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Abstract

This master thesis explores domain adaptation methods for pre-trained Large Lan-

guage Models (LLMs) to map natural language mentions from a text genre onto a

target domain ontology based on cosine similarity in a semantic vector space. For the

thesis, the input mentions are skill requirement mentions extracted from Swiss job

ad postings written in German or English, and the target domain onto which these

terms have to be mapped is the European Skills, Competences, Qualifications and

Occupations (ESCO) ontology. The objective of this task is to track changes in the

labor market and help recruiters fill positions based on skill requirements fulfilled by

candidates. The thesis explores three methods: Masked Language Modelling, Multi-

ple Negative Ranking Loss, and binary classification method for further pre-training

in order to adapt LLMs to a target domain ontology. Experiments were conducted

on 15 model variants using different input data and starting models. Two gold stan-

dard datasets, one consisting of randomly selected skill requirement mentions, and

the other specifically crafted from challenging cases, were used for evaluating model

performance. The evaluations were created by annotating the top suggestions made

by our model variants. Mean Average Precision (MAP) scores were computed based

on human annotations of the suggestions, made by each model variant for each term

in the gold standard datasets. MAP is used as an evaluation metric since more than

one mapping might be correct or acceptable, and a good ranking of the appropriate

ontology concepts can be measured via this metric. The MNR models with the hard

negative sampling strategy, wherein the negative samples are taken with lexical and

semantic similarities to the anchor term, and domain adaptation on both the job-

ads data and the ESCO ontology data were found to be the best-performing model

variants for both the English and German languages. The thesis concludes that

domain adaptation on both the input texts and the target domain is beneficial for

mapping mentions from the input genre onto the target domain. It also suggests

that using a hard negative sampling method for creating the MNR data is beneficial

compared to a random negative sampling method.



Zusammenfassung

Diese Masterarbeit untersucht Methoden zur Domänenanpassung für vortrainierte

Large Language Models (LLMs), um natürlichsprachliche Erwähnungen aus einem

Textgenre auf eine Zieldomänenontologie abzubilden, basierend auf Kosinusähnlichkeit

in einem semantischen Vektorraum. In dieser Arbeit sind die Input-Erwähnungen

Erwähnungen von Qualifikationsanforderungen, die aus Schweizer Stellenanzeigen

in deutscher oder englischer Sprache extrahiert wurden, und die Zieldomäne, auf die

diese Begriffe abgebildet werden müssen, ist die European Skills, Competences, Qua-

lifications and Occupations (ESCO) Ontologie. Ziel dieser Aufgabe ist es, Veränderungen

auf dem Arbeitsmarkt zu verfolgen und Personalverantwortliche bei der Beset-

zung von Stellen auf der Grundlage der von den Bewerbern erfüllten Qualifika-

tionsanforderungen zu unterstützen. In dieser Arbeit werden drei Methoden unter-

sucht: Masked Language Modelling, Multiple Negative Ranking Loss und eine binäre

Klassifizierungsmethode für weiteres Pre-Training, um LLMs an eine Zieldomänen-

Ontologie anzupassen. Es wurden Experimente mit 15 Modellvarianten unter Ver-

wendung unterschiedlicher Eingabedaten und Ausgangsmodelle durchgeführt. Zur

Bewertung der Modellleistung wurden zwei Goldstandard-Datensätze verwendet,

von denen einer aus zufällig ausgewählten Erwähnungen von Qualifikationsanforde-

rungen besteht und der andere speziell aus anspruchsvollen Fällen zusammengestellt

wurde. Die Auswertungen wurden durch Annotation der besten Vorschläge unserer

Modellvarianten erstellt. Die mittlere durchschnittliche Präzision (MAP) wurde auf

der Grundlage der menschlichen Annotationen der Vorschläge berechnet, die von

jeder Modellvariante für jeden Begriff in den Goldstandard-Datensätzen gemacht

wurden. MAP wird als Bewertungsmaßstab verwendet, da mehr als eine Zuordnung

richtig oder akzeptabel sein kann und ein gutes Ranking der entsprechenden On-

tologiekonzepte anhand dieses Maßstabs gemessen werden kann. Die MNR-Modelle

mit der Hard-Negative-Sampling-Strategie, bei der negative Stichproben mit lexi-

kalischen und semantischen Ähnlichkeiten zum Ankerterminus genommen werden,

und die Domänenanpassung sowohl für die Daten der Stellenanzeigen als auch für

die Daten der ESCO-Ontologie erwiesen sich sowohl für die englische als auch für

die deutsche Sprache als die leistungsstärksten Modellvarianten. Die Arbeit kommt

zu dem Schluss, dass die Domänenanpassung sowohl für die Eingabetexte als auch

für die Zieldomäne von Vorteil ist, um Erwähnungen aus dem Eingabegenre auf die

Zieldomäne abzubilden. Sie legt auch nahe, dass die Verwendung einer harten nega-

tiven Stichprobenmethode für die Erstellung der MNR-Daten im Vergleich zu einer

zufälligen negativen Stichprobenmethode von Vorteil ist.
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1 Introduction

With the advancements in technology in the field of NLP, many tasks related to

languages ranging from sentiment analysis and question answering to text classifica-

tion and machine translation are made easier. One of the main advancements that

made these tasks easier was the introduction of the transformer models, which in-

troduced the attention mechanism (Vaswani et al. [2017]). With the introduction of

the attention mechanism, many other transformer models were created, with BERT

(Devlin et al. [2019]) being the first transformer model. However, language itself is

complex to understand, and for specific tasks like machine translation or text sum-

marization, the language model used needs to have a good understanding of how

language is structured. And if we decide to train a transformer for every specific

task, then instead of understanding language the model would try to understand

the task-specific pattern for getting the best response for a task. An alternative

to this approach is to instead pre-train a Large Language Model (LLM) using a

very general task such as predicting masked words or the next word. The general

language understanding gained from these tasks can then be transferred (transfer

learning1) to more specific tasks where less training data is available.

Further pre-training and fine-tuning large pre-trained LLMs to a particular domain

or task has proved beneficial as part of domain adaptation ([Gururangan et al., 2020,

8342–8360]). However, there are numerous methods available to fine-tune LLMs for

a particular domain or task, and using the methods to adapt an LLM for a particular

domain depends on the formulation of the available domain data and what tasks we

want to achieve from that domain data.

The main motivation of this thesis is to explore which methods prove to be beneficial

for adapting a pre-trained LLM for a particular domain and tasks. The task that

this thesis focuses on is the task of classifying text mentions from an input domain

onto a target domain, where the target domain is an ontology from a particular

domain. The input and the target domains need not be the same, but they have

to be relatable to each other on some common ground. An example of the type of

1Transfer Learning: https://en.wikipedia.org/wiki/Transfer_learning

1
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Chapter 1. Introduction

problem where text was mapped onto an ontology includes the SGD policy mapper

project by the European Union2, wherein this tool counts the EU policies linked to

each goal and target while specifying their connections, enabling the identification of

crosscutting initiatives - policies that address multiple goals. Another such example

is in the Paper Mirhosseini et al. [2014], wherein NLP methods and IR3 methods

are used for mapping a particular concept onto the SNOMED CT4 medical domain

ontology. Other areas where mapping text onto an ontology can be beneficial are

banking and finance systems, customer support, etc. Thus we can see that the

task of mapping text mentions from an input domain onto a target ontology can be

beneficial and applicable in various application scenarios.

For this thesis, the main task is to classify worker skill requirements that are ex-

tracted from job ads data. The job ads data is from the German-speaking job market

in Switzerland, with job ads containing expressions specific to Switzerland in them.

Such a mapping would enable recruiters and job seekers to analyze the current skill

requirements in the job market and be able to fulfill those requirements easily by

mapping candidate applications onto the required skills based on the current job

market requirements. The mapping of job ad terms has to be done in an unsuper-

vised approach, with the available classes to map onto the skills and competencies

as defined in the ESCO5 (European Skills, Competences, Qualifications, and Oc-

cupations) ontology, which acts as a collection of the skills and competences terms

that are usually seen in candidate job applications. The unsupervised mapping is

to be done using the semantic similarities, rather than lexical similarity, between

the terms in job ads data and the terms available in the ESCO ontology. Figure

1 represents a flow chart of how the job ad data and the ESCO ontology data are

combined via pre-training and fine-tuning of LLMs, and then those LLMs are used

for the end task of mapping terms onto the ESCO ontology, and Table 1 gives an

example of the actual job ad mentions and the matching ESCO concepts from the

ontology. Since the task of mapping job ad terms onto ESCO terms is very depen-

dent on the domain data, it is thus beneficial to adapt LLM to the domain of ESCO

rather than using an out-of-the-box LLM for mapping.

2SGD Policy mapper: https://knowsdgs.jrc.ec.europa.eu/sdgmapper
3Information Retrieval: https://en.wikipedia.org/wiki/Information_retrieval
4SNOMED CT Ontology: https://bioportal.bioontology.org/ontologies/SNOMEDCT
5ESCO: https://esco.ec.europa.eu/en/about-esco/what-esco

2
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Chapter 1. Introduction

Job ad mentions Class numeric Class label

** Second Level Support **
Koordination, Unterstützung
von Key Usern

skill/S5.2.3 resolving computer problems

** EDV ** DOS, Windows skill/T2.3 Handhaben von Problemen

FAGE ** FA SRK ** isced-f/0913 Krankenpflege und Hebamme-
nausbildung

Table 1: Example of mapping of job ad mentions with concepts from the ESCO
ontology. The terms in italics are the central job ad mentions, and the
other terms are surrounding context terms passed along with the job ad
mentions. The class numeric is the tag of the concept class to which the
skill belongs to, and the class label shows the label for that particular class.

1.1 Research Questions

Since the motivation of this thesis is to find methods that work well for adapting a

large LLM to a particular domain, the research questions that shall be answered in

this thesis, are:

1. Which pre-training and fine-tuning methods such as Masked Language Mod-

elling (MLM), Multiple Negative Ranking (MNR), and classification is helpful

for domain adaptation and the end-task of mapping terms onto an ontology?

2. Does hard negative sampling, wherein a negative sentence pair is lexically and

semantically similar to the anchor term, yield better results than using random

negative sampling for domain adaptation using the Multiple Negative Ranking

loss?

3. Does a sentence classification approach using labels derived from the structure

of an ontology prove to be beneficial for the domain adaptation of an LLM?

4. Would using LLMs that have been further pre-trained on the input texts, be

necessary or improve the target task of mapping terms onto an ontology?

The goals to answer the above-defined research questions need data from both the

job ads and the ESCO ontology. In this regard, the first goal is to extract the

linguistic material (terms, descriptions) and conceptual structure from the ESCO

ontology and the job ads data so that it can then be restructured as per the task

that is used for fine-tuning an LLM for domain adaptation. The next goal is to

understand the relations within the ESCO data since the data has a multi-hierarchy

3
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Job-ad Term Data

LLM

ESCO Ontology data

Domain Adaptation 

via Semi-Supervised,


Unsupervised, and

 Supervised methods

Mapping job-ad terms onto the ESCO
ontology

Figure 1: Flow of mapping job ad terms onto ESCO Ontology

structure. Once the data is available from the ESCO ontology, we can then perform

pre-training and fine-tuning tasks6 and evaluate the results of the model to check if

the methods used are beneficial for the end task of mapping terms onto the ontology

using an out-of-the-box LLM as a baseline. Ablation studies to check the effect of

different methods will also be conducted during the evaluation to answer which

methods, in sequence or in combination with other methods, are the most beneficial

for domain-adapting pre-trained transformer models.

1.2 Thesis Structure

The thesis is subdivided into 7 parts, wherein this part gives a brief introduction of

the motivation of the thesis and the research questions that it tries to answer.

Chapter 2 Introduces the related work for similar domains and tasks. We will look

at problems of a similar type as the one in this thesis and the methods used to solve

6Code link: https://github.com/tanmaychimurkar/ma-thesis
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those problems.

Chapter 3 Explains the domain data that is used for fine-tuning an LLM. It will be

explained in greater detail what the ESCO ontology looks like and what relations

it consists of. This section will also cover methods used for extracting the data via

a pipeline that has been designed as part of this thesis to gather data from the

ontology for a particular language.

Chapter 4 Explains the methods used for fine-tuning LLMs for domain adaptation

on the ESCO ontology and the job ads data.

Chapter 5 Gives a brief overview of the training procedure followed for building the

pipelines necessary for fine-tuning LLMs.

Chapter 6 Gives a detailed explanation of the results and their implications.

Chapter 7 Explains the conclusions from the experiments on the data and highlights

future work.

5



2 Related Work

Specifically for the task of classifying job-ad terms onto the ESCO ontology, the

recent work done by Zhang et al. [2022] explores methods for fine-tuning transformer

LM on ESCO data. They use the Kompetencer dataset, which contains job ads in

Danish and English language annotated at the span-level of skills and competencies.

They explore zero-shot and few-shot cross-lingual transfer learning on the out-of-

the-box English BERTbase model and a BERTbase model that is continuously pre-

trained on English job-posting data. They do a similar transfer learning task on an

out-of-the-box Danish BERT model and the same model is again fine-tuned on the

job posting data. An overview of the methodology they follow in is shown in Figure

2.

Figure 2: The pipeline followed in Zhang et al. [2022]. Job postings in English and
Danish language are selected, and they label them with the respective
labels from the ESCO ontology data. After this step, LLMs for English
and Danish language are trained separately using zero-shot and few-shot
learning methods, and their performances are checked via dev sets of job
postings in both languages.

They mention that domain-adaptive pre-training provides short-term gains with

little cost, but there needs to be a lot of unlabelled data from the domain. On the

other hand, if the data has to be labeled, then the costs go up.

For domain adaptation with a small amount of available data, Tunstall et al. [2022]

explores methods for efficient few shot-learning without prompts. The work done

6
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in this paper proposes SETFIT (Sentence Transformer Fine-tuning), wherein a pre-

trained sentence transformer is first fine-tuned on a small amount of training data

and is then used to generate rich word embeddings. They used no prompts while fine-

tuning the sentence transformer models, and used few-shot learning methods with

a limited amount of data for fine-tuning. An overview of the training methodology

is shown in Figure 3. They use triplet data to fine-tune the sentence transformer,

with the data being in the form of (x i, y i, label) format, where x i and y i are

sentence pairs with the label indicating if the sentences are related to each other. The

embeddings for the sentence pairs are generated and combined, and the classification

head uses these embeddings for training based on the labels provided.

Figure 3: The pipeline followed in Tunstall et al. [2022]. A sentence transformer is
initially fine-tuned, and a classification head is trained using the encoded
data obtained from the fine-tuning step

The work done in Li et al. [2022] mentions multi-task pre-training of LLMs via

a modified version of the MLM task on an ontology. In this paper, they used

the Masked Entity Modelling (MEM) task wherein only the entity sequence of the

input is masked instead of randomly masking words from the input. They further

use Masked Relation Modelling (MRM) wherein they mask only the relation words

between two entities. They use these two novel methods alongside the MLM method

to fine-tune LLMs on a particular ontology for domain adaptation and link prediction

in the ontology. The methodology used in is in Figure 4.

In the work done in Kim et al. [2020], the authors suggest combining the tasks of

relationship prediction and relevance ranking tasks with target link prediction to

improve an LLM’s ability to understand the domain of the ontology and perform

correctly even if there are lexical similarities between the input term and terms in

the ontology. They propose KG-BERT, a language model fine-tuned via the link

prediction and the relationship prediction tasks on the data of an ontology. The

proposed methodology is shown in Figure 5.

The work done in Li et al. [2019] reflects on methods for sampling negative data.

