
The Journal of Systems & Software 195 (2023) 111506

E
U

i
2
k
r
p
i
a
2
a
t
C
t
2

r
t
l
r
2

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Graph-based visualization ofmerge requests for code review✩

nrico Fregnan ∗, Josua Fröhlich, Davide Spadini, Alberto Bacchelli
niversity of Zurich, Zurich, Switzerland

a r t i c l e i n f o

Article history:
Received 19 April 2021
Received in revised form 16 June 2022
Accepted 3 September 2022
Available online 12 September 2022

Dataset link: https://doi.org/10.5281/zenod
o.7047993

Keywords:
Modern code review
Software visualization
Empirical software engineering

a b s t r a c t

Code review is a software development practice aimed at assessing code quality, finding defects, and
sharing knowledge among developers. Despite its wide adoption, code review is a challenging task
for developers, who often struggle to understand the content of a review change-set. Visualization
techniques represent a promising approach to support reviewers. In this paper we present a new
visualization approach that displays classes and methods in review changes as nodes in a graph. Then,
we implemented our graph-based approach in a tool (ReviewVis) and performed a two-step feedback
collection phase to assess the developers’ perceptions on the tool’s benefits through (1) an in-company
study with nine professional software developers and (2) an online survey with 37 participants.
Given the positive results obtained by this first evaluation, we performed a second survey with 31
participants with a specific focus on supporting developers’ understanding of a review change-set.

The collected feedback showed that the developers indeed perceive that ReviewVis can help them
navigate and understand the changes under review. The results achieved also indicate possible future
paths to use software visualization for code review.

Data and Materials: https://doi.org/10.5281/zenodo.7047993
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Code review is a software development practice aimed at
mproving software quality (Ackerman et al., 1989; Baum et al.,
017), finding defects (Baum and Schneider, 2016), and sharing
nowledge among developers (Bacchelli and Bird, 2013). Code
eview was originally formalized by Fagan as a highly structured
rocess in the form of code inspections (Fagan, 1976). Despite
ts benefits, formal code inspections proved to be cumbersome
nd time-consuming when applied in practice (Shull and Seaman,
008). For this reason, most software companies and projects
dopt a lighter-weight version of code inspections, often referred
o as Modern Code Review (MCR) (Rigby and Bird, 2013). Modern
ode Review is (1) informal, (2) asynchronous, (3) supported by
ools, and (4) change-based (Rigby and Bird, 2013; Sadowski et al.,
018; Baum et al., 2017, 2016b).
Despite the evolution of code review tools in the last decade,

eviewing code is still perceived by developers as a challenging
ask (MacLeod et al., 2017). In particular, developers report chal-
enges when trying to understand the content of change sets to
eview (Tao et al., 2012; Bacchelli and Bird, 2013; MacLeod et al.,
017), especially when dealing with large code changes (Baum

✩ Editor: Shane McIntosh.
∗ Corresponding author.

E-mail addresses: fregnan@ifi.uzh.ch (E. Fregnan), josua.froehlich@uzh.ch
J. Fröhlich), dspadini@fb.com (D. Spadini), bacchelli@ifi.uzh.ch (A. Bacchelli).
ttps://doi.org/10.1016/j.jss.2022.111506
164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access a
and Schneider, 2016). Indeed, previous studies confirmed, by in-
terviewing (Bacchelli and Bird, 2013; Baum et al., 2016a) and sur-
veying (Tao et al., 2012) developers as well as by analyzing code
review discussions (Pascarella et al., 2018), that understanding is
a main challenge of code review.

To address the issues created by the difficulty in understand-
ing the change set under review, researchers have proposed a
number of approaches. For example researchers proposed to help
reviewers reduce their mental load and improve their review
performance by ordering code changes in a specific flow (Baum
et al., 2017), by decomposing unrelated changes into separate
code reviews (Barnett et al., 2015), and by providing support
for searching systematic changes and detecting anomalies (Zhang
et al., 2015).

Another promising approach to support developers during
code review tasks is visualizing interactive information on the
code. Indeed, previous studies already showed that visualization
techniques can help developers in better understanding, navigate,
and maintain code (Khaloo et al., 2017; Eick et al., 1992; Bragdon
et al., 2010; Mattila et al., 2016; Bedu et al., 2019). Tymchuk et al.
made a first attempt to bring interactive visualization to support
the review of an entire system (as opposed to a code change),
by devising a tool (ViDI) to visualize the design of the system
using a city-based visualization paradigm (Tymchuk et al., 2015).
Gasparini et al. (2021) proposed a tool (ChangeViz) to instead
complement an existing review interface (specifically, the GitHub
interface) with two lateral bars to display information about
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2022.111506
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111506&domain=pdf
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
http://creativecommons.org/licenses/by/4.0/
mailto:fregnan@ifi.uzh.ch
mailto:josua.froehlich@uzh.ch
mailto:dspadini@fb.com
mailto:bacchelli@ifi.uzh.ch
https://doi.org/10.1016/j.jss.2022.111506
http://creativecommons.org/licenses/by/4.0/


E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

m
v
i

v
o
t
a
t
t
I
v
c
s
r
r
B
M
v
s

c
d
d
a
i
s
e
t
(
v
r
w
e

f
d
o

n
t
o
o
i
v
f
w

(
s
p
t
m
e
i
R
p
o
c

s
o
f
f

ethod calls contained in the changes to inspect. Yet, interactive
isualizations remain largely unexplored at code review time and
t is unclear whether and how they can be beneficial.

In this paper, we proceed on this line of research. We develop a
isualization approach for code review changes to support devel-
pers’ understanding of review change-set and conduct a study
o investigate developers’ perception on it. We study whether
nd when developers find such a visualization most useful, what
he perceived benefits and problems are, and—overall—whether
hey anticipate it could help them perform better code reviews.
n particular, we asked developers if they perceived the de-
ised approach would increase their understanding of a review
hange-set. Differently from Tymchuk et al. (2015), our approach
upports the review of a single review change-set instead of a
eview of the whole system. The most widespread form of code
eview is change-based, rather than system-based (Rigby and
ird, 2013; Sadowski et al., 2018; Baum et al., 2017, 2016b).
oreover, we move from a city-based paradigm to a different
isualization approach (an interactive graph), more suitable to
how the links between code entities.
Displaying relations among classes and methods is benefi-

ial to support developers’ understanding of the code (Brag-
on et al., 2010; D’Ambros et al., 2009; Hanakawa, 2007). To
isplay this information, we adopt a graph-based visualization
pproach because graphs are recognized as ideal for present-
ng relations among data (Munzner, 2014). Compared to, for in-
tance, a city-based paradigm (as the one proposed by Tymchuk
t al. (2015)), we argue that graph-based visualization consti-
utes a better solution to show connections between entities
e.g., classes and methods) in a review change-set. City-based
isualization tools that display relationships (e.g., caller-callee
elationships) among software entities might overwhelm the user
ith too much information, generating overly complex city mod-
ls (Jeffery, 2019).
Similarly to ChangeViz (Gasparini et al., 2021), our graph-

based visualization approach is aimed at improving developers’
understanding of a review change-set. However, while ChangeViz
ocuses on allowing developers to navigate through method calls/
eclarations, our graph-based approach gives reviewers an
verview of a merge request and how its entities are connected.
Our visualization approach displays classes and methods as

odes of a graph and the structural coupling relations among
hem as links. The graph shows if a node was added, deleted,
r changed in the current merge request. Entities related to the
nes changed in the current code review (but not included in
t) can also be visualized in the graph. We implemented our
isualization approach in a tool, called ReviewVis, which works
or merge requests in GitLab (i.e., the code review unit of GitLab,
hich is similar to pull-requests in GitHub (Gousios et al., 2014)).
Subsequently, we collected feedback on ReviewVis performing

1) a study with nine professional developers from the same
oftware development company, who used our visualization ap-
roach for two weeks, and (2) two online surveys with, respec-
ively, 37 and 31 participants, who watched online videos of the
ain features offered by our visualization. In the first part of our
valuation (in-company study and first survey), we focused on
nvestigating the general perceived benefits and applicability of
eviewVis. Given the positive results collected in this phase, we
erformed a second survey to understand the perceived impact
f the devised tool on developers’ understanding of a review
hange-set.
In the in-company study, developers positively assessed the

upport provided by ReviewVis, i.e., to understand the structure
f the merge request under review. These results were con-
irmed by the participants of the online surveys. Overall, our

indings confirmed the potential of a graph-based visualization

2

technique as a means to support code review and suggest promis-
ing future investigations in this line of research. Participants in
the in-company study implicitly compared the use of ReviewVis
(together with Gitlab) to the use of only Gitlab during code
review. In fact, these participants use standard Gitlab for doing
code review in their daily practice. Participants did not report
any significant difficulty with the tool. Although this provides
us with initial indications that the tool is usable and does not
cause information overload, further studies should be carried out
to evaluate, e.g., whether this visualization leads to information
overload and its effects on code review performance.

Participants perceived our tool as suited to support them
in reviewing medium-sized changes (4–7 files). Instead, they
perceived the tool as unnecessary for small changes (1–3 files)
because these changes are deemed easier to understand by them-
selves. The participants also did not consider that the tool might
be beneficial for large changes (more than 7 files) because its
current approach limits its benefits in these large reviews. These
findings underline the importance of further work on this area to
better support these cases.

The contributions of this paper are the following:

A graph-based visualization for code review. A graph-based
visualization approach, where each node represents a class or a
method. The links in the graph represent instead dependencies
among software entities (nodes in the graph): e.g., method calls.

An implementation of the devised visualization. A tool (Re-
viewVis), created to interactively visualize the content of a GitLab
merge request for review using our graph-based visualization ap-
proach. ReviewVis is available in our replication package (Fregnan
et al., 2020).

An evaluation of the devised visualization based on devel-
opers’ perceptions. We collected developers’ feedback on the
benefits of our tool (in particular on developers’ understanding of
a review change-set) through an in-company study and two online
surveys. Developers involved in the in-company study reported
the benefits they perceived using a graph-based visualization tool
to perform code review. In particular, developers reported that
they felt the devised tool helped them navigate and understand
the code. These findings were corroborated by participants of
both online surveys.

Structure of the paper. In Section 2, we present previous studies
related to this paper. Section 3 describes our visualization ap-
proach and the design of the tool. In particular, it focuses on the
requirements we identified and the implementation choices we
took to build ReviewVis. Section 4 reports the methodology and
results of our in-company and online evaluation of ReviewVis. Sec-
tion 5 discusses the implications of our findings for researchers
and practitioners, while Section 6 reports the limitations of this
study. Finally, in Section 7, we summarize the main results of this
study.

2. Background

2.1. Code visualization techniques

Software visualization has been defined as the use of vi-
sual means to study the structure, behavior, and evolution of
software (Mattila et al., 2016; Diehl, 2007). In recent years,
researchers focused on developing visualization techniques to
support developers in understanding code changes (Gómez et al.,
2015; D’Ambros et al., 2010). Approaches such as Commit 2.0
(D’Ambros et al., 2010) highlight the packages, classes, and meth-
ods that have been modified and provide developers with code
metrics (e.g., LOC). However, only a few attempts have been made



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

t
e
e
o
c
s
(
v

w
M
d
r
o
e
b
i
o
e

w
r
t
w
t
o
C

(
v
A
c
a
c
g
c

2

o
f
r

t
p
l
S
a
e
o
s

c

c
s
e
r
i
r
p
t
a
r
s
t
o
i
t

3

s
t
r
o

S

o integrate visualization techniques into code review (Tymchuk
t al., 2015). Tymchuk et al. (2015) devised a tool (ViDI) that
mploys static code analysis to guide the review of the design
f the entities in an entire software system. ViDI is a city-based
ode visualization: Classes act as bases on which methods are
tacked, forming the visual equivalent of a building. Wettel et al.
2011) previously assessed the benefits of this kind of software
isualization to improve developers’ code understanding.
As opposed to our tool, ViDI focuses on the review of the

hole system and not on the review of a specific merge request.
oreover, a graph-based approach allows developers to imme-
iately understand the relationships between software entities,
epresented as links in the graph. On the contrary, to the best
f our knowledge, attempts to display relationships among code
ntities using a city-based visualization paradigm have so far not
een successful. As highlighted by Jeffery, including relationships
n city-based visualization approaches might lead to the creation
f overly complex models, which overwhelm developers with
xcessive information (Jeffery, 2019).
Gasparini et al. (2021) focused on how to support developers

hen reviewing a single review change-set (i.e., a GitHub pull
equest). To this aim, they developed a tool called ChangeViz
hat complements the existing GitHub pull requests interface
ith two lateral bars. These bars display (1) the definitions of
he methods used in the review change-set and (2) the usages
f the methods declared in the change-set under review. Both
hangeViz and our graph-based approach focus on supporting

developers’ understanding of a review change-set. As opposed to
our approach, the work of Gasparini et al. (2021) does not provide
developers with a summarizing visualization of the structural
relationships among the entities under review.

