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Abstract

Programming Question-Answer Communities are at the forefront of modern Developer Work.
While existing research has historically focused on finding duplicate posts in Stack Overflow,
there is currently little to no research for near-duplicate detection which focuses on Platforms like
Discord. To address this gap, we consider existing state-of-the-art approaches in the field and ad-
ditionally replicate and apply the most promising to the new domain. A Discord-Stackoverflow
dataset in the Java domain is constructed and utilized, while for the evaluation both a classifica-
tion and retrieval task are considered. The experimental results show that a direct transfer from
an existing domain and model is feasible to an extent, while classification and retrieval in the new
domain reach up to 77% Precision, 70% F1-Score, and 80% Recall-Rate depending on the length of
the examined Input Sequence.





Zusammenfassung

Das Programmieren von Frage-Antwort-Communities ist an der Spitze der Liste von moderner
Entwicklerarbeit. Während sich die bisherige Forschung auf das Auffinden von doppelten Beiträ-
gen in Stack Overflow konzentriert hat, gibt es derzeit wenig bis gar keine Forschung zur Erken-
nung von Beinahe-Duplikaten, die sich auf Plattformen wie Discord konzentriert. Um diese
Lücke zu schließen, betrachten wir bestehende State-of-the-Art-Ansätze in diesem Bereich und
replizieren die vielversprechendsten und wenden sie auf den neuen Bereich an. Ein Discord-
Stackoverflow-Datensatz im Bereich Java wird erstellt und verwendet, während für die Evaluierung
sowohl eine Klassifizierungs- als auch eine Retrieval-Aufgabe betrachtet wird. Die experimentellen
Ergebnisse zeigen, dass ein direkter Transfer von einem bestehenden Bereich und einem beste-
henden Modell bis zu einem gewissen Grad möglich ist, während die Klassifizierung und das
Retrieval im neuen Bereich bis zu 77% Praezision, 70% F1-Score und 80% Recall-Rate erreichen,
abhängig von der Länge der untersuchten Input-Sequenz.
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Chapter 1

Introduction

Knowledge sharing via Question and Answer (Q&A) websites is quite popular amongst profes-
sionals and enthusiasts alike. In Software Engineering early such knowledge sharing was per-
formed in digital bulletin boards [Dri16] and web forums where people held conversations in the
form of posted messages and replies. In 2008 a new form of Q&A platform was created currently
known as Stack Overflow (SO)1. A combination of specific features made the SO website quite
popular and motivated people to participate. It is easily accessible by anyone without the need
to have an account to read and search for questions. The questions themselves can span a variety
of different topics and cover any interest and knowledge level. Participation is encouraged by
a voting feature where people upvote or downvote specific answers and users earn reputation
points 2. In addition, digital badges are awarded and more privileges are granted with a higher
reputation such as voting, commenting, and even editing other people’s posts (mainly used to fix
formatting and typos) 3. This meticulous reputation and privileges system has made SO the most
popular website related to programming questions.

Due to the website’s widespread use, the existence of duplicate questions and their detection
was observed and led to a highly interesting and researched topic, with the first publications dat-
ing back to 2015. This characteristic can be viewed as another of its differentiating factor, i.e the
effort that is involved with the detection of duplicate questions and the suggestion system that
shows related questions to the users (often already answered). It also helps provide centralized
quality answers to common questions with the ability to have more than one answer in the con-
versation (answers are sorted based on the votes they received). SO has an established way of
marking and providing its users with marked duplicate and related questions. When a question
is identified as duplicate, it is closed and does not accept further answers. Moderators, users with
a gold badge, and users with over 3000 reputation points can mark questions as duplicate and
close them, an action that needs up to 2 additional votes to be executed. Each of the mentioned
authorized users could potentially mark up to 50 duplicate questions per day. It can be there-
fore inferred that manually detecting duplicate questions requires a great deal of manpower and
hours, and yet it inevitably allows for many more unidentified duplicate questions.

Naturally, it is quite common for duplicate question pairs to not get identified concurrently as
the second question is being asked, rather it can be many days or even weeks later. Additionally,
the conversations for each question provide a treasure of knowledge as users explain in detail
answers and concepts, as well as link other relevant questions and thus effectively connecting
concepts and methods. Therefore, the need for automated duplicate detection is apparent and the
benefits to be gained are plenty.

1https://stackoverflow.com/
2https://stackoverflow.com/help/whats-reputation
3https://stackoverflow.com/help/privileges

https://stackoverflow.com/
https://stackoverflow.com/help/whats-reputation
https://stackoverflow.com/help/privileges
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Since the launch of SO until now, a plethora of well-known Community Question Answering
(CQA) sites has emerged, to facilitate communication and question-answering between people
such as Quora, Yahoo! Answers, and countless forums, as well as communication platforms
such as Slack, Discord, and Gitter. The more organically structured communication platforms
like Discord, in particular, are frequently visited by developers to achieve arguably more direct
communication, while the instant and informal conversations allow for a tighter formation of
communities.

It should not come as a surprise that Discord’s motto as a communication platform is ”Your
Place to Talk and Hang Out”, and is one that effectively creates the space for community-driven
communication. Its online spaces have multiple features that provide great flexibility, from public
channels to private chats, to voice calls and video. Every individual can be a part of multiple
communities at once and can choose to blend one in the background while actively taking part in
another.

The platform has seen a great increase in traffic in recent years. In 2020, the platform’s monthly
active users ”nearly doubled from the prior year to 100 million” and ”went up an additional
40% in 2021 to 140 million ” 4. In addition, according to Discord 5, there is a great number of
public servers tagged with technology and development tags. To better illustrate the extent of
public Discord communities, Figure 1.1 shows the number of public servers that are marked as
development related through a variety of tags.

Figure 1.1: Number of Public Discord Servers by Tag.

However, the previously mentioned SO features have not been replicated in such platforms
yet. Thus, it can be argued that their programming communities could greatly benefit from sim-
ilar functionality. This holds especially true in the case of novice members in programming and
question-answering communities who tend to ask guidance on fundamental principles and fre-
quently asked questions that could be easily answered historically by an existing post. Simulta-
neously, such functionality could certainly save community hours and capacity for more intricate

4https://www.thinkimpact.com/discord-statistics/#5-discord-usage
5https://discord.me/servers/

https://www.thinkimpact.com/discord-statistics/#5-discord-usage
https://discord.me/servers/
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and novel inquiries, without excluding such answers from a near duplicate detection either.

1.1 Motivation

Undeniably, CQA websites and platforms are indispensable tools for professional programmers
and coding novices alike and there is nothing that suggests their usage subsiding in the near
future. However, while there is a rich bibliography for websites like SO and Quora, there is lit-
tle to no research available, to the best of our knowledge, for other communication platforms.
Indeed, duplicate questions can frequently be observed in coding-related channels of communi-
cation platforms and team messaging applications like Discord, Slack, and Gitter. In some cases,
duplicate answers are identified and handled manually by the moderators, or in most cases not at
all. In smaller team channels that might not be a concern, but as a community grows so does the
need for the laborious effort of a moderator. Therefore, automatic duplicate detection can be ben-
eficial to decrease the required spent time by moderators, as they can simply review a detected
duplication and take action if needed. In a more automated scenario, bots can also monitor the
conversations and suggest the most relevant posts based on the questions being asked and the
unfolding conversations. As a result, questions and issues are resolved faster and no question is
left without an answer due to increased user traffic and surpassed capacity. In addition, smaller
communities can benefit from the automatic suggestion of a handful of similar conversations that
can be manually reviewed easily, considering that when collective domain expertise is lacking, re-
sponding to all incoming questions can become especially challenging. Lastly, in the case where
suggestions are rated in terms of helpfulness, a reinforcement task scenario could realistically
improve the results over time in new domains where the question knowledge base is not built
yet.

The lack of functionality in these communities similar to the functionality observed in SO can
be inherently explained by their difference in structure. Chatterjee et al. [CDP+19, p. 490], who
explored Slack Q&A chats, convincingly state that ”while chat communities share some common-
alities with other developer communications, they also differ in intent and use. Overall, Q&A
forum content is archival, while chat community content is transient. Q&A forums encourage
longer, more in-depth questions that receive one or more well-thought-out answers. The ques-
tion and its answers are subsequently read by many developers”. They continue by explaining
that, conversely, developer chats are characterized by a typically more informal structure that is
conversation based and involves ”rapid exchanges of messages between two or more developers,
where several clarifying questions and answers are often communicated in short bursts”. There-
fore, chat-based communities contain shorter responses that are more often than not meshed with
non-information-providing messages. Indeed, the inherent nature of chat conversations means
that they should be considered short-lived, and in the case of Slack are often only available for
a certain amount of time that is depending on the space quota of each community. Although it
cannot be necessarily observed directly, similar questions are repeated and answered by members
frequently, especially with time and as the community grows.

Therefore, the main goal of this thesis is to investigate if and how well, approaches that are
commonly used for Q&A platforms and more specifically SO, can perform in informal developer
conversations. To achieve that, the available approaches will be considered and the state-of-the-
art approach will be replicated and applied to extracted Discord conversations. The outcome of
this work is to automatically identify duplicate or near-duplicate questions of a Discord conver-
sation paired to a SO post with the highest precision possible.
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1.2 Research Questions
Given the above, we can define the research questions that this thesis will aim to answer.

RQ1: Can the results of current state-of-the-art approaches in SO duplicate
detection be successfully reproduced?

To answer the question, available research will be taken into consideration, the most fitting ap-
proach will be selected and replicated. The successful reproducibility will be addressed using the
same measures of performance as the original approach.

RQ2: How does the identified methodology perform on the new dataset and
how do the results compare to the reproduced results?

In other words, can we perform knowledge transfer to the fairly new domain of Discord? How do
the conversations occurring on the two platforms relate to each other in terms of their character-
istics? To answer the question, a Discord dataset will be constructed, explored, and the structure
defined to best facilitate the domain transfer task.

RQ3: Can the same methodology be used for semantic question retrieval?

The motivation for this task is the aspiration of aiding developer communities with their help
queries. Thus, we seek to answer the question of whether the identified state-of-the-art (SoA)
solution can be adapted and applied to a semantic retrieval task. And if the adaptation is possible,
what is the observed performance?

RQ4: How is model performance affected when different parts of the con-
versation thread are considered as input?

This research question is motivated by the fact that conversations on communication platforms
are characterized by a more informal structure that can scatter query information across multiple
messages. Thus we seek to understand the effects that different parts of the conversation have on
the duplicate and retrieval results.

1.3 Background
In this section, the theoretical background of foundational concepts needed to comprehend the
work in this thesis is explained. Artificial Intelligence (AI) concepts such as NLP and NLU appli-
cations are covered.

