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Abstract

Gender bias appears in many neural machine translation models and commercial

translation software. The problem is well known and efforts to reduce such discrim-

inatory tendencies are underway. But gender bias is still not fully solved. This work

utilizes a controlled text generation method, Future Discriminators for Generation

(FUDGE), to reduce the so-called Speaking As gender bias emerging when translat-

ing from English to a language that openly marks the gender of the speaker. The

model is evaluated with BLEU and MuST-SHE, a novel gender translation evalua-

tion method. The results demonstrate improvements in the translation accuracy of

the feminine terms.

Zusammenfassung

Geschlechterspezifische Tendenzen treten in vielen neuronalen maschinellen Überset-

zungsmodellen und kommerziellen Übersetzungssoftware auf. Das Problem ist bekannt

und Anstrengungen, solche diskriminierenden Tendenzen zu reduzieren sind im Gange,

allerdings soweit ohne durchschlagenden Erfolg. Für diese Arbeit nutzt eine kon-

trollierte Textgenerierungsmethode namens Future Discriminators for Generation

(FUDGE) eingesetzt, um die bei der Übersetzung von Englisch in eine Sprache,

die das Geschlecht des Sprechers offen markiert, auftretende sogenannten Speak-

ing As Geschlechterdiskriminierung zu reduzieren. Das Modell wird mit BLEU

und MuST-SHE, einer neuartigen Methode zur Evaluation geschlechtsspezifischer

Übersetzungen, bewertet. Die Ergebnisse zeigen Verbesserungen in der Überset-

zungsgenauigkeit von femininem Genus auf.
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1 Introduction

1.1 Motivation

When we talk about gender bias in Neural Machine Translation (NMT), the first

issue that comes to mind is stereotyping, e.g. associating the profession doctor with

the male pronoun and a nurse with the female pronoun. This example is indeed a

gender bias, but as Hardmeier et al. (2021) pointed out, there are different kinds

of gender bias in NMT and it is necessary to identify what is deemed as harmful

behavior, how, and to whom (Savoldi et al., 2021).

In a broader sense, gender bias is found in many Natural Language Processing (NLP)

systems, and has raised much concern about gender inequality and the danger of

reinforcing damaging stereotypes in downstream applications. With the rapid devel-

opment of Large Language Models (LLMs), NLP has gained much more attention

across the general public. While people are fascinated by its capabilities and what

we could achieve with such powerful systems, some researchers recently put out an

open letter1 to call on the labs and research institutes across the world to pause

the training of AI systems that are potentially better than GPT-4 (OpenAI, 2023),

which is released on March 14, 2023, and suggesting that “powerful AI systems

should be developed only once we are confident that their effects will be positive

and their risks will be manageable”. We will not discuss whether it is feasible to

seize the development of better LLMs for six months, the concern in the letter is

valid and will be a vital topic for our future research in NLP or Artificial General

Intelligence (AGI) in general. And gender bias is certainly one of the AI safety

problems we need to face and tackle.

Current research on mitigating gender bias in MT usually focuses on gender stereo-

types (Stanovsky et al., 2019), translation errors due to speaker gender (Vanmassen-

hove et al., 2018) or pronoun translation (Loáiciga et al., 2017; Jwalapuram et al.,

2020). Furthermore, the proposed methods are usually only evaluated on BLEU (Pa-

pineni et al., 2002). However, BLEU evaluates the overall translation fluency and

1https://futureoflife.org/open-letter/pause-giant-ai-experiments/

1
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Chapter 1. Introduction

is rather insensitive to specific linguistic phenomena that only affect a few words

(Sennrich, 2017).

In this work, I apply a controlled text generation method, Future Discriminators for

Generation (FUDGE) (Yang and Klein, 2021), to mitigate the gender bias that arises

when translating from English, a language that marks gender only on pronouns, to

Italian, a language that openly marks the gender of the speaker in specific contexts.

FUDGE has demonstrated its capabilities on many controlled text generation tasks,

e.g. poetry couplet completion, topic-controlled language generation, and machine

translation formality change. With this work, I further explore its performance on

a gender-controlled machine translation task.

Furthermore, instead of solely relying on BLEU (Papineni et al., 2002) as an evalu-

ation metric, the models were also evaluated on a novel gender translation challenge

set, MuST-SHE (Savoldi et al., 2022), built on manually annotated test sets specif-

ically designed for its purpose. And FUDGE demonstrates improvements in several

feminine gender terms’ translation accuracy. The code and documentation of this

project are available on GitHub2.

A special note on this project: this work is part of the EASIER project, a Horizon

2020 project that aims to design, develop, and validate a complete multilingual ma-

chine translation system that will act as a framework for barrier-free communication

among deaf and hearing individuals, as well as provide a platform to support sign

language content creation3.

1.2 Thesis Structure

In the following chapters, we start with reviewing some relevant work in NLP (Chap-

ter 2) and build the context with the help of some sociolinguistic literature (Chapter

3). Next, we introduce the FUDGE method and how we are going to use it to mit-

igate gender bias (Chapter 4). Then the reader will get more insights into the data

(Chapter 5) and the experiment settings (Chapter 6). Afterward, we will examine

the results (Chapter 7) and analyze them (Chapter 8). Lastly, we wrap up with a

conclusion (Chapter 9).

2https://github.com/tianshuailu/debias_FUDGE
3For more details about the project, please refer to https://www.project-easier.eu/

2
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2 Related Work

2.1 Controlled Text Generation

A number of research works concentrate on fine-tuning a pre-trained model for a de-

sired attribute. Ficler and Goldberg (2017) proposed a framework for neural natural

language generation (NNLG) controlling different stylistic aspects of the generated

text. And the method results in a class-conditional language model (CCLM), but

it is usually difficult to separate the desired attribute from the generation model,

which means the model is usually just suitable for one task and needs retraining for

another attribute of interest. Keskar et al. (2019) mitigates this issue by proposing a

Conditional Transformer Language (CTRL) model that was trained to condition on

many factors, e.g. style, content, and task-specific behavior. This method, however,

is quite expensive. Furthermore, Krause et al. (2021) suggests using discriminators

to guide the decoding of LMs.

Another line of work achieves the goal of controlling attributes by backpropagating

the gradients. Dathathri et al. (2020) proposed Plug and Play Language Model

(PPLM) for controllable language generation, also utilizing attribute classifiers to

guide the decoding, but with a forward and a backward gradient path to push the

LM’s hidden activations and thus control the generation.

2.2 Mitigating Gender Bias

Gender Tagging

A common method to mitigate gender bias is to attach gender tags as proposed by

Vanmassenhove et al. (2018). In this case, gender information is integrated into the

Neural Machine Translation (NMT) systems via a tag on the source. This approach

achieves improvement for multiple language pairs.

3



Chapter 2. Related Work

Data Augmentation

Given the original biased data set, Zhao et al. (2018) proposed to construct an ad-

ditional training corpus where all male entities are swapped for female entities and

vice-versa. The goal of the augmentation is to mitigate the bias by training the

model on gender-balanced data sets. And Zhao et al. (2018) claimed that data aug-

mentation reduces gender bias and works even better in combination with removing

biased resources.

Benchmarks

Zhao et al. (2018) introduced a benchmark, WinoBias, to measure gender bias in

coreference resolution with entities corresponding to people referred to by their oc-

cupation. Another benchmark, WinoGender (Rudinger et al., 2018), is a Winograd

schema-style (Levesque et al., 2012) set of minimal pair sentences that differ only

by pronoun gender.

Based on WinoBias and WinoGender, Stanovsky et al. (2019) composed a corefer-

ence resolution English corpus that contains sentences in which the subjects are in

non-stereotypical gender roles. It is a standard test set to evaluate gender stereo-

typing in MT.

4



3 Sociolinguistics Background

Before diving into how to mitigate gender bias in Neural Machine Translation, let

us take a detour to some sociolinguistic literature to have a general impression of

what gender bias is, where it comes from, and what the different types of gender

bias in Machine Translation are.

3.1 Gender and Language

The research on gender differences in language is multidisciplinary and may involve

social psychology, anthropology, linguistics, and sociolinguistics. From the work

of earlier anthropologists, we have a glimpse of many phonological, morphological,

and lexical differences between female and male speakers (Coates, 2004). In social

psychology, researchers reveal the cause and the consequences of gender differences

in language (Stahlberg et al., 2007), while a linguist might be more interested in how

gender difference is reflected in the grammatical structure or lexicon of a language.

3.1.1 Gender Representation in Language

Gender, used to describe socially constructed categories, is also reflected in the

grammatical structures of almost all languages. The work by Stahlberg et al. (2007)

explores how gender is expressed in different languages and groups languages into

three categories in terms of gender representation: grammatical gender languages,

neutral gender languages, and genderless languages.

Grammatical Gender Languages

In grammatical gender languages (e.g. Italian, Spanish), every noun is assigned a

feminine or masculine (or possibly neuter) gender. And other Parts-Of-Speech, e.g.

verbs, articles, adjectives, and pronouns are also marked with the gender of the

nouns.

5



Chapter 3. Sociolinguistics Background

Finnish Hän on hyvä ystävä.

English She/He is a good friend.

Italian Lei/Lui è una/un buona/buon amica/amico.

Table 1: An example of two sentences written in each one of the three types of
languages, namely grammatical gender languages (Italian), natural gender
languages (English), and genderless languages (Finnish).

Natural Gender Languages

In natural gender languages, like English, most personal nouns (e.g. doctor, nurse,

student, and teacher) can be used to refer to both females and males. There is no

grammatical marking of gender, hence verbs, articles, and adjectives are usually the

same for females and males. Expression of gender is less frequent and easier to avoid

in natural gender languages than grammatical gender languages (Stahlberg et al.,

2007).

Genderless Languages

Genderless languages (e.g. Finnish, Turkish), as defined by Stahlberg et al. (2007),

have neither grammatical gender in the noun system nor gender-differential personal

pronouns. And gender is usually only expressed in lexical pairs (e.g. in Finnish,

nainen/woman vs. mies/man). In addition, verbs, articles, and adjectives are also

not marked with gender.

In summary, all three types of languages have lexical expressions of gender. Apart

from that, pronominal forms are used to express gender in natural gender lan-

guages and grammatical gender languages. And only grammatical languages pos-

sess gender-marked nouns and other Parts-Of-Speech that grammatically agree with

them. In Table 1, two sentences are written in each one of these three types of lan-

guages. For the English sentence, the only difference is the pronoun He or She, while

in the Italian version the adjectives, determiners, and personal nouns also change

with the pronoun. But in the Finnish example, we could not determine the gender

of the person being referred to just by looking at the sentence.

A note on the aforementioned classification: it is not a rigorous linguistic catego-

rization, but a theory suggested by social psychologists Stahlberg et al. (2007) and

fits in a specific research context that may help with the discussion of gender bias

in NMT.

6



Chapter 3. Sociolinguistics Background

3.2 Gender and Bias

A systematic classification of gender bias in MT does not seem to exist but would

be necessary when tackling specific gender bias with specific data sets and methods.

In this project, I consider two classification methods: one accounting for the differ-

ent sources that can lead to machine bias (Friedman and Nissenbaum, 1996), and

another one approaching it from a linguistic standpoint, proposed by Dinan et al.

(2020).

3.2.1 Bias Categories according to source

Friedman and Nissenbaum (1996) proposed three categories of bias in computer

systems in general, pre-existing, technical, and emergent. The pre-existing bias is

rooted in our institutions, practices, and attitudes; the technical bias is caused by

technical constraints and decisions; the emergent bias arises from the interaction

between systems and users (Savoldi et al., 2021).

Pre-existing Bias

MT models are known to reflect gender disparities present in the data (Savoldi et al.,

2021). The data sets that were used to train the MT models are generated from

our everyday life, which inevitably carries a social, historical, and cultural context,

including bias, into the models.

Technical Bias

Data sets are one of the main sources where gender bias comes from, but as Geirhos

et al. (2020) pointed out, data alone rarely constrains a model sufficiently, and data

cannot replace making assumptions. As demonstrated in multiple works, the model

architecture, the choices of the parameters, and algorithms all could potentially

influence the models’ behaviour (Vanmassenhove et al., 2019; Escolano et al., 2021;

Roberts et al., 2020).

Emergent Bias

While the pre-existing bias and the technical bias can be identified before or during

the development of MT models, emergent bias only happens after using the models,

usually as a result of a change in societal knowledge or cultural values. Google

Translate was launched in 2006, but it wasn’t until 2018 that it supported the

translations of feminine and masculine forms1. With the awareness of non-binary

1https://ai.googleblog.com/2018/12/providing-gender-specific-translations.html

7
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Chapter 3. Sociolinguistics Background

gender groups and gender-inclusive language, more improvements certainly need to

be done for the MT models.

3.2.2 ABOUT, AS, TO Framework

To tackle the challenge of gender bias in NMT or NLP in general, we need a fine-

grained classification of gender bias derived from NLP systems. Dinan et al. (2020)

proposed a multi-dimensional framework (ABOUT, AS, TO) for measuring gender

bias in language and NLP models.

Speaking About: Gender of the Topic.

This type of bias is probably the most well-known in NLP, e.g. the notorious example

that assumes a doctor is male and a nurse is female. This dimension, Speaking About,

is often embedded in the text composed of third-person sentences and is usually

caused by the under-representation of certain social groups (Savoldi et al., 2021).

Speaking To: Gender of the Addressee.

We expect a person to adjust their speech depending on the gender of whom they

are speaking to (Eckert and Rickford, 2001). This dimension, Speaking To, refers to

the gender bias that emerged around the gender of the addressee.

Speaking As: Gender of the Speaker.

When we use the pronoun I, we bring to that use of I a sense of being either a

woman or a man (Coates, 2004). Coates (2004) extensively summarized the gender

differences in languages with diverse examples demonstrating that women and men

have different linguistic behavior.

In the experiments, the last dimension, Speaking As, will be the focus of this work.

The training data sets, test sets, and evaluations are all selected according to this

specific type of gender bias.

3.3 Remarks

In light of the above multidisciplinary background, we formed the context of this

work, which will focus on mitigating the Speaking As type of gender bias that occurs

when translating from a natural gender language to a grammatical gender language

i.e. from English to Italian, under the assumption that the bias pre-exists in the

data sets.

8



4 FUDGE

4.1 Motivation

Controlled text generation is the task of generating text conditioned on an additional

desirable attribute a which is not already built into the trained model G (Yang and

Klein, 2021). For example, the model G is a translation model from English to

Italian, and we would like the output to possess some attributes that it does not

already have, e.g. we would like the Italian translation to be more formal, which is

not optimized during training.

Unfortunately, it is usually nontrivial to retrain the model G to condition it on

the new attribute a, and if new attributes come up, the training process will need

to be repeated. Another possible solution suggested by Keskar et al. (2019) is a

Conditional Transformer Language (CTRL) model that was trained to condition on

many factors. But it is only limited to the pre-defined factors, which still does not

solve the problem of retraining the model for a new attribute.

Considering these limitations, Yang and Klein (2021) proposed Future Discrimi-

nators for Generation (FUDGE), a flexible and modular way of conditioning the

generative model G on the desired attribute a that only requires access to the out-

put probabilities of G. FUDGE achieves this by training a binary classifier that

predicts whether the attribute a is satisfied in the complete sequence based on the

generated sequence for each step.

4.2 Future Discriminators for Generation

In a controlled text generation task, assume an autoregressive model G that samples

from a distribution P (X):

P (X) =
n∏

i=1

P (xi | x1:i−1)

9



Chapter 4. FUDGE

To condition on the desired attribute a, it requires to model P (X | a):

P (X | a) =
n∏

i=1

P (xi | x1:i−1, a)

instead of modeling a class-conditional language model, FUDGE utilizes a Bayesian

factorization:

P (xi | x1:i−1, a) ∝ P (a | x1:i)P (xi | x1:i−1)

The second term P (xi | x1:i−1) is the prediction of G, which makes it suffice to model

the first term P (a | x1:i) with a binary classifier B. (Yang and Klein, 2021)

4.2.1 Advantages and Limitations

In the work by Yang and Klein (2021), they mentioned a few potential advantages

of FUDGE compared to other methods e.g. directly fine-tuning a class-conditional

language model (CCLM) on G:

1. FUDGE only requires access to the output logits of G, instead of G itself.

2. When a better model is available, G can be replaced as long as it shares the

same tokenization as G.

3. When a task requires multiple conditionally independent attributes, FUDGE

can easily combine the classifiers for each attribute by summing their output

log probabilities.

One drawback is that FUDGE can not guarantee that all the outputs meet the

desired attribute a due to the approximation when modeling P (a | x1:i) and only

considers the top 200 tokens for computational efficiency.

4.2.2 Example Applications

In the original work by (Yang and Klein, 2021), FUDGE was tested on three dif-

ferent controlled text generation tasks: poetry couplet completion, topic-controlled

language generation, and machine translation formality change.

Poetry Couplet Completion

Given the first line of an English iambic pentameter couplet, the task is to generate

a second line that satisfies the iambic pentameter, rhymes with the first line, and

ends a sentence. For this task, Yang and Klein (2021) built three classifiers for

10
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the three components of the attribute a: meter, rhyme, and sentence-ending, then

combined them at test time. Compared to the baselines, FUDGE maintains a fluent

generation and increases diversity.

Topic-Controlled Language Generation

In this example, Yang and Klein (2021) experimented on English topic control lan-

guage generation. Given a topic and a generic prefix, the goal is to generate three

80-token samples. There are seven topics and 20 prefixes. The desired attribute a is

to be on-topic for a given topic. Given a word and the prefix, the classifier predicts

whether the word will appear in the future. FUDGE outperforms the baselines in

both topic relevance and fluency.

Machine Translation Formality Change

Yang and Klein (2021) describes Machine Translation Formality Change as a some-

what more challenging task, which translates a conversational Spanish sentence into

a formal English sentence. The desired attribute a is formality without sacrific-

ing the meaning of the source sentence. The binary classifier classifies whether the

text starting with a certain prefix is written in a formal style. In evaluation, while

FUDGE and G achieve similar BLEU scores, FUDGE has a higher formality score.

For more details about these three tasks, please refer to the paper (Yang and Klein,

2021). Of all three applications, Machine Translation Formality Change shares the

most similarities with gender-controlled machine translation.

4.3 Gender-Controlled Machine Translation

Given an English sentence, the goal is to generate a semantically correct Italian

translation with proper grammatical gender agreement according to the speaker’s

gender. Since the gender of the speaker is unmarked in the English sentence, I exper-

imented on feminine and masculine genders separately, meaning that one model will

only combine with the feminine classifier and another one only with the masculine

classifier. In essence, the experiments combine the underlying English–Italian trans-

lation model with a binary classifier that predicts whether the completed sequence

will have feminine or masculine forms according to the speaker’s gender.

To see if gender tags improve FUDGE’s performance, I tested two underlying trans-

lation models G and Gt. The only difference between G and Gt is that Gt utilized

gender tags. G and Gt are also the baselines of the experiments in section 6.

11
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Figure 1: Illustration of four combinations between the underlying translation mod-
els G (translation model trained on original data sets), Gt (translation
model trained on tagged data sets) and two classifiers Bf (feminine), Bm

(masculine).

In order to translate with correct grammatical gender agreement, FUDGE requires

two desired attributes a, feminine and masculine, hence two classifiers Bf and Bm.

Each of them is combined with the two underlying translation models G and Gt,

resulting in four combinations, as illustrated in Figure 1.

FUDGE relies on only one hyperparameter, λ, to control the weight of the classifiers

(Bf and Bm) versus G’s prediction. In the experiments, the translation models were

combined with the classifiers on different values of λ, ranging from 1 to 5.

4.4 Standard Baseline and Tagged Baseline

One baseline was fine-tuned on an English–Italian parallel data set as a standard

baseline, whereas the tagged baseline was fine-tuned on an identical data set but

with a gender tag attached to each English source sentence, tagged baseline. The

tagged baseline was built with the method from Vanmassenhove et al. (2018).

Together with the release of Europarl-Speaker-Information corpora (Vanmassenhove

and Hardmeier, 2018), Vanmassenhove et al. (2018) proposed to incorporate gen-

der information into neural machine translation (NMT) systems. Similar to the

work by Sennrich et al. (2016b) on controlling politeness by marking the source side

12



Chapter 4. FUDGE

of the training data with a sentence level feature tag “informal” or “polite”, Van-

massenhove et al. (2018) augmented the source side sentences with the gender tag

“FEMALE” or “MALE”, as illustrated in the example (3.1):

(4.1) “FEMALE Madam President, as a...”

As an advantage of FUDGE, it only needs access to the output logits of the gener-

ator model, which means the baseline models can be used as the generator models

and can be directly combined with the classifiers without additional fine-tuning or

modification. This allows me to directly use G and Gt as baselines.

13
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5.1 Europarl-Speaker-Information

Europarl (Koehn, 2005) is a corpus of parallel sentences in eleven languages from

the proceedings of the European Parliament. Vanmassenhove and Hardmeier (2018)

tagged them with speaker information (name, gender, age, date of birth, euroID,

and date of the session) based on monolingual Europarl (Koehn, 2005) source files

which contain speaker names on the paragraph level.

I chose Europarl-Speaker-Information (Vanmassenhove and Hardmeier, 2018) be-

cause it is the largest dataset with parallel sentences tagged with the gender of the

speaker. In addition, Europarl (Koehn, 2005) consists of parliament proceedings,

hence it might contain more first-person sentences, which makes it suitable for the

kind of gender bias the experiments focus to reduce, i.e., Speaking As. To verify this

assumption, I selected two crawled corpora and two news corpora from OPUS1 and

compared their number of sentences that contain I or we on the English side with

Europarl-Speaker-Information, as shown in Table 2. The two crawled corpora are

ParaCrawl (Bañón et al., 2020) and CCAligned (El-Kishky et al., 2020). The two

news corpora are News-Commentary (Tiedemann, 2012) and GlobalVoices (Tiede-

mann, 2012). Numbers in Table 2 were obtained on the English–Italian parts of the

corpora.

I used Europarl-Speaker-Information (Vanmassenhove and Hardmeier, 2018) to train

the baseline and tagged baseline and test the FUDGE (Yang and Klein, 2021)

method. The English–Italian part of the corpus contains 1.29 million sentences,

which includes 870,000 sentences by male speakers and 420,000 sentences by female

speakers. Hence the ratio of the two gender groups is 2.08/1. Before training the

tagged baseline, I attached the gender tag to each English source sentence, indicating

the gender of the speaker, as shown in the two examples:

1https://opus.nlpl.eu/
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corpus first-person
sentences

corpus size percentage

News Commentary 4,422 78,348 5.64%

ParaCrawl 7,392,692 96,977,931 7.62%

CCAligned 1,037,340 13,186,311 7.87%

GlobalVoices 13,844 122,074 11.34%

Europarl-Speaker-Information 576,402 1,295,563 44.49%

Table 2: A comparison of the number of first-person sentences in the selected cor-
pora by counting the number of sentences that contain I or we on the
English sentence side. Europarl-Speaker-Information(Vanmassenhove and
Hardmeier, 2018) has the highest percentage of first-person sentences.

standard FUDGE tagged FUDGE

baseline training set 1.2 million 1.2 million

validation set 2000 2000

feminine test set 1300 1300

masculine test set 2700 2700

Table 3: The number of sentences for each data set. The sizes of data sets for
standard FUDGE and tagged FUDGE are the same because I used the
same sentence pairs for FUDGE and tagged FUDGE.

(5.1) [FEMALE] I want to refer to two areas that I know well.

(5.2) [MALE] I believe it is necessary to return to . . .

To individually evaluate the feminine and masculine classifiers, a sample of 4000

sentences was randomly selected and divided according to gender, yielding 1300

sentences by female speakers and 2700 sentences by male speakers, which share the

same gender ratio of the corpora. To ensure comparability of the results, standard

FUDGE and tagged FUDGE utilized identical sentence pairs, with the only dif-

ference being the inclusion of gender tags in tagged FUDGE’s data sets. Table 3

provides more details about the data sets.
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unprocessed processed filtered

feminine 24,700 283,500 45,800

masculine 54,700 713,000 248,900

Table 4: The line counts of ParlaMint 2.1 feminine and masculine data sets. The first
two columns display the line counts before and after splitting the utterances
into one sentence per line. The last column displays the line counts after
filtering out the sentences that do not contain adjectives or participles.

unprocessed processed filtered

feminine 318 26 38

masculine 351 25 34

Table 5: The average length in tokens of ParlaMint 2.1 feminine and masculine data
sets. The length is measured by tokens per sentence. The first two columns
display the lengths from before and after splitting the utterances into one
sentence per line. The last column displays the lengths after filtering out
the sentences that do not contain adjectives or participles.

5.2 ParlaMint 2.1

ParlaMint 2.1 (Erjavec et al., 2021) is a multilingual set of 17 corpora containing

parliamentary debates mostly starting in 2015 and extending to mid-2020. The cor-

pora have extensive metadata, including aspects of the parliament and the speakers

(name, gender, and more). The gender of the speaker is more relevant to the exper-

iments. Besides, the speeches also contain marked-up transcriber comments, such

as gaps in the transcription, interruptions, applause, etc.

I selected ParlaMint 2.1 to train the classifiers for two reasons. Firstly, it has an

Italian corpus with a sufficient amount of sentences and is tagged with the speaker’s

gender. In addition, similar to Europarl-Speaker-Information, it is also parliamen-

tary proceedings.

The corpus is divided into feminine and masculine data sets, making it suitable

to train the feminine and masculine classifiers separately. Each line contains the

whole speech of the speaker, so I split the utterances into one sentence per line with
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the sentencizer2 from spaCy (Honnibal et al., 2020). Furthermore, I removed the

transcriber comments, since they are irrelevant to the gender of the speaker. To

provide a general impression, the line counts and the average lengths of feminine

and masculine data sets before and after processing are displayed in the first two

columns of Table 4 and Table 5. The length is measured by tokens per sentence.

In Italian, the adjectives and participles are marked with the gender of the speaker.

As shown in Table 5, in the full data set, the utterances where the gender of the

speaker is marked are relatively sparse. Hence it is possible that using the full

data set does not give the classifier a strong enough signal to learn. While almost

all of the sentences in the filtered data set contain gender-marked words, hence it

should be more suitable to train the classifier. The accuracy of classifiers trained on

these two data sets is shown in section 7.2. The sentences that contain adjectives

and participles were selected with the Italian pipeline3 and the Morphologizer4 from

Spacy (Honnibal et al., 2020). The line counts and the average length are shown in

the third columns of Table 4 and Table 5.

5.3 MuST-SHE v1.2

MuST-SHE (Bentivogli et al., 2020) is a multilingual benchmark allowing for a fine-

grained analysis of gender bias in Machine Translation and Speech Translation and

is a subset of the TED-based MuST-C corpus (Di Gangi et al., 2019). The dataset

comprises audio, transcript, and translation triplets annotated with the gender of

the speaker. Only the English transcript and Italian translation pairs were used

during the experiments. Each pair requires translating at least one English gender-

neutral word into the corresponding masculine/feminine target word(s). (Bentivogli

et al., 2020)

WinoMT (Stanovsky et al., 2019) represents the standard corpus to evaluate gender

bias in MT within an English-to-grammatical gender language scenario (Savoldi

et al., 2022). While WinoMT might be suitable for detecting gender stereotypes,

it consists of synthetic sentences with the same structure (e.g. The CEO helped

the nurse because he needed help.) and doesn’t include first-person sentences. On

the other hand, MuST-SHE v1.2 is built on the utterances from TED talks and

contains 656 first-person sentences out of 1073. Hence, I selected MuST-SHE v1.2

over WinoMT for FUDGE’s evaluation.

2https://spacy.io/api/sentencizer
3https://spacy.io/models/it
4https://spacy.io/api/morphologizer
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Quantity

She 554

He 511

They 10

Multi-She 4

Multi-He 4

Multi-Mix 12

Sum 1095

Table 6: The distribution of gender tags in the en-it MuST-SHE benchmark. They
means the speaker is referred to with gender-neutral linguistic gender forms.
Multi-She/He means two or more speakers who are all referred to with
feminine/masculine linguistic gender forms. Multi-Mix means two or more
speakers who are referred to with different linguistic gender forms.

MuST-SHE v1.2 categorizes the gender into six categories: She, He, They, Multi-

She, Multi-He and Multi-Mix. They means the speaker is referred to with gender-

neutral linguistic gender forms. Multi-She/He means two or more speakers who are

all referred to with feminine/masculine linguistic gender forms. Multi-Mix means

two or more speakers who are referred to with different linguistic gender forms.

Since only feminine and masculine linguistic gender forms are considered in the

experiments, I only kept the sentences of these four categories: She, He, Multi-She

and Multi-He and merged the sentences labeled with Multi-She and She, Multi-He

and He. The distribution of these six categories is shown in Table 6.