A different approach was proposed by Oosterwaal et al.
2016). The authors developed a tool, called Operias, to pro-
ide visual information about test cases to support reviewers.
lthough both Operias and ReviewVis focus on the single review
hange-set (Pull Requests and merge requests, respectively), their
im is different: The former complements the displayed review
hanges with information on the related tests, while the latter
ives reviewers an overview of how the entities in the review
hange-set are connected to each other.

.2. Supporting developers during code review

Over the years, a vast amount of approaches have been devel-
ped to support developers during code review. Some approaches
ocused on improving the way changes are displayed to the
eviewers: e.g., re-ordering review changes (Baum et al., 2017,
2019) or untangling unrelated changes contained in the same Pull
Request (Wang et al., 2019; Tao and Kim, 2015; Dias et al., 2015).
The former category of approaches aims at reducing developers’
cognitive load while performing code review to increase their
performance. To this aim, Baum et al. (2017) developed a theory
to create a similarity-based review changes order as opposed to
the alphabetical order, currently used in widely adopted code
review tools (e.g., Gerrit1).

The order in which changes are presented for review is not
he only factor that can impact reviewers’ understanding and
erformance: Often, review change-sets contain changes tack-
ing different issues, making their review harder for developers.
uch change-sets are not a rare occurrence (Tao and Kim, 2015)
nd they constitute a significant challenge for reviewers (Tao
t al., 2012). To tackle this issue, researchers proposed a variety
f techniques to divide large review change-sets into smaller
ets containing only related code changes (Wang et al., 2019;

1 Gerrit: https://www.gerritcodereview.com.
3

Dias et al., 2015; Barnett et al., 2015). These approaches exploit
different relations among entities in the code to cluster related
changes: e.g., Barnett et al. proposed ClusterChanges, a tool that
relies on def-use relations to decompose cluster changes (Barnett
et al., 2015), while Wang et al. exploited also links between
methods and classes (e.g., method overriding or class inheritance)
to develop an automatic change untangling approach called CoRA
(Code Review Assistant) (Wang et al., 2019).

Finally, some approaches aim at guiding developers during
code review. Checklist-based reading is a common guidance ap-
proach used in the context of code review (Rong et al., 2012;
McConnell, 2004): A checklist tells reviewers what they should
focus on while reviewing the code. MacLeod et al. investigated
how developers perform code review at Microsoft and defined
as best practice for reviewers the creation and use of a project-
specific review checklist (MacLeod et al., 2017). Developers can
also be told explicitly how to review through the use of re-
view strategies. The use of strategies to guide developers has
already been proven effective in the context of test-driven devel-
opment (LaToza et al., 2020) and debugging (Francel and Rugaber,
2001), while their application to code review is still object of
investigation (Gonçalves et al., 2020).

3. Approach

To support developers’ understanding of code changes dur-
ing code review, we developed an approach to visualize a code
change-set to review in the form of a graph. We implemented
such an approach in a tool, called ReviewVis, which analyzes
the code to be reviewed and extracts the static relations among
classes and methods. ReviewVis focuses on the analysis of Java
ode and works together with GitLab.
Previous studies showed that highlighting the links between

lasses contained in a merge-request is a promising approach to
upport reviewers (Baum et al., 2017, 2019). For instance, Baum
t al. focused on re-ordering files in a pull request based on their
elations: e.g., method calls or class hierarchies. However, order-
ng files may become unpractical when dealing with multiple
elations at the same time. For instance, which relation should be
rioritized over the others? Or how can these be made explicit to
he reviewers? Furthermore, reviewers would still need to scroll
nd inspect the whole pull request to understand how the files
elate to each other. For this reason, our tool aims to offer a
ummary of the content of a merge request under review. In
his way, developers can immediately obtain an overall picture
f all methods and classes that they have to review. This can
ncrease their understanding of the code and guide them during
he review.

.1. Design requirements

To build our visualization tool for code review, we first con-
ider existing literature to identify the requirements that the
ool needs to fulfill. In the rest of this section, we discuss the
equirements we identified and how these are implemented in
ur tool.

upport for review completeness and correctness: In a survey
conducted by Tao et al. at Microsoft, the majority of software en-
gineers reported how information on change-set completeness
and correctness are fundamental to achieve a good level of
code understanding (Tao et al., 2012). However, the developers
also reported that acquiring information on the completeness of
the code, as well as on its consistency and behavior, is often a
challenging task.

https://www.gerritcodereview.com


E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

S
a
i
H
h
p
i

F
t
r
t
t
r
(

M
t
l

l
i
D
c

D
w
o
s
o
m
c
t
(
(
i
f

I
t
c
i
r
a
g
S
T
i
r
i

I
d
b

R
c
t
a
c
F
b
g
i
w
s
i
e
m
(
e

b
n
n
(

ince previous studies showed that displaying links among classes
nd methods is beneficial to increase developers’ understand-
ng of the code (Bragdon et al., 2010; D’Ambros et al., 2009;
anakawa, 2007), it seems reasonable to think that visualizing
ow different software entities are related to each other sup-
orts developers better understanding a change-set and assess
ts completeness and correctness.

or this reason, we decided to adopt a graph-based visualiza-
ion approach, which constitutes the ideal approach to display
elations among data (Munzner, 2014). Generally, graph-based
echniques display entities as nodes, while the relations among
hem are represented as links in the graph. In our tool, we
epresented classes and methods as nodes and their relations
e.g., method calls) as links.

oreover, to increase the understanding support offered by the
ool, we reduced the amount of possible confounding factors fol-
owing a force-directed placement idiom (Munzner, 2014;
Fruchterman and Reingold, 1991). Following this paradigm, each
node is attracted to the center of the graph while being repulsed
by other nodes. An auxiliary force keeps connected nodes close to
each other. This approach minimizes the number of edge cross-
ings and nodes overlaps (our implementation guarantees that
nodes do not overlap) that can constitute distracting elements
for the user.

Manage complex review data: A vast amount of links might ex-
ist among entities (classes and methods) in a review change-set.
Therefore, displaying these relations in a clear way might become
a challenging task. To help with this, interactions are fundamen-
tal: They allow to handle potential complexity in the data to
visualize (Munzner, 2014). Furthermore, a single view can only
show a static pre-determined version of the data. Interactions
allow the user to customize how the data are shown: e.g., high-
ighting different relations in the data. Given the importance of
nteractivity for visualization, we designed our tool accordingly:
evelopers can freely add or remove nodes in the graph and
hange the information displayed.

isplay method calls and class relations: In a previous study,
e investigated how to reorder review changes with the aim
f supporting developers (Fregnan, 2018). In the context of that
tudy, we conducted semi-structured interviews with 18 devel-
pers to understand which coupling relations are perceived as
ore important by developers to offer support in the context of
ode review. We asked developers to rank based on their impor-
ance for review eight relations: (1) method call, (2) declare-use,
3) object instantiation, (4) class inheritance, (5) parameter use,
6) field access, (7) same file, and (8) same file format. The
nterviewees ranked method call as the most importance relation,
ollowed by declare-use, object instantiation, and inheritance.

nformed by these findings, we built our tool to use the following
hree coupling relations to construct the links in the graph: (1)
lass inheritance (including interfaces implementation), (2) object
nstantiations, and (3) method calls. We excluded the declare-use
elation from our implementation as it is not well suited to work
t class level and might introduce excessive complexity in the
raph. To extract these relations, our tool analyzes the Abstract
yntax Tree (AST) of the code contained in the review change-set.
he tool also analyzes links to classes and methods referenced
n the merge request changes but not contained in the merge
equest itself. Developers can freely remove or add these nodes
n the generated graph.

ntegrate well with existing tools: The majority of developers
o not like to use tools that interrupt their work flow: e.g.,

y forcing them to switch from their current environment. In

4

Table 1
Coloring strategy used to highlight the change status of the nodes in ReviewVis’s
graph.
Color Node

Added method or class

Changed method or class

Deleted method or class

Generated method or class

Unchanged method or class

Non-java files

a previous study, Johnson et al. reported this to be one of the
main reasons why developers choose not to use static analysis
tools (Johnson et al., 2013).

These findings highlight the importance of developing tools that
are well-integrated with existing coding environments to not
undermine their usability. Moreover, this paradigm was already
successfully adopted by previous tools developed to support de-
velopers: e.g., Cares (Guzzi et al., 2012).

For this reason, we decided to build our tool as an extension for
the code review platform (GitLab) developers who took part in
our in-company study already use for code review, instead of
devising an independent tool.

A review change-set in GitLab is called Merge Request (the equiv-
alent of a Pull Request on GitHub). A merge request involves a
source branch (i.e., the branch from where the merge request is
created) and a target branch (i.e., the branch where the merge
request will be merged).

GitLab allows developers to review merge requests before they
are merged into the project’s codebase. Once a merge request is
created, it is assigned to a reviewer who checks the code and
adds line-level or design-level comments. When the review is
complete, the merge request is assigned back to the author to
allow them to address the reviewer’s comments. Once the com-
ments have been addressed, the process continues in an iterative
fashion until all changes are deemed ready to be merged into the
codebase.

3.2. ReviewVis walkthrough

Fig. 1 shows an instance of the graph created by ReviewVis.
ectangular nodes in the graph (part 1⃝ in Fig. 1) represent Java
lasses. Each class is marked with a label preceding the name of
he class: C identifies a regular class, A marks an abstract class
nd, finally, I identifies an interface. A circle is added around all
lasses containing at least one method. Such circle (part 2⃝ in
ig. 1) allows the user to immediately identify which methods
elong to a class. Methods are displayed in the graph as rectan-
les with rounded corners (e.g., part 3⃝). To allow developers to
dentify inner classes, ReviewVis shows the name of the class in
hich they are contained above the class node. Part 4⃝ in Fig. 1
hows two inner classes MainBox and TopBox both contained
nside HelloWorldForm class. Dotted lines represent method calls:
.g., the method getConfiguredLabel of class AddedStringField calls
ethod get of class TEXTS (part 5⃝ in Fig. 1). Finally, non-java files

e.g., part 6⃝) are displayed with their full name, including the file
xtension.
Nodes are colored according to the strategy reported in Ta-

le 1. This strategy uses six different colors to show the status of a
ode: green (added nodes), orange (changed nodes), red (deleted
odes), gray (generated nodes: changed, added or deleted), white
unchanged nodes), and light blue (non-Java nodes).



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

t
n
c
t
a
n
m
n

t
c
h
p
i
C

G
w
i
s
c
(

Fig. 1. Example graph generated for a GitLab merge request. The sample merge request was taken from the Eclipse Scout project (Eclipse Scout, 2020).
In the graph, the method nodes are shown in the proximity of
he class implementing them (the distance between nodes does
ot convey any further information). Nodes representing inner
lasses (e.g., the TopBox node in Fig. 1) are not contained inside
he circle of the class node where they are implemented. This
voids increasing the complexity of the graph: An inner class
ode might also have a circle if the inner class contains a method
odified in the considered merge request (e.g., the MessageField
ode in Fig. 1, which represents an inner class of HelloWorldForm).
In the current design of ReviewVis, the graph does not report

he direction of the method call relations. Even though the user
an obtain this information from the code, the graph could also
ave also included it. However, in this stage of our research, we
referred not to add too many features to the current visual-
zation to better understand how the basic ideas are perceived.
urrently, reviewers can use the graph-to-code and code-to-graph

navigation features of ReviewVis to easily move from the graph
to the corresponding portion of code and vice versa. Nonetheless,
future work should focus on assessing the benefits of integrating
a directed method call relation in the graph of ReviewVis.