1.3.1 Natural Language Processing
NLP uses machine learning to reveal the structure and meaning of the text. The origins of NLP
can be found in Turing’s paper "Computing Machinery and Intelligence" which proposed the
famous Turing test. As part of the Turing test, there is a task that involves artificial interpretation
and generation of natural language [TUR50]. NLP has evolved from symbolic NLP (1950s - early
1990s), to statistical NLP (1990s–2010s) to neural NLP (present) [GM86] [MS08] [Gol16].
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NLP can be utilized on several high-level use cases. Some popular use cases identified by in-
dustry pioneers of AI and NLP IBM [Edu] and Google [goo] include text summarization, content
and sentiment classification, and machine translation.

1.3.2 Natural Language Understanding

Figure 1.2: NLP and NLU task distinction via Stanford [Mac14].

As a subtopic of NLP, NLU uses syntactic and semantic analysis of text and speech to de-
termine the meaning of a sentence under a specific context. As seen in the above Figure 1.2 of
Subsection 1.3.2, NLU goes one step further than the literal natural language processing per-
formed by NLP tasks and attempts to analyze the deeper meaning depending on the context of a
sentence, conversation or question and answering dialogue.

The main focus of NLU is to use reading comprehension and enable machines to interpret the
natural language, derive meaning, identify context, and draw insights.

Since NLU is a subtopic of NLP ofter times the separation of the two is unclear because most
applied methodologies use both of them to achieve the desired outcome. An intuitive way to
make a distinction between the two is that NLP can work with unstructured data and transform
it into a more structured or desired format. NLU is not concerned with that part and focuses on
subsequent tasks of deriving semantic meaning from the text under a different context. Certainly,
it is their combination, that offers the greatest results and scientific value. [IBM] [KS21] [SCA]

The last important subtopic of NLP, is Natural Language Generation (NLG). It focuses on
constructing text output in the format of human-understandable language and can involve the
generation of speech through text-to-speech applications.
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1.3.3 Semantic Relatedness Tasks
The purpose of semantic tasks is to perform an analysis of the structure of text, sentences, and
word interactions, and based on the output of this analysis to discover the related contexts in text.
Research provides a plethora of examples and definitions of tasks that aim to capture the specific
considerations of each one. Below we present the most prevalent ones, that will be used as a basis
for the definition of this thesis’ description of work.

Duplicate and Near-Duplicate Classification

A fundamental approach when it comes to NLP and AI in general, is the classification task. In its
generic form, it can involve tasks that classify text into different classes, for instance, express sen-
timent, subjectivity and objectivity, question type, and opinion polarity to name a few [CKS+17].
In the duplicate question scenario, we want to know whether two given questions are duplicates
or not. This usually requires a binary classification task, which can output an assigned probabil-
ity to the positive class, i.e a probability that two text sequences are duplicates or not. [TRR+21]
[ZLXS15]

Paraphrase Mining

Duplicate phrase or paraphrase mining is the task of identifying all duplicate and near duplicate
question pairs given a large corpus of questions. This task usually translates to unsupervised
or transfer learning tasks, where knowledge from a studied domain is used in a new domain.
[MFdlC+20]

Semantic Textual Similarity

The general goal of Semantic Relatedness and Semantic Textual Similarity (STS) tasks is to find
how similar different sentences are in terms of meaning. The context of the task can be questions
and phrases, but also longer text like paragraphs and whole documents. Usually, STS is used as a
basis for other tasks. For instance, semantic search, passage ranking, clustering, and information
retrieval for documents utilize STS. [JHC+20] [MTMR22]

Neural Information Retrieval

Information Retrieval of Duplicate Questions [MC17], [GFP+20], [ZRB+16] refers to retrieval
based on techniques that have been used for search engines and classic retrieval tasks and, in
more recent years, Information Retrieval (IR) based on deep neural networks that usually incor-
porate semantic search. In fact, the terms can usually be used interchangeably.

In general, though, the task definition aims to identify the most related questions that exist
in the set, given a not previously seen question (or query) and a large data set of questions. The
distinction between classic IR and Semantic Search is that the former is based on finding matches
using lexical features and similarities, while the latter seeks to improve search by understanding
the content and context of the search input.

Researchers of Sentence Bidirectional Encoder Representations from Transformers (SBERT)
[Rei] note a further distinction in the definition of a semantic search task, which is the differ-
ence between Symmetric and Asymmetric Semantic Search. Symmetric Search assumes that the
search query and the entries in the corpus have relatively the same lengths. For instance, the
search is for single sentences or questions within the corpus. Conversely, Asymmetric Search
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receives a relatively short query and seeks to retrieve paragraphs or whole documents. Depend-
ing on the task, neural retrieval requires a large amount of training data with a size starting from
approximately 100k+ pairs.

1.4 Thesis Outline
This thesis will examine the approach of duplicate question classification which is the basis of the
majority of previous work on SO posts. It aims to examine the reproducibility and transferability
of the state-of-the-art approach that best fits the domain of Discord Conversations. Additionally,
it will examine how the identified approach can be utilized for near-duplicate question retrieval.

The thesis report is structured as follows:

Chapter 2 details related work in SO duplicate question detection, such as Machine Learning
approaches and Deep Learning Models.

Chapter 3 contends the state-of-the-art approaches and explains the selection criteria of the cho-
sen model.

Chapter 4 presents the methodology and process of replicating the model, and the process of
creating the Discord Dataset to evaluate the transferability.

Chapter 5 presents the evaluation metrics and the results of the research questions.

Chapter 6 discusses the results as well as the limitations and validity of the work.

Chapter 7 concludes this work with final considerations and identifies future work.

Appendix A provides additional implementation information.

Appendix B provides a more complete overview of examined conversations.





Chapter 2

Related Work

Duplicate question detection in Developer Forums and SO has been researched extensively over
the years. The explored approaches can be broadly divided into two main categories. The earlier
work that focused more on feature-based approaches, paved the way and set the baselines for
more recent work that utilizes vector spaces and deep learning techniques to improve the results
and provide state-of-the-art solutions. This chapter provides an overview of the most noteworthy
approaches and research findings.

2.1 Feature-Based Approaches
The first interesting machine learning approach was presented by Zhang et al [ZSLA17] that em-
ployed a feature-based approach to solve duplicate detection as a supervised binary classification
problem. The features that were introduced, one of which is novel for the domain, include vector
similarity which is the cosine similarity of a Doc2Vec representation of a post’s title and body. Sec-
ondly, topical similarity performs topic modeling (Latent Dirichlet Allocation (LDA)) and mea-
sures the similarity of topical distributions between two data points. Lastly, a feature that uses
the association score of a trained perceptron produces pairs of phrases that are seen frequently in
established duplicate question pairs. For the classification, six common classifiers were used, of
which random forest was the top performer. Notably, an interesting detail of this approach is the
usage of questions from nine different data sets, one of which was the SO dataset, created from
the 2016 data dump, and containing questions from six different programming languages.

Shortly after, Zhang et al. developed DupDetector as a two-stage “ranking-classification”
problem to detect duplicate questions both in SO and Quora [ZSL+18]. The first step involves
ranking the historical questions by relevance, for example by using topic modeling, to limit the
search space and significantly speed up the second step, which is the supervised classification
model. Similar to their previous approach, the classification involves features such as vector
similarity, a relevance feature adapted from the first step, and an association feature that uses fre-
quently found phrase pairs and each domain’s duplicate questions. They took into consideration
four question features namely the similarity scores between topics, titles, descriptions, and tags.
The first calculation was the similarity between the topics of the two question pairs by employing
topic modeling using the LDA algorithm. For the remaining features the similarity score between
pairs of titles, tags, and descriptions respectively, was computed based on the similar words that
they contain. Finally, the four similarity scores were consolidated to perform duplicate detection.

Silva et al. [SPM18] set out to reproduce the DupPredictor results of Zhang Y. et al., an ap-
proach quite similar to the previously described ones, which used mostly the same features with
the goal of calculating their weighted similarity scores and rank them by relatedness [ZLXS15].
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However, the reproduced work observed a decay in performance and the reported results were
not able to be perfectly replicated. A suggested explanation was the difference in the corpus be-
tween replications because a more recent data dump of SO was used as a basis. An association
between the increase of the corpus pairs and the decrease in performance was also observed,
which establishes the need for robust methodologies that are unaffected by the corpus size.

2.2 Deep Learning Approaches
Advancements in NLU research guided the shift towards more deep learning approaches that are
able to extract the semantic relationship between text, beyond the lexical similarity.

Xu et al. were the first to propose a multi-class approach to predicting semantic similarity
between SO KUs [XYX+16]. To perform the word embedding training and the classification tasks,
they utilized data from the 2016 Stack Exchange data dump and they compiled 6,400 pairs of KUs
that have the tag "Java". The approach uses domain-specific Word2Vec embeddings following the
continuous skip-gram model and trained with 100,000 KUs related to Java. The researchers then
trained a Convolutional Neural Network (CNN) model for the prediction task using cosine loss
to capture the semantic relations between the posts.

Shah et al. highlight the prevalent issue of the unavailability of labeled data, especially in cases
of forums outside of Stack Exchange [SLM+18]. They address this issue by exploring Adversarial
Domain Adaptation (ADA) to essentially use labeled data from one platform to the other. To
use question pairs between quite heterogeneous data sets, they included a domain adaptation
component that aims to make the model unable to differentiate whether a question is from the
source or the target domain. The experiments concluded that direct transfer is not particularly
effective between heterogeneous domains, that adversarial adaptation is most effective when the
domains are rather similar, and that the observed effectiveness is positively correlated with the
domains’ n-gram similarity.

Hindle and Onuczko proposed an interesting solution to aid in duplicate bug report preven-
tion before they occur by continuously querying for duplicate reports [HO19]. Their solution
aspires to provide a new kind of duplication detection by the means of prevention. The idea is
that as the user is typing the bug report, the system is continuously checking for duplicates in
the bug database, and in case a duplicate is found, alert them to the fact. For the information
retrieval task, they used Term Frequency–Inverse Document Frequency (TF-IDF) to model the
vector space and cosine similarity as the distance function between the vectors. The word limit
for the bug report query was set to 25 words to make the evaluation time-efficient, although better
query performance was observed at the 100-word threshold. In terms of evaluation metrics, clas-
sical information retrieval measures were considered such as top-k, Mean Reciprocal Rank (MRR),
Mean Average Precision (MAP), as well as 3 new ones pertaining to the continuous querying task
of the paper, namely aveP-TOP5, MRRTOP5, and MRRTOP5−1.