MuST-SHE v1.2 (Savoldi et al., 2022) adds extensions consisting of two manually

created linguistic annotation layers, which enrich MuST-SHE (Bentivogli et al.,

2020) with information about Parts-Of-Speech and gender agreement chains.

Parts-Of-Speech

Savoldi et al. (2022) annotate each gender-marked word with POS information that

is differentiated among six categories: 1) articles, 2) pronouns, 3) nouns, 4) verbs.

Additionally, adjectives are divided into 5) limiting adjectives or adj-determiner, ad-

jectives with minor semantic import that determine e.g. possession, quantity, space

(my, some, this); 6) descriptive adjectives or adj-descriptive that convey attributes

and qualities, e.g. glad, exhausted. This classification of adjectives is from the work

by Schachter and Shopen (2007).
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Quantity

POS(total) 2026

Art 413

Pronoun 48

Adj-det 149

Adj-des 448

Noun 346

Verb 622

AGR-CHAINS 421

Table 7: The distribution of Parts-Of-Speechb(POS) and the number of gender
agreement chains (AGR-CHAINS) in the en-it MuST-SHE benchmark.
Adj-det denotes the determiner adjective and Adj-des denotes the descrip-
tive adjective.

For the purpose of word-level evaluation, Savoldi et al. (2022) only consider the

words that are subject to form variations due to gender morphological inflections

and categorize them into the six aforementioned types:

1. Art includes articles and prepositional articles. Unlike simple prepositions

(e.g. of, in) that are invariable with gender, prepositional articles combine a

preposition and an article and are variable with gender, as shown in example

(5.3) 5:

(5.3) delle
of the

vecchie
old

signore
ladies

2. Noun only includes human-referring nouns

3. Verb includes all the verbs that are inflected for gender agreement with the

subject.

4. Adjective are further divided into adj-determiner (5.4) and adj-descriptive

(5.5):

(5.4) C’erano
There were

parecchi
several

ragazzi
guys

5The English–Italian examples from (5.3) to (5.11) and the following categorical information
are from the Annotation Guidelines of MuST-SHE v1.2 Extensions https://ict.fbk.eu/

must-she/.
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(5.5) la
the

signora
woman

vecchissima
very old

’the very old woman’

5. Pronoun is used to annotate pronouns that are also marked with gender.

Agreement

Savoldi et al. (2022) also enrich MuST-SHE (Bentivogli et al., 2020) with grammat-

ical gender agreement (Corbett, 2006), which requires that related words match the

same gender form, as in the case of phrases, i.e. groups of words that constitute

a single linguistic unit. They identify and annotate as agreement chains gender-

marked words that constitute a phrase, such as a noun plus its modifiers, and verb

phrases for compound tenses. (Savoldi et al., 2022)

Agreement-level annotation concerns the words that constitute a phrase, to examine

whether they agree in gender inflection. Consider two Italian translations of the

English phrase A goof friend, (5.6) is a correct translation with all words concording

to a feminine agreement.

(5.6) Una
A

brava
good

amica
friend

While in (5.7), the Italian phrase is ungrammatical, since Un is in masculine form

while brava and amica are in feminine form.

(5.7) *Un
A

brava
good

amica
friend

For the purpose of the gender agreement level evaluation, Savoldi et al. (2022)

consider three types of phrases:

1. Noun phrases, phrases that have a noun as their head. Within noun phrases,

determiners and adjectives are also considered as shown in example (5.8)

(5.8) L’
The

altro
other

volontario
volunteer

2. Prepositional phrases, phrases that have prepositions as their head, which usu-

ally have the structure Prepositional articles + Noun, as seen in example

(5.9)
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(5.9) coi
with the

cuochi
cooks

3. Verb phrases, phrases that consist of a main verb alone, or a main verb plus

any modal and/or auxiliary verbs with a predicative function. Savoldi et al.

(2022) further consider verbal (5.10) and nominal (5.11) predicates two cases.

(5.10) sono
I’ve

stato
been

chiamato
called

per
for

l’incontro
the meeting

(5.11) sono
I

diventato
became

un
a

musicista
musician

5.4 Overview

Finally, as an overview of how each data set is utilized, Table 8 presents the purpose

of the three data sets. Europarl-Speaker-Information (Vanmassenhove and Hard-

meier, 2018) English–Italian parallel data sets were used to train and calculate the

BLEU score of the underlying translation models G and Gt. G and Gt were trained

on the same sentence pairs, except that Gt’s training set contains gender tags on the

English source side.

ParlaMint 2.1 (Erjavec et al., 2021) Italian monolingual data sets were used to train

and test the feminine and masculine classifiers Bf and Bm. Bf and Bm were trained

on the same monolingual sentences, except that Bf treats the feminine sentences as

positive and Bm the masculine sentences.

MuST-SHE v1.2 (Savoldi et al., 2022) English–Italian parallel data sets were only

used to evaluate the standard and tagged FUDGE on the word level and gender

agreement level.
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Type Usage

Europarl-Speaker-Information en-it parallel training and testing G and Gt

ParlaMint 2.1 it monolingual training and testing Bf and Bm

MuST-SHE v1.2 en-it parallel evaluation

Table 8: An overview of the language type and the usage of the corpora. Europarl-
Speaker-Information (Vanmassenhove and Hardmeier, 2018) English–
Italian parallel data sets were used to train and test the underlying trans-
lation models G and Gt. ParlaMint 2.1 (Erjavec et al., 2021) Italian mono-
lingual data sets were used to train and test the feminine and masculine
classifiers Bf and Bm. MuST-SHE v1.2 (Savoldi et al., 2022) English–Italian
parallel data sets were used to evaluate FUDGE and tagged FUDGE.
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6.1 Models

6.1.1 Underlying English–Italian translation models

The two underlying translation models G and Gt are the results of fine-tuning mT5

(Xue et al., 2021). mT5 is a multilingual pre-trained text-to-text transformer, a

multilingual variant of T5 (Raffel et al., 2020), and was pre-trained on a Common

Crawl-based dataset mC4 (Xue et al., 2021) covering 101 languages. To cover these

languages, the vocabulary size of mT5 is 250,000 words. Considering the experi-

ments only use English and Italian, this amount of vocabulary is redundant, which

makes it necessary to prune mT5 with a smaller vocabulary.

The first step of the experiments is trimming the model mT5-small (Xue et al.,

2021) from Hugging Face1 with a smaller vocabulary of 25,000 English and Italian

subword entries. To get these subword entries, I applied byte-pair-encoding (BPE)

(Sennrich et al., 2016a) to the English and Italian sentences from Europarl-Speaker-

Information (Vanmassenhove and Hardmeier, 2018) and ranked the subword units

by frequency and selected the top 25,000 items as the vocabulary to trim mT5.

The trimmed mT5 (Xue et al., 2021) was fine-tuned on Europarl-Speaker-Information

(Vanmassenhove and Hardmeier, 2018) English–Italian data set with the example

scripts from Hugging Face Transformers (Wolf et al., 2020), yielding the underlying

translation models G and Gt. The scripts were adapted by adding an early stopping

callback2 and the early stopping patience was set to 10.

G and Gt were trained on the same Europarl-Speaker-Information (Vanmassenhove

and Hardmeier, 2018) data sets, except that Gt’s English source side has a gender

tag, either “[FEMALE]” or “[MALE]”, attached to each line. But G and Gt shared

the same model architecture and training hyperparameters. Besides, G and Gt will

1The link of the model is https://huggingface.co/google/mt5-small
2For details about Hugging Face Callbacks, please refer to https://huggingface.co/docs/

transformers/main_classes/callback

23

https://huggingface.co/google/mt5-small
https://huggingface.co/docs/transformers/main_classes/callback
https://huggingface.co/docs/transformers/main_classes/callback


Chapter 6. Experimental Setup

also be used as the baselines without the need for any modification.

6.1.2 Feminine and Masculine Classifiers

As shown in Table 4, the feminine data set contains fewer sentences than the mas-

culine data set. To ensure a balanced class distribution for training the classifier, I

used the same amount of sentences for both gender categories, i.e. 45,800 sentences

each. For comparison, the classifiers were also trained on the original data sets, i.e.

before filtering, and an imbalanced class distribution, i.e. more masculine sentences

than feminine ones. Different variations of the classifiers were tracked with Weights

& Biases (Biewald, 2020). The results will be shown in Chapter 7.

Regarding the architecture of the classifiers, I adopted the classifier structure of the

formality change task from (Yang and Klein, 2021), specifically, a 3-layer causal

LSTM (Hochreiter and Schmidhuber, 1997) with a hidden dimension of 512. A

dropout layer is appended to the output of each LSTM layer except the last layer,

with a dropout probability equal to 0.5. As mentioned by Yang and Klein (2021),

the classifiers should use the same vocabulary as the generation models (trimmed

mt5-small). I also initialized the embeddings in the classifier from the pre-trained

mt5-small, this is not mandatory however, embeddings can be initialized randomly

or pretrained with another method.

To train the classifiers, I adapted the scripts from SimpleFUDGE (Kew and Ebling,

2022). Both classifiers were trained for 15 epochs starting with a starting learning

rate of 0.001 and a Cosine Annealing (Loshchilov and Hutter, 2017) learning rate

scheduler3 implemented by PyTorch (Paszke et al., 2019).

Feminine and masculine classifiers Bf and Bm were trained on the same ParlaMint

2.1 (Erjavec et al., 2021) data sets with the same LSTM architecture. To train Bf ,

sentences by female speakers are the positive class, whereas in training Bm, sentences

by male speakers are the positive class.

6.2 Decoding

Since the gender female and male are treated as two opposing attributes, I decided

to test them separately for this project. The general idea is that for the FUDGE

models with the feminine classifier, I only test it on the sentences uttered by female

3https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.

CosineAnnealingLR.html
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speakers, and then test the ones with the masculine classifier on the sentences uttered

by male speakers.

As introduced in Chapter 4, Yang and Klein (2021) augments the underlying gen-

erator model’s logits with log probabilities from the classifier. In the experiments,

the English–Italian translation models G and Gt each were augmented with the fem-

inine and masculine classifiers Bf and Bm respectively, yielding four combinations

of FUDGE, as illustrated in Figure 1

Considering that Kew and Ebling (2022)’s SimpleFUDGE implements beam search

for decoding, while FUDGE only allows greedy search, the SimpleFUDGE scripts

were adapted and used for decoding. The beam size was set to 4, the same as the

default value in SimpleFUDGE.

6.3 Evaluation

6.3.1 BLEU

As a standard Machine Translation evaluation metric, BLEU (Papineni et al., 2002)

was used as the first method to assess FUDGE’s performance. To ensure the com-

parability of the results, I used SacreBLEU (Post, 2018) as the tool to calculate the

BLEU scores.

6.3.2 MuST-SHE Gender Translation Evaluation Method

Since BLEU provides a global score about translation “quality” as a whole and

does not reflect the systems’ ability to produce the correct gender forms (Bentivogli

et al., 2020), I also used MuST-SHE Evaluation (Savoldi et al., 2022) to assess

the models. MuST-SHE Evaluation assesses the translation of gender terms at two

levels of granularity, i.e. word-level POS gender evaluation and chain-level gender

agreement evaluation.

Word-level Evaluation

The POS annotation is on the Italian side. With the POS annotation, MuST-SHE

performs a fine-grained qualitative analysis of the system’s accuracy in producing

the target gender-marked words. Savoldi et al. (2022) compute accuracy as the

proportion of gender-marked words in the references that are correctly translated

by the system. An upper bound of one match for each gender-marked word is applied
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sentence id correct wrong speaker gender pos

it-0005 dottor dottoressa F noun

it-0005 un un’ F art/prep

it-0005 italoamericano italoamericana F noun

Table 9: An illustration of the POS annotations for example sentence pair (6.1),
which includes the correct target word, the one in the opposite gender, the
gender of the speaker, and the POS category. In this case, the gender of
the speaker is female, but the word dottor is referring to a male, hence the
correct gender form is masculine instead of feminine.

to prevent rewarding over-generated terms.

To illustrate the POS annotation, for the example sentence (6.1), we will have these

three rows from Table 9 recorded in the POS annotation table, including the target

word, the word in the opposite gender, the POS category of the word, the gender of

the speaker, and the ID of the sentence where it comes from, which, in this case, is

it-0005. In this example, the gender of the speaker is female, but the word dottor is

referring to a male, hence the correct gender form is masculine instead of feminine.

(6.1) His
Il suo

name
nome

was
è

Dr.
Dottor

Pizzutillo,
Pizzutillo,

an
un

Italian American,
Italoamericano,

...

...

’Il suo nome è Dottor Pizzutillo, un Italoamericano, ...’

In evaluation, for each annotation, if any one of the correct or the wrong word is

found, the respective annotation is in coverage, and then the accuracy is further

calculated within the in-coverage annotations. One limitation is that for each word,

if the system translates it into a synonym of the target, then it will not be treated

as in coverage.

Gender Agreement Evaluation

Agreement annotation is also on the Italian side. Gender Agreement Evaluation

inspects agreement chains in the translation. Savoldi et al. (2022) define coverage as

the proportion of generated chains matching with those annotated in MuST-SHE.

Each agreement chain involves several agreement terms, if any of the agreement

terms do not appear in the translation, then it will be regarded as Out of Coverage,

meaning the translation failed to include this agreement chain.

And in the case of all the agreement terms appearing in the translation, Savoldi
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et al. (2022) distinguish between these three cases:

1. agreement is respected, and with the correct gender (Correct);

2. agreement is respected, but with the wrong gender (Wrong);

3. both feminine and masculine gender inflections occur together, and thus the

agreement is not respected (No).

As an illustration, in an example English–Italian pair (5.1), the agreement chain

contains three agreement terms, Dottor, un, and Italoamericano, and each paired

with the opposite gender terms: Dottoressa, un’, and Italoamericana.

(6.2) His
Il suo

name
nome

was
è

Dr.
Dottor

Pizzutillo,
Pizzutillo,

an
un

Italian American,
Italoamericano,

...

...

’Il suo nome è Dottor Pizzutillo, un Italoamericano, ...’

Table 10 displays a few cases that might be seen during the evaluation. If any of

the term pairs are missing in the translation, which means there are only one or two

terms that appear (e.g. Dottor and Italoamericano are in the translation, neither

un nor un’ appears), then this agreement chain is treated as out of coverage, such

as the first row in Table 10. When all three terms appear:

1. if all of them are correct (Dottor, un, and Italoamericano), then it is an example

of a Correct Agreement (the second row in Table 10);

2. if all of them are from the opposite gender terms (Dottoressa, un’, and Italoamer-

icana), it is an example of a Wrong Agreement (the third row in Table 10);

3. if a mix of the correct and opposite gender terms appear, then it is a No

Agreement (e.g. the bottom row in Table 10).

In summary, the Correct Agreement and Wrong Agreement both have only one case,

while Out of Coverage and No Agreement could have multiple cases.

Nevertheless, MuST-SHE does not evaluate the overall translation fluency. Hence it

is not sufficient to be a standalone evaluation method for machine translation. The

combination of BLEU and MuST-SHE is necessary.
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Category

Dottor, Italoamericano Out of Coverage

Dottor, un, Italoamericano Correct Agreement

Dottoressa, un’, Italoamericana Wrong Agreement

Dottoressa, un’, Italoamericano No Agreement

Table 10: Different cases of agreement chain evaluation categories. Out of Coverage
refers to translation examples that involve less than three terms, e.g. the
first row. Correct and Wrong only have one case, either all three terms
are correct or all three terms are from the opposite gender, which is the
second and the third row. If a mix of gender terms appears, then it is No
Agreement, e.g. the bottom row.
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7 Results

7.1 Standard and Tagged Baseline

The BLEU scores of the standard baseline and the tagged baseline on both the test

sets by female and male speakers are displayed in Table 11. On the test set with

sentences by female speakers, the tagged baseline has a BLEU score of 27.5, which

is 0.3 more than the standard baseline. On the test set with sentences by male

speakers, with a BLEU score of 27.1, the tagged baseline is 0.1 higher than the

standard baseline.

7.2 Feminine and Masculine Classifiers

Before and after data filtering

Chapter 5.2 mentioned filtering out sentences that do not contain adjectives or

participles. Figure 2 shows the validation accuracy of two feminine classifiers during

training. The orange line is the validation accuracy after splitting the utterances

into sentences. And then I further filtered out the sentences that do not contain

adjectives or participles, whose accuracy is shown as the blue line1. They were both

trained for 15 epochs. The x-axis is the step size and the y-axis is the validation

accuracy. Each dot in the graph represents the validation accuracy of a checkpoint.

The processed data has more sentences, which require more steps to traverse the

data set, hence the orange line is longer than the blue line. The checkpoints with

higher validation accuracy were selected as the respective classifier for decoding.

Preprocessing the data (splitting it into sentences), results in an accuracy of 0.59.

Filtering out the sentences with no marked gender increases the accuracy of the

classifier further to 0.69.

1The number of sentences are described in Chapter 5.2 and shown in Table 4
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standard baseline tagged baseline

feminine 27.2 27.5

masculine 27.0 27.1

Table 11: The BLEU score of the standard baseline and the tagged baseline on both
the test sets by female and male speakers. The tagged baseline has a
higher BLEU score in both types of test sets.

causal LSTM bidirectional LSTM

BLEU 26.2 20.1

Table 12: The BLEU score of tagged FUDGE tested on the sentences by female
speakers with the causal LSTM classifier and the bidirectional LSTM
classifier. Tagged FUDGE’s λ = 5. The validation accuracy of the two
classifiers is shown in Figure 3

Causal LSTM and bidirectional LSTM

Figure 3 shows the changes in the validation accuracy of two feminine classifier

architectures during training. The blue line is a causal 3-layer LSTM and the gray

line is a 3-layer bidirectional LSTM. The rest of the hyperparameters were the same

and they were both trained for 15 epochs. The x-axis is the step size and the y-axis

is the validation accuracy. Each dot in the graph represents the validation accuracy

of a checkpoint and the checkpoints with higher validation accuracy were selected as

the respective classifier for decoding. The checkpoint with 0.69 validation accuracy

was selected as the causal LSTM classifier and the checkpoint with 0.81 validation

accuracy was selected as the bidirectional LSTM classifier. The performance of these

two classifiers will be shown below.

Table 12 shows the BLEU score of tagged FUDGE tested on the sentences by female

speakers with the causal LSTM classifier and the bidirectional LSTM classifier.

Tagged FUDGE’s λ = 5. The tagged FUDGE with the causal LSTM classifier has

a BLEU score of 26.2, 6.1 more than the one with the bidirectional LSTM classifier,

which is 20.1.
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Figure 2: The validation accuracy of two feminine classifiers during training. The
blue line was trained on the sentences containing both adjectives and par-
ticiples. The orange line was trained on the sentences before the filtration.
They were both trained for 15 epochs. The x-axis is the step size and
the y-axis is the validation accuracy. Each dot in the graph represents
the validation accuracy of a checkpoint. The highest validation accuracy
of the classifier trained on the filtered data set is 0.69 and the classifier
trained on the processed data set is 0.59.