The graph created by our tool does not aim to substitute the
inspection of the code of a merge request, rather to support it.
To this aim, we designed ReviewVis to be used together with
itLab while reviewing the code. The graph provides reviewers
ith information on how the code entities (classes and methods)

n the merge request to review are linked. As well as a visual
ummary of all the entities and how they participate in the
hange. This information aims to support reviewers in navigating
for instance, with the graph-to-code and code-to-graph features)
and understanding the content of a review change-set.

3.3. ReviewVis structure

ReviewVis is formed by two main components: (1) a back-
end component, CodeDiffParser, that extracts the relations in the
review code and (2) a front-end component (CodeDiffVis) that
constructs the graphs and allows the user to interact with it.

The decision to design ReviewVis as two clearly separated
components was made to facilitate possible future extensions

of ReviewVis. Currently, ReviewVis supports only the analysis of

5

the Java files contained in a merge request. However, changing
the parser implemented in the back-end component can allow
the tool to be applied to code reviews containing files written
in programming languages other than Java, without the need to
reimplement the graph construction mechanism.

Back-end: CodeDiffParser. CodeDiffParser extracts the depen-
dencies in the code under review and passes them in the form
of a Json file to the front-end component. It uses the Eclipse AST
parser to construct the Abstract Syntax Tree (AST) of the code in
the merge request under analysis. It is able to analyze type dec-
larations, method declarations, type instantiations, and method
calls. More specifically, to construct the AST, the back-end relies
on ASTParser and HierarchicalASTVisitor classes contained in the
Eclipse parser.

CodeDiffParser performs this analysis for both branches (the
source and target branch) of a merge request and compares the
two resulting ASTs. The tool operates in the following way:

1. First, it analyzes the target branch (i.e., the branch into
which the merge request will be merged) and marks all
nodes and links in the resulting AST as deleted.

2. Then, the source branch (i.e., the branch from where the
merge request will be merged) is analyzed and the result-
ing AST is created.

3. The target branch AST and the source branch AST are
compared. Nodes present in both trees are marked as un-
changed in the target branch tree. Nodes not present in
the target branch AST but contained instead in the source
branch AST are marked as added.

4. Finally, all parent nodes of added methods or inner classes
are marked as changed.

The results are stored in a Json file using two lists for nodes
and links, respectively. If the nodes contained in a branch of a
merge request cannot be extracted, ReviewVis cannot generate the
graph.

Front-end: CodeDiffVis. CodeDiffVis(CDV), implemented as a
Google Chrome2 browser extension, constitutes the front-end

2 Google Chrome: https://www.google.com/intl/en_en/chrome/.

https://www.google.com/intl/en_en/chrome/


E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

p
l
s
a
c
u
T
a
G

d

o

J

Fig. 2. View of the tool’s front-end.
S

S

u
i
s
v
r

c

g

Fig. 3. Customization settings offered by ReviewVis.

art of our code review visualization tool. It is responsible for
oading the Json file created by CodeDiffParser from either a local
torage or a web service such as Jenkins.3 We use D3.js4 to create
force-directed graph which is – along with other JavaScript

omponents – directly injected into the merge request page,
sing Google Chrome’s content script programming paradigm.
he graph is designed so that nodes cannot overlap. Fig. 2 shows
view of the tool graph next to the related merge request on
itLab.
The graph is displayed in a separate window. In this way,

evelopers can place it according to their preferences (e.g., in a
separate screen). Furthermore, CodeDiffVis provides developers
with a setting window (reported in Fig. 3) to customize the
layout of the review changes graph. ReviewVis offers the following
ptions:

son URL: It allows the user to set the path to the Json file
created by CodeDiffParser. The path can be either a local path
or a web url.

Change-based colors: This option allows developers to switch
between the two implemented color schemes. Nodes can
be colored either by (1) change status or (2) package. The
former coloring strategy is reported in Table 1. The latter color
scheme uses the same color to represent nodes belonging to
the same package. To this aim, we used a rainbow color map,
adjusted to the number of packages to display.

3 Jenkins: https://www.jenkins.io.
4 D3.js: https://d3js.org.
6

Show non-java nodes: If enabled, this option displays in the
graph both Java and non-Java files.

how generated nodes: Automatically generated classes and
methods might not require code review. However, they might
still be relevant to understand the dependencies among enti-
ties in the merge request. For this reason, we allow users to
enable or disable the visualization of automatically generated
nodes in the graph.

how methods initially: Hides/show method nodes in the
graph. This option allows a reviewer to obtain a high-level
overview of the relations among classes in the merge request
under review, therefore, significantly reducing the size of the
graph.

These interactions are fundamental to handle the complexity
of the changes shown in the graph, as recommended by Munzner
(2014). For instance, the user can hide some entities in the graph
if this becomes too complex or if they are not interested in this
information.

3.4. Interaction

ReviewVis allows the user to interact with the graph. In partic-
lar, a reviewer can freely alter the graph layout: e.g., reposition-
ng nodes, altering the size of the graph, or highlighting specific
ubgroups of nodes (subgraphs) in the graph. Furthermore, Re-
iewVis allows reviewers to navigate between the graph and the
eview code. There are two possible navigation interactions:

ode-to-graph navigation: Hovering over the code in GitLab
highlights the corresponding node in the graph. ReviewVis
automatically centers the visualization on the highlighted
node and adjust the zooming of the graph. Fig. 4 shows an
example of code-to-graph navigation.

raph-to-code navigation: Clicking on a node in the graph al-
lows the user to jump on the corresponding class or method
in the GitLab merge request under review. Fig. 5 displays an
example of the graph-to-code navigation.

https://www.jenkins.io
https://d3js.org


E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

m

a
t
r

Fig. 4. Example of code-to-graph navigation. When a user hovers with the mouse on the class AddedStringField, the graph is centered on the corresponding node
highlighting it and all nodes linked to it.
Fig. 5. Example of graph-to-code navigation. Clicking on a node in the graph shows the user the corresponding class or method definition in the associated GitLab
erge request.
These two navigation features allow developers to move from
method/class in a merge request to the corresponding node in
he graph or, on the contrary, from a node in the graph to the
elated portion of code. ReviewVis was developed as a support
to the current code interface; therefore, we strived to enable
developers to navigate from our tool to the source code diff and
vice versa.

Previous work (Baum et al., 2017) showed how developers
employ different strategies when reviewing code. For instance,
reviewers may begin their review from the most important
change parts. For this reason, we envision that developers can
7

use the graph to identify the most prominent class in a merge
request, then move to the code to begin the review while having
an easy way to move back to the graph to check the interactions
of that class with other entities in the merge request. It seems
reasonable to think that this might be particularly useful to re-
view large merge requests, where navigating the graph becomes
more challenging for the reviewers.

Table 2 reports a list of all possible user interactions with
the graph of ReviewVis. The interactions are categorized as (1)
layout interactions, if they impact the layout of the graph, (2)
navigation, if they allow the user to navigate from the graph



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506
Table 2
Interactions in ReviewVis.
Name Category Description

Drag Layout Drag and drop nodes to change their
position in the graph.

Zoom Layout Zoom in and out the graph to allow
to focus on a specific group or nodes
or obtain an overview of the
relations in the code to review.

Node hovering Layout Hovering on a node automatically
highlights all its nearest neighbors.

Hovering lock Layout Lock/Unlock the current highlighting
of the graph.

Code-to-graph Navigation Hovering the mouse on a class or
method in GitLab highlights the
corresponding node in the graph. The
graph automatically centers on the
node and highlights it, together with
all nodes linked to it.

Graph-to-code Navigation When the user clicks on a class or
method in the graph, GitLab jumps
to the corresponding declaration in
the code to review. Furthermore,
when a node is clicked, its
appearance changes to allow a
reviewer to keep track of the nodes
already visualized/reviewed.

Expand Custom Show any connected referenced
nodes.

Remove Custom Users can remove nodes from the
graph.

to the code to review or vice-versa, and (3) custom when they
allow customization of the graph to fit the user’s preferences: e.g.,
removing nodes.

4. Developers’ perception

To evaluate ReviewVis, we first performed a two-step study to
collect general feedback on its usability and benefits. This phase
involved: (1) an in-company study asking professional software
developers to use our tool and (2) an online survey with 37
software developers. Then, we focused on the developers’ per-
ception of ReviewVis to support their understanding of a review
change-set. To this aim, we conducted a survey with 31 software
developers. We spread our surveys broadly online to reach a het-
erogeneous sample of developers and avoid fixating, for instance,
on specific review policies or review strategies. In the following
sub-sections, we explain the data collection methods for both
approaches, as well as the results.

4.1. In-company study — Methodology

We deployed our tool in a software development company
that focuses on software development for business applications,
having more than 320 employees in two countries. The company
uses GitLab as tool to manage their repositories and employs Java
as main programming language.

To recruit participants, we contacted developers through ei-
ther (1) a request on the company internal board, (2) via email,
or (3) directly via phone. Nine developers agreed to take part in
our study.

Before conducting our investigation, we performed a pilot
study with four professional software developers working in the
same company. Our aim was to verify the goodness of the tool
implementation, its correct deployment at the company, and the
clarity of the online questionnaire. The participants of the pilot
study did not join the in-company tool evaluation.
8

After improving the tool based on the collected feedback,
we proceeded with the actual study. We asked participants (all
professional Java developers) to use our tool to perform their code
reviews. Since the number of merge requests that developers
at the company have to review might significantly vary each
week, we asked them to use our tool for two weeks. Partici-
pants received an installation guide and a brief tutorial on the
functionalities of ReviewVis (available in our online replication
package (Fregnan et al., 2020)). After the two weeks period, we
asked them to complete an online questionnaire. A template of
our questionnaire is available in our replication package (Fregnan
et al., 2020).

The structure of the online questionnaire given to participants
was the following:

Welcome page: We introduced participants to the aim of the
online questionnaire as well as the goal of our research. Before
participants were allowed to answer the questions, we asked
them to agree to the treatment of their data according to the
European General Data Protection Regulation (GDPR). More-
over, we assigned a randomly generated ID to each participant
to allow them to ask the removal of their data from our
dataset at a later time.

General open questions: At the beginning of our questionnaire,
we asked developers about their experience with ReviewVis.
The questions were posed as open-text questions. We asked
participants (1) what they appreciated the most (and the
least) of our visualization tool and (2) for which review
changes ReviewVis was most (and the least) effective. In this
step, we asked a total of four open-test questions to the
participants. Our goal was to collect general feedback on the
tool before asking participants to focus on specific aspects of
the tool.

Usability questions: To assess the usability of ReviewVis, par-
ticipants were asked questions using an adapted version of
the System Usability Scale (SUS) defined by Brooke (Brooke,
1996). Our aim was to evaluate the usability of ReviewVis to
ensure that the collected feedback was not biased by defects
in the tool’s usability.

Features questions: After collecting general feedback on
ReviewVis, we asked developers to evaluate the information
and the interaction with the tool’s graph using a five-point
Likert scale. The statements evaluated by developers are re-
ported in Figs. 7 and 8. Moreover, we included a I do not know
answer to cover cases where a participant could not evaluate
a specific feature. The goal of these questions was to evalu-
ate developers’ perception of the graph and the information
offered by it (e.g., were they easy to understand?) after they
used it in their code reviews.

Applicability and benefits of ReviewVis: In this part of the
questionnaire, we asked participants to evaluate the applica-
bility of ReviewVis and its possible benefits. Figs. 9, 10, and
8 report the statements participants were asked to evaluate.
With these questions, we aimed to collect feedback on the
possible benefits of ReviewVis and its applicability.