Wang et al. were one of the first to utilize an Recurrent Neural Network (RNN)-based archi-
tecture to detect duplicate questions in a SO specific task [WZJ19], [WZJ20, p. 25965]. They used
“134,261 non-master and 88,476 master questions” from SO that are dated from 2008 to 2014. The
question tags selected, represented six different question groups that included Java, HyperText
Markup Language (HTML), Python, C++, Ruby, and Objective-C. Word2Vec word embeddings
were created by concatenating the titles, bodies, and tags of the questions. They used three differ-
ent deep learning approaches Word Vector Convolutional Neural Network (WV-CNN), Word Vec-
tor Recurrent Neural Network (WV-RNN), and Word Vector Long Short-Term Memory (WV-LSTM),
that utilized CNN, RNN, and Long Short-Term Memory (LSTM) respectively. For the evaluation,
recall-rate@k was employed at k ∈ {5, 10, 20} which measures the percentage of questions whose
duplicate was found within the top k results. The best-performing model was the LSTM which
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achieved a recall rate of around 82% for all k.
Rücklé et al. employed self-supervised training, weakly supervised training methods, as well

as question generation models to produce a new question title using the body. Afterward, they
used the generated title as a duplicate of the original in an effort to enrich the dataset [RMG19].
Similarly, they trained models directly on the original title and body pairs with the goal of predict-
ing whether they belong to the same question. They report that title-body pairs produced better
Area Under Curve (AUC) (0.05) results than question-answer pairs, something that could be ex-
plained by the calculation of the TF-IDF score and Jaccard coefficient. The same metrics show
that the title overlaps more with the body than the title and body combined, i.e., the whole ques-
tion does with the answer. This approach, while rather interesting, assumes that the questions
are short and well-formulated. However, this is not necessarily the case with Discord conversa-
tions, where the formulation of a question can span multiple messages and utterances and more
importantly do not include titles.

While most approaches try to solve the problem of Duplicate Question Detection (DQD) by
following a supervised learning approach, Poerner and Schütze further explore the unsupervised
path via representation learning. According to the authors of [PS19, p. 1631], unsupervised DQD
“is related to the task of unsupervised STS” which scores sentences based on similarity, in this
case, cosine similarity. Motivated by the work of [RVDA15] and [SLS18] on Canonical-Correlation
Analysis (CCA) they take the idea of ensembling different word embeddings and applying it to
the sentence level using unlabeled task-specific data for the training.

Xu and Yuan pursued the task of duplicate question detection in Massive Open Online Course
(MOOC) forums using a model trained on 5 Stack Exchange domains using the CQADupStack
dataset [XY20]. The MOOC dataset of 1000 question pairs was collected and labeled by actual
course participants. The produced model was CNN based and aimed to capture the semantic
interaction between questions by encoding the question titles using Global Vectors for Word Rep-
resentation (GloVe) embeddings pretrained on the Common Crawl corpus. The final prediction
for the binary classification task in the target domain was achieved by using an ensemble of the
proposed model, that was individually trained on each one of the different subdomains from
Stack Exchange. It is worth noting that a small decrease in performance was observed in the
target domain of the MOOC forum.

Koswatte and Hettiarachchi examined the problem of duplicate question detection in Q&A
platforms from the perspective of real-world application feasibility [KH21]. They identified the
efficiency drawbacks that result from comparing every query with the complete candidate du-
plicate question corpus. The main concern that the paper addressed was the fast retrieval of du-
plicate questions that require a computationally and space-efficient way by reducing the search
space. The novel idea of hashing embeddings for efficient word representations comes from Sven-
strup et al. [TSHW17] but Koswatte and Hettiarachchi are the first, to the best of our knowledge,
to use the idea in the context of SO and with the combination of Semantic Text Similarity. Con-
cerning the specifics of the task, they used a generalized Bidirectional Encoder Representations
from Transformers (BERT) model that was fine-tuned on the domain dataset. The queries of the
test dataset are after training encoded using the BERT model and hashed. The final rank was
obtained using cosine similarity.

2.2.1 Bi-Directional LSTM Models
The two most promising solutions that focused on SO posts were published within the last two
years and both report state-of-the-art performance for their respective SO datasets. Interestingly,
both approaches employ Bidirectional Long Short-Term Memory (BiLSTM) based architectures
with attention layers for capturing semantic matching. The two models in question are ASIM and
SRDM. Their similarities end with the formulation of the examined task as a classification prob-
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lem and the evaluation metrics that were consistent between the two. More on their differences
as well as a comparison of the two models and their use cases are presented in Chapter 3.

2.3 Available Datasets
A crucial part of any problem definition is finding the appropriate data for the task. The following
section presents the most widely used datasets in duplicate question research.

2.3.1 WikiQA
The WikiQA dataset [YYM15] is a publicly available dataset 1 of questions and their sentence
pairs, that were collected and annotated in 2015 which can be used to research open-domain
question answering. In an effort to effectively represent the information-seeking patterns of the
average user, query logs from Bing were utilized to produce the source of questions. Each of the
resulting questions is then matched to a Wikipedia page that could best contain the answer. To
create the corpus the use of crowdsourcing was key to output approximately 3,000 questions and
30,000 sentences.

2.3.2 Quora Question Pairs
Quora Question Pairs is arguably one of the most popular datasets for paraphrase question de-
tection tasks. It was initially released for a Kaggle Competition sponsored by Quora in 2015 and
includes over 400,000 question-only, open-domain pairs along with the binary classification of
whether a pair is duplicate or not 2. The Quora Dataset contains general theme questions and in
the majority are not software-development related.

Stack Exchange

As discussed in Section 2, there are various examples of research that use some form of SO data
to predict duplicate questions. Stack Exchange, which is a network of websites dedicated to
question-answering of various fields, has been an invaluable source of duplicate question pairs
for research. Stack Exchange’s Data Dump 3 can be used to extract question pairs from specific
subdomains and time ranges.

CQADupStack

CQADupStack 4 is a Stack Exchange dataset for community question-answering created by Hoove-
green et al. [HVB15]. It includes posts from twelve different StackExchange subdomains, which
are annotated as duplicate questions. The dataset is used heavily in research for benchmark-
ing both classification and retrieval tasks, and train, dev, and test splits are already provided in
the dataset. The CQADupStack dataset was created from a Stack Exchange data dump that was
released on September 26, 2014. While it is a well-constructed and frequently used dataset, its
wider domain focus that does not include SO questions, as well as its quite outdated timeframe

1http://aka.ms/WikiQA
2https://www.kaggle.com/competitions/quora-question-pairs
3https://archive.org/details/stackexchange
4http://nlp.cis.unimelb.edu.au/resources/cqadupstack/

http://aka.ms/WikiQA
https://www.kaggle.com/competitions/quora-question-pairs
https://archive.org/details/stackexchange
http://nlp.cis.unimelb.edu.au/resources/cqadupstack/
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rendered it unfit as a corpus candidate for the task of near-duplicate question detection on Dis-
cord. In addition, the Spring Framework, which is one of the most popular Java Frameworks,
was released in 2014 and has gained its popularity in more recent years.

AskUbuntu

AskUbuntu is an example of a Stack Exchange sub-domain that has been the subject of NLP
research over the years, potentially because of its active user base. A version of this dataset is
available by [RSM+17], assumes the usage of the September 2014 data dump and contains 167K
questions and 17K labeled as duplicate pairs.

The focus of this work is of course SO, the most popular website of the Stack Exchange net-
work, and previous work usually focuses on similar subsets in order to facilitate effective compar-
ison between newer and past approaches. An observed trend is using the most popular question
tags across SO, the data dump from 2016, and considering fields like the title, question, and tags.

Stack Overflow Knowledge Unit

Shirani et al. [SXL+19] created a SO dataset of "domain-specific Question-Question relatedness"
5. In contrast to most other approaches, which mostly consider the title and question of the post,
this approach considers a SO discussion as a complete KU. Utilizing questions containing the
Java tag, they built a KU graph that helped uncover relationships between the KUs. Each KU is a
graph node and each datapoint in the dataset is a KU pair that contains information about both
questions’ titles, bodies, (accepted) answers, along with any code blocks, tags, and SO Identifiers
(ID)s.

Moreover, they categorized the relationships between posts into four distinct classes, namely
"duplicate", "direct", "indirect", and "isolated". The quality of the labeling was tested via a user
study where the 3 annotators’ labeling agreed with the dataset labels 82% of the time.

The semantic meaning between the classes was explained intuitively by the researchers as
follows:

• Duplicate is a pair of KUs that involve the same question discussed in different ways, and
both questions can be answered by the same answer.

• Direct relationship is when two questions cannot be answered by the same answer, but
their topics are similar enough that one KU can help solve the problem in the other. For
instance by including examples, explaining common concepts, or solving only a sub-point
of a greater complex problem.

• An indirect pair denotes the existence of related topics which do not answer the question of
the other KU.

• The isolated class marks the unrelatedness of two KUs.

From a more technical standpoint and as far as the KU graph is concerned, the classes are
created according to the graph’s nodes and edges as follows:

• Duplicate - The questions that are marked duplicate in the SO website.

• Direct - The KUs that are directly linked in the graph are questions that have been provided
by a community member in the form of a hyperlink at the KU itself.

5https://anonymousaaai2019.github.io

https://anonymousaaai2019.github.io
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• Indirect - The KUs that are derived from the KU graph and have up to a certain degree of
separation, i.e a bounded range of [2,5] was implemented.

• Isolated - KUs that have no connection in the knowledge graph.

Intuitively, an advantage of this multi-class categorization of question relatedness could be
derived from the fact that even though two questions might not be duplicates, the answer of
one can somehow help answer the second question. Therefore, the need for strictly duplicate
questions is eliminated to a degree because a user does not have to wait for the question to be
answered but can refer to already available related questions. For the sake of completeness it
is worth noting that the order of relatedness of the classes is duplicate > direct > indirect >
isolated.

2.3.3 Communication Platform Datasets
Despite the widespread use of platforms such as Slack and Discord, datasets derived from devel-
oper communities hosted on them are scarce. Some research has focused on mining and disentan-
gling conversations and thus their output could provide opportunities for detecting conversation
and SO question pairs.

Chatterjee et al. [CDKP20] modified a technique from Elsner and Charniak [EC08] to disentan-
gle software-related Slack chats and the available dataset includes 39,000 conversations from four
channels dedicated to Python, Clojure, and Elm. Based on the same work, Subash et al. [SKV+22]
also created a Discord dataset of disentangled Discord conversations of four programming lan-
guage communities, namely Python, Go, Clojure, and Racket. The topic modeling approach they
implemented revealed basic conversation topics within the communities and opens up new re-
search opportunities. Interestingly, according to Subash et al., the two platforms share chat con-
versation patterns which could indicate further generalization potential in duplicate conversa-
tion detection. While these datasets do not provide any kind of classification or semantic labeling
for the conversations, they were definitely considered as a dataset source. Moreover, available
datasets are worth mentioning not only because of their scarcity, but to facilitate future work too.

This Chapter focused on researching and presenting the existing work that has focused on the
Stack Overflow domain, as well as the available duplicate-question datasets. In turn, the related
work and available data will inform the selection process of the approach to be implemented.
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Approach

The following chapter presents in more detail the two state-of-the-art solutions that were consid-
ered as the model basis for this thesis and explains the reasoning behind the choice of ASIM over
SRDM. As prefaced in Section 1.1, the scope of the selection is to find the best-performing dupli-
cate detection model on SO questions, while also considering the transferability potential to the
Discord domain. In other words, the approach selection should be mindful of the characteristics
that would make each model a better fit for the target use case.

3.1 ASIM: Attention-Based Sentence Pair Interac-
tion Model

ASIM aims to predict the relatedness between questions on SO. The model "adopts the attention
mechanism to capture the semantic interaction information between the questions". The model
architecture is using GloVe embeddings and BiLSTM with attention layers to encode SO posts.
The embeddings of 300 dimensions were pretrained using data from SO, which infers that the
embeddings are domain-specific and are shown to improve the overall model performance. Fig-
ure 3.1, shows a schematic representation of the model architecture. The dataset used was the
Shirani et.al KU dataset discussed in Section 2.3.2, which contains multiple levels of relevance
between Java-related SO posts. The input of the model is two KUs that concatenate the fields of
title, question body, and answers, and therefore takes into consideration a big part of each con-
versation for the prediction, but it ignores code blocks. The duplicate detection task is formulated
as a multi-class classification problem that aims to predict the relatedness class of two question
pairs. The researchers report a precision and F1 score of 0.82, making the model the state-of-the-
art solution of the specific dataset. Interestingly, they test the generalization of the model, by
applying the prediction task on the AskUbuntu dataset (Sec. 2.3.2) and achieving state-of-the-art
performance on this dataset as well (0.96). The authors claim that the generalization power can
be at least partly attributed to the domain-specific embeddings.

3.2 SRDM: Semantics and Relevance Duplicate Ques-
tions Detecting Model

Liao et al. [LLZY21] proposed a solution that uses Siamese BiLSTM to detect duplicates in SO.
Their model, which is called SRDM, uses Siamese BiLSTM that encodes each question’s title and
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Figure 3.1: The ASIM Architecture as presented by [PWQ+21].

body to capture the semantic interaction information with a pairing question’s title and body
through "soft align attention and inference composition". Apart from the semantic matching, the
researchers aim to perform relevance matching as well by soft term matching using only the title.
They explain the difference between the two as semantic matching being the one that "empha-
sizes the ‘meaning’ correspondences by exploiting lexical information and compositional struc-
tures", while relevance matching focuses on exact lexical matches of the title field. The formu-
lated binary classification problem uses duplicate SO questions from six programming languages,
namely Java, Python, HTML, C++, Ruby, and Objective-C. The model used for encoding the in-
put was the generic skip-gram Word2Vec embeddings from gensim, and from each SO post, the
question title and body were utilized for prediction. The dataset is the one produced by [SPM18]
and includes a total of 197k question pairs which is analogous to the KU dataset of [SXL+19] of
Section 2.3.2. In terms of performance, the overall reported precision and F1 score were 0.94 for
both metrics.

An interesting observation of this paper was derived from the utilization of the pretrained
BERT [DCLT18] and SBERT [RG19] models as a baseline for benchmarking performance. The
experimental results showed that SRDM performed better than both BERT models, with SBERT
having the worst performance among the three, potentially because only the title of the ques-
tion was utilized. This strengthens the confidence in utilizing BiLSTM with self-attention for the
duplicate detection task.

Looking at Figure 3.2 which shows the architecture of SRDM, we can see that the titles and
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question bodies are fed separately as pairs to the network. This effectively means that there needs
to be a distinction of title and body in the conversation for this architecture to be employed.

Figure 3.2: The SRDM Architecture as presented by [LLZY21].

3.3 Common Architecture Elements
It is quite clear that the two approaches are similar to each other, and it is safe to claim that the
fundamental common elements of the two, contribute a lot towards their performance. Thus,
considering the similar elements of the two models, the most fundamental ones are presented
below, along with reasoning around their importance.

BiLSTM

A Long Short Term Memory network, or LSTM, is a special version of a Recurrent Neural Net-
work RNN which solves the short-term memory problem of RNNs. As we have seen in previous
work in Chapter 2, many approaches utilize this kind of layer to capture the semantic dependen-
cies in text. LSTMs are used to handle long-term dependencies within the text which means that
they can learn dependencies even when the lexical distance between the relevant words is large.
In practice, they are used for encoding a sequence, and the bidirectional approach, i.e. BiLSTM
encodes both in the forward and the backward direction. The purpose of this is for the model to
understand the words before and after a specific word.

However, before encoding the input, the text needs to be transformed into word embeddings.
It is a crucial step that affects the performance of a model significantly, so special care should be



18 Chapter 3. Approach

taken when choosing the algorithm that produces the embeddings.

Word Embeddings for Sentence Similarity

The idea of word embeddings, i.e. different processes of representing words by transforming
them into number vectors is a fundamental research area of Natural Language Processing. Vari-
ous approaches have been employed by researchers and professionals over the years, and many of
them, like Continuous Bag of Words (CBOW) and Skip-Gram, are based on statistics that consider
the occurrence of words in the surrounding context. More recent approaches focus on mapping
the words into a vector space, to map words that have similar context, spatially closer to each
other.

Since the concept associated with a word is high-dimensional, the strategy of word embed-
ding is to also reduce the dimensions of a word and only keep the dimensions that represent the
meaning of the respective word. Word2Vec and GloVe (Global Vectors for Word Representation)
fall into the category of neural word embeddings and are very similar in the way they are created.
They are both unsupervised learning algorithms that through a word-to-word co-occurrence ma-
trix, which shows how often a word is found in the same context as all the other words, calculate
the probability that two words occur in the same context. The main difference between them
is that GloVe which was proposed by Pennington et al. [PSM14] produces word representations
that also consider the global interaction and context of words within the text. In other words,
their novelty results from the consideration of word co-occurrence in the whole corpus rather
than only locally per sentence.

As Mikolov et al. pointed out [MYZ13, p. 746], ”these representations are surprisingly good at
capturing syntactic and semantic regularities in language, and each relationship is characterized
by a relation-specific vector offset. This allows vector-oriented reasoning based on the offsets
between words” which can be showcased by a widely known example that characterizes GloVe
embeddings. The example shows the learned relationship between equivalent male and female
words and that the produced vector representations can be used to perform simple calculations
on the respective word meanings. Thus, “King – Man + Woman” results in a vector that is quite
close to the word "Queen" in the vector space.

Attention Mechanism

Arguably, one of the most important components of the model networks is the attention mecha-
nisms which are the catalysts in the ability of a model to capture the semantic similarity between
sentences. Attention mechanism in deep learning was first used by Bahdanau [BCB14] for ma-
chine translation but the concept can be applied to numerous semantic tasks. In fact, this concept
has been so greatly influential, that Vaswani et al. when they proposed the Transformer architec-
ture contended that, attention is all you need. [VSP+17].

In our models, attention is used to capture the semantic correlation between each word of one
sequence with the second sequence and vice-versa. In practice, the input sequence is passed to
an RNN that functions as an encoder which has a hidden state and contains information from
all the previous words in our sequence. The challenge with the non-attention approach is that
if the sentence was long, all of the information could not be compressed in the last hidden state
and hence the output was inaccurate. The role of the attention mechanism is to assign attention
weights to the input. These weights represent the relative importance of each input element
versus the rest of the input elements. This way, the model is guided to pay greater attention to
particular words that are more critical to performing the task at hand. Therefore with attention,
we can give the context vector access to the entire input sequence, instead of just the last hidden
state, and still be able to input and process long sequences.
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3.4 Chosen Solution

The starkest difference between the two contenders is SRDM’s use of relevance matching and
the division of the input with the usage of two Siamese Networks. While the methodology of
SRDM is novel and produces promising results, it arguably cannot be faithfully replicated and
implemented for the Discord use case, as questions in the help channels do not have titles, which
the model uses for relevance matching.

Certainly one has to consider the option to adapt the relevance matching to the complete
question or conversation in general. However, this is far from ideal if we consider the reported
observations of the paper’s authors. As an experiment, they explored the case of implementing
relevance matching to the body similarly to the title. The experimental results showed that ex-
tending the relevance matching to the body decreases performance, perhaps because the more
frequently used common words are introducing noise. Their explanation suggested that because
the body of the question is longer and it has many description sentences, the text of irrelevant
questions will contain lots of vocabulary repetitions, and the usage of relevance matching for the
body will introduce errors. Moreover, Discord conversations are not structured in the form of
titles and questions, hence the use of multiple Siamese networks that fragment the input, is not
optimal.

On the contrary, ASIM considers SO questions as complete KUs, meaning that they utilize not
only the title but the body of the question as well as the accepted answer. The same is reflected
in its architecture, as each SO pair is used independently as input to the encoder, which poses no
restriction to the field that is needed at encoding time. Its approach of concatenating the input,
grands more experimentation freedom in terms of the conversation sequence lengths that can be
used. In addition, research has shown the positive impact of Domain-Specific Word Embeddings (
[XYX+16], [PWQ+21]) on performance metrics versus the use of multi-source embeddings which
is expected to be an aid in Discord’s domain transfer scenario.

In regards to the reported performance of the two models, a first look suggests that SRDM
performs better than ASIM, as the reported F1-score is 0.94 and 0.82 respectively. However, the
performance of ASIM in duplicate and isolated classes of ASIM as well as the experimental results
when applied to the AskUbuntu domain, suggest otherwise. Indeed, the replication and exper-
imental results of Section 4.6 show that the two models perform comparatively equally in the
binary classification task, with ASIM achieving 2% better precision; an edge that could arguably
be attributed to the domain-specific embeddings.

Certainly, the search for an optimal solution has to mention transformers and the models that
utilize them, which have undeniably been the catalysts in the advancement of NLP research dur-
ing recent years and are being successfully used for various tasks from classification and summa-
rization, to language translation and generation. Their parallelizability has enabled the research
community to efficiently train models on great amounts of data and achieve state-of-the-art re-
sults on most of the aforementioned tasks. However, Ezen-Can [EC20] contends that the accuracy
gains of these models diminish when used with small datasets. The results of their experiments
comparing LSTM and BERT for "intent classification and out-of-scope prediction" seem to con-
firm the hypothesis for a corpus of approximately 27,000 utterances [LMP+19, p. 5]. The same
indication arises from the related work review of Chapter 2 [LLZY21]. Simultaneously, the reality
is that more often than not, the available task-specific datasets for many use cases tend to be on
the smaller side in both academic research and industry alike.

Therefore given the above, and since the scope and scale of this thesis involve a small subset of
Discord conversations, the BiLSTM solution of ASIM was chosen as the optimal approach as the
basis of the work. Any limitations and threats to validity that may result from using this approach
will be discussed in Chapter 6.
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3.5 Evaluation Metrics
Similarly to the selection of the appropriate methodologies to be used, the selection of metrics
that will help evaluate their performance is of equal importance. The following Section presents
the evaluation metrics available, that are commonly used across existing work and best practice
standards. The two main tasks that need to be evaluated as noted in Section 1.4 are classification
and information retrieval.

Classification Metrics

The most common evaluation metrics that are taken into account for evaluating classification
tasks framed under the assumption of the question-relatedness task are accuracy, precision, recall,
and F1 score.

Accuracy is defined as the proportion of true results among the total number of cases exam-
ined and is calculated by:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision is the proportion of the predicted classes (positive cases) that are actually their pre-
dicted classes (positive).

Precision =
TP

TP + FP
(3.2)

Recall represents the proportion of classes that were correctly classified.

Recall =
TP

TP + FN
(3.3)

F1 Score calculates the harmonic mean between precision and recall and is a good metric when
the goal is to minimize both the false positives and negatives [GBV20].

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(3.4)

AUC is another evaluation metric suitable for classification, is designed around the binary
task, and is used to evaluate how well the model can distinguish between classes. To use AUC for
multi-class classification it has to be calculated using one of the two available strategies, namely
“one versus one” (OVO) or “one versus rest” (OVR). More specifically, one versus one computes
the AUC of all possible pairwise combinations of classes and then takes the average to output a
single score, whereas one versus rest computes the AUC of each class against the rest and then
takes the average.

An approach that definitely adds variability to the classification task, is the introduction of
new data in a near duplicate detection task. One needs to consider the effects that it can have on
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the dataset as it can lead to the introduction of numerous false negatives and in turn affect the
results. In other words, within the new dataset, there might exist new question pairs which were
not identified as duplicates and thus were not annotated. For this reason, [SLM+18] and [RMG19]
used the AUC to evaluate the model’s rank between positive and negative pairs. Specifically,
AUC(0.5) is the AUC with a set threshold for false positives and it can be considered as more
stable when many unrelated questions are present and we cannot control for false negatives. The
caveat in its usage is that there does not exist a robust implementation of a generalization for the
multi-class classification assumption [Dö18].

Neural Retrieval Metrics

Neural Retrieval metrics do not differ from the standard Information Retrieval metrics. Below are
a few fundamental metrics that can be used for the evaluation of any retrieval approach.

Top-k or hit-rate measures whether a query returned a successful duplicate within the top k
results. If the algorithm succeeds then the particular query gets a score of 1. The reported measure
is the average across all the queries. It is a straightforward metric that is usually a simplistic way
to measure performance.

Recall-rate@k as explained in [WZJ19] is the number of questions whose master question
pairs appear in the list of topk retrieved results, while Nall is the total number of duplicate ques-
tions used for testing. It essentially measures the percentage of queries whose master pairs are
successfully retrieved in the list.

Recall − rate@k =
Nk

Nall
(3.5)

Obviously, the above definition of recall − rate assumes that the pairs to be retrieved are unique
and there is a master result for each query. Realistically, a retrieval task can have multiple relevant
results. A generalization of the metric considers all the results that are relevant to the query,
calculates the percentage of the relevant answers that were retrieved at the topk for each query,
and returns the average across multiple queries. In case the concern is how many of the topk
retrieved results are relevant, then Precision@k should be used instead.

MRR which stands for Mean Reciprocal Rank, gives priority to the rank of the expected result
and evaluates the full results and not just the top k. It calculates the average of the reciprocal rank
of the correct answer in a query and the final measure is again the average amongst n queries. This
subsequently means that correct results with low ranking are penalized and it simultaneously
supports only a single result as correct.

Mean Average Precision or MAP is another information retrieval measure that does take
into consideration multiple matches and achieves it by ranking the effectiveness of a number
of queries but penalizes results that are correct, yet lower ranked. MAP does not have a cap on
the number of results that evaluates and is calculated by measuring the average precision (aveP)
of a single query. As usual, it then produces the mean of the aveP for all n queries. However, it
does not take into consideration any false negative results which can be prevalent in the dupli-
cate question clusters. For instance, consider the case of a commonly asked question in Java. By
definition, one can anticipate the existence of many duplicate instances. The same can already be
observed in the KU dataset and the graph of Section 4.1, where some nodes have upwards of 60
connections.





Chapter 4

Model Replication

The following chapter will focus on the first research question of Section 1.2 by replicating ASIM
and exploring its classification capabilities with respect to the SO dataset and different variations
in text input. The first matter to be addressed is the dataset. As already mentioned, the KU
Dataset of Shirani et al. [SXL+19] is utilized, which was introduced in Section 2.3.2. Aiming to
understand its underlying structure and characteristics, we begin by exploring the dataset.

Scope Indicator Size

Whole KU # of distinct KUs 160,161

# of four types of KU pairs 347,372

Title
avg. # of words in title 8.52

avg. # of words in body(exclude code snippets) 97.02

# of distinct KUs whose body has at least one code snippet 117,139(73%)

Body avg. # of code snippets in one body 1.46

avg. # of words in single code snippet in one body 118.46

Answers

# of distinct answers 318,491

avg. # of answers within single KU 1.99

# of distinct KUs contain at least one answer 140,122(87%)

# of distinct KUs contain an accepted answer 90,672(57%)

# of distinct KUs whose answers has at least one code snippet 96,707(60%)

avg. # of words in an answer (exclude code snippets) 68.39

avg. # of code snippets within one answer 0.60

avg. # of words in single code snippet 81.98

Table 4.1: Knowledge Unit Dataset Statistics (Shirani et al.).
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4.1 Dataset Exploration
The dataset creators provided some basic statistics about the corpus, as seen in Table 4.1. The
number of distinct questions is 160K, while the derived pairs in the four balanced classes are
almost 350K. A note on terminology; for the purpose of describing an individual question within
the SO corpus, the terms question, SO post, and KU will be used interchangeably. In addition,
since the corpus is divided to train, dev, and test dataset, it is worth mentioning that a single line
within the corpus is a pair of two KUs, along with their attributed class.

Given that the corpus is the result of a KU Graph, it is interesting to know how the questions
are connected with each other and how many related questions each one roughly has. Figure
4.1 shows the frequency of each question in the knowledge graph, i.e the distribution of the node
connections. The x-axis represents the number of times a question occurs in the knowledge graph,
and the y-axis, which is logarithmically scaled in the figure, represents how many questions with
each occurrence count exist in the graph. We can see that most of the KUs have relatively few
connections, while a few of them have up to 60 connections. In addition, the data connection vi-
sualization supports the observations made by Park et al. [PLY05] who stated that self-organized
scale-free network structures, i.e the KU network graph, follow a power law degree distribution.
This means that just a handful of posts get the majority of users’ attention, while the rest of the
posts amount to the long tail of the distribution and are therefore under-linked. Interestingly, the
same can also be explained by preferential attachment theory also known as "the rich get richer".

Figure 4.1: Count of nodes per connection degree - Distribution of question occurrence in the dataset - x:
Frequency of question - y: Question appearance counts

Thus it seems that popular answers get more frequently shared than others or that there are
some questions, some form of which, are commonly asked by users. It is worth noting though,
that the collection of pairs across the KU dataset is unique, meaning that for every [KU1,KU2]
pair in the dataset, there is no reversed [KU2,KU1] pair. The assertion was performed to ensure
that an already learned pair by the model, does not exist in the evaluation dataset, something that
would give a false signal of the model’s rote learning rather than its true performance.

Knowledge Unit Text

Each KU text sequence consists of fields found in the Stack Exchange data representation and
includes the title, the question body, as well as all the answers. The KUs do not take into con-
sideration other data fields such as the code blocks and question tags. A KU is constructed by
simply concatenating all the fields as strings into a text sequence. Looking again at Table 4.1 and
considering that the input sequence of the model is limited to 250 words, we can infer that the
model input before data preprocessing contains on average, the title, body, and two answers, and
they contribute to the KU size by 3.5%, 38.8% and 57.7% respectively.
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(a) Example of duplicate questions in SO

(b) Example of a direct question-pair in SO

(c) Example of indirect questions in SO

Figure 4.2: Example of KUs in the Stack Overflow corpus.
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4.2 RQ1: Model Reproducibility
RQ1: Can the results of current state-of-the-art approaches in SO duplicate detection be success-
fully reproduced?

4.3 Preprocessing
In order to effectively replicate ASIM and to use the pre-trained GloVe embeddings1, the SO ques-
tions need to be preprocessed and thus detailed instructions should ideally be present for each
step of the process. A missing element in the ASIM authors’ reporting, could arguably be the lack
of details about the steps followed for preparing the corpus. The available instructions provided
in their paper stated that they "used the posts part to extract the content in the body tag, and clean
the content by removing the HTML tag, code snippets, Uniform Resource Locator (URL) link,
punctuation, stop words, and changing all words to lowercase and stemming" [PWQ+21, p.4].

Therefore, the exact preprocessing steps had to be approached. This is to ensure that the
preprocessed text matches as close as possible the word embeddings because unknown words
add unwelcome noise to the vectors and do not contribute any information. An effective way to
achieve the closest approximation is by measuring the vocabulary coverage and the Out of Vocab-
ulary (OOV) words of the preprocessed corpus. OOV words result in a loss of information that
the model cannot utilize, so the closer these two metrics get to the reported or the best possible
accuracy, the more confident one can be about the correct replication and validity of the experi-
ments. We report that the best approximation yielded vocabulary coverage of 90.87% and OOV
instances 0.03%, i.e 30, 464 out of the 100, 779, 588 total words.

The following steps summarize the approach that achieved the above results:

1. KU creation: The first step is to create the KUs by concatenating each question’s Title, Body,
Accepted Answer, and rest of the Answers.

2. Hyperlinks are located using a regular expression and the assumption is made that they are
normalized by replacing them with the url token since it was present in the GloVe vocabu-
lary.

3. A step that was not mentioned in the initial approach but was found to increase the vocab-
ulary coverage was the splitting of CamelCase words to individual words.

4. Punctuation Marks are all removed, as well as unicode values and numbers

5. All words are transformed to lowercase

6. Stopword removal was performed by using nltk.corpus

7. Stemming of the words was achieved by using nltk’s PorterStemmer, while Lancaster
stemmer, Snowball, as well as WordNetLemmatizer were additionally considered and
tested.

4.3.1 Misspelled Words
It is admittedly quite common for misspelled words to appear in the text produced by humans
which is something that translates to misspelled words in the available questions and answers.

1https://zenodo.org/record/4641569

https://zenodo.org/record/4641569
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So, in the attempt to mitigate these and potentially match the domain-specific embeddings more
closely, the Textblob library was considered as a way to find and fix typos. However, this had the
opposite effect that showed a considerable decrease in vocabulary coverage, something that can
perhaps be attributed to the fact that the vocabulary used by the library is not well suited for
the particular domain. Moreover, the vocabulary of the pre-trained embeddings cannot be used
because it contains stemmed words that would not perform well with the misspelled words that
cannot be stemmed by nature. Other explanations were provided by Homma et. al who observed
an analogous decrease in performance when spellchecking was applied during preprocessing
[HSY16]. They pointed out that if the GloVe embeddings were trained on unsanitized datasets,
the resulting vocabulary can already include common misspellings. In addition, some words
that would not be recognized by the GloVe vocabulary could potentially be changed to real, but
unrelated, words, something that would introduce noise to the text.

Creation of KU pairs for model input

The preprocessed dataset has to be shaped into appropriate text input and saved to .txt files
(training, dev, test) in order to be used as model input for the classification task. Each line of
the file represents a KU pair and is appended to the file in the form of < KU1 KU2 class >, each
element is separated by the tab character. The task we aim to replicate is predicting the relatedness
class between such KU pairs. As a reminder, the relationship between classes was explained in
Section 2.3.2, and for reference, some question pairs for each class are shown in Figure 4.2.

4.4 Model Architecture
To showcase how the KU pairs are utilized and how the class prediction is achieved, a more
detailed view of the model structure can be examined. We can refer once again to Figure 3.1
which shows the schematic overview of the model architecture as well as the following brief
summary of its components:

1. The Word Embedding Layer is where the input of the model, i.e KUx and KUy are trans-
formed to their vector representations using the pre-trained domain-specific GloVe word
embeddings that were discussed in Section 3.3 and are truncated to a max length of 250.

2. The vector representations are passed to the Input Encoding Layer through two BiLSTM
modules. The purpose of BiLSTM is to capture semantic dependencies within each KU both
in forward and backward directions and determine the important information within each
individual KU.

3. The Attention Layer follows, which we have already established as an integral part of cap-
turing semantic relatedness between KUs. The aim of the attention layer is to calculate the
interaction between KUs. The same is achieved by first calculating the dot product of the
two sequences which produces the Inter-Attention matrix between each word in KUx with
each word in KUy. Subsequently, the Inter-Attention matrix between each word of KUx in
relation to the complete KUy is also calculated and vice-versa for KUy. Thus, the interac-
tion information is captured for each vector.

4. The purpose of the Fusion Layer is to combine for each KU the contextual and Inter-Attention
representations of the two previous steps, which is achieved with three different fusion
methods. Suppose X is the contextual information for KUx from the Input Encoding Layer
and X̂ is the output from the Attention Layer for KUx. The three fusion methods F1,2,3,
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concatenate the vectors, calculate their difference and calculate their dot product as shown
below:

X̃1 = F1([X; X̂]) (4.1)

X̃2 = F2([X;X − X̂]) (4.2)

X̃3 = F3([X;X ◦ X̂]) (4.3)

The outputs of the three fusion methods are concatenated [X̃1; X̃2; X̃3] and passed to a
feed-forward network which produces the output of the Fusion Layer X̃ for KUx and Ỹ for
KUy.

5. The Matching Composition Layer is another BiLSTM module that encodes the aggregated
contextual information from the previous layer and produces the final encoded vectors V x
and V y for each KU.

6. Finally, the Prediction Layer needs to convert the encoded vectors to fixed-sized vectors
through max-pooling, and concatenate the two vectors by using different matching heuris-
tics (i.e., simple concatenation, element-wise product, and the difference between the vec-
tors according to [MML+15] and Equation 4.4) to create the feature input for a multi-layer
feed-forward network. The Feedforward Neural Network (FNN) L will calculate the prob-
ability distribution for each class by using a softmax function on the output.

pred = L[V x;V y;V x− V y;V x ◦ V y] (4.4)

4.5 Model Training
The implementation of the model uses the Pytorch2 Framework and is based on the code-base of
RE2 [YZG+19], as well as the adaptation of [PWQ+21]. For the model replication task, the code
base was updated to reflect newer versions of library requirements, and the configuration file
was adapted slightly in terms of hyperparameters and settings. All the changes and settings are
captured in the project’s code repository. The training was performed with an NVIDIA GeForce
RTX 2080 Ti Graphics Processing Unit (GPU).

4.6 Replication Results
After the recreation of the KU pairs, the replication of the model pipeline and the trained model
is saved, the test dataset can be used for evaluation against the reported results of ASIM. By
simply comparing the replication metrics with the paper’s reported metrics, we can evaluate
performance by training a model according to the reported specifications.

The reported results are calculated based on the test dataset of around 104K question pairs,
while the pairs across each class are kept balanced. The model reaches an average Precision of 80%
across all classes, with classification recall and F1-score also maintaining the same score. Table 4.2
shows a summary of the replication results of the original ASIM model. It can be clearly observed
that the model performs well on duplicate and isolated questions and it has some trouble with
direct and indirect classes.

2https://pytorch.org/

https://pytorch.org/
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Class Name Precision Recall F1-score class size
"isolated" 0.94 0.93 0.93 26053
"indirect" 0.65 0.61 0.63 26053
"direct" 0.71 0.68 0.69 26053
"duplicate" 0.87 0.97 0.92 26053

accuracy 0.80 104212
macro avg 0.79 0.80 0.79 104212
weighted avg 0.79 0.80 0.79 104212

Table 4.2: ASIM Replication results.

Compared to the reported results from the authors of the paper, the performance degrades
slightly as they reported Precision, F1-score, and Recall at 0.82. An explanation for the drop could
be small differences in the data preprocessing steps that were followed during the replication.
A closer look at the confusion matrix of the evaluation step in Figure 4.3a, reveals that the most
difficult class to identify is the direct one which is misclassified one-third of the time as mostly
indirect and duplicate for the rest of the misclassified cases. Something similar is observed with
the indirect class. The test pairs are often predicted as being direct instead.

The results can intuitively be explained by the definition of the classes. Direct and indirect
classes are not technically duplicates, but rather aim to capture different levels of relatedness
between KUs. This is an inherently more challenging task than the binary case of duplicate and
non-duplicate, therefore the difficulty in differentiating between them is to be expected.

The replication results lead to the need of understanding more about the relationship between
the classes and how the results change once we consider different relationships between pairs. To
better understand how well the model can differentiate between classes and better understand
their relationship, more experiments were performed by combining and dropping classes. This
can also help understand performance gains by using fewer classes and highlight whether the
multiclass classification approach is adding value to the overall prediction task.

A performance summary of the different models in terms of the F1 score is shown in Table 4.3
and Figure 4.3 shows the confusion matrices for each experiment. Below follows an overview of
the most notable ones 3, along with the resulting observations.

Experiment 1

Since the replication showed that the most difficult distinction is between the direct and indirect
classes, we can combine them and measure the performance gains. To keep the classes balanced,
half of the pairs from the new class were dropped to account for that. Indeed, the evaluation
results show a 12% increase in precision, recall, and F1 score which is introduced by merging the
two classes. The confusion matrix, in turn, reflects the change but as expected, the direct/indirect
pairs that are misclassified as isolated or duplicate pairs stay relatively constant.

Experiment 3: ASIM-RV3

The next experiment was formulated with the end user of a recommendation or a retrieval system
in mind. Taking into consideration the definition of the available classes, a user would probably
be interested in finding primarily any duplicate posts that answer their question directly, and
secondly the direct case where they would get a KU that is directly relevant to their question.

3Experiment numbering skips numbers to represent the model versions in the project archive.
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(a) ASIM model replication
(b) Experiment 1: Model trained on duplicate,
isolated, and combined direct/indirect class

(c) Experiment 3 (ASIM-RV3): Model trained on
duplicate, direct, and isolated classes

(d) Experiment 5: (ASIM-RV5) 1st KU contains only
Title and Question Body

(e) Experiment 6: duplicate and isolated classes

Figure 4.3: Confusion Matrices of Model Experiments.
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Model isolated direct indirect duplicate related Overall
ASIM 0.94 0.68 0.73 0.93 - 0.82
ASIM replication 0.94 0.65 0.71 0.87 - 0.79
ASIM-RV1 0.94 - - 0.93 0.88 0.91
ASIM-RV3 0.94 0.87 - 0.91 - 0.91
ASIM-RV5 0.91 0.84 - 0.89 - 0.88
ASIM-RV6 0.98 - - 0.98 - 0.98

Table 4.3: F1 score of ASIM and Model Variations.

With that in mind, the case where the indirect class is dropped is examined to see the expected
accuracy given the available dataset and the ASIM architecture. In terms of evaluation metrics
as overall and per class performance, the results are rather consistent with Experiment 1. The
confusion matrix also shows that although the direct classes that are misclassified as duplicates
stay the same, there is a noticeable increase in duplicate pairs that are misclassified as direct from
around 600 to more than 1600.

Experiment 5: ASIM-RV5

By now it is perfectly clear that the distinction in the level of similarity between pairs is the main
challenge of the approach. But when it comes to the user experience of a potential end user,
there is one more point to be made. In the case of a retrieval or recommendation system, the
input to the model cannot be the full KU or, in the case of Discord, a full conversation because
that would mean that the user is provided with a similar solution after their problem is being
addressed. For that reason, it is necessary to test the case where the first KU is limited in length.
If we consider a newly posted question, that consequently means that a KU consists of just the
title and the question body. Thus, for this experiment, the first KU is limited, while the second
one is kept at a full length to approximate a real-time prediction. The results show a decrease in
performance to 0.88 from 0.91 in the previous reduced-class experiments. Taking a closer look at
the confusion matrix in Figure 4.3d, one can see that the direct pairs stay unchanged but there
is a significant increase in isolated and duplicate KU pairs that are classified as direct when the
additional information that the answers provided are removed from the input.

Experiment 6

Lastly, since most of the available approaches for duplicate detection in SO follow a binary clas-
sification approach, the same could be replicated with the chosen architecture for the sake of
comparison. For the training and evaluation, only the duplicate and isolated pairs were consid-
ered, while the rest were dropped. This of course means that the amount of data was effectively
halved, with roughly 100k pairs for training and 50k for testing. Unsurprisingly, the precision
and F1 score increased to 0.98 and the confusion matrix in Figure 4.3e shows a clear distinction
between the two classes.

Discussion

The classification task’s replication results as well as the experiments that considered different
combinations of classes for the model creation show that the selected solution indeed performs
adequately in comparison to the existing state-of-the-art research, and outperforms them espe-
cially when we are considering only the binary classification and a targeted domain.
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However, when it comes to usability in a real-world application, considering more than one
level of relatedness between conversations can arguably be beneficial to the end user. The cases
where a user’s question has an equivalent duplicate question are more scarce than the cases where
a similar question exists which provides relevant information to help with the original query. For
this reason, the final approach should include duplicate, direct and isolated question pairs, and
disregard the indirect ones, because they add more noise than a potential benefit. Ultimately, the
user requires the most relevant results, and indirect pairs do not provide the level of relatedness
to justify the introduction of potential noise. Similarly, for the sake of real-time applicability, one
needs to consider the case where prediction is achieved using only the question of a new query
versus the already existing complete conversation. Therefore the remaining tasks and approaches
will consider the ASIM-RV3 model of Experiment 3.

Overall, in terms of RQ1, we conclude that the replication of the chosen model was successful
and produced quite similar results to the original (Tables 4.2 and 4.3). The small variability in the
results could be attributed to small differences in data preprocessing. We were additionally able
to eliminate some noise caused by the indirect class through a small ablation study. The identified
class will be eliminated for the purpose of this work in order to gain better class distinction and
overall performance.



Chapter 5

Detecting Discord and Stack
Overflow Pairs

The previous chapter answered the first research question, showed that the replication of ASIM is
successful, and while considering different input lengths to cater to the retrieval task, the perfor-
mance degrades slightly but still achieves acceptable results during evaluation. This chapter will
explore and address the rest of the research questions and investigate the produced model’s trans-
ferability as well as the feasibility of a retrieval solution. We begin by considering the available
datasets.

5.1 Discord Dataset Construction
Datasets extracted from developer communities and platforms, for instance, Slack or Stackover-
flow is scarce. Some interesting work is been done on disentangling Programming Community
Question-Answer (PCQA) platform and Slack conversations [EC08, CDP+19, CDKP20], with the
latter focusing on Python, Clojure, and elm communities as mentioned in Section 2.3.

For the purpose of this work, the optimal dataset should include conversations of Java-related
conversations labeled similarly to the selected baseline model, i.e. duplicate, related and isolated.
A fitting dataset for the task is not available as far as the research for this thesis is concerned, so
a part of the work focused on extracting Discord conversations from one of the largest Discord
Java communities, the Java Community | Help. Code. Learn1. The chosen community is quite
large with more than 17,000 users. The mined conversations span a period of almost 9 months
from October 2021 to June 2022. Discord servers do not have a strict limit for storage or a certain
retention period for messages, so the extracted conversations include the full history of the com-
munity up to the point of extraction. The goal is to match Discord conversations with SO posts
and create a dataset that can be used for evaluation and further training.

5.1.1 Conversation Extraction
For the task of extracting Discord conversations, the help channels which are dedicated channels
for help-related queries can be utilized. An example of a Java community conversation in such a
channel can be observed in Appendix B. Apart from the actual message content, it is worth noting
the organizational structure of the Java community, especially concerning the help channels on

1https://javadiscord.net/

https://javadiscord.net/
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which we focus. Despite the seemingly disorganized nature of Discord community discussions,
the structure of a popular community like the Java Community we are examining is, upon in-
spection, quite defined. The help section, in particular, is divided into multiple channels. When
a person needs help they can use an available channel that is not currently in use by another
member and ask their question. A bot helps coordinate and moderate the channels by reserving
them, marking them as dormant, and making them available again. This means that each channel
contains multiple different conversations and subtopics which can in most cases be separated into
distinct conversation threads with the help of a parser. The extraction of separate conversations,
as far as this thesis is concerned, was performed using code provided by the HASEL lab, which
takes into account bot messages that moderate the usage of help channels to perform the extrac-
tion. This is achieved by using the convention that when a user posts a new question to a channel,
the bot responds by reserving the channel until it gets unreserved manually or automatically af-
ter a certain period of inactivity. Using this convention, the conversations can be segmented and
treated as a single unit.

Furthermore, each conversation consists of multiple messages. It is rather common in chat
discourse that a user is sending more than one consecutive message, which in a way divides the
utterance into sentences. With the term utterance, research in the NLU field generally defines a
single unit that can be used for analysis. For the purpose of analyzing the Discord dataset, an
utterance will be defined as the set of messages that a user sends before another user responds.
Considering multiple messages as an utterance will facilitate more effective tracking of message
exchanges among community members and will ensure that any given sentence or question is
confined within the same utterance. For instance, in the Discord conversation of Figure B.3, the
first utterance consists of the three message lines before and after the code block.

The mined dataset reveals the existence of 17 help channels in total, that collectively contain
a sum of 13602 identified conversations. Figure 5.1 gives an insight into the distribution of the
community’s help-related conversations in terms of utterance count. We can see that over 35% of
the conversations in the help channels have up to 5 utterances. A closer look reveals that 27.5% of
all the conversations are messages without responses. This means that over 60% of the conversa-
tions remain quite brief. The rest of the help requests are distributed at 14.8% for cases with (5, 10]
utterances, and another 14.5% with (10, 24] utterances. Finally, the last 8% have over 24 utterances
with a mean of 47 in this particular range. Figure 5.1a shows the above schematically, along with
the conversation counts and average utterances for each range. An interesting observation is that
the Original Poster (OP), i.e the person who asks for help, accounts for half of the utterances in all
community conversations, regardless of the discussion length.

5.1.2 Mining of Discord-SO Pairs
In order to test the transferability of the approach described in Section 3.4 to the Discord use
case, the requirement to create a dataset that pairs discord help inquiries to identified related
SO posts or even duplicate so questions need to be fulfilled. In order to ease the expensive and
time-consuming task of dataset creation and annotation, the following approaches were used for
pairing and labeling: Firstly, the conversations which contain a SO link were taken into consider-
ation. SO links are detected using a regular expression which is run against the messages. It is a
straightforward way of pairing help inquiries with SO posts which works under the assumption
that if a community member provides a SO link, that link is probably relevant to the conversation.
As a result, a pair between the conversation and the SO post can be noted.

The advantage of this approach is that we can base the dataset creation on real-world conver-
sation pairing instances and use the methodology to extract pairs from additional communities
and domains.

Therefore, a Discord-SO subset was created by finding such occurrences and following the



5.1 Discord Dataset Construction 35

(a) Conversation Count per Range

(b) Percentage of conversations per Utterance Range

Figure 5.1: Conversation statistics of Discord Community.
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steps below to complete the dataset:

1. Extract the SO question ID to match to the Discord conversation ID. This entails the identi-
fication of the link type. In the examined conversations, three types of links were observed.
The links to SO questions, links to a specific answer of a SO post, and the rest of the links
refer to a general help page on the website. With the use of regular expressions, we can

• extract the SO question ID (qid) from the identified URL,
• extract the SO answer ID from the URL and query the Stack Exchange Application

Programming Interface (API) to retrieve the corresponding question ID,
• disregard the conversations (approx. 20) where the SO question has been deleted and

is no longer available, and
• remove the general help links which in all the examined cases referred to the same

page. The page provides information on ’How to create a Minimal, Reproducible Example’.

2. From the threads that are now matched to a SO question ID, it was verified that 114 were
already present in the initial KU dataset.

3. The remaining 383 SO conversations that cannot be matched to the existing data points, had
to be retrieved and cleaned according to Shirani et al. [SXL+19]. This step will ensure that
the new questions, and in turn KUs, will match the existing questions and will not introduce
any noise. We utilize the questions endpoint of the Stack Exchange API, along with a filter
to retrieve the question and accepted answer. Additional information on the process is
available in Appendix A.1. Moreover, the cleaning steps followed for the SO HTML rich
text are explained in Section 5.1.4

The above steps brought the total of the paired Discord-SO dataset to 497 conversation pairs.
Examining the distribution of the subset’s conversations in terms of utterance count, we can see
its differences in regard to the complete dataset. In Figure 5.2 we can see that 42.2% of the con-
versations have up to five utterances, (the same was at 62.6% in the whole community), 61% up
to ten (versus 77% in the community), and 39% above ten (versus 22.6%). The main difference
between the complete dataset and the extracted subset is that there are quite a lot of unaddressed
messages in the former. Moreover, for the created subset we can say that roughly, one-third of
the conversations consist of up to three utterances, one-third between three and ten, and the last
one-third above ten.

5.1.3 Annotation of Conversation Pairs
As we saw in the previous Section, the total number of the extracted conversations that contain
a SO link was almost 500. These collected conversation pairs were manually labeled to classify
the level of relatedness between the pairs. The three levels that were considered follow the model
ASIM-RV3 of Section 4.6. The resulting collection of labeled classes includes 155 duplicate con-
versations, 251 related(analogous to the direct class), and 68 isolated pairs, counts that translate to
53% related, 38% duplicate, and 9% isolated pair distribution within the dataset. The label related
is favored over the direct one, since it is not technically the equivalent to the direct label that was
introduced in Section 2.3.2. For the task of annotating the resulting Discord-SO conversation pairs
the following points were taken into consideration:

The straightforward case of duplicate pairs is when the poster has already created a SO post
of their problem and posted their question to Discord with a good enough explanation of their
problem. An issue of course is if the user just posts their link without much explanation. But as
long as there is a discussion that follows, the pairs are considered duplicates. Thus most of these
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(a) Conversation Count per Range

(b) Percentage of conversations per Utterance Range

Figure 5.2: Conversation statistics of Discord dataset
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cases were labeled as duplicates except for the ones where a link is posted and there is not much
of a conversation following and were labeled as isolated. Another duplicate case is the one where
a question is asked with a relatively concise explanation of the problem, one of the first users to
answer provides a SO link, and the conversation soon ends thereafter.

However, most of the conversations do not follow these patterns, and most often than not,
an inquiring user provides code snippets, or screenshot errors and simply asks for help. These
instances are the observed default case and naturally also account for the longer occurring con-
versations.

The biggest challenge is when conversations are not centered around a single topic but rather
evolve as the conversation progresses. In this case, a linked SO conversation has to be considered
only somewhat relevant to the conversation. Similarly, a conversation might be too long and cut
off before the relatedness to a question even comes up. This is due to the embedding length limit
the model has to impose. The reality is that many of these contain more than 100 utterances, so
these cases were treated on a per-case basis, depending on the position of the SO link. In practice,
the link was assessed based on its relatedness to the early messages of the conversation.

In some other cases, the original question has been deleted. These instances do contain some
related messages to the SO link but they were not considered enough to support a satisfactory
level of relatedness, thus they are annotated as isolated. One could argue that these instances
could be removed from the dataset. Nonetheless, they were retained because they can be consid-
ered as conversations that do contain some signal of relatedness but are nonetheless not useful
under proper context. Lastly, there are a handful of cases where a link is shared but the original
poster finds the link not useful and ignores it altogether, so these instances are also marked as
isolated.

A few examples of labeled pairs will be discussed in Section 5.2.1 in the context of evaluating
the classification performance of the model.

5.1.4 Data Cleaning
Due to the format of Discord conversations, many users begin their questions by asking whether
they can ask a question. This is such a common phenomenon, that the community moderators
have added a community rule urging people to avoid similar behavior and rather simply ask their
question. From a KU standpoint, such questions add noise to the model input, especially since
the specific behavior is not as commonly seen in SO. In an effort to mitigate this issue, a custom
stopword list was created that contains stopwords or frequently occurring bi-grams or tri-grams
that can appear when a user is asking whether they could as a question, such as "ask a question",
"need help", "can I ask", and "new here". It also contains abbreviations and slang tokens usually
found in online informal discussions for instance "lol" and "btw". Lastly, it includes identified
usernames and Discord commands such as "/reserve" and "/unreserve" that are targeted toward
predefined bot actions.

Following the approach of Shirani et al., an important step in improving the quality of the
dataset is removing code snippets. The core difference between SO and Discord is that the former
represents the code in the form of HTML formatted text, whereas the latter is in the form of
markdown code. Three cases of code were identified in the Dataset and were handled in the
following way:

• Markdown code blocks is the ideal case, where the beginning and end of a code block
are indicated with three backticks (“‘). These can be easily removed by using a regular
expression.

• Inline code snippets are short snippets of code that contain a single line of code. While these
cases can also be easily removed, it was decided not to since they often contain key method
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names, error codes, and error messages, information that was deemed a useful signal for
question relatedness. The snippets were further normalized by removing any punctuation
and numbers.

• Non-markdown code snippets is the last and most unwelcome case because code is pasted
as part of the conversational message text. These were handled by catering to the spe-
cific domain of Java, an approach that involved removing text that is included within curly
brackets and was afterward normalized by removing any remaining punctuation and num-
bers.

Sharing a link in Discord results in the appearance of a small preview of the target URL which
shows the title of the link along with a part of the page content. This shows up in the content
of an embedded message within the extracted conversation which is utilized for the extraction
of SO links. These short descriptions from the shared SO links have to therefore be removed to
avoid introducing signal to the data. The same point is also highlighted in [SRM+18] by Silva et
al., who measured a decrease in accuracy by up to 20% when such signals were removed from
the AskUbuntu dataset. It is worth noting though that the Knowledge Unit dataset described in
Section 2.3.2 reports this identified issue as taken into consideration when creating the dataset.

Text Normalization

With the term text normalization, we refer to the processing of human-generated text with the
goal of reducing its randomness and bringing it as close as possible to the form of the text in the
source domain, which in our case is the SO corpus. The preprocessing detailed in Section 4.3 was
applied, which was previously applied to SO KUs. As an additional step, we handle the presence
of emojis in the conversations, by removing punctuation and Unicode, which is not considered a
loss of information since the aim is not to capture the sentiment. Since SO posts do not include
emojis, removing them will actually contribute toward normalization.

5.2 RQ2: Classification Task
Using the identified Discord-SO pairs, the second research question that we seek to
answer is the following: RQ2: How does the identified methodology perform on the
new dataset and how do the results compare to the reproduced results?

The main goal of RQ2 is to examine how much classification power is retained when we introduce
the new Discord conversations to the model. To answer this question and justify the confidence in
the hypothesis that the transfer task is indeed feasible, we need to consider the construction of the
task. Since the labeled Discord dataset is quite limited, the task needs to take into consideration
the elements that can provide the best possible results on unseen, unsupervised data. Specifically
in the case of low-resource "forums" like Discord, where labeled similar questions are not avail-
able, the choice of word embeddings can play a crucial role in performance. The ideal qualities of
good word embeddings as highlighted by [PS19], should be:

• domain-specific, because we assume that the similarity of two questions is going to depend
on certain domain-specific words. The domain specificity is covered by the fact that the em-
beddings are trained specifically on Java Conversations, even though their origin is strictly
from SO posts.

• high-coverage, as a high number of unseen words, will probably harm the results. This is
both a requirement and an indication of a good fit for the embeddings, which was success-
fully fulfilled by the domain-specific embeddings.
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Figure 5.3: Confusion Matrix of Discord-SO Dataset Classification

Evaluation input ASIM-RV3
Precision F1 Score

Stack Overflow KU Test 0.91 0.91
Discord Conversation 0.77 0.70

Table 5.1: Classification Evaluation of Datasets using Complete Conversations as Input and the ASIM-RV3
model

• capture lexical semantics, which is successfully achieved by using the GloVe embedding
paradigm. This method achieves word representation in a way that captures the meaning,
semantic relationships, and global context of each word used.

Simultaneously, the embedding vocabulary coverage can once again be used for the new dataset,
to verify that there are not many new OOV words that can introduce noise. Indeed, the results
show that the new domain is covered by the pre-trained embeddings quite well, as the vocabulary
coverage is 99.85% and the OOV instances 0.28%, i.e 183 out of the 63873 total words. While
these measures can certainly be a positive indication of a good performance on the Discord Java
domain, they are not sufficient on their own. That is because, while a word can be recognized
and is part of the GloVe vocabulary, the meaning of words and the semantic interaction between
words can vary between different domains. However, the fact that the domains are kept almost
constant between tasks by design, makes the domains homogenous, and thus the transferability
is further supported by research that shows positive results in analogous cases [SLM+18].

5.2.1 Results
Testing the direct transferability hypothesis is straightforward after the dataset creation as it uses
the same evaluation method used in Section 4.6.

The evaluation of the Discord-SO dataset was performed by using the model ASIM-RV3
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which was described in Section 4.6. As a reminder, it considers three levels of question-relatedness
and used complete conversations (KUs) for training. At its core, the evaluation takes the identi-
fied full conversation pairs between Discord and Stack Overflow and passes them through the
trained model, which predicts their relatedness. The results in Table 5.2.1 show a comparison of
the model performance on SO data versus the new Discord data. The model achieves 0.77 Pre-
cision and 0.70 F1-Score, which is weighted to account for the class imbalance in the dataset. In
contrast, the evaluation performance of the source SO dataset is 0.91 for both metrics. The confu-
sion matrix in Figure 5.3 gives us more information about how well the model is able to predict
each class. It seems that the model tends to classify pairs as related, something that makes sense
given the way the dataset pairs are organically occurring.

We can perform manual analysis for some of the classified pairs and gain a better insight into
the results. Table 5.2 contains examples of correctly classified pairs, while Table 5.3 showcases
misclassified examples. For the classification, the short version of the Discord conversation was
used and the complete SO Knowledge Unit as usual. The tables present a snippet of the KU for
brevity reasons, but an extended view of conversations as well as links to the community and SO
posts are available in Appendix B.

We can examine the correctly classified pairs in Table 5.2 first. In Example 1, both conversa-
tions refer to sorting arrays. The SO question is asking specifically about sorting using a custom
comparator. In the Discord conversation, the OP is having trouble sorting the array, and the
conversation concludes with someone suggesting a custom int comparator, but it arrives at that
suggestion after some further analysis of the specific issue, so the two conversations were deemed
as semantically similar but not duplicate. Similarly, in Example 2, the Discord OP asks about for-
mulating HTTP requests and how to add information to the URL, while the SO post is about the
URL Encoding Parameter of the native java-hhtp-client. As for a duplicate pair, in Example 3 the
OP explains their issue and mentions the SO post. The question was deemed as a very accurate
paraphrasing instance of the SO post and was labeled and classified as duplicate.

In Table 5.3, Example 4 was labeled as duplicate because both questions refer to the usage chdir
in java and both answers refer to the usage of a relative path. Similarly, Example 6 was also
labeled as a duplicate pair because the user has posted both questions on the two platforms. The
model predicted the pair as isolated and the second as related. Perhaps the first case is because
chdir refers to a non-native term to the java domain and the model has not seen similar question
pairs, while the second Discord post, potentially does not contain enough detail. The common
denominator in Examples 4 and 6, is that both are short in length and as we have seen, the longer
conversations tend to produce better classification results. Example 5 was labeled as related, but
the duplicate class was predicted instead.

Considering the above, one can support the argument that some noise might still exist in the
dataset that does not allow for the optimal semantic alignment of the conversations and that
the model could benefit from training on more question pairs. Nonetheless, the fact that the
model can detect semantic similarity within unseen conversations is a significant outcome that
can potentially be utilized for the retrieval of similar conversations.
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Table 5.2: Examples of Discord-SO pairs, along with their assigned class(label) and the predicted class by
ASIM-RV3

Ex. Discord Conversation Stack Overflow Title & Question
Label /
Predic-

tion

1

ID : [977541076548222976]
> Hey, I want to sort an Array of In-
dexes based on the value they represent
in an int-Array. Why does my solution
not work?
>how does it not work are you trying to
sort the array in place? if so you need to
use Arrays.sort here you’re just setting
the variable to a sorted version Can
you show any errors? it might be some-
thing to do with the variables given to
the function
[Fig:B.1]

ID : [3699141]
How to sort an array of ints using a
custom comparator?
> I need to sort an array of ints using
a custom comparator, but Java’s li-
brary doesn’t provide a sort function
for ints with comparators (compara-
tors can be used only with objects).
Is there any easy way to do this?
[Fig:B.2]
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2

ID : [979813430401835078]
> Good evening, I’ve got this nice and
easy Proxmox Request with password
and username as Paramters in Postman.
Is there any way to recreate this ex-
act thing in Java? I’ve tried using the
HTTPSUrlConnection but I found no
way to do it and possible solutions just
did not work.[...]
> java has an http client, or multiple
http client libraries that you can use
to send parameters in the the request
body/or as a form
> I’ve tried to it with the HttpsURL-
Connection but there was litterally now
way to add Fields in the Body and when
searchin the Internet there was no solu-
tion that made it possible to add them
in the body :/
[Fig:B.3]

ID : [56728398]

Java 11: New HTTP client send
POST requests with x-www-form-
urlencoded parameters

> I’m trying to send a POST re-
quest using the new http client api.Is
there a built in way to send pa-
rameters formatted as x-www-form-
urlencoded ?
My current code:
What I’m looking is for a better way
to pass the parameters. Something
like this:
Do I need to build myself this func-
tionality or is something already
built in?
I’m using Java 12.
[Fig:B.4]
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ID : [971797369874182194]
> I am using the json.simple package.
Let’s assume I have a parsed JSONAr-
ray from the file:I am trying to put
the contents into a HashMapString, Ob-
ject(). Would anyone happen to know
how to iterate over this JSONArray to
get the keys and values? I found this,
but this is exact while I need relative:
URL
[Fig:B.5]

ID : [33595941]
How to convert JsonArray to
Hashmap
> I’ve been able to get a jsonar-
ray from a json string, but don’t
know how to put it in a Hashmap
with a String that shows the type
of cargo and an Integer showing the
amount.The string:
This fixed it for me:Try creating a
new HashMap, and loop through the
JSONArray, adding each element to
the hashmap.I’ve been able to solve
this using the Google GSONWhere
"yourJsonString" is the whole json
that contains the cargo json array.
[Fig:B.6]
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Table 5.3: Examples of Discord-SO pairs that were misclassified by ASIM-RV3

Ex. Discord Conversation Stack Overflow Title & Question
Label /
Predic-

tion

4

ID : [963170643640213576]
> Is there an equivalent of
chdir() in Java?> No I don’t
think there is <URL> Also
what’s the point of such a func-
tion use relative path
[Fig:B.7]

ID : [43130952]
Why chdir does not support in java?
> I would like to know the actual reason be-
hind why Java does not provide chdir call
implementation however it provides native
interfaces for the same.
[Fig:B.8]
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5

ID : 904644087200755723
>Need help At this point i
screwed up my code only runs
if i import java.util. concur-
rent.CopyