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Abstract

Optical surgical instrument tracking systems have been invented and polished for decades, yet
due to a variety of reasons, their popularity is still not reaching a satisfactory state. Among all
the obstacles, the high monetary expense of introducing such systems to the operating rooms is
considered a significant impediment. However, one type of equipment that is indispensable for
arming an operating room is the intraoperative imaging system. Therefore, the idea of providing
intraoperative navigation based on intraoperative fluoroscopy has been developed and named
X23D. This study aims to explore the potential method to support the realization of X23D, espe-
cially the feasibility of integrating an advanced neural network into the pipeline. Learning from
existing navigation systems, a prototype of a reference frame for locating instruments in fluoro-
scopic images is sketched. We focus on the potentiality of locating the reference frame using a
single fluoroscopic image and 6 landmarks. We performed error stimulation to build our pre-
liminary expectation of the neural network’s performance. We defined criteria that can be used
to filter the pose of the reference frame in 2D images, which can separate poses into challenging
and unchallenging poses. Based on the criteria, we generated the data needed for model training,
validation, and testing. The neural network structure that can fulfil the performance expectation
is also designed and trained. Even though the accuracy of the proposed approach still craves
improvement before it can be deployed into practice, the value of this project as a stepping stone
is not to be neglected.





Zusammenfassung

Optische Systeme zur Verfolgung von chirurgischen Instrumenten werden seit Jahrzehnten er-
funden und ausgefeilt, doch aus einer Vielzahl von Gründen hat ihre Popularität noch immer
keinen zufriedenstellenden Stand erreicht. Unter all den Hindernissen wird der hohe finanzielle
Aufwand für die Einführung solcher Systeme in den Operationssälen als ein wesentliches Hin-
dernis angesehen. Eine Ausrüstung, die für die Ausstattung eines Operationssaals unverzichtbar
ist, ist jedoch das intraoperative Bildgebungssystem. Daher wurde die Idee einer intraoperativen
Navigation auf der Grundlage der intraoperativen Fluoroskopie entwickelt und X23D genannt.
Diese Studie zielt darauf ab, die potenzielle Methode zur Unterstützung der Realisierung von
X23D zu erforschen, insbesondere die Machbarkeit der Integration eines fortschrittlichen neu-
ronalen Netzwerks in die Pipeline. In Anlehnung an bestehende Navigationssysteme wird ein
Prototyp eines Referenzrahmens zur Lokalisierung von Instrumenten in Durchleuchtungsbildern
entworfen. Wir konzentrieren uns auf die Möglichkeit, den Referenzrahmen mit Hilfe eines einzi-
gen Durchleuchtungsbildes und 6 Landmarken zu lokalisieren. Wir haben eine Fehlerstimulation
durchgeführt, um unsere vorläufige Erwartung an die Leistung des neuronalen Netzes zu ermit-
teln. Wir haben Kriterien definiert, die zur Filterung der Position des Referenzrahmens in 2D-
Bildern verwendet werden können, um die Posen in schwierige und nicht schwierige Posen zu
unterteilen. Auf der Grundlage dieser Kriterien haben wir die für das Training, die Validierung
und den Test des Modells erforderlichen Daten generiert. Die Struktur des neuronalen Netzes, die
die Leistungserwartungen erfüllen kann, wurde ebenfalls entworfen und trainiert. Auch wenn
die Genauigkeit des vorgeschlagenen Ansatzes noch verbessert werden muss, bevor er in der Pra-
xis eingesetzt werden kann, ist der Wert dieses Projekts als Sprungbrett nicht zu vernachlässigen.
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Chapter 1

Introduction

A precise execution of the preoperative surgical plan is crucial to minimize possible postopera-
tive complications. Dedicated preoperative surgical planning is the prerequisite of a satisfactory
surgery outcome, but the guarantee of accurate delivery in a real-world scenario requires not only
accumulated experiences of the surgeons but also aids from peripheral guiding devices.

One commonly used surgical tool in orthopaedics is the Kirschner wire. It is widely used to
hold bone fragments together or to provide an anchor for skeletal traction. During the surgeries,
the k-wires are placed first by the surgeons over the planned entry points, either by doing small
incisions or direct punctures. There are two possible ways to insert the k-wires: one is to perform
the insertion by hand, and another involves using a surgical oscillating drill. Depending on the
availability of the navigation systems, this process can either be navigated or not. Yet, when com-
plex procedures on the vertebral column require the use of k-wires, any micro deviation in the
positions of the k-wires is prone to cause severe consequences. The ability to circumvent any pos-
sible damage to main blood vessels and nerves becomes exceptionally necessary to ensure mini-
mal side effects. With the help of intraoperative imaging, in combination with image navigation,
direct vision, and tactile feedback, surgeons have the opportunity to increase their confidence in
the position and trajectory of k-wires or other surgical tools, which has the potential to improve
surgical outcomes.

There are a number of existing sophisticated technologies that provide intraoperative naviga-
tion. However, such devices are not commonly affordable by many medical facilities, and none of
them is based solely on intraoperative radiographs that are essential to many operating rooms. In
addition, they may heavily rely on supplemental monitoring and tracking devices. Furthermore,
to take full advantage of such a device, a patient marker needs to be firmly mounted to a bone
as a reference indicating the patient’s location. And in order to find the position of the surgical
tool relative to the patient and keep track of it, another marker also needs to be attached to the
surgical tool, as shown in Figure 1.1. Fixing the patient marker does not expose the patient to
life-threatening danger in most cases, but the damage caused to the bone is not in the patient’s
favour.

Hence, with the intention of overcoming the drawbacks of current surgical navigation sys-
tems and shortening the post-operation recovery time, considering the fact that interoperative
fluoroscopies are wildly adopted, the idea of using fluoroscopic images as a medium for locating
surgical tools has emerged. The pipeline can be roughly described as follows: first, a detachable
reference frame (attachment piece) is to be designed for the surgical tool, and the position of the at-
tachment piece needs to be found by using fluoroscopic images, the next step is to use the location
of the attachment piece and its relative position with respect to the surgical instrument to locate

1https://ehealth.eletsonline.com/2012/10/apollo-performs-indias-first-navigation-
surgery-for-maxillofacial-trauma/

https://ehealth.eletsonline.com/2012/10/apollo-performs-indias-first-navigation-surgery-for-maxillofacial-trauma/
https://ehealth.eletsonline.com/2012/10/apollo-performs-indias-first-navigation-surgery-for-maxillofacial-trauma/
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Figure 1.1: An simplified example of the use of existing surgical navigation systems1

the surgical instrument, then at the end of the pipeline, the surgical instrument’s position with re-
spect to the patient is calculated. This forms the basic idea of X23D, a currently ongoing project in
the ROCS (Research in Orthopedic Computer Science) group from the Universitätsklinik Balgrist,
which aims to provide surgical navigation through fluoroscopic devices.

This work focuses on exploring the potential solution for the first two parts of the pipeline:
the development of a fluoroscopic-based surgical tool (attachment piece) pose estimation pipeline
by detecting 2D coordinates of landmarks directly in radiographs. Through the development of
the method, intraoperative fluoroscopy can be used to detect the attachment piece’s 6D pose
(translation + rotation), which is an essential component of any surgical navigation system.

To reach the final goal, firstly, an approach that can locate the attachment piece by utilizing
the information that a single fluoroscopic image contains as much as possible needs to be found.
For that purpose, we decide to explore convolutional neural networks, which are capable of ex-
tracting high-level features from images that are invisible to human eyes. There are three popular
ways to find an object’s 6D pose using 2D images, the first one is to perform regression directly
on the rotation vector and translation vector. The second one is to make use of the depth infor-
mation when it is available. And the third one requires a set of predefined 2D-3D corresponding
landmarks. It first locates predefined landmarks in the 2D image using a neural network and
then calculates the object’s pose in the 3D world by feeding the coordinates of the corresponding
points to the PnP algorithm. Due to the fact that fluoroscopic images are 2D images, it is not pos-
sible to obtain depth information from a fluoroscopy device. Thus the second approach cannot
be used in this project. To make the most of the information that can be provided, namely the
2D images of the attachment piece, the 3D coordinates of predefined points (landmarks) on the
attachment piece, and the corresponding 2D coordinates of the predefined points on 2D images,
the third method is chosen to be applied in this project.

As one may be familiar, at the current stage, neural networks cannot guarantee an output with
one hundred per cent accuracy. Moreover, the PnP algorithm cannot yield a definitive output
as its accuracy increases along with the number of 2D-3D matching points. Therefore, it is also
imperative to understand the importance of errors in 2D landmarks to the final 6D pose output by
the PnP algorithm. Hence, the accuracy and stability of the PnP algorithm exclusively under this
project setting and for this use case are explored. Based on the stability and reliability recognized,
the performance of the model is assessed.

The structure of the thesis

• In Chapter 2, the current surgical navigation systems, as well as the commonly used image
modalities, are elaborated. Then, the intention of providing surgical navigation and the de-
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cision to use fluoroscopy alone is justified by listing out the advantages and disadvantages
of the current navigation systems.

• In Chapter 3, we first give an introduction to existing works on object 6D pose estimation.
Next, the research that has been done to tackle the landmark detection task on 2D images is
also discussed. And Popular neural network backbone structures are also briefly described
in the last part of this chapter.

• In Chapter 4, the proposed approaches are detailed. From the design of the reference frame
(attachment piece) to the generation of X23D-specific model performance expectation and
image data, as well as the design of the network and post-processing pipeline.

• In Chapter 5, the implementation details and the experimental results are presented.

• In Chapter 6, the experimental results are further analysed, and the possible future working
directions are discussed.

• In Chapter 7, the conclusion is drawn.





Chapter 2

Background Knowledge

2.1 Surgical Navigation
Surgical navigation technologies refer to computer aids that can provide surgeons with position-
ing information during operations. Resembling the GPS system, they deliver a map to surgeons
indicating where they are and where the patient is. Not only do they allow surgeons to track the
instruments’ position and orientation with respect to the patient, but they also align the preoper-
ative planning with the intraoperative images to offer guidance to the surgeons to help them pilot
themselves through complex scenarios.

In this section, a brief introduction to the current navigation systems is given, followed by
a short comparison and analysis of advantages and drawbacks, with the aim of clarifying the
following three questions:

• 1. why are we doing surgical navigation?

• 2. why did we make the decision to use 2D-fluoroscopy?

• 3. why did we decide to achieve surgical navigation by using 2D fluoroscopy alone?

2.1.1 Intraoperative 2D-fluoroscopy Based
X-ray, the oldest form of medical imaging (Hatabu and Madore, 2021), has been widely used
throughout the world since its first invention in 1895. To add flexibility to allow changing the
angle from which the images were taken, Philips introduced the first mobile C-arm - a portable
X-ray imaging device with the shape of a half moon.1 The ability to rotate and move around the
patient to take images from even extreme angles assists surgeons in various surgical procedures.2

The rapid advancement of C-arm technologies, especially after 1957 when Philips attached an im-
age intensifier to a monitor1, made intraoperative image-based navigation achievable. A typical
C-arm fluoroscopy system that is able to provide real-time X-ray imaging during interventions
can be seen in Figure 2.1

In the year 2000, Foley et al. (2000) described a technology called "virtual fluoroscopy", where
the C-arm fluoroscopy was combined with computer-aided surgery to magnify its advantages.
Apart from the C-arm, this technology also involves two optical cameras fixed to one position
during the entire surgery and light-emitting or retroreflective markers (see Figure 2.2), which can
be tracked by the optical cameras (see Figure 2.3 left side). Generally, there are four steps that

1source:https://www.philips.com/consumerfiles/newscenter/main/shared/assets/
Downloadablefile/FACT_SHEET_X-ray_history.pdf

2source: https://www.amberusa.com/blog/c-arm-fluoroscopy-and-image-aquisition

https://www.philips.com/consumerfiles/newscenter/main/shared/assets/Downloadablefile/FACT_SHEET_X-ray_history.pdf
https://www.philips.com/consumerfiles/newscenter/main/shared/assets/Downloadablefile/FACT_SHEET_X-ray_history.pdf
https://www.amberusa.com/blog/c-arm-fluoroscopy-and-image-aquisition
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Figure 2.1: C-arm Fluoroscopy Example3.

Figure 2.2: Retroreflective and Light-emitting Markers Świątek-Najwer et al. (2008)

compose the working flow for using this type of navigation system. The first step is to acquire
one or more intraoperative images. Step two is to calculate the relative position of the C-arm and
the patient by using a reference frame that is usually fixed to the patient’s bone. The next step
is to calibrate the acquired images. And in the final step, the virtual instrument is superimposed
onto the images (see images on the right side of Figure 2.3), and the navigation starts from here
(Foley et al., 2000).

2.1.2 Intraoperative 3D-imaging Based
Utilizing 3D images intraoperatively is another imaging option to help surgical navigation. 3D
C-arm and intraoperative CT imaging are both able to provide surgeons with 3D images with
different image qualities. Based on the 3D imaging systems, navigation systems were also devel-
oped. As in the 2D fluoroscopy-based navigation system, cameras and active or passive markers
are needed to track the tool. The steps that are needed to use 3D-imaging-based navigation sys-
tems are similar to the necessary steps needed for using 2D-imaging-based ones described in the
above section.

2.1.3 2D vs 3D Imaging
Instinctively, one may argue that 3D imaging-based navigation systems are superior and more
helpful to surgeons compared to 2D fluoroscopy-based navigation systems due to their ability

3source: https://www.philips.com.au/healthcare/e/image-guided-therapy/mobile-c-arm/other

https://www.philips.com.au/healthcare/e/image-guided-therapy/mobile-c-arm/other
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Figure 2.3: 2D FLUOROSCOPY BASED NAVIGATION SYSTEM HUSSAIN ET AL. (2020).

to render anatomical structures in 3D. Yet, Kułakowski et al. (2022) showed that using a 3D-
fluoroscopy-based navigation system is not necessarily advantageous compared to using 2D-
fluoroscopy in terms of accuracy. A similar conclusion has been drawn by Halm et al. (2020),
they claimed that the use of 3D-fluoroscopy even prolongs the operating time with no noticeable
improvement in the surgical results. Boudissa et al. (2022) also observed longer operating time as
a result of using a 3D-imaging-based navigation system.

Another concern is the inevitable radiation exposure to both surgeons and patients. By Boud-
issa et al. (2022), greater radiation exposure to the patient has been associated with the use of a
3D-imaging-based navigation system. Mendelsohn et al. (2016) also agreed to this by stating they
observed that 2.776 times radiation have been emitted to the patients compared to conventional
fluoroscopy-guided cases. By contrast, according to Merloz et al. (2007), using 2D-fluoroscopy-
based navigation systems could potentially eliminate the disadvantage of radiation exposure.

