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Abstract

Dependency parsers tend to struggle with parsing transcribed spoken language as they are

trained on properly structured, written text. Spoken language lacks the structure of properly

written text and exhibits typical phenomena like disfluency, repetition, and truncation of words

and sentences. This research examines the problem of parsing spoken language for Swiss Ger-

man audio transcripts from ArchiMob corpus. Swiss German, an umbrella term for the German

(Alemannic) dialects spoken in Switzerland, lacks orthographic and grammatical standardiza-

tion, shows a high degree of variation among the various dialects and differs substantially from

Standard German. The lack of standardization is due to the situation of diglossia in Switzer-

land. As Swiss German is mainly an oral language or restricted to informal writing, many

resources lack structure and exhibit a high variability in terms of morphology, spelling and

vocabulary. The combination of variation in Swiss German, its lack of standardization and

the unstructuredness of spoken language render parsing transcribed Swiss German challeng-

ing. Accordingly, pre-trained (German) dependency parsers struggle with Swiss German audio

transcripts and little data is available to train them.

This research tackles the problem of parsing spoken language by re-segmenting Swiss German

audio transcripts into sentence-like units (SLUs) and examines the impact of re-segmentation

on dependency parser performance. Therefore, our experiment setup includes two evaluation

steps, one for re-segmentation and one for dependency parsing. We frame the re-segmentation

as a binary classification task aiming to predict tokens marking an SLU-boundary. For this

purpose, we fine-tune a pre-trained German Bert model to predict such boundaries. These

predicted SLU-boundaries are used to re-shape the input for the dependency parser. We show

that the re-segmentation into SLUs leads to an improvement of the Labeled Attachment Score

(LAS) over a baseline. Moreover, we demonstrate that the performance in the SLU-boundary

classification task correlates with the parser performance. To engage in such a supervised

learning setting, a test set composed out of roughly 200 SLUs was manually created and anno-

tated with dependency labels for the two folded evaluation. With our work, we contribute to

processing spoken Swiss German by showing a way of inducing more structure.
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Chapter 1

Introduction

Dependency parsing, one variant of syntactical parsing, refers to the process of assigning a head

to each token of a sentence and labeling the dependency relation with its head according to a

predefined dependency grammar. It is a common step in NLP-processing together with POS-

tagging, tokenization and others. The syntactical information from dependency parsing helps

to identify semantic and syntactic relations between words (tokens), and provides a base that

can be used in other NLP tasks like Named Entity Recognition (NER), Co-reference Resolu-

tion, Information Retrieval and more. Dependency parsers are trained on properly structured,

written text and therefore tend to encounter problems if input does not exhibit the same struc-

ture. Accordingly, dependency parsing is challenging for transcribed spoken language. Spoken

language lacks the structure of properly written text and exhibits typical phenomena like dis-

fluency, repetition, and truncation of words and sentences.

In the following, this research examines the effect of re-segmenting unstructured audio tran-

scripts into sentence-like units (SLU) on the performance of dependency parsing. This is mo-

tivated by the fact that SLUs are closer to properly written text than transcribed spoken

language. A pre-trained neural network is fine-tuned in a token classification setting to identify

SLU-boundaries. The predicted SLU-boundaries are then used to re-shape the input for the

dependency parser. Besides investigating the impact on parser performance, we examine the

connection between performance in SLU-boundary-detection and improvement in parser per-

1



2 Chapter 1. Introduction

formance. The experiment setup, therefore, includes two evaluation steps, one for the token

classification and one for dependency parsing. For the experiments, Universal Dependencies

(UD, de Marneffe et al. (2021)) annotation, a pre-trained UDPipe (Straka et al., 2016) parser

and a uncased German Bert model (Devlin et al., 2019) are used. We performed this examina-

tion for transcribed spoken Swiss German coming from ArchiMob corpus (Scherrer et al., 2019).

ArchiMob consists of transcribed interviews held with Swiss native speakers born between 1910

and 1930. This data is in highly unstructured form, does neither contain SLUs nor dependency

annotation, and exhibits a high degree of disfluency, repetition and truncation. Accordingly, no

test data is available for ArchiMob. Therefore, another important contribution is the manual

creation of a two folded test set composed of roughly 200 SLUs in order to evaluate the SLU-

boundary detection and the parser performance. To the author’s best knowledge, the following

work is the first to tackle SLU-boundary-detection for Swiss German audio transcripts. Thus,

we contribute to parsing and processing spoken Swiss German with our approach.

Swiss German is a low-resource language (or dialect) that, even if not the official language of

Switzerland, is the variety of the German language most commonly spoken in Switzerland by

roughly 60% of the population (Bundesamt für Statistik, 2022b). Swiss German dialects, the

German variants spoken across Switzerland, are the daily language of choice in speaking and

writing, but standard Swiss German is the language used in official and formal settings. Little

data is available in Swiss German, though this began to change in recent years. This data,

however, exists in a highly unstructured form; on the one hand, Swiss German itself exhibits

a lot of variation in vocabulary, morphology, and syntax and also differs strongly from stan-

dard German, and, on the other hand, Swiss German lacks standardization. As Swiss German

is mainly an oral language, there is especially a demand for systems processing spoken Swiss

German for other NLP tasks (NER, Machine Translation1, automatic subtitle generation etc.).

As mentioned, this research contributes to processing transcribed spoken Swiss German and

shows successfully a way of inducing more structure into the transcripts.

1Usually Machine translation is performed with data properly structured into sentences
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1.1 Outline

Chapter 2 provides the necessary background on Swiss German, sentence segmentation in spo-

ken language and dependency parsing. The linguistic situation in Switzerland and differences

among dialects and with standard German are presented and exemplified. Furthermore, the

chapter provides references to and summaries of related work for all three background topics.

Following this, Chapter 3 introduces the methodology in detail. We argue that fine-tuning

a Bert model is a promising approach to detect SLU-boundaries. Fine-tuning a model is a

supervised task. Accordingly, we elaborate on the requirements for data, discuss the creation

of the manual test set in detail and introduce suitable training data. The deep-dive into the

process of manual segmentation and dependency annotation exemplifies the complexity of the

task further. Chapter 3 also introduces the data processing workflow and the statistics for the

data used in the experiments. Chapter 4, then, guides through the experiment setup, specifies

technical details of the libraries, models and training settings; and elaborates on the two evalu-

ation steps. The chapter ends with a detailed presentation of the results and shows the impact

of re-segmentation on parser performance. Chapter 5, finally, summarizes the achievement of

this thesis and introduces possibilities for future work.



Chapter 2

Background and Literature Overview

For our approach to re-segment spoken Swiss German into SLUs and to study the impact of this

re-segmentation on dependency parsing performance, background for Swiss German, sentence

segmentation in spoken language and dependency parsing is required. Section 2.1 provides

context of the linguistic situation in Switzerland and introduces distinctive. The related work

section elaborates on approaches for dependency parsing, POS-tagging and mentions recent

developments in machine translation. More importantly, the ArchiMob corpus, the data this

thesis aims to re-segment, is introduced, together with SwissDial, another Swiss German text

corpus.

A short overview of sentence segmentation is provided in Section 2.2 followed by a brief de-

scription of difficulties when working with transcripts of spoken language. Furthermore, the

two articles most similar to the approach undertaken in the experiments section are discussed

in detail. Lastly, Section 2.3 presents dependency parsing and annotation tag sets.

2.1 Swiss German

The linguistic situation in Switzerland is rather complicated. Although the country has four

official languages, German, French, Italian and Romansh; none of these is the language spoken

by most people in daily life. 62,3% reported German as one of their main languages in 2020

4



2.1. Swiss German 5

(Bundesamt für Statistik, 2022b). The fact that most of them will not speak German in their

daily life is due to the phenomenon of diglossia (see Wyler and Siebenhaar (1997)). Diglossia

means that two languages or dialects are used by the same language group restricted to different

situations. This leads to the first important distinction in terminology, while Swiss German

(Schwiizerdütsch1) refers to the German dialects spoken in Switzerland, Swiss Standard German

(Schweizer Hochdeutsch) is the term for the standardized variant of the German language of

Switzerland, which is the official language of Switzerland. Throughout the following text, Swiss

will often be used to refer to German speaking part of Switzerland and does not refer to the

country as a whole. While Swiss Standard German and Standard German (from Germany)

are mutually intelligible, Swiss German dialects tend not to be understood by speakers of

other German variants. Differences in both Standard German variants are rather small and

concern mainly vocabulary, orthography, pronunciation, and to a small extent syntax, and

morphology. Such differences are called Helvetisms. Common orthographic examples are the

spelling of Umlaut (Ae (CH) vs. Ä (DE)) at the beginning of (geographical) names or the

absence of the letter ß in Swiss Standard German. An example from vocabulary is the verb

to park which is parkieren in Switzerland and parken in Germany. Swiss Standard German

is the language used in written contexts, the education system, news and television, politics

and other official contexts. Swiss German, however, is the default language in daily life and

informal situations. With the rise of the internet and smartphones Swiss German is, especially

by younger generations, also the written language of choice in daily life. There is, of course,

also music and literature in Swiss German .

Linguistically, (almost) all Swiss German dialects belong to the Alemannic dialect group

marking the southern end of the German dialect continuum. The dialects are further subdivided

into Low, High and Highest Alemannic with most Swiss dialects belonging to High Alemannic.

Most native Swiss German speaker tend to understand (almost) all dialects. Although histori-

cally the different dialects corresponded roughly to the different regions of Switzerland and the

dialects are still named after their region, given the mobility and technology of modern times,

Swiss German native speakers grow up exposed to a variety of dialects. The Swiss German

1If not specified differently, spelling of Swiss German in this section follows the individual writing style of
the author.



6 Chapter 2. Background and Literature Overview

dialects differ between them in pronunciation, vocabulary, morphology and syntax. For exam-

ple, the word coffee has a male gender for some dialects but is neuter for others. Other typical

examples are the word order for complex or composed predicates. To let go is rendered by

some speakers as gah lah and as lah gah by others while in Standard German the only correct

way is gehen lassen (all verbs are in infinitive). Similarly the past in Swiss German of had

(has had) is formed by some speakers with gha hät and hät gha by others and will also vary

depending on the context. Hollenstein and Aepli (2014) presented a good example showing

differences in dialects around Bern and Zurich, depicted in Figure 2.1. Besides demonstrating

the different word order, it also gives a few more examples of different vocabulary. Because has

three different forms weil - wil - wüu, or him has two forms ihn - ne.

Swiss German completely lacks standardization of any kind. “Language standardization

is traditionally defined as the process that creates and promotes a consistent norm for language

usage and typically involves the reduction or loss of optional variability.”Ayres-Bennett and

Bellamy (2021) For Swiss German, this means that there is no norm for grammar (morphology

and syntax), orthography, and pronunciation. Attempts to provide a system to represent

phonetic differences across the dialects have been made. The most famous one is the Dieth-

Schreibung (Dieth and Schmid-Cadalbert, 1986). However, this system was never really popular

and never integrated into daily usage as it requires a lot of linguistic knowledge to write correctly

and writing Swiss German is never taught in Switzerland. Nowadays, most people tend to have

their own way of writing which is influenced by the provenance of the speaker and personal

taste. Typical examples are the rendering of long vowels, e.g., ii or ie; aa, ah or a, or whether

to represent a certain sound with ä or e. This phenomenon complicates the situation for Swiss

German. Although there is more text written in Swiss German (SMS, Mails, Social Media)

orthography can differ significantly from dialect to dialect and speaker to speaker. Thus, dealing

with standardizing writing is always an important step when working with Swiss German data.

Finally, Swiss German also exhibits differences with Standard German. As there are differences

between dialects, the following facts are not necessarily true for all dialects. There are, of course,

phonetic differences like the complete absence of ç, the voiceless palatal fricative. Figure 2.1
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Figure 2.1: Differences between Dialects and Standard German (Hollenstein and Aepli, 2014,
88)

displays some differences in word order. A very characteristic difference is the usage of clitic

pronouns in Swiss German. For example, we have is mir händ but if the word order is inverted

for a question it will become hämmer, while in Standard German it is haben wir. This also

demonstrates that Swiss German exhibits Sandhi (see Moulton (1986)). It is common in Swiss

German that words appear in different forms depending on emphasis and their surrounding

words. For example, I could be i or ich2. If ich is placed after the relative pronoun wo

(literally where but used as a general relative pronoun) it can merge with it forming woni,

another example would be I have which is ich han but hani when inverted. Another peculiarity

is that the subject pronoun tends to be dropped for certain verb forms, in Standard German

the subject pronoun is mandatory and can never be dropped outside of very colloquial daily

speech. You have is häsch in Swiss German but du hast in Standard German. These two

phenomena also appear combined; did you do it? is realized as häsch s gmacht. If we compare

that to Standard German Hast du es gemacht, we see that the du is dropped completely and

the es becomes a clitic. It also serves to illustrate the difficulty of writing Swiss German; for a

native speaker it does not matter if one writes häschs, häsch s, häsch’s, or häsch äs/häsch es

(with non clitic pronoun); and the probability is high that the same speaker would write the

same form differently. Furthermore, indefinite articles tend to merge with prepositions in Swiss

German, which in Standard German happens only with the definite article. at a place is amä

Platz in Swiss German and an einem Platz in Standard German, showing clearly that Swiss

German merges an and einem which also leads to phonetic changes.

Swiss German uses some words differently than Standard German. The verbs tun (to do) and

gehen (to go) can be used as auxiliary verbs. Gah (gehen) for example is often used together

with another verb to convey the meaning of going to; tue (tun) can be used to express an

2Variants used by the author
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imperative instead of forming the proper imperative among other uses. In order to is expressed

with um ... zu in Standard German and as zum or für in Swiss German.

From a more high level perspective, Swiss German lacks a bunch of tenses that are present

in Standard German, namely the preterite (Präteritum) and the future tenses (Future 1 and

2). As a consequence, Swiss German does not have a true preterite perfect (Plusquamperfekt),

but has a reduplicated form of the perfect instead: The train had parted would be Dä zug

isch abgfahre gsii in Swiss German with two past participles but Der Zug war abgefahren in

Standard German (g or ge usually marks a past participle). Usage of the reduplicated perfect is

not consistent across dialects and speakers. Swiss German also does not know the genitive case

(except in some fixed collocations) and uses constructions with dative instead. Furthermore,

nominative and accusative are no longer distinct for nouns in Swiss German, they are, as for

English, still different for (personal) pronouns. More information about syntactical peculiarities

of Swiss German and how to treat them when annotating can be found in the article of Scherrer

(2011).

These examples illustrate why normalizing Swiss German is important. In the context of Swiss

German, normalization refers to the process of mapping variation in writing, pronunciation

and morphology arising from inter-speaker and inter-dialectal differences to one lexical unit

(see Scherrer et al. (2019), Honnet et al. (2018), and Section 2.1.2). Normalization is usually

used in the context of some form of data processing, while standardization is rather tied to

a high-level (linguistic) view of a language. Without normalization - besides having a lot

of variation - alignment of Swiss German with Standard German (or any other language) is

utterly difficult. Alignment means mapping sentences and tokens from one language to their

counterpart from a second language, thus creating parallel data.3 Such corpora of aligned

sentences between languages are called parallel corpora. Aligned Swiss German - Standard

German text does, however, normally not match in terms of token number and word order.

3Usually exact token-to-token alignment is not possible.
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2.1.1 Swiss German - Related Work

NOAH’s corpus4 (73’616 tokens) was manually annotated with POS-tags and is composed out

of articles from the Alemannic Wikipedia, some newspaper articles written in Swiss German,

and parts of the Swiss German dialect version of the official annual report of Swatch. The

corpus lacks normalization and thus exhibits a variety of different spellings. Hollenstein and

Aepli (2014) introduced NOAH’s corpus and tackled Part-Of-Speech-tagging (POS-tagging) for

Swiss German. They trained various state-of-the part POS-taggers (e.g. TreeTagger, Wapiti

CRF Tagger) with the corpus and evaluated them over the corpus with 10-fold cross validation.

The best result was achieved by a BTagger scoring an accuracy of 90.62%. Their work builds on

the Stuttgart-Tubingen-TagSet (STTS) with some modification for Swiss German peculiarities,

e.g., the indefinite article that merges with prepositions.