They propose 4 different model adaptive negative sampling methods, based on dif-

7



Chapter 2. Related Work

Figure 4: The MEM, MRM, and MLM methods used for domain adaptation. Image
Source Li et al. [2022]

ferent thresholds used to determine if a sample is a negative sample or not. They

also use matching models which are used to compare a possible negative term to

the input term to determine if they are semantically similar rather than being only

lexically similar. The methods explored in this paper are extendible to the MNR

loss strategy for mining negative samples and creating a triplet pair dataset.
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Figure 5: Multi-task learning methods for Knowledge Graph completions and
domain-adaptation
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3 Data

Structured information models allow us to represent and organize knowledge in

a structured and organized manner. These models often define knowledge with a

typical set of rules and relationships. These models can be used to represent all types

of data, ranging from physical objects to abstract concepts and events. Examples

of common structured information models are:

1. ER Models: In typical databases, information is stored in the form of entity-

relationship models, which is a highly-structured data model. It is typically

used in database design, wherein relationships between different entities are

modeled using an ER diagram.

2. Resource Description Framework (RDF): This is the typical structured

model used to describe information on the web. This framework forms the

basics of the Semantic web, and data in this framework is typically represented

in triplets consisting of subject, predicate, and object.

3. Ontologies: These are models that define concepts and the relationships

between different entities. Ontologies are usually defined for a domain to

represent knowledge about that particular domain.

4. Knowledge Graphs: These are graph-based data models that are used to

store and represent information as nodes and relationships between them. The

structure of a knowledge graph helps define a rich semantic relationship be-

tween node pairs, and also allows for an intelligent search of nodes based on

their relationships.

Structured information models are used in major applications of information storage

and retrieval. Let us now look at knowledge graphs in more detail as our data

structure comprises a knowledge graph.

10
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3.1 Knowledge Graph

As per the Resource Description Framework (RDF)1 specification, all the data in

Knowledge Graphs (KG)2 is represented in the form of (entity, relation, entity)

triplets. This triplet data can be interpreted in plain language as follows: the first

entity is associated with the second entity with a relationship relation. In RDF

terminology, all entities have a Uniform Resource Identifier (URI)3, and each URI

is unique for each individual entity in a KG.

Figure 6: Structure of a Knowledge Graph. Each blue-colored node represents an en-
tity, and each directed arrow represents a relationship between two entities.
Image Source: https://en.wikipedia.org/wiki/Knowledge_graph

Figure 6 shows the basic structure of a KG. From this basic structure, we can see

that each node has a relationship to another node, where the relationship is defined

by the arrow line. For any node, we can thus interpret the relationship it has with

other nodes. For example, for the node Cows, we can interpret the following: The

entity Cows ‘is ’ an entity Animals, and also ‘eats ’ Herbs.

1Resource Description Framework: https://www.w3.org/RDF/
2Knowledge Graph: https://en.wikipedia.org/wiki/Knowledge_graph
3Uniform Resource Identifier: https://en.wikipedia.org/wiki/Uniform_Resource_

Identifier
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3.2 ESCO Ontology

Our main source of data is the ESCO4 ontology, which is available as a KG. ESCO

is a European multilingual classification of Skills, Competences, and Occupations,

wherein the classifications are available in 28 languages. ESCO can be seen as

a multilingual terminology to look up a particular set of skills, competencies, or

occupations from the European Union labor market. Each particular skill or occu-

pation in the ESCO ontology is a ‘concept’, and each concept has properties and

relations defined for it that are uniform for easy understanding, parsing, and usage

by electronic systems. Moreover, the ESCO ontology also has a multi-hierarchical

structure, meaning that one concept can belong to more than one parent class as

shown in Figure 6. This information is very crucial for us since by using the multi-

hierarchy structure, we can classify the concepts from ontology into multiple class

level(s) that it belongs to. Furthermore, different classes can be suggested for a

particular concept based on the context it falls under.

ESCO Ontology

Occupations Skills Qualifications

Figure 7: The classification of the whole ESCO ontology into the 3 major pillars

In Figure 7, the first major levels of classification of the ESCO ontology are high-

lighted. Based on this figure, we can see that the ESCO ontology is subdivided into

the 3 main pillars : Occupation, Skills, and Qualifications. For our case, we want

to map the job-ad terms to the closest matching concept from the ESCO ontology,

and for this purpose, we focus primarily on the Skill pillar from the ESCO ontology.

This is because the terms that we are interested in from the job-ads data are the

terms that most closely classify as skills in the ESCO ontology. Inside the ESCO

Skill pillar, we have the following 4 main categories as shown in Figure 8 related to

skills: knowledge skills, transversal skills, language skills, and skills. These 4 cate-

gories together make up the ESCO Skill pillar. Each of these 4 categories have many

classes that they are divided into, and their categorizations are shown in Figure 9

to 12. The 4 subsections below give a description of each of the 4 categories that

4ESCO: https://esco.ec.europa.eu/en
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fall under the Skill pillar.

Skill Pillar

Knowledge Skills Transversal Skills Language Skills

Figure 8: The classification of the Skill pillar into 4 skill categories

3.2.1 Knowledge Class

The Knowledge class contains concepts that are related to the knowledge that is

needed in a particular field and contains the highest abstract term that defines

a particular field. The examples of types of concepts that are contained in the

knowledge class are shown in Table 2.

Concept Term Concept Class

Algebra Natural Sciences, Mathematics, and Statistics

Military Aviation Services

Table 2: Examples of Knowledge Class from the ESCO ontology

The 12 top-level concepts that the knowledge class consists of are shown in Figure

9.

3.2.2 Skill Class

The Skills class contains the actual skills that are required to do a task for a concept

from the knowledge class. Examples of concepts that fall into the skills class are in

Table 3.

The 8 top-level concepts that the skill class consists of are shown in Figure 10.
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Knowledge class

Agriculture, forestery,
fisheries and veterinary

Arts and humanity

Business, administration and
law

Education

Engineering, manufacturing
and construction

Generic programmes and
qualifications

Health and welfare

Information and
communication technologies

Natrual Sciences,
mathematics and statistics

Services

Social sciences, journalism
and information

Field Unknown

Figure 9: The highest level of concepts that are contained in the Knowledge class

3.2.3 Transversal Skill Class

The Transversal skills class contains concepts that act as competence to do a par-

ticular task. Examples of concepts that fall into the transversal skills are shown in

Table 4.

The 6 top-level concepts that the skill class consists of are shown in Figure 11.
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Concept Term Concept Class

Manage Food Manufacturing Laboratory Management Skills

Maintain Barrels Constructing

Table 3: Examples of Skill Class from the ESCO ontology

Skills Class

Communication,
collaboration and creativity

Information Skills

Assisting and caring

Management Skills

Working with computers

Handling and moving

Constructing

Working with machinery and
specialized equipment

Figure 10: The highest level of concepts that are contained in the Skills class

3.2.4 Language Class

The Language class contains skills that are very specific to the usage of languages

in handling tasks. Examples of concepts that fall into this class are shown in Table

5

The 2 top-level concepts that the skill class consists of are shown in Figure 11.

3.2.5 ESCO Ontology Vocabulary

In the RDF data model, data is often represented in a turtle file. A turtle file is a

format to represent data in the form of a directed graph as a set of nodes, which
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Concept Term Concept Class

Calculate Probabilities Core Skills and Competences

Solve Problems Thinking Skills and Comptences

Table 4: Examples of Transversal Class from the ESCO ontology

Transversal Skills and
Competences

Core skills and competences

Thinking skills and
competences

Self-management skills and
competences

Social and communication
skills and competences

Physical and manual skills
and competences

Life skills and competences

Figure 11: The highest level of concepts that are contained in the Transversal Skills
and Competences class

are vertices, which are connected by edges, forming links between nodes. In a turtle

file, each relation represented by the nodes and the edges consists of triplets of the

form subject, predicate, and object. The subject and the object are usually nodes

that represent URIs of entities of the data that the turtle file represents, and the

predicate is the edge representing the relationship between nodes. The relationships

that are described by the predicates in a turtle file are referred to as vocabularies,

and these vocabularies differ for a turtle file based on the data it is representing.

As the ESCO ontology data is available as an RDF turtle file5, each entity inside the

ontology needs to follow a vocabulary that gives every entity a relationship that can

be associated with it. For this purpose, the turtle file of the ESCO ontology defines

its own vocabulary based on the official ESCO data model6 of ESCO ontology.

Alongside the ESCO vocabulary, the turtle file also contains many vocabularies as

5RDF turtle format: https://www.w3.org/TR/turtle/
6ESCO data model: https://ec.europa.eu/esco/lod/static/model.html
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Concept Term Concept Class

Understand Spoken English English

Write German German

Table 5: Examples of Language Class from the ESCO ontology

Language class

Classical languagesLanguages

Figure 12: The highest level of concepts that are contained in the Language class

per the W3C specification7, like the skos8, the XLMSchema9, vocabularies as per

the DublinCore specification like dct10, iso-thes11. All these externally established

vocabularies, along with ESCO’s vocabulary, are used to enhance the structure of

the ESCO turtle structure so that basic CRUD12 operations on the ESCO turtle file

are relatively easy to make.

3.2.6 ESCO Data Model

Since the ESCO ontology data is available as an RDF turtle file, we created a

simplified visual version of the structure of the ontology that takes into account

all the pillars of the ESCO ontology. From this visual structure, we can better

understand how each ‘concept‘ inside the ontology is related to other entities, and

what relationships and properties each entity has.

7World Wide Web Consortium: https://www.w3.org/
8Simple Knowledge Organization System: https://www.w3.org/2009/08/skos-reference/

skos.html
9XML Schema: https://www.w3.org/2001/XMLSchema#

10DCMI Metadata Terms: https://www.dublincore.org/specifications/dublin-core/

dcmi-terms/
11skos-thes: http://pub.tenforce.com/schemas/iso25964/skos-thes
12CRUD operations: https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
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As per the vocabulary of the ESCO data model itself, we can break it down into a

simplification of the original data model as shown in Figure 13. For our case, we

are using ESCO V1.1 as the main source of data, and the data model associated

with this version. As per the figure, for our case, the central most entity is of

type ‘Memberconcept’, which we will refer to as a ‘concept’. A concept is of type

‘Skill‘ or ‘Occupation’ as per the ESCO vocabulary, and of type ‘concept’ as per

the skos vocabulary. As per the official ESCO data model, the ‘Memberconcept‘

entities are all the entities that inherit from the ‘Skill’ and the ‘Occupation’ pillars

of the ESCO structure. There are a total of 14,529 concepts of type ‘Skill’ and

3008 concepts of type ‘Occupation’ in the ESCO ontology. This number of concepts

is the same for the English and the German languages, as these concepts each

have a unique URI, and only have properties associated with it in each language.

Each concept could have the following descriptive properties related to it as per the

skos vocabulary: prefLabel, altLabel, hiddenLabel, and description, where each of

the properties respectively describes the preferred label of the concept, its alternate

label, its hidden label and the description used to describe that concept. An example

of the properties associated with each concept is shown in Table 6.

Concept Property Property Value

concept URI skill/059b2748-e1df-43d2-8a08-0331fb8d0ddf

Preferred Label types of cargo

Alternate Label categories of freight

Hidden Label Not Available

Description Distinguish different types of cargo e.g. bulk cargo, liquid bulk
cargo, and heavy materials.

Table 6: Examples of descriptive properties related to a concept

For each language, these descriptive properties differ in ontology. Table 7 gives the

statistics of the descriptive properties for the English language, and Table 8 gives

the same statistics for the German language.

Descriptive property Distinct Counts

Preferred Label 14,529

Alternative Label 1,28,560

Hidden Label 1,097

Description 14,329

Table 7: Descriptive Statistics of the English language in the ontology
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Descriptors Belongs to

Has Related

MemberConcept

Preferred Label

Alternate Label

Hidden Label

Description

Skill Occupation

Skill Type

Narrower ConceptsRelated Optional Skill

Inherits from

is Optional Foris Essential For Broader TransitiveBroader Concepts

Figure 13: The simplified version of the Data Model of the ESCO ontology

Descriptive property Distinct Counts

Preferred Label 14,529

Alternative Label 19,570

Hidden Label 1,468

Description 14,218

Table 8: Descriptive Statistics of the German language in the ontology

As we can see from the statistics of the descriptive properties above, the number

of terms that are the same for both the English and the German language is only

the preferred label for each concept URI. Thus we can infer that each concept in

the ESCO ontology always has a preferred label, and this label is seen to be unique

for each concept in the ontology in every language. We see that the description

property is also available for most of the concept URIs. We can also see that for

the English language, each concept URI has a lot of alternative labels attached to

it, while in the case of the German language, the number of alternate labels is not

so many. We can also note that the number of hidden labels is the least available

descriptive statistic across all the available descriptive statistics of concept URIs in

both languages.

The ESCO ontology also follows a multi-hierarchical structure for concepts. Multi-

hierarchy comes when a single parent node has many child nodes coming out of it.
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Since the ESCO ontology also has a multi-hierarchical structure, each concept has

a parent class property and a child class property that can be used to encompass

that particular concept. These classes help map concepts that might belong to more

than one parent class and make it easier to keep track of the multi-hierarchy inside

the ontology. The following properties define the hierarchies of a concept as per

the skos vocabulary: narrower, broader, broaderTransitive, where each of the terms

respectively describes the URIs of the entities that each concept contains, that each

concept comes from, and the class of the parent from which the concept comes from.

The statistics of the properties that define the hierarchy of each concept are shown

in Table 9.

Hierarchical property Unique URI counts Unique Hierarchial property counts

Narrower classes 2,580 6,271

Broader classes 14,529 2,721

BroaderTransitive classes 14,529 2,851

Table 9: Statistics of the hierarchical properties of the ontology

From Table 9, we can see the counts of the hierarchical properties. We can see that

for a total of 2,580 unique concept URIs, there are a total of 6,217 unique narrower

classes available. This would imply that only some of the concepts have narrower

classes, i.e., not all concepts contain a narrower class that shows more concepts

falling under a concept. However, we can see from the broader class statistics that

there are a total of 2,721 unique broader classes for all 14,529 concepts. This would

imply that each broader class contains more than one concept inside it, thus implying

that the data is multi-hierarchical. A similar multi-hierarchy structure can be seen

for the broader transitive class in the ESCO ontology. A simplified version of the

official ESCO data model, which represents all the above descriptive and hierarchical

properties of the ontology, is visualized in Figure 13.

So to summarize, for each concept URI in the ESCO ontology, we have a set of

URIs that are related to it as properties, some of which are descriptive and some of

which are hierarchical properties with a different URI. All concepts have a preferred

label that is unique to each concept, and most of the time the description of a

concept is also available. Each concept has a broader class from which it is derived,

and multiple concepts can have the same broader class to which they belong. This

behavior induces a multi-hierarchical structure for concepts in the ESCO ontology.
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3.3 Job Ads Data

Job ads data comprises terms in a job application that candidates use to apply for

a job in a particular field. The fields that candidates apply to vary from a broad

range including a general worker of any type to medicine and engineering. The job

ads from which terms are extracted are German-speaking job ads in Switzerland,

and thus all the terms that are extracted and we need to map are also in German.

To be able to generalize the type of terms that appear in job ads from candidates

of a different domain, we have created two types of datasets that contain the job ad

terms from a wide domain of jobs available: one is a random sample that consists

of 25 terms that frequently appear in job ads, and one is a challenge sample that

contains 15 tailored challenge examples that are ambiguous for even the humans to

annotate. Examples of the types of terms in the random and the challenge gold

standard datasets are shown in Table 10.

Gold Standard Type Job-ad mentions

Random ** Feuerwehr ** Sanität

Random ** Gewinnung von Neukunden ** Akquise

Challenge ** EDV ** DOS, Windows

Challenge Arztsekretärin ** MPA **

Table 10: Examples of job-ad terms in random and gold standard datasets. The
terms in italics are the main job-ad term for which the annotations are
made, and the terms separated by ‘*’ are the context words surrounding
the job-ad term.

These gold standard datasets are the ones that were used in Gnehm et al. [2022a].

This paper used a transition-based NER13 method from spaCy for detecting the

skill mentions, which were categorized into fine-grained levels of education skills,

experience skills, and language skills. From these extracted skill requirements, the

random and the challenge gold standard datasets were created that are used for

evaluation in this thesis.