Demographics: At the end of the questionnaire, we collected
participants’ demographics as well as their experience as
programmers and reviewers.

Final remarks and conclusion: In the last page of the survey,
participants were asked to enter any final remark they had
about our tool or the questionnaire itself. This question was
not mandatory. Also, we asked participants’ consensus to
share their answers in an anonymized publicly available re-
search dataset.



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

o
p

q
o
e
o
a
s
a
t
r
a
a
t
c

4

r
w
t
(

i
f

m
F
c
i

4

a

t
w

t
t
a
o
e
w
p

Table 3
In-company study participants’ demographics (N = 9). ND = ‘Not Disclosed’.
Participant Gender Coding exp.

(years)
Java exp.
(years)

Review exp.
(years)

P1 Male 2 2 2
P2 Female ≤1 ≤1 ≤1
P3 Male ≥11 ≥11 ≥11
P4 Male 6–10 6–10 6–10
P5 Male 6–10 6–10 6–10
P6 Male 3–5 3–5 2
P7 ND 6–10 6–10 2
P8 Male ≥11 ≥11 3–5
P9 Male 3–5 3–5 3-5

At the end of each group of questions, we included an optional
pen-text question to collect possible further feedback from the
articipants.
To analyze the answers that developers gave to the open

uestions regarding their experience with ReviewVis, we used
pen card sorting (Spencer, 2009). This technique allowed us to
xtract recurring opinions on what worked best with ReviewVis
r, instead, which characteristics of our tool were not appreci-
ted by developers. One of the authors first performed the card
orting, leading to the creation of a set of labels. Then, a second
uthor independently performed the card-sorting process using
he existing set of labels. The two authors achieved an inter-
ater agreement of 87.5%. In case of a disagreement, the two
uthors involved in this process started a discussion until an
greement was reached. This approach helped us to strengthen
he confidence in the results of this process, reducing the bias
aused by unclear or mislabeled comments.

.2. In-company study — Results

Nine professional developers took part in our study. Table 3
eports gender, general coding experience, coding experience
ith Java, and code review experience of the participants. Fur-
hermore, participants spent on average ≈28 h per week coding
std.: 8.3) and ≈5 h per week reviewing code (std.: 3.28).

Participants’ answers to the usability of ReviewVis are reported
n Fig. 6. We computed the System Usability Scale (SUS) score
ollowing the guidelines provided by Lewis (2018). Overall, Re-
viewVis achieved an average score of 71.11 (std. 11.97). This result
confirms the goodness of our implementation. A poor imple-
mentation might have negatively influenced developers’ feedback
on the visualization approach proposed by ReviewVis. However,
to further improve the usability of ReviewVis, two participants
entioned how the integration with Gitlab should be improved.
or instance, P9 stated: ‘‘If [ReviewVis] were a bit easier to use . . . I
ould see myself using it on a daily basis. The Gitlab MR interface
s horribly inefficient by default’’.

.2.1. Graph representation
Fig. 7 reports participants’ answers concerning the graph cre-

ted by ReviewVis. Overall, the majority of participants evaluated
the graph positively. Seven developers declared to not have had
issues in understanding the graph (the graph was clear and easy
o understand) and eight reported that interacting with the graph
as simple.
Moreover, eight participants acknowledged the usefulness of

he information offered by the generated graph (the graph con-
ained useful information), while one developer gave a neutral
nswer concerning this statement. To further confirm the benefits
f the graph to perform code review, we asked developers to
valuate if the information offered by the graph and interacting
ith it helped them while reviewing code. Seven developers re-

orted that the graph gave them support to perform code review

9

Fig. 6. Participants’ answers to the System Usability Scale questions used to
assess ReviewVis. CDV indicates CodeDiffVis, the front-end component of our
tool that displays the graph.

Fig. 7. Participants’ evaluation of the graph created by our tool. Neutral includes
both Neutral and I do not know answers.

(the graph was useful for my code review), while six recognized
the benefits of interacting with the graph during code review
(interacting with the graph helped me to perform code review).

4.2.2. Goodness of information displayed by the graph
Fig. 8 reports participants’ answers for each of the questions

contained in this section of the questionnaire. Overall, develop-
ers positively assessed the amount of information displayed by
ReviewVis (the graph displays sufficient information): Six develop-
ers agreed with our statement, while three were neutral about
it. Then, we asked participants to focus on specific features of
the graph to understand how developers perceive them. Overall,
participants acknowledged the usefulness of the features of the



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

t

F
t
o
W
i
f
a
i
i
n
o
w
v
r
p
p
b
u
d

t

F
e
t
a
t
n
a
d

4

l
h
c
p
u
F

Fig. 8. Participants’ evaluation of the information displayed by the graph. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. Participants’ evaluation of the kind of defects (evolvability or functional)
hat ReviewVis supports in finding. Neutral includes both Neutral and I do not
know answers.

graph. In particular, the graph was perceived as effective in dis-
playing information on the method calls between different nodes.
Moreover, developers positively evaluated the color scheme used
to represent nodes with different statuses (e.g., added or removed
nodes).

4.2.3. Benefits and applicability
In the following section of the questionnaire, we asked partic-

ipants to evaluate the benefits and the applicability of ReviewVis.
irst, we asked them if using our tool to perform code review they
hink they have been able to identify more maintainability defects
r more functional defects compared to their usual code reviews.
e reported their answers in Fig. 9. Concerning maintainability

ssues, four developers reported that our tool helped them to
ind more of this kind of defects. Three developers gave neutral
nswers to this statement, while two were unsure. When asked
f our tool helped them in identifying more functional defects
n the code, three developers replied positively, while five gave
eutral answers and one was unsure. P2 further commented
n this aspect: ‘‘I feel it’s easier to handle evolvability changes
ith CodeDiffVis than functional behavior. I think for a better
iew on the functional changes you would need some sort of
epresentation of runtime behavior’’. Another participant (P5) re-
orted: ‘‘I would not say that CodeDiffVis leads to more detection
er se but it leads to a better understanding of the connections
etween classes, methods and such, therefore leading to a deeper
nderstanding of the code. This, of course, could lead to more
etection’’.
Fig. 10 reports participants’ answers when asked to evaluate

he applicability of ReviewVis. The majority of participants agreed
that ReviewVis achieves the best results when applied to medium-
size merge requests (merge requests containing between four to
10
Fig. 10. Participants’ evaluation of the applicability of ReviewVis in terms of size
of the merge requests. CDV indicates CodeDiffVis, the front-end component of
our tool that displays the graph.

Fig. 11. Participants’ evaluation of the benefits of ReviewVis. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

seven files). Developers’ perception on the goodness of our tool
to review large merge requests (with eight or more files) was
still positive, while only slightly positive for small merge requests
(with three or less files). It seems reasonable to think that when
dealing with small merge requests, developers can already easily
notice links among the classes and methods they have to re-
view, therefore reducing the effectiveness of the support offered
by ReviewVis. This interpretation was confirmed by participants’
comments: e.g., P3 reported: ‘‘It seems to me that merge requests
with four changes don’t need extra tooling. It’s when I get a merge
request with 30 changes that I wish for better tooling’’, while P9
remarked: ‘‘For 1–3 files, I’m not sure if a graph is actually needed
or useful. The larger the Merge-request, the more useful I think’’.

Finally, we asked participants to evaluate four possible bene-
fits of using ReviewVis to perform code review, which we report in
ig. 11 together with developers’ answers. Developers positively
valuated the support of our tool in helping understand (‘With
he graph, I was able to understand the code changes quicker’)
nd navigate the code (‘With the graph, I could orient myself bet-
er in the merge requests’ and ‘with the graph, I found it easier to
avigate through the changes’). Four participants disagreed when
sked if the graph also helped to keep track of their progress
uring the review.

.2.4. Overall pros and cons
When asked (through open-text questions) about what they

iked/disliked the most about ReviewVis, participants reported
aving appreciated the possibility to see an overview of the
ode to review and its dependencies (6 mentions) as well as the
ossibility to navigate from the graph to the code and vice versa
sing the code-to-graph and graph-to-code features (2 mentions).
or example, P9 reported: ‘‘Seeing which classes/methods were



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

a
r
p
‘
t
l
w
a
b
m
f
c
r

4

u
p
a
e
f
d
t

p
f
t
P
c
R
f
c
t
l
n
P
f

a

H

dded/removed/used is great to ‘‘map out’’ the scope of the merge
equest’’. However, developers suggested to take action to im-
rove the layout of the graph (4 mentions): e.g., P9 answered:
‘The graph is not ‘‘stable’’ and moves around. While the interac-
ivity is great for small MRs (merge requests), in daily use with
arge MRs a graph that is more 1d than 2d and less interactive
ould probably be more useful’’. Participants reported different
spects of the review in which they found ReviewVis had been
eneficial: e.g., to understand the context of a merge request (2
entions). On the contrary, participants reported that the specific

ocus on Java files (2 mentions) and on the changed parts of the
ode (2 mentions) limited the tool’s applicability in their code
eviews.

.2.5. Follow-up interviews
To collect further feedback on our tool, we performed follow-

p semi-structured interviews with two developers who took
art in the in-company study. The interviews were performed as
video call over the Internet and lasted approximately 30 min
ach. During the interviews, we asked the participants about the
eatures they particularly appreciated of ReviewVis and those they
isliked, with a particular focus on the interactions offered by our
ool.

Concerning the tool interactions, one participant (PI1) re-
orted that they were not so intuitive and he would have pre-
erred to be able to understand them without having to use
he tutorial provided during the in-company study. For instance,
I1 mentioned that the color scheme of the graph was not
lear to him at first. Furthermore, the participant expressed that
eviewVis generated too many nodes since the tool creates nodes
or both classes and methods modified in a merge request. On the
ontrary, the second participant in the interview (PI2) reported
hat the amount of nodes was reasonable, but noticed how the
ayout of the nodes might not have been optimal because the
odes of the graph were shown too close to each other. Moreover,
I2 reported to have particularly appreciated the graph-to-code
eature of ReviewVis.

To further understand the reason behind developers’ evalu-
tion of the interactive features of ReviewVis, we performed a

second survey with Java developers. We report our findings in
Section 4.5.

4.3. General evaluation of ReviewVis — Methodology

To complement our findings from the in-company study, we
performed an online survey. We organized the survey following
a similar structure to the one employed for the in-company
questionnaire. We spread the survey through various social media
platforms (e.g., Twitter and Reddit). In the survey, we presented
short videos highlighting the main features of the tool to the
participants as a way to see it in action without having to install
it on their machines. Another possible option would have been
to allow participants to download the tool and try it locally.
However, we deemed this possibility unpractical since it would
have significantly increased the time required to complete the
survey. Although using short videos (no longer than 20 s) allowed
us to reduce the completion time of the survey, this still remained
fairly complex. The presence of videos and images of the tool,
necessary to give participants an overview of its main function-
alities, might have reduced the number of developers willing to
participate in our survey. Our survey and the asked questions are
available in our replication package (Fregnan et al., 2020).

The structure of the survey is the following:

Welcome page: Participants are introduced to the topic and the
goal of the survey: the evaluation of ReviewVis. Moreover, each
participant is assigned a uniquely generated ID to allow them to
ask for the removal of their answers from the dataset at a later
time.
11
Questions on visualization for code review: In the introduc-
tory part of the survey, our aim was to collect feedback on
developers’ perception of visualization tools and techniques to
support code review. First, participants were provided with the
definition of the concepts of visualization and visualization tools.
Then, developers were asked to evaluate if code review would
benefit from the use of visualization tools and explain why such
tools would (would not) be helpful. Finally, we asked developers
if they know or use any visualization tools for code review. In
case of a positive answer, participants were asked to explicitly
state the tools they know/use.

Questions on ReviewVis: In this section, we asked participants
to evaluate ReviewVis and its specific features: Each feature was
shown in a video before each specific question together with
captions and a brief explanation of the feature. Participants
were given the possibility to re-watch the whole video or a
specific part of it. Furthermore, before answering the questions,
participants were provided with an overview of the tool. First,
we asked participants about the usefulness of the graph and
its features. Then, we asked participants to evaluate the lay-
out, code-to-graph, graph-to-code, and customization features
of ReviewVis. The statements that participants had to evaluate
are reported in Figs. 13, 14, and 15. The goal of these questions
was to collect developers’ feedback on the main features of
ReviewVis. We wanted to (1) ensure that the information and
features of the graph are easy to understand and (2) collect de-
velopers’ perception on their usefulness for code review. Finally,
we asked developers to evaluate possible benefits of using our
visualization tool: e.g., having at their disposal information not
available in any other tool or being supported in understand-
ing the code changes to review. Figs. 15 and 16 report the
statements developers were asked to evaluate. The main goal of
these questions was to collect feedback on the potential benefits
of ReviewVis.

Demographics questions: As in the questionnaire used for the
in-company study (Section 4.1), we collected participants’ de-
mographics as well as information on their experience in pro-
gramming and code review.

Final remarks and conclusion: Finally, we asked participants to
state any final remarks on our tool or the survey. Furthermore,
we asked participants if they were willing to allow us to publish
their answers in an anonymized publicly available research
dataset.

4.4. General evaluation of ReviewVis — Results

Our survey received 37 valid answers. Fig. 12 reports partici-
pants’ experience in developing software in a professional setting,
developing in Java, and performing code review.

At the beginning of the survey, we asked developers if they
know or use any visualization tool for code review. With these
questions, our goal was to understand the adoption of visual-
ization tools for code review: For instance, are they something
developers normally use while performing code review? In the
survey, 18 developers reported knowing other visualization tools
(other 18 respondents replied they did not know any visualization
tool and one did not answer), but only 12 declared to use such
tools to perform their reviews (24 developers replied they did
not use any visualization tool to perform code review and one
did not answer). When asked to specify which tool they use, par-
ticipants mentioned either tools meant to visualize and analyze
source code but without a specific focus on code review (e.g.,
APAO (Bergel and Peña, 2014)), or tools such as Phabricator5 or

GitLab,6 which cannot be consider proper visualization tools. This

5 Phabricator: https://www.phacility.com/phabricator/.
6 Gitlab: https://about.gitlab.com.

https://www.phacility.com/phabricator/
https://about.gitlab.com


E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

H
w
d
a
(
c
c
d
t
p
p
a

f
p
n
n

k
h
f
t
n
c
i
u
f
p

m
u
t
r
b
r

Fig. 12. Survey participants demographics.

result shows the lack of visualization tools aimed specifically at
code reviews. Moreover, it supports our claim that code review
visualization is still a vastly unexplored research area.

Fig. 13 reports participants’ answers when asked to evaluate
the graph created by ReviewVis. The majority of participants pos-
itively assessed the goodness of the color-coding scheme used in
the graph and the importance of the label displaying whether a
node is a class, an interface, or an abstract class. These results are
in line with our findings from the in-company study (Section 4.2).

When asked if the graph displays sufficient information and is
easy to understand, the majority of participants replied positively.
12
Fig. 13. Participants’ evaluation of the information displayed by the graph. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. Participants’ evaluation of the comprehensibility of the visualization
features of ReviewVis.

owever, 31% and 38% of the participants, respectively, disagreed
ith this statement. Furthermore, a non-negligible amount of
evelopers (26% and 19%) chose a neutral answer. These results
re far from the one collected during the in-company study
Section 4.2), where 78% of the participants judged the graph
lear and easy to understand and 89% reported that the graph
ontained useful information to perform code review. Such a
ifference might have been caused by different settings of the
wo questionnaires: Participants in the in-company study had the
ossibility to use our tool in their normal working routine, while
articipants in the online survey were only briefed on the tool
nd its functionalities but could not interact with it.
Similarly, when participants were asked to evaluate the use-

ulness of displaying in the graph whether a node is public or
rivate, the majority of developers (49%) agreed on the useful-
ess of such a functionality, although a significant part of them
egatively evaluated it (35%) or took a neutral stance (16%).
In the online survey, participants were asked to evaluate four

ey features of ReviewVis: (1) layout features (drag, zoom, node
overing, and hovering lock; an extensive explanation of these
eatures is reported in Table 2), (2) graph-to-code, (3) code-
o-graph, and (4) graph customization features (add connected
odes, and removed nodes from the graph). Participants’ answers
oncerning the comprehensibility of these features are reported
n Fig. 14. Fig. 15 reports developers’ answers concerning the
sefulness of the main features of ReviewVis (and the tool itself)
or code review. All the four presented sets of features were
ositively assessed by the participants in the online survey.
Concerning the code-to-graph and graph-to-code features, the

ajority of developers (78%) confirmed that they were easy to
nderstand, while 70% and 72% of the online survey participants
hought that these features might help them to perform code
eview. The layout features were defined as easy to understand
y 69% of the participants, but only 50% of the participants
eported that they might be useful for code review with a further



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506
Fig. 15. Participants’ evaluation of the usefulness of ReviewVis and its features.
CDV indicates CodeDiffVis, the front-end component of our tool that displays
the graph.

Fig. 16. Participants’ evaluation of the comprehensibility of review changes with
ReviewVis. CDV indicates CodeDiffVis, the front-end component of our tool that
displays the graph.

25% of developers who took a neutral stance. Finally, the graph
customization features were reported as the most problematic
to understand (47% of the participants agreed on the statement
that they were easy to understand), but, nonetheless, they were
judged as useful for code review by 58% of the participants.

Developers were also asked to evaluate the possible benefits of
using ReviewVis to perform code review and to assess the novelty
of the information shown. Fig. 16 shows participants’ answers
on the benefits of ReviewVis to increase their comprehension of
code changes during review. The most positive aspect of the
tool appears to be its ability to support developers in navigating
through the changes and in the merge-request: These statements
were judged positively by the 65% and the 64% of the partici-
pants, respectively. Moreover, 60% of the developers reported that
ReviewVis helped them in understanding the changes faster than
without the information provided by our tool. When asked if they
would use our tool in practice, 62% of the developers responded
positively (Agree or Strongly agree). Finally, participants’ answers
were divided when asked if ReviewVis helped them in keeping
track of their progress during code review. Although most of
the developers (46%) answered positively to this statement, a
significant percentage of them were unsure (22%) or answered
negatively (32%). These results confirm our findings from the in-
company study. Further work seems to be necessary to make the
proposed tool useful for developers to keep track of their progress
during the review.

4.5. ReviewVis support for understanding — Methodology

Our findings from the in-company study and survey evalu-
ated ReviewVis in terms of usability and its potential benefits for

developers during code review. Given the positive results, we

13
investigate developers’ perceptions on how they think ReviewVis
can support their understanding of a review change-set. To this
aim, we designed a second online survey. Similar to the online
survey presented in Section 4.3, we presented short videos high-
lighting the main features of the tool to the participants. This
survey is available in our replication package (Fregnan et al.,
2020).

We structured the survey as follows:

Welcome page: We introduce the goal and topic of our inves-
tigation to the participants. To mitigate the risk of moderator
acceptance bias, we state that our aim was to evaluate a visu-
alization tool created by researchers rather than disclosing our
identity as the creators of the tool. Moreover, all participants are
requested to approve our data handling policy and are assigned
a unique identifier that they can use to request the removal of
their answers from our dataset at a later time.

Presentation of ReviewVis: In this section, we present ReviewVis
and ask the participants to evaluate whether the graph is easy
to understand and the color coding is clear. This was motivated
by our follow-up interviews (presented in Section 4.2.5), which
revealed that these might be problematic aspects of ReviewVis.

ReviewVis support for understanding: In this section, we ask
participants to evaluate whether they think the features and
interactions offered by ReviewVis are beneficial to increase their
understanding of a review change-set. We present the features
using short videos and a brief textual explanation. To test the
clarity of the explanations and encourage participants to pay
attention, after each video we include a question that asks the
participants information on the feature.

Benefits of ReviewVis and TAM: Subsequently, we ask respon-
dents to evaluate other possible benefits of our tool. Moreover,
we assess the participants’ perception of ReviewVis applying
the Technological Acceptance Model (TAM) (Davis, 1989). This
model assesses the usefulness and ease of use of a newly de-
vised technology.

Demographics questions: As in the in-company study question-
naire (Section 4.1) and previous survey (Section 4.3), we collect
participants’ demographics and information on their experience
in programming and code review.

Final remarks and conclusion: To conclude the survey, we ask
the participants’ consensus to publish their answers in an
anonymized publicly available research dataset. Moreover, we
ask them about any final remarks on our tool or the survey.

4.6. ReviewVis support for understanding — Results

We spread the survey through social media platforms (e.g.,
Twitter and Reddit) as well as the personal network of the au-
thors. We collected answers for a period of time of four weeks.
Our survey received 31 valid answers. Fig. 17 reports the expe-
rience with software development, Java, and code review of the
participants, while Fig. 18 illustrates the frequency at which par-
ticipants currently perform both programming and code review.
Among the participants, 23 identified themselves as males, three
as female, and five chose either to not disclose this information or
to self-define. Moreover, two participants reported having already
taken part in our previous survey on ReviewVis. We decided not
to exclude the answers of these respondents as this survey has a
different focus compared to the first one (reported in Section 4.3).

Moreover, these participants are more familiar with the tool,



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

w
c

E
p
t
(
g
t
e

c
o
t
m
p
t

F
o
e
v
i
e

t
i
p
b
h
t

i

Fig. 17. Demographics of the participants in the understanding survey.

hich, in turn, might reduce potential bias in their answers
aused by a poor understanding of the tool’s features.

valuation of the graph. At the beginning of the survey, after
roviding participants with an explanation of our tool, we asked
hem to evaluate if (1) the graph was easy to understand and
2) the color-coding used to represent the nodes was clear. Our
oal was to collect information on participants’ perception of
he understandability of our tool as well as to conduct an initial
valuation of our graph as a whole without focusing on specific
14
Fig. 18. Demographics of the participants in the understanding survey.

Fig. 19. Participants’ answers to the general questions concerning the graph
created by ReviewVis. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

features. The results obtained are reported in Fig. 19. The majority
of the respondents (≈74%) confirmed the goodness of the color
oding used in the graph. However, although the majority (≈52%)
f the participants evaluated positively the understandability of
he graph, they did not reach a strong consensus. This result
ay have been influenced by the fact that we could provide
articipants with neither a detailed explanation nor a practical
est of ReviewVis in our survey.

eatures’ impact to support understanding. In the next section
f the survey, we asked participants to evaluate (1) the potential
ffect of each feature of ReviewVis on their understanding of a re-
iew change-set and (2) the role that the offered interactions play
n supporting their understanding. Fig. 20 reports respondents’
valuation of each feature of ReviewVis.
The majority of the participants positively assessed the code-

o-graph and graph-to-code features to support their understand-
ng. When asked to motivate the reason behind their answers,
articipants reported: ‘‘I can easily maintain a direct ‘‘location’’
etween the source code and the graph’’ and ‘‘It seems like a
andy ‘‘link’’ to jump directly to the code, without having to scroll
hrough all the changes to find what I’m looking for’’.

The layout feature was also evaluated positively by the major-
ty of the participants, although a larger amount of them chose



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

s

r
t
i
‘
a

B
t
a
(
r
v
r
f
r
t

T
v
t
i
p
M

Fig. 20. Participants’ evaluation of each feature and interaction of ReviewVis to
upport their understanding of a review change-set.