Aepli and Clematide (2018) (see also Aepli (2018)) examined two approaches to Swiss German

dependency parsing. As a solid statistical dependency parser needs a lot of training data -

which do not exist for Swiss German - they opted for “cross-lingual parsing strategies (...),

making use of Standard German resources.”(Aepli and Clematide, 2018, 6) In order to do

so, they needed a corpus of parallel sentences Standard German - Swiss German. Leveraging

crowd-sourcing, Swiss German sentences from NOAH’s corpus and from Swiss German litera-

ture were translated to Standard German. Doing so, they created a corpus consisting of 26’015

parallel sentences. Aepli and Clematide (2018) engaged in a model transfer approach where

a dependency parser is trained on Standard German data only passing the POS-tags as input

and later applied to Swiss German by providing the POS-tags of the Swiss German input.

A second, more complicated approach is annotation projection. “The parse of the Standard

German translation is projected along the word alignment to its Swiss German correspondent.

The input consists of the Standard German parse and the alignment between the Standard

German sentence and its Swiss German version.” Aepli and Clematide (2018) This approach

needs word-alignment and has to take into account cases where a one-to-one token alignment is

not possible. They scored a Labelled Attachment Score (LAS) of 60% with the transfer model

approach evaluated on a manually curated test set composed of 100 sentences.

4Available here: https://github.com/noe-eva/NOAH-Corpus[28.02.2023]

https://github.com/noe-eva/NOAH-Corpus
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Especially in recent years, a lot of research was conducted revolving around spoken Swiss

German or translating Swiss German. Hufe and Avramidis (2022) trained a sequence-to-

sequence model trying to translate Swiss German sign-language to Standard German text.

To represent the sign-language, they used 3D-augmentation of body key points. Lambrecht

et al. (2022) engaged in a machine translation task from Standard German to Alemannic di-

alects (which includes Swiss German) leveraging data from the Alemannic Wikipedia5. They

tried a multi-dialectal approach, meaning translating with one model from Standard German

to different Alemannic dialects. They showed that “using back-translation, a significant gain

of +4.5 over the strong transformer baseline of 37.3 BLEU points is accomplished” (Lambrecht

et al., 2022, 129). Furthermore, they concluded that “[d]ifferentiating between several Aleman-

nic dialects instead of treating Alemannic as one dialect leads to substantial improvements”

(Lambrecht et al., 2022, 129) enhancing the aforementioned gain of 4.5 to “7.5 to 10.6 BLEU

points over the baseline depending on the dialect”.

2.1.2 ArchiMob

As stated in the introduction, we present an approach to re-segment Swiss German into SLUs.

This is performed on Swiss German data from ArchiMob corpus, which is presented in the

following.

ArchiMob6 corpus, as the authors put it, “is a result of a long design process, intensive manual

work and specially adapted computational processing”(Scherrer et al., 2019, 735) The corpus

contains just one part of the broader Archimob project7 that was founded in 1998. The creation

started in 2004 “when a collection of 52 VHS tapes was obtained from the Archimob associa-

tion”(Scherrer et al., 2019, 738). Archimob stands for Archives de la mobilisation (Mobilisation

archive) as the tapes contain interviews held with native Swiss German speakers narrating their

5https://als.wikipedia.org/wiki/Wikipedia:Houptsyte[28.02.2023]
6Following Scherrer et al. (2019) the corpus is called ArchiMob while the project is labeled Archimob.
7Available at: urlhttp://www.archimob.ch/[06.02.2023]

https://als.wikipedia.org/wiki/Wikipedia:Houptsyte
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Figure 2.2: Locations of the ArchiMob Recordings (Scherrer et al., 2019, 738)

childhood memories of Switzerland before and during the Second World War8. Out of this 52

recordings, 43 were used to create the corpus while nine had to be excluded due to poor quality

or linguistic reasons. The origins of the speakers of these 43 recordings is shown in Figure 2.2.

Each symbol on the map indicates the origin of a speaker, while the shape and the color of the

symbols represent the different transcribers. The grey area, furthermore, shows the German

speaking areas of Switzerland. The audios were manually transcribed, accordingly ArchiMob

does not only contain the audio files but also the manual transcripts. The corpus is provided

in an XML-format9 consisting of content files (the transcripts in XML), media files (alignment

transcripts to audio), and speaker files (socio-demographic speaker information). A content file

contains not only the transcribed text but encodes further information.

These content files contain the transcripts which are segmented into utterances. An utterance

corresponds to transcription unit of an approximate average length of 4-8 seconds. The XML-

representation of an utterance consists of the sequence of tokens (words) spoken during this time

frame. Each token is rendered as an XML-element containing a normalized version of the token,

a POS-tag, and the token itself (token is element, rest are attributes). For POS-tagging the ap-

8As Switzerland has only a defense army (Verteidigungsarmee) mobilization is only ordered if Switzerland
needs to defend its sovereignty which happened for the last time during the Second World war.

9Available at: https://www.spur.uzh.ch/en/departments/research/textgroup/ArchiMob.

html[27.02.2023]

https://www.spur.uzh.ch/en/departments/research/textgroup/ArchiMob.html
https://www.spur.uzh.ch/en/departments/research/textgroup/ArchiMob.html
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proach of Hollenstein and Aepli (2014) was adapted. Furthermore, utterances contain “pauses

(vocalised or not), repeated speech, and unclear (or untranscribable) passages”(Scherrer et al.,

2019, 742), which are also encoded as XML-elements. Each utterance has a media reference

pointing to the audio file and a reference to the speaker. As it is common for transcripts,

there is neither punctuation in ArchiMob, nor do the utterances correspond to SLUs (or proper

sentences).

As elaborated before, Swiss German has no consistent orthography. In ArchiMob we find:

“First, dialectal variation causes lexical units to be pronounced, and therefore also written, in a

different way in different regions. Second, a lexical unit that can be considered phonetically in-

variant (within a region) is written in a different way on different occasions (...)”(Scherrer et al.,

2019, 744) Therefore, normalization is a key step in processing Swiss German “[i]n order to es-

tablish lexical identity of all writing variants that can be identified as ’the same word’”(Scherrer

et al., 2019, 744). For ArchiMob, detailed normalization guidelines were established and, based

on them, training data normalized by humans was created. This data was used to train a

character-level statistical machine translation (CSMT) system which automatically normalized

the rest of the corpus (Samardžić et al. (2015)). Normalization in ArchiMob does not only

concern orthography10. The mentioned clitic pronouns were mapped to several tokens during

the normalization. For example, would we have it : “hettemers is normalised as hätten wir es

(...)”.(Scherrer et al., 2019, 745) “Swiss German word forms that do not have etymologically

related standard German counterparts are normalised using a reconstructed common Swiss

German form. For example, öpper ‘someone’ is normalised as etwer instead of the semantic

standard German equivalent jemand (...)”.(Scherrer et al., 2019, 745) ArchiMob’s normaliza-

tion makes Swiss German more similar to written Standard German on the world level. The

article itself provides more details on the normalization process.

ArchiMob consists of spontaneous, one-sided interviews and therefore the transcripts are

more unstructured than properly written Swiss German. Besides already mentioned problems

10Also different transcribers might induce variation in writing.



2.1. Swiss German 13

arising from having Swiss German text with all its variation, the interviewees for ArchiMob

were born between 1910 and 1930 and thus all roughly between 70 or 90 years old when

giving the interviews. This is important as age (among other factors) has been shown to affect

speech fluency (Leeper and Culatta (1995), Andrade and Martins (2010)). This leads to speech

disruptions and a decrease in speech rate. Ageing might affect speech in other aspects as

well. There are indications “that maintaining coherence in speech becomes more challenging

as people age”(Hoffman et al., 2018, 1) Furthermore, repetition is more common in speech of

elderly people. All this aspects together make the ArchiMob data highly unstructured and

difficult to process. Although normalization standardizes orthography (and vocabulary) to

some degree, the unstructuredness that is a consequence of spoken language remains part of

the transcripts. The ArchiMob transcripts are full of repetitions, interrupted sentences followed

by a reformulation attempt, incomplete sentences and sometimes the meaning is even hard to

access for native speakers.

In summary, ArchiMob, given its nature, is probably more unstructured than other Swiss

German resources. Normalization reduced the unstructuredness to some degree but much of

it remains. Besides mentioned aspects of elderly speech, it is important to be aware that the

provided utterance structure does not correspond to SLUs or sentences. One SLU might be

composed out of several utterances; one utterance might be a single SLU or contain several

SLUs. Or in the words of the authors: “The utterances are mostly fragments spanning over

one or more sentence constituents. We do not mark sentence boundaries.”(Scherrer et al., 2019,

743)

All these factors make ArchiMob a highly unstructured corpus in dire need of re-segmentation

to induce structure and render the resource available for further processing.

2.1.3 SwissDial

SwissDial is another resource for Swiss German data besides the two already mentioned cor-

pora ArchiMob and NOAH’s corpus. Dogan-Schönberger et al. (2021) introduced, as they

put it, “[t]he first annotated parallel corpus of spoken Swiss German across 8 major dialects
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(...).”(Dogan-Schönberger et al., 2021) Although it is by far not the first parallel corpus for

Swiss German and Standard German, it is indeed the first parallel corpus that aligns eight

Swiss German dialects and Standard German. Not every Standard German sentence is aligned

with all eight dialects, some are only mapped with a single dialect or a subset out of these eight

dialects. They do not report the statistics of the corpus explicitly but only a table showing

number of sentences per topic and dialect. This table claims that the corpus contains a total

of 23’195 sentences. Their reported numbers seem, however, not to match with the corpus

retrieved from the official download link1112. The downloaded corpus contains 11’212 sentences

in Standard German labeled with an ID. SwissDial was created by selecting Standard Ger-

man sentences from different domains like medicine, sports, economics, Swiss politics and other

which were manually translated to eight different Swiss German dialects. Annotators for each

dialect were asked to translate the sentences into their native dialect and, in a second step, to

read them aloud while being recorded. The corpus, thus, not only consists of aligned text but

also includes recordings.

2.2 Sentence Segmentation in Spoken Language

Before diving deeper into sentence segmentation in spoken language, some general considera-

tions concerning sentence segmentation might be a good starting point. Sentence Segmentation

is a sub-task of text segmentation, and, even though it might seem a little contradictory, as

spoken language is usually rendered as text before further processing, sentence segmentation

in spoken language could be considered a sub-task as well.

Pak and Teh (2018) provide an overview over different approaches in text segmentation.

They summarize 50 scientific papers covering a period of ten years, from January 2007 to Jan-

uary 2017. They report that 11% of the examined papers engage in sentence segmentation and

language-wise only 2% perform some kind of text segmentation task for German. The most

frequent task with 47% is segmentation into single words, and not surprisingly at all English

11Available at: https://mtc.ethz.ch/publications/open-source/swiss-dial.html[06.02.2023]
12For example, they state that the corpus contains 2’749 sentences from the dialect of Graubünden but the

downloaded corpus contains 10’475 sentences labeled as this dialect.

https://mtc.ethz.ch/publications/open-source/swiss-dial.html
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with 38% is the most studied language, closely followed by Chinese with 33%. This yields

the insight, that sentence segmentation is not really a prominent task. Furthermore, sentence

segmentation is often considered a solved problem. However, this is not true at all and re-

lated to the fact that most sentence-segmentation algorithms (and papers) work with properly

structured text. If the data in question is properly formatted and contains punctuation, the

task of sentence segmentation is reduced to punctuation disambiguation, i.e., it remains only

to decide if a full stops marks the end of a sentence or not. An example of such an estab-

lished system is the Punkt Sentence Tokenizer from nltk13. It is a unsupervised algorithm

that builds a model for abbreviation words, collocations, and words that start sentences. An

example of a CRF-based (conditional random fields) sentence segmentation algorithm that also

leverages punctuation for German can be found in the article from Sugisaki (2018). Another

interesting read might be the article of Evang et al. (2013),where they engaged in a sequence

labeling task simultaneously for tokenization and sentence segmentation also using punctuation.

In this paper, however, we aim to perform sentence segmentation for highly unstructured

transcripts of spoken language that lack punctuation and are not properly structured according

to grammar. This matter is further complicated by the peculiarities of Swiss German elaborated

in the previous section and the nature of ArchiMob data (elderly speech). Segmenting spoken

language transcripts also poses difficulties to human annotators. The paper of Stevenson and

Gaizauskas (2000) “explores the problem of identifying sentence boundaries in the transcrip-

tions produced by automatic speech recognition systems. An experiment which determines the

level of human performance for this task is described (...)”(Stevenson and Gaizauskas, 2000,

84). The experiments were conducted for English with six different human annotators. They

stripped the data from punctuation, presented different versions (upper cased, lower cased

and mixed) to the humans and ask them to perform sentence boundary detection. The data

consists of automatic transcripts from BBC’s Nine O’Clock News and is therefore rather struc-

tured for spoken language when compared to spontaneous daily speech. The human annotated

sentence boundaries were evaluated against the original form with punctuation. In terms of F1-

13https://www.nltk.org/api/nltk.tokenize.punkt.html[27.02.2023]

https://www.nltk.org/api/nltk.tokenize.punkt.html
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score, the best human achieved 94% and the lowest score ranged at 79%14. This paper clearly

demonstrates that human annotators do not re-segment the transcripts identically and that

no annotator managed to reproduce the original segmentation, which of course does not mean

that the human segmentation is not valid. Different, valid segmentations are always possible.

It does, however, prove that segmenting spoken language transcripts is a difficult task, even for

humans. The next section elaborates in detail on two highly interesting articles that engage in

the same task, SLU-detection in spoken language transcripts.

2.2.1 Sentence Segmentation in Spoken Language - Related Work

Zribi et al. (2016) “study the problem of detecting sentence boundary in transcribed spoken

Tunisian Arabic.” (Zribi et al., 2016, 323) As for most languages, also transcribed Tunisian

Arabic lacks punctuation and spontaneous speech is often ill-formed according to standard

grammar. Tunisian Arabic also differs in several aspects from modern standard Arabic, and

thus also a low-resource language. Such differences concern the syntactical, lexical, morpho-

logical and phonological level. Similar to Swiss German, Tunisian Arabic is not codified nor

standardized nor the official language of Tunisia. It is, however, considered to be the mother

tongue of most Tunisians and the language, respectively dialectal varieties of it, spoken in daily

life. Another, interesting feature of Tunisian Arabic is code switching. Not only did European

languages influence the lexical level of Tunisian Arabic but it is still common today to include

words or whole expression from French in the middle of a Tunisian Arabic sentence.

In general, sentence boundary detection “is a challenging task for Arabic language that is

characterized by the absence of capital letters and the boundaries of sentences are not gen-

erally marked with punctuation marks.” (Zribi et al., 2016, 325) Often, sentence boundaries

are marked with conjunctions or other lexical expression, but these same words do also have

other functions not marking a boundary. This already difficult task is further complicated by

characteristics of Tunisian Arabic mentioned above, the lack of punctuation in the transcripts,

and by phenomena related to spoken Tunisian Arabic like incomplete sentences, disfluency,

14They did not report kappa, refer to the article for further explanation



2.2. Sentence Segmentation in Spoken Language 17

Figure 2.3: Evaluation of Sentence Boundary Detection (Zribi et al., 2016, 329)

truncated word, repetitions and other. Zribi et al. (2016) present three different approaches to

tackle described problem working with a corpus of transcribed Tunisian Arabic consisting of

42’388 words. The corpus is already segmented into sentences and a sentence was considered

to constitute “a semantically meaningful unit”(Zribi et al., 2016, 326). The corpus was divided

into a training set (32,012 words and 6,133 sentences), a development set (3,175 words and 440

sentences), and a test set (7,201 words and 1,215 sentences).

Firstly, they presented a rule based approach leveraging lexical markers like conjunctions

and two prosodic features (silent and filled pauses). They created a set of 23 rules. Secondly,

they engaged in a statistical approach based on a partial decision tree algorithm (PART). For

this purpose, the tokens were labeled B-S (Beginning of sentence), I-S (Inside of sentence), E-S

(End of sentence), and S (Single word sentence). Such algorithms rely on predefined features,

“[they] have used two simple prosodic features that are silent and filled pauses. In the design of

our features, [they] rely on linguistic features like adverbs, adjectives, verbs, etc.”(Zribi et al.,

2016, 328) Based on these features, the algorithm creates rules that serve as the decision points.

Lastly, they experimented with two (three in theory, but only two evaluated) different hybrid

approaches, combining aspects from the rule-based and the statistical approach. Table 2.3 dis-

plays the results of the evaluation on the test set, CR stands for the rule-based approach, PART

for the statistical one (partial decision tree), and finally the two reported hybrid approaches.