These two datasets contain only the main job ad expression, and sometimes also

contain the words that surround the job ad terms. We take these two datasets and

extend the them by adding the suggestions given by our models for annotations. The

words surrounding the job ad terms act as a context to the main job ad term and

might help us better map a particular job ad to its respective term in the ontology.

For making the task of classification extensible to general languages, we create the

13Named Entity Recognition: https://en.wikipedia.org/wiki/Named-entity_recognition
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job ads random sample and the challenge sample in 2 languages: the original job

ad expression in German, and the term translations of job ad expression in English.

The translations of the German job ad terms are done manually, by keeping the

translations as accurate as possible when translated into the English language.

This concludes the data section, which gives a detailed description of the ESCO

ontology data, its statistics, and the data from the job ads that contain skill re-

quirement mentions that we have to map onto the ontology.
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4 Domain Adaptation Methods For

Transformer LLMs

Since the domain data that we have is the ESCO ontology which is a KG as explained

in Section 3.2, we have all our data as triplets in the form of (entities, relations,

entities) format. We use this triplet data as the available domain data for pre-

training and fine-tuning purposes of LLMs. We use three main methods for domain

adaptation and fine-tuning of LLMs, namely, Masked Language Modelling (MLM)

(Devlin et al. [2019]), Multiple Negative Ranking (MNR) Loss (Henderson et al.

[2017]), and Classification task. The implementations of these methods are explained

in the following sections.

As the base model to use as a benchmark for the end task and to further fine-tune for

domain adaptation, we use the XLM-RoBERTa model1 introduced in Conneau et al.

[2020], and the XLM-RoBERTa model checkpoint adapted to the job-ads domain

as per Gnehm et al. [2022b]. The main advantage of using the XLM-RoBERTa

model is that it was pre-trained on a large multilingual dataset of 2.5TB of filtered

CommonCrawl data, and thus we can use the same base model as a benchmark

for both the English and the German language datasets because of its multilingual

nature. The XLM-RoBERTa checkpoint adapted to the job-ads data is fine-tuned

on the German job-ad terms from the job-ads data. The XLM-RoBERTa checkpoint

that is fine-tuned on the job-ads data is also used as a benchmark to further fine-tune

and adapt, as many of the terms in the job-ads data are also included in the ESCO

ontology and thus this checkpoint acts as a good starting point for fine-tuning.

4.1 Masked Language Modelling (MLM)

Masked language modeling (MLM) is a semi-supervised language modeling task used

for learning text representations for a particular domain. A semi-supervised learn-

1XLM-RoBERTa: https://huggingface.co/xlm-roberta-base
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ing2 method refers to a method for processing unlabelled data to obtain meaningful

representations of the data. These representations can be learned from completely

unlabelled data and the data requirements are also not too high.

The original MLM method that was in the BERT paper (Devlin et al. [2019]) fol-

lowed the usage of a [SEP] token between two input sentences, with the masking of

some words from each of the two sentences randomly with the [MASK] token. This

mechanism from the original implementation is also depicted in Figure 14. The two

input sentences may or may not be related to each other, and the accuracy of the

model is computed only from the predictions of the words that are masked with the

special mask token. The masking of the words is used such that the model is made

to reproduce the masked word back via its training.

4.1.1 Why Use MLM for Domain Adaptation?

MLM is beneficial for domain adaptation as it helps pre-trained LLMs to handle

previously unseen data from outside the domain it was originally trained with. The

model is exposed to a wide range of contexts and sentence structures that it has

not previously seen in its training and makes it learn meaningful representation

by using contexts of the words masked with the special mask token. This process

of reproducing the masked work back helps domain adaptation for the underlying

LLM, and also helps it generate rich word embeddings for the domain of the input

data.

Figure 14: The pre-training and fine-tuning of the BERT transformer from the orig-
inal paper. Image Source: Devlin et al. [2019]

2Semi-Supervised Learning: https://en.wikipedia.org/wiki/Self-supervised_learning
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4.1.2 Implementation of MLM with ESCO Ontology Data

For our case, we use a slightly perturbed version of the vanilla MLM approach to

further pre-train LLMs. As input sentences for MLM fine-tuning, we use a concept’s

descriptions from each of the English and the German language. concept descrip-

tions are sentences that describe what the concept is about in a few sentences. We

use the concept descriptions without any pairs, i.e., we only use a single input de-

scription of each concept without its concept URI as the input for the MLM model.

The label of a concept is ignored because we do not gain any more knowledge by

knowing if a particular description belongs to a particular concept for domain adap-

tation. All the descriptions passed thus act as a standalone corpus of sentences from

the domain of the ESCO ontology, as we are interested in domain adaptation of the

underlying LLM to the domain of ESCO ontology. Therefore, this corpus of descrip-

tions of all of the concepts is used as the input for fine-tuning the underlying LLM

via MLM. A few examples of the descriptions that are used for further pre-training

the model are shown in Table 11.

Concept URI Description

skill/bbeff2f6-4a3c-44af-8589-ac158f652d0d Work with homeless individuals and sup-
port them with their needs, taking into
consideration their vulnerability and iso-
lation.

skill/3a08450a-7e60-449d-84cb-a39b3d8aaece Provide recommendations for the instal-
lation and well functioning of hatcheries.

skill/c5f3e735-917b-4024-b2cf-19f4f75b2469 Livestock species and relevant genetics.

skill/6926e3fc-67ac-47ac-938e-4af566866ebd Liaise with film exhibitors to persuade
them to show the film or series.

Table 11: Examples of input data for MLM task. Only the sentences from the
‘Description’ column are passed to the model for fine-tuning.

From the above examples, we can see that different concepts have a different URI

and a different description attached to them. Using the label of each unique concept,

in this case, does not help the task of domain adaptation, as all such labels used

would be true labels and there would be no false labels. Therefore, we only pass the

descriptions associated with each concept for the fine-tuning task.
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The parameters for the masking are set as per the original implementation, i.e.,

15% of the tokens from the input descriptions were randomly masked. Of the 15%,

80% of the tokens were replaced with the special token [MASK], 10% of the tokens

were replaced by random tokens which are different from the original word being

masked, and the remaining 10% of the times the tokens are left as is. The loss is

only computed on the tokens that were masked with the special [MASK] token,

and the random token replacement trains the model to generate representations of

tokens at each position.

Also, since transformer models need the maximum input sentence to be 512 subto-

kens and it is possible that the input descriptions of the concepts are longer than 512

subtokens, we have used a strategy to create chunks of the input sentences such that

each chunk is 512 subtokens long. The strategy involves cutting single descriptions

into padding chunks, with each chunk containing 512 subtokens.

4.1.3 Validation Dataset for MLM

As part of the validation set to check if the fine-tuning itself improves the model

performance, we selected 10% of all the available concept descriptions as the vali-

dation set. On this validation set, the evaluation loss is computed on the special

[MASK] tokens while the model is fine-tuned. The loss is computed by checking if

the word masked by special [MASK] token is predicted correctly by the model or

not, while the tokens generated by all the other words are ignored.

The MLM fine-tuning is used as a starting point for domain adaptation since it

helps the model learn unseen contexts from the new domain used for fine-tuning.

For the MLM fine-tuning, we have 2 models to use as starting points for fine-tuning,

and thus we get a total of 2 fine-tuning variants for each language. The results

of the MLM model are stored with the tag ‘xlm-oob-ft’ and ‘xlm-jobads-ft’ for the

default XLM-RoBERTa model and the job-ads domain adapted XLM-RoBERTa

model checkpoint used as a starting point, respectively.

4.2 Multiple Negative Ranking (MNR) Loss

Multiple Negative Ranking (MNR) is a technique used for training models such that

they get better at handling imbalanced class distributions. The Multiple Negative

Ranking Loss (Henderson et al. [2017]) is a loss function that employs the MNR
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technique. It is an unsupervised learning method3, that takes pairs of positively

and negatively related sentences to an anchor and optimizes their distances. More

precisely, the main objective of the MNR loss function is minimizing the vector dis-

tances between the input anchor and the positive sentence pair, and simultaneously

maximizing the distance between the input anchor and all other pairs that are not

similar to it. In short, all positive pairs should be brought closer to each other

and all unrelated pairs should be pushed further away from each other. MNR loss

is an unsupervised loss, as all the sentence pairs, both positive and negative, that

we pass for the fine-tuning task are unlabelled. Sentences are only paired by their

relationship to the anchor sentence as either being a positively related sentence or

a negatively related sentence. A depiction of this is shown in Figure 15.

The training for MNR Loss can be done in either sentence pairs or triplets, wherein

the anchor is always fixed and sentences are paired with it. For the case of triplets,

the data consists of the anchor term paired with one positively related term and one

negatively related term. In the case of triplet data, the vector distances are again

optimized such that the distances of the anchor and the positive pair are minimized

and the distances of the anchor and the negative pair are maximized simultaneously.

For the case of triplet data where we have an anchor and a negative pair, we can

also give specific hard negatives so that the learning objective is more challenging

for the model to solve from the fine-tuning.

4.2.1 Why Use MNR Loss for Fine-tuning?

Unlike traditional classification methods, MNR loss solves the objective by mini-

mizing the distance between sentences that are positively related to an anchor and

simultaneously maximizing the distance between the anchor and negatively related

pairs. This approach is very beneficial for tasks of information retrieval, where there

may be a large number of possible answers available for a question from the corpus,

but only a smaller subset is relevant for the input query. The MNR loss objective

helps the model rank positive pairs much higher than negative pairs, increasing the

likelihood of the relevance of the most positive answer. Moreover, this loss function

directly influences the vectors of the sentence pairs and is thus more direct in helping

the model understand the input domain data. This is why MNR loss is beneficial

for fine-tuning to help the model return the most relevant answer from the set of

available answers for an input query.

3Unsupervised Learning: https://mitpress.mit.edu/9780262029445/

fundamentals-of-machine-learning-for-predictive-data-analytics/
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Figure 15: The objective of the MNR loss. The sentence vector pair ‘a1-b1’ are re-
lated and thus their distance is minimized, and all the other sentence pairs
are unrelated and thus their distances are maximized. Image Source:
https://sbert.net/examples/training/nli/README.html

4.2.2 Implementation of MNR with ESCO Ontology Data

For our fine-tuning of LLMs via MNR loss, we created triplet data from the ontology,

with one of concept’s descriptive property as being the anchor, another descriptive

property as being the positive pair, and all of the unrelated concept’s descriptive

properties as being the negative pairs. The anchor itself was always the concept’s

preferred label, while it was paired with either a different type of label or the de-

scription of the positive or negative classes. In general, the triplet pairs consisted of

either all preferred labels of anchor, positive and negative class, or preferred label

of the anchor and descriptions of the positive and the negative classes.

We classified negatives as all the concepts that do not belong to either the Narrower

Class or the Broader Class of the input concept as shown in Figure 13. The Narrower

class contains all the concept URIs that fall under a particular concept, and the

Broader Class contains all the concept URIs that a particular concept comes from.

The Narrower and the Broader classes can also be thought of as the child and the
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parent concepts, respectively. Thus, for each concept, we have a vast number of

negative concepts available across the ontology. However, we need to make sure

that the ratio of the positive and the negative pairs are kept to a similar level in

the training data, otherwise, the negative samples would always make the dataset

unbalanced. For this reason, we mined specific hard negatives from the set of all the

available negatives and paired them with anchors.

4.2.2.1 Hard Negative Mining

To select negatives that make solving the problem with MNR loss more challenging,

we mined hard negatives that are lexically similar to the input anchor concept term

but are still outside the Narrower and the Broader classes of the input concept.

This approach is largely inspired by Li et al. [2019], wherein they use semi-hard

sampling with a base model to compute hard negatives. Negative concept’s descrip-

tive properties, either the label or the description, that contain words other than

stop words from the anchor concept’s descriptive properties are first selected, and

then the nearest neighbor is computed with out-of-the-box models for the anchor

property, and the available negative concept property. From these nearest neighbors,

concepts that have the highest level of intersection with the anchor class are taken

to be the hard negative for that particular anchor. The flow diagram to compute

the hard negatives for an input anchor class is shown in Figure 16.

All available
negatives for anchor

term

Terms with highest
cosine similarity with

anchor term

Term with highest
level of word

intersection with
anchor term

Hard Negative term
for anchor term

Figure 16: Flow diagram to compute hard negatives for each anchor term.

To compute the nearest neighbors, two different models are used for the English

and the German language. For English, we use the all-mpnet-base-v24 model, and

4all-mpnet-base-v2: https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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for German we use the paraphrase-multilingual-MiniLM-L12-v25 model. These two

models are used out-of-the-box to compute which of all the negative terms are most

similar to the anchor term as a preliminary step, and only after this step do we

choose the term with the highest number of words intersecting with the anchor

term as the hard negative for that particular anchor.

Thus we have two variants of triplet data to feed to the model for the MNR training:

one with randomly sampled negatives and one with mined hard negatives. The

examples of input data from each of these two samples are shown in Table 12.

Negative Sample Type Anchor Positive Term Negative Term

Random Sample manage musical staff manage staff of music apply psychoeducation

Hard Sample manage musical staff manage staff of music manage quality systems

Random Sample supervise correctional proce-
dures

oversee prison procedures manage clients’ money matter

Hard Sample supervise correctional proce-
dures

oversee prison procedures supervise governing ware-
house safety procedures

Random Sample identify available services determine rehabilitation ser-
vices

ensure the quality of aircraft
systems installation

Hard Sample identify available services determine rehabilitation ser-
vices

services provided by railway
companies

Table 12: Examples of input data for MNR task. Both hard and randomly sam-
pled negative datasets are shown. The words in italics are the ones that
intersect with the anchor term in Hard Sample negative data.

As we can see, the hard negative sampled triplet data contains words appearing in

both the anchor term and the negative term. This would impose a harder chal-

lenge on the model to try and maximize the distance between the anchor term and

the negative term, as simply using distances at the word level would be ruled out

with the implementation of hard negative samples. The model would instead have

to semantically construct sentence embeddings that help it maximize the distance

between the anchor term and the negative term.

For the MNR loss training, all the hyper-parameters are set to the default parameters

as mentioned in Henderson et al. [2017].

4.2.3 Validation Dataset for MNR Loss

To compare the difference in the learning that randomly sampled negatives and hard

negatives variants achieve and also the improvement of the model as the fine-tuning

happens, we created a static validation dataset. This validation dataset was created

5multilingual-MiniLM: https://huggingface.co/sentence-transformers/

paraphrase-multilingual-MiniLM-L12-v2
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using 10% of data from the hard negative triplets by selecting the second-best hard

negative for each of the input anchor terms. As benchmarks to perform fine-tuning

and further improve, the 2 XLM-RoBERTa checkpoints, one out-of-the-box and

one domain adapted on job-ads data were used. Along with this checkpoint, the

checkpoints fine-tuned via MLM in Section 4.1 were also used. The models fine-

tuned via the MNR strategy were prefixed with the term ‘mnr’, and an example of

a model that used MLM checkpoint as a base, with hard negative triplet data, and

was further fine-tuned was saved as ‘mnr-hardneg xlm-jobads-ft’. Thus, a total of 4

model variants are available for the MNR fine-tuning for each language per triplet

dataset. However, since we are using two variants of triplet data, one with randomly

sampled negatives and one with hard sampled negatives, we get a total of 8 variants

of MNR fine-tuning per language.

4.3 Classification Task

In NLP, classification tasks are formulated as supervised learning tasks6, wherein

the task involves assigning predefined labels to a set of input sentences. Usually,

classification tasks are used for solving problems like sentiment detection, language

detection, etc. where we can have a set of pre-defined labels to input sentences

and train a model, later asking it to classify sentences into one of the pre-defined

categories. The task of classification is solved by learning patterns from the input

sentences that relate to the label that is provided to the sentences.