From this comparison, our second question has been answered. In brief, 2D fluoroscopy is a
rational choice made after balancing operating time, surgical outcomes and radiation exposure.

2.1.4 Advantages and Drawbacks
Advantages

Comparing surgical navigation-guided surgeries and free-hand intraoperative imaging-guided
surgeries, Madeja et al. (2022) have shown that the intraoperative radiation can be lowered by
using a fluoroscopy-based 2D computer navigation system, and the surgical time can be short-
ened. Merloz et al. (2007), and Madeja et al. (2022) claimed that fluoroscopy-based 2D navigation
systems are a safe, accurate and reliable method for placing screws during fracture osteosynthesis
and in the lower thoracic and lumbar spine. Janssen et al. (2017), Hussain et al. (2018), Torres et al.
(2012) and Navarro-Ramirez et al. (2017) showed that by using intraoperative 3D navigation sys-
tems, the safety, accuracy and reliability of surgery procedures and outcomes were all improved.
Beyond that, the reliance on k-wires is also decreased (Goldberg et al., 2022).

By taking advantage of the now standard integrated image registration function provided
with the navigation systems (Malham and Wells-Quinn, 2019), the registration of pre-operative
images with intraoperative images give the surgeons a chance to find out the best surgical route
outside the operating room without time pressure (Mezger et al., 2013), which can be cost-friendly
to patients, and it may at the same time reduce the surgeons’ brain workload during surgeries.

From the advantages of the surgical navigation systems stated above, our first question is
answered. By using a surgical navigation system, surgeons have a chance to achieve optimal
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surgical results, minimize reoperation rate and reduce the likelihood of inducing postoperative
complications (Otomo et al., 2022), thus saving money for the patients.

Drawbacks

There are certainly some drawbacks that come with the advantages.
First of all, the expense of incorporating intraoperative navigation systems. To be able to

use such a system, an intraoperative imaging system needs to be established. There are several
options, the most budget-friendly ones are 2D-fluoroscopy devices, a stand-alone 2D-fluoroscopy
can cost from $25,000 to $70,000. Another option is to use 3D-fluoroscopy devices, which can
cost from $300,000 to $1,000,000 per each. If the examination of soft tissue during the surgeries is
needed, then CT scanners remain the only option. With the power of intraoperative CT scanners
comes a hefty price tag, ranging from $600,000 to $1,200,000 for one. In addition to the expenses
of the imaging system, the cost of the navigation system should not be underestimated. Optical
tracking systems for spinal surgeries are priced from $250,000 to $700,000 (Malham and Wells-
Quinn, 2019).

Another drawback of this type of system is the well-known "line-of-sight" issue. As mentioned
before, cameras and markers are needed to keep track of the instruments. This means the markers
need to be always visible to the cameras to perform the tracking task. Any block of direct sight
from the cameras to the marks will lead to failure. Besides, infrared-based optical tracking sys-
tems which rely on the retroreflection from the markers are also prone to have multiple reflection
issues due to the presence of other reflective surfaces in the operating room.

Another issue that inhabits intraoperative CT is that the imaging is not real-time. It is hard
to be responsive to intraoperative alignment changes (Otomo et al., 2022). Moreover, a dedicated
facility is required to set up such an imaging system, which takes up a noticeable amount of space
in the operating room.

By listing some of the deep-rooted drawbacks of the optical tracking-based navigation system,
the answer to our third question is also formed. X23D aims to bypass the "line-of-sight" problem
and make the navigation system more accessible to low-budget medical facilities by lowering
down not only the monetary requirement for establishing such systems but also the reliance on
peripheral devices for achieving navigation.



Chapter 3

Related Work

With the development of neural networks in recent years, possible approaches to utilize the ad-
vantages of neural networks to achieve pose estimation of objects in the 3D world have emerged.
In this chapter, the recent trends in using deep neural networks to perform object 6D (rotation +
translation) pose estimation are discussed.

He et al. (2020) systematically evaluated the performance of non-learning-based approaches
and learning-based (neural network-based) approaches on object pose estimation. According to
the reported results, the accuracy of the non-learning-based approach was similar to that of the
learning-based approach, yet learning-based methods outperformed traditional methods in terms
of robustness. Despite the time-consuming training process and the heavy demand for compu-
tational power and storage space of the learning-based approaches, the short inference time of
trained models is still advantageous compared to non-learning-based approaches. Therefore, we
focus on using a neural network to accomplish our task. In the following sections, research has
been done on learning-based pose estimation is introduced.

3.1 Learning-based Pose Estimation in 3D
This section discusses three current workflow fashions for using a neural network to assist the
pose estimation.

Regardless of the heterogeneous models proposed in recent years, the overall design schemes
can be summarized into: 1. The End-to-End fashion, where the models are trained to directly
output the rotation and the translation with their 2D coordinates as input; 2. RGBD image-based
fashion, where not only the RGB information is used, but also the depth information is integrated;
3. Two stages approach, where some predefined landmarks are first located on 2D images and
then use the PnP algorithm to calculate the rotation vector and translation vector (He et al., 2020;
Gamra and Akhloufi, 2021).

3.1.1 End-to-End Approach
Models designed following the end-to-end fashion (Figure 3.1) take 2D images as input and di-
rectly output the translation vector and rotation vector.

Hu et al. (2020) proposed a generic single-stage 6D object pose estimation network which can
be combined with keypoint extraction networks and take RGB images as input to perform the ob-
ject detection and 6D pose regression. The PoseNet (Kendall et al., 2015) is another well-known
architecture to perform end-to-end pose estimation. It can alleviate the impact of difficult lighting
and motion blur on the outcome and return the 6D pose by taking a single RGB image as input.
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Figure 3.1: End-to-End approach design idea (Pachón et al., 2021)

Based on the PoseNet, Bui et al. (2017) developed X-ray PoseNet to learn a mapping between an
object’s simulated X-ray projection and its pose. A projector block has been added to reconstruct
the 2D image based on the estimated pose output by the CNN model. The differences between
the ground truth 2D image and the re-projected 2D image were added to the loss function and
back-propagated to the CNN model to adjust the weights. RDpose (Presenti et al., 2022) also tried
to use the X-ray image as input to output the object’s pose. They separated the rotation task and
the translation task right after ResNet-50 V2 (He et al., 2016b), but the task for the rotation branch
was only to find the rotation around the vertical axis. They introduced two networks with similar
architectures. One took a single X-ray image as input at a time, and the other took two X-ray
images of the same object taken from different angles, and they observed a performance gain
by adding the additional image. Xiang et al. (2017) proposed the PoseCNN to simultaneously
estimate the pose of multiple objects in the scene. The translation vector was predicted by first
putting a bounding box around the object and performing displacement vector regression to de-
tect its centre, and then an estimation of distance was given. In the meantime, segmentation was
also performed to help the centre localization. The final translation vector was calculated based
on the camera’s intrinsic parameters and the distance the displacement vectors provided. The
rotation vector in quaternion form was also regressed based on the features within the bounding
box extracted by the previous convolutional layers.

The Deep-6DPose (Do et al., 2018) performed detection, segmentation and 6D pose estimation
tasks of multiple objects at the same time from a single RGB image. The estimation of the pose
was based on the features extracted by using Mask R-CNN (He et al., 2017), and the segmentation
head from Mask R-CNN was also adapted to predict a segmentation mask.

3.1.2 RGB-D Image-based Approach
The models mentioned in the End-to-End approach were all taking 2D images as input. The
effect of using depth cues on the estimation of the object’s pose was not fully explored. In this
section, studies have been done on integrating depth information in predicting the pose are briefly
introduced. Examples of depth information can be seen on the right side of Figure 3.2.

Guo et al. (2017) attempted to combine pre-trained PoseNet (Kendall et al., 2015) with LSTM
blocks forming a pipeline to estimate camera pose from RGB-D image sequences. An advantage
of their structure is its elasticity. The number of pipelines forming the network is flexible based on
the complexity of the use case. They claimed that by doing such, to some extent, overfitting might
be avoided. The DenseFusion introduced by Wang et al. (2019). tried to fully leverage the depth
information by separating the input for the depth image from the RGB image. By embedding and

1source: https://www.v7labs.com/open-datasets/rgb-d-dataset

https://www.v7labs.com/open-datasets/rgb-d-dataset
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Figure 3.2: RGB-D Image Example 1

fusing RGB values and point clouds at a per-pixel level, the model was able to benefit from the
explicitly modelled local appearance and geometry information to better handle heavy occlusion
scenes (Wang et al., 2019). The new MV6D (Duffhauss et al., 2022) tried to predict all objects in a
scene by taking RGB-D images from multiple views. It separated the task-solving process into 3
phases. In the first phase, a PSPNet (Zhao et al., 2017) was used to extract features of each input
RGB image from each view independently, and the depth information was extracted and com-
bined, and the PointNet++ (Qi et al., 2017) was adopted to perform depth information feature
extraction. At the end of the first phase, all the features were combined to feed into DenseFu-
sion (Wang et al., 2019), and the output was then combined again with the previously extracted
features to form point-wise feature vectors. In the second phase, based on the vectors from the
first phase, 3D keypoint detection, 3D centre point detection and instance semantic segmentation
were performed simultaneously. In the last phase, the least squares fitting algorithm was used to
give out the rotation and translation.

3.1.3 Two-Stage Approach

Stage 1: 2D Feature Points Extraction

In the first step, models need to be trained to take 2D images as input, either output 2D coordi-
nates of keypoints directly or output some features, from which the 2D coordinates of the key-
points can be extracted. The features can be heatmaps of the 2D coordinates, which encode the
confidence of a pixel being one of the points of interest. Another option is to output displacement
vectors, which represent the displacements from a pixel to a keypoint.

Stage 2: Calculate 6D Pose using PnP

The PnP stands for Perspective-n-Point. The PnP algorithm was first introduced by Fischler and
Bolles (1981) (the detail will be introduced in Section 3.4) After that, it was used to estimate the
pose of a calibrated camera with respect to the world/object coordinate system. It takes the
points’ 3D coordinates on objects in the world coordinate system and the corresponding points’
coordinates on the 2D photo to make an estimation of the camera’s 6D pose.
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The BB8 (Rad and Lepetit, 2017) tried to predict the 2D coordinates of the 8 corners of 3D
bounding boxes. They restricted the rotation range to mitigate the influence of the symmetry
of the objects. They introduced a classifier to identify the range of the rotation of an object be-
fore feeding the image to the pose estimation network to decide whether an additional mirroring
step is needed. Yet, evidence shows that BB8 suffers from a performance decrease when dealing
with occlusions. Oberweger et al. (2018) used the sliding window technique to find the centre
of the object. They claimed that by accumulating predicted heatmaps from several patches, the
robustness of the model on handling occlusions could be improved. They extracted the global
maximum from the average of the accumulated heatmaps to result in the final 2D locations, and
then they used the PnP algorithm to calculate the final pose. Hu et al. (2019) also proposed to
use of a patch-based method, where every grid of the visible part of an object was used to calcu-
late displacement vectors from the centre of the grid to the keypoints to tackle the performance
issue caused by occlusions. Besides this regression branch, the model also benefited from its
segmentation branch. Li et al. (2019) introduced CDPN. They followed a partially end-to-end,
partially two-stage fashion when designing the network, and they argued that the non-negligible
differences between translation and rotation need to be taken into consideration. They separated
the translation and the rotation estimation tasks after the feature extraction step. The translation
branch performed the direct regression on the translation vector, while the final rotation vector
was given by the PnP algorithm.

3.2 Keypoints Localization in 2D
In order to complete the two-stages approach, the first question that needs to be answered is,
where are the key points on the image plane? To address this problem, methods have been devel-
oped in the field of 2D human pose estimation to detect the location of articulates. Since finding
the keypoints of an object and finding the joints of humans in 2D images are interchangeable, the
architectures developed to solve the 2D human pose estimation problem can be applied to locate
keypoints of an object in 2D images.

Currently, as previously briefly mentioned, the models for 2D keypoints localization tasks
can be classified into three groups: 1. direct regression on 2D coordinates, 2. regression on dis-
placement vector, 3. regression on the Gaussian heatmaps generated around the keypoints’ 2D
coordinates. These three methods are described in detail in the following sections.

3.2.1 Direct Coordinates Regression
As the name of this group suggests, the form of the output of networks that perform direct re-
gression on coordinates is the exact location of the keypoints in a 2D image. A shared idea behind
designing this type of network is that after an image-specific feature extraction step performed
by the convolutional layers, several fully connected layers then give in the 2D coordinates of the
keypoints by consuming the extracted information.

In human joint detection, DeepPose (Toshev and Szegedy, 2014) was introduced. The model
married the recurrent idea with a convolutional neural network. Instead of having only one stage,
the authors reused the feature extraction plus fully connected block by stacking them together to
achieve a zoom-in effect. After having the coordinates values in coarse-scale yielded by the first
stage, the subsequence stages predicted the displacement from the previous stage output to the
ground truth. After the last stage of the network, linear regression was performed to predict the
2D coordinates. The authors argued that by having a cascade structure in the network, the details
of the images were able to be revealed, which exposed the network to higher-resolution images
and allowed the network to perform stage-by-stage refinement to result in higher precision.
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In the medical field, Riegler et al. (2015) proposed a relatively simple network to predict land-
marks’ location in synthetic MR/CT images. The feature extraction part of the network was com-
posed of only three convolutional layers and two maxpooling layers. They showed that the com-
promise of using synthetic data could be beneficial when faced with insufficient training data
problems in the medical domain. The L model in Laina et al. (2017) adopted the same idea and
used ResNet50 (He et al., 2016a) as the backbone but focused on detecting landmarks on surgical
instruments in real-time videos. The SL model from the same research (Laina et al., 2017) attached
a segmentation branch to the L model to predict a mask of the target object and the 2D coordinates
of the landmarks at the same time. By sharing the encoder, the loss from the segmentation branch
was able to have an implicit influence on the regression branch, and a slightly improved result
was observed.

3.2.2 Displacement Vector Regression
In this group, the model tries to predict the vector pointing to all landmarks from any pixel or
patch. As the name of the vector suggests, it represents the displacement between a pixel or patch
and a landmark. Not only does the displacement vector contain distance information, but it also
contains direction information.

In order to alleviate the impact of the shortage of medical image data, a two-stage task-
oriented network (T2DL), which was able to perform simultaneous landmark detection in real-
time, has been proposed by Zhang et al. (2017). This network had two stages focusing on two
separate tasks. In the first stage, instead of using a complete image, the network took image
patches as input. The relationship between patches and the displacement vectors from patches to
landmarks was learned. In the second stage, more layers were added to the first network in order
to emphasize the importance of neighbouring patches to the ground truth locations, and in this
stage, displacements were used as a base for the final 2D coordinates output. The learned network
weights were also used in the second stage to make full use of the patch associations learned in
the first phase. Noothout et al. (2020) made an attempt to use displacement vector regression to
predict landmarks’ location not only in coronary CT angiography scans but also in olfactory MR
scans and cephalometric X-rays in 2 stages. The basic structure of their network used slightly
modified ResNet (He et al., 2016a) as the backbone, and two heads were added to tackle the dis-
placement vector regression task and determine whether a patch contained landmarks. In the
first stage, the basic structure was used to perform global image analysis. After the first stage, the
patches predicted to contain landmarks were used as input for the second stage, and a smaller
version of the basic structure was reused in the second stage to process the zoomed-in image to
yield more accurate final landmark locations.

