 1207.1610 220.6048

21 0.4546 1188.5917 215.3645

22 0.4505 1182.4505 206.9285

23 0.4570 1169.2967 201.3721

24 0.4602 1143.2380 200.2180

25 0.4602 1134.1673 194.4508

26 0.4614 1119.2459 190.8628

27 0.4623 1104.2314 187.6852

28 0.4641 1092.9885 183.7933

29 0.4658 1084.5539 179.4685

30 0.4668 1066.9198 177.9679

31 0.4645 1065.2668 172.4206

32 0.4668 1054.9632 169.4743

33 0.4713 1034.5247 169.4028

34 0.4713 1028.4956 165.7665

35 0.4723 1018.2670 163.4295

36 0.4755 1001.0423 163.0592

37 0.4750 997.8114 159.2904

38 0.4726 995.7692 155.4380

39 0.4708 986.3996 153.5598

Table 13: Cluster Scores for different amounts of clusters on the MeSH Column of the
Reports (see subsection 3.2.1 for details and Figure 4 for a visualization).
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B Code Extracts / Configuration

The Lightning Configuration parameters listed here have been used to train our

model on the COMET Architecture by Unbabel AI [2020] (see section 3.3). They

provide information on various variables of the training process, including the opti-

mizer settings, learning rate and data augmentation techniques.

r e f e r e n c e l e s s r e g r e s s i o n m e t r i c :

c l a s s p a th : comet . models . Re f e r en c e l e s sReg r e s s i on

i n i t a r g s :

n r f r o z en epoch s : 0 . 3

keep embeddings f rozen : True

opt imize r : AdamW

encod e r l e a r n i n g r a t e : 5 . 0 e−06

l e a r n i n g r a t e : 1 . 5 e−05

l aye rw i s e decay : 0 .95

encoder model : BERT

pret ra ined mode l : em i l y a l s e n t z e r /Bio ClinicalBERT

pool : avg

l ay e r : mix

#loss: mse

dropout: 0 . 1

b a t ch s i z e : 4

t r a i n da t a : "input_train.csv"

va l i d a t i on da t a : "input_val.csv"

h i dd en s i z e s :

- 2048

- 1024

a c t i v a t i o n s : Tanh

t r a i n e r : t r a i n e r . yaml

e a r l y s t opp i ng : e a r l y s t opp i ng . yaml

model checkpoint : model checkpoint . yaml

Listing B.1: Model Configuration
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c l a s s p a th : py t o r ch l i gh tn i ng . c a l l b a c k s . Ear lyStopping

i n i t a r g s :

monitor: v a l k enda l l

min de l ta : 0 .

pa t i ence : 2

verbose : False

mode: max

s t r i c t : True

c h e c k f i n i t e : True

s t opp ing th r e sho ld : null

d i v e r g enc e th r e sho l d : null

check on t ra in epoch end : False

Listing B.2: Early Stopping

c l a s s p a th : py t o r ch l i gh tn i ng . c a l l b a c k s . ModelCheckpoint

i n i t a r g s :

d i rpath : null

f i l ename : ’{epoch}-{step}-{val_kendall:.3f}’

monitor: v a l k enda l l

verbose : True

s a v e l a s t : False

save top k : 2

mode: max

auto in s e r t met r i c name : True

s ave we i gh t s on ly : True

e v e r y n t r a i n s t e p s : null

t r a i n t im e i n t e r v a l : null

every n epochs : 1

save on t ra in epoch end : null

Listing B.3: Model Checkpoint Config
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c l a s s p a th : py t o r ch l i gh tn i ng . t r a i n e r . t r a i n e r . Tra iner

i n i t a r g s :

a c c e l e r a t o r : gpu

dev i c e s : auto

accumulate grad batches : 4

amp backend: nat ive

a u t o l r f i n d : False

a u t o s c a l e b a t c h s i z e : False

au t o s e l e c t gpu s : False

check va l eve ry n epoch : 1

d e t e rm i n i s t i c : True

f a s t d ev run : False

g r a d i e n t c l i p v a l : 1 . 0

g r a d i e n t c l i p a l g o r i t hm : norm

l im i t t r a i n b a t c h e s : 1 . 0

l im i t v a l b a t c h e s : 1 . 0

l im i t t e s t b a t c h e s : 1 . 0

l im i t p r e d i c t b a t c h e s : 1 . 0

l o g e v e r y n s t e p s : 50

o v e r f i t b a t c h e s : 0

p r e c i s i o n : 16

max epochs: 20

min epochs: 1

max steps: −1

num nodes: 1

num san i ty va l s t ep s : 10

r e l o ad da t a l o ad e r s e v e r y n epo ch s : 0

rep lace sample r ddp : True

sync batchnorm: False

detect anomaly: False

track grad norm: −1

v a l c h e c k i n t e r v a l : 1 . 0

enable model summary: True

move metr i c s to cpu: True

mul t i p l e t r a in l oade r mode : max s i z e cy c l e

Listing B.4: Trainer Config0

0Properties with null values removed (amp level, benchmark, default root dir, profiler, plugins,
min steps, max time, tpu cores)
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