Figure 3: The validation accuracy of two feminine classifier architectures during
training. The blue line is a causal 3-layer LSTM and the gray line is
a 3-layer bidirectional LSTM. The rest of the hyperparameters were the
same and they were both trained for 15 epochs. The x-axis is the step size
and the y-axis is the validation accuracy. Each dot in the graph represents
the validation accuracy of a checkpoint. The highest validation accuracy
of the causal LSTM classifier is 0.69 and the bidirectional LSTM classifier
is 0.81.
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standard FUDGE tagged FUDGE

feminine masculine feminine masculine

λ = 0 27.2 27.0 27.5 27.1

λ = 1 27.1 27.0 27.3 26.9

λ = 2 27.0 26.8 27.2 26.9

λ = 3 26.9 26.7 27.0 26.7

λ = 4 26.5 26.6 26.6 26.5

λ = 5 26.2 26.4 26.2 26.5

Table 13: The BLEU score of standard FUDGE and tagged FUDGE tested on both
the test sets by female and male speakers, i.e. the four models illustrated
in Figure 1. Each model was tested on λ ranging from 1 to 5. When λ = 0,
the classifier does not contribute, hence FUDGE’s output is equivalent to
the underlying translation models and the baselines.

7.3 BLEU Score of Standard and Tagged FUDGE

Table 13 shows the BLEU score of standard FUDGE and tagged FUDGE tested on

both the sentences by female and male speakers, i.e. the four models illustrated in

Figure 1. As mentioned in section 4.3, each model was tested on λ ranging from 1

to 5. When λ = 0, the classifier does not contribute, hence FUDGE’s output is the

same as the underlying translation models or the baselines.

As displayed in Figure 4, the baselines have the highest BLEU score on both the

test sets by female and male speakers. With the increase of λ’s value, the BLEU

score either does not change or decreases, as depicted in Figure 4.

7.4 MuST-SHE Gender Translation Evaluation

MuST-SHE Gender Translation Evaluation includes word-level gender evaluation,

which computes the accuracy based on the POS (Parts-Of-Speech) annotations,

and chain-level gender agreement evaluation, which computes the accuracy of the

generated chains.
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Figure 4: A visualization of Table 13. The variation of the BLEU score with the
changes of λ from 0 to 5. When λ = 0, the BLEU score is the same as
the baseline. The x-axis is the values of λ and the y-axis is the BLEU
score ranging from 26 to 27.5. tag feminine and tag masculine denote the
two models from tagged FUDGE. feminine and masculine denotes the two
models from standard FUDGE.

7.4.1 Word-level Gender Evaluation

7.4.1.1 Coverage scores of POS Annotation

Table 14 displays the word-level POS annotation coverage of all six POS categories.

As mentioned in section 6.3.2, one POS annotation is in coverage only if either

the target word or the word with the opposite gender form appears in the trans-

lation. Both the feminine and masculine POS annotation coverage doesn’t vary

much with the change of λ’s value. For feminine POS annotations, standard and

tagged FUDGE demonstrate comparable coverage with both a bit more than 38%.

And for the masculine POS annotations, they both have around 42% coverage. But

the average feminine POS coverage is a bit lower than the masculine POS for both

standard FUDGE and tagged FUDGE.
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standard FUDGE tagged FUDGE

feminine masculine feminine masculine

baseline 37.6 42.3 37.2 42.4

λ = 1 38.2 42.0 37.2 42.4

λ = 2 38.9 42.0 38.2 42.3

λ = 3 37.9 42.3 38.0 42.3

λ = 4 37.3 41.9 37.2 42.3

λ = 5 37.4 41.9 37.9 41.3

average 37.9 42.1 37.6 42.2

Table 14: The word level feminine and masculine POS coverage of standard and
tagged FUDGE with λ ranging from 1 to 5. The coverage numbers in the
first row represent the respective baselines.

7.4.1.2 Translation Accuracy on Open Class POS

Word-level evaluation calculates the accuracy of all six categories of words shown

in Table 7. Only the accuracy of the open-class words was selected to display here

since open-class words are often marked with the gender of the speaker. First, the

results of standard and tagged FUDGE are shown separately in two tables to give

an impression of the performance differences between the two series of models. Then

we will look at them from a different angle, the translation accuracy of the feminine

and masculine forms, to further observe the accuracy differences between the two

genders.

Standard FUDGE

Table 15a shows the feminine and masculine open class POS accuracy of standard

FUDGE with λ ranging from 1 to 5. The first row displays the accuracy scores

tested on the standard baseline.

On the translation of feminine open class POS, when λ = 5, the standard FUDGE

achieves the highest accuracy on all three types, with 71% on verbs, 17.1% on

nouns, and 61.4% on descriptive adjectives. And the standard baseline has the

lowest accuracy on verbs and descriptive adjectives.

On the translation of masculine open class POS, FUDGE and the baseline have

comparable high accuracy scores on nouns and descriptive adjectives. FUDGE’s
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feminine masculine

V erbs Nouns Adj-des V erbs Nouns Adj-des

baseline 27.4 11.4 35.4 87.8 97.6 94.3

λ = 1 43.7 12.8 42.9 91.4 96.3 94.4

λ = 2 60.6 13.2 61.2 92.9 97.5 94.2

λ = 3 62.1 10.8 55.1 94.1 97.4 94.1

λ = 4 70.1 11.8 61.2 96.9 97.5 94.1

λ = 5 71.0 17.1 61.4 96.6 97.5 92.0

(a) Standard FUDGE’s accuracy on open-class POS

feminine masculine

V erbs Nouns Adj-des V erbs Nouns Adj-des

baseline 27.3 13.5 36.3 94.4 97.6 94.1

λ = 1 39.5 13.2 45.7 94.5 97.5 92.2

λ = 2 56.3 20.5 55.1 95.8 97.5 91.7

λ = 3 63.6 14.3 61.7 93.1 97.5 92.2

λ = 4 67.1 15.4 64.6 97.0 97.3 96.1

λ = 5 62.9 19.0 66.0 95.5 97.5 91.8

(b) Tagged FUDGE’s accuracy on open-class POS

Table 15: The word-level feminine and masculine open-class POS translation ac-
curacy with λ ranging from 1 to 5. The first row of each table displays the
accuracy scores from the respective baseline. Adj-des denotes descriptive
adjectives, as discussed in section 5.3.

noun accuracy is 10 percentage points higher than the baseline.

Tagged FUDGE

Having the same layout as Table 15a, Table 15b shows the open class POS accuracy

of tagged FUDGE. The first row displays the accuracy scores tested on the tagged

baseline.

On the translation of feminine open class POS, FUDGE is more accurate in all

three categories than the baseline, 67.1% on verbs, 20.5% on nouns, and 66% on

descriptive adjectives. Similar to the standard baseline, the tagged baseline has a

lower accuracy on verbs (27.3%) and descriptive adjectives (36.3%).
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standard FUDGE tagged FUDGE

feminine masculine feminine masculine

λ = 0 21.7 23.9 23.0 22.2

λ = 1 23.7 23.5 23.0 23.1

λ = 2 25.0 23.1 25.0 22.2

λ = 3 23.7 23.1 24.3 23.1

λ = 4 23.0 24.4 24.3 23.1

λ = 5 21.7 22.2 25.0 24.4

average 23.1 23.4 24.1 23.0

Table 16: The feminine and masculine agreement chain coverage of standard
and tagged FUDGE with λ ranging from 1 to 5. When λ = 0, FUDGE is
equivalent to the underlying translation model, hence the coverage num-
bers in the first row represent baselines.

On the translation of masculine open class POS, again, the baseline and FUDGE

both maintain high accuracy on all three open class POS. One thing worth noting

is that the tagged baseline’s noun accuracy is 6 percentage points higher than the

standard baseline.

7.4.2 Chain-level Gender Agreement Evaluation

7.4.2.1 Agreement Chain Coverage

For gender agreement evaluation, the coverage is the first metric. As shown in Table

16, the standard and the tagged FUDGE have identical coverage rates on both the

feminine and masculine agreement chains, with around 23% to 25%. Tagged FUDGE

has a higher average feminine agreement chain coverage than standard FUDGE.

Interestingly, the coverage rate of feminine agreement chains is comparable with the

masculine.

7.4.2.2 Agreement Chain Accuracy

Standard FUDGE

Among the agreement chains that are in coverage, the accuracy is further evalu-
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ated. Table 17a presents the feminine and masculine agreement accuracy of stan-

dard FUDGE with λ ranging from 1 to 5. The first row displays the results from

the standard baseline. As discussed in section 6.3.2, Correct means that the

agreement is respected with the correct gender, Wrong means that the agreement

is respected but with the wrong gender, and No means that the agreement is not

respected.

Standard FUDGE demonstrates a steady increase in feminine agreement chain accu-

racy with the increase of λ’s value and reaches 63.6% accuracy when λ = 5, almost 20

percentage points more than the baseline. For masculine agreement chains, FUDGE

even reduces the wrong agreement percentage to 0%.

Tagged FUDGE

With a similar structure, Table 17b shows the accuracy of the tagged FUDGE. The

tagged baseline (first row of 17b) performs better than the standard baseline (first

row of 17a). Nevertheless, with the increase of λ, standard FUDGE demonstrates

more improvement than the tagged FUDGE.
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feminine masculine

Correct Wrong No Correct Wrong No

baseline 45.5 36.4 18.2 91.1 3.6 5.4

λ = 1 52.8 33.3 13.9 94.5 1.8 3.6

λ = 2 57.9 28.9 13.2 94.4 1.9 3.7

λ = 3 52.8 27.8 19.4 94.4 1.9 3.7

λ = 4 57.1 20.0 22.9 96.5 0 3.5

λ = 5 63.6 18.2 18.2 92.3 0 7.7

(a) Gender agreement chain accuracy of standard FUDGE

feminine masculine

Correct Wrong No Correct Wrong No

baseline 48.6 37.1 14.3 96.2 0 3.8

λ = 1 45.7 34.3 20 94.4 1.9 3.7

λ = 2 52.6 31.6 15.8 94.2 1.9 3.8

λ = 3 56.7 27.0 16.2 94.4 1.9 3.7

λ = 4 51.3 32.4 16.2 96.2 0 3.7

λ = 5 44.7 34.2 21.1 94.7 1.8 3.5

(b) Gender agreement chain accuracy of tagged FUDGE

Table 17: The gender agreement evaluation results of standard and tagged FUDGE
on both the feminine and masculine agreement chains with λ ranging from
1 to 5. The first row of each table displays the results from the respective
baseline. As discussed in section 6.3.2, Correct means that the agreement
is respected with the correct gender, Wrong means that the agreement is
respected but with the wrong gender, and No means that the agreement
is not respected. The numbers represent the percentage of each case and
it was calculated separately for the feminine and masculine agreement
chains.

38



8 Discussion

8.1 Standard Baseline and Tagged Baseline

The data presented in Table 11 shows that the tagged baseline improves more on

the utterances by female speakers. The advantage of adding a gender tag to the

English source side is more noticeable for feminine sentences, which is also where

most of the gender bias occurs.

Table 18 displays the BLEU score on the English–Italian direction of the base-

line (equivalent to the standard baseline) and the gender-enhanced NMT systems

(equivalent to the tagged baseline) from Vanmassenhove et al. (2018). The gender-

enhanced NMT system has a higher BLEU of 0.29 than the baseline, which is similar

to the tagged baseline’s +0.3 BLEU improvement on the feminine-only test set.

Note that the results shown here from Vanmassenhove et al. (2018) are on a data

set that contains both feminine and masculine sentences. They tested the systems

on feminine-only and masculine-only data sets and claimed that the biggest BLEU

score improvement is observed on the feminine test set.

A greater improvement in the utterances by female speakers is expected. As dis-

cussed in Chapter 5, the female gender is under-represented in the training data,

hence the baseline model tends to translate the sentence into the masculine form.

8.2 Feminine and Masculine Classifiers

Before and after data filtration

As illustrated in Figure 2, the classifier trained on the filtered data set has higher

accuracy, despite the fact that it was only trained on 90,000 sentences compared

to the one trained on processed data which contains 567,000 sentences. It validates

the assumption that the adjectives and participles provide a stronger gender signal

during the training of the classifiers, while the data set before filtration contains too
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baseline tagged NMT

EN-IT 31.46 31.75

Table 18: The BLEU score of the baseline (equivalent to standard baseline) and
gender-enhanced NMT systems (equivalent to the tagged baseline) on the
English–Italian direction from Vanmassenhove et al. (2018).

many gender-neutral sentences that might confuse the classifier. The two classifiers

have the same LSTM architecture, so the deciding factor is the difference in the

training data. Hence the classifier trained on filtered data is chosen to proceed with

the experiments.

Causal LSTM and bidirectional LSTM

As illustrated in Figure 3, the bidirectional LSTM classifier has a higher validation

accuracy than the causal LSTM classifier. But during decoding, the tagged FUDGE

with the bidirectional LSTM classifier has a much lower BLEU score than the one

with the causal LSTM classifier. The higher validation accuracy indicates that the

bidirectional LSTM is more suitable to classify the gender of the sentences because of

having access to both the start and the end of the sentence. However, the decoding

process generates one token at a time, which does not allow the classifier to attend

both directions at the same time. But the generation flow matches the input flow

of the causal classifier. So the performance of the causal LSTM classifier is better,

which is also the reason the causal LSTM was chosen to be the classifier architecture.

8.3 BLEU Score of FUDGE

As shown in Table 13, the BLEU scores of both standard and tagged FUDGE de-

creases with the increase of λ, though the changes are not dramatic. The main

reason might be that the classifiers’ training set is too small due to the filtering of

sentences that do not contain adjectives or participles, so FUDGE’s good perfor-

mance in correcting the gender-marked term is at the cost of translation fluency.

Next, let us review some of FUDGE’s translation examples, which might shed some

light on this issue.
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English source [FEMALE] The internet is a medium ...

Italian reference Internet è un mezzo ...

FUDGE

λ = 3, 4, 5 Internet è un media ...

λ = 1, 2 Internet è un medio ...

Baseline

Both Internet è un medio ...

Table 19: An overcorrected translation example of tagged FUDGE on a sentence
by a female speaker with λ ranging from 1 to 5. When λ equals 1 and 2,
FUDGE translates the English wordmedium into a masculine wordmedio,
which refers to the middle finger as a noun. When λ increases, FUDGE
uses a morphologically similar feminine noun, media, meaning “average
value”. But it neglects the article, un, remaining in the masculine form.

Overcorrection

One possible cause of the decrease is that when λ’s value gets bigger, the classifier

has a stronger influence on the word choice and unnecessarily changes some words

that are not relevant to the gender of the speaker. And these words are usually in

the opposite gender form of the speaker’s gender. As illustrated in the translation

example of the word medium in Table 19, the gender of the speaker is female, but

the correct translation should be a masculine noun, mezzo. When λ equals 1 and

2, FUDGE generates a masculine word medio, which refers to “the middle finger´´
as a noun and is not a common word in Italian. When λ increases, FUDGE uses

a morphologically similar feminine noun, media, meaning “average value”. But it

neglects the article, un, remaining in the masculine form. As shown in this example,

FUDGE tends to select words in feminine form even when it is not necessary.

Inadequate Reference

Another reason for the BLEU score decreasing could be that there is only one

Italian reference sentence for each English source sentence in the Europarl-Speaker-

Information (Vanmassenhove and Hardmeier, 2018) data set. But given a sentence,

there could be different correct translations with different word choices. During

translation, FUDGE usually follows the same sentence structure as the underlying

translation model, except that it modifies the translation of some words and phrases.

In this translation example, the tag and the gender of the speaker do not match, i.e.
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English source [FEMALE] I am delighted with the work of the Ombudsman,
...

Italian reference Sono soddisfatto del lavoro del Mediatore, ...

FUDGE

λ = 1− 5 Sono lieta del lavoro del Mediatore, ...

Baseline

Both Sono lieto del lavoro del Mediatore, ...

Table 20: A correct translation example of tagged FUDGE on a sentence by a fe-
male speaker with λ ranging from 1 to 5. The gender tag on the English
source side is “[FEMALE]”, while the word soddisfatto in the reference
is masculine. Tagged FUDGE generates the correct feminine form lieta.
And the two baselines translate it into the masculine form lieto.

the tag is female, but the gender-marked word in the sentence is in masculine form,

but FUDGE manages to translate it into the correct feminine form. As displayed

in Table 20, the English word delighted is translated into soddisfatto but the tag

is FEMALE. But FUDGE translates it into lieta, the correct feminine form. And

both the standard and tagged baseline translate it into lieto. This example also

demonstrates that FUDGE usually has the same word choice as the baseline, but

changes its gender form.

Inaccurate Translation

On the flip side, FUDGE may overlook some phrases in translation. In Table 21,

while FUDGE preserves the translation of the phrase you will agree when λ = 1, 2, 3,

it omits che lei concorderà when λ’s value is higher, equals 4 or 5.

Looking at the gender-marked word sure, the two baselines use the masculine form

sicuro. FUDGE also uses sicuro when λ = 1, which indicates the feminine classifier

does not make a difference in this case. When λ = 2, 3, FUDGE still uses the same

word but with the feminine form sicura, and when λ = 4, 5, FUDGE changes the

word choice of the model and selects the same word as the Italian reference with the

feminine form certa.
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English source [FEMALE] I am sure you will agree, Madam President, ...

Italian reference Sono certa che sarà d’accordo, signora Presidente, ...

FUDGE

λ = 4, 5 Sono certa, signora Presidente, ...

λ = 2, 3 Sono sicura che lei concorderà, signora Presidente, ...

λ = 1 Sono sicuro che lei concorderà, signora Presidente, ...

Baseline

Both Sono sicuro che lei concorderà, signora Presidente, ...

Table 21: A translation example of tagged FUDGE on a sentence by a female speaker
with λ ranging from 1 to 5. When λ = 4 and 5, tagged FUDGE generates
the same word certa as the Italian reference sentence. When λ = 2 and
3, tagged FUDGE generates a synonym of certa, sicura, with the correct
feminine form. And it generates the word in masculine form when λ = 1,
the same as the two baselines.

8.3.1 Additional Translation Example

Here is another translation example from the Europarl-Speaker-Information test

set. First, if we only look at the word delighted and its translations in Table 22, the

feminine tagged FUDGE translates delighted into the correct feminine form lieta,

and both the standard and tagged baselines translate it into the masculine form

lieto. Considering the sentence translation as a whole, there are four versions:

1. the Italian reference from Europarl-Speaker-Information;

2. the tagged FUDGE translation when λ = 1, 2, 4, 5;

3. the tagged FUDGE translation when λ = 3 and the tagged baseline;

4. the standard baseline

Among these different versions, the reference is more accurate on translating are

heading into proceda, while the others are missing a verb. For the phrase in this

respect, the translation when λ = 1, 2, 4, 5 is more accurate than other versions,

even the Italian reference, because it correctly translates it into in questo ambito

while the others simply ignore it. Here the reader may notice that the translation

of the tagged baseline and tagged FUDGE are the same when λ = 3, while they are

different when λ = 1, 2. But in general, we would expect that the smaller λ’s value,

the more similar the translations of FUDGE and the underlying translation model,

43



Chapter 8. Discussion

English source [FEMALE] I am delighted that we are all heading in the same
direction in this respect.

Italian reference Sono davvero lieta che si proceda nella stessa direzione.

FUDGE

λ = 1, 2, 4, 5 Sono lieta che siamo tutti nella stessa direzione in questo am-
bito.

λ = 3 Sono lieta che siamo tutti nella stessa direzione.

Baseline

Tagged Sono lieto che siamo tutti nella stessa direzione.

Standard Sono lieto che siamo tutti in questa direzione nella stessa di-
rezione.

Table 22: A translation example of tagged FUDGE on a sentence by a female speaker
with λ ranging from 1 to 5. All of the FUDGE models generate the word
in the correct feminine form lieta, the same as the reference, while the two
baselines all generate the masculine form lieto.

as shown in the above translation example.

8.4 MuST-SHE Gender Translation Evaluation

8.4.1 Word-level Gender Evaluation

8.4.1.1 Coverage

From Table 14, we can see that FUDGE increased the feminine POS coverage by

around 1 percentage point and almost have no influence on masculine POS coverage.

The possible reason is that FUDGE didn’t change the word choice in translation,

but uses a different gender form.

8.4.1.2 Accuracy

Translation Accuracy of the Baselines

Table 23 displays the first lines from Table 15a and 15b, which are from the stan-

dard and the tagged baseline. For the feminine open class POS, the tagged baseline

performs better on nouns and descriptive adjectives and has almost the same per-
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feminine masculine

V erbs Nouns Adj-des V erbs Nouns Adj-des

standard 27.4 11.4 35.4 87.8 97.6 94.3

tagged 27.3 13.5 36.3 94.4 97.6 94.1

Table 23: The feminine and masculine open class POS accuracy of the standard and
the tagged baseline. Adj-des denotes descriptive adjectives, as discussed
in section 5.3.

formance as the standard baseline. For the masculine open class POS, two baselines

have similar accuracy on nouns and descriptive adjectives, while the tagged baseline

performs better on verbs. These results validate the findings by Vanmassenhove

et al. (2018), that the tagged translation system performs better on feminine sen-

tences than the masculine sentences.

Figure 5a depicts the variation of accuracy on the feminine open class POS in Table

15a and 15b and Figure 5b on the masculine open class POS. In both charts, the x-

axis is the value of λ and the y-axis is the accuracy. The results from tagged FUDGE

are in dashed lines and standard FUDGE solid lines. Verbs are in blue, nouns are

in red, and descriptive adjectives (adj-des) are in yellow. To reflect the differences

in feminine and masculine open class POS translation accuracy, the y-axes in both

figures are the same, from 0% to 100% accuracy.

Translation Accuracy of the Feminine Form

As shown in Figure 5a, standard FUDGE and tagged FUDGE share an identical

pattern on the accuracy of feminine open class POS. With the increase of λ, the

accuracy of verbs increases 40 percentage points from approximately 30% to 70%,

descriptive adjectives increase 30 percentage points from around 35% to 65%.

However, the accuracy of nouns improves by only around 5 percentage points, which

is much lower than verbs and descriptive adjectives. The reason is that when verbs

and descriptive adjectives are in a gendered form, they usually agree with the gender

of the speaker, while a masculine noun has an equal chance to be in a sentence

uttered by a female speaker or a male speaker, the same for a feminine noun. Hence

it’s difficult for the classifier to predict which one to use in which case. This is also

the reason for FUDGE’s overcorrection as seen in Table 19.
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(a) Feminine open class POS translation accuracy

(b) Masculine open class POS translation accuracy

Figure 5: Visualization of Table 15. Figure 5a and 5b show the feminine and mascu-
line POS accuracy respectively. The x-axis is the value of λ and the y-axis
is the accuracy. The results from tagged FUDGE are in dashed lines and
standard FUDGE solid lines. Verbs are in blue, nouns are in red, and
descriptive adjectives (adj-des) are in yellow. When λ = 0, FUDGE is
equivalent to the underlying translation model, hence the data points rep-
resent the accuracy of the baselines.

Translation Accuracy of the Masculine Form

From Figure 5b, we clearly notice that all three open-class categories have high ac-
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standard FUDGE tagged FUDGE

feminine masculine feminine masculine

word-level POS 37.9 42.1 37.6 42.2

agreement chain 23.1 23.4 24.1 23.0

Table 24: The average coverage rates of both the feminine and masculine word
level POS and agreement chain for standard and tagged FUDGE with
λ ranging from 0 to 5.

curacy on the masculine open-class POS and do not vary much with the changes of

λ, except for a slight increase in verbs. Besides, the differences between standard

and tagged FUDGE on masculine open-class POS translation are almost indistin-

guishable. Together with the translation examples above, the results show that the

NMT models usually treat the masculine form as the default translation option.

Summary

To summarize theWord-level Evaluation, both standard and tagged FUDGE demon-

strate huge improvement in the accuracy of feminine open class POS, though the

improvement of standard FUDGE is a bit higher. But even after applying FUDGE,

there’s still a gap in translation accuracy between the feminine and masculine forms.

8.4.2 Chain-level Gender Agreement Evaluation

8.4.2.1 Agreement Chain Coverage

If we compare the average coverage of word-level POS annotation and the agreement

chains, as presented in Table 24, we may see that the coverage rate in the word level

is much higher than in the agreement chain evaluation.

One reason is that the requirement is more strict when considering whether an

agreement chain is in coverage. As discussed in section 6.3.2, it applies the POS

annotation coverage requirement to each agreement term in the chain, only if all

terms meet the requirement, the chain will be in coverage.

Another reason is that for each agreement term, only one correct translation and one

opposite-gender translation are provided. When the model translates the English

term into a synonym of the provided agreement terms, even if the translation is
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adequate, it is still not in coverage.

8.4.2.2 Agreement Chain Accuracy

For the agreement chains that are in coverage, the next step is to evaluate their

accuracy. Figure 6a visualizes the feminine gender agreement accuracy from Table

17a and 17b. The results of the baseline are represented by the data points when

λ = 0. The standard FUDGE is in solid lines and the tagged FUDGE is in dashed

lines. The correct agreement is in blue, the wrong is in red and the no agreement is

in yellow. And the masculine gender agreement accuracy is illustrated in Figure 6b.

Feminine Gender Agreement Accuracy

Figure 6a demonstrates that tagged FUDGE’s correct agreement percentage is going

up and down, and the wrong agreement percentage drops and then increases. While

standard FUDGE has a more steady performance improvement with an increasing

correct percentage and a decreasing wrong percentage. The no agreement percentage

doesn’t vary much with λ’s value for both models.

The improvement of feminine agreement accuracy is less significant. The reason is

that agreement evaluation is closely related to word-level evaluation. In the feminine

open-class POS translation, FUDGE demonstrates a low accuracy on nouns, even

though it is much more accurate on verbs and descriptive adjectives. An agreement

chain has a high chance of containing nouns as its agreement terms, and the rule

requires the model to correctly translate every term. But FUDGE does not improve

noun translation accuracy, hence it undermines the agreement accuracy.

Masculine Gender Agreement Accuracy

For the results of masculine agreement accuracy are displayed in Figure 6b, standard

and tagged FUDGE both maintain a high correct percentage and pretty low wrong

and no percentages. Compared to the standard baseline, standard FUDGE increases

five percentage points in correct agreement, from 91.1% to 96.5%, and the wrong

percentage drops from 3.6% to 0%. A good performance on masculine agreement

evaluation is expected, considering FUDGE’s high accuracy on all three open-class

POS categories.

Summary

Overall, for chain-level gender agreement evaluation, standard FUDGE consistently

improves performance on both feminine and masculine agreements, while tagged

FUDGE exhibits an unstable performance on the feminine agreement chains.
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(a) Feminine agreement chain translation accuracy

(b) Masculine agreement chain translation accuracy

Figure 6: Visualization of Table 17. Figure 6a and 6b show the feminine and mascu-
line agreement translation accuracy respectively. The x-axis is the value
of λ and the y-axis is the percentage. The results from tagged FUDGE
are in dashed lines and standard FUDGE solid lines. Correct agreements
are in blue, wrong agreements are in red, and no agreements are in yellow.
When λ = 0, FUDGE is equivalent to the underlying translation model,
hence the data points represent the accuracy of the baselines.
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9 Conclusion

Contribution

The main contribution of this work is that it utilizes a controlled text generation

method, Future Discriminators for Generation (FUDGE), to mitigate gender bias

in NMT. The experiments were conducted in English and Italian and the results

exhibited significant improvement in feminine gender terms accuracy with concrete

translation examples.

One thing that distinguishes this work from others is that it pinpointed the type of

gender bias to tackle and designed the experiments accordingly. First, considering

Speaking As dimension of the gender bias mostly occurs in first-person sentences,

the training sets of the underlying translation model and the classifiers are both

parliament proceedings, which contain a high proportion of first-person utterances.

During the evaluation, apart from BLEU, we also incorporate a novel fine-grained

gender translation evaluation metric, the MuST-SHE gender translation evaluation

method, which evaluates gender translation on a word level and agreement level. The

combination of these two evaluation metrics enables a qualitative and quantitative

assessment of the model.

The results show that FUDGE has a slightly lower BLEU score than the baseline,

but demonstrates promising outcomes on MuST-SHE evaluation. On the word level,

FUDGE significantly increases the feminine gender term accuracy across multiple

POS categories. On the gender agreement chain level, FUDGE also improves the

correct agreement percentage.

Future Research

One possible direction for future research would be to investigate whether FUDGE

can also mitigate other types of gender biases, e.g. stereotypical gender bias. In this

case, WinoMT would be suitable as an evaluation benchmark.

In this work, I used separate models with the respective classifiers for test sets by

female and male speakers, another potential idea for future research might be to

unify these models, which would require integrating the feminine and masculine
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classifiers into one system and finding suitable λs to balance them.

51



References
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