3.2.3 Heatmap Regression
In this section, models performing landmark localization through heatmap regression will be
briefly introduced. Heatmaps used for model training are multivariate Gaussian distributions
centred around the ground truth 2D landmark coordinates. The closer the pixel is to the ground
truth coordinates, the higher the probability that it is ground truth. Hence, the heatmaps also
implicitly encode the distance from a pixel to the ground truth coordinates. As shown in Figure
3.3, on the left side of the figure, a Gaussian heatmap in 2D is visualized, and On the right side is
the corresponding 3D image.

Payer et al. (2016) proposed SpaticalConfiguration-Net architecture to find landmarks in 2D
and 3D medical images. The architecture consisted of 3 blocks. The first block containing three
convolutional layers was used to generate local appearance heatmaps for the landmarks. After-
wards, the spatial configuration blocks they introduced were used to learn the relative position
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Figure 3.3: 2D Gaussian Heatmap and 3D Gaussian Heatmap

between a landmark and remaining landmarks. By adding all intermediate heatmaps that repre-
sent spatial configuration between landmarks, a low-resolution heatmap that indicates the possi-
ble location of a landmark was generated. In the final block, the low-resolution heatmap and the
local appearance heatmaps were added to resolve the ambiguity that local appearance heatmaps
introduced. The idea of achieving the magnification effect through global and local stages was
adopted by Zhong et al. (2019). In the global stage, an encoder-decoder structure was used to
generate coarse attention. In the local stage, patches were extracted based on the attention from
the prior stage. The same encoder-decoder structure was used to predict fine-grained heatmaps
from patches. The final prediction was given by merging the heatmap patches.

Wei et al. (2016) introduced the Convolutional Pose Machine. Despite the fact that it was ini-
tially used to detect human articulates, this successful network structure can also be transferred
to detect landmarks in the 2D medical images. Similar to DeepPose (Toshev and Szegedy, 2014),
the Convolutional Pose Machine was built with multiple convolutional layers in recurrent style.
Unlike DeepPose, which outputted 2D coordinates directly, Convolutional Pose Machine yielded
a belief map (heatmap) for each landmark. In each stage, a shared intermediate supervision block
which took the original image as input and was composed of convolutional layers and maxpool-
ing layers, was introduced to deal with the vanishing gradient problem. With the deepening of
the network, the receptive field of the network was also enlarging. The author also proved that
this enlarged receptive field was beneficial to the accuracy of the network. Another advantage
was that the network was able to deal with images from arbitrary views. Bier et al. (2018) applied
this network to solve the view-independent anatomical landmark detection task in X-ray images.
Although the network was trained on synthetic X-ray images, the trained model was still able to
directly process real X-ray images and output promising results.

Another frequently used structure is the U-Net, which was initially proposed by Ronneberger
et al. (2015) to perform segmentation tasks on medical images. The detail of its structure will be
presented in the next section. Works inspired by the U-Net on tackling the landmark localization
task have also achieved delightful results.

The Concurrent Segmentation and Localization (CSL) model introduced by Laina et al. (2017)
has gained satisfying success when performing real-time surgical instrument tracking in minimal
invasive surgery. The network structure was a merge of U-Net (Ronneberger et al., 2015) and a
Fully Convolutional Network. As in Noothout et al. (2018); Hu et al. (2019), the model also had
a segmentation branch to help the localization branch. The networks were constructed with an
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Figure 3.4: Examples of Segmentations (Silberman et al., 2014)

encoder block and a decoder block. The encoder block was composed of ResNet50 (He et al.,
2016a) and an extra residual block. As in the U-Net (Ronneberger et al., 2015), the decoder part
was composed of several upsampling blocks and skip connections from the encoder, passing low-
level but high-resolution information from the encoder to the decoder. The network was split into
two branches near the end of the structure. One of which was assigned with segmentation task,
and the other one kept focusing on localization. Afterwards, the segmentation output and the
convolution output were concatenated to produce the final heatmaps. The concatenation enabled
the segmentation branch to provide a guide to the localization branch.

Research has also been done on exploring whether using a single U-shape network to predict
heatmaps for landmarks was already sufficient to reach pleasant outcomes. Kang et al. (2021)
examined the ability of U-Net (Ronneberger et al., 2015), and U-Net with attention gate (Oktay
et al., 2018) on handling perturbed X-ray images. Their results confirmed that a single U-shaped
network could adequately handle the heatmap regression task to some extent. They also observed
a performance gain by perturbing images. Fard et al. (2022) redesigned the kernel size used in
the U-Net. The altered structure proved to be useful when detecting landmarks in spine X-ray
images.

3.3 Segmentation in 2D Images
A trend of using segmentation to help with landmark localization can be seen in the previously
introduced models. The focus of this section is to give a brief introduction to three popular net-
work architectures that are wildly adopted as backbones when performing medical image-related
segmentation tasks.

With segmentation, models are trying to distinguish objects from the background or even sep-
arate different objects from each other. Figure 3.4 serves as an example and provides a visual
interpretation of segmentation tasks. Semantic segmentation tries to categorize items into differ-
ent categories, whereas instance segmentation aims to distinguish instances from instances.

Fully Convolutional Network The fully Convolutional Network introduced by Long et al. (2015)
achieved state-of-art semantic segmentation results back in 2015. The key idea was to have a net-
work composed of only convolutional related layers that can take images with arbitrary sizes and
produce sized images that indicate the segmentation of the object in the images. An advantage
of having no fully connected layer is that it enables the model to learn a pixel-wise representa-
tion of the original input image. As the network goes deeper, the deep features are obtained, but
the spatial information gets lost easily. To overcome this limitation, the authors introduced skip
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connections to pass low-level features containing more location information to later layers, and
experiments also confirmed the effectiveness of this information-preserving design decision. The
authors also showed the method to convert existing CNN models with fully connected layers to
a fully convolutional network. By applying "convolutionalization" which is “convolutions with
kernels that cover the entire input regions” (Long et al., 2015), the dense layers can be easily trans-
formed to a fully convolutional style. They also observed a faster reference speed with either the
original Fully Convolutional Network or convolutionalized networks.

U-Net Inspired by the Fully Convolutional Network (Long et al., 2015), Ronneberger et al. (2015)
built the U-Net, one of the most famous segmentation networks in the biomedical field. It inte-
grated encoder-decoder structure, fully convolution idea and skip connections into one network.
Compared to FCN, U-Net had more feature channels in the expansion path, which empowered
the flow of the context information to high-resolution layers. The skip connections in each layer
ensured the high-resolution spatial information from the contracting path could be retained.

ResNet He et al. (2016a) proposed the ResNet in 2015 for image recognition. It reached state-
of-art performance in classification, object detection and object localization. Itself and its variants
are still wildly employed until now. The tendency that the deeper the network, the better the
performance has made researchers willing to work on the depth of their networks. But findings
(He et al., 2016a; He and Sun, 2015) suggest that there is a chance of counterintuitive accuracy
degradation when the network goes deeper. ResNet’s first and foremost element, the residual
connection, was designed to fight the performance decrease caused by deeper networks. Residual
blocks, consisting of layers of convolution operations and a residual connection from block input
to block output, were stacked on top of each other to form the final ResNet. Evidence from He
et al. (2016a) shows that with shortcut connections, even in the form of identity mapping, the
notorious performance degradation problem could be solved.

The above architectures can often be seen in research (Laina et al., 2017; Presenti et al., 2022;
Gao et al., 2019; Kang et al., 2021; Fard et al., 2022; Ding et al., 2021; Lu et al., 2021), either individ-
ually or in combination, as cornerstones for solving medical image-related tasks.

3.4 PnP Algorithm
As briefly mentioned in Section 3.1.3, the PnP algorithm is able to provide us with the camera’s
pose in the form of a rotation vector and translation vector. The resulting rotation matrix and
translation vector, which form the camera’s extrinsic parameters, can be used to bring an object’s
position from the world coordinate frame to the camera coordinate frame. Together with the
camera’s intrinsic parameters, namely, focal length and focal point, the object can be projected
onto the image plane. Figure 3.5 shows a simplified workflow of this algorithm. The inverse
of the camera’s movement is equivalent to the movement of the object in the same coordinate
system around the same rotation centre. Thus, this algorithm is commonly used to estimate the
object’s/camera’s pose.

Before, the "PnP algorithm" notion was slightly abused, as it was used to refer to the family
of algorithms that solves the Perspective-n-Point problem and finds the camera’s pose. From that
family, the Efficient PnP algorithm (Lepetit et al., 2009) (which will be referred to as the PnP al-
gorithm again in later sections) is selected to provide assistance in locating the camera/object.
It is acknowledged that when using the PnP algorithm, it is always preferred to have as many
point-pair as possible to increase accuracy (Lu, 2018). However, with more points involved, the
computation complexity increases at the same time. Hence, balancing accuracy and computation
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Figure 3.5: PnP Algorithm

complexity is needed as both factors are of great importance. The EPNP algorithm has a promis-
ing complexity of O(n) where n is the number of matching keypoints pairs, and it creates four
virtual points around each 3D point, which can improve the algorithm’s stability, thereby increas-
ing the algorithm’s accuracy. For this reason, we preferred to use the EPNP algorithm over the
rest of the family.





Chapter 4

Methodology

4.1 The Design of the Attachment Piece

During the surgeries, an assortment of surgical instruments are involved, and the type of instru-
ments chosen highly depends on the patient-specific settings and varies from patient to patient.
Thus, in order to be able to accommodate different kinds of surgical operations inspired by the
instrument markers used in traditional optical surgical tool tracking systems, a structure that is
easily distinguishable from surgical instruments is required to accommodate various surgical set-
tings. The attachment piece is required to be separable from surgical instruments either in the real
world or in imaging systems, attachable and detachable, in a reasonable size and able to maintain
its shape regardless of the instrument it is being attached to.

Thanks to the engineers from the ROCS group, a 3D prototype of the attachment piece in a
unique shape has been designed. In Figure 4.1, images of the 3D rendering of the attachment
piece from its front view, lateral view, top-down view and a random view are displayed. As can
be seen in Figure 4.1, the attachment piece has three branches, the main branch with a sphere, a
left branch with another sphere in a smaller size and a right branch with a hemisphere. The idea
of having spheres is closely related to the landmark selection. An advantage of spheres is that
in 3D, the relative location of the sphere’s centre to its surface is always stable. And the distance
from the surface to the centre is always equal to the radius of the sphere, irrespective of the view.
This can also be extended to its 2D projection, the centre of the circle is fixed with respect to the
circumference. Having a hemisphere is intended to add variety to the shape while maintaining a
degree of constant relative position.

From the top-down and lateral views, an attempt to avoid coplanar and collinear branches
can be observed. The difference in the angles between the main branch and the sub-branches, the
shape difference between the tops of the two sub-branches, the positional difference of the con-
nection point of the sub-branch to the main branch, the thickness difference of the three branches,
and the curvature difference of the sub-branches make the structure distinct from commonly used
surgical instruments, and its asymmetry can indicate its rotation to some extent. The initial de-
cision to 3D print the structure in metal or plastic ensured that it would be rigid. The size of the
attachment piece is negotiable with 3D printing, which allows us to search for the optimal size
balancing the interference it may cause to the surgical procedures and the visibility of it in the
imaging systems.
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Figure 4.1: 3D Views of the Attachment Piece from Different Angles

4.2 Landmark Selection

Following the decision to use the two-stage approach to accomplish the pose estimation task, a
crucial and prerequisite step is to place the landmarks, which are going to be used in calculating
the final pose through the PnP algorithm, in appropriate locations on the 3D model.

It only takes 3 points for the PnP algorithm to calculate a possible transformation between
the camera coordinate system and the world coordinate system, however, the result might not
be exclusive, yet fortunately, it can provide us with a solution space with a limited amount of
solutions (Acuna and Willert, 2018). Under our application settings, having multiple potential
solutions is not an option. It is compulsory to restrict the number of solutions down to one. In
order for the PnP algorithm to result in a unique solution, an extra point is demanded to filter
the solution space, which means that at least 4 points are required. Meanwhile, it is a consensus
that increasing the number of matching points is approximately equivalent to increasing the algo-
rithm’s resilience when facing the noise that might exist in 2D coordinates of the matching points
on the image plane (Acuna and Willert, 2018). Having the above mathematical knowledge and
empirical evidence in mind, it is rational for us to not only meet the minimum requirement of 4
matching points but also add more points to seek compensation when noise is present.

As a result, taking the characteristics of the shape of the prototype into consideration, 6 land-
marks were manual-selected on the 3D prototype. As illustrated in Figure 4.1, two of the land-
marks are located right in the centre of the spheres (marked in blue and green), and two of the
landmarks are located at the places where the main branch and the sub-branches connect (marked
in cyan and pink), one is on the bottom of the hemisphere (marked in red), and the last one is on
the bottom of the main branch (marked in black). Furthermore, what needs to be remarked is that
all the landmarks have different depth values (Z values), and any of the three points cannot be
lined up using a straight line. The purpose of having this setting is to avoid issues that collinearity
and coplanarity may introduce when calculating pose using the PnP algorithm.

An additional factor that may require attention is that owing to the reason that high network
performance is desired, it is preferred if one can ease the network’s job of learning and inferring
landmarks’ locations by manipulating the location of the landmarks at the designing phase. So, as
can be seen in Figure 4.2, in the 2D projections of the model, the location of the blue and the green
landmarks remain relatively stable, and their distances to the surrounding circles are irrelevant
to the viewing angle. For the cyan, red, pink, and black landmarks (in the third image, the black
landmark is marked in grey to be differentiable from the tool itself), the intention is to set them in
places encircled by complex textures. We hypothesize that the above-mentioned features and the
angles between the main branch and the sub-branches, the hemisphere of the right branch and its
limb, and the colour shifting at the bottom of the tool could potentially be strong hints indicating
where the landmarks are for the model.
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Figure 4.2: 2D Views of the Attachment Piece from Different Angles

4.3 Model Performance Expectation Generation
To assess the model’s performance, the importance of the Euclidean distances between the pre-
diction and the ground truth on 2D images to the 3D final pose of the attachment piece needs to
be investigated. Hence, the error simulation process aiming to identify an upper bound for our
initial model expectation (error tolerance) is designed. Before introducing our error simulation
process in detail, we present the fundamental facts supporting our pipeline.

Combined with the description in Chapter 3, the rotation and translation applied to the camera
when keeping the object unmoved can be inversely applied to the object while keeping the camera
at its original position. The resulting images are the same as long as the rotation and translation
are with respect to the same coordinate system and around the same rotation centre.

Figure 4.3 contains vivid demonstrations of the above-mentioned process (omitting transla-
tions). Assume that the attachment piece and the C-arm are both at their initial position in the first
image, respectively. The rotation centre is the centre of the attachment piece, which is marked out
with a black square on the image, and the coordinate system obeys the right-hand rule with Z-axis
pointing towards us. By taking a picture under the initial pose configurations, we would obtain
an X-ray image of a lateral view of the attachment piece similar to Figure 4.4(a) (the method used
to generate the X-ray images will be introduced in Section 4.4.1). In the second image of Figure
4.3, if we rotate the attachment piece around the Z-axis 180 degrees counter-clockwise, meanwhile
keeping the C-arm still, the tool would be in an upside-down pose, and the resulting X-ray image
would be similar to Figure 4.4(b) which containing a lateral view of the upside-down attachment
piece. By only rotating the C-arm 180 degrees clockwise and leaving the attachment piece with
its initial pose, as shown in the third image of Figure 4.3, an X-ray scan with the same view as the
X-ray scan taken under the pose configuration of the second image can be generated (see Figure
4.4(c)).

Based on this observation, we argue that the translation and rotation vectors given by the
PnP algorithm after moving the attachment piece alone should be the same as the translation
and rotation that is used to calculate the camera projection matrix after moving the camera alone
(i.e., they both represent the transformation required to express a point in the camera coordinate
system). These findings allow us to form our initial model performance expectation (acceptable
error upper bound) generation steps into 3 phases. The first phase simulates the movement of
the attachment piece alone and obtains the 2D coordinates of the landmarks. The second phase
simulates the movement of the C-arm to generate the ground truth camera pose. The reason for
having the second phase will be explained at the end of this section. In the last phase, errors
are introduced to the 2D coordinates obtained in the first phase to mimic the behaviour of the

1Adapted from Ritschl et al. (2015)
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Figure 4.3: Movement of the C-arm and the Attachment Piece 1

(a) Assumed initial pose X-
ray scan

(b) Rotate the attachment
piece 180 degrees counter-
clockwise

(c) Rotate the camera 180 de-
grees clockwise

Figure 4.4: Example X-ray scans before and after rotating the attachment piece and the C-arm

neural network (i.e., the error that the predictions of the model may possess), and the 2D coordi-
nates with error introduced are used to calculate camera pose using the PnP algorithm, then the
comparison between the ground truth and the output of the PnP algorithm is performed.

What needs to be borne in mind when walking through the following steps is that the 3D
coordinates of the landmarks in the world coordinate system L3d are already delivered after the
landmark selection step, which is also a prerequisite for the use of the PnP algorithm. And the
camera intrinsic parameters (i.e., the initial location of the focal point, the focal length, and the
location of the principal point on the image plane) are already known. The detailed procedures
are as follows:

Phase 1: Attachment Piece Moving and 2D Coordinates Acquiring

1. Set an intended rotation θ = (θx, θy, θz) and translation t = (tx, ty, tz) that are going to be
applied to the camera. And the movement to the attachment piece is the inverse of the
movement of the camera.

2. Calculate the rotation matrix R based on the angles set in step 1. The rotation matrixes
around X, Y and Z-axis, Rx, Ry and Rz , as well as their expressions in homogeneous coor-
dinates RH

x , RH
y and RH

z can be calculated using Equation (4.1), (4.2) and (4.3) respectively.
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After obtaining Rx, Ry , Rz and RH
x , RH

y , RH
z , the final rotation matrix R and its expressions

in homogeneous coordinates RH are calculated using Equation (4.4).

Rx(θx)3×3 =


1 0 0
0 cosθx −sinθx
0 sinθx cosθx
0 0 0

RH
x (θx)4×4 =

[
Rx(θx)3×3 0⃗

0⃗T 1

]
(4.1)

Ry(θy)3×3 =


cosθy 0 sinθy
0 1 0

−sinθy 0 cosθy
0 0 0

RH
y (θy)4×4 =

[
Ry(θy)3×3 0⃗

0⃗T 1

]
(4.2)

Rz(θz)3×3 =


cosθz sinθz 0
−sinθz cosθz 0

0 0 1
0 0 0

RH
z (θz)4×4 =

[
Rz(θz)3×3 0⃗

0⃗T 1

]
(4.3)

R3×3 = Rx(θx)3×3Ry(θy)3×3Rz(θz)3×3

RH
4×4 = RH

x (θx)4×4R
H
y (θy)4×4R

H
z (θz)4×4

(4.4)

3. Generate the translation matrix based on the translation vector set at step 1. This step is a
relatively straightforward step. The translation matrix TH in homogeneous coordinates can
be obtained by plugging in the translation vector to Equation (4.5).

TH =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (4.5)

4. Calculate the final transformation matrix A using Equation (4.6).

A = THRH =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (4.6)

5. Calculate the 3D landmarks’ coordinates in homogeneous coordinates after the transforma-
tion using Equation (4.7). 

X ′

Y ′

Z ′

1

 = A−1


X
Y
Z
1

 (4.7)

6. Generate the camera projection matrix using Equation (4.8). The projection matrix generated
at this stage is essentially the initial configuration of the camera, as no C-arm movement is
yet involved.

The definition of the K matrix and its expression in homogeneous coordinates KH can be
seen in Equation (4.9). They stand for the camera’s intrinsic parameters and encode the focal
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length and the principal point. fx and fy in Equation (4.9) represent the focal length. And
Cx and Cy are the location of the principle point on the image plane, which is the foot of
the perpendicular from the camera lens to the image plane, as the green point PP shown in
Figure 3.5. The X0 in Equation (4.8) represents the 3D location of the focal point (which can
be roughly seen as the location of the camera).

P3×4 = KHA = [KR| −KRX0] (4.8)

K =

fx 0 Cx

0 fy Cy

0 0 1

KH =

fx 0 Cx 0
0 fy Cy 0
0 0 1 0

 (4.9)

7. After obtaining the projection matrix from step 6, we use it to project the attachment piece
to the image plane using Equation (4.10). The corresponding 2D coordinates LH

2d of the 3D
landmarks on the image plane in homogeneous coordinates can also be calculated using the
same equation. By removing the last row of LH

2d, the ground truth 2D coordinates of the
landmarks L2d can be acquired.

uv
1

 = P3×4


x
y
z
1

 (4.10)

Phase 2: C-arm Moving

8. Apply the rotation matrix R and translation vector t to the camera using Equation (4.11).
This step is to move the focal point X0 of the camera according to the transformation matrix
generated at step 4.

X0new =

txty
tz

+R3×3X0 (4.11)

9. Calculate camera’s projection matrix P by replacing the X0 with X0new
in Equation (4.8).

10. Define the upper left 3×3 submatrix of the projection matrix P3×4 as M3×3 = Pij where 1 ≤
i ≤ 3 and 1 ≤ j ≤ 3. Use QR decomposition to decompose matrix M3×3 into an orthogonal
matrix and an upper triangular matrix, and these matrices are the rotation matrix Rqr and
the camera intrinsics K we are looking for.

11. Having matrix M3×3 and P3×4 at hand, based on the implicit message from step 10 and
Equation (4.8) where M3×3 = KRqr, and Pij = −KRqrC, 1 ≤ i ≤ 3, j = 4 where C stands
for camera centre, and it can be recovered using Equation (4.12).

C = −M−1
3×3

P14

P24

P34

 (4.12)

12. The translation vector tqr can then be restored using Equation (4.13).

tqr = −RqrC (4.13)
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Phase 3: Error Analysis and Performance Expectation Generation

13. Generate errors for the 2D landmarks with the following steps.

(a) Generate 6 unit vectors êi, 1 ≤ i ≤ 6, which will be applied to the ground truth 2D
coordinates, with random directions using Equations in (4.14).

vi =

[
vi1
vi2

]
∼ N2(0, 1)

||vi|| =
√
vi12 + vi22

êi =
vi

||vi||

(4.14)

(b) Use the unit vectors to form an error matrix:

Err =
[
ê1, ê2, ê3, ê4, ê5, ê6

]T (4.15)

(c) Final error Ef is calculated by the multiplication operation (4.16) of the error matrix
Err and a given scalar se. se is used to alter the magnitude of the unit vectors.

Ef = se · Err (4.16)

14. Introduce the error generated to the ground truth 2D landmarks’ coordinates L2d by an
addition operation (4.17).

Lerr
2d = (LT

2d + Ef )
T . (4.17)

15. Plug in the 3D coordinates L3d of the landmarks and the compromised 2D coordinates Lerr
2d

into the PnP algorithm to calculate the rotation vector rpnp and the translation vector tpnp,
and convert the rotation vector rpnp into rotation matrix Rpnp using Equation (4.1), (4.2),
(4.3) and (4.4).

What to be noted here is that the rotation vector and the translation vector acquired from
the PnP algorithm are the rotation and the translation with respect to the world coordinate
system, they are not necessarily equivalent to the rotation and translation set at step 1. In
the case where the movements of the attachment piece and the C-arm are around a rotation
centre other than the origin of the world coordinate system, the rpnp and the tpnp are most
likely different from the transformation set at step 1.

16. Convert the ground truth rotation matrix Rqr and Rpnp into quaternion form using equa-
tions in (4.18) resulting in corresponding quaternions qqr and qpnp, which are substitutes for
the Euler angles and rotation matrices.

qr =
1

2

√
1 +Rqr11 +Rqr22 +Rqr33

qi =
1

4qr
(Rqr32 −Rqr23)

qj =
1

4qr
(Rqr13 −Rqr31)

qk =
1

4qr
(Rqr21 −Rqr12)

q = (qr, qi, qj , qk)

(4.18)



26 Chapter 4. Methodology

17. Calculate the rotation error using Equation (4.19).

ER = 2 · arccos(
∣∣< qqr, qpnp >

∣∣)
< qqr, qpnp >= qqr11qpnp11 + qqr22qpnp22 + qqr33qpnp33 + qqr44qpnp44

(4.19)

18. Calculate the ADD error (Hinterstoisser et al., 2012) using Equation (4.20), which is the aver-
age distance between the reconstructed 3D landmarks using Rpnp, tpnp and the ground truth
3D landmarks calculated using Rqr and tqr. X is the set that contains all the 3D landmarks,
n = |X| is the number of landmarks on the attachment piece, and x is the 3D coordinate of
a single landmark.

ADD =
1

n

∑
x∈X

||(Rpnpx+ tpnp)− (Rqrx+ tqr)||2, (4.20)

19. Repeat step 13 to 18 with different error vector magnitude se to investigate the impact of
the 2D error on the rotation matrix Rpnp and the reconstruction under the specified rotation
setting (θ1, θ2, θ3), then report the rotation error ER and the ADD error.

20. Repeat the first step to step 19 to investigate the error’s impact under different rotation
settings and report the rotation error ER and the ADD error.

21. Based on the rotation error and ADD error reported, identify our expectation of the model’s
performance.

As one may have noticed, the error generation method we used in step 13 is not a conven-
tional method where errors are extracted from a Gaussian distribution or a Uniform distribution.
The consideration we had was that the probability of extracting an error from a Gaussian distri-
bution or a Uniform distribution is uncertain. For instance, if one is trying to change the standard
deviation of the Gaussian distribution from σ to σ′ with σ < σ′ to achieve the increment effect of
the distance between the 2D ground truth L2d and the shifted landmarks Lerr

2d , there is a chance
that all the errors extracted from the distribution with σ′ also falls into the distribution with σ,
which makes the correlation between the standard deviation and the rotation error Er and ADD
error unclear. One may debate that the distance may serve as the independent variable, yet we
do not have a guarantee that the errors extracted will not overlap with each other. The same
argument applies to the decision not to use Uniform distributions. If one is wondering whether
using Gaussian distribution with fixed standard deviation but moving the location of the mean
to generate errors would be a choice, our opinion here is that having such errors is roughly the
same as moving the 2D landmarks along the y = x line in the Cartesian coordinate system, which
has a great chance of resulting in error vectors all pointing to approximately the same direction,
the randomness of the errors might be compromised.

Another question one may wonder is that why we decided to use the decomposition of the
camera projection matrix instead of the translation and rotation vectors provided by the PnP
algorithm as the ground truth. This decision was made based on the characteristics of the PnP
algorithm. It has been proven that the accuracy of the PnP algorithm and the number of 2D-
3D matching point pairs are positively correlated (Acuna and Willert, 2018), which means that
there is an inherent uncertainty within the solutions given by the PnP algorithm, thus, using
the resulting rotation and the translation from the PnP algorithm as ground truth would be a
suboptimal movement.
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(a) DRR in 2D (b) DRR in 3D

Figure 4.5: 2D and 3D illustrations of the DRR 3

4.4 Data Generation
Due to the reason that the attachment piece is newly designed, we have no existing real X-ray im-
ages at our disposal. In order to provide the training image for the neural network, the Digitally
Reconstructed Radiograph (DRR) was used to simulate the behaviour of C-arms to generate arti-
ficial X-ray images. Furthermore, radiation exposure was another concern we had when making
the decision. High doses of radiation have the potential to damage the DNA and lead to cancer 2.
However, massive data is preferred and needed to train the neural network. Therefore, to be able
to obtain adequate amounts of images for the neural network and minimize unnecessary radia-
tion exposure to the human at the same time, using DRRs as a substitute for real X-ray images is
a cost-friendly, ethical and rational solution.

4.4.1 Digitally Reconstructed Radiograph
The digitally reconstructed radiograph is considered to approximate the authentic radiograph
(Dorgham et al., 2012). After getting a 3D representation of the volume, the virtual X-ray beams
are shot from the virtual source passing through the representation. Information created by the
intersection of the X-ray beams and the representation is used to calculate the pixel intensity for
the DRR. Such processes in 2D and 3D views are illustrated in Figure 4.5.

What needs to be remarked is that the rendering of the data volume used the Direct Vol-
ume Rendering technique, which preserves the gaseous phenomena and obeys the law of physics
(emission, absorption, scattering)4, due to the designing process of the attachment piece, it only
has an outer shell, and it is hollow inside, the resulting DRR would resemble Figure 4.6(a).