For fine-tuning LLMs via the classification task, we use the classification head that

only uses the [CLS] token. This classification head then takes a set of sentences

along with the label and creates a feature space that is later used to classify a new

set of sentence pairs. For our case, as a label, an artificial binary label was created

for sentence pairs, based on whether or not the passed input sentences were related

to each other or not. The label creation is done similarly as it is done in the Natural

Language Inference (NLI)7 task, wherein we take two sentences as input premise

and the labels that are given to them act as a hypothesis in classifying whether

those sentences are either related, unrelated, or neutral to each other.

6Supervised Learning: https://en.wikipedia.org/wiki/Supervised_learning
7Natural Language Inference: https://sbert.net/examples/training/nli/README.html
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4.3.1 Why is the Classification Task Useful for Domain

Adaptation?

Domain adaptation refers to adapting a model pre-trained on one domain to be

able to work on another domain. For this task, classification is often helpful by

fine-tuning the pre-trained model to the target domain by training a classifier. By

training such a classifier, the model can learn to identify features and patterns from

the target domain that help it perform a better classification of the target domain

data. This is why classification as a domain adaptation task is useful for adapting

a pre-trained model to a different target domain.

4.3.2 Implementation of Classification Task with ESCO Ontology

Data

For the classification task, as two input sentences, two attributes of each concept are

paired together. These attributes could either be the concept label, like its preferred

label or its alternate label, or the concept description describing what a particular

concept is about. While creating the term pairs from the descriptive attributes of a

concept, we also randomly shuffle the attributes for a particular concept, thus the

sentence pairs created could either be term-description or description-term pairs. A

corresponding binary label is created for the pair depending on the attributes of the

selected concept. For attributes that are related to each other, i.e., for a positive

sentence pair, a label ‘0’ is assigned. Similarly, for unrelated sentences, a label ‘1’

is assigned. The sentence pairs that are unrelated to each other are generated via

the same strategy of hard negative mining as mentioned in Section 4.2.2.1.

For an input concept, negative concepts are first selected based on the exclusion

from the Narrower and Broader class of the input concept, and then the concept

properties that had the input term present in them were selected as negatives. From

this set of negatives, the concepts which had the highest cosine similarity score with

the input term were taken to be as hard negatives for the input term. Thus, the

attribute of the unrelated pair contains words from the concept label but is from a

family outside the Narrower and the Broader class of the concept. These artificially

created labels, along with both positive and negative sentence attribute pairs, are

fed into a transformer model with a classification head, and the accuracy score is

computed to check if the input LLM is able to learn from the classification task. The

accuracy score is computed from the artificially generated labels that we provide for

each pair of sentences based on whether the model is able to predict the same label
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for the sentence pairs as the classifier is trained.

For our case, as input features for each label, a particular concept’s label is taken

and paired with a different attribute of the concept, either label or description.

Thus, the input data for the classification task is of the form label-label or label-

description or description-label in our case. The input sentences are attached to

each other with the [SEP] special token to indicate separation between the concept

attributes passed. The label of each pair of input sentences is used as an identifier

to determine whether or not the two sentences passed are related to each other or

not.

The examples of the input data for the classification task with the artificial labels

are shown in Table 13.

Anchor Term Descriptive Term Label

teach housekeeping skills teach domestic science skills 0

teach housekeeping skills teach archeology 1

apply credit risk policy implement credit risk policy 0

apply credit risk policy apply pre-stitching techniques 1

Table 13: Examples of input data for the Classification task. The labels ‘0’ represent
a positive pair, and the label ‘1’ represents negative sentence pairs. Words
in italics are the words that intersect with the anchor term for negative
pairs.

4.3.3 Validation Dataset for Classification

For the classification task, the main data consisted of sentence pairs with artificially

generated binary labels to them, indicating if the sentence pairs are related to each

other or not. As a validation dataset to check the improvements while training the

classifier, 10% of the total data was used as a held-out validation dataset. The

accuracy was computed over the labels of this validation set while training to check

how the performance of the classifier changed during the training phase.

As base models for classification to further fine-tune, we use the out-of-the-box

XLM-RoBERTa model and the XLM-RoBERTa model fine-tuned on job-ads data,

and model checkpoints from the MLM fine-tuning task. Thus the classification tasks

were also further build on top of different model checkpoints. A total of 4 model

variants are created by fine-tuning via the classification task for each language.
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Alongside the traditional methods of fine-tuning an LLM8 by using all the data from

the domain, there are also few shot-learning methods. Few-shot learning methods

are a good alternative in scenarios wherein labeling all the available training data

is time-consuming. We could also use few shot learning without prompts (Tunstall

et al. [2022]), which first fine-tunes a pre-trained LLM on a small amount of domain

data, and then uses it to generate rich word embeddings.

This concludes the section on describing the methods used to fine-tune and domain-

adapt the LLMs to the ESCO ontology.

8Large Language Models: https://huggingface.co/blog/large-language-models
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5 Experiment Pipeline

Since there were a lot of variants of models that were to be trained via the fine-tuning

tasks, it is helpful if a proper process is followed for the experiments. Experimental

pipelines that are controlled by configurations such that faster iterations with dif-

ferent model checkpoints are possible are beneficial for the type of work done in this

thesis. This section outlines the overall pipeline setup for conducting the fine-tuning

experiments described in Chapter 4.

5.1 Data Extraction and Storage

As mentioned in Section 3.2, the ESCO ontology data was available in an RDF

turtle file format. This file contains all data in the form of subject, predicate,

and object triplet pairs, and can be thought of as a very large text file containing

triplets of the above form. For extracting data from the turtle file, we made use of

the SPARQL1 query language for RDF. This query language is similar to structure

to the Structured Query Language (SQL)2. The main difference that SPARQL has

with SQL is that SPARQL needs a set of vocabulary from the ontology to operate

on. Recall that the vocabularies used in the ESCO ontology are highlighted in

Section 3.2.5.

For extracting data from each of the descriptive and hierarchical properties of the

ontology, we wrote different SPARQL queries. Each SPARQL query dealt with

extracting one of the related properties of the Concept as outlined in Figure 13.

The RDFLib package3 in Python4 was used to load the turtle file into memory and

execute SPARQL queries to extract data.

Since most of the data consisted of the URI of a Concept and the textual description

of the property used in the SPARQL query, the data was stored in tab-separated

1SPARQL: https://www.w3.org/TR/rdf-sparql-query/
2SQL: https://en.wikipedia.org/wiki/SQL
3RDFLib: https://rdflib.readthedocs.io/en/stable/
4Python: https://www.python.org/
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values (TSV)5 files. These files were extracted only once for all the relationships

and hierarchies of a Concept and stored locally. These files were the main data files

that were used for fine-tuning tasks.

5.2 Programming Method for Fine-tuning Scripts

The central programming language used for creating the pipelines for fine-tuning

was Python6. All the scripts related to fine-tuning, checkpointing, and storage were

written in Python. In general, instead of creating many scripts that contain the

exact parameters used for fine-tuning, an approach to creating skeleton scripts was

followed. The parameters that were to be used by a particular fine-tuning script

were later passed as a JSON7 configuration file. This made it much easier to have

only one skeleton script for one type of fine-tuning method, and later create many

configuration files to pass parameters to the skeleton script. This helped maintain

the code base, making it easier to iterate in parallel and keep track of different

experiments starting and finishing simultaneously.

5.3 NLP Ecosystem Used

Since most of the time we were dealing with transformer models and LLMs to use

as a base for fine-tuning, the main resource used to get the model checkpoints and

model parameters was HuggingFace8. HuggingFace is an open-source AI commu-

nity, largely dealing with open-sourcing transformer models for general usage by

the community. The main benchmark model used by us, the XLM-RoBERTa-base9

model, was fetched from the HuggingFace models page.

Another main source of getting resources for fine-tuning was the SentenceTransform-

ers framework10. This open-source framework contains a collection of models and

methods that make the usage of sentence transformers for fine-tuning and domain

adaptation much easier. The main implementation of MNR loss was taken from this

framework.

5TSV file: https://en.wikipedia.org/wiki/Tab-separated_values
6Python: https://www.python.org/
7JSON: https://www.json.org/json-en.html
8HuggingFace: https://huggingface.co/
9XlM-RoBERTa-base: https://huggingface.co/xlm-roberta-base

10SentenceTransformers: https://www.sbert.net/
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As part of the logging strategy to log the results of the validation data, Tensorboard11

was used. With tensorboard, all the evaluation, loss, and accuracy curves of the

training procedure were logged so that they are available for analysis at a later

stage. Many of the curves from tensorboard are also shown in the Section 6.1 on

the internal evaluation of the models.

5.4 Data Creation After Model Fine-tuning

Once the variants mentioned in Chapter 4 are fine-tuned and suitable checkpoints

are obtained, then the data creation for the end task of classifying job-ad terms

onto the ESCO ontology is conducted. As part of this data creation, from each of

the two files for evaluation, the random sample job-ad term file and the challenge

sample job-ad term file, we compute the euclidean distances of the job-ad term with

the concepts in the ESCO ontology. In other words, for every term which is present

in the 2 evaluation files, their top 20 nearest terms from the ESCO ontology are

computed using each of the fine-tuned model checkpoints by checking the euclidean

distances of each input term with the terms present in the ESCO ontology.

For computing the top 20 nearest terms, the job-ad terms are taken both with

and without the available context. The context in this case is the extra terms

that are provided along with the job-ad terms, as prefix and suffix words. The

resulting nearest terms are different when the extra context words are used along

with the job-ad terms, and thus it is used to check if the predictions with and

without context make any significant difference on the end task of classification on

the ESCO ontology.

This concludes the section describing the creation of the pipeline for fine-tuning

tasks for domain adaptation.

11Tensorboard: https://www.tensorflow.org/tensorboard
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6 Results

As many variants of models were trained as part of the fine-tuning and domain

adaptation, there were many different types of metrics being logged from each of

the fine-tuning runs. Many of these metrics were related to describing the internal

performance of the models during the fine-tuning step. This internal performance

that each model gets is different from the end task of classifying the job-ad term

onto the ESCO ontology, rather the model metrics logged during fine-tuning only

explained how the fine-tuning of the model influenced its performance over the held-

out validation set over time.

Because of this, the results section is split into two subsections: one section explains

the internal evaluation done on the models to check if the models are learning

from the fine-tuning tasks, and the external evaluation is done on the end task of

classification of job-ad terms onto the ESCO ontology terms.

6.1 Internal Evaluation of Models

For each of the fine-tuning tasks for domain adaptation described in Chapter 4,

we have conducted internal evaluations. The means of this internal evaluation is

to check if the fine-tuning in itself is helping the model improve on the validation

dataset or not. While the improvement in the internal evaluation does not neces-

sarily imply an improvement in the external evaluation, the internal evaluation is

still necessary to check if the tasks themselves bring about any improvements via

fine-tuning.

6.1.0.1 Evaluation Curve Interpretation

Each evaluation curve includes a legend that corresponds to the type of model

checkpoint used as the initial point for the domain adaptation task that the curve

represents. The legend is presented alongside the curve. The available options for

the legend on the internal evaluation curves are summarized in Table 14.
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Legend Name Model represented

xlm-oob XLM-RoBERTa out-of-the-box checkpoint

xlm-jobads XLM-RoBERTa checkpoint adapted on job-ads domain

xlm-oob-ft XLM-RoBERTa out-of-the-box checkpoint fine-tuned via MLM

xlm-jobads-ft XLM-RoBERTa checkpoint adapted on job-ads domain and
fine-tuned via MLM

Table 14: Table representing all the possible values of the model starting points for
the domain adaptation tasks

6.1.1 MLM Evaluation

For the MLM task, we used 2 variants of models as benchmarks, the out-of-the-

box XLM-RoBERTa model and the XLM-RoBERTa adapted to the job-ads domain

created as per the Paper Gnehm et al. [2022b]. As mentioned in Section 4.1.3, 10%

of the input sentences that contain descriptions of Concepts from the ontology were

taken as the validation dataset for the MLM task for both English and German

languages separately. The evaluation loss is computed by checking whether the

masked token was predicted to be the original word. Based on this computation of

the loss, the curves of the evaluation loss on the validation dataset for the English

language are shown in Figure 17 and for the German language in Figure 18.

In Figure 17, the red curve on the bottom is the evaluation loss curve for the job-ads

checkpoint during training, and the blue curve on top is the loss curve for the out-

of-the-box XLM-RoBERTa checkpoint. The loss curve shows that the evaluation

loss for the job-ads checkpoint is lower after 2k training steps when compared to

the evaluation loss of the out-of-the-box XLM-RoBERTa model. A training step in

this curve consists of one update made after seeing a batch of the input sentences,

where the batch is a hyperparameter set by us during the training phase.

A hypothesis for this result is valid is that the XLM-RoBERTa checkpoint adapted

to the job-ads domain has already seen many terms from the job-ads, and these

terms are also related to the words appearing in the descriptions of the Concepts.

The job-ads data consist of terms in the German language that applicants use in

their applications to apply for jobs. For both model variants, the loss initially starts

at a higher value and seems to be flattening around 2k training steps, which is

approximately 6 epochs of the whole training data.
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Figure 17: Evaluation Losses of MLM for the English data. The bottom line is from
the job-ads checkpoint, and the top line is from the XLM-RoBERTa
checkpoint.

In the Figure 18, the red curve on the bottom is the evaluation loss curve for the

job-ads checkpoint during training, and the blue curve on top is the loss curve

for the out-of-the-box XLM-RoBERTa checkpoint. The loss curve shows that the

evaluation loss for the job-ads checkpoint and the out-of-the-box XLM-RoBERTa

model is flattening after 2.5k training steps. Moreover, it can be seen that the

overall loss values of the XLM-RoBERTa checkpoint adapted to the job-ads domain

are lower for the German language datasets in comparison to the English language

datasets as seen in Figure 17. This is the job-ads data on which the XLM-RoBERTa

checkpoint is adapted are all in the German language, and thus the MLM task on

the German language benefits from this. A training step in this curve consists of

one update made after seeing a batch of the input sentences, where the batch size

is a hyperparameter set by us during the training phase.

We can make the same inference as before for the German language dataset since

we are utilizing the job-ads checkpoint, which has already undergone fine-tuning on

job-ads domain data, as a base model for MLM on the German datasets.

The dissimilarity in the evaluation curves depicted in Figure 17 and Figure 18 can be

attributed to the difference in the number of epochs for which the fine-tuning scripts
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Figure 18: Evaluation Losses of MLM for the German data. The bottom line is
from the job-ads checkpoint, and the top line is from the XLM-RoBERTa
checkpoint

were executed. Additionally, there is a difference in the total number of steps carried

out by the fine-tuning models due to the disparity in the inherent corpus containing

descriptions of the Concepts for the English and German languages. Specifically, the

German language corpus of input descriptions is smaller compared to the English

language corpus, as indicated by the statistics in Table 7 and Table 8.

Based on the assessment of MLM fine-tuning for the English and German datasets, it

is evident that this approach enhances the ability to predict masked words according

to the ESCO ontology domain. The decrease in evaluation loss signifies that the

model can accurately predict the masked words in their original context. As the

original data pertains to Concept descriptions from the ESCO ontology, the model

has learned to predict words in a manner consistent with the ESCO ontology. In

addition to evaluation loss, the perplexity score after MLM fine-tuning also indicates

a comparable outcome, as it is also calculated based on the model’s ability to predict

masked words. Still, the evaluation loss gives also a similar result as it is computed

by the model predicting the masked words back.

Therefore, it can be inferred that MLM fine-tuning enables the model to acclimate

to the ESCO ontology domain. Since this objective aligns with the end task of
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categorizing job-ad terms onto the ESCO ontology, it is reasonable to anticipate

that the MLM fine-tuned model checkpoints would serve as a reliable foundation for

subsequent fine-tuning and adjustment.

6.1.2 MNR Evaluation

To evaluate the performance of the MNR task, we employed four model variants as

initial models: the two fine-tuned checkpoints obtained from the MLM task, the out-

of-the-box XLM-RoBERTa model, and the XLM-RoBERTa checkpoint modified for

the job-ads domain. These four variants are applied based on the language of the

triplet dataset for the MNR fine-tuning, and there are two types of triplet datasets

in total. As described in Section 4.2.3, we utilized 10% of the hard negative triplet

data as the static validation dataset for all MNR fine-tuning variants.

The accuracy plots are utilized in the MNR evaluations to depict the impact of

training. These accuracy scores are calculated by determining the count of triplets

where the cosine similarity between the anchor and positive term is lesser than the

distance between the anchor and negative term, divided by the total number of

available triplets. Therefore, higher accuracy indicates a larger number of triplets

with a smaller cosine similarity distance between the anchor and positive pair, as

compared to the anchor and negative pair.

6.1.2.1 MNR Evaluation Results for English Dataset

The accuracy plots of the randomly sampled negatives and the hard sampled nega-

tives of the English dataset are shown in Figure 19 and Figure 20.
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Figure 19: Plots of the accuracy scores of the MNR fine-tuning for the English
dataset with hard sampled negatives

From the Figure 19, we can see a summary of the models that are used in the MNR

fine-tuning task with the hard negative triplet dataset in the Table 15.

Color of the Curve Model starting point for MNR training

Green XLM-RoBERTa checkpoint, adapted on job-ads checkpoint and fine-
tuned via MLM

Blue XLM-RoBERTa checkpoint, adapted on job-ads checkpoint

Orange XLM-RoBERTa out-of-the-box checkpoint, previously fine-tuned via
MLM

Purple XLM-RoBERTa out-of-the-box checkpoint

Table 15: Descriptions of accuracy plots in Figure 19 of hard negative triplet data
for MNR fine-tuning in English

From the Figure 19, we can see that in the initial stages of training, the accuracy

scores are low. Over time as the training continues, the accuracy score gradually

increases, indicating an improvement in the model’s ability to differentiate between

positive and negative pairs. The fluctuations in accuracy are expected during the

training process and may indicate overfitting or a lack of diverse training data.

Towards the end of the training process, the accuracy score stabilizes, indicating that

the model has reached a point where further training is unlikely to yield significant
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improvements.

Despite all four variants achieving accuracy scores close to 99%, the out-of-the-box

XLM-RoBERTa and the MLM fine-tuned out-of-the-box XLM-RoBERTa models

exhibit poor performance in the early stages of training. This finding suggests that

using the out-of-the-box XLM-RoBERTa model or its MLM fine-tuned variant on its

own may not be sufficient for zero-shot learning applications. However, the results

show that further adaptation of these models can increase their accuracy in correctly

classifying positive pairs compared to negative pairs.

Figure 20: Plots of the accuracy scores of the MNR fine-tuning for the English
dataset with randomly sampled negatives

The Figure 20 shows the accuracy plots of the MNR training with the randomly

sampled negatives, where the summary of the models used as a starting point for

the fine-tuning is given in Table 16.

Color of the Curve Model starting point for MNR training

Green XLM-RoBERTa checkpoint, adapted on job-ads checkpoint and fine-tuned via MLM

Blue XLM-RoBERTa checkpoint, adapted on job-ads checkpoint

Purple XLM-RoBERTa out-of-the-box checkpoint, previously fine-tuned via MLM

Orange XLM-RoBERTa out-of-the-box checkpoint

Table 16: Descriptions of accuracy plots in Figure 20 of random sampled negative
MNR fine-tuning in English

We can see from the Figure 20 that all of the 4 MNR variants reach the final
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accuracy of approximately 98% as the fine-tuning continues. However, the out-

of-the-box XLM-RoBERTa model variant and the MLM fine-tuned variant of the

XLM-RoBERTa model do not have higher accuracy in the earlier stages of fine-

tuning. This behavior is similar to the behavior seen in the accuracy plots in Figure

19. This would again imply that the out-of-the-box variant of the XLM-RoBERTa

model and the MLM fine-tuned variant of the XLM-RoBERTa model are not good

to be used in the zero-shot setting.

Based on the accuracy plots presented in Figure 19 and Figure 20, it can be in-

ferred that all the MNR fine-tuned models, using both randomly and hard sampled

negatives, improve in accuracy with continued fine-tuning. Additionally, the out-of-

the-box XLM-RoBERTa model and its MLM fine-tuned variant are not suitable for

zero-shot predictions on the triplet data. Also, the final accuracy that the XLM-

RoBERTa variant gains with the randomly sampled negative dataset is 1pp lower

than the final accuracy of the same model with the hard negative sampled dataset.

This is due to the fact that the evaluation data that we use for the MNR fine-tuning

task is a subset of the hard negative triplet dataset.

6.1.2.2 MNR Evaluation Results for German Dataset

For the MNR fine-tuning with the German datasets, we can see that the accuracy

score plots in Figure 21 and Figure 22.

The Figure 21 contains four accuracy plots for the MNR fine-tuning on the German

dataset with hard sampled negatives, with a summary of the models used as a

starting point shown in Table 17.

Color of the Curve Model starting point for MNR training

Green XLM-RoBERTa checkpoint, adapted on job-ads checkpoint and fine-tuned via MLM

Blue XLM-RoBERTa checkpoint, adapted on job-ads checkpoint

Orange XLM-RoBERTa out-of-the-box checkpoint, initially fine-tuned via MLM

Purple XLM-RoBERTa out-of-the-box checkpoint

Table 17: Descriptions of accuracy plots in Figure 21 of hard negative triplet data
for MNR fine-tuning for German dataset

The accuracy plots in Figure 21 show that the XLM-RoBERTa checkpoints that are

adapted to the job-ads data and initially fine-tuned via MLM achieve the highest ac-

curacy after fine-tuning, reaching close to 99%. The out-of-the-box XLM-RoBERTa

checkpoint has the lowest accuracy at around 92%, while the out-of-the-box check-
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Figure 21: Plots of the accuracy scores of the MNR fine-tuning for the German
dataset with hard sampled negatives

point initially fine-tuned via MLM has an accuracy of around 95%, which is still

lower than the top-performing models. These results suggest that XLM-RoBERTa

checkpoint domain-adapted on the job-ads data and fine-tuned via MLM on the

ESCO ontology data are the most effective for the MNR fine-tuning of hard nega-

tive sampled triplet data in the German language.
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Figure 22: Plots of the accuracy scores of the MNR fine-tuning for the German
dataset with randomly sampled negatives

The Figure 22 shows the four accuracy plots for the MNR fine-tuning on the German

dataset with randomly sampled negatives, with the summary of the models used as

a starting point shown in Table 18.

Color of the Curve Model starting point for MNR training

Green XLM-RoBERTa checkpoint, adapted on job-ads checkpoint and fine-tuned via MLM

Blue XLM-RoBERTa checkpoint, adapted on job-ads checkpoint

Orange XLM-RoBERTa out-of-the-box checkpoint, previously fine-tuned via MLM

Purple XLM-RoBERTa out-of-the-box checkpoint

Table 18: Descriptions of accuracy plots in Figure 22 of random sampled negative
triplet data for MNR fine-tuning for German dataset

The accuracy plots shown in Figure 22 reveal that the XLM-RoBERTa checkpoint

that is not adapted for any specific task is the least accurate among the 4 vari-

ants tested in the MNR fine-tuning process. The remaining variants are capable of

achieving an accuracy score close to 98% as the fine-tuning process continues. The

domain-adapted XLM-RoBERTa models that are adapted to the job-ad data and

further fine-tuned via MLM task perform the best, similar to the findings from the

hard negative sampling experiments. It can also be seen that the accuracy in the

initial stages for the XLM-RoBERTa model adapted on both the job-ads domain

and the ESCO ontology domain has a higher accuracy when compared to the same

model variant on English dataset as shown in Figure 20. This must be due to the
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face that this model checkpoint is adapted on the job-ads domain data where all the

domain data was in the German language.

Based on the findings from the accuracy plots of the MNR fine-tuning task shown

in Figure 19, 20, 21, and 22, the following conclusions can be drawn:

1. The performance of all MNR fine-tuning variants is lower when using the

XLM-RoBERTa out-of-the-box checkpoint as a starting point.

2. Domain adaptation on job-ads data, along with initial fine-tuning via MLM

on the same checkpoint, consistently yielded better results compared to check-

points that only underwent MLM on the XLM-RoBERTa out-of-the-box model.

Based on the two points mentioned earlier, it can be inferred that adapting the

model to the specific domain is crucial in achieving better performance on the MNR

task and enhancing it.

6.1.3 Classification Task

In the classification task, we started with 4 different variants of models, including

2 fine-tuned checkpoints from the MLM task, the out-of-the-box XLM-RoBERTa

model, and the XLM-RoBERTa checkpoint adapted to the job-ads domain. Each

language had these 4 variants as starting points for training using the classification

objective. We randomly selected 10% of the overall classification data pairs for

validation in both the English and German datasets and the data had binary labels

with ‘0’ indicating a positive pair and ‘1’ indicating a negative pair, as mentioned

in Section 4.3.2 and Section 4.3.3.

The summary of the model starting points used in the Figure 23 is shown in the

Table 19.

Color of the Curve Model starting point for Classification training

Blue XLM-RoBERTa checkpoint, adapted on job-ads checkpoint and fine-tuned via MLM

Green XLM-RoBERTa checkpoint adapted on job-ads checkpoint

Orange XLM-RoBERTa out-of-the-box checkpoint, previously fine-tuned via MLM

Purple XLM-RoBERTa out-of-the-box checkpoint

Table 19: Descriptions of accuracy plots of classification task on the English datasets
in Figure 23

From the above accuracy plots, we can that using the XLM-RoBERTa out-of-the-

box checkpoint as the starting point for classification training does not yield a good
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Figure 23: Plots of the accuracy scores of the Classification fine-tuning on the En-
glish dataset

accuracy score. It seems that this variant of the model is stuck on an accuracy of

60%, and is unable to improve even with further fine-tuning. On the other hand,

all variants that had initial domain adaptation had an accuracy closer to 98%.

These results imply that starting models with domain adaptation perform better in

classifying positive and negative pairs from the classification data.

Figure 24 contains four accuracy plots for the Classification training on the English

dataset, with the summary of the models used as a starting point shown in Table

20.

Color of the Curve Model starting point for Classification training

Pink XLM-RoBERTa checkpoint, adapted on job-ads checkpoint and fine-tuned via MLM

Grey XLM-RoBERTa checkpoint, adapted on job-ads checkpoint

Orange XLM-RoBERTa out-of-the-box checkpoint, previously fine-tuned via MLM

Red XLM-RoBERTa out-of-the-box checkpoint

Table 20: Descriptions of accuracy plots of classification task on the German
datasets in Figure 24

From the accuracy plots in Figure 24, we can that using the XLM-RoBERTa out-of-

the-box checkpoint as the starting point for classification training does not yield a

good accuracy score. It seems that this variant of the model is stuck on an accuracy
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Figure 24: Plots of the accuracy scores of the Classification fine-tuning on the Ger-
man dataset

of 60%, and is unable to improve even with further fine-tuning. This behavior is also

observed for the XLM-RoBERTa checkpoint that is domain-adapted on the job-ads

checkpoint. On the other hand, variants that had MLM fine-tuning done initially

before training via the classification task had an overall accuracy closer to 98%.

These results imply that starting models with domain adaptation perform better in

classifying positive and negative pairs from the classification data.

From the results shown in Figure 23 and Figure 24, we can conclude the following

points:

1. The classification task does not improve the overall accuracy of the models

per se for our experiments, as we do not see a lot of improvement in the value

of accuracy from the evaluation curves of the classification task.

2. Domain adaptation on the job-ads data, along with further fine-tuning via

MLM on the same checkpoint yields better results compared to checkpoints

that only underwent MLM on the XLM-RoBERTa out-of-the-box model.

3. Choosing an out-of-the-box model variant for the task of classification does

not yield a higher accuracy when used as a starting point when compared to

models that had either domain adaptation or fine-tuning or both applied to

them
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The poor performance of the classification task might be due to the default hyperpa-

rameter setting that is used for the classification task, and further experimentation

with different hyperparameters was not conducted as the initial iterations with the

classification task did not yield promising results. Instead, more time was invested in

the MNR strategy to try and improve it as the models fine-tuned via the MNR task

showed more promising results. However, it can still be seen that models that are

domain adapted, either to the job-ads domain or the ESCO ontology domain, are the

better-performing models when it comes to the task of classification in comparison

to out-of-the-box models.

6.1.4 Conclusions from the Internal Evaluations

From all the observations we see in the Internal Evaluation section, we can summa-

rize and make the following conclusions:

1. All model variants do not have a high accuracy in the initial stages of the

fine-tuning tasks. However, we can see as the training continues, the accuracy

scores of different fine-tuning tasks improve.

2. Models that are domain adapted, either on the job-ads data or the ESCO

ontology data or both perform better over time in comparison to models that

are not domain adapted.

3. The XLM-RoBERTa variant fine-tuned on the job-ads data performs better on

the German language datasets in comparison to the English language datasets.

4. The models not fine-tuned via the MLM task do not perform well on the

classification tasks even as training continues for our experiments. Moreover,

the models from the classification task do not seem as promising as the models

from the MNR task, but this might be due to the default hyperparameter

values taken for the classification task.

6.2 External Evaluation of Models

From Section 6.1 on internal evaluation, we could see that the domain-adaptation

tasks on different variants of models helped the model improve in performance on

the validation dataset. However, the actual performance on the end task from each

of these model variants might be different, and thus an external evaluation for each

of these models is conducted.
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6.2.0.1 Data for External Evaluation

As mentioned in Section 3.3, 2 gold standard datasets have been created to evaluate

the end task. Each of the gold standard datasets contains job-ad terms, along with

the terms surrounding the job-ad term, thus acting as a context for the central

job-ad term. The two variants consist of a random sample of 25 job-ad terms that

frequently appear in candidate applications and a challenge sample of 15 job-ad

terms that contain some of the more tailored and challenging terms that are harder

to classify correctly at human-level annotations. As mentioned in Section 3.3, this

data is created in the Paper Gnehm et al. [2022a].

6.2.0.2 Evaluation Data Annotation

As the evaluation data was created in the Paper Gnehm et al. [2022a], we already

have a dataset that is annotated by human annotators. In this dataset, we already

have annotations for 268 classes from the random gold standard dataset and 228

classes from the challenge gold standard dataset. These class suggestions are from

the model variants from the Paper Gnehm et al. [2022a], wherein the top suggestions

for each model variant are collected and annotated. For the 15 model variants

that we trained, we take the top-class suggestion made by each model variant for

annotation via 3 human annotators, wherein the top-class suggestions are selected

for both the English and German language models.

The class suggestions made by each model are one of the 638 lowest-level classes

available in the ESCO ontology. The job-ad terms that best fall into any of the

classes of the ESCO ontology are the top classes suggested by each of the model

variants. As part of annotations, each annotator gives a score of 0, 0.5, and 1 for the

top suggestions given by each of the models. The scores represent that the annotator

found the suggestion not related at all, a little relevant to the input term, and fully

relevant to the input term, respectively. A mean score from each of the annotator’s

scores is computed, and this mean score is used for assessing the performance of

each model variant. For all three annotators, the inter-annotator agreement score

is computed via Krippendorff’s alpha1 coefficient, which is a statistical measure of

the agreement achieved when labeling the gold standard data. Krippendorff’s alpha

is computed for two different cases, once on the data that is only suggested by the

15 new model variants from this thesis, and once for the whole annotation dataset.

The following Table 21 gives a summary of Krippendorff’s alpha coefficient for the

challenge and the random gold standard evaluations, on the data that is added by

1Krippendorff’s alpha: https://en.wikipedia.org/wiki/Krippendorff%27s_alpha
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the new model variants and the overall available annotation data.

Gold Standard Dataset Krippendorff’s alpha

Random Gold Standard (New Class Dataset) 0.861

Challenge Gold Standard (New Class Dataset) 0.847

Random Gold Standard (Whole Dataset) 0.835

Challenge Gold Standard (Whole Dataset) 0.714

Table 21: Krippendorff’s alpha coefficients for the random and the challenge gold
standard datasets. The new class dataset represents the new data that is
added to the original annotation datasets, and the whole dataset repre-
sents the data with all class annotations combined.

A lower Krippendorff’s alpha on the whole challenge gold standard dataset in con-

trast to the alpha value of the whole random gold standard dataset shows that

the inter-annotator agreement for terms in the challenge gold standard dataset is

lower, meaning that not all annotators are able to agree on common ground while

assigning labels. This is due to the nature of the terms included in the challenge

dataset, which are tougher at human-level annotations. We can also see that for the

new class annotations, Krippendorff’s alpha values are higher, implying that all the

annotators agree more on the scores they give to the newly suggested classes. This

is also because many of the new class suggestions provided by the models were not

very relevant to the input job ad mention, and all annotators agreed on discarding

the suggestions equally.

6.2.0.3 Metric for External Evaluation

The evaluation metric used for our study is Mean Average Precision (mAP), which is

calculated at different hit levels. In simple terms, mAP at hits indicates the number

of relevant documents present in the top results, where hits can be varied based on

the number of available results. This metric is denoted as mAP@k, where k is the

number of top results considered. Our study computes mAP@1 and mAP@5, which

means we evaluate the mAP of the top result and the top 5 results returned by each

model variant. The mAP is a useful metric for evaluating the quality of ranking

algorithms and understanding their performance. It provides a single number that

reflects the precision and recall of the ranking results. The mAP is calculated as

per the equation shown below from Manning et al. [2008]:

mAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision (Rjk)
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In this equation, Q is the number of input queries, which can be 25 for the random

gold standard dataset and 15 for the challenge gold standard dataset. M is the total

number of suggestions that are accepted, and K is the cutoff rank which defines

how many of the top suggestions to consider for calculating the precision. Based

on the formulation of the mAP, we compute mAP@1 and mAP@5 for our external

evaluation. mAP@1 evaluation metric only considers the top term suggested by each

model, and in theory, only computes the precision given by each model variant. On

the other hand, the mAP@5 evaluation metric computes the mAP and the ranking

of the top 5 suggestions made by each model variant and gives a better idea of

how each model variant suggests the most 5 related values across all of the ESCO

ontology. The mAP@5 evaluation metric thus helps better generalize the suggestions

that each of the models provides in comparison to the mAP@1 evaluation metric.

For the cutoff rank, for each model annotation to be accepted as a true positive,

we have two different thresholds that we use. We use both soft and hard precision

boundaries for each mAP@1 and mAP@5 metric we compute. These boundaries

determine whether a threshold has been reached for the mean annotation score

to be considered a true positive. The soft precision boundary is set at 0.3, and the

hard precision boundary is set at 0.6. This means that if the mean of the annotation

scores for a particular class is greater than 0.3 and the soft precision boundary is

used, then that prediction is considered a true positive. On the contrary, if there is

a class in the top 5 suggestions that is not annotated by human annotators, then we

consider that particular class to be a false positive and assign it a score of 0. Also,

the top 5 suggestions made by each of the 15 model variants could be either from

the original gold standard dataset or from the new top-class suggestions added for

each of the gold standard datasets. In both cases, the mean of the annotation score

is taken as a basis to decide whether the class suggestion is a true positive or a false

positive.

Based on the above conditions on the evaluation metrics, the external evaluation on

the top 20 classes suggested by each of the model variants is computed.

6.2.0.4 Naming Convention for Models in External Evaluations

To help the reader understand which model is represented in each row of the evalu-

ation tables, a naming convention is followed. The convention uses ‘ ’ to represent

different sections in the model variant name.

The first section of the model variant name indicates the fine-tuning method used,

which can be ‘mlm’, ‘mnr’, or ‘classification’, as explained in Chapter 4. The second
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section, separated by the ‘ ’, represents the type of model checkpoint used as a

starting point for the fine-tuning task. The second half of the model variant name

may include either a single model variant or a model variant fine-tuned via MLM.

For ‘mnr’ model variants, the first half of the name also includes the variant of the

data used, either ‘hardneg’ for hard negative sampled triplet datasets or ‘randneg’

for randomly sampled negative triplet datasets for the fine-tuning task.

Table 22 provides a brief explanation of all the components used to name the model

variants in the external evaluation tables.

Model Name Component Representation of the component

mnr-hardneg MNR task with hard negative sampled triplet dataset

mnr-randneg MNR task with randomly sampled negative triplet dataset

xlm-jobads XLM-RoBERTa checkpoint domain adapted to the job-ads
data

xlm-oob XLM-RoBERTa out-of-the-box checkpoint

xlm-oob-ft-x XLM-RoBERTa out-of-the-box checkpoint finetuned via MLM,
where x represents the step of the checkpoint

xlm-jobads-ft-x XLM-RoBERTa checkpoint domain adapted on the job-ads
data and finetuned via MLM, where x represents the step of
the checkpoint

classification Classification task with a starting point mentioned in the other
half of the model name

Table 22: Descriptions of components used in naming the model variants for external
evaluation

6.2.1 Random Dataset Evaluations

This section covers the computation of the mAP@1 and mAP@5 evaluation metrics

for the random gold standard dataset. As outlined in Section 3.3, the random gold

standard dataset contains 25 examples of terms that appear in German job ads in

Switzerland.

The subsections in Section 6.2.1 contain evaluation tables with columns labeled

EDU, EXP, LNG, ALL, and R. These columns represent the mAP score for educa-

tional terms, experience terms, language terms, all terms combined, and the rank

of each term section, respectively. The rank column is included with each term’s

mAP score to facilitate the comparison of model variants based on the type of term

section being used.
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6.2.1.1 mAP@1 Results for the External Evaluation

As an initial measure of evaluation, the mAP@1 evaluation metric was computed

from the annotation scores. Table 23 gives the mAP scores and rankings of all 15

model variants. From this ranking, we can see that the MNR variant with the XLM-

RoBERTa model adapted on the job-ads domain and further fine-tuned via MLM

task is the best-performing model variant across the overall data. Except for the job-

ad terms related to experience skills, this model variant is also the best-performing

model across the job-ad term related to education skills and language skills. On

the other hand, the worst-performing model across all the term sections and overall

is the classification model with the XLM-RoBERTa out-of-the-box model used as a

starting point. It can also be observed that the MNR variants with the hard negative

sampling (‘hardneg’ ) data are better in suggesting the top term in comparison to

MNR variants with randomly sampled negative (‘randneg’ ) data, with an overall

increase of 20pp.

Model Variant EDU R EXP R LNG R ALL R

mnr-hardneg xlm-jobads-ft-4650 0.600 1 0.600 6 1.000 1 0.680 1

mnr-randeng xlm-jobads 0.200 10 0.700 1 1.000 1 0.560 2

xlm-jobads 0.400 2 0.700 1 0.400 6 0.520 3

mnr-randneg xlm-jobads-ft-4650 0.300 3 0.700 1 0.400 6 0.480 4

mnr-hardneg xlm-ft-320 0.300 3 0.700 1 0.400 6 0.480 4

mnr-randneg xlm-oob 0.300 3 0.700 1 0.400 6 0.480 4

mnr-hardneg xlm-oob 0.200 10 0.500 7 1.000 1 0.480 4

xlm-jobads-ft-4650 0.300 3 0.500 7 0.400 6 0.400 8

classification xlm-jobads 0.100 13 0.400 9 0.800 4 0.360 9

classification xlm-jobads-ft-4650 0.200 10 0.100 13 0.800 4 0.280 10

xlm-oob-ft-320 0.300 3 0.200 10 0.400 6 0.280 10

xlm-randneg xlm-ft-320 0.300 3 0.200 10 0.400 6 0.280 10

mnr-randneg xlm-oob 0.300 3 0.200 10 0.400 6 0.280 10

classification xlm-oob-ft-320 0.000 14 0.000 14 0.400 6 0.080 14

classification xlm-oob 0.000 14 0.000 14 0.000 15 0.000 15

Table 23: mAP@1 with the hard threshold for the English model variants on the
random set

Table 24 shows the mAP@1 evaluation results for the random gold standard dataset

for the German language. From this table, we can see the results are similar in
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Model Variant EDU R EXP R LNG R ALL R

mnr-hardneg xlm-jobads-ft-6450 0.800 1 0.600 6 1.000 1 0.760 1

mnr-randeng xlm-jobads 0.300 4 0.700 1 1.000 1 0.600 2

xlm-jobads 0.400 2 0.700 1 0.600 6 0.560 3

xlm-jobads-ft-6450 0.400 2 0.600 6 0.600 6 0.520 4

mnr-hardneg xlm-ft-600 0.300 4 0.700 1 0.400 8 0.480 5

mnr-randneg xlm-oob 0.300 4 0.700 1 0.400 8 0.480 5

mnr-randneg xlm-jobads-ft-6450 0.300 4 0.700 1 0.400 8 0.480 5

mnr-hardneg xlm-oob 0.200 11 0.500 8 1.000 1 0.480 5

classification xlm-jobads 0.100 13 0.400 9 1.000 1 0.400 9

classification xlm-jobads-ft-6450 0.200 11 0.300 10 0.800 5 0.360 10

xlm-randneg xlm-ft-600 0.300 4 0.300 10 0.400 8 0.320 11

mnr-randneg xlm-oob 0.300 4 0.300 10 0.400 8 0.320 11

xlm-oob-ft-600 0.300 4 0.300 10 0.400 8 0.320 11

classification xlm-oob-ft-600 0.000 14 0.000 14 0.400 8 0.080 14

classification xlm-oob 0.000 14 0.000 14 0.000 15 0.000 15

Table 24: mAP@1 with the hard threshold for the German model variants on the
random set

ranking to the results we see in Table 23, where the best performing model over

all terms is the XLM-RoBERTa model with domain adaptation on job-ads data

and further fine-tuned via MLM on the ESCO ontology data. On the other hand,

the worst performing model is again the classification model with XLM-RoBERTa

out-of-the-box model used as a starting point. It can also be seen that the mAP

scores of the models for the German language are in general higher in comparision to

models for the English language for XLM-RoBERTa checkpoint adapted to the job-

ads data. This is because the job-ads data was in the German language, and thus

the models for the German language perform better on the same random sample

dataset.

It’s important to note that these results are based on the hard threshold for true

positives, and it is beneficial to also evaluate the performance of these models with

soft thresholds and higher hit rates for the mAP evaluation metric.

The Table 25 and 26 represent the mAP@1 evaluation metric results for the random

gold standard dataset with the soft threshold. The results seen in both these tables
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Model Variant EDU R EXP R LNG R ALL R

mnr-hardneg xlm-jobads-ft-4650 0.600 1 0.700 1 1.000 1 0.720 1

mnr-randeng xlm-jobads 0.300 3 0.700 1 1.000 1 0.600 2

xlm-jobads 0.400 2 0.700 1 0.400 6 0.520 3

mnr-randneg xlm-jobads-ft-4650 0.300 3 0.700 1 0.400 6 0.480 4

mnr-hardneg xlm-ft-320 0.300 3 0.700 1 0.400 6 0.480 4

mnr-randneg xlm-oob 0.300 3 0.700 1 0.400 6 0.480 4

mnr-hardneg xlm-oob 0.200 11 0.500 7 1.000 1 0.480 4

xlm-jobads-ft-4650 0.300 3 0.500 7 0.400 6 0.400 8

classification xlm-jobads 0.100 13 0.400 9 0.800 4 0.360 9

xlm-oob-ft-320 0.300 3 0.300 10 0.400 6 0.320 10

xlm-randneg xlm-ft-320 0.300 3 0.300 10 0.400 6 0.320 10

mnr-randneg xlm-oob 0.300 3 0.300 10 0.400 6 0.320 10

classification xlm-jobads-ft-4650 0.200 11 0.100 13 0.800 4 0.280 13

classification xlm-oob-ft-320 0.000 14 0.100 13 0.400 6 0.120 14

classification xlm-oob 0.000 14 0.000 15 0.000 15 0.000 15

Table 25: mAP@1 with the soft threshold for the English model variants on the
random set

are similar to the results seen in Tables 23 and 24. The MNR model variant with

the XLM-RoBERTa adapted on the job-ads data and the ESCO ontology data is

the best performing model variant overall. Because the soft threshold is used, we

can see that the overall mAP values are higher for the results of both languages in

comparison to the results with hard threshold.

Based on the results we see in Tables 23, 24, 25, and 26, we can make the following

conclusions:

1. The best-performing model in all the cases is the MNR variant adapted on the

job-ads data and further fine-tuned via the MLM task on the ESCO ontology

data. This would imply that domain adaptation is beneficial for the end task

of classifying job-ad terms onto the ESCO ontology.

2. The MNR variants with the hard negative sampled data are better in per-

formance when compared to the same model variants with randomly sampled

negative data, thus implying that the hard negative sampling does yield better
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Model Variant EDU R EXP R LNG R ALL R

mnr-hardneg xlm-jobads-ft-6450 0.800 1 0.700 1 1.000 1 0.800 1

mnr-randeng xlm-jobads 0.400 2 0.700 1 1.000 1 0.640 2

xlm-jobads 0.400 2 0.700 1 0.600 6 0.560 3

xlm-jobads-ft-6450 0.400 2 0.600 7 0.600 6 0.520 4

mnr-hardneg xlm-oob 0.300 8 0.500 8 1.000 1 0.520 4

mnr-hardneg xlm-ft-600 0.300 8 0.700 1 0.400 11 0.480 6

xlm-randneg xlm-ft-600 0.400 2 0.500 8 0.600 6 0.480 6

mnr-randneg xlm-oob 0.300 8 0.700 1 0.400 11 0.480 6

mnr-randneg xlm-jobads-ft-6450 0.300 8 0.700 1 0.400 11 0.480 6

mnr-randneg xlm-oob 0.400 2 0.500 8 0.600 6 0.480 6

xlm-oob-ft-600 0.400 2 0.500 8 0.600 6 0.480 6

classification xlm-jobads 0.200 12 0.400 12 1.000 1 0.440 12

classification xlm-jobads-ft-6450 0.200 12 0.300 13 0.800 5 0.360 13

classification xlm-oob-ft-600 0.000 14 0.100 14 0.400 11 0.120 14

classification xlm-oob 0.000 14 0.000 15 0.000 15 0.000 15

Table 26: mAP@1 with the soft threshold for the German model variants on the
random set

results on the end task for the models.

3. The classification task with the artificially generated labels is the worst-performing

model in all the results. This would imply that a strategy of artificially label-

ing the data is not the best for domain adaptation and did not work for our

experiments.

4. Changing the threshold for the true positives to either a harder or a softer

threshold does not make a difference in the best and the worst performing

variant of the model.