As a baseline, they used STAr, a system for sentence boundary detection in modern standard

Arabic based on a set of contextual rules.

Following the evaluation of sentence boundary detection, they examined the effect of the seg-
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Figure 2.4: Accuracy of the POS-tagger Evaluation (Zribi et al., 2016, 330)

mentation on a POS-tagger. For this purpose, they trained a POS-tagger with three different

methods on different segmentations of the corpus. For the training method, they chose a statis-

tical approach (SVM), and two rule-based methods (Ripper and PART). As an input format,

they used no segmentation at all (NoSeg), the manually segmented corpus (HandSeg), and

the sentence segmentation based on the four approaches presented (AutSeg). For the reported

results, ten-fold-cross-validation was used. Although utterly interesting, Zribi et al. (2016) fail

to interpret their results properly. Firstly, it is not clear on which data they evaluated the

tagger. Secondly, they state “We remark that the SBD [sentence boundary detection] system

helps the TA [Tunisian Arabic] POS tagger to improve its accuracy. We note that SVM and

RIPPER performed better when the SBD system detects short sentences. The value of accuracy

of our POS tagger trained on SVM has decreased [sic!] from 61.78% (non-segmented corpus)

to 63.66% (corpus segmented with the second method of hybridization). Likewise [sic!], the

accuracy increases from 62.53% to 64.84% when Ripper is used for training the tagger.”(Zribi

et al., 2016, 330) The accuracy for the SVM-POS-tagger increased for all approaches except

PART when compared to the approach with non-segmented input. Furthermore, the best re-

sult was achieved using the non-segmented corpus with training based on PART (rule-based).

If sentence boundary detection truly improved the performance of the POS-tagger, we would

expect that 1) the manually segmentation is always better than no segmentation, and that 2)

there is a general trend that inducing segmentation into the data improves the accuracy. 1)

clearly does not hold as demonstrated by the superior performance of PART on NoSeg. Also

regarding 2), we see contradicting results in Table 2.4. For the PART-based tagger, any seg-

mentation performs worse than no segmentation. Segmentation induced by PART (AutSeg)
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yields worse results for all three parser than no segmentation. This is especially puzzling as

Table 2.3 reports the sentence boundary detection performance of the PART approach as the

best. For example, it is indeed confusing that the CR approach (contextual rules) ranks on the

second last place in terms of sentence segmentation in Table 2.3 but on the second place for

PART and SVM, and on the first place for Ripper in terms of POS-tagger-accuracy. They even

seem to contradict themselves within a few lines of text: “We remark that the SBD system

helps the TA POS tagger to improve its accuracy.” and “We show that the best value is given

by using non-segmented corpus.”(Zribi et al., 2016, 330) Lastly and most importantly, varying

the training algorithms for the parser and the input data is not a good idea as it impedes to

conclude if changes in results are due to changes in the algorithm or in the data.

Zribi et al. (2016) were confronted with an almost identical problem as for the task presented

here. They aimed to re-segment transcribed data from a not standardized, low-resource lan-

guage into SLUs. Similar to Swiss German, Tunesian Arabic exhibits a lot of variation. Their

data already contained segmentation into SLUs, thus allowed to extract linguistic rules by

studying patterns of the SLU-boundaries and engage in statistical approaches.

Rehbein et al. (2020) engaged in “Improving Sentence Boundary Detection for Spoken

Language Transcripts” for German as the title states. The paper describes different approaches

to detect SLU-boundaries in the SegCor corpus15. SegCor “consists of 33 documents with

more than 54,000 lexical tokens (...) that were divided into sentence-like units by the SegCor

project.”(Rehbein et al., 2020, 7103) The original data originates in the FOLK corpus that con-

sists of “conversational speech with two or more speakers that was recorded in non-laboratory

settings”(Rehbein et al., 2020, 7103). Topics of the conversations include, to only name a few,

children taking in kindergarten, teacher giving feedback, couples talking, presentations held

by experts. While the original segmentation of the data is based on ’dialogue contribution’,

i.e., one consecutive unit of speech from one speaker, they worked with a version that was

manually divided into SLUs (see Westpfahl and Schmidt (2016) for the manual segmentation).

A contribution might contain various SLUs and one SLU might stretch across more than one

contribution. There is, lastly, a mixed case, where a contribution contains various SLUs and

15https://segcor.cnrs.fr/[06.02.2023]

https://segcor.cnrs.fr/
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Figure 2.5: Statistics for Train, Dev, Test Data from SegCor and KiDKo (Rehbein et al., 2020,
7105)

one of them might continue in the next contribution.

Figure 2.5 shows the number of tokens and SLU across the train, development and test set from

SegCor corpus. Besides relying on the SegCor corpus, they engaged in training data expan-

sion using another corpus KiDKo, also shown in Figure 2.5. KiDKo comes with punctuation,

part-of-speech-tags and already divided into SLUs. The corpus “contains spontaneous peer-

group dialogues of adolescents from multiethnic Berlin-Kreuzberg (around 266,000 tokens) and

a supplementary corpus with adolescent speakers from monoethnic Berlin-Hellersdorf (around

111,000 tokens, excluding punctuation).”(Rehbein et al., 2020, 1704) They fine-tuned 3 types

of pre-trained Bert models, all of them based on the pre-trained dbmdz/bert-base-german-

uncased16. Before training models, they examined with a CRF model if adding more and

more data from KiDKo corpus step-wise to the training data from SegCor would improve the

results of the model for SLU detection. “[They] were surprised that the large KiDKo training

set did not help at all to improve results for SLU detection in SegCor.”(Rehbein et al., 2020,

7106) In a previous article, Ruppenhofer and Rehbein (2019) had already examined and shown

that CRF models can be outperformed by neural models with contextual string embeddings

(e.g. Bert), thus the CRF model was only used to study the potential impact of adding data

from KiDKo on the SegCor evaluation.

Firstly, they fine-tuned the pre-trained Bert model as a sequence tagging task, meaning that

each token was assigned a label and the model was trained to predict these correctly. They

used B for boundary and O for non-boundary. With this model, they already achieved rather

impressive results with an accuracy of 95.1% reported in Table 2.1. Secondly, they experi-

16Available at: https://huggingface.co/dbmdz/bert-base-german-uncased[06.02.2023]

https://huggingface.co/dbmdz/bert-base-german-uncased
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Model Accuracy F1

Sequence tagging 95.1 89.7
Sentence pair 96.0 91.5
Transfer learning 96.3 92.0

Table 2.1: Average Results Reported in Rehbein et al. (2020)

mented with modeling SLU-detection as a sentence pair classification task. The model receives

two inputs S1 and S2 and has to decide if they form an SLU together or not. In order to create

these input pairs, they iterated over all tokens. For each token t, they set t to be the last

token of S1 and take at least ten previous tokens of t for S1 and at least ten following tokens

for S2. Doing so, the model will decide for (almost) all tokens t if an SLU-boundary follows

the token or not. Both of these model were trained on the SegCor training data. The results

improved slightly when modelling the task as a sentence pair classification. Thirdly, although

adding KiDKo to the training data did not improve the results of the CRF models, they tried to

leverage this data. In their final experiment, transfer learning, instead of mixing both training

data sets, they fine-tuned the pre-trained Bert model first on the KiDKo data and followed by

a second fine-tuning on the SegCor data. Besides improving results further by almost 1%, they,

more importantly, found “that this procedure results in a more robust classifier, with hardly

any variation between the results for the different runs. In contrast, our previous Bert models

are highly sensitive to initialisation (...).”(Rehbein et al., 2020, 7109)

For further reading regarding other languages, some references include: Wang et al. (2019)

(sentence segmentation embedded in a English-Chinese translation task), Downey et al. (2021)

(sentence segmentation for low resource Mayan language). For further reading about German,

the papers from Glaser et al. (2021) (chunking for legal German) and Ortmann (2021) (chunk-

ing for historical German) might be a good starting point.
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2.3 Dependency Parsing

Dependency parsing, especially with the rise of neural networks, might not be the most promi-

nent or prestigious task in NLP, it remains, however, an important one and provides the basis

for many different further processing steps in NLP (e.g. grammar or spellcheckers). Depen-

dency parsing also explicitly learns and annotates the structure of a language. It follows the

developments in NLP, meaning that statistical approaches were used at the beginning, while

now most state-of-the-art parsers are based on neural networks. An important distinction when

talking about syntactical parsing is the difference between dependency and constituency pars-

ing. Constituency parsing aims to group words forming a syntactical unit together, e.g., an

article and a noun form a noun phrase, while dependency parsing annotates the relationship

between single tokens, meaning that the article would depend on the noun and the relationship

is marked as a determiner (det). In dependency parsing, a head is assigned to each token of

a sentence and the syntactic relation between the head and the child is labeled according to a

predefined dependency grammar. Both parsing approaches require a pre-defined set of labels

to annotate the syntactic relationships of a sentence. These tag-sets can be language specific.

There is, however, a widely known approach to create a tag-set aiming to annotate all languages

of the world.

“Universal dependencies (UD) is at the same time a framework for crosslinguistically con-

sistent morphosyntactic annotation, an open community effort to create morphosyntactically

annotated corpora for many languages”(de Marneffe et al., 2021, 255) As the name suggests,

UD is a way of annotating dependency parsing. Universal Dependencies provides currently

data, guidelines and treebanks (data corpora containing annotated syntax trees) for 138 lan-

guages17. The current UD is the updated version, see Nivre et al. (2020) for information about

the change from UD1 to UD2. For each language, there might be some specific rules how to

annotate certain cases, language-specific labels or more fine-grained label-supplements. The

official annotation guidelines with examples for German can be found on the web-page18.

The common data format used for dependency parsing is CoNLLU 19. CoNLLU-files are tab-

17https://universaldependencies.org/[27.02.2023]
18https://universaldependencies.org/de/[27.02.2023]
19https://universaldependencies.org/format.html[27.02.2023]

https://universaldependencies.org/
https://universaldependencies.org/de/
https://universaldependencies.org/format.html
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separeted uft8 files composed out of ten columns. For dependency parsing, the relevant columns

are: 4. UPOS - Universal part-of-speech tag; 5. XPOS - Language-specific part-of-speech tag;

7. HEAD - Head of the current word; 8. DEPREL - Universal dependency relation to the

HEAD. For German, Stuttgart-Tübingen-TagSet (STTS)20 is usually used as the fine-grained

language-specific tagset.

Many languages have their own annotation scheme for syntactic relations. In the case of Ger-

man, a famous tag-set was introduced with the TiGer-dependency-bank (Forst et al., 2004) (see

Uszkoreit et al. (2003) for constituency parsing). It is more fine-grained than the UD-tag-set

and more tailored to the German language. For example, the TiGer dependency tag set has

its own label for a genitive object, which does not exist in UD and needs to be annotated

differently (it may also vary with the language in discussion). Usually, different tag-sets for a

language are not compatible with one another, and neither are dependency and constituency

sets. There is, however, a conversion from the tag-set applied in the TiGer tree-bank (con-

stituency) to German UD (dependency). Çöltekin et al. (2017) introduced this conversion for

the TiGer treebank and others (e.g. TuBa-D/Z21). Generally, a conversion from UD to a more

fine-grained tag-set is not possible.

In recent years, UD was used more frequently to annotate spoken language. Dobrovoljc (2022)

compared different UD-treebanks for spoken language and concluded “that the spoken lan-

guage treebanks differ considerably with respect to the inventory and the format of tran-

scribed phenomena, as well as the principles adopted in their morphosyntactic annotation.

This is particularly true for the dependency annotation of speech disfluencies, where conflicting

data annotations suggest an underspecification of the guidelines pertaining to speech repairs22

(...).”(Dobrovoljc, 2022, 1798 ). This does not come as a surprise, UD encodes the standardized

dependencies for a language but spoken language usually does not comply with this standard-

ization and is accordingly challenging to annotate. Speech repairs here means correcting a

previously uttered mistake while speaking. A common speak repair in spoken German would

20https://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/germantagsets/[27.02.2023]
21https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/

neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/

ressourcen/corpora/tueba-dz/[27.02.2023]
22

https://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/germantagsets/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tueba-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tueba-dz/
https://uni-tuebingen.de/fakultaeten/philosophische-fakultaet/fachbereiche/neuphilologie/seminar-fuer-sprachwissenschaft/arbeitsbereiche/allg-sprachwissenschaft-computerlinguistik/ressourcen/corpora/tueba-dz/
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be a correction of the definite article; a speaker might start with der, then opts for a different

noun and has to correct to die or das. A frequent example from ArchiMob is the repair of

the auxiliary verb: man hat man ist gan baden (one had one ’went’ swimming). The speaker

probably did not intend to use the word gan as baden alone requires hat but in combination

with gan ist must be used.

2.3.1 Dependency Parser

Dependency parsers need to be trained on annotated data23. There are statistical and neutral

network based approaches (among others) for training parsers. Alternatively, a pre-trained de-

pendency parser can be used. MaltParser 24 and Wapiti-Parser 25 are two examples of statistical

parsers which were also applied in Hollenstein and Aepli (2014). More recent parsers tend to

be based on neural networks. Parsito is “a neural network classifier for prediction and requires

no feature engineering”(Straka et al., 2016, 4293). Parsito serves as the dependency parsing

component of UDPipe, a trainable pipeline that “performs tokenization, morphological analy-

sis, part-of-speech tagging, lemmatization and dependency parsing for nearly all treebanks of

Universal Dependencies (...)”(Straka et al., 2016, 4290). Straka et al. (2016) achieved a Labeled

Attachment Score (LAS)26 of 78.6 for all avalaible UD German treebanks (15’894 sentences,

2016, UD version 1.2). This result was achieved when providing manual gold POS-tags with

the data, with UDPipe generated POS-tags the parser scored a LAS of 71.8.

de Kok and Pütz (2020) engaged in a student-teacher-model approach aiming to improve the

performance of a bidirectional LSTM parser for German and Dutch. They tackled dependency

parsing as a sequence labeling task. With their approach, they managed to improve the per-

formance of their bidirectional LSTM parser from 92.23 to 94.33 LAS for German. Results

for Dutch were slightly lower. More interestingly, however, they elaborate on common errors

23There are approaches which try to avoid this as for example the model transfer approach presented in Aepli
and Clematide (2018).

24https://www.maltparser.org/userguide.html[27.02.2023]
25https://github.com/wireghoul/Wapiti-Parser[27.02.2023]
26Explanation of LAS see Section 4.2

https://www.maltparser.org/userguide.html
https://github.com/wireghoul/Wapiti-Parser
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induced by statistical parsers when engaging in UD dependency parsing for German and Dutch.

For their baseline parser (also bidirectional LSTM) they reported the ten most frequent labels

causing problems: obl, nmod, conj, parataxis, nsubj, amod, obj, appos, root, advmod. “These

relations are particularly difficult to parse, because the correct attachment is not only deter-

mined by syntactic constraints, but also by semantic preferences (...)”(de Kok and Pütz, 2020,

91) They fine-tuned various models and engaged in different strategies to reduce the errors for

the error-prone labels. They managed to improve LAS for all the labels, where improvements

ranged from 0.71 up to 7.47 LAS-points.



Chapter 3

Data and Methods

The present work investigates the impact of re-segmenting unstructured Swiss German audio

transcripts into SLUs on dependency parser performance. Accordingly, the previous Chapter 2

provided background knowledge on Swiss German, sentence re-segmentation in spoken language

and dependency parsing. The variation within the Swiss German dialects and the differences

to Standard German were exemplified in detail (Section 2.1), furthermore, ArchiMob and other

Swiss German resources were introduced. Section 2.3 provided the necessary background for

dependency parsing and emphasized challenges. This chapter elaborates on the approach un-

dertaken to tackle re-segmentation into SLUs for spoken Swiss German (ArchiMob) and the

examination of the impact on dependency parsing.

Section 3.1 argues that a neural network approach seems most promising and introduces the

choice for the neural network (NN).

Swiss German is a low-resource language lacking standardization. Therefore, the lack of avail-

able data and variation in data is a pressing problem, then Section 2.2 revealed most existing

approaches for SLU-segmentation are supervised. A supervised learning setting requires test

and training data. To engage in a supervised setting, we need data that (1) contains SLU-

boundaries in any form; (2) has word-level normalization, and for the test set additionally (3)

dependency parsing annotation. ArchiMob, however, has no alignment between utterances and

SLUs (1) and no dependency labels (3). Hence, a test set had to be manually created, adding

26
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(1) and (3); and moreover training data from a different source was required.