Considering the instability issue that air may introduce to the attachment piece’s radiograph,
a solution we currently have is to fabricate the attachment piece in metal. The high radiopacity

2Source: https://www.cdc.gov/nceh/radiation/health.html
3Adapted from Montúfar et al. (2018)
4https://cgl.ethz.ch/teaching/former/scivis_07/Notes/stuff/StuttgartCourse/VIS-

Modules-06-Direct_Volume_Rendering.pdf

https://www.cdc.gov/nceh/radiation/health.html
https://cgl.ethz.ch/teaching/former/scivis_07/Notes/stuff/StuttgartCourse/VIS-Modules-06-Direct_Volume_Rendering.pdf
https://cgl.ethz.ch/teaching/former/scivis_07/Notes/stuff/StuttgartCourse/VIS-Modules-06-Direct_Volume_Rendering.pdf
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(a) DRR of the current 3D repre-
sentation of attachment piece

(b) mDRR of the attachment piece
when it is solid and produced in
metal

Figure 4.6: DRR and mDRR of the attachment piece

of metal ensures that the metal objects are able to attenuate the radiation when X-ray beams
pass through them, which can block the visibility of any structures beneath them5 and leads to
regions with solid white-filled shapes of the outline of the metal objects, which consequently
minimize the impact of air on tool’s visibility in X-ray images. Based on this fact, we adjust our
DRRs accordingly. Instead of using images similar to Figure 4.6(a) directly, we treated them as
intermediate DRRs and extracted masks from them, which produced images that resemble 4.6(b)
and then we used the masks as our final DRR (which will be referred as mDRR).

Intuitively, the DRRs of a hollow structure would be richer in the information it contains, and
the neural network is able to benefit from it. This statement may be true when the DRRs contain
only the attachment piece as in Figure 4.6(a). Yet, when human anatomy enters the image and
overlaps with the attachment piece, the information that the hollow structure provided may be
destroyed. For instance, overlapping the hollow structure with a bone has a chance to result in
different pixel intensities in X-ray images compared to overlapping the hollow structure with soft
tissues. And in most cases, the anatomy contains both bones and soft tissues, the pixel intensity
would be more complex, as illustrated in Figure 4.7(a). However, when the attachment piece is
manufactured as an opaque object in metal, its appearance in X-ray images may be less sensitive
to the underlying structure, as shown in Figure 4.7(b). A trade-off needs to be balanced between
the information a hollow structure may contain and the consistency of its appearance in X-ray
images. This forms one of the reasons for our initial decision on the material of the attachment
piece.

4.4.2 Data Acquisition

In order to preserve some degrees of reality, besides the mDRR of the attachment piece, the X-
ray images or DRRs of human anatomy are also required to simulate real surgical environments
where the attachment piece and the patient coexist. Fortunately, the DRRs of the anatomies are
generated beforehand and provided. Holding the DRR as a tool, we form our dataset generation
pipeline as follows:

5https://www.thoughtco.com/x-rays-and-metal-interference-608418

https://www.thoughtco.com/x-rays-and-metal-interference-608418
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(a) When anatomy enters the image frame, depending on the underlying structures, the hollow structure in
X-ray images may have a tendency to disappear or change intensity

(b) When anatomy enters the image frame, change of underlying structure does not affect the appearance of
an opaque structure

Figure 4.7: Different appearances of the attachment piece in the X-ray images when the attach-
ment piece is fabricated differently

Image Generation

1. Set rotation ranges and translation ranges for the rotation around X, Y and Z-axis, respec-
tively.

2. Draw random values from the set ranges for rotation and translation.

3. Calculate transformation matrix A′ based on the drawn rotation and translation using equa-
tion 4.1 to 4.6

4. Apply the transformation matrix A′ inversely to the 3D volume and keep the virtual C-arm
(virtual X-ray Source) untouched.

5. Generate intermediate DRR of the attachment piece under this transformation setting.

6. Extract the final mDRR from the intermediate DRR.

7. Superimpose the anatomy with the final mDRR.
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Label Generation

The label consists of 3 parts, segmentation mask, 2D coordinates of the landmarks on the
mDRRs and Gaussian heatmaps.

8. The segmentation mask is already generated along with the training image, it is the same as
the final mDRR from Step 7

9. The 2D coordinates L′
2d are computed by plugging in the transformation matrix A′ from

step 3 and the 3D coordinates of the landmarks L3d into Equations from (4.7) to (4.10)

10. The Gaussian heatmaps are calculated based on Equation (4.21), it is a slightly modified
Gaussian. The denominator was removed from the original Gaussian distribution to pre-
vent the value from approaching 0 when the standard deviation increased. The two vari-
ables, x and y are not only the 2D coordinates of a landmark but also the means of the
modified Gaussian distribution, and sg is a constant to scale up the Gaussian.

Then a crop operation is performed to set the background pixel value of the heatmap to 0.
By doing so, we intended to have a clear boundary between the important region and the
less important region.

Each landmark has exactly one heatmap generated around its 2D coordinates. In total,
6 heatmaps need to be generated for one image and stacked on top of each other, which
means the final Gaussian heatmap for a single image has 6 channels.

h(x, y) = sge
− x2+y2

2σ2 (4.21)

11. Loop through this process from step 2 to step 10 to populate the dataset until it reaches a
satisfying size.

4.4.3 Attachment Piece 2D Pose Filtering
As one may notice, when generating mDRRs of the attachment piece, the rotation and the trans-
lation applied to the 3D volume are randomly drawn from defined ranges. Particularly, when the
span of the specified ranges get large, the resulting 2D pose in the mDRRs of the attachment piece
might be challenging for human to mentally reconstruct its 3D pose as in Figure 4.8a. Or some of
the 3D landmarks are blocked by the attachment piece itself when casting the X-ray and results
in blocking partially its own structures as in Figure 4.8b. There is also a chance for more than 2
points to be located outside the image frame as in Figure 4.8c, which will lead to the failure of the
PnP algorithm as mentioned in 4.2 to find a unique pose PnP algorithm needs at least 4 points.
Additionally, our presumption is that it might be easier for the neural network to learn the land-
marks’ location when the attachment piece’s three-branch structure is well maintained in the 2D
images. To be able to separate these kinds of images (will be referred to as challenging images)
from the ones with all landmarks within the image frame and three branches distinguishable (will
be referred to as unchallenging images) as in Figure 4.6b, we proposed several criteria based on
the characteristic of the 2D pose. And two widgets are also developed in case of one does not
have confidence in the criteria. By using the widgets, one would be able to categorize the images
into unchallenging data or challenging data manually.

Criteria for Automatic Filtering

This section introduces the 3 criteria set for filtering unchallenging and challenging 2D poses.
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(a) Strange 2D Pose (b) Landmarks partially blocked (c) More than 2 landmarks out-
side the frame

Figure 4.8: mDRRs with hard-to-interpret 2D pose of the attachment piece

Criterion 1 By observing the unchallenging and challenging images, a pattern of the distri-
bution of the pixels coloured in white can be found. The white pixels are more spread in the
unchallenging images than in the challenging images due to the distance of the branches from
each other. Which inspired us to treat the white pixels as data points instead of images. The loca-
tions of the white pixels can be extracted to form a new dataset with 2-dimensional records, and
then use the PCA algorithm to explain the variance in two directions. After feeding the generated
dataset to PCA, the explained variance will be returned, representing the amount of variance ex-
plained by each principal component. Figure 4.9 is an example of the described process. In Figure
4.9(a) and Figure 4.9(b), the after-PCA transformed data points (centred at 0), the direction of two
principal components and the explained variance ratio of them ER1 and ER2 are displayed on
the right side. From the intuitive value of the explained variance ratio, a preliminary conclusion
can be made that under the unchallenging image cases, the contribution of ER1 and ER2 to the
distribution are more close to each other than under the challenging image cases, which leads to
the fractions ER1

ER2
smaller than the ones under the challenging image cases.

However, there is no absolute guarantee that the above observation holds true for all the cases,
but when the attachment piece is in a challenging pose, the landmarks appear to be more clustered
than they are in an image with an unchallenging pose. This motivated us to consider incorporat-
ing the sum of the landmarks’ pairwise distances. Therefore, Criterion 1 is formed, which can be
seen in Equation (4.22). The disi,j stands for Euclidean distance between landmark i and j. The s1
value on the right-hand side of the inequality is an empirical value we gained from observation.

C1 =

∑6
i=1

∑6
j=1 disi,j

100 · ER1

ER2

> s1 (4.22)

Criterion 2 Criterion 2 is an extension of Criterion 1. We further stressed the importance of
pairwise distances by adding the length of the skeleton. The skeleton is marked out with a light
yellow dash line in Figure 4.10, which holds the shape of the 2D attachment piece we intend to
keep. The landmarks are numbered from top to bottom, left to right, and from 1 to 6, as shown
in Figure 4.10. The resulting inequality is shown in Equation (4.23). Same as s1, s2 is also an
observed value. This criterion can be used either separately or jointly with Criterion 1.

C2 =

∑6
i=1

∑6
j=i disi,j + (dis1,2 + dis2,6 + dis1,6 + dis3,6 + dis1,3)

100 · ER1

ER2

≥ s2 (4.23)



32 Chapter 4. Methodology

(a) Unchallenging image and its after PCA illustration

(b) Challenging image and its after PCA illustration

Figure 4.9: Unchallenging image and challenging image before and after PCA illustration

Criterion 3 Criterion 3 is a rather strict criterion, it forces a pairwise distance value to be in a
certain range for an image to be considered an unchallenging image. It consists of 6 inequalities,
as shown in Equation (4.24). In the first 4 inequalities, d̂isi,j where 1 ≤ i ≤ 6 and 1 ≤ j ≤ 6
stands for the Euclidean distance between landmark i and landmark j in a 2D image with no 3D
transformation (i.e, neither translation nor rotation is applied to the 3D volume of the attachment
piece, and the C-arm is also in its initial position, which results in the front view of the attachment
piece in 2D image). The last two inequalities restrict all the landmarks within the image frame. In
our case, the height and the width of the DRR are the same, we represent them as lDRR.

dis1,2 >
1

2
̂dis1,2 and dis1,3 >

1

2
̂dis1,3

dis1,6 >
1

2
̂dis1,4 and dis3,5 >

1

2
̂dis3,5

0 < xi < lDRR 1 ≤ i ≤ 6

0 < yk < lDRR 1 ≤ j ≤ 6

(4.24)

Widgets Supporting Data Acquisition

As the three criteria are relatively naive, they cannot guarantee drawing a clear line that perfectly
separates the unchallenging and challenging images. There are edge cases that belong to unchal-
lenging images but were categorized as challenging images. Yet, fortunately, the s1 and s2 values
we picked combined with the third criterion were able to make sure that no challenging image
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Figure 4.10: Skeleton of the attachment piece

was categorized as unchallenging. The workflows of the widgets are slightly different and will
be presented in detail in the following.

Widget 1 In order to tackle the misclassified unchallenging cases, widget 1 was developed. The
widget is able to ask for human opinion when the value of criterion 1 C1 or criterion 2 C2 falls into
a predefined margin range where s′1 ≤ C1 ≤ s′′1 or s′2 ≤ C2 ≤ s′′2 . Then the image is categorized
based on the human’s decision.

The workflow of Widget 1 can be seen in Figure 5.1(a). After starting the mDRRs synthesize
process, it is important to record the rotation vector and the translation along X-axis and Y-axis,
they are needed to generate a replica that has the same transformation except for the translation
along Z-axis. Before the calculation of C1 and C2, if any of the landmarks is outside the image,
then this image will be categorized as a challenging image immediately. Then the C1, C2 and
the first 4 inequalities in Criterion 3 (which will be referred to as C3 for simplicity) are calculated
based on the replica image. If an image survives the criteria with its C1 > 4, C2 ≥ 8, and its
landmark pairwise distances satisfy Criterion 3, then this image will be categorized as an unchal-
lenging image automatically. But if it cannot pass one or multiple criteria, the margin range will
be used to perform another filtering. Note that the s′1, s′′1 values and s′2, s′′2 values are purely de-
pendent on the user’s preference for the strictness of the filter. If any of the C1 and C2 values fall
into the margin range, the human’s opinion will be asked. But if both C1 and C2 values cannot fit
in the margin range, then it will be considered as a challenging image.

Widget 2 We also developed a widget in case one intends to categorize all the generated images
manually.

By using widget 2, the responsibility of categorizing images entirely falls on the shoulders of
the user, which means it has a naive logic as shown in Figure 5.1(b). After starting to run the wid-
get, the image is generated per the user’s command. The images are also saved to corresponding
folders based on the user’s decisions.

4.5 Model Design and Training
As mentioned in Chapter 3, the prerequisites for using the PnP algorithm are the camera’s intrin-
sic parameters, 3D coordinates of points on the object, and their corresponding 2D coordinates.
Under our project settings, the camera’s intrinsic parameters and 3D coordinates of the object are



34 Chapter 4. Methodology

(a) Widget 1 workflow

(b) Widget 2 workflow

Figure 4.11: Widget 1 and widget 2 workflows
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Figure 4.12: Overview Architecture

at our disposal; combined with the 2D coordinates produced by the landmark localization step,
the camera’s/object’s pose can be relatively easily determined, which is one of the reasons why
we are focusing on achieving the landmark detection task based on the 2-steps approach. In ad-
dition, due to the fact that depth information is absent in X-ray images, we are limited to using
only greyscale cues.

4.5.1 Model Architecture
We based our work on the CSL model proposed by Laina et al. (2017). The network was con-
structed with an encoder block and a decoder block and has two output branches for the segmen-
tation task and localization task separately. The overview of the architecture we propose can be
seen in Figure 4.12. In the remainder of this section, the model’s architecture will be presented in
detail.