Since the random gold standard dataset contains terms that are chosen at random

from job applications, the results we see here can be generalized across other terms

that might appear in the job markets in Switzerland. We can now look at the

evaluation metrics for the random gold standard dataset with the mAP@5 evaluation

metric to see how well the model variants perform on those terms.
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6.2.1.2 mAP@5 Results for the External Evaluations

Model Variant EDU R EXP R LNG R ALL R

mnr-hardneg xlm-jobads-ft-4650 0.654 1 0.621 6 0.961 1 0.702 1

mnr-randeng xlm-jobads 0.460 2 0.700 4 0.940 3 0.652 2

xlm-jobads 0.426 4 0.668 5 0.592 7 0.556 3

xlm-jobads-ft-4650 0.437 3 0.605 7 0.641 6 0.545 4

mnr-hardneg xlm-oob 0.292 6 0.557 8 0.961 1 0.532 5

mnr-randneg xlm-jobads-ft-4650 0.266 10 0.723 1 0.556 9 0.507 6

mnr-hardneg xlm-ft-320 0.266 10 0.723 1 0.556 9 0.507 6

mnr-randneg xlm-oob 0.266 10 0.723 1 0.556 9 0.507 6

classification xlm-jobads 0.087 14 0.520 9 0.800 4 0.403 9

classification xlm-jobads-ft-4650 0.330 5 0.248 11 0.800 4 0.391 10

xlm-oob-ft-320 0.290 7 0.248 11 0.351 12 0.286 11

xlm-randneg xlm-ft-320 0.290 7 0.248 11 0.351 12 0.286 11

mnr-randneg xlm-oob 0.290 7 0.248 11 0.351 12 0.286 11

classification xlm-oob-ft-320 0.103 13 0.250 10 0.590 8 0.259 14

classification xlm-oob 0.000 15 0.000 15 0.000 15 0.000 15

Table 27: mAP@5 with the hard threshold for the English model variants on the
random set

Table 27 presents the results of the mAP@5 evaluation metric on the English lan-

guage models for the random gold standard dataset. Similarly, Table 28 displays

the same metric’s results on the German language models. Based on the tables, we

observe that the MNR model with the XLM-RoBERTa model adapted on job-ads

data and further fine-tuned on the ESCO ontology data via MLM as a starting point

remains the best-performing model, as previously seen in Section 6.2.1. Conversely,

the classification model with the XLM-RoBERTa out-of-the-box model used as a

starting point performs the worst for mAP@5 evaluation metric results with a hard

threshold. As seen in earlier results, MNR variants with hard negative sampled

triplet data outperform the same model variant with randomly sampled negative

data.

Table 29 and 30 show the results of the mAP@5 evaluation metric with the soft

threshold for the English and the German language models on the random gold

standard dataset. The same observations as seen in Tables 27 and 28 can be drawn

in these results for the best and the worst-performing models overall.

60



Chapter 6. Results

Model Variant EDU R EXP R LNG R ALL R

mnr-hardneg xlm-jobads-ft-6450 0.763 1 0.621 7 1.000 1 0.754 1

mnr-randeng xlm-jobads 0.605 2 0.700 4 0.973 3 0.717 2

xlm-jobads-ft-6450 0.498 3 0.652 6 0.736 7 0.607 3

xlm-jobads 0.406 4 0.668 5 0.771 6 0.584 4

mnr-hardneg xlm-ft-600 0.324 6 0.723 1 0.623 8 0.543 5

mnr-randneg xlm-oob 0.324 6 0.723 1 0.623 8 0.543 5

mnr-randneg xlm-jobads-ft-6450 0.324 6 0.723 1 0.623 8 0.543 5

mnr-hardneg xlm-oob 0.292 9 0.557 8 1.000 1 0.540 8

classification xlm-jobads-ft-6450 0.330 5 0.398 10 0.800 5 0.451 9

classification xlm-jobads 0.107 13 0.520 9 0.950 4 0.441 10

xlm-randneg xlm-ft-600 0.290 10 0.348 11 0.390 12 0.333 11

mnr-randneg xlm-oob 0.290 10 0.348 11 0.390 12 0.333 11

xlm-oob-ft-600 0.290 10 0.348 11 0.390 12 0.333 11

classification xlm-oob-ft-600 0.103 14 0.250 14 0.590 11 0.259 14

classification xlm-oob 0.050 15 0.000 15 0.000 15 0.020 15

Table 28: mAP@5 with the hard threshold for the German model variants on the
random set

For all the results with the mAP@5 evaluation metric on the random gold standard

dataset, the average percentage of overall classes that had no mean annotation score

linked to them was 26.32%. In other words, on average, for all the top 5 suggestions

made by each model variant, there was a class that had no mean annotation score

and was thus considered to be a false negative class with a mean annotation score

of 0. This would imply that the mAP scores could be higher overall if all the top

5 suggested classes for each term were annotated, as they would not have been

considered false negatives by default. However, despite there being classes that

have no annotations for them, we can see no changes in the overall results we see for

the mAP@1 and mAP@5 evaluation metrics for the English and German language

models.

From the results and observations seen in Tables 27, 28, 29, 30 for the model evalu-

ations on the random gold standard dataset, we can make the following conclusions:

1. The MNR variant with the XLM-RoBERTa model adapted both on the job-ads
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Model Variant EDU R EXP R LNG R ALL R

mnr-hardneg xlm-jobads-ft-4650 0.657 1 0.699 5 0.961 1 0.734 1

mnr-randeng xlm-jobads 0.496 2 0.776 1 0.940 3 0.697 2

xlm-jobads 0.301 6 0.615 8 0.961 1 0.559 3

xlm-jobads-ft-4650 0.426 4 0.668 6 0.592 7 0.556 4

mnr-hardneg xlm-oob 0.437 3 0.629 7 0.641 6 0.555 5

mnr-randneg xlm-jobads-ft-4650 0.289 10 0.765 2 0.556 9 0.533 6

mnr-hardneg xlm-ft-320 0.289 10 0.765 2 0.556 9 0.533 6

mnr-randneg xlm-oob 0.289 10 0.765 2 0.556 9 0.533 6

classification xlm-jobads 0.330 5 0.339 14 0.800 4 0.428 9

classification xlm-jobads-ft-4650 0.087 14 0.538 9 0.800 4 0.410 10

xlm-oob-ft-320 0.290 7 0.363 10 0.351 12 0.332 11

xlm-randneg xlm-ft-320 0.290 7 0.363 10 0.351 12 0.332 11

mnr-randneg xlm-oob 0.290 7 0.363 10 0.351 12 0.332 11

classification xlm-oob-ft-320 0.107 13 0.350 13 0.590 8 0.301 14

classification xlm-oob 0.000 15 0.000 15 0.000 15 0.000 15

Table 29: mAP@5 with the soft threshold for the English model variants on the
random set

data and the ESCO ontology data is the best-performing model in all the cases,

implying that domain adaptation is helpful for the end task of classification of

job-ad terms onto the ontology.

2. The MNR variant with the hard negative sampled data has better mAP when

compared to the same variants with randomly sampled negatives, with an

average increase of 31pp overall evaluation metrics. This implies that hard

negative sampling does have a positive impact on the final suggestions made

by model variants.

3. The MNR variants is the best-performing model on mAP@1 and mAP@5

evaluation metric, implying that MNR helps in generating class suggestions

that are useful overall instead of just increasing the precision of the best-

suggested class.

4. The classification task with artificially generated labels for the input terms

is always the worst-performing model, implying that using artificial labels for
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Model Variant EDU R EXP R LNG R ALL R

mnr-hardneg xlm-jobads-ft-6450 0.765 1 0.699 5 1.000 1 0.785 1

mnr-randeng xlm-jobads 0.641 2 0.776 1 0.973 3 0.762 2

xlm-jobads-ft-6450 0.503 3 0.676 6 0.736 7 0.619 3

xlm-jobads 0.425 4 0.668 7 0.771 6 0.592 4

mnr-hardneg xlm-ft-600 0.333 12 0.615 8 1.000 1 0.579 5

mnr-randneg xlm-oob 0.348 8 0.765 2 0.623 8 0.570 6

mnr-randneg xlm-jobads-ft-6450 0.348 8 0.765 2 0.623 8 0.570 6

mnr-hardneg xlm-oob 0.348 8 0.765 2 0.623 8 0.570 6

classification xlm-jobads-ft-6450 0.390 5 0.563 9 0.590 11 0.499 9

classification xlm-jobads 0.390 5 0.563 9 0.590 11 0.499 9

xlm-randneg xlm-ft-600 0.390 5 0.563 9 0.590 11 0.499 9

mnr-randneg xlm-oob 0.207 13 0.538 12 0.950 4 0.488 12

xlm-oob-ft-600 0.339 11 0.447 13 0.800 5 0.474 13

classification xlm-oob-ft-600 0.107 14 0.350 14 0.590 11 0.301 14

classification xlm-oob 0.050 15 0.000 15 0.000 15 0.020 15

Table 30: mAP@5 with the soft threshold for the German model variants on the
random set

the input data does not yield good results for our experiments. This might be

due to the default hyperparameter settings that are used for the task and not

completely because of the artificial labeling strategy.

5. The mAP scores for the XLM-RoBERTa model adapted on both the job-ads

data and the ESCO ontology data are higher for the German language models

in comparison to the English language models. This is because the job-ads

data was only in the German language, and thus the German language models

benefit from this fine-tuning more than the English language models.

6.2.2 Challenge Dataset Evaluations

This section covers the computation of the mAP@1 and mAP@5 evaluation metrics

for the challenge gold standard dataset. As outlined in Section 3.3, the challenge

gold standard dataset contains 15 tailored examples of terms that appear in job ads

63



Chapter 6. Results

that are harder to classify at the human level, and also specific job-ad terms that

appear more frequently only in job markets and applications in Switzerland.

The subsections in Section 6.2.2 contain evaluation tables with columns labeled

mAP@x-y and Rank. The x term in the ‘mAP’ column of the evaluation tables can

be either ‘1’ or ‘5’ based on either the mAP@1 evaluation metric or the mAP@5

evaluation metric, respectively. The y term in the evaluation tables can be either

‘hard’ or ‘soft’ depending on which threshold is used for computing the true positives

from the mean annotation scores.

6.2.2.1 mAP@1 Results for the External Evaluation

To evaluate the performance of the top class suggested by each model variant for a

given job-ad term, the initial step is to compute mAP@1 from the annotation scores.

Table 31 displays the results of mAP@1 using the hard threshold boundary for the

English dataset. Of all the four MNR variants with the hard negative sampled

dataset, which includes using the out-of-the-box XLM-RoBERTa model, domain-

adapted XLM-RoBERTa model on the job-ads dataset, and both models fine-tuned

via MLM task. These results are consistent with the random gold standard dataset

results discussed in Section 6.2.1, where MNR models were found to be the best-

performing models for the English language using the hard negative sampled dataset.

On the other hand, the out-of-the-box classification model variant performs the worst

out of all 15 model variants for mAP@1 using the hard threshold on the English

dataset. These results also align with the results seen in Section ?? on the random

gold standard datasets, where the out-of-the-box classification model was found to

be the worst-performing model variant.

Additionally, it is interesting to note that the MNR models with the hard neg-

ative sampled dataset outperform the MNR models with the randomly sampled

negative triplet dataset, indicating the importance of using a high-quality train-

ing dataset for model fine-tuning. Furthermore, it is worth mentioning that the

domain-adapted XLM-RoBERTa model performs slightly better than the out-of-

the-box XLM-RoBERTa model, suggesting that fine-tuning a pre-trained language

model on a domain-specific dataset can improve its performance on that particular

domain. Overall, the results of the mAP@1 evaluation suggest that the MNR mod-

els with the hard negative sampled dataset, especially those fine-tuned via the MLM

task, are the best-performing models for the English language job-ad classification

task.

From Table 32, we can see that the results for the German dataset are consistent
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Model Variant mAP@1-hard Rank

mnr-hardneg xlm-jobads-ft-4650 0.733 1

mnr-randeng xlm-jobads 0.533 2

mnr-randneg xlm-jobads-ft-4650 0.400 3

mnr-hardneg xlm-ft-320 0.400 3

mnr-randneg xlm-oob 0.400 3

xlm-jobads 0.400 3

mnr-hardneg xlm-oob 0.400 3

xlm-jobads-ft-4650 0.333 8

classification xlm-jobads 0.333 8

classification xlm-jobads-ft-4650 0.267 10

xlm-oob-ft-320 0.267 10

xlm-randneg xlm-ft-320 0.267 10

mnr-randneg xlm-oob 0.267 10

classification xlm-oob-ft-320 0.067 14

classification xlm-oob 0.067 14

Table 31: mAP@1 with the hard threshold for the English model variants on the
challenge set

with the English dataset. The MNR variants with the hard negative sampled dataset

are once again the best-performing models, and the XLM-RoBERTa models adapted

to the job-ads domain and fine-tuned via MLM task are the top-performing models.

It’s interesting to note that the worst-performing model for the German dataset is

also the classification model, which is consistent with the results for the English

dataset. It can also be observed that the checkpoints adapted on the job-ads data

and the ESCO ontology data have a higher mAP value for the German language

models in comparison to the English language models.

Additionally, it can also be seen that the MNR variant with the hard negative

sampled triplet dataset performs better in suggesting the top class when compared

to the MNR variant with a randomly sampled negative triplet dataset. These results,

along with the results seen in Table 31, would suggest that creating a triplet dataset

that has hard sampled negatives is better in performance on the end task rather

than randomly assigning negatives to an input term.

It’s important to note that these results are based on the hard threshold for true

positives, and it is be beneficial to also evaluate the performance of these models
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Model Variant mAP@1-hard Rank

mnr-hardneg xlm-jobads-ft-6450 0.778 1

mnr-randeng xlm-jobads 0.667 2

mnr-hardneg xlm-ft-600 0.556 3

xlm-jobads-ft-6450 0.556 3

mnr-randneg xlm-oob 0.556 3

mnr-randneg xlm-jobads-ft-6450 0.556 3

xlm-jobads 0.556 3

classification xlm-jobads 0.556 3

classification xlm-jobads-ft-6450 0.444 9

mnr-hardneg xlm-oob 0.444 9

xlm-randneg xlm-ft-600 0.111 11

mnr-randneg xlm-oob 0.111 11

xlm-oob-ft-600 0.111 11

classification xlm-oob 0.000 14

classification xlm-oob-ft-600 0.000 14

Table 32: mAP@1 with the hard threshold for the German model variants on the
challenge set

with soft thresholds and higher hit rates for the mAP evaluation metric.

Tables 33 and 34 display the results of the mean average precision at one (mAP@1)

using a soft threshold boundary for the English and German dataset, respectively.

The soft threshold considers a lower mean value of annotation scores as a true

positive. As a result, the mAP values for model variants using the soft threshold

in Table 33 are higher than those using the hard threshold in Table 31. The MNR

variant with a hard negative sampled dataset for the English language performs

the best among all 15 model variants, as shown in Table 33. The XLM-RoBERTa

model, which is adapted to job advertisement data and fine-tuned using MLM, has

the highest mAP among all 15 models. Also, the MNR model variants with a hard

negative sampling dataset perform with an average of 30pp better in comparison to

the same model variants with a random negative sampling dataset

From all the results seen in Tables 31, 32, 33, 34, we can make the following conclu-

sions:

1. The MNR variant of the XLM-RoBERTa model adapted to the job-ads data

and further fine-tuned via the MLM task on the ESCO ontology data with
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Model Variant mAP@1-soft Rank

mnr-hardneg xlm-jobads-ft-4650 0.733 1

xlm-jobads-ft-4650 0.667 2

mnr-randneg xlm-jobads-ft-4650 0.600 3

mnr-hardneg xlm-ft-320 0.600 3

mnr-randneg xlm-oob 0.600 3

mnr-randeng xlm-jobads 0.600 3

xlm-jobads 0.600 3

mnr-hardneg xlm-oob 0.533 8

classification xlm-jobads-ft-4650 0.467 9

xlm-oob-ft-320 0.400 10

xlm-randneg xlm-ft-320 0.400 10

classification xlm-jobads 0.400 10

mnr-randneg xlm-oob 0.400 10

classification xlm-oob-ft-320 0.133 14

classification xlm-oob 0.133 14

Table 33: mAP@1 with the soft threshold for the English model variants on the
challenge set

the hard negative sampled dataset is the best-performing model. This would

imply that domain adaptation is beneficial for the end task of classification of

the job-ad terms on the ESCO ontology classes.

2. The MNR variants with the hard negative sampling are better in performance

than the variants with randomly sampled negatives, with an average of 29pp

increase for the former over the latter. This implies that creating a hard-

sampled triplet dataset yields in better precision scores on the end task.

3. The mAP values for the MNR variants adapted to the job-ads data have higher

mAP in general for the German language models compared to the English

language models.