Section 3.2.1 elaborates extensively on the manual segmentation process of the test set while

concurrently serving the purpose of further exemplifying differences between Swiss German and

Standard German, and the unstructuredness of the ArchiMob data. The manual dependency

annotation, the chosen tag-set and the dependency parser are presented in Section 3.2.2.

For the training data, normalization (2) is the most crucial point, given the differences among

the dialects, especially in orthography, as explained in Section 2.1. The SwissDial corpus (see

Section 2.1.3) was chosen as out-of-domain training data and was automatically processed to

resemble the structure of ArchiMob. The purpose of this argumentation is elaborated in Sec-

tion 3.3. The following Section 3.4 presents mentioned data processing steps and introduces

terminology for the different data sets, followed by the data statistics in Section 3.5.

3.1 The Approach to the Problem of Re-Segmentation

and its Impact on Dependency Parsing

For structured text, SLU-boundary detection tends to be a simple task and mainly relies on

disambiguating full stops. The previous chapter left no doubt that the same task for spoken

language transcripts is not trivial and disambiguating punctuation is not an option. We, there-

fore, require an algorithm that catches the patterns marking SLU-boundaries to re-segment

ArchiMob into SLUs. Section 3.2.1 will exemplify how complex such patterns are for unstruc-

tured data as it is the case for spoken Swiss German.

The situation of the presented related work differs mainly in the availability of segmented data.

SegCor corpus used by Rehbein et al. (2020) and the Tunisian Arabic one presented by Zribi

et al. (2016) already contained SLUs, since both corpora were manually split into SLUs. Zribi

et al. (2016) relied on a semantic concept for the notion of an SLU, while for SegCor prosodic

features played an important role (see Westpfahl and Schmidt (2016) and Rehbein et al. (2020)).

Leveraging grammatical features to create rules, as performed by Zribi et al. (2016), might be

a promising approach for SLU detection in Swiss German transcripts. However, for ArchiMob,
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we do not have the data segmented into SLUs to study and extract rules. Moreover, Section 2.1

elaborated on the differences between Standard German and within the Swiss German dialect

continuum. This demonstrates that finding rules governing SLU-boundaries is not trivial and

highly dependent on the dialect and the speaker.

Rehbein et al. (2020) used the provided segmentation to engage in a supervised machine learn-

ing setting fine-tuning pre-trained Bert models. They motivated training neural networks by

referring to previous work showing the superior performance of such models over CRF-models.

This research follows an approach similar to Rehbein et al. (2020) and engage in a binary token

classification task fine-tuning a Standard German Bert model. Tokens are labeled with Inside

or End of SLU and we aim to predict tokens that mark the SLU-boundary (E). Recent research

about linguistic structure captured by NNs further supports the choice of methods. Depen-

dency parsing is a way of explicitly annotating (linguistic) structure of a language. Manning

et al. (2020) “(...) demonstrate that modern deep contextual language models learn major

aspects of this structure, without any explicit supervision.”(Manning et al., 2020, 30046) By

supervision they mean that the models are not specifically trained to do so. The Bert model

we fine-tune is such language model for German that should be able to capture parts of the

structure we explicitly annotate with dependency annotation.

Bert is a transformer-based neural network architecture. Bert stands for Bidirectional Encoder

Representations from Transformers and was first introduced in Devlin et al. (2019). Transform-

ers make extensive use of different attention mechanisms and include positional embeddings.

Non-positional embeddings follow a bag-of-word approach, mapping each token to one value

in the embedding space completely ignoring surrounding tokens and the position within the

sentence. Positional embeddings take word order and surrounding tokens into account. SLU-

boundaries in spoken language are not strictly governed by standardized grammar but are

rather highly dependent on the context. For example, placing part of the predicate at the last

position of subordinated or main clauses is often disturbed by placing other constituents in this

position, by repeating parts of the utterance, with interruption of the current utterance, with

absence or omission of the part of the predicate that should be placed last in general, or with

other phenomena. Hence, only the context can help to recognize such SLU boundaries and
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Bert’s positional embeddings might be able to capture the complex, irregular patterns govern-

ing SLU-boundaries for transcribed Swiss German. “Generally, if words appear close to each

other in a text (i.e., their positions are nearby), they are more likely to determine the (local)

semantics together, than if they occurred far apart. Hence, positional proximity of words x and

y should result in proximity of their embedded representations x⃗ and y⃗.”(Wang et al., 2021, 2)

The uncased German Bert mode used for the experiments in this research leverages absolute

positional embeddings (Gehring et al., 2017). In simple terms, the absolute positional embed-

ding of a input token xi is a combination of a ‘normal’ word embedding wi and the embedding

pi of the position of token xi within the input (see Gehring et al. (2017)). Wang et al. (2021)

conduct an empirical examination of seven positional embeddings (and their combination) of

Bert models for classification (and span prediction).

For the second part of the research question, the impact of SLU re-segmentation on depen-

dency parsing, it suffices to select a pre-trained dependency parser and an annotation schema.

We examine the impact and are interested in the improvement we can achieve with SLU-re-

segmentation. Accordingly, the absolute performance of the dependency parser is secondary.

We will use the UD tag set for German. On the one hand, we want to contribute to and support

the open UD-community. On the other hand, results based on UD are better comparable to

other languages. As the task tackled here might be interesting for other low-resource languages,

UD based results provide a better point of reference. As a dependency parser, UDPipe was

chosen (see Section 2.3; Straka et al. (2016)).

3.2 Manual Creation of Test Set

Framing re-segmentation into SLUs as a token classification with a neural network is a super-

vised learning setting. As stated at the beginning of this chapter, this setting requires a test set

that (1) contains SLU-boundaries in any form; (2) has word-level normalization; and (3) de-

pendency parsing annotation. The manual segmentation into SLUs is presented first, followed
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by the manual dependency annotation. The following two sections presupposes familiarity with

linguistic terminology and a rather profound understanding of Standard German grammar.

3.2.1 Manual Test Set Creation

The test set contains 203 SLUs. This slightly odd number of test sentence-like units is due to

the fact that originally 200 SLUs were selected. Later, following the rules in table 3.1 rigorously

and iteratively re-evaluating the splits made, a few sentences had to be split up further, thus,

yielding a total of 203 sentences.

For the test set, two interviews from different dialectal areas were chosen and a little more than

100 utterances extracted from each one. One interview was held with a male speaker from Bern

born in 1920, the second one comes from a female interviewee from the dialectal area of Zurich

born in 1928. These two dialect areas were selected out of several aspects. They are quite

different from each other in terms of pronunciation, vocabulary and some grammatical aspects.

Moreover, variants of both dialects are the most commonly spoken dialects in Switzerland.

Zurich is the most populous city in Switzerland, and so is the region (Kanton) of Zurich. Bern

as a city ranks on the fifth place, respectively on the third if only the German speaking part

of Switzerland is considered, and is the second most populous region (Kanton). (Bundesamt

für Statistik, 2022a, 40) Bern is also the seat of the government, and the dialect from Bern

is considered by many native speakers (of any Swiss German dialect) the most beautiful and

popular one (Gasser, 2020). The motivation for this selection is clearly that those two dialects

are the dialects (or variants of it) most commonly used, written and spoken, accordingly it

would be a huge step to improve NLP techniques for these two dialects. Whereas the dialect

from Zurich is closer to modern Standard High German, the dialects from Bern conserve more

dialectal features as it is most apparent in the vocabulary (e.g. Anke1 (butter), Nidlä 2 (a type

of cream))3.

1https://www.idiotikon.ch/wortgeschichten/anken[16.01.2023]
2https://digital.idiotikon.ch/idtkn/id4.htm#!page/40671/mode/2up[16.01.2023]
3Although, the traces of the word Anke go back to the 12th century and it used to be the standard word for

butter in the Alemannic dialect areas of Switzerland and South Baden (Südbaden), its usage is disappearing.
The Idiotikon explains that ”since we [people in the German speaking part of Switzerland] started buying ’edible
fat’ [Speisefett] packaged in supermarkets, the Standard German word Butter is penetrating [the dialectal areas]

https://www.idiotikon.ch/wortgeschichten/anken
https://digital.idiotikon.ch/idtkn/id4.htm#!page/40671/mode/2up
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Number Rule
R1 Split into shortest SLUs possible
R2 Split parataxis if topic changes
R3.1 Split on coordinating conjunctions if the topic changes or they are used as

‘next’, ‘and then’ etc.
R3.2 Coordinating conjunctions not used as such go to the beginning of the next

SLU
R3.3 ‘oder’ not used as a conjunction goes to the end of an SLU
R4 Do not split if the second SLU shares a constituent with the first one
R5 If two consecutive SLUs do not share a constituent, but one of them is

syntactically incomplete, split only if they are not semantically related

Table 3.1: Guidlines for Manual Segmentation

Although test data is usually chosen randomly from the whole data set, this might not be

the best approach for ArchiMob. The data is segmented into utterances which do not follow

semantic nor syntactic criteria at all. Some utterances contain various sentence-like units others

none at all. Even for a native speaker it is often not possible to decide on the boundaries of

sentence-like units if the context is not provided. As the interviews are one-sided, such ‘context

window’ of SLUs belonging together are rather large. For that matter, the utterances were not

selected at random, but the original order of the utterances within the interviews was preserved.

From both interviews, a bit more than the first 100 utterances were selected for further manual

editing. For the manual re-segmentation process, a few guidelines had to be established, which

are displayed in Table 3.1. Usually, a language knows no grammatical restriction for how many

main clauses can be stacked consecutively. Especially in spoken language, this is a common

phenomenon. German as a language is prone to construct long, complex sentences, even in

structured formal writing. Therefore, the guidelines revolve around such chains of SLUs (or

sentences) and specify when and where to split. Split refers here to inserting an SLU-boundary.

The notion of SLU applied here aims at a compromise between grammar and semantics. We

aim to capture the smallest (possibly) syntactically complete (!) SLUs, which is expressed by

R1.

on a broad front.” - Original: “Seit wir das Speisefett fertig abgepackt bei den Grossverteilern einkaufen, dringt
auf breiter Front das schriftdeutsche (aber immer noch mit dem männlichen Geschlecht von Anke und Schmalz
verbundene) Wort Butter vor.” (Landolt, 2015)
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R2 - Parataxis

In German grammar, parataxis (Parataxe) refers to the coordination of two or more equal

(gleichrangig)4 clauses by using conjunctions (und, oder, wie etc.) or punctuation (, and ; and

-) (Averintseva-Klisch, 2018, 25). A parataxis can occur between main clauses or subordinated

clauses but as a subordinated clauses can never form a proper syntactical unit according to

Standard German grammar, R2 only refers to parataxis with main clauses. Parataxis with

subordinated clauses is (almost) never split into SLUs. A parataxis without conjunctions can

always be split into single main clauses by replacing coordinating punctuation with full stops.

Following, R3 specifies how to treat constructions with coordinating conjunctions.

R3 - Coordinating Conjunctions

Coordinating conjunctions are very common in spoken languages and appear in many places

where they do not show up in written language, further rules on how to treat them had to

be established. In written language, however, it is considered a sign of poor stylistics if a

main clause starts with a coordinating conjunctions, although grammar rules do not forbid it.

Rules R3.1-R3.3 specify when to introduce a sentence split in the presence of a coordinating

conjunction, and where to place the conjunction. Even for a native speaker it is not a trivial

task to decide which coordinating conjunctions are indeed used as such and which are tied to

spoken language. Therefore, the splits made implementing R3.2 are subject to the author’s own

interpretation of the semantics of these conjunctions, and might be debatable. The oder (or)

specified in R3.3 is a highly characteristic feature of Swiss German. It is the standard question

tag for many Swiss German varieties, and is referenced often in popular culture. For example,

a humorous five-day language course for Swiss German lists for day one to use oder 5 after every

sentence (Schweiz für Dummies). As a final remark when talking about conjunctions, German

grammar knows a subcategory of adverbs (in the sense of German grammar) that might look

like a conjunction on first sight and that is often used very similarly. This category is called

4For German grammar, the distinction between main and subordinated clauses is highly important.
5Actually pronounced as odr
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Konjunktionaladverb or Konnektoradverb meaning ‘adverb used as a conjunction or connector’.

The difference is that a Konjunktionaladverb may appear in the position of a conjunction but

is, opposed to a real conjunction, free to alter its position in the sentence (see (Eisenberg, 2009,

584)). Typical examples include dann, deswegen, jedoch (then, therefore, however) and many

more. For the sake of simplicity, this distinction is not maintained throughout this thesis. All

Konjunktionaladverbien will be labeled and treated as conjunctions6.

R4 and R5 - Contracted Sentences

In German grammar, a contracted sentence is defined as at least two coordinated (main) clauses

which share a constituent that is omitted in the latter clauses (Speyer, 2016). Commonly shared

constituents are subject and auxiliary verbs. R5, lastly, serves as a guideline on how to treat

syntactically incomplete constructions of any kind. This might be a parataxis of ellipsis or other

phenomena coordinating incomplete main clauses. As the data set consists of spontaneous

interviews, i.e., none of the interviewee prepared answers, it is full of sequences of syntactically

incomplete (main) clauses which lack grammatical features inducing sentence splits. According

to R5, we rely on semantics to segment such sequences into SLUs.

Examples

The manual SLU-creation is illustrated with examples7 from the data for each ‘rule’. < x >

refers to the utterance number within the test set. Utterances were extracted and simply

enumerated. < x > marks the utterance boundaries, whereas | denotes a manually induced

SLU-boundary; this illustrates that utterance and SLU-boundaries do not coincide. Exam-

ples come as triplets of Original Utterance, Standard German, Translation. Although labeled

‘translation’ it, in fact, does not represent a real translation from Swiss German to English.

While the Standard German version is correct according to German grammar, orthography

6To the best knowledge of the author, the UD guidelines do not distinguish the two categories. Given that
they fulfill more or less the same function, it is reasonable not to distinguish them for dependency labels.

7Most examples do not correspond to one single rule but rather to various. Especially R1 - R3.1 tend to
overlap.
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and punctuation, this does not hold true for English. The English translation does not only

convey the meaning but stays as close as possible to the Swiss German version in an attempt

to illustrate the unstructuredness of the original data. This, of course, comes at a cost. Often

the English ‘translation’ is a bit odd in terms of vocabulary and word order, some sentence

might even be ungrammatical.

Table 3.2 shows an example utterance that was split into three SLUs. Although the first

split might correspond to R3.1 and the second one to R5, the example still shows how one

utterance was divided into as many and as short SLUs as possible.

The next example, shown in Table 3.3, contains a typical parataxis of the form main clause,

main clause coordinating conjunction main clause rendered as such in the Standard German

translation. The different main clauses were split into SLUs.

Original Utterances < 22 > das sind ein haufen italiener gewesen | aber das hat man nicht

gewusst | das sind einfach

Standard German Das sind ein haufen Italiener gewesen, aber das hat man nicht gewusst.

Das sind einfach.

Translation and that was a bunch of italians | but one didn’t know that | those

were simply

Table 3.2: Example of R1

Original Utterances < 3 > wir sind da bei ihr daheim | es ist der einundzwanzigste märz

zweitausend und eins | und ich bin die tanja wirz

Standard German Wir sind da bei ihr zuhause, es ist der einundzwanzigste März

zweitausendundeins, und ich bin Tanja Wirz.

Translation we are there at her home | it is the twenty-first of March two thousand

and one | and I am Tanja Wirz

Table 3.3: Example of R2
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For R3.1 an example can be found in Table 3.4. The split before aber (but) is based on a

change in topic. The ellipsis before does not share a topic with the second, complete sentence,

nor does it belong to the previous utterance. In addition, this example shows a difference in

word order, whereas for Swiss German the order is modal verb main verb it is inverted for

Standard German.

Original Utterances < 92 > und das ist | aber eine stunde haben wir müssen laufen bis wir

in dem wald gewesen sind

Standard German Und das ist. Aber eine Stunde haben wir laufen müssen, bis wir im

Wald (gewesen) waren.

Translation and this is | but we had to walk an hour until we were in the forest

Table 3.4: Example of R3.1

Original Utterances < 66 > und das ist gezahlt worden vom italienischen staat | und auf

dem dann sind sie auf dem schiff gewesen

Standard German Und das ist vom italienischen Staat gezahlt worden. (und auf dem)

Dann sind sie auf dem Schiff gewesen.