Encoder

For the encoder, we also took advantage of the ResNet50 (He et al., 2016a) as in the original CSL
model. As pointed out in Section 3.3, the residual connection is capable of saving neural networks
from struggling with performance issues when the structures become deeper and more complex.
The realizations of such connections are the residual blocks, consisting of layers of convolution
operations and a residual connection from block input to block output. Two types of composition
for the residual blocks have been developed as well, one has only two layers of convolution
between the input and output, and the other one has 3. There are two factors that ResNet50
are preferred over all the variants of ResNet, the first one is performance. ResNet50 uses the 3-
layer residual block as in Figure 4.13b, and it achieved higher accuracy on ImageNet compared to
RetNet18 and ResNet34, which use 2-layers residual blocks as in Figure 4.13a (He et al., 2016a), the
second one is the computation time, the deeper a network gets, the more computation power and
time it requires when training, we attempted to find a balance that can fit our limited computation
resources while preserving the model’s ability and performance as much as possible.
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(a) Two-layer residual block (b) Three-layer residual block

Figure 4.13: Two types of residual blocks used in ResNet

Decoder

The decoder part of the network was designed based on the CSL model. It composes of several
up-sampling blocks and skip connections from the encoder, which manage to pass low-level but
high-resolution information from encoder to decoder. We also adopted the up-projection block
(see Figure 4.14) introduced in Laina et al. (2016) to achieve up-sampling. The up-projection
block exploits the residual connection from the ResNet, the input first goes through an unpooling
layer which expands the resolution of the feature maps. After that, the enlarged feature maps
are fed to two convolutional layers with 5 × 5 kernel separately. One serves as the shortcut
connection, the other one is fed into another convolutional layer with 3 × 3 kernel, and the outputs
of the shortcut connection and the 3 × 3 convolution then be summed together and fed into a
ReLU layer. It is worth noting that for the unpooling operation, instead of using max-unpooling
which expands the feature maps based on the location of max values recorded during pooling,
we adopted the regular-grid unpooling as in Figure Dosovitskiy et al. (2015). As shown in 4.14,
the unpooling layer increases the feature map to twice the original size, with the max values put
to the left corner of each 2 × 2 block and leaving the rest blank. As for the skip connections,
we first extracted the intermediate layer’s output from ResNet and fed it into a convolutional
layer with kernel size 3 × 3, then the output of the convolutional layer is directly combined with
the output of the up-projection block using pairwise summation to form an up-projection layer.
In total, 3 up-projection layers are stacked together. Following this, we added two additional
up-projection blocks to be able to have the final output size the same size as the input image
size. Afterwards, the model is split into two branches, with one branch concentrating on the
segmentation task and the other one focusing on extracting features for the heatmap. Afterwards,
the segmentation branch’s output is added to the localization branch. This decision intends to
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Figure 4.14: Up-projection block

express the importance of an area in the feature map where the attachment piece is predicted to
be while leaving the rest of the area unaffected. In the end, the final heatmaps are produced with
a 1 × 1 convolution. As one can notice, the entire model follows the fully convolutional fashion,
which has been shown to be more suitable and preferable when dealing with image-related tasks
(Long et al., 2015).

4.5.2 Loss Function
Loss for Segmentation Branch

For the segmentation branch, we use one channel to express the background and foreground, as
0 represents the background and 1 represents the attachment piece region. We used Dice Loss
(Sudre et al., 2017) as the loss function for this branch. It is a variant of the Dice Score Coefficient
(DSC). The DSC is used as a metric in computer vision to measure the similarity between two
images (Jadon, 2020). It has been adapted to become an objective function as Dice Loss. The
2-class Dice Loss can be expressed as Equation (4.25). The ϵ in numerator and denominator is
used to ensure numerical stability, which assures the function does not have 0 as the denominator
when prediction and ground truth are both 0.

DL2 = 1−
2
∑w

i=1

∑h
j=1 Si,jŜi,j + ϵ∑w

i=1

∑h
j=1(Si,j + Ŝi,j) + ϵ

(4.25)

Loss for Heatmap Regression Branch

The mean squared loss is adopted for the heatmap regression branch. Equation (4.26) is the for-
mula for calculating the loss. w and h represent the image’s width and height, while n represents
the number of heatmaps (landmarks).
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Therefore, the overall loss for the model training is given by equation (4.27), where λce and
λMSE are contribution coefficients.

LMSE =
1

n

n∑
i=1

w∑
x=1

h∑
y=1

∥yx,y,i − ỹz,y,i∥22 (4.26)

L = λDL2DL2 + λMSELMSE (4.27)

4.6 Post Processing
When the model reaches the inference stage, the ideal prediction for each landmark would be a
perfect heatmap with exactly one peak. Yet that is not always achievable in reality, nevertheless,
our expectation for the model is to perfectly capture the region where the landmarks should lay
instead of a complete matching of the pixels’ response value. Thus a post-process procedure is
needed to extract the landmark’s coordinates from the predicted heatmap. The initial proposal
was a rather simple one. The landmarks’ locations are generated by finding the pixel’s location
that has the highest response value. Although it is intuitively sound, we can neither guaran-
tee that the pixel with the highest response is right in the centre of the predicted heatmap nor
that there is only one pixel with the highest response. For this reason, we need to find another
approach to locating landmarks.

In our current using procedure for post-processing, the heatmaps need to go through three
steps. The first step is to create a mask of the predicted heatmap based on a threshold. The
second step is to detect a blob or circle in the mask, which ideally centres around the centre of the
response area. The second step was achieved with the help of OpenCV6, detailed functions used
for this step will be introduced in Chapter 5. And at the final step, we locate the centre coordinates
of the detected circle.

6https://opencv.org/

https://opencv.org/


Chapter 5

Experiments and Results

5.1 Implementation details

5.1.1 Model performance Expectation Generation
Sensitive Poses Finding

Following the process defined in section 4.3, we first did a systematic error analysis and tried to
find the 3D rotation of the attachment piece under which the PnP algorithm is most sensitive to
the error. We believe by doing so, we can use this 3D rotation to find a rather strict error tolerance
range.

We set the rotation around the X and Y-axis from −90◦ to 90◦ and omitted the rotation around
the Z-axis. Our reason is that the Z-axis is perpendicular to the image plane and pointing out-
wards, the rotation around Z-axis is the last to be applied, which results in a rotation in 2D. Hence,
we assume that the rotation around this axis has less impact on the stability of the PnP algorithm
than the rotation around the X-axis and Y-axis in 3D. The translations were also left out. The pro-
cess was put in a nested loop, and the interval was set to 10◦. We investigated the influence of the
magnitude of the error vector êi on the rotation and 3D reconstruction by applying the error Ef to
all 6 landmarks with gradually increased magnitude from 0 to 10mm (under this project setting,
1 pixel equals to 1mm). For each error vector magnitude, we drew 300 error samples randomly
and added them to the ground truth 2D coordinates. As a reminder, the direction of each error
vector êi, 1 ≤ i ≤ 6 is random, only the magnitude of the error vectors was the same.

As stated before, this error simulation procedure depends on the PnP algorithm to find the
rotation and the translation, for which we used the cv2.solvePnP function provided by OpenCV1

and set the flag to cv2.SOLV EPNP_EPNP . The cv2.solvePnP function returns a rotation
vector rpnp in radians and a translation vector tpnp. In order to calculate the rotation error ER

using quaternion, we used cv2.Rodrigues also provided by OpenCV to transform the rotation
vector rpnp to a rotation matrix Rpnp, then we used the spatial.transform.Rotation from SciPy 2

to transform the rotation matrix Rpnp to its quaternion form. The rotation matrix Rqr returned by
QR decomposition from Scipy3 was also transformed to quaternion using SciPy. After finishing
calculating the rotation error ER and the ADD error, we recorded and reported their median.
The poses that generated the highest median rotation error and the pose that generated the high-
est median ADD error are identified as the most sensitive poses. The purpose of trying to find

1https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
2https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.

Rotation.html
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr.html

https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.qr.html
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sensitive poses is to identify an upper bound for the 2D error, based on which our initial expec-
tation (upper bound) for the model’s performance about the median average Euclidean distance
between the prediction and ground truth is formed. The hypothesis is that the performance ex-
pectation formed under sensitive pose settings should be a rather strict bound for other poses,
and the PnP algorithm should have more tolerance to errors and perform better under other pose
settings. This range can be used not only to assess the model’s performance in the current project
but also as a reference for other landmark-locating methods that will be explored for X23D in the
future.

Zoom-in on Sensitive Poses

After the sensitive poses had been identified, we performed a deeper inspection of how errors
impact the accuracy of the PNP algorithm under these poses. Unlike in the previous step, where
the errors were applied to all the landmarks at once, in this step, errors are added to the landmarks
one at a time, from only adding an error to one of the landmarks to adding errors to all the
landmarks (the landmark with error added will be referred as a compromised point). And we
investigated the relationship between the magnitude of the error vectors and the accuracy of the
PnP algorithm every time we added a new compromised landmark. We again used a nested loop
for this. After setting the rotation of the 3D volume based on the detected sensitive poses. We then
set the range for error vectors’ magnitude to [0, 10] with 1 as the interval and then set the number
of compromised points range from 1 to 6. In the next step, we looped over the magnitude’s range
and drew 300 samples for each magnitude. Furthermore, due to the fact that we are operating in
the medical domain, we prefer the error to be as small as possible. Therefore, we zoomed in on
the magnitude of the error vector by setting the magnitude to change from 0 to 3 with 0.3 as the
interval, and we repeated the above procedure, and the results were recorded and reported.

5.1.2 Criteria Lower Bounds Identification for Unchallenging
Images

Lower Bound Generation for Criterion 1

As mentioned in section 4.4.3, the lower bound value s1 of criterion 1 is an observed value. To
obtain a value for s1, we investigated the value of C1 by rotating the attachment piece in 3D
along X-axis and Y-axis individually from −90◦ to 90◦. The rotation along Z-axis is omitted as
before. However, the existence of the degree of freedom for the translation along the Z-axis when
moving the attachment piece in 3D leads to a zoom-in and zoom-out effect and makes the size
of the attachment piece in the mDRRs changeable. This phenomenon has some degree of impact
on the value of ER1

ER2
and the distance sum. For the sake of simplicity, the translations along all

three axes are set to 0. After, we inspected the result with the rotation around X-axis and Y-axis
as independent variables and C1 value as a dependent variable. Meanwhile, to form an initial
impression of how the C1 values are different under the challenging cases and unchallenging
cases, we calculated the C1 for images that contain several slightly different lateral views and
top-down views for the challenging images and for the unchallenging images we calculated the
C1 value for images that contain the front views of the attachment piece. Then we compared our
impression against the results and manually checked the corresponding poses with C1 that lies
around our impression boundary to identify the lower bound.

We identified 4 as our value for s1. As an example, the poses in Figure 4.9 can be well sep-
arated with s1 = 4. It should be emphasized that this exploration process did not involve any
translations, which means when using s1 = 4 with random rotation setting and translation set-
ting, no matter how much the translation was set for the movement along Z-axis, the 3D volume
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(a) Widget 1’s user interface (b) Widget 2’s user interface

Figure 5.1: Widgets’ user interfaces

needs to be pushed backwards or bring forward to the plane where the translation along Z-axis
equals to 0 while keeping the rotation around all axes and the translation along X and Y-axis intact
to calculate the value for the comparison.

Lower Bound Generation for Criterion 2

The investigation process is the same as how s1 was generated, but with different dependent
variable calculation formulas. Manual checking is also required to identify the value for s2.

We identified 8 for s2. The poses in Figure 4.9 are also an example as they can be well separated
with s2 = 8. When using this criterion to filter the images, the same Z-axis translation alternating
process stressed in Criterion 1 also needs to be employed.

5.1.3 Data Acquisition Supplemental Widgets Development
For the development of the widgets, considering python is our chosen language to implement the
neural network, to have consistency, we also used python to build the widgets. For the graphical
user interface implementation, the tkinter4 package was used.

Widget 1 User Interface

Figure 5.1a shows the user interface of widget 1. When the C1 or C2 hits the set range, the widget
shows up with the current confusing image with landmarks’ locations indicated on it, humans
can categorize the current image by clicking the button below the image. After the human makes
the decision, “continue” button can be clicked to resume the image generation process.

4https://docs.python.org/3/library/tkinter.html

https://docs.python.org/3/library/tkinter.html
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Widget 2 User Interface

The user interface of widget 2 is shown in Figure 5.1b. After initiating widget 2, an image starts
the generation pipeline after the user clicks on the "generate" button. As soon as the image is
ready, the widget is updated with the newly generated image, which also has landmarks’ loca-
tions indicated on it. Afterwards, the user is able to provide the verdict based on which the image
is categorized. The user can always suspend the process by clicking on the "Exit" button.

5.1.4 Dataset Generation
As we mentioned before, we were using the DRR to generate simulated X-ray images of the at-
tachment piece. Thanks to Dr Hooman Esfandiari, the code for producing DRRs and mDRRs are
already provided. Using the code and our criteria, 14000 unchallenging images and 80000 chal-
lenging images were created. As for the anatomy DRRs, Dr. Hooman Esfandiari can also take the
credit, he provided around 40000 anatomy DRRs which facilitated the dataset generation process.
The remaining work is to overlay the anatomy DRRs with the mDRRs of the attachment piece.
An additional step we did before the overlay was to resize the mDRRs with the size 512 × 512
to have the same size as anatomy DRRs which were in size 320 × 320. The resize function from
OpenCV was used to downsampling the mDRRs. After resizing the images, the overlaying was
carried out by using the function cv2.addWeighted provided by OpenCV. To refresh the mem-
ory, our preliminary decision is to fabricate the attachment piece in metal, so we set the weight
for both the mDRRs of the attachment piece and the DRRs of anatomy to 1 when performing
the overlay. We also added data augmentations to the mDRRs of the attachment piece and the
DRRs of the anatomy using Albumentations5 before the overlay operation according to a random
number that controls the probability of applying the augmentations. The augmentation methods
we chose from Albumentations, including Flip, Transpose, Blur, RandomBrightnessContrast,
Downscale, GaussNoise, MotionBlur, and PixelDropout, and the augmentations were also ap-
plied to the 2D coordinates of the landmarks.

By combining the datasets on hand, the approximately 10000 anatomy DRRs, the first 4000
unchallenging images, and the last 30000 challenging images were used to generate two test sets
and validation sets. One contains only the unchallenging images, and the other contains both un-
challenging and challenging images. Each contains 6000 test images and 3000 validation images,
and the remaining unused anatomy DRRs and attachment piece mDRRs will be used to generate
training data during the training. The test and validation set that contains only the unchalleng-
ing pose of the attachment piece is referred to as the unchallenging dataset. And the other test
set and validation set consists of 33% of unchallenging poses and 67% challenging poses of the
attachment piece, and we refer to it as the general dataset. Figure 5.2 is an intuitive illustration
of the mentioned process. Regarding the training data, we decided to perform the augmentation
and the overlay on the fly during the training. The heatmaps for the training and validation were
also generated while training, the standard deviation σ was set to 10 to have a bigger response
area, which presumably would be easier for the model to learn. And the scalar sg in Equation
(4.21) was set to 30 to scale up the Gaussian. Then cropping operation extracted the centre of the
heatmaps using a box with 2.5σ sidelength and set the rest region to 0.

5.1.5 Model Implementation
For the implementation of the neural network, we used TensorFlow6. The backbone network
ResNet50 was also provided by TensorFlow. After loading the ResNet50, we first removed the
last layers by extracting its intermediate results by the layer’s name, and a "Conv2D" layer with

5https://albumentations.ai/

https://albumentations.ai/
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Figure 5.2: Structure of test and validation set

kernel size 3, "same" padding and the ReLU activation were used to process the output from
ResNet50 before feeding into succeeding up-projection layers. To implement the up-projection
layer in the decoder, we first created the up-projection block. For that, we first implemented
the rigid unpooling function and transformed it into a layer using tf.keras.layers.Lambda, two
Conv2D layers using ReLU as activation function and "same" as padding style were subsequently
added to the main branch with kernel size 5 and 3, respectively. And for the skip connection, a
Conv2D layer that has the same activation and padding style was added to process the output of
the unpooling layer. Next, the main branch’s output and the skip connection output were added
together, and a final ReLU layer was used to process the result. For the skip connections from
ResNet50, we took the output from layers with names "conv4_block6_add", "conv3_block4_add"
and "conv2_block3_add", and these outputs were then passed to a Conv2D layer with kernel size
3, "same" padding, and ReLU activation. And we added the outputs with the outputs from the
up-projection blocks to form the up-projection layers. After the three consecutive up-projection
layers, we reused two additional up-projection blocks to upsample the output to the original
image size. From here, the model is split into two branches. A "Conv2D" layer with kernel size 1
and an activation layer with "sigmoid" activation was used for the segmentation branch. Another
"Conv2D" layer with kernel size 3, ReLU activation and "same" padding was used before the
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adding operation of the segmentation branch and localization branch. At the end of the output
layer of the localization branch, another "Conv2D" layer was used with ReLU activation and
kernel size 1 to form a fully convolutional network. The intuition for using ReLU is that the
maximum of the Gaussian exceeded 1 due to the scaler applied when generating heatmaps, hence,
we intended not to set an upper bound for the model.

5.1.6 Model Training
Training Data On-the-fly Generation

The training data was generated using the same procedure as the generation for the test and
validation sets. The first 30000 images from the anatomy dataset were used. When training on
the unchallenging dataset, the last 10000 mDRRs from the unchallenging attachment piece alone
dataset were used. The first 50000 mDRRs from the challenging attachment piece alone dataset are
also included when training on the general dataset. The images were overlaid and augmented the
same way as we did for the test and validation set. At each epoch, 60000 images were generated
for the training on the unchallenging dataset, and 90000 images were generated for training on
the general dataset. The difference in the number of training images is owing to the "challenging"
we defined, the assumption is that by increasing the number of training data, the model might be
able to learn the challenging cases better compared to lesser training data.

Model Training

The models were trained on both the general dataset and the unchallenging dataset with an Adam
optimizer with a decay rate of 0.6 every epoch, the initial learning rate was set to 0.001. Early stop-
ping was adopted to monitor the loss of the localization (heatmap regression) branch because of
the importance of the performance of the heatmap branch to us. When the loss does not decrease
more than 1 epoch, the training is automatically stopped, and the weights that achieved the best
(lowest) loss on the validation set are stored by adding the callback function ModelCheckpoint
provided by Tensorflow.

5.1.7 Post-processing Implementation
The first step in post-processing is to create a mask from the predicted heatmap. We extracted
all the pixels with values larger than 10 (one-third of the scalar sg applied to the Gaussian), and
then set these pixels to 1 and left the rest region with 0. To detect the circle in the mask, we
used blob detection provided by OpenCV to find the blob in the mask. We set the parameter
filterByCircularity, filterByInertia and filterByConvexity all true and filterByColor false,
and we set the value of minCircularity, minInertiaRatio and minConvexity all to 0.01. And the
blob detection outputted the blob centre’s coordinates, and we treated these coordinates as the
final predicted coordinates of the landmark. However, there is a possibility that the blob detection
may fail. In that case, we used the HoughCircles from OpenCV to detect a circle in the heatmap
and output the centre coordinates of the detected circle. If no coordinate is given by HoughCircles,
we consider that no landmarks were predicted. The order of these two centre-finding methods is
important to us. The coordinates that HoughCircles provides are always integers or half-integers,
whereas blob detection can give us more precise coordinates with a resolution of at least 0.00001.
One may prefer integers or half-integers over high resolution, but under our project setting, high
resolution is favoured.

6https://www.tensorflow.org/

https://www.tensorflow.org/
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5.2 Results

5.2.1 Performance Expectation

Sensitive Poses Identified

As promised in section 5.1.1, we report our result in Figure 5.3 and Figure 5.4. The X-axis repre-
sents the rotation around X-axis and Y-axis in degrees in the 3D world with respect to the attach-
ment piece’s coordinate system. The rotation around Z-axis was omitted and set to 0). The Y-axis
represents the rotation error (see Equation (4.19) for calculation) in degrees and ADD error (see
Equation (4.17) for calculation), respectively. The 11 lines from bottom to top correspond to the
11 magnitudes we have for the error vectors, and they are encoded with the same colours in both
plots. The specific colour-magnitude correspondence can be found in the legends of the plots.

From the figure, we also identified our most sensitive poses as rotation [-10,10,0] and rotation
[50, -20, 0]. The exact value of the rotation error and the ADD error under these poses are listed in
Table 5.1. The corresponding DRRs and mDRRs can be seen in Figure 5.5. Based on the identified
poses, we continue with the magnifying-effect error analysis procedure.

Rotation [-10, 10, 0] [50, -20, 0]

Error magnitude 10mm
(image size 512mm × 512mm)

Rotation error ER 25.3259◦ 6.5906◦(in degrees)
ADD error 31.7525mm 45.2599mm

Table 5.1: Identified sensitive poses and the corresponding error values.

Zoom-in on Sensitive Poses

After identifying the most sensitive poses, a similar error-introducing procedure for poses with
rotation [50,-20,0] and [-10,10,0] was repeated, but from only adding an error to one of the land-
marks to adding an error to all the landmarks. As can be seen in Figure 5.3 and 5.4, when the
magnitude reaches 10mm, the rotation error and the ADD error can be exceptionally bad. Based
on the plots, when the error vector magnitudes are smaller than 3mm, the mean ADD error can
be kept under 10mm. And the number of median rotation errors less than 5◦ generated by error
vector magnitude less than 3mm is more than the number of under 5◦ rotation errors generated
by error vector magnitude larger than 3mm. For that reason, we decided to further investigate
the magnitude of the error vector from 0mm to 3mm with an interval of 0.3mm. We recorded the
numerical values of the mean and median (50%) of the rotation error and the ADD error when the
magnitude equals 3 (see Table 5.2 and Table 5.2). We also plotted the distribution of the changes
in rotation error and ADD error under all magnitudes with box plots (see Figure 5.6, Figure 5.7,
Figure 5.8 and Figure 5.9).

In Table 5.3, the highest ADD error was generated when 5 of the landmarks were introduced
with error (landmarks with error introduced will be referred to as compromised points). As well
as in Table 5.2, the median ADD error reached its highest when having 5 compromised land-
marks. But attention needs to be paid towards the insignificant difference between the median
ADD error with 5 compromised landmarks and the median ADD error with 6 compromised



46 Chapter 5. Experiments and Results

Figure
5.3:M

ean
rotation

error

Figure
5.4:M

ean
A

D
D

error



5.2 Results 47

(a) DRR and mDRR of the pose with rotation [-10, 10, 0]

(b) DRR and mDRR of the pose with rotation [50, -20, 0]

Figure 5.5: DRRs and mDRRs of Sensitive Poses

landmarks. This could indicate that there’s a potential for the median ADD error to reach the
highest with 6 compromised landmarks and under rotation [50, -20, 0].

From Figure 5.6 and 5.8, the intention to keep at least 50% of the rotation error under 5◦ re-
quires the magnitude for each error vector to be in se ∈ [0, 1.8] ( 6 · se ∈ [0, 10.8] for 6 landmarks
in total) on a 512 × 512 image, which approximately translates to se ∈ [0, 1.125] ( 6 · se ∈ [0, 6.75]
for 6 landmarks in total) on a 320 × 320 image and 0.35% of the image size. Yet, once we de-
sire to have ADD error under 5, then from figure 5.7 and 5.9, a more strict requirement for
the average magnitude of the error vector is formed, the average magnitude is forced down to
se ∈ [0, 1.5)(6 · se ∈ [0, 9) for 6 landmarks in total) on a 512× 512 image, which is se ∈ [0, 0.9375) (
6 · se ∈ [0, 5.625) for 6 landmarks in total) on a 320× 320 image and takes up roughly 0.29296% of
the image size. And this strict range is our identified model performance expectation:

P (EEuc < 6 · 0.293% · lDRR) ≥ 50%

P (ER < 5◦) ≥ 50%,

P (ADD < 5mm) ≥ 50%

(5.1)

where s̃e is the median of rotation error vector magnitude, and lDRR = w = h is the sidelength
of the image. ER is the rotation error, EEuc =

∑6
n=1 ∥yn, ỹn∥2 is the sum of pairwise Euclidean

distance between the ground truth and predicted 2D landmark coordinates.
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Rotation [50, -20, 0]
# of compromised points 1 2 3 4 5 6
Magnitude 3 (image size 512 × 512)

Rotation error
( in degrees )

Median 1.35550 1.81409 1.72348 1.89033 1.83287 2.03616
Mean 1.35626 1.69417 1.84644 1.95795 1.90962 2.12439

ADD error Median 10.43455 9.50278 8.41392 9.78926 11.64397 11.26135
Mean 9.26265 11.13405 10.78351 12.21170 12.85408 13.45324

Table 5.2: The changes of the median, mean, first quartile and third quartile of rotation error and
ADD error under pose [50, -20, 0] with error vector magnitude equals to 3 when introducing error
to only one of the landmarks to introducing errors to all 6 of the landmarks.

Rotation [-10, 10, 0]
# of compromised points 1 2 3 4 5 6
Magnitude 3 (image size 512 × 512)

Rotation error
( in degrees )

Median 5.09466 4.68021 7.08967 8.53233 8.15359 8.64018
Mean 4.55804 7.49472 8.01562 10.97778 10.04391 10.63039

ADD error Median 3.61111 5.09438 5.71610 7.47067 8.16992 6.77098
Mean 3.67165 6.35236 7.40104 9.36920 9.65525 8.92902

Table 5.3: The changes of the median, mean, first quartile and third quartile of rotation error and
ADD error under pose [-10, 10, 0] with error vector magnitude equals to 3 when introducing error
to only one of the landmarks to introducing errors to all 6 of the landmarks

Figure 5.6: Rotation error under pose [50,-20], error magnitude ranges from 0 to 3 with 0.3 as
interval
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Figure 5.7: ADD error under pose [50,-20], error magnitude ranges from 0 to 3 with 0.3 as interval

Figure 5.8: Rotation error under pose [-10,10], error magnitude ranges from 0 to 3 with 0.3 as
interval
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Figure 5.9: ADD error under pose [-10,10], error magnitude ranges from 0 to 3 with 0.3 as interval

5.2.2 Model Training and Testing
Model Training

35 epochs were set for the training on both the general and unchallenging datasets with early
stopping patience equal to 2. The network stopped after the 17th epoch when training with the
general dataset, and it finished 11 epochs when training with the unchallenging dataset. The
changes of loss of the localization branch (heatmap regression branch) on both the training set
and validation set can be seen in Figure 5.10(a) and 5.10(b), overfitting of the training set was not
prominent in both cases due to the use of early stopping. But the curves in both training processes
flattened after the 7th epoch, which might be caused by the decay in the learning rate, which was
decreased to 2.79936e−5.

Model Testing

Afterwards, the model trained with the unchallenging dataset was tested on its very own corre-
sponding test dataset that contains only unchallenging overlays, and the model trained with the
general dataset was tested on both the general data test set and the test set dedicated for the train-
ing on the unchallenging data. Only the images with ground truth of all 6 landmarks lie within
the frame that is 15mm from the image border (which results in a 290 × 290 frame region on the
image), and all landmarks predicted were considered when calculating the Euclidean distance
between the ground truth and the prediction. To illustrate the idea, the left image in Figure 5.11
represents the ones that were considered, and the image on the right side represents the ones that
were discarded. The number of images with all landmarks within the 290 × 290 frame, as well
as the number of 290× 290 frames with all landmarks predicted, are listed in Table 5.4. Compar-
ing the number of successfully predicted frames and the total frames considered, the model was
capable of catching the attachment piece in most cases.
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(a) Traing loss and validation loss when training on
the unchallenging dataset

(b) Traing loss and validation loss when training on
the challenging dataset

Figure 5.10: Training loss and validation loss on the unchallenging dataset and the general dataset

Figure 5.11: Examples of images that have been taken into consideration and images that have
been ignored when calculating the Euclidean distance

Figure 5.12 shows the distribution of the sum of pairwise Euclidean distances between the
ground truth and the predictions. Table 5.5 reports the test accuracy with regard to the pairwise
Euclidean distance, we define the accuracy as the percentage of predicted images with 2D pair-
wise Euclidean distance EEUC less than 6·0.293%·lDRR. The median distance is the smallest when
the model was trained on the unchallenging dataset and tested on the unchallenging dataset (cor-
responding to the last boxplot in Figure 5.12), and the value is 4.54439mm, which means in 50%
of the cases (median), on average per landmark has an approximately 0.75740mm deviation from
its ground truth, and it takes up 0.2367% of the image size. As our assumption, the model train
on the unchallenging dataset has the highest accuracy with a value of 69.37574% when testing on
the unchallenging dataset. The median distance climbed up to a value of 4.84855mm when the
model trained on the general dataset was tested on the unchallenging dataset, which means 50%
of the case, on average, each landmark deviated from its ground truth 0.25253% of the image size.
As can be seen in the last two box plots of Figure 5.12, the median Euclidean distance has a slight
increase when the model traned on the general dataset tested on the unchallenging dataset, and
a drop in accuracy can also be observed in Table 5.5.

It is certain that the general dataset contains a number of unchallenging images. To confirm
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General testset Unchallenging testset
# of images with
all landmarks within
the 290 x 290 frame

In total:
5258

Challenging:
3572

In total:
5109

Model trained on
general dataset

Model trained on
general dataset

Model trained on
unchallenging
dataset

# of 290 x 290 frames with
all landmarks predicted 5251 3565 5104 5094

Table 5.4: Number of total considered images in each dataset and the corresponding number of
successfully predicted images

our initial guess that the model did suffer from a performance decrease when dealing with chal-
lenging images, we further tested the model on challenging images from the general dataset. The
results are shown as the second box plot in Figure 5.12. An increase in the median of the sum
of pairwise Euclidean distance by around 0.40245mm comparing its performance on the general
dataset can be seen. This could indicate that the challenging data is not as easy to be captured
as the unchallenging data. Furthermore, the model stuffed from a significant performance de-
crease when tested on the challenging dataset compared to tested on the unchallenging dataset,
the differences in median can reach up to 1.07174mm. The median performance of both mod-
els on the unchallenging dataset fell into our initial requirement, but the ability of the model to
handle challenging data still needs to be improved.

It is unfortunate that the ground truth rotation vector and translation vector were not recorded
while the data generation step. However, from Figure 5.3 and 5.4, when the error vector magni-
tude equals 0 (i.e., no error was introduced to the 2D coordinates), the mean rotation error and
the mean ADD error under the investigated rotations were approximately 0, which means the
PnP algorithm is relatively stable when the landmarks processed no error. So we made a compro-
mise. Instead of using the ground truth rotation matrix and translation vector obtained from QR
decomposition, we used the PnP algorithm with the ground truth 2D landmark coordinates to
calculate the near-ground truth rotation vector and translation vector. And we treated the near-
ground truth rotation vector and translation vector as ground truth to calculate the rotation error
and ADD error.

Figure 5.13 shows the distribution of the rotation error between the near-ground truth rotation
vector and the rotation vector obtained from the predictions. Table 5.6 reports the test accuracy
with regard to the rotation error, we define the accuracy as the percentage of predicted images
with rotation satisfy rotation error ER less than 5◦. From Figure 5.13, surprisingly, the median
rotation error reached the highest when the model trained on the general dataset was tested on
the unchallenging dataset, however, from Table 5.6, its percentage of predictions that has rotation
error less than 5◦ is the second best. The rotation accuracies achieved by the model trained on the
general dataset were similar. We also spotted distinct differences in rotation accuracies achieved
by the two models. And the highest rotation accuracy was obtained by testing the model that
trained on the unchallenging dataset with its own test set. Despite the accuracy gap, both models
still exceeded our initial expectation, which is to have at least 50% of rotation error under 5◦.

Figure 5.14 shows the distribution of the ADD error between the reconstructed near-ground
truth 3D landmarks using the near-ground truth rotation vector and translation vector and the
reconstructed 3D landmarks using the rotation vector and translation vector obtained from the
predictions. Table 5.7 reports the test accuracy with regard to the ADD error, we define the
accuracy as the percentage of predicted images with reconstructed 3D landmarks that satisfy
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ADD error less than 5mm. The same as in rotation accuracy and Euclidean accuracy, the model
trained on the unchallenging dataset had the best performance on its own test set, and the model
trained on the general dataset had the poorest performance when testing on the challenging
dataset. A more than 10% accuracy difference between the models’ performance on the chal-
lenging dataset and unchallenging dataset could be another indication that under the current
training setting and network structure, it is slightly difficult for the model to learn the features of
the challenging images. Nevertheless, both models reached our expectation of the ADD accuracy,
which is to have at least 50% of ADD error under 5mm.

Test accuracy (Euclidean distance)
On general
dataset

On challenging images
inside the general dataset

On unchallenging
dataset

Model trained on
the general dataset 51.45687% 45.32959% 63.96944%

Model trained on
the unchallenging
dataset

_ _ 69.37574%

Table 5.5: Test accuracy regarding the pairwise Euclidean distance between prediction and
ground truth

Test accuracy (Rotation)
On general
dataset

On challenging images
inside the general dataset

On unchallenging
dataset

Model trained on
the general dataset 77.07103% 76.8864% 77.99765%

Model trained on
the unchallenging
dataset

_ _ 81.6647%

Table 5.6: Test accuracy regarding the rotation error

Test accuracy (ADD)
On general
dataset

On challenging images
inside the general dataset

On unchallenging
dataset

Model trained on
the general dataset 57.22719% 52.62272% 66.43809%

Model trained on
the unchallenging
dataset

_ _ 71.86887%

Table 5.7: Test accuracy regarding the ADD error
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Chapter 6

Discussion and Future Work

6.1 Discussion of the Results
Sensitive Poses

The near straight horizontal lines around 0 in both plots 5.3 and 5.4 when the magnitude of the
errors equal to 0 in both figures may imply that the PNP algorithm performed stably while there
is no error in the 2D coordinates. In Figure 5.3, the rotation errors start to increase dramatically
when the poses of the attachment piece in 2D images approach its front view (when rotation
equals [0, 0, 0]), and a distinct peak can be identified from this figure. In Figure 5.4, the lines are
rather fluctuating, and with the magnitude getting larger and larger, the lines also become more
and more volatile. Combining these two images, we also find that the rotation error reaching a
peak doesn’t necessarily invoke a peak in the ADD error, there are several cases when the rotation
error reached the peak, but the ADD error was at the bottom.

Additionally, in Figure 5.4, there is also a relatively flat area in the centre of the figure, yet the
rotation error is much more changeable, which could indicate that under some certain poses, the
PnP algorithm was able to produce a translation vector which can compensate for the error intro-
duced by the rotation, and the translation cannot be easily decoupled from rotation. A hypothesis
is that the location of the landmarks on the 3D volume is not optimal, even though numerically,
there is no collinear or coplanar landmark on our 3D volume, from the lateral view, the landmarks
are indeed located within a small distance to a plane. However, the reason for this phenomenon is
currently unclear. Nevertheless, if one values the ADD error over the rotation error, as the ADD
error expresses the average distance between landmarks on the reconstructed object position and
corresponding landmarks on the ground truth object position in the camera coordinate system,
then using the generated unchallenging dataset to train an addition network as a filter to decide
if the coming images contain the unchallenging poses and only perform landmark localization on
the filtered-out unchallenging images could be an answer. However, this is certainly not an ideal
solution to have in clinical practice.

Despite the fact that the PnP algorithm can be incredibly inaccurate when the magnitude
reaches 10, its behaviour was relatively consistent as the most sensitive poses when error vec-
tor magnitude equals 1 are approximately the same as the ones where the magnitude equals 10
(i.e., the most sensitive poses remained the same regardless of the changes in the magnitude of
the error vectors). And the good news is that the plots also show that the average error vector
magnitude that we identified from the sensitive poses for the initial model performance exception
range (ADD error under 5mm and rotation error under 5◦) is applicable for most of the rotations
from [-90, -90, 0] to [90, 90, 0].

From table 5.2 and table 5.3, it is evident that with the increase in the number of compromised
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points, the PnP algorithm became more and more error-prone. But it is also worth noting that
the median ADD error values did not always reach the highest when all landmarks had errors at
the same time. An assumption is that when all the landmarks were introduced with errors, there
was a chance that the added errors simulated a systematic error where all the error vectors were
roughly pointing in the same direction, which caused a shift of the attachment piece in the 2D
image, and when this happens, we would expect to have relatively small ADD error and rotation
error compared to having errors pointing in heterogeneous directions.

Model Performance

Overall both trained models met our preliminary performance expectations. Although the model
experienced an accuracy degradation when it was trained on the general dataset and tested on the
challenging dataset, it failed to reach our expectation on the 2D pairwise Euclidean distance, yet
the rotation error and ADD error it produced satisfied our expectations. When inspecting Figure
5.13 alone, two models performed relatively well and more than 70% predictions that produced
less than 5◦ rotation error. But when combining the rotation accuracies reported in Table 5.6
with ADD accuracies reported in Table 5.7, considerably large accuracy differences (more than
10%) can be noticed. Based on Equation (4.20) for the calculation of ADD error, we inferred the
contribution of the rotation error to the final ADD error might not be as significant as the error
possessed by translation vectors. Thus it might implicitly confirm the observation we made when
performing the error simulation that the effect of the rotation and the translation on the final pose
cannot be easily decoupled. Yet if we compare the Euclidean distance accuracies reported in Table
5.5 with the ADD accuracies, the differences are not as prominent as the accuracy differences
between the rotation accuracies and the ADD accuracies, the Euclidean distance accuracies were
even lower than the ADD accuracies, which could suggest that the initial expectation we set for
the model performance in the Euclidean distance was rather strict.

Additionally, we used 60000 images to train a model specifically for unchallenging poses, yet
it only improved the Euclidean accuracy by around 5.4%, so the question arises: despite our
observation that the PnP algorithm is more stable when facing errors under unchallenging poses,
does it worth the effort to separate the poses for the neural network? It appears that the existence
of challenging data in the training set did not jeopardize the model’s ability to learn the front-
view-specific features to a hazardous extent. However, the model’s confusion on the challenging
images complies with our initial assumption. It is evident that the separation of challenging
poses and unchallenging poses benefited the model’s performance on unchallenging images. But
if we increase the proportion of unchallenging images in the general dataset and feed the model
with more data, will the performance of the model on the unchallenging dataset match that of
the model trained exclusively for unchallenging images? The hypothesis is positive. However,
as the name suggested, we would like to have the model trained on the general dataset to be
able to handle both kinds of images well. Therefore, finding an appropriate balance between the
number of unchallenging images and the number of challenging images in the general dataset
so that the model achieves satisfying accuracy on both kinds of images needs to be placed under
investigation.

Furthermore, when we started the training of the models, the initial learning rate was set to
0.001, which might be a comparably large starting learning rate even with the decay we applied.
The nearly invisible loss decrease in the last epochs in both training processes might have been
caused by a plateau area, a saddle point, a local minimum, or in the best case, a global optimum,
but it is unclear which scenario it fell into. Thus we cannot yet give a verdict either on whether
the decay coefficient was appropriate or on whether the decayed learning rate was too small or
too large. It requires further effort to explore the suitable initial learning rates and decay methods.

From what we have observed until now, the models can at least meet our initial expectations
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Figure 6.1: Example of post-process inaccuracy
Ground truth
coordinates

After
post-processing Euclidean

distance
Distance
sumX Y X Y

37.1829 171.5434 37.7388 172.0551 0.7556

4.3858

84.1942 145.2641 84.7348 145.8088 0.7674
56.5005 242.3362 57. 242.8504 0.7169
81.3708 197.1330 81.8959 197.6716 0.7522
89.5942 241.3432 90.0848 241.8716 0.7211
109.0639 240.2676 108.5770 239.8035 0.6727

Table 6.1: Corresponding ground truth and after post-processing coordinates, and distances be-
tween them (after rounding).

when dealing with unchallenging poses, but in our pipeline, there exists a weak point, which is
the post-processing process. Even though we fed the post-processing with heatmaps generated
based on the ground truth coordinates, the resulting centre coordinates of the blobs were not
exactly equal to the ground truth coordinates, the differences between them are visually small
on a 320 × 320 images, but the sum of the pairwise Euclidean distances can be prominent. An
example can be seen in Figure 6.1, in which the background is the sum of 6 ground truth heatmaps
with a standard deviation equal to 10, and the ground truth coordinates are marked with circles
while the after-post-processing coordinates are marked with crosses, the numerical values of the
coordinates and distances between them can be seen in Table 6.1. Our assumption is there are
two possible elements involved in this pipeline that may contain small errors: the first one is that
the cropping operation we performed when setting the background area to 0 affected the blob
detection’s ability to detect circles, and when performing the blob detection, the detected blobs
cannot perfectly cover the heatmap regions which leads to slightly skewed centres; another one is
that the parameters set for the blob detection that control the shape of the blob were not optimal.

6.2 Possible Future Work
A further investigation into the reason for the certain behaviour of the PnP algorithm we observed
is needed, which will be a valuable input to the design of the next version attachment piece. The
criteria we set for separating unchallenging cases from challenging cases are not sophisticated
enough. It only works when the translation along Z-axis is zero, it takes an extra image gener-
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ation time and memory to make the decision, which this not ideal. However, we can still use
the widgets and criteria to produce enough unchallenging data and then use the data to train a
classification network.

The influence of the use of other loss functions is also worth examining, especially the AdaLoss
(Teixeira et al., 2019), which was specifically introduced for landmark localization through heatmap
regression. As mentioned above, the model might need a better initial learning rate and decay
coefficient to take its performance to the next level. Thus, the impact of different initial learning
rates, different learning rate schedule methods, as well as different optimizers on the model’s
convergence is also another direction to look into. The change in the backbone model can also
be considered. Moreover, as one may have noticed, our model’s structure is relatively simple
and straightforward. Even though it has proven our idea that using intraoperative fluoroscopy
to guide the intervention is a feasible approach, however, to able become a real-world clinical
application, the requirement for accuracy is much higher. Studies that have been done by Gundle
et al. (2017) on the accuracy and precision of a current surgical navigation system reported a lesser
than 0.25mm RMS (Root Mean Square) error between the navigation system-calculated distance
and the ground truth distance when simulating tracking on a machined grid. Therefore, in order
to be able to compete with the current optical surgical navigation systems in the future, further
investigation needs to be done on more advanced neural network structures in order to reach a
higher accuracy than the current accuracy provided by the proposed model.

Image resolution is another factor that may have an impact on the model’s performance, in
this project, the model was trained with images in size 320 × 320, which is a rather small size.
The real fluoroscopy image sizes can range from 512× 512 to 2048× 20481. Sabottke and Spieler
(2020) observed a performance gain when training CNNs (Convolutional Neural Networks) with
an increased resolution of radiographic images. Hence, the effect of image resolution on the
proposed model can be worthwhile to inspect.

A multiplication operation may be more informative than the current addition one in the sense
that by multiplication, the segmentation can black out the background area for the localization
branch, which intuitively has a chance to lead to better performance. Possible ways how to utilize
the information from the segmentation branch more efficiently are also worth exploring. Besides,
the current model was trained with only the attachment piece and anatomy within the field of
view, which means we are not insured when additional surgical instruments enter the image
frame, and to be able to deploy the pipeline in the real world, the further investigation on the
impact of having other structures in the images is necessary.

There is another usage of such landmark detection network that is interesting to explore,
namely, to serve as a guide for medical image registration. Medical image registration is a pro-
cess of aligning different image modalities together. There are many methods that can perform
automatic registration, but the inherent issue is that if two images are far away from each other,
the algorithms are prone to stick at the local optimal, yet with landmark detection, we can use
attachment piece to explicitly mark out the correspondence between the image modalities and
bring them together to a place that near global optimal and then the automatic registration can
take over from there.

1https://siim.org/page/archiving_chapter2

https://siim.org/page/archiving_chapter2


Chapter 7

Conclusion

This project tried to find a solution to help facilitate the realization of the newly emerged surgical
navigation idea X23D.

The possibility of utilizing neural networks in aiding the surgical instruments’ pose estimation
task from a single DRR has been investigated. Ideas have been borrowed from the existing sur-
gical navigation systems, instead of locating instruments directly, a reference frame (attachment
piece) which serves as a medium has been introduced to implicitly indicate the location and the
pose of the surgical instruments. The attempt to first find the landmarks of the reference frame in
DRRs and then compute its pose using the PnP algorithm in the 3D world has been made. In or-
der to establish an impression of how 2D landmarks’ coordinates error impact its final calculated
3D pose, an error simulation procedure has been carried out. From the simulation results, an ini-
tial performance expectation has been formed exclusively for this project, and for other methods
that will be examined to locate the attachment piece in 2D images for X23D in the future. Criteria
which are able to partially separate the 2D near-front-view poses of the attachment piece from
other poses have been proposed. Datasets for the testing and validation of the neural network
have been generated with the help of the criteria. A neural network structure that is able to ful-
fil the initial performance expectation has been designed and trained. The results proved that it
is auspiciously possible to locate the attachment piece in the 3D world by using only one DRR
with only 6 predefined landmarks. But to be able to apply the proposed method to real-world
applications, the accuracy still needs to be improved, and the robustness when having surgical
instruments appear in the image needs to be analysed. Yet this work set a stepping stone for
deeper explorations. It can be seen as a promising starting point for further researchers to employ
neural networks to provide surgical navigation.
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