Fig. 21. Participants’ evaluation of the potential benefits of ReviewVis.

a neutral answer compared to the previous features. Finally,
respondents gave a lukewarm evaluation of the potential effects
of the customization features of ReviewVis on their understanding
of a review change-set. A participant who positively evaluated
this feature reported: ‘‘It allows to systematically go through the
changes in more complex scenarios and dig deeper or remove
unnecessary parts of the graphs’’. On the other hand, participants
who negatively assessed the impact of the customization feature
eported that this feature constitutes only another factor to which
hey have to pay attention while performing their reviews, thus,
ncreasing their cognitive load. For instance, a participant stated:
‘One more complex thing to manage; might remove something
ccidentally’’.

enefits of ReviewVis. Fig. 21 shows participants’ evaluation of
he potential benefits of ReviewVis to understand and navigate
merge request. Overall, the vast majority of the participants

80%) acknowledged how our tool would support them while
eviewing code. In particular, 90% of the respondents positively
alued the help offered by ReviewVis in navigating through the
eview changes of a merge request. This is in line with the
indings of the more general survey presented in Section 4.3. This
esult supports the positive value of a graph-based visualization
o support reviewers.

echnological Acceptance Model. In the last section of our sur-
ey, we employed the Technological Acceptance Model (TAM)
o evaluate (1) the perceived usefulness of ReviewVis and (2)
ts perceived ease of use. Fig. 22 reports the answers of the
articipants concerning the usefulness of our visualization tool.

ost participants found ReviewVis useful. All items presented less

15
Fig. 22. Participants’ evaluation of the perceived usefulness of ReviewVis.

Fig. 23. Participants’ evaluation of the ease of use of ReviewVis.

than 20% negative answers and were, overall, positively evaluated
by the majority of the respondents. Nonetheless, items such as
‘Using ReviewVis in my code reviews would enable me to ac-
complish tasks more quickly’ or ‘Using ReviewVis in my code
reviews would increase my productivity’ registered a number of
neutral answers close to 50%. This high number may be caused by
the difficulties that participants faced in evaluating the potential
impact of ReviewVis on their productivity without being able to
try the tool first-hand.

Fig. 23 shows participants’ answers concerning the perceived
ease of use of our tool. Overall, the majority of developers agreed
that ReviewVis would be easy to use. Nonetheless, certain items
registered a high number of neutral answers (e.g., the ‘Learning
to operate ReviewVis would be easy for me’ item). As for the
perceived usefulness, it is possible that the respondents struggled
to evaluate the approach without using it, therefore took a neutral
stance.

Overall, the results suggest that developers perceive a graph-
based visualization approach as having the potential to support
developers during code review and to increase their understand-
ing of a change-set.

5. Discussion

In this section, we discuss how our results lead to recommen-
dations for practitioners and designers, as well as implications for
future research.

Understanding and review effectiveness. Our qualitative study
gave an initial indication that a tool implementing a graph visual-
ization in the form similar to what is proposed by ReviewVis could



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

b
t
r
r
a

p
2
b
f
b
a
p
o
t
s
v
f
c
c
i
p
b
e
a

S
p
i
T
S
a
r
R
p
d
W
m
m

T
e
o

a
s
t
c
B
p
t

t
W
d
n
d
p
s
s

s
e
m
t
b
p
d
a
e
p
c
m
v
t
H
s
m
2
p
c

a
i
(
m
w
c
s
s
a
i

m
t
m
a
w
i
t

i
H
r
F
o
r

V
e

e welcomed by industry developers. Their perception of the
ool was positive, praising its usability and benefits. Developers
eported that the graph gave them support to perform code
eview, helping them in better understanding the code change
nd in navigating the code.
Studies targeted at evaluating improvements on code review

erformance normally focus on (Baum et al., 2019; Spadini et al.,
019; Thongtanunam et al., 2014) review effectiveness (i.e., num-
er of defects found) and review efficiency (i.e., number of defects
ound in a unit of time) (Biffl, 2000). Our hypothesis is that a
etter understanding of the code under review (as potentially
chievable with our visualization) can lead to increased review
erformance. However, to verify this hypothesis and the effect
f our tool, new studies, such as controlled experiments, need
o be designed and carried out. In our study, we focused on as-
essing the usability and the perceived benefits of a graph-based
isualization approach to support reviewers. In particular, our
ocus was on supporting developers’ understanding of a review
hange-set. The positive results of our evaluation strengthen our
onfidence in the positive potential of our tool (e.g., assuring that
ts benefits are not undermined by a poor usability), therefore
aving the way towards the design of further evaluation of its
enefits. We envision, for instance, a controlled experiment to
valuate ReviewVis’s impact on developers’ review effectiveness
nd efficiency.

upport for multiple languages. Currently, ReviewVis only sup-
orts Java. However, participants in our study reported how this
mplementation choice might limit the usefulness of the tool.
o solve this problem, we envision the use of the Language
erver Protocol (LSP).7 An LSP implementation exists for almost
ny language, and it is possible to have more language servers
unning at the same time (this feature makes it possible to have
eviewVis working even when the project uses more than one
rogramming language). Finally, since the company where we
eployed the tool used GitLab, we developed the tool on top of it.
e expect the porting of our tool to other platforms to be without
ajor roadblocks because ReviewVis relies on the same data that
ost code review tools offer through their APIs.

he impact of Merge Requests’ size. One recurring topic that
merged from developers’ feedback concerned the applicability
f ReviewVis. According to the participants of our study, ReviewVis

was perceived as especially useful when applied to Merge Re-
quests of medium-size (4–7 files), while it was perceived as less
useful on small-size (1–3 files) or big-size (8 + files) ones. As
previously reported, the reason is that developers perceive that a
small graph, i.e., with only two nodes and one edge, does not carry
useful enough information. In fact, the developers stated that they
could easily understand the links between the classes by simply
reading the code. On the other hand, when more than eight files
are involved in the code change, developers reported perceiving
the graph as becoming too big, with too many nodes and edges
that make it hard and time-consuming to get information out
of it. A large graph might also affect reviewers with information
overload, negatively impacting their review performance.

To better understand the potential impact of ReviewVis, we an-
lyzed a total of 138,452 pull requests from 208 Java-based open-
ource projects on GitHub. We selected these projects among
he most popular java-based projects on GitHub, with a star-
ount above 1000. Based on previous work (Blincoe et al., 2016;
orges et al., 2016), we used stars as a representation of the
opularity and health of a project. We chose a large set of projects
o reduce potential bias caused by project-specific policies or

7 https://langserver.org/.
16
characteristics (the complete list of projects is available in our
replication package (Fregnan et al., 2020)).

Our goal was to understand how many pull requests belong
to each of the three defined categories: small, medium, and large
PRs. Our analysis revealed that 16.72% of the pull requests belong
to the medium category (having between 4 and 7 files), while
he vast majority (67.7%) can be defined as small pull requests.
e argue that the amount of medium pull requests, for which
evelopers perceived our tool would be particularly helpful, is
on-negligible and make the problem of supporting developers
uring the review of these pull request (by definition, more com-
lex than the small ones) particularly important. Further studies
hould be devised to investigate the support offered by our tool
pecifically for medium sized PRs.
Our participants perceived that our tool offered only limited

upport when reviewing small PRs as they are easy to understand
ven without external help. When it comes to larger PRs (eight or
ore files), further improvements of the visualization are needed

o better display this kind of changes: Currently, the graph might
ecome too complex for large PRs, hindering its benefits to sup-
ort developers’ understanding. To display large merge requests,
ifferent visualization paradigms might be better suited: e.g.,
city-based approach, as the one proposed in ViDI (Tymchuk
t al., 2015) or CodeCity (Wettel and Lanza, 2008). A city-based
aradigm offers to developers a more compact view of software
lasses compared to a graph-based visualization approach. This
akes it suitable to visualize large Merge Requests, giving re-
iewers an immediate overview of all the classes to review, while
his information might be hard to immediately read from a graph.
owever, the use of a city-based model would not allow to clearly
how relations among code entities: Including such relations
ight overwhelm the user with too complex information (Jeffery,
019). Further studies are needed to find a suitable visualization
aradigm to clearly display to reviewers the relations between
ode entities in a large merge request.
Visualization approaches developed for software evolution

lso constitute a precious source of inspiration to tackle this
ssue. For instance, the visualization paradigm of Evolution Radar
D’Ambros et al., 2009) might achieve promising results as a
eans to support code review. Evolution Radar offers an effective
ay to visualize the strength of the links between different
lasses. Including this approach in a review visualization could
upport the inspection of large merge requests: Once a class is
elected, the tool makes immediately clear which other classes
re strongly linked to the selected one and, therefore, should be
nspected next.

Another promising source of inspiration is the work of Beno-
ar et al. (2013). The authors used heat maps to display informa-

ion about software evolution. In the context of ReviewVis, a heat
ap might be applied to the graph nodes to convey information
bout the importance of each class. This would guide developers
hile reviewing a merge request, telling them where to start the

nspection of the code: A node colored in red will most likely be
he ideal starting point of the review.

Moreover, ReviewVis currently does not suggest to reviewers
n which order to review the files contained in a merge request.
owever, such a feature might reduce the cognitive load for
eviewers, especially when dealing with large merge requests.
or this reason, in future investigations, we envision combining
ur tool with approaches to identify the most salient classes in a
eview change-set, as the one proposed by Huang et al. (2018).

isualization and guidance. Participants in our study acknowl-
dged the benefits of our visualization approach to navigate and

https://langserver.org/


E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

u
o
r
s
(
v
c
a
a
h
e
c
v
d
r
2
s
a
t
c
t

6

I

t
s
G

C
o
t
a
a
o
w
i
t

P
s
p
r
p
T
t

s
r
t
g

R
t
r
v
b

S
c
e
b
T
a
p

nderstand code changes. However, they took a neutral stance
n the use of ReviewVis to keep track of their progress during the
eview. A reviewer’s progress during code review can be mea-
ured in two ways: (1) keeping track of the reviewed classes or
2) keeping track of checked topics. To include the former in our
isualization approach, we might employ a different node color-
oding scheme to distinguish between already checked classes
nd classes yet to be inspected by the reviewers. The color of
node could be changed automatically by the tool once a class
as been visited (similar to read/unread emails in a traditional
mail client) or manually by the reviewer. To keep track of
hecked topics instead, we envision combining our graph-based
isualization with review checklists. Code review checklists allow
evelopers to mark the items they already checked during the
eview (McConnell, 2004; Rong et al., 2012; Gonçalves et al.,
020). This raises the following question: How can we integrate
uch a feature in a visualization paradigm? This is no trivial task
s it might significantly increase the complexity of the visualiza-
ion and, consequently, undermine its usability. Investigating how
hecklists and visualization can be combined effectively appears
o be a valuable area for future research.

. Limitations

mplementation bias. The choice of focusing on GitLab to de-
velop our tool might have introduced bias in the results. Although
we cannot exclude that combining ReviewVis with another review
ool might lead to different results, GitLab does not present any
ignificant difference with other popular code review tools (e.g.,
itHub or Gerrit) in the way in which the review is conducted.

ompany review policies. During the in-company study, devel-
pers used ReviewVis to perform the code review tasks assigned
o them as part of their normal responsibilities. Although this
llowed us to collect valuable feedback on the use of our tool in
real-case scenario, we had no control over the number and size
f the reviews the participants performed. To mitigate this issue,
e asked participants to use our tool for a period of two weeks to

ncrease the variety in terms of size and complexity of the reviews
hey performed.

articipants sample bias. To collect feedback on the proposed
olution, we deployed our tool in a software development com-
any. Although participants had different programming and code
eview experience, we cannot exclude that common policies in
lace at the company might have introduced bias in our results.
o mitigate this threat, we extended our feedback collection on
he tool through an online survey.