Translation and this was paid by the Italian state | and on the then they were on

the ship

Table 3.5: Example of R3.2

In Table 3.5 utterance < 66 > starts with the coordinating conjunction und (and) from

the previous utterance based on a change in topic. The second und marks an SLU-boundary as

it conveys the meaning and function of ‘then’ or ‘next’. The actual appearance of dann (then)

after the und solidifies this claim; und dann (and then) is very common in spoken German

when narrating. One could also argue that the topic changes rather drastically from SLU 1 to

SLU 2 in this example. Besides exemplifying R3.2, the sentence also shows why manual re-

segmentation is a challenging task. The preposition and article from the prepositional phrase

(Präpositionalgefüge) ‘on the ship’ appears twice. Furthermore, we find two conjunctions und

(and) and dann (then), while in written Standard German we would only expect one. To com-
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plicate issues even more, each of the two conjunctions would require a different word order in

Standard German. This is due to the fact that dann is a Konjunktionaladverb and not a con-

junction, while and is a true conjunction. If a Konjunktionaladverb is placed at the beginning

of a main clause, the conjugated verb must follow. However, if a true coordinating conjunction

is used, the position before the conjugated verb is available and must be occupied. The correct

word order would be: und sie sind versus dann sind sie. Although, the repetition and incorrect

word order does not affect intelligibility in this sentences, yet it does in more problematic ones.

The phenomenon simply arises as the speaker starts formulating the sentence and then restarts

with a different expression. For a perfectly clean and grammatically correct test set, one would

ideally strip und auf dem producing a proper sentence. Doing this is strongly discouraged for

two reasons. 1) und auf dem is clearly missing a constituent that appears only a few words

later (Schiff (ship)). 2) the ArchiMob corpus is full of similar utterances which constitute one

of the main challenges when re-segmenting this corpus (and transcribed spoken language). If

the manual test set is too correct, the results of the evaluation might not be representative

compared to the performance when applied to the whole, not manually corrected corpus.

Table 3.6 displays a sentence containing oder in the function of a question tag. Besides

that the second SLU contains an interesting phenomenon. The indirect object (Dativobjekt) den

Kunden (to the customers) is positioned after the past participle vorgeführt (demonstrated)

which is forbidden in proper Standard German without punctuation. This might occur in

spoken language, as the indirect object is added after the end of the sentence as additional

information. A more natural word order would be: Adverb - conjugated verb - subject -

adverb - indirect object - direct object - remaining verb(s). This yields: Dann hat man dort

in Walenstadt den Kunden die Waffen vorgeführt. (Then, ‘one’ demonstrated the weapons to

the clients there, in Walenstadt). For a native speaker, word order does not affect intelligibility

at all. It, however, renders the re-segmentation task more difficult. According to German

grammar, if the predicate is a complex one, i.e. composed of several verbs, all of them, except

the conjugated one, have to be placed at the last position of the sentence (there are rules

governing the order). This implies that in most cases an SLU-split should occur after the verbs
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marking the last position within the clause but apparently not in all cases. We must not isolate

the indirect object by cutting it off from its clause. This is easy for a native speaker as one can

simply rely on semantics and the fact that vorführen can be mono-, bi- or trivalent.8 In the

example, the verb is used as a trivalent verb, i.e. ditransitive.

Original Utterances < 163 > das ist jetzt etwa neunzehnsechsunddreissig siebenunddreissig

oder | dann hat man dort in walenstadt die waffen vorgeführt den

kunden

Standard German Das ist jetzt etwa 1936/37, oder. Dann hat man dort in Walenstadt

die Waffen vorgeführt, den Kunden.

Translation that was circa 1936/37 or | then one demonstrated weapons to the

clients there in Walenstadt

Table 3.6: Example of R3.3

Original Utterances < 17 > meine eltern haben ein zweifamilienhaus gehabt < 18 > und

ein einfaches zweifamilienhaus

Standard German Meine Eltern habe ein Zweifamilienhaus gehabt, und ein einfaches

Zweifamilienhaus.

Translation my parents had a two family house and a simple two family house

Table 3.7: Example of R4

Utterance < 18 > from Table 3.7 shows an ellipsis where everything except the direct

object was left out, and therefore, no split can be introduced. < 18 > shares at least the subject

meine Eltern (my parents) with the previous utterance.

Table 3.8 shows a very confusing sentence from the test set. It consists of only one utterance

that is almost not intelligible. Without doubt, only the last SLU is clear in its meaning. The

interviewee starts the utterance twice with almost identical phrasing but then re-decides and

states something different. Even with a broader context, taking into account the previous and

following utterances, it is not possible to disambiguate various aspects. It cannot be determined

8A usage with valency four is also possible
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whether hat (formally: the third person singular, indicative present of the verb to have) is used

as an auxiliary verb or as a full verb - which is relevant for dependency labels. Therefore, the

English translation mentions ‘has’ in brackets marking the uncertainty with a question mark.

Additionally, the ä causes problems as well. It is unclear if it represents a common sound made

when pondering, reformulating or correcting an utterance just spoken, or if it is the indefinite

article. As mentioned in Section 2.1.2, the ArchiMob corpus was normalized but in this case

the normalization did not work properly. In any case, both clauses miss important constituents

and they certainly do not share any. Based on the lack of information, it cannot be determined

if they are semantically related or not. Although they most probably are, they are equally

probably not semantically related to the third clause. The author decided to interpret the first

two clauses as an attempt to formulate a chain of thought not related to the third one, thus

leading to a third re-formulation attempt. In combination with R1, this led to splitting all

three clauses into single SLUs.
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Original Utterances < 100 > und sie hat | sie hat ä | dort ist sie so tüchtig geworden

Standard German Und sie hat. Sie hat ähm (ein?). Dort ist sie so tüchtig geworden.

Translation and she did (has?) | she did (has?) uhm (a?) | there she became so

competent

Table 3.8: Example of R5

Original Utterances < 215 > ja also eben mein vater ist mit drei jahren in die schweiz

gekommen < 216 > aus deutschland < 217 > mit der familie also

handwerksfamilie | < 218 > und er ist der jüngste gewesen von

Standard German Ja. Also (eben) mein Vater ist mit drei Jahren aus Deutschland mit

der Familie, also Handwerksfamilie, in die Schweiz gekommen.

Und er war der jüngste von

Translation yes so indeed my father came with three years old to switzerland

from germany with the family a craftsman-family and he had been

the youngest of

Table 3.9: Problematic Example E1

Table 3.9 displays a last utterly complex example. E19, once more perfectly intelligible

for native speakers, is another example where constituents are placed after the ‘closing’ past

participle (see Table 3.6). gekommen (come) does not mark the end of the SLU. In E1, two

constituents10 follow after the past participle, and the second one is, moreover, followed by a

loose apposition (non-restrictive apposition). The correct SLU-segmentation marked in Table

3.9 is easily determined by semantics but rather difficult in terms of grammar. < 218 >

complicates matters further, since this utterance starts with und er ist (and he had). If we

ignore semantics, it is hard to determine the SLU-boundary in also handwerksfamilie | und er

ist. This und is an example of coordinating conjunctions from guideline R3.2. er is nominative

and thus the subject of ist (third person singular). If und were a coordinating conjunctions, the

9E1 is not part of the test set but were put aside during the manual test set creation as backup sentences.
10It is not common to find more than one constituent placed and separated from the closing constituent of a

sentence.
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Figure 3.1: Syntax Tree Example from Test Set

following verb would be in plural. This leaves one wondering, how a computer should resolve

this as it does not simply come down to a recognition of a pattern, even if all the morphological

and syntactical information is provided - which is not the case for Swiss German.

3.2.2 Dependency Label Annotation

The dependency annotation was carried out using the official UD guidelines for German11.

The guidelines, however, do not specify everything in detail. Annotating dependency labels

requires a profound understanding of the grammar and the semantics of the language in dis-

cussion. Slight adaptation to and interpretation of the guidelines are based on (1) observations

of the labels produced by UDPipe, (2) peculiarities in the ArchiMob data related to spoken

language, e.g., repetition, and (3) characteristics of Swiss German that are not specified by

the UD guidelines. In the following, examples for 1-3 these adaptations are provided and thor-

oughly explained or elaborated on. Adaptations (partially) coincide with ‘problematic’ labels

as identified in Section 2.3.

(1) The UDPipe parser never produced the tag discourse which is used for interjections and

other discourse elements that are not clearly linked to the structure of the sentence. Such tokens

were annotated as advmod. ArchiMob would be full of such discourse elements, e.g., jaja (yes,

11Guidlines: https://universaldependencies.org/de/; complete list of labels used in German: https:

//universaldependencies.org/de/dep/index.html[27.02.2023]

https://universaldependencies.org/de/
https://universaldependencies.org/de/dep/index.html
https://universaldependencies.org/de/dep/index.html
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yeah), annotating them properly would, however, worsen the parser performance artificially as

it is not of importance if the tag discourse or advmod is used. Both usually get attached to the

root of the sentence (advmod has different usages as well). vocative is used although UDPipe

was never observed to output this tag. Simlarly, appos, apposition, does occur in the testset

but UDPipe tends to label construction appos that are no appositions. UDPipe did, further-

more, not produce most available subtypes for German. Subtypes further specify a tag using

a : notation. For example, obl:arg : obl is the tag for adjunct nominals or non-core nominals

of a verb, :arg would be the subtyp for non-core nominals. obl:arg is, for example, the correct

tag for (most) genitive objects. Subtypes used and produced by the parser are: nsubj:pass,

aux:pass, det:poss.

(2) ArchiMob is full of parataxis, apart from not being produced by the UDPipe parser, such

construction were split into SLUs (Table 3.1). Remaining cases of parataxis are annotated as

conj without a coordinating conjunction cc. Many SLUs will start with a coordinating conjunc-

tion or have one dangling at the end. Accordingly, the test set contains a lot of cc connected to

the root of the SLU without a conjunct (conj ). As a consequence of the repetitions and refor-

mulations in ArchiMob, some SLUs might have peculiar annotations, e.g., a finite verb (usually

the root) that has various subjects (nsubj ), a noun with various and different determiners (det).

An example of an SLU with two identical subjects and two different auxiliary verbs is shown in

Figure 3.1. This is a case of reformulation or speech repair (Dobrovoljc (2022) in Section 2.3).

(3) In the SLU man hat man ist gan baden (one had one ‘went’ swimming) in Figure 3.1 gan is

an auxiliary verb that only occurs in Swiss German but never in Standard German(see Section

2.1). For native speakers, this is obvious. Firstly, in most dialects the auxiliary to go and the

main verb are distinct (go vs. gah), as it is as well the case in the normalized form of the

corpus (gan vs. gehen). Secondly, if gehen as a main verb is inserted into the sentence, it

has to be placed at the: man ist gan baden gegangen which is a correct and natural sen-

tence in Swiss German. Although easy for native speakers, such examples are utterly difficult

for a dependency parser. Figure 3.1 shows the syntax tree of this example. Other peculiari-

ties of Swiss German are less important but still challenging for a parser as it does not occur

in Standard German training data, e.g., that proper names will have a determiner, det, at-
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tached to them. The normalization also removed some peculiarities, as for example the merged

indefinite article with a preposition that appears as two separate tokens in the normalized form.

The test set was first parsed with UDPipe and then UD dependency labels (lowercase)

and POS-tags (uppercase) were manually corrected. This allowed to study phenomena with

which UDPipe struggles. Errors in POS-tagging are relevant as they influence dependency

parsing.

It is not surprising that UDPipe failed completely to recognized proper nouns (PORNP) from

Switzerland (e.g. names of villages). Surprisingly, the parser also struggled to label common

nouns like Klasse (class), Name (name), Italiener (Italian) correctly. It is ‘expected’ that UD-

Pipe fails to distinguish adjectives (ADJ ) and adverbs (ADV ). This is challenging for German

as many ‘words’ look the same and the distinction between adjective and adverb is (usually)

not marked morphologically, for example viel (much or many) can be both. Distinguishing

correctly between adverb and adjective requires a profound knowledge of German grammar

and ’experimenting with word order’12. Similar issues occur with the articles (determiners), if

they refer to a noun the correct UPOS-tag is DET, if they do not it is PRON. Not properly

distinguishing PRON and DET influences dependency parsing: a DET can only be tagged as

det while a PRON can receive a variety of dependency tags like nsubj (subject), obj (direct

object) etc. The same is true for other incorrect UPOS-tags. Failing to distinguish ADJ and

ADV leads to mistakes with dependency labels advmod and amod. wo (where) is question word

(ADV ) and relative pronoun (PRON ) in Swiss German but only ADV in Standard German.

Logically, UDPipe will fail to assign the correct UPOS-tag and hence, struggles with the correct

dependency labels for relative clauses. UDPipe did also not manage to distinguish when sein

(to be) is used as a full verb VERB and when as the copula AUX. As a consequence, UDPipe

produces many errors with the dependency labels root (the full verb in most cases) and cop

(copula).

More sources of common errors where identified. The examples above are sufficient to illustrate

that a state-of-the-art-performance is not expected. This does not come as a surprise, Section

12True adverbs cannot be placed between article and noun, adjectives are allowed.
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2.3 already stated that spoken language is challenging for parsers and that, depending on the

language, specific tags cause problems.

As a closing remark, the manual annotated test set does contain syntax structure that

might be invalid according to UD13. Some annotation might be subject to the author’s inter-

pretation. For example, if several advmod occur consecutively, one could modify the other or

both could be attached to the root. German has a freer word order than English, thus, its

constituents can be moved across the sentences which enables native speakers to better identify

which constituents form a inseparable unit, which means that one advmod modifies the other,

and which do not (both attached to the root). This, however, is strongly based on semantics

and might be subjective.

3.3 Training Data

Ideally, training data from ArchiMob would be available but ArchiMob lacks an alignment

between utterances and SLUs which is required for a supervised learning setting. Possible

candidates for training data were introduced in the previous chapter. Section 2.1.1 introduced

NOAH’s corpus and SwissDial, besides ArchiMob. A third candidate is provided by SegCor

(Section 2.2.1) used in Rehbein et al. (2020). NOAH’s corpus might seem like a good candidate

but is not exactly what we need. SLUs are provided as the corpus contains properly structured

sentences. It does, however, not exist in a normalized form, which leads to high variation in the

corpus. In other words, the same lexical word might appear in many different forms. This might

pose a problem for the neural network approach presented at the beginning of this chapter in

Section 3.1. Neural networks encode tokens using embeddings, and given the variation in the

data, we would expect to end up with the same amount of variation for on lexical word in terms

of the embeddings. Lastly, NOAH’s corpus also consists purely of text and does not contain

audio files.

SegCor consists of spoken language (audios and transcripts) and, as it is in Standard German,

13UDPipe does as well produce invalid structures
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can be said to have a form similar to the normalized version of ArchiMob. The author could

gain access to the SLU version of SegCor at some point but the definition of SLU was vastly

different. The annotators of SegCor, for example, isolated (most) interjections into single

SLUs which is different from the manual segmentation presented before, where interjections

were always added to the following or previous SLU. SLUs in ArchiMob aim to be as close to

proper sentences as possible, while the ones from SegCor rather represent chunks. SLUs from

ArchiMob are thus longer and more complex than in SegCor. SegCor contains SLUs composed

out of single tokens, whereas the manual test set from ArchiMob does not. While ArchiMob

contains continuous narrations of childhood memories, SegCor consists of relaxed conversations

with many speaker turns. The SLU-segmentation of SegCor was heavily influenced by prosodic

features like pauses or speaker turns which are not frequent in ArchiMob and usually do not

correspond to SLU-boundaries. Prosodic features were also encoded as part of the input for

SegCor, which could in theory be applied to ArchiMob but, given the sparsity of prosodic

features in ArchiMob, was disregarded. Furthermore, the two variants of German from each

corpus are probably as distinct as possible. Not only are the speakers coming from opposite

points of the German dialect continuum, with the Swiss Speakers originating in the very south

and the ones from Berlin from the north, but they are also far apart in years. Both corpora

contain vernacular that most probably is not mutually intelligible. Usually speaker of German

dialects from Germany cannot understand Swiss German and Swiss German speakers tend to

have problems understanding strong German dialects or vernacular. Given the differences in

SLUS, vernacular and hypothesizing that a neural network would learn the SLU pattern applied

in SegCor, which is different from the ArchiMob one, and thus yield poor results on ArchiMob;

we decided to disregard SegCor as training data.

This leaves SwissDial (Section 2.1.3) as a candidate for training data. SwissDial does not

consists of transcribed text but of aligned sentence pairs Swiss German - Standard German.

The Standard German sentences are close to the normalization applied in ArchiMob and the

properly structured text allows to interfere SLUs. The following section elaborates on the data

processing workflow that also renders the out-of-domain data from SwissDial more similar to

ArchiMob data.
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Figure 3.2: Data Processing Workflow

3.4 Data Processing Workflow

After establishing the choice for training and test data, it remains to present the data pro-

cessing followed by the different splits of training, development (used for validation) and test

data, and to display the corresponding statistics. Figure 3.2 shows the preprocessing pipeline

and introduces terminology for the different shapes of data. As this thesis aims to examine

the impact of input shape on dependency parsing, the same experiments were carried out with

different input forms of data. It is particularly important to distinguish the different versions

of the test data. Yellow refers to manually curated data, i.e., the gold test set. Blue is the same

data as the manual set, but preprocessed completely or partially like the training data. For all

experiments, Test Merged and Test Shifted were passed to the model for prediction. Green is

the colour of the different training sets.

It is important to be aware that the steps shown in Figure 3.2 were applied to the normalized

version of ArchiMob and to the Standard German sentences for SwissDial. For reasons of sim-

plicity, the ArchiMob development set is not shown in the diagram, but it follows the exact

same path as the Archi Train set. Some experiment settings (see Section 4.1) used extended
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training data for which the ArchiMob and SwissDial sets were concatenated before using them

for training, also not shown in Figure 3.2. Moreover, the diagram does not show the chrono-

logical order of the different steps. The manual set was created first and served as a base to

design the other preprocessing steps. The manual creation was explained in detail in Section

3.2.1 and 3.2.2, called Gold Test Set. The Gold Test Set is only used for evaluation (see Section

4.1 and Section 4.2).

As a first step, the raw data was extracted from XML files for ArchiMob and from json

for SwissDial. ArchiMob, however, is full of repeated words. In most cases, these repetitions

consist of interjections like Ja (yes), So (so) or personal pronouns like Ich (I), Er (he), and

Sie (she or they). Normalizing repetition is an important step to render ArchiMob more like

proper written German, it might, however, induce an error in a few special cases. For example,

in the utterance wo die sirenen gegangen ist ist er weg kommen14 (When the sirens went, he

went away) ist (is) occurs twice. In this special example, the two ist are necessary and would

in proper writing be separated by a comma. The first ist serves as the auxiliary verb of the

subordinated clause, while the second one is the auxiliary verb of the main clause. The auxiliary

verb has to placed at the last position in the subordinated clause and at the second position for

the main clause. As the first position is occupied by the subordinated clause, both auxiliary

verbs are adjacent. It is to mention that these cases are rather rare and most of the times two

identical finite verbs following each other are indeed repetitions.

Using sklearn’s CountVectorizer 15 the identical bi- and trigrams (i.e., repeated tokens) were ex-

tracted and in a second step normalized to one token. This step was performed identically for

both data sets and all subsets. Of course, as SwissDial consists of structured, clean sentences,

this had no effect. It was ensured that only complete tokens are normalized in this step, no

prefixes or suffixes were normalized.

As, especially after the normalization of bi- and trigrams, some of the utterances were very

short, namely only containing one or a few tokens, a simple merging step was introduced.

14Standard German: Als die Sirene ‘gegangen’ ist, ist er weg gekommen.
15https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

CountVectorizer.html[10.02.2023]

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
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This step was, furthermore, motivated by the fact that the average token length of the manual

segmented test set was roughly 2 tokens higher (9.91) than for the un-processed rest of the

ArchiMob corpus (7.07 average tokens per utterance). As this is almost half the average tokens

per utterance compared to SwissDial (≈ 12 average tokens per sentence), very short utterances

were merged. Any utterance with four tokens or less was merged with the previous or following

utterance based on which one was shorter. For the rest of the ArchiMob data, excluding the

test set, 11304 merges were executed, raising the average number per utterance from 7.07 to

8.70. For the Raw Test 17 merges were performed leading to an average token number per

utterance of 9.67 bringing this value very close to 9.91 of the Gold Test Set (see Table 3.11 in

the next section). Test Merged was not further preprocessed and consists of 208 lines. This

merging step was not applied to SwissDial. Furthermore, merging was never applied across

speaker turns, i.e., two utterances from different speakers were never merged.

SwissDial, in contrast, had still a different problem. As the sentences of SwissDial are

properly structured text, the last token of each line will always mark the sentence boundary.

As we hypothesize to capture the pattern governing the sentence boundaries in ArchiMob by

fine-tuning a neural network, we had to ensure that the model will not learn that the last token

of an input line is the sentence boundary. Thus, another step labeled End of Sentence Shifting

was introduced. Shifting was performed in a very simple fashion. First, all sentences were

concatenated and split into tokens creating one huge list. For each iteration, a number n was

randomly chosen from the interval [8, 16] and a sequence of n tokens were added to the training

data. This was repeated until the complete list of tokens was split into training samples where

for most samples the last token does not correspond to a sentence boundary.

To use ArchiMob for the expanded training data setup, artificial SLU-boundaries for ArchiMob

were introduced after the merging step, simply considering the last token of the merged utter-

ances an SLU-boundary. Next, the End of Sentence Shifting step was applied (Archi Train in

Figure 3.2). As apparent in Figure 3.2, the end of sentence shifting step was applied to one

version of the test data used as input for the model, Test Shifted. This is an important detail of

the experiment set up, as we aim to examine the impact of input shape on dependency parsing.
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Name ‘Sentences’ Tokens Avg. Tokens per Sent. Inside End

SwissDial Train 8970 108816 12.13 99846 8970
SwissDial Dev 2243 27058 12.06 24816 2243

Table 3.10: Development and Test Set for SwissDial

Name ‘Sentences’ Tokens Avg. Tokens per Sent. Inside End

Archi Train 8970 78000 8.70 69030 8970
Archi Dev 2243 21244 9.47 19001 2243
Gold Test Set 203 2012 9.91 1809 203

Table 3.11: Train, Development and Test Set for ArchiMob

3.5 Data Statistics

Tables 3.10 and 3.11 show the number of ‘sentences’ and tokens used for the following exper-

iments. For the sake of simplicity, everything was labeled ‘sentences’. SwissDial is effectively

composed out of complete, grammatical sentences, while ArchiMob data actually consists of

preprocessed utterances (see Section 2.1.2). Hence, SwissDial served as the original training

data from which 20% were put aside for validation during training. The expanded training set

(SwissDial Train and Archi Train concatenated) contains 17’940 ‘sentences’ and the develop-

ment set 4’486 ‘sentences’. The average token number per ‘sentence’ is reported. This is to

ensure that the inputs that are passed on to the model, be it for training or prediction, have

roughly the same shape in terms of length.

Tables 3.11 and 3.10 show the statistics after preprocessing, respectively manual processing

(i.e., the bottom row in Figure 3.2). For the original statistics refer to Section 2.1.2 or 2.1.3.

We tackle the problem of re-segmentation into SLUs as a token classification task. As a

consequence, only the last token of an SLU will have the label End of SLU, whereas all other

tokens receive Inside of SLU. Therefore, the label distribution is highly unbalanced, as reported

in Tables 3.11 and 3.10. SwissDial Train has roughly 10 times more labels I than E. As for

the average tokens per ‘sentence’, this factor is lower for ArchiMob, roughly 7 for Archi Train

and 8 for Archi Dev. The Gold Test Set contains almost 9 times more labels I than E, ranging
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between the rest of the ArchiMob data an SwissDial. For SwissDial and the Gold Test Set

the number of labels E corresponds naturally to the number of SLUs. For ArchiMob data, the

label count is based on the artificially created SLUs mentioned in the previous Section 3.4. For

all the data processing steps, it was assured that they were applied to the labels accordingly;

e.g., if a trigram was normalized and thus reduced from three to one tokens, the same had to

be done with the labels.



Chapter 4

Experiments and Results

The task of SLU-boundary detection is modeled as a binary token classification task fine-tuning

a Bert model (see Section 3.1). To each token from the manual test set (Gold Test Parsed) and

the training and development sets (ArchiMob and SwissDial) a label was assigned, I for inside

and E for end of an SLU.1 Argumentation for the choice of training data, the data processing

workflow and the data statistics were elaborated in the corresponding sections of the previous

chapter.

The experiment setup includes two evaluation steps; firstly, one for the classification task

and, secondly, one for dependency parsing. From a high level point of view, the experiments

included training a model, passing the test set in two different forms (Test Merged and Test

Shifted) to the model for prediction, evaluate the labeled output of the model against the labels

of Gold Test Parsed, passing the model output to the parser pipeline, and finally, evaluate the

output of the parser as well against Gold Test Parsed. Figure 4.1 shows this high-level view of

the experiment setup. Names of the different data sets an colors refer back to the data pro-

cessing shown in Figure 3.2; green represents training data, blue the data passed for prediction

and testing, while yellow stands for the manually curated test set used for evaluation.

In the following, the different aspects of the setup are presented in detail. Section 4.1 elab-

1Four models were also implemented as a three class classification task, adding B for beginning of an SLU.

50
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Figure 4.1: Experiment Setup

orates on the models and libraries used for the SLU-experiments. Furthermore, the different

training settings, the evaluation setup and the chosen metrics are presented in detail. Sec-

tion 4.2 introduces the same information for the dependency parsing experiments: the model

(i.e., trained dependency parser), libraries and evaluation used for the second step of the ex-

periments. Finally, Section 4.3 presents the results from the classification task and the parser

evaluation, and studies the impact of re-segmenting the input into SLUs on dependency parsing.

4.1 SLU-Experiments

4.1.1 Pre-trained Models and Libraries

All models fine-tuned the pre-trained dbmdz/bert-base-german-uncased2 (12-layer, 768-hidden,

12-heads, 110M parameters). This Bert model is a general, uncased language model for Ger-

man trained on 16 GB of data (2’350’234’427 tokens) stemming from a Wikipedia dump, EU

2Available at: https://huggingface.co/dbmdz/bert-base-german-uncased[06.02.2023]

https://huggingface.co/dbmdz/bert-base-german-uncased
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Bookshop corpus, Open Subtitles, CommonCrawl, ParaCrawl and News Crawl.

The Simple Transformers library3 was used for integrating and fine-tuning the pre-trained

models. The library acts as a wrapper for the Transformers library from Hugging Face4,

which itself wraps keras and PyTorch. Simple Transformers allows to train or fine-tune pre-

trained models with a few clicks. As explained in Section 3.1, the experiments focuses on

comparing different data and segmenting formats rather than models, thus no full control over

all parameters of neural networks was required.

4.1.2 Training Settings and Hyperparameters

Training of the models was carried out on a 16GB Tesla T4 GPU card with CUDA 11.15. All

models were trained with PyTorch’s EarlyStopping callback with a patience of three epochs6.

Including the patience of three, the training time for the different models ranged from six up

to twenty-four epochs, where most of the models ranged between six and ten epochs and only

a few models surpassed ten epochs. For all the models, the learning rate was set to 4e− 5 and

the AdamW optimizer was used with a linear scheduler with warm-up. Furthermore, the same

random seed for parameter initialization was used for all models to ensure reproducibility and

lower the effect of initialization.

As few parameters as possible were changed for the different models; only the validation

metrics, the class weights and the training data were changed based on the results of the pre-

vious models. The default setting for training neural networks monitors the validation loss to

track the learning. This was changed to monitoring the validation precision. Models that used

precision for monitoring contain Precision in their name, if Precision does not appear in the

name of the model, it was trained monitoring the validation loss. Cross Entropy7 was used for

3https://simpletransformers.ai/[10.02.2023]
4https://huggingface.co/[10.02.2023]
58 cores 32 GB RAM
6δ : 0
7See https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html[20.02.2023]

https://simpletransformers.ai/
https://huggingface.co/
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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all models, no matter if used for monitoring or not, as the loss function. If we monitor the

validation loss, we aim to minimize it; for precision we want to maximize it during training.

As elaborated in Section 3.5, the label distribution (E and I) in the data is highly unbalanced.

Given the unbalanced class distribution in the data set, the weights were set to 0.05 for class I

(Inside, no SLU-boundary) and 0.95 for E (SLU-boundary). The weights are based on slightly

rounded values of the normalized inverse of the class distribution, i.e., 1− labelcount
total

, where the ac-

tual numbers would be 0.917 for E and 0.085 for I. Models using these weights are labeled with

Weighted. To the authors best knowledge, the PyTorch documentation concerning weighted

loss functions states only “weight (Tensor, optional) – a manual re-scaling weight given to each

class. If given, has to be a Tensor of size C”8 but does not elaborate on properties of such

weights. Thus, a second set of weights was calculated for two other models. The second set

used sklearn’s compute class weight9 yielding 7.7 for E and 0.5 for I. All implemented models

using weights were trained with both sets of weights. Models using this second set of weights

are simply referred to as Weighted 2.

Lastly, two models were trained with enhanced training data, adding data from ArchiMob (see

Section 3.5), all other models used only SwissDial training data. All training data was passed

to the models in a CoNLLU-like shape, i.e., each line consists of a token and a label, and

sentences are separated by blank lines.

Table 4.1 shows all the eight training settings (or models). All models fine-tune the same pre-

trained Bert model and are thus identical in terms of architecture (i.e., layers, attention mech-

anisms etc.). The different combinations of weights (Weighted or Weighted 2 ) and monitoring

validation precision or loss add up to six models. Out of these models, two were additionally

trained with the enhanced training data.

8See https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html[20.02.2023]
9https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_

class_weight.html[20.02.2023]

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
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Model Name

Bert
Bert Weighted
Bert Precision
Bert Precision Weighted
Bert Weighted 2
Bert Precision Weighted 2
Bert Enhanced Training Data Weighted
Bert Enhanced Training Data Precision Weighted

Table 4.1: Different Models Overview

4.1.3 SLU-Evaluation

All models received two different test sets as inputs for prediction. Following the terminology

introduced in Figure 3.2 in Section 3.4, the two test sets are called Test Merged and Test Shifted.

For Test Merged the utterances were only merged as described in Section 3.4; Test Shifted was

preprocessed identically as the SwissDial training set including the end of sentence shifting

step. Predictions of the models were evaluated against the SLU-labels from the Gold Test

Parsed. sklearn’s classification report10 was used for evaluation. Given the unbalanced label

distribution, accuracy is not the best choice as a validation metric. For example, referring back

to the label count reported in Figure 3.10 and 3.11, labeling everything as I in the SwissDial

development set would still yield an accuracy of 24816
27058

≈ 91%. For the manual gold test set,

accuracy labeling everything I would be 1809
2021

≈ 89%. Therefore, precision, together with F1-

score, is considered to be the metric of choice. This is based on the fact that having precise

SLU-boundaries is more important than catching all of them (recall). For example, missing

an SLU-boundary and thus having two SLUs rendered as one should have less impact on the

parser performance than having imprecise, arbitrarily distributed SLU-boundaries.

For the task of SLU-boundary-detection for transcribed Swiss German, no related work exists.

Accordingly, no benchmark or baseline can be provided. Although, Rehbein et al. (2020)

engaged in an almost identical task for Standard German, results should not be compared.

The SLU-segmentation of their approach and ours are vastly different. They, furthermore, had

access to training data coming from the same corpus as test data and could leverage more

10https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.

html[20.02.2023]

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
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prosodic features.

4.2 UD-Experiments

4.2.1 Pre-trained Models and Libraries

We use a pre-trained UDPipe parser that was, together with the dependency tag set, intro-

duced in Section 3.1. Parsing was carried out using spaCy11. SpaCy provides a huge variety

of pre-trained model based NLP-pipelines for many languages. SpaCy would include a depen-

dency parser component, which uses its own set of dependency labels for German12 that is

not really related to any established dependency set like Universal Dependencies or The TiGer

Dependency Bank. However, spaCy allows to add other components to the NLP pipeline. As

elaborated in Section 3.2.2, this thesis uses universal dependency labels and the UDPipe parser.

Thus, the spacy-udpipe13 component was added. It is not clear which version and implementa-

tion of UDPipe spacy-udpipe uses, nor how the parser was trained. SpaCy, furthermore, does

not output any specific data format. Therefore, a second component, spacy conll14, was added

which allows to directly parse text into the CoNLLU-format. The German model, german-gsd-

ud-2.5-191206.udpipe15, provided by spacy-udpipe was used.

4.2.2 UD-Evaluation

As a first step for the UD-Evaluation, the predicted output of the models had to be reshaped.

Using the predicted labels E, the output was reshaped such that each line contains exactly

one SLU. This can easily be implemented by iterating over the tokens and labels and inserting

11https://spacy.io/[20.02.2023]
12See section ‘PARSER’: https://spacy.io/models/de[20.02.2023]
13SpaCy: https://spacy.io/universe/project/spacy-udpipe, source code: https://github.com/

TakeLab/spacy-udpipe[20.02.2023]
14https://spacy.io/universe/project/spacy-conll[20.02.2023]
15https://github.com/TakeLab/spacy-udpipe/blob/master/spacy_udpipe/resources/languages.

json[20.02.2023]

https://spacy.io/
https://spacy.io/models/de
https://spacy.io/universe/project/spacy-udpipe
https://github.com/TakeLab/spacy-udpipe
https://github.com/TakeLab/spacy-udpipe
https://spacy.io/universe/project/spacy-conll
https://github.com/TakeLab/spacy-udpipe/blob/master/spacy_udpipe/resources/languages.json
https://github.com/TakeLab/spacy-udpipe/blob/master/spacy_udpipe/resources/languages.json
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a line-break each time the current label is E. This reshaped output was passed line-wise to

the spaCy-pipeline which parsed it using spacy-udpipe and outputted it in CoNLLU-format.

Next, this CoNULL-file was evaluated against the manually annotated Gold Test Parsed. For

evaluation, the official evaluation script from Universal Dependencies’ tools was used16.

While evaluation of a classification tasks uses commonly known metrics like precision, evalua-

tion of dependency parsing requires different metrics. All of them are metrics commonly used

in evaluation of dependency parsing and originate in the official CoNLL-U-tasks. Firstly, for all

models a metric labeled ‘Sentences’ is displayed. According to the source code, it is a measure

for “how well do the gold sentences match system sentences [=file passed for evaluation]”17.

Secondly, the unlabeled attachment score (UAS) and the labeled attachment score (LAS) are

reported. LAS expresses “how many words have been assigned both the correct syntactic head

and the correct label”(Nivre and Fang, 2017, 89), while UAS only scores the correct labeling of

the head and ignores the dependency label. Thirdly, the universal POS-tag score (UPOS) and

the universal dependency tag score (UFeats) are reported. For these two metrics, precision,

recall, F1-score and aligned accuracy are reported. Both metrics express how well the POS-

tags or the dependency tags correspond with the manually annotated gold test set. The more

fine-grained POS-tag score XPOS is not reported, as ArchiMob data contains some tags that

do not belong to the standard Stuttgart-Tübingen-Tagset.

For the dependency parser evaluation, we could use state-of-the-art performance as a

benchmark and or baseline (e.g., as presented in Section 2.3). On the one hand, performance

of a dependency parser is highly dependent on the parser used, how it was trained and with

which data, and which data is evaluated. On the other hand, we are interested in the impact of

the SLU-re-segmentation on parser performance. Therefore, a more suitable baseline to study

this impact is proposed. Table 4.2 displays the upper bound, the baseline and the performance

of the Senter component from the spaCy model which was used as a wrapper for the UDPipe

and CoNLLU component. For the upper bound, the manually split gold test data (Gold Test

16https://github.com/UniversalDependencies/tools/blob/master/eval.py[20.02.2023]
17Source code at: https://github.com/UniversalDependencies/tools/blob/master/eval.

py[20.02.2023]

https://github.com/UniversalDependencies/tools/blob/master/eval.py
https://github.com/UniversalDependencies/tools/blob/master/eval.py
https://github.com/UniversalDependencies/tools/blob/master/eval.py
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Model Metric Precision Recall F1 Score Aligned Accuracy

Upper Bound Sentences 100.0 100.0 100.0 -
UAS 61.64 61.64 61.64 61.64
LAS 44.88 44.88 44.88 44.88

UPOS 80.94 80.94 80.94 80.94
UFeats 97.35 97.35 97.35 97.35

Baseline Sentences 41.35 42.36 41.85 -
UAS 55.9 55.9 55.9 55.9
LAS 40.86 40.86 40.86 40.86

UPOS 80.3 80.3 80.3 80.3
UFeats 93.14 93.14 93.14 93.14

Spacy Senter Sentences 2.94 0.49 0.84 -
UAS 44.24 44.24 44.24 44.24
LAS 35.96 35.96 35.96 35.96

UPOS 79.42 79.42 79.42 79.42
UFeats 84.27 84.27 84.27 84.27

Table 4.2: Baseline and Upper Bound

Parsed in Figure 3.2) was passed on to the UDPipe parser integrated into spaCy and evaluated

against the manually annotated gold test data. The ‘Sentences’ metric shows that the Input

was already in the correct shape. UFeats is not 100% as some dependency tags were set incor-

rectly by the parser (especially tags aux, cop, advmod, and nmod). The baseline was created by

passing Test Merged (see Figure 3.2) to the parser. The spaCy Senter baseline was created as

follows: the whole test set was passed as one string to the spaCy Senter component which split

the input into ‘Sentences’. This output was parsed with UDPipe and evaluated. The purpose of

this baseline is to have a benchmark to compare the models developed for the experiments with

already available systems performing SLU-boundary-detection. However, to the best knowledge

of the author, it is not clear if the spaCy Senter merely tries to disambiguate punctuation or if

it applies a different approach. The spaCy Senter baseline has a very low score for the Sentence

metric, showing that the sentences do not match with the SLU-structure of the manually split

gold test data. The baseline, colored in grey, serves as the threshold for acceptable perfor-

mance, everything above these values can be considered an improvement. Finally, the green

values represent the upper bound. Any model surpassing these values re-shapes the input in

such a way that it outperforms a human re-segmenting the data. Therefore, we hope to find

performances between the grey and the green values to be able to conclude that the models do
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Model Precision F1 Score Precision F1 Score
Merged Shifted

Bert 73.18 69.49 72.54 71.42
Bert Weighted 67.21 69.10 71.22 74.04
Bert Precision 65.71 60.8 74.32 68.19
Bert Precision Weighted 74.09 73.71 71.96 70.98
Bert Weighted 2 63.55 63.96 62.74 62.13
Bert Precision Weighted 2 69.7 67.19 71.82 70.15
Bert Enhanced Training Data Weighted 68.16 71.07 70.41 73.72
Bert Enhanced Training Data Precision
Weighted

70.12 67.24 70.4 68.37

Table 4.3: Comparison Classification Results for All Models and Both Inputs in %

indeed improve the parser performance by reshaping the input data18. It is important to have

a close look at the exact numbers. For LAS we have a range of roughly 4% separating the lower

(merged) and the upper bound. For ‘Sentences’ it would be 60%. At the same time, however,

this already implies that an improvement in the ‘Sentence’ metric would probably only improve

the LAS marginally, given that an improvement of 60% corresponds to a LAS-improvement of

only 4%. Similarly, we see that the range of improvement is rather small for the other two

metrics as well, approximately 4% for UFeats and not even 1% for UPOS. This is of utter

importance as a small improvement in numbers might represent a good improvement relative

to the baseline. Compared to parsing properly structured data, the LAS achieved by the up-

per bound (manual segmentation) is ‘low’. Section 3.2.2, however, explained and exemplified

in detail, why parsing spoken Swiss German is difficult and performance is expected to be ‘low’.

4.3 Results

Before diving into the numbers, a glance back at Figure 4.1 might be a helpful refresher for

the experiment setup. Generally, the complete evaluation tables with all metrics introduced for

both evaluations can be found in the appendix; tables within this section report precision and

18In fact, the baseline table already demonstrates that the shape of the input does have an impact on the
parser performance and that more sentence-like input,i.e., the manual re-segmentation, does indeed yield better
performance.
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F1 for classification, and F1 and LAS for dependency parsing. For UPOS and UFeats results,

refer to the appendix.

The first Table 4.3 displays the comparison of precision and F1-scores for all eight models and

both test inputs (Test Merged, Test Shifted). Recall, however, is implicitly reported via the

F1-score. For example, the simple binary Bert model (first row in Table 4.3) has a higher

precision for Test Merged but the F1-score is higher for Test Shifted. This implies that the

recall for Test Shifted is higher than for Merged.

The overall best performing model in terms of F1-score is Bert Weighted (marked in bold) with

an F1-score of 74.04%, i.e., the binary Bert model fine-tuned with weights (I: 0.05, E: 0.95)

and monitoring validation loss (Reported in appendix: accuracy 88.92%; recall: 78.53%). In

terms of accuracy, the same model with Test Merged ranks on the sixth place. This indicates

that models with a higher accuracy tend to label more tokens as I, thus increasing accuracy

but lowering precision and recall; and confirms again that accuracy is not an insightful metric

in this setting. Only considering Input Merged, the best performance was achieved by Bert

Precision Weighted with an F1-score of 73.71%, precision of 74.09% (Reported in appendix 6:

accuracy 90.11%; recall: 73.35%,). This model ranked accuracy-wise on the first place together

with Bert Precision. Bert Enhanced Training Data Weighted ranked overall on the second

place. This model was trained with the same amount of SwissDial and ArchiMob data. This

indicates that presenting more data similar to the test set in terms of structure and average

tokens per line did not improve the performance.

Table 4.4 displays the two most important metrics, ‘Sentence’ and LAS, for parser evalua-

tion for the parsed predictions of all models and both inputs. As before, the model of which the

predictions lead to the best parser performance is marked in bold and for each model the better

result from both inputs is rendered in bold as well. The predictions of Bert Precision Weighted

yielded the best performance with an LAS of 43.02% with Test Merged achieving almost a

value 2% higher than the baseline (See baseline in Table 4.2). This is a solid improvement as

LAS between the baseline and the upper bound is only 4%.

The predictions of this model score as well the second highest value for the ‘Sentence’ F1-score,
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Model Metric F1 Merged F1 Shifted

Bert Sentences 10.92 13.47
LAS 40.57 40.96

Bert Weighted Sentences 12.74 16.33
LAS 42.63 42.23

Bert Precision Sentences 4.5 12.96
LAS 39.54 39.39

Bert Precision Weighted Sentences 18.55 16.49
LAS 43.02 40.18

Bert Weighted 2 Sentences 9.08 7.92
LAS 36.7 34.5

Bert Precision Weighted 2 Sentences 9.5 14.36
LAS 40.13 40.86

Bert Enhanced Training Data Weighted Sentences 15.0 18.85
LAS 41.74 42.14

Bert Enhanced Training Data Precision Weighted Sentences 9.07 10.87
LAS 41.6 42.04

Table 4.4: Comparison Parser Evaluation for All Models and Both Inputs in %

meaning that it also matches better with the sentences from Gold Test Parsed. This model

(Bert Precision Weighted) is not the best model considering the classification evaluation but

ranks on the third place, roughly 0.3% behind the first place and only 0.01% behind the second

place (F1-score). It is, however, the best performing model in classification for Test Merged.

The best performing model for classification, Bert Weighted, is the second best in parser eval-

uation with a LAS roughly 0.4% lower. Although for both evaluations, not the same model

performs best, we still see that the top performing models are roughly the same for both eval-

uations having similar differences in scores.

Furthermore Table 4.4 shows all the models of which the predictions achieved a performance

above the baseline in grey. In general, we can observe that F1-score for Sentences is lower than

the baseline (≈ 41%) but performances in terms of LAS are all close to the baseline. five out of

eight models outperformed the baseline. Bert Precision Weighted 2 scored the same LAS as the

baseline. We can observe, furthermore, that the two models, Bert Precision and Bert Weighted

2, which do not outperform the baseline, rank on the last places in the classification task. At

this point, we can conclude that models trained in a classification task can help to improve

parser performance. Every model except Bert Weighted with Test Shifted also outperformed

the spaCy Senter baseline which scored a LAS of 35.96%. We can conclude, furthermore, that
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our models outperform available NLP components for SLU-boundary-detection19.

As stated in the introduction 1, we are interested in inquiring if re-shaping input into SLUs

does improve dependency parsing which we can confirm at this point. We still want, however,

to examine the results more closely. Of special interest is the connection between performance

in classification and dependency parsing.

Figure 4.2 displays F1-score from the classification task on the x-axis and LAS from parser

evaluation on the y-axis. The black solid line represents the regression lines. For Merged it is

y = 0.13x + 32.3 and for Shifted y = 0.12x + 32.51 (rounded values). This scatter plot shows

a connection between F1-score and LAS, i.e., between classification and parser performance.

Both regression lines have a positive and almost identical slope. The trend is more apparent

for Test Merged. We calculated the Pearson product-moment correlation coefficients20: Test

Merged: 0.3953 and Test Shifted: 0.3090. These values solidify that the correlation is higher

for Test Merged, but that both inputs exhibit the trend. We can conclude that F1-score from

classification and LAS do correlate but not too strongly.

These results confirmed our research question stating that re-shaping the input into SLUs does

positively impact the performance of dependency parsing. It was shown that performance in

classification and dependency parsing do correlate. There are, however, further insights to be

gained from the results just presented.

4.3.1 Further Analysis

As elaborated in Section 4.1, we aimed to increase precision by using it as a validation metric

instead of validation loss. Accordingly, we want to examine if we managed to do so and if a

higher precision also leads to a higher F1-score. Comparing the different metrics (precision and

F1-score) in Table 4.3, we do not see a clear pattern: Nor do models trained monitoring the

precision display a consequently higher precision than their counterpart trained monitoring the

validation loss, nor does Test Shifted yield consequently higher values for precision than with

Test Merged although the F1-scores tend to be higher. For example, Bert has a higher precision

19SpaCy’s senter uses the term ‘sentence’ and claims to identify sentence boundaries.
20with numpy
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Figure 4.2: Scatter Plot: F1-Score and LAS

with Test Merged but a higher F1-score with Test Shifted. Bert with Test Merged has a higher

precision than Bert Precision with the same input. This comes rather as a surprise as the only

difference between the two models is exactly monitoring the precision which was an attempt to

enforce higher values for precision. Furthermore, the F1-score follows the same pattern, i.e., it

is higher for Bert than for Bert Precision. More confusingly, the same models show a different

pattern with Test Shifted. Bert has a lower precision but a higher F1-score, Bert Precision

has a higher precision but a lower F1-score. If we compare other pairs of models that are only

distinguished by monitoring precision or not, we do not see the same pattern as just elaborated.

Bert Enhanced Training Data Weighted was outperformed by its precision counterpart for Test

Merged but not for Test Shifted, but always outperformed its precision counterpart in terms of

F1-score no matter the test input. We can conclude that enforcing training on precision does

not necessarily yield a higher precision and does not automatically produce a better result in

terms of F1.

Two different sets of class weights were used as well. A quick look at Table 4.3 discloses that

every Weighted 2 model (weights calculated with sklearn. E: 7.7; I 0.5) was outperformed by

its Weighted counterpart (manually calculated weights: E: 0.95; I: 0.05). All Weighted models

score better in terms of Precision and F1-score for both inputs.
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Model Precision F1 Score Precision F1 Score
Merged Shifted

Bert (t) 59.82 57.55 61.53 60.21
Bert Weighted (t) 63.14 65.99 63.90 67.10
Bert Precision (t) 64.65 57.70 64.65 57.92
Bert Precision Weighted (t) 65.48 62.25 64.55 61.33

Table 4.5: Comparison Classification Results for Three-Class Models and Both Inputs in %

Some small experiments were carried out during training raising the patience and trying to

overcome a possible local minimum in the loss function. However, all models were only trained

by as many epochs more as the patience was raised. This indicates that either it is the global

minimum (with the given hyperparameters) or more than ten epochs would be required to

escape the local minimum.

Before engaging in a binary classification task, a three-class-classification approach was tackled.

For this purpose, the first token of an SLU was additionally marked with a special label B for

beginning of SLU. Classification results from this setup are shown in Table 4.5, as well as the

results from the parser evaluation in Table 4.6. The naming convention of these models is iden-

tical to the binary models and indicates variation in the training setup. Almost all three-class

models were outperformed by the binary ones. Only the best performing three-class model,

Bert Weighted (t), outperformed the worst binary model. It is interesting that for binary and

three-class models the Weighted training setting led to the highest performance. An analysis

of the predicted labels revealed that all three class models failed to learn that the number of B

is always identical to E. All models predicted more labels B than E. A binary approach seems

more appropriate to tackle the problem of SLU-boundary-detection. Table 4.6 shows that the

re-shaped output of the three-class models does improve parser performance and three out of

four models achieved a LAS above the baseline. This confirms once again that re-shaping the

input into SLUs does positively impact parser performance.