4. The classification variants of the model with the out-of-the-box XLM-RoBERTa

model or the XLM-RoBERTa model fine-tuned via the MLM task are the

worst-performing model variants out of all the 15 models for our experiments.

5. The hard and the soft thresholds for the true positives do not change the best

and the worst performing model variants for the mAP@1 evaluation metric.
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Model Variant mAP@1-soft Rank

mnr-hardneg xlm-jobads-ft-6450 0.889 1

xlm-jobads-ft-6450 0.778 2

mnr-randeng xlm-jobads 0.667 3

mnr-hardneg xlm-ft-600 0.556 4

mnr-randneg xlm-oob 0.556 4

mnr-randneg xlm-jobads-ft-6450 0.556 4

xlm-jobads 0.556 4

mnr-hardneg xlm-oob 0.556 4

classification xlm-jobads 0.556 4

classification xlm-jobads-ft-6450 0.444 10

xlm-randneg xlm-ft-600 0.222 11

mnr-randneg xlm-oob 0.222 11

xlm-oob-ft-600 0.222 11

classification xlm-oob 0.000 14

classification xlm-oob-ft-600 0.000 14

Table 34: mAP@1 with the soft threshold for the German model variants on the
challenge set

Thus, we can conclude from the above observations that domain adaptation on both

the job-ads data and the ESCO ontology data is beneficial for the task of classifying

the job-ad terms into the ESCO ontology classes. Also, the models fine-tuned via

the MNR loss are the best-performing models, and the models fine-tuned via the

classification task are the worst-performing models. Also, model variants adapted to

the job-ads data have higher mAP for the German language models in comparison

to the English language models.

6.2.2.2 mAP@5 Results for the External Evaluation

For the mAP@5 evaluation metric, we consider the top 5 class suggestions made by

each of the model variants. This metric thus helps better generalize the suggestions

made by each class by selecting the top 5 suggestions instead of the previously used

mAP@1 evaluation metric, wherein we only consider the top class suggestion made

by each model variant. In cases where a particular class of the top 5 suggestions

is not present in the annotated data, then that particular class is assumed to be a

false negative and assigned a mean score of 0 by default.
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Model Variant mAP@5-hard Rank

mnr-hardneg xlm-jobads-ft-4650 0.726 1

mnr-randeng xlm-jobads 0.524 2

mnr-hardneg xlm-oob 0.501 3

xlm-jobads 0.476 4

mnr-hardneg xlm-ft-320 0.444 5

mnr-randneg xlm-oob 0.444 5

mnr-randneg xlm-jobads-ft-4650 0.387 7

xlm-jobads-ft-4650 0.385 8

classification xlm-jobads 0.360 9

xlm-oob-ft-320 0.299 10

xlm-randneg xlm-ft-320 0.299 10

mnr-randneg xlm-oob 0.299 10

classification xlm-jobads-ft-4650 0.248 13

classification xlm-oob-ft-320 0.156 14

classification xlm-oob 0.056 15

Table 35: mAP@5 with the hard threshold for the English model variants on the
challenge set

Tables 35 and 36 represent the results of mAP@5 with the hard threshold for the

English language and the German language model variants, respectively on the

challenge set. The results seen in these tables are similar to the results seen for the

mAP@1 evaluation metric from Section 6.2.1.2. It can also be seen that the mAP

values for models that are adapted to the job-ads data are higher for the German

language when compared to the models in the English language.

The Tables 37 and 38 represent the results of the English and the German model

variants with the soft threshold for the mAP@5 evaluation metric on the challenge

set, respectively. These results follow the same best and the worst-performing models

as seen in Tables 35 and 36. The same conclusions can be drawn from the results

seen in these two tables as well.

For all the results with the mAP@5 evaluation metric on the challenge gold standard

dataset, the average percentage of overall classes that had no mean annotation score

linked to them was 23.75%. In other words, on average, for all the top 5 suggestions

made by each model variant, there was a class that had no mean annotation score

and was thus considered to be a false negative class with a mean annotation score
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Model Variant mAP@5-hard Rank

mnr-hardneg xlm-jobads-ft-6450 0.818 1

mnr-randeng xlm-jobads 0.652 2

mnr-hardneg xlm-ft-600 0.639 3

mnr-randneg xlm-oob 0.639 3

mnr-hardneg xlm-oob 0.613 5

xlm-jobads 0.607 6

xlm-jobads-ft-6450 0.545 7

classification xlm-jobads 0.540 8

mnr-randneg xlm-jobads-ft-6450 0.534 9

classification xlm-jobads-ft-6450 0.413 10

xlm-randneg xlm-ft-600 0.240 11

mnr-randneg xlm-oob 0.240 11

xlm-oob-ft-600 0.240 11

classification xlm-oob-ft-600 0.120 14

classification xlm-oob 0.000 15

Table 36: mAP@5 with the hard threshold for the German model variants on the
challenge set

of 0. This would imply that the mAP values could have been higher than the values

we have now. However, despite these missing class annotations, the best and the

worst-performing models remain the same.

From the results seen in Tables 35, 36, 37, 38, we can conclude the following:

1. The MNR variant of the XLM-RoBERTa model adapted to the job-ads data

and further fine-tuned via the MLM task on the ESCO ontology data with the

hard negative sampled dataset is the best-performing model, thus implying

that domain adaptation is beneficial in the classification of job-ad terms on

the ESCO ontology classes.

2. The MNR variants with hard negative sampling consistently outperform the

MNR variants with random negative sampling, thus implying that hard neg-

ative sampling is a better strategy for fine-tuning via MNR.

3. Models that use job-ads data have higher mAP for the German language in

comparison to the German language since the job-ads data is in the German

language.
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Model Variant mAP@5-soft Rank

mnr-hardneg xlm-jobads-ft-4650 0.784 1

mnr-hardneg xlm-ft-320 0.656 2

mnr-randneg xlm-oob 0.656 2

mnr-randeng xlm-jobads 0.630 4

mnr-hardneg xlm-oob 0.618 5

xlm-jobads 0.601 6

mnr-randneg xlm-jobads-ft-4650 0.592 7

xlm-jobads-ft-4650 0.590 8

xlm-oob-ft-320 0.517 9

xlm-randneg xlm-ft-320 0.517 9

mnr-randneg xlm-oob 0.517 9

classification xlm-jobads 0.468 12

classification xlm-jobads-ft-4650 0.441 13

classification xlm-oob-ft-320 0.222 14

classification xlm-oob 0.144 15

Table 37: mAP@5 with the soft threshold for the English model variants on the
challenge set

4. The classification variant of the model with the out-of-the-box XLM-RoBERTa

model is the worst-performing model variant out of all the 15 models, implying

that either data that has artificial labels for input data is not beneficial for

the task of domain adaptation, or the default hyperparameter values for the

classification task are not optimal for our experiments.

5. The hard and the soft thresholds for the true positives do not change the best

and the worst performing model variants for the mAP@5 evaluation metric.

6.2.3 External Evaluation for Terms Without Context

For the external evaluations done without taking into account the surrounding

words, i.e., context words for the input job-ad term, the class suggestions by each

model variant were initially eyeballed to see if they are relevant. However, these

class suggestions which only took into account the job-ad term did not seem to be

related to the input job-ad term at all. They seemed to be almost random for all the

job-ad terms, across the random and the challenge gold standard datasets. Since the
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Model Variant mAP@5-soft Rank

mnr-hardneg xlm-jobads-ft-6450 0.862 1

mnr-hardneg xlm-oob 0.694 2

mnr-randeng xlm-jobads 0.680 3

xlm-jobads-ft-6450 0.662 4

mnr-hardneg xlm-ft-600 0.639 5

mnr-randneg xlm-oob 0.639 5

xlm-jobads 0.625 7

classification xlm-jobads 0.615 8

mnr-randneg xlm-jobads-ft-6450 0.534 9

classification xlm-jobads-ft-6450 0.451 10

xlm-randneg xlm-ft-600 0.427 11

mnr-randneg xlm-oob 0.427 11

xlm-oob-ft-600 0.427 11

classification xlm-oob-ft-600 0.120 14

classification xlm-oob 0.037 15

Table 38: mAP@5 with the soft threshold for the German model variants on the
challenge set

results of models without using context words were not related to the input job-ad

term, we decided to not annotate the class suggestions for model variants without

using the surrounding context words.

6.2.4 Conclusions from the External Evaluations

From all the results seen in Section 6.2 on the random and the challenge gold stan-

dard, we can draw the following conclusions:

1. The best-performing model was the MNR variant adapted to both the job-ads

data and the ESCO ontology data. This implies that domain adaptation on

both the input and the target domain is beneficial for the LLMs to make the

end task of mapping from the input domain onto the target domain.

2. The MNR variants with hard negative triplet data consistently performed

better when compared to the same model variants with randomly sampled

negative data. This implies that using the hard negative strategy for mining

negative terms for the anchor term is beneficial to the end task of term mapping
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onto the ontology.

3. It can also be seen that the mAP scores for the German language models are

higher when compared to the mAP scores for the English language models for

the MNR variants adapted to the job-ads domain. This is probably due to the

fact that the job-ads data consisted only of terms in the German language,

and thus the German language models benefit from them, giving them higher

mAP values.

4. The classification task with the artificially created labels for sentence pairs

seems to be the worst-performing model consistently. This could either be

because of the data shuffling strategy that is used to create the data for the

classification task, or the default hyperparameters that are used to fine-tune

models via this task.

5. The initial eyeballing of class suggestions by the models that did not use the

context words surrounding the job-ad terms, we found that the suggestions

provided are off across all model variants. This would imply that providing

surrounding context words along with the job-ad term computes rich word

embeddings in contrast to only using the central job-ad term across all model

variants.
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In this thesis, we explore methods for domain adaptation that help with the end

task of classifying mentions from an input domain to concepts that are in a tar-

get ontology. There are many areas and domains where such mappings could be

beneficial, including healthcare, general information, customer support, etc.

In our case, the end task to solve was to map job-ad skill requirement mentions

from German-speaking job ads in Switzerland. For this task, 3 methods were mainly

used: the Masked Language Modelling method, the Multiple Negative Ranking loss

method, and the classification method for pre-training and fine-tuning. We can also

look to use the models fine-tuned via one of these methods as a base for fine-tuning

different models based on the three tasks.

For this thesis, the following research questions were outlined as per Section 1.1:

1. Which pre-training and fine-tuning methods such as Masked Language Mod-

elling (MLM), Multiple Negative Ranking (MNR), and classification is helpful

for domain adaptation and the end-task of mapping terms onto an ontology?

2. Does hard negative sampling yield better results than using random negative

sampling for domain adaptation using the Multiple Negative Ranking loss?

3. Does a sentence classification approach on artificially created labels from sen-

tence relationships prove to be beneficial for the domain adaptation of an

LLM?

4. Would domain adaptation be necessary or improve the target task of mapping

terms onto an ontology?

Based on the results of the internal and external evaluations of 15 model variants

conducted in this thesis, we can answer the above research questions as follows:

1. The models fine-tuned via the MLM method on a particular domain is ben-

eficial to be used as a starting point for different tasks for domain adapta-

tion when compared to using the default, out-of-the-box LLMs as a starting

point. Moreover, based on the observations made, the MNR task is the best-
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performing model for the end task of mapping terms onto the ontology.

2. For MNR, using hard negative triplet sampling data always yields better re-

sults for the end task of classification when compared to the same MNR model

variants with randomly sampled negative triplet data, with the former method

yielding an average increase of 30pp1 over the latter.

3. The method of pairing ontology terms and assigning them an artificial label

is not beneficial for domain adaptation when compared to the MNR task of

domain adaptation. However, it is also possible that the classification setting

used for our experiments was not optimal in either the data created or the

hyperparameters used.

4. Domain adaptation, on both the input texts and the target domain, is neces-

sary to be able to map terms from the input domain onto a target ontology.

Based on the above conclusions, we can get an understanding of the role of domain

adaptation for the task of mapping terms onto a target ontology from any domain.

7.0.0.1 Future Work

Further research is needed in the direction of the methods that we use for the task of

domain adaptation of LLMs. For the MLM task, it can be tested if using an artificial

‘SEP’ token between the input pairs of sentences is beneficial for domain adaptation.

We can also look into what would be the effect of using an artificial token instead of

the ‘SEP’ token between the input sentences for fine-tuning via the MLM method.

Furthermore, it can be tested if extending the MLM method to different aspects of

the ontology, like using Masked Entitiy Modelling or Masked Relation Modelling,

which would work on entities and relationships of the ontology, respectively, be

beneficial methods for domain adaptation. For the classification task, it has to be

tested if using different terms from the ontology, when paired and given an artificial

label, acts as a better driving factor to improve domain adaptation via this task.

Lastly, since for the MNR task, the hard negative sampling method yields better

results instead of randomly sampled negatives, we can further investigate different

methods for creating hard negative pairs to improve performance on the task of

classifying terms from the input domain onto the target ontology. Also, we could

see that the classification task did not perform well for our experiment setup. Further

investigation can be carried out about this task to analyze why this task did not

1This average percentage point increase is computed over the map@5 soft threshold evaluation
of both the English and the German language models.
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work for our experiment setup, and it could be checked if changing the default

hyperparameters can yield better performance via the classification method on the

end task of mapping terms.
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Accuracy Accuracy is a metric that is used to assess how well a model correctly

predicts the outcomes of a particular task against all the predictions made by

the model.

Classification In NLP, classification tasks are formulated as supervised learning

tasks6, wherein the task involves assigning predefined labels to a set of in-

put sentences. Usually, classification tasks are used for solving problems like

sentiment detection, language detection, etc. wherein we can have a set of pre-

defined labels to input sentences and train a model, later asking it to classify

sentences into one of the pre-defined categories.

ESCO Ontology ESCO (European Skills, Competences, Qualifications, and Occu-

pations) is the European multilingual classification of Skills, Competences,

and Occupations. ESCO works as a dictionary, describing, identifying, and

classifying professional occupations and skills relevant to the EU labor market

and education and training.

Gold Standard Dataset These are datasets that are used as a benchmark to perform

the final evaluation on the end task.

Job ads Data Job ads data comprises terms in a job application that candidates

use to apply for a job in a particular field.

Knowledge Graph In knowledge representation and reasoning, a knowledge graph

is a knowledge base that uses a graph-structured data model or topology to

integrate data.

LLMs Large Language models are trained on large datasets of text, such as articles,

and websites, and use this data to learn patterns and relationships in language.

These models are central to understanding what language is and how it is

generated and can be adapted to different tasks by fine-tuning.

Mean Average Precision (mAP) This metric represents the number of relevant doc-

uments that are present in the top relevant results given by a particular model.
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MLM Masked language modeling (MLM) is a semi-supervised language modeling

task used for learning text representations for a particular domain. Training

via MLM is done by masking words with a special token and making the model

predict the masked words back.

MNR Multiple Negative Ranking (MNR) is a technique used for training models

such that they get better at handling imbalanced class distributions.

MNR Loss The Multiple Negative Ranking Loss is a loss function that employs

the MNR technique. It is an unsupervised learning method3, that takes pairs

of positive and negatively related sentences to an anchor and optimizes their

distances.

RDF Resource Description Framework is a standard for representing data on the

web. It is a framework for expressing relationships between resources in a way

that is machine-readable and can be easily processed by software applications.

SPARQL SPARQL is a query language used to query data in the RDF framework.

It is similar in structure to the Structured Query Language (SQL), and the

data is extracted in triplets.

TSV Tab-separated values is a format of file wherein the data in every row is stored

with a separation of a tab (4 spaces) in between each entry.

URI Uniform Resource Identifier is a unique identifier for a particular resource on

the web, used to identify a resource.

Validation Dataset This is a dataset that is used to check the performance of a

particular model while it is training.

Validation Loss This is a loss that is computed with the validation dataset to assess

the performance of a model.

XLM-RoBERTa This is a multi-lingual language model pre-trained on 2.5TB of

filtered CommonCrawl data containing 100 languages.
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