Only one female developer participated in the in-company
tudy. Previous studies (Beckwith et al., 2006; Burnett et al., 2011)
eported how participants’ gender might influence their approach
o problem-solving. This might have negatively influenced the
eneralizability of our results.
Despite participants overall positively assessed the benefits of

eviewVis, we still registered a significant disagreement between
hem. Therefore, although our investigation achieved positive
esults indicating ReviewVis as a promising tool to support re-
iewers, further investigations are needed to fully understand the
enefits offered by our tool.

urvey lack of interaction. In the online survey, participants
ould not try the tool in a real-case scenario, but its features were
xplained to them through videos. This might have introduced
ias in participants’ understanding of the tool’s functionalities.
o mitigate this threat, each feature of the tool was explained in
separate video. We kept the video duration short, so partici-
ants were required to focus only for a limited amount of time.
17
Fig. 24. Example of question asked to assess participants’ understanding of
ReviewVis features. The video above (that participants are asked to watch)
contains the explanation of the feature necessary to correctly answer the
understanding question. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

We explicitly asked participants to watch the videos carefully.
To further support participants’ understanding, each video con-
tained captions explaining the specific functionality. Moreover,
we used a neutral language to describe the features to avoid lead-
ing participants towards selecting positive votes. Despite these
measures, our results might still suffer from bias caused by par-
ticipants difficulties in understanding the features or not paying
attention to the videos. To further mitigate this threat, in our
follow-up survey (presented in Section 4.5) we included a ques-
tion after each video to evaluate participants’ understanding of
the provided explanation and we excluded for a specific feature
the answers of the participants who did not reply correctly or
skipped the question. Fig. 24 shows an example of the questions
used to evaluate participants’ understanding.

Comparison with a baseline. Participants in the in-company
study used ReviewVis in combination with Gitlab to perform their
code review as opposed to using Gitlab alone. Overall, developers
did not report significant difficulties when using the tool and
assigned to ReviewVis a System Usability score of 71.11. These
results give an initial indication of the good usability of our tool
compared to a baseline (Gitlab). However, in our study we did
not explicitly investigate how ReviewVis compares to Gitlab and
whether it poses additional information load on the reviewers.
To foster developers adoption of such review visualization tools,
it is paramount to avoid the presence of steep learning curves and
high cognitive effort. Further studies should be devised to assess,
for instance, the cognitive overload our approach might pose on
reviewers. Moreover, the feedback provided by developers (e.g., to
strengthen the tool integration into Gitlab) should be addressed
to further improve the usability of ReviewVis.

Adoption for middle-sized merge requests. Developers might
not be willing to adopt and learn how to use this tool if they
perceive it as useful only for middle-sized merge requests, as
this constitutes only a limited part of the merge requests they
have to review. However, the positive feedback collected in the



E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

i
a
o
e
(
n
a
t
R

a
d
d
n
t
t
(
t

7

p
m
r
p
t
r

c
a
i
o
u
t
R
t
b

a
p
t

s
v
i
o
b
r
c
(

s
o
b
t
d

R
e
b

s

n-company study suggests that developers would be willing to
dopt the tool, despite it being perceived as less useful for small
r large change-sets, as long as it is well integrated into their
xisting workflow. Moreover, the good System Usability Scale
SUS) score achieved by our tool indicates how ReviewVis would
ot present a steep learning curve for developers. These results
re corroborated by the results of our understanding survey (Sec-
ion 4.6), where participants acknowledged the easiness of use of
eviewVis through a Technological Acceptance Model (TAM).
Currently, ReviewVis needs to be activated by the user (through

button in the browser) to display the graph. This lets developers
ecide when to use the tool, preventing it from overloading
evelopers with information when code review support is not
eeded. However, future studies can be designed and carried out
o determine whether it is possible to automatically show/hide
he view, based on the characteristics of the review change-set
e.g., its complexity). This would increase the ease of use of our
ool and strengthen its integration into code review tools.

. Conclusion

In this paper, we presented a graph-based visualization ap-
roach to support developers during code review. Classes and
ethods are represented as nodes in the graph, while the links

epresent the structural coupling relations among them. We im-
lemented the visualization (ReviewVis) as a Google Chrome ex-
ension that displays the classes and methods in a GitLab merge
equest.

We collected general feedback on ReviewVis through an in-
ompany study with nine professional software developers and
n online survey, collecting 37 valid answers. Participants in the
n-company study used our tool to perform code review as part
f their normal working routine. They positively assessed the
sefulness of the information reported in the graph as well as
he benefits of interacting with the tool while reviewing code:
eviewVis helped developers in understanding and navigating
hrough the changes to review. These findings were corroborated
y the feedback collected from the online survey participants.
Given the positive results of this first evaluation, we conducted

second survey with 31 participants with a specific focus on the
otential benefits of ReviewVis to support the understanding of
he content of a merge-request.

Overall, our investigation highlighted how a graph-based vi-
ualization technique is perceived as beneficial to support de-
elopers in reviewing change-sets, in particular, as a way to
ncrease their understanding of the changes to review. Based
n our findings, further studies should focus on quantifying the
enefits offered by visualization for code review: e.g., in terms of
eview effectiveness and efficiency. New visualization techniques
ould be employed to address the current limitations of ReviewVis
e.g., when dealing with large merge requests).

Our results indicated how ReviewVis is particularly suited to
upport reviewers in medium-sized PRs, while the support it
ffers might be negligible for small PRs. For large PRs, our tool’s
enefits are currently limited by the tool’s implementation. Fur-
her investigations are needed to devise approaches to better
isplay large changes, avoiding excessive complexity.
Moreover, further studies should be conducted to verify that

eviewVis does not pose significant information load on develop-
rs, which might hinder its adoption in the future and reduce its
enefits on supporting reviewers.
Overall, our investigation and tool constitute only an initial

tep towards creating a production-ready visualization approach
18
to support code review. To the best of our knowledge, only a very
limited amount of studies focused on devising visualization tools
to support reviewers. It is our hope that the insights we collected
can pave the road towards devising further approaches to better
support developers’ understanding of a change-set at code review
time.

CRediT authorship contribution statement

Enrico Fregnan: Conceptualization, Methodology, Investiga-
tion, Writing – original draft, Writing – review & editing. Josua
Fröhlich: Conceptualization, Software, Investigation, Writing
– original draft. Davide Spadini: Validation, Formal analysis,
Writing – original draft. Alberto Bacchelli: Conceptualization,
Methodology, Writing – original draft, Writing – review &
editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Availability of data and material

All data and materials are available in our replication package
at the following link: https://doi.org/10.5281/zenodo.7047993

Acknowledgment

E. Fregnan and A. Bacchelli gratefully acknowledge the support
of the Swiss National Science Foundation through the SNF Project
No. PP00P2_170529.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jss.2022.111506.

References

Ackerman, A.F., Buchwald, L.S., Lewski, F.H., 1989. Software inspections: an
effective verification process. IEEE Softw. 6 (3), 31–36.

Bacchelli, A., Bird, C., 2013. Expectations, outcomes, and challenges of modern
code review. In: Proceedings of the 2013 International Conference on
Software Engineering. ICSE ’13, IEEE Press, Piscataway, NJ, USA, pp. 712–721,
URL: http://dl.acm.org/citation.cfm?id=2486788.2486882.

Barnett, M., Bird, C., Brunet, J., Lahiri, S.K., 2015. Helping developers help them-
selves: Automatic decomposition of code review changesets. In: Proceedings
of the 37th International Conference on Software Engineering-Volume 1. IEEE
Press, pp. 134–144.

Baum, T., Liskin, O., Niklas, K., Schneider, K., 2016a. Factors influencing code
review processes in industry. In: Proceedings of the 2016 24th Acm Sigsoft
International Symposium on Foundations of Software Engineering. pp. 85–96.

Baum, T., Liskin, O., Niklas, K., Schneider, K., 2016b. A faceted classification
scheme for change-based industrial code review processes. In: 2016 IEEE
International Conference on Software Quality, Reliability and Security. QRS,
pp. 74–85. http://dx.doi.org/10.1109/QRS.2016.19.

Baum, T., Schneider, K., 2016. On the need for a new generation of code review
tools. In: International Conference on Product-Focused Software Process
Improvement. Springer, pp. 301–308.

Baum, T., Schneider, K., Bacchelli, A., 2017. On the optimal order of reading
source code changes for review. In: 2017 IEEE International Conference on
Software Maintenance and Evolution. ICSME, pp. 329–340. http://dx.doi.org/
10.1109/ICSME.2017.28.

Baum, T., Schneider, K., Bacchelli, A., 2019. Associating working memory capacity
and code change ordering with code review performance. Empir. Softw. Eng.
24 (4), 1762–1798. http://dx.doi.org/10.1007/s10664-018-9676-8.

https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.5281/zenodo.7047993
https://doi.org/10.1016/j.jss.2022.111506
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb1
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb1
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb1
http://dl.acm.org/citation.cfm?id=2486788.2486882
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb3
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb3
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb3
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb3
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb3
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb3
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb3
http://dx.doi.org/10.1109/QRS.2016.19
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb6
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb6
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb6
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb6
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb6
http://dx.doi.org/10.1109/ICSME.2017.28
http://dx.doi.org/10.1109/ICSME.2017.28
http://dx.doi.org/10.1109/ICSME.2017.28
http://dx.doi.org/10.1007/s10664-018-9676-8


E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506

B

B

B

B

B

B

B

B

B

B

D

D

D

D

D

2
E

F

F

F
F

F

G

G

G

G

G

H

H

eckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell, A.,
Cook, C., 2006. Tinkering and gender in end-user programmers’ debugging.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. pp. 231–240.

edu, L., Tinh, O., Petrillo, F., 2019. A tertiary systematic literature review on Soft-
ware Visualization. In: 2019 Working Conference on Software Visualization.
VISSOFT, IEEE, pp. 33–44.

enomar, O., Sahraoui, H., Poulin, P., 2013. Visualizing software dynamicities
with heat maps. In: 2013 First IEEE Working Conference on Software
Visualization. VISSOFT, IEEE, pp. 1–10.

ergel, A., Peña, V., 2014. Increasing test coverage with hapao. Sci. Comput.
Program. http://dx.doi.org/10.1016/j.scico.2012.04.006.

iffl, S., 2000. Analysis of the impact of reading technique and inspector
capability on individual inspection performance. In: Proceedings Seventh
Asia-Pacific Software Engeering Conference. APSEC 2000. IEEE, pp. 136–145.

lincoe, K., Sheoran, J., Goggins, S., Petakovic, E., Damian, D., 2016. Understanding
the popular users: Following, affiliation influence and leadership on GitHub.
Inf. Softw. Technol. 70, 30–39.

orges, H., Hora, A., Valente, M.T., 2016. Understanding the factors that impact
the popularity of GitHub repositories. In: 2016 IEEE International Conference
on Software Maintenance and Evolution. ICSME, IEEE, pp. 334–344.

ragdon, A., Zeleznik, R., Reiss, S.P., Karumuri, S., Cheung, W., Kaplan, J.,
Coleman, C., Adeputra, F., Laviola, J.J., 2010. Code bubbles: A working set-
based interface for code understanding and maintenance. In: Conference on
Human Factors in Computing Systems - Proceedings. http://dx.doi.org/10.
1145/1753326.1753706.

rooke, J., 1996. SUS: a ‘‘quick and dirty’usability. In: Usability Evaluation in
Industry. CRC Press, p. 189.

urnett, M.M., Beckwith, L., Wiedenbeck, S., Fleming, S.D., Cao, J., Park, T.H., Grig-
oreanu, V., Rector, K., 2011. Gender pluralism in problem-solving software.
Interact. Comput. 23 (5), 450–460.

’Ambros, M., Lanza, M., Lungu, M., 2009. Visualizing co-change information
with the evolution radar. IEEE Trans. Softw. Eng. 35 (5), 720–735.

’Ambros, M., Lanza, M., Robbes, R., 2010. Commit 2.0. In: Proceedings of the
1st Workshop on Web 2.0 for Software Engineering. pp. 14–19.

avis, F.D., 1989. Perceived usefulness, perceived ease of use, and user
acceptance of information technology. MIS Q. 319–340.

ias, M., Bacchelli, A., Gousios, G., Cassou, D., Ducasse, S., 2015. Untangling
fine-grained code changes. In: 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering. SANER, IEEE, pp. 341–350.

iehl, S., 2007. Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software. Springer Science & Business Media.