All experiments were conducted with two different inputs, while all other parameters

were identical. As a motivation, we aimed to study if the utterance structure from ArchiMob

(Test Merged) performs better than a ’random‘ segmentation (Test Shifted). Looking at the
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Model Metric F1 Merged F1 Shifted

Bert (t) Sentences 9.72 12.09
LAS 41.89 41.99

Bert Weighted (t) Sentences 13.46 17.26
LAS 42.28 42.04

Bert Precision (t) Sentences 6.19 9.85
LAS 40.37 40.42

Bert Precision Weighted (t) Sentences 8.31 15.77
LAS 40.37 41.5

Table 4.6: Comparison Parser Evaluation for Three-Class Models and Both Inputs in %

classification results in Table 4.3 (binary) and 4.5 (three-class-classification), we observe that

classification performed better with Test Shifted (nine out of twelve models). The 203 SLUs

from the test set are split into 208 lines for Test Merged and 254 lines for Test Shifted. Test

Shifted, thus, contains less tokens per line on average. We might speculate that Test Shifted

leads to better results as Test Shifted (and the ArchiMob data in general) has less tokens per

SLU (or line) than the SwissDial data and is therefore more similar to ArchiMob data.

We can observe the same tendency for parser evaluation in Tables 4.4 (binary predictions)

and 4.6 (three-class-classification predictions). Parsed predictions from Test Shifted tend to

yield better results. Further experiments and examinations are required to confirm this ten-

dency. Our results indicate that the predictions that achieve higher scores in classification (Test

Shifted), do so in parsing as well.

As a last step, we analysed the connection between the number of predicted SLU-boundaries

(or labels E) and F1-score from the classification task. The number of labels E are reported in

the extended Tables 6.5, 6.6, 6.7 and 6.8 in the appendix. One model, Bert Enhanced Train-

ing Data Weighted predicted high numbers of E for both inputs (Merged: 656; Shifted: 706),

whereas all other models predicted a label count of E between 100 and 300. Therefore, we

excluded F1-score and label count of this model as outliers for the analysis. The scatter plot

in Figure 4.3 shows the distribution with count E on the x-axis and F1-score on the y-axis.

Additionally, the best performing model is marked and the regression line21 is displayed. As

for the analysis of LAS-F1, we calculated the Pearson product-moment correlation coefficients:

Test Merged 0.5852; Test Shifted 0.5113. Correlation coefficients and slops of the regression

21Merged: y = 0.0418x+ 5.73; Shifted: y = 0.0459x+ 5.84
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Figure 4.3: Scatter Plot: Count E and F1-Score

lines are almost identical and demonstrate the connection. We can conclude that up to a label

count of roughly 300 labels E the performance in terms of F1-score and the number of predicted

labels do correlate.

Our further analysis identified that enforcing precision during training did not yield the

desired results, nor could we force a longer training by raising the patience of early stopping.

Our results demonstrated clearly that our manually calculated weights outperformed the ones

from sklearn (Weighted 2) and that binary classification models yield better predictions than

three-class models. We examined if Test Merged or Test Shifted leads to better results, although

there is a tendency for Test Shifted, further experiments are necessary to confirm this. Lastly,

the connection between number of predicted labels E and F1-score could be shown up to roughly

300 labels E.
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Conclusion

5.1 Summary of Thesis Achievements

Dependency parsing, one one variant of syntactical parsing, is challenging for transcribed spo-

ken language. Spoken language is unstructured and differs from the properly structured data

that is usually used to train dependency parsers. Spoken language contains a lot of disfluen-

cies, repetitions and truncated or interrupted sentences. This is further complicated by the fact

that we worked with Swiss German audio transcripts. Swiss German, an umbrella term for

the German variants spoken in Switzerland, lacks standardization and exhibits a high degree

of variation in vocabulary, spelling, morphology and syntax. Swiss German is, furthermore, a

low-resource language for which little data exists, and existing data is usually not normalized

and thus full of variation.

We tackled the problem of dependency parsing for Swiss German audio transcripts by re-

segmenting the unstructured transcripts into SLUs (sentence-like units) and studied the effect

of this re-segmentation on dependency parser performance. Our data comes from ArchiMob

(Section 2.1.2), a corpus containing transcribed Swiss German interviews with elderly native

speakers. Existing algorithms for sentence segmentation leverage punctuation or require data

already providing some sort of a sentence structure in the data - which ArchiMob transcripts

both lack. Thus, we framed the problem of re-segmentation as a binary token classification task

66
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and fine-tuned a pre-trained German Bert model to predict tokens with label E marking the

End of an SLU (Chapter 3). Our experiment setup included fine-tuning a model, predicting

labels for two different test inputs, re-shaping these inputs into SLUs using the predicted labels

and passing them to a dependency parser. We thus included two evaluation steps, one for token

classification and one for dependency parsing. As availability and quality of data is an issue

for Swiss German, no test set was available and we created manually a test set composed of

roughly 200 SLUs and manually annotated the dependency labels. Our setup is supervised and

requires training data that contains a form of SLU-segmentation and normalization; we used

data from SwissDial (Section 2.1.3) as out-of-domain training data.

In this last chapter, we presented the results and studied the impact of the re-segmentation

on parser performance in detailed. The re-segmentation leveraging the predictions from our

models improved the parser performance over a baseline. The baseline was created using one

of the inputs that resembles the original utterance structure from ArchiMob and that was also

presented to the models for prediction. The re-shaped predictions from the best model scored

a LAS 2% over the baseline compared to only 4% separating the baseline and performance

on manually re-segmented data (Gold Test Parsed). Our experiments demonstrated that re-

shaping the input into SLUs does improve the performance of the dependency parser in terms of

LAS. Moreover, the induced SLU-structure performs better than the original utterance struc-

ture represented by the baseline. We showed, furthermore, that performance in classification

correlates with performance in dependency parsing.

With our work, we contribute to the problem of syntactical parsing for spoken language and to

processing spoken Swiss German. As Swiss German is mainly an oral language, we consider our

work an important step for bringing (transcribed) spoken Swiss German into a more structured

written form. As to our best knowledge, we are the first to tackle this problem for transcribed

Swiss German, we provide, furthermore, a point of reference for future work.
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5.2 Future Work

Possibilities for future work taking this research as a starting point are numerous. Firstly,

of course, it remains to demonstrate that results found in the experiments do apply to other

parsers as well. Secondly, it would be interesting to study if dependency parsing for other

low-resource languages can be improved with the same approach presented here. Furthermore,

fine-tuning the proposed models and extensive experiments with hyperparameters might en-

hance the improvement in performance achieved.

Other possibilities revolve around examining the results presented here further. Our experi-

ments used after all only normalized Swiss German and Standard German data. It remains,

therefore, an open question if an application of the same approach using not normalized Swiss

German from different dialects yields the same results and insights. Aepli and Clematide (2018)

provided a dependency parser for Swiss German that can be used to reproduce our research

for purely Swiss German text. It would also be interesting to study if the models trained on

Standard German data in this thesis exhibit differences in performance for different dialects.

A good start for this might be an in detail analysis of the SLU-segmentation of the test sets

predicted by the models trying to identify certain linguistic patterns and situations where the

algorithm fails to predict the correct SLU-boundary.
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Appendix

• Code and test set available on request on: https://github.com/PaprikaSteiger/CHunking

69

https://github.com/PaprikaSteiger/CHunking


70 Chapter 6. Appendix

Model Metric Precision Recall F1 Score Aligned Accuracy

Bert Sentences 13.1 9.36 10.92 -
UAS 52.38 52.38 52.38 52.38
LAS 40.57 40.57 40.57 40.57

UPOS 80.01 80.01 80.01 80.01
UFeats 87.95 87.95 87.95 87.95

Bert Weighted Sentences 11.19 14.78 12.74 -
UAS 57.13 57.13 57.13 57.13
LAS 42.63 42.63 42.63 42.63

UPOS 80.01 80.01 80.01 80.01
UFeats 86.97 86.97 86.97 86.97

Bert Precision Sentences 6.48 3.45 4.5 -
UAS 49.93 49.93 49.93 49.93
LAS 39.54 39.54 39.54 39.54

UPOS 80.21 80.21 80.21 80.21
UFeats 85.25 85.25 85.25 85.25

Bert Precision Weighted Sentences 18.88 18.23 18.55 -
UAS 56.49 56.49 56.49 56.49
LAS 43.02 43.02 43.02 43.02

UPOS 80.21 80.21 80.21 80.21
UFeats 88.63 88.63 88.63 88.63

Bert Weighted 2 Sentences 5.95 19.21 9.08 -
UAS 52.33 52.33 52.33 52.33
LAS 36.7 36.7 36.7 36.7

UPOS 78.15 78.15 78.15 78.15
UFeats 83.0 83.0 83.0 83.0

Bert Precision Weighted 2 Sentences 10.97 8.37 9.5 -
UAS 51.59 51.59 51.59 51.59
LAS 40.13 40.13 40.13 40.13

UPOS 80.21 80.21 80.21 80.21
UFeats 87.07 87.07 87.07 87.07

Bert Enhanced Training
Data Weighted

Sentences 12.3 19.21 15.0 -

UAS 57.52 57.52 57.52 57.52
LAS 41.74 41.74 41.74 41.74

UPOS 79.42 79.42 79.42 79.42
UFeats 86.77 86.77 86.77 86.77

Bert Enhanced Training
Data Precision Weighted

Sentences 10.67 7.88 9.07 -

UAS 53.6 53.6 53.6 53.6
LAS 41.6 41.6 41.6 41.6

UPOS 80.16 80.16 80.16 80.16
UFeats 88.14 88.14 88.14 88.14

Table 6.1: Parser Evaluation Binary Merged
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Model Metric Precision Recall F1 Score Aligned Accuracy

Bert Sentences 14.21 12.81 13.47 -
UAS 54.58 54.58 54.58 54.58
LAS 40.96 40.96 40.96 40.96

UPOS 80.25 80.25 80.25 80.25
UFeats 87.21 87.21 87.21 87.21

Bert Weighted Sentences 13.94 19.7 16.33 -
UAS 57.47 57.47 57.47 57.47
LAS 42.23 42.23 42.23 42.23

UPOS 80.3 80.3 80.3 80.3
UFeats 87.9 87.9 87.9 87.9

Bert Precision Sentences 17.36 10.34 12.96 -
UAS 51.98 51.98 51.98 51.98
LAS 39.39 39.39 39.39 39.39

UPOS 80.45 80.45 80.45 80.45
UFeats 87.41 87.41 87.41 87.41

Bert Precision Weighted Sentences 17.3 15.76 16.49 -
UAS 53.31 53.31 53.31 53.31
LAS 40.18 40.18 40.18 40.18

UPOS 80.25 80.25 80.25 80.25
UFeats 87.85 87.85 87.85 87.85

Bert Weighted 2 Sentences 5.1 17.73 7.92 -
UAS 49.26 49.24 49.25 49.29
LAS 34.51 34.49 34.5 34.53

UPOS 77.5 77.46 77.48 77.54
UFeats 81.67 81.63 81.65 81.71

Bert Precision Weighted 2 Sentences 15.61 13.3 14.36 -
UAS 54.09 54.09 54.09 54.09
LAS 40.86 40.86 40.86 40.86

UPOS 80.5 80.5 80.5 80.5
UFeats 88.24 88.24 88.24 88.24

Bert Enhanced Training
Data Weighted

Sentences 15.46 24.14 18.85 -

UAS 57.91 57.91 57.91 57.91
LAS 42.14 42.14 42.14 42.14

UPOS 79.62 79.62 79.62 79.62
UFeats 87.51 87.51 87.51 87.51

Bert Enhanced Training
Data Precision Weighted

Sentences 12.12 9.85 10.87 -

UAS 54.58 54.58 54.58 54.58
LAS 42.04 42.04 42.04 42.04

UPOS 80.11 80.11 80.11 80.11
UFeats 87.65 87.65 87.65 87.65

Table 6.2: Parser Evaluation Binary Shifted
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Model Metric Precision Recall F1 Score Aligned Accuracy

Bert (t) Sentences 10.11 9.36 9.72 -
UAS 55.12 55.12 55.12 55.12
LAS 41.89 41.89 41.89 41.89

UPOS 80.16 80.16 80.16 80.16
UFeats 86.72 86.72 86.72 86.72

Bert Weighted (t) Sentences 12.72 14.29 13.46 -
UAS 56.34 56.34 56.34 56.34
LAS 42.28 42.28 42.28 42.28

UPOS 80.06 80.06 80.06 80.06
UFeats 86.87 86.87 86.87 86.87

Bert Precision (t) Sentences 8.33 4.93 6.19 -
UAS 51.84 51.84 51.84 51.84
LAS 40.37 40.37 40.37 40.37

UPOS 80.16 80.16 80.16 80.16
UFeats 86.23 86.23 86.23 86.23

Bert Precision Weighted (t) Sentences 10.45 6.9 8.31 -
UAS 52.23 52.23 52.23 52.23
LAS 40.37 40.37 40.37 40.37

UPOS 80.45 80.45 80.45 80.45
UFeats 86.82 86.82 86.82 86.82

Table 6.3: Parser Evaluation Three Class Models Merged
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Model Metric Precision Recall F1 Score Aligned Accuracy

Bert (t) Sentences 12.37 11.82 12.09 -
UAS 55.66 55.66 55.66 55.66
LAS 41.99 41.99 41.99 41.99

UPOS 79.96 79.96 79.96 79.96
UFeats 87.11 87.11 87.11 87.11

Bert Weighted (t) Sentences 15.66 19.21 17.26 -
UAS 56.98 56.98 56.98 56.98
LAS 42.04 42.04 42.04 42.04

UPOS 80.16 80.16 80.16 80.16
UFeats 87.85 87.85 87.85 87.85

Bert Precision (t) Sentences 13.11 7.88 9.85 -
UAS 52.43 52.43 52.43 52.43
LAS 40.42 40.42 40.42 40.42

UPOS 80.4 80.4 80.4 80.4
UFeats 86.87 86.87 86.87 86.87

Bert Precision Weighted (t) Sentences 18.42 13.79 15.77 -
UAS 54.04 54.04 54.04 54.04
LAS 41.5 41.5 41.5 41.5

UPOS 80.94 80.94 80.94 80.94
UFeats 87.85 87.85 87.85 87.85

Table 6.4: Parser Evaluation Three Class Models Shifted

Model Name Accuracy Precision Recall F1 Count E

Bert (6E) 79.52 59.82 55.87 57.55 187
Bert weighted (5E) 80.86 63.14 70.35 65.99 228
Bert precision (12E) 81.46 64.65 53.96 57.7 119
Bert precision weighted (19E) 82.41 65.48 60.23 62.25 133

Table 6.5: Three Class Classification Results, Merged

Model Name Accuracy Precision Recall F1 Count E

Bert (6E) 80.08 61.53 59.09 60.21 174
Bert weighted (5E) 80.77 63.91 71.88 67.1 248
Bert precision (12E) 81.41 64.65 54.22 57.92 121
Bert precision weighted (19E) 81.51 64.55 59.0 61.33 151

Table 6.6: Three Class Classification Results, Shifted



74 Chapter 6. Appendix

Model Name Accuracy Precision Recall F1 Count E

Bert 90.36 73.18 67.09 69.49 145
Bert weighted 87.23 67.21 71.9 69.1 268
Bert precision 88.82 65.71 58.79 60.8 108
Bert precision weighted 90.61 74.09 73.35 73.71 196
Bert weighted 2 75.8 63.55 82.82 63.96 317
Bert precision weighted 2 89.36 69.7 65.44 67.19 150
Bert enhanced training data weighted (6E) 86.98 68.16 76.58 71.07 656
Bert enhanced training data precision
weighted (24E)

89.51 70.12 65.3 67.24 155

Table 6.7: Binary Classification Results, Merged

Model Name Accuracy Precision Recall F1 Count E

Bert 90.11 72.54 70.45 71.42 182
Bert weighted 88.92 71.22 78.53 74.04 286
Bert precision 90.61 74.32 65.04 68.19 120
Bert precision weighted 89.91 71.96 70.12 70.98 184
Bert weighted 2 73.51 62.74 81.99 62.13 317
Bert precision weighted 2 89.91 71.82 68.81 70.15 164
Bert enhanced training data weighted (6E) 88.17 70.41 79.86 73.72 706
Bert enhanced training data precision
weighted (24E)

89.51 70.4 66.83 68.37 172

Table 6.8: Binary Classification Results, Shifted
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