020. Eclipse Scout project. https://github.com/eclipse/scout.rt.
ick, S.G., Steffen, J.L., Sumner, E.E., 1992. Seesoft—A tool for visualizing line

oriented software statistics. IEEE Trans. Softw. Eng. http://dx.doi.org/10.1109/
32.177365.

agan, M.E., 1976. Design and code inspections to reduce errors in program
development. IBM Syst. J. 15 (3), 182–211. http://dx.doi.org/10.1147/sj.153.
0182.

rancel, M.A., Rugaber, S., 2001. The value of slicing while debugging. Sci.
Comput. Program. 40 (2–3), 151–169.

regnan, E., 2018. Automatic ordering of code changes for review.
regnan, E., Fröhlich, J., Spadini, D., Bacchelli, A., 2020. Replication package.

https://doi.org/10.5281/zenodo.7047993.
ruchterman, T.M., Reingold, E.M., 1991. Graph drawing by force-directed

placement. Softw. - Pract. Exp. 21 (11), 1129–1164.
asparini, L., Fregnan, E., Braz, L., Baum, T., Bacchelli, A., 2021. ChangeViz:

Enhancing the GitHub pull request interface with method call information.
In: 2021 IEEE Working Conference on Software Visualization. VISSOFT, IEEE.

ómez, V.U., Ducasse, S., D’Hondt, T., 2015. Visually characterizing source code
changes. Sci. Comput. Program. 98, 376–393.

onçalves, P.W., Fregnan, E., Baum, T., Schneider, K., Bacchelli, A., 2020. Do
explicit review strategies improve code review performance? In: Proceedings
of the 17th International Conference on Mining Software Repositories.

ousios, G., Pinzger, M., Deursen, A.v., 2014. An exploratory study of the pull-
based software development model. In: Proceedings of the 36th International
Conference on Software Engineering. pp. 345–355.

uzzi, A., Begel, A., Miller, J.K., Nareddy, K., 2012. Facilitating enterprise software
developer communication with CARES. In: 2012 28th IEEE International
Conference on Software Maintenance. ICSM, IEEE, pp. 527–536.

anakawa, N., 2007. Visualization for software evolution based on logical
coupling and module coupling. In: 14th Asia-Pacific Software Engineering
Conference (APSEC’07). IEEE, pp. 214–221.

uang, Y., Jia, N., Chen, X., Hong, K., Zheng, Z., 2018. Salient-class location: help
developers understand code change in code review. In: Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. pp. 770–774.
19
Jeffery, C.L., 2019. The city metaphor in software visualization.
Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R., 2013. Why don’t software

developers use static analysis tools to find bugs? In: 2013 35th International
Conference on Software Engineering (ICSE). IEEE, pp. 672–681.

Khaloo, P., Maghoumi, M., Taranta, E., Bettner, D., Laviola, J., 2017. Code park:
A new 3D code visualization tool. In: Proceedings - 2017 IEEE Working
Conference on Software Visualization, VISSOFT 2017. http://dx.doi.org/10.
1109/VISSOFT.2017.10, arXiv:1708.02174.

LaToza, T.D., Arab, M., Loksa, D., Ko, A.J., 2020. Explicit programming strategies.
Empir. Softw. Eng. 1–34.

Lewis, J.R., 2018. The system usability scale: past, present, and future. Int. J.
Human–Comput. Interact. 34 (7), 577–590.

MacLeod, L., Greiler, M., Storey, M.-A., Bird, C., Czerwonka, J., 2017. Code
reviewing in the trenches: Challenges and best practices. IEEE Softw. 35 (4),
34–42.

Mattila, A.-L., Ihantola, P., Kilamo, T., Luoto, A., Nurminen, M., Väätäjä, H., 2016.
Software visualization today: Systematic literature review. In: Proceedings
of the 20th International Academic Mindtrek Conference. pp. 262–271.

McConnell, S., 2004. Code Complete. Pearson Education.
Munzner, T., 2014. Visualization Analysis and Design. CRC Press.
Oosterwaal, S., Deursen, A.v., Coelho, R., Sawant, A.A., Bacchelli, A., 2016.

Visualizing code and coverage changes for code review. In: Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. pp. 1038–1041.

Pascarella, L., Spadini, D., Palomba, F., Bruntink, M., Bacchelli, A., 2018. In-
formation needs in contemporary code review. Proc. ACM Hum.-Comput.
Interact. 2 (CSCW), 135:1–135:27. http://dx.doi.org/10.1145/3274404, URL:
http://doi.acm.org/10.1145/3274404.

Rigby, P.C., Bird, C., 2013. Convergent contemporary software peer review
practices. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering. In: ESEC/FSE 2013, ACM, New York, NY, USA, pp. 202–
212. http://dx.doi.org/10.1145/2491411.2491444, URL: http://doi.acm.org/10.
1145/2491411.2491444.

Rong, G., Li, J., Xie, M., Zheng, T., 2012. The effect of checklist in code review for
inexperienced students: An empirical study. In: 2012 IEEE 25th Conference
on Software Engineering Education and Training. IEEE, pp. 120–124.

Sadowski, C., Söderberg, E., Church, L., Sipko, M., Bacchelli, A., 2018. Modern code
review: A case study at google. In: Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice. In:
ICSE-SEIP ’18, ACM, New York, NY, USA, pp. 181–190. http://dx.doi.org/10.
1145/3183519.3183525, URL: http://doi.acm.org/10.1145/3183519.3183525.

Shull, F., Seaman, C., 2008. Inspecting the history of inspections: An example of
evidence-based technology diffusion. IEEE Softw. 25 (1), 88–90.

Spadini, D., Palomba, F., Baum, T., Hanenberg, S., Bruntink, M., Bacchelli, A.,
2019. Test-driven code review: An empirical study. In: Proceedings of
the 41st International Conference on Software Engineering. ICSE ’19, IEEE
Press, Piscataway, NJ, USA, pp. 1061–1072. http://dx.doi.org/10.1109/ICSE.
2019.00110.

Spencer, D., 2009. Card Sorting: Designing Usable Categories. Rosenfeld Media.
Tao, Y., Dang, Y., Xie, T., Zhang, D., Kim, S., 2012. How do software engineers

understand code changes? An exploratory study in industry. In: Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of
Software Engineering. pp. 1–11.

Tao, Y., Kim, S., 2015. Partitioning composite code changes to facilitate code
review. In: 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories. IEEE, pp. 180–190.

Thongtanunam, P., Kula, R.G., Cruz, A.E.C., Yoshida, N., Iida, H., 2014. Improving
code review effectiveness through reviewer recommendations. In: Proceed-
ings of the 7th International Workshop on Cooperative and Human Aspects
of Software Engineering. ACM, pp. 119–122.

Tymchuk, Y., Mocci, A., Lanza, M., 2015. Code review: Veni, ViDI, Vici. In: 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering. SANER, IEEE, pp. 151–160.

Wang, M., Lin, Z., Zou, Y., Xie, B., 2019. CoRA: decomposing and describing
tangled code changes for reviewer. In: 2019 34th IEEE/ACM International
Conference on Automated Software Engineering. ASE, IEEE, pp. 1050–1061.

Wettel, R., Lanza, M., 2008. Codecity: 3d visualization of large-scale software. In:
Companion of the 30th International Conference on Software Engineering.
pp. 921–922.

Wettel, R., Lanza, M., Robbes, R., 2011. Software systems as cities: A con-
trolled experiment. In: Proceedings of the 33rd International Conference on
Software Engineering. pp. 551–560.

Zhang, T., Song, M., Pinedo, J., Kim, M., 2015. Interactive code review for
systematic changes. In: Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE Press, pp. 111–122.

http://refhub.elsevier.com/S0164-1212(22)00182-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb10
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb11
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb11
http://dx.doi.org/10.1016/j.scico.2012.04.006
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb13
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb13
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb13
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb13
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb13
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb14
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb14
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb14
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb14
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb14
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb15
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb15
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb15
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb15
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb15
http://dx.doi.org/10.1145/1753326.1753706
http://dx.doi.org/10.1145/1753326.1753706
http://dx.doi.org/10.1145/1753326.1753706
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb17
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb17
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb17
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb18
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb19
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb19
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb19
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb21
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb21
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb21
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb22
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb22
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb22
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb22
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb22
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb23
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb23
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb23
https://github.com/eclipse/scout.rt
http://dx.doi.org/10.1109/32.177365
http://dx.doi.org/10.1109/32.177365
http://dx.doi.org/10.1109/32.177365
http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1147/sj.153.0182
http://dx.doi.org/10.1147/sj.153.0182
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb27
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb27
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb27
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb28
https://doi.org/10.5281/zenodo.7047993
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb30
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb30
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb30
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb31
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb32
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb32
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb32
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb35
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb36
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb38
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb39
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb39
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb39
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb39
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb39
http://dx.doi.org/10.1109/VISSOFT.2017.10
http://dx.doi.org/10.1109/VISSOFT.2017.10
http://dx.doi.org/10.1109/VISSOFT.2017.10
http://arxiv.org/abs/1708.02174
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb41
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb41
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb41
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb42
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb42
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb42
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb43
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb45
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb46
http://dx.doi.org/10.1145/3274404
http://doi.acm.org/10.1145/3274404
http://dx.doi.org/10.1145/2491411.2491444
http://doi.acm.org/10.1145/2491411.2491444
http://doi.acm.org/10.1145/2491411.2491444
http://doi.acm.org/10.1145/2491411.2491444
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb50
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb50
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb50
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb50
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb50
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.1145/3183519.3183525
http://dx.doi.org/10.1145/3183519.3183525
http://doi.acm.org/10.1145/3183519.3183525
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb52
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb52
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb52
http://dx.doi.org/10.1109/ICSE.2019.00110
http://dx.doi.org/10.1109/ICSE.2019.00110
http://dx.doi.org/10.1109/ICSE.2019.00110
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb54
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb56
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb56
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb56
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb56
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb56
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb57
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb57
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb57
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb57
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb57
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb57
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb57
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb58
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb58
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb58
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb58
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb58
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb59
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb59
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb59
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb59
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb59
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb60
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb60
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb60
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb60
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb60
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb62
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb62
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb62
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb62
http://refhub.elsevier.com/S0164-1212(22)00182-0/sb62


E. Fregnan, J. Fröhlich, D. Spadini et al. The Journal of Systems & Software 195 (2023) 111506
Enrico Fregnan is a Ph.D. student in the Zurich Empiri-
cal Software engineering Team (ZEST) at the University
of Zurich. He received his bachelor’s degree at Politec-
nico di Milano, Italy and his master’s degree at Delft
University of Technology, The Netherlands. His research
focuses on investigating how to support developers
during code review.

Josua Fröhlich is a Software Engineer at Business Sys-
tems Integration (BSI) Zurich. He obtained his Master’s
degree in Informatics with major in People-Oriented
Computing at the University of Zurich in 2020. Prior
to that, he received his Bachelor’s degree in Applied
Informatics in 2017 at the University of Zurich.
20
Davide Spadini is a Software Engineer at Meta fo-
cusing on Software Testing Infrastructure and Tools.
He received his B.Sc. and M.Sc. in Computer Science
from the University of Verona and Trento, Italy, and
his Ph.D. in Software Engineering from Delft University
of Technology. He focused his research activity in the
software testing area. This included software testing
practices, test code quality, test code review, and test
code maintenance.

Alberto Bacchelli received the bachelor’s and master’s
degrees in computer science from the University of
Bologna, Italy, and the Ph.D. degree in software en-
gineering from the Università della Svizzera Italiana,
Switzerland. He is an associate professor of Empir-
ical Software Engineering with the Department of
Informatics in the Faculty of Business, Economics and
Informatics at the University of Zurich, Switzerland.


	Graph-based visualization of merge requests for code review
	Introduction
	Background
	Code visualization techniques
	Supporting developers during code review

	Approach
	Design requirements
	ReviewVis walkthrough
	ReviewVis structure
	Interaction

	Developers' perception
	In-company study — Methodology
	In-company study — Results
	Graph representation
	Goodness of information displayed by the graph
	Benefits and applicability
	Overall pros and cons
	Follow-up interviews 

	General evaluation of ReviewVis — Methodology
	General evaluation of ReviewVis — Results
	ReviewVis support for understanding — Methodology 
	ReviewVis support for understanding — Results 

	Discussion
	Limitations
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Availability of data and material
	Acknowledgment
	Appendix A. Supplementary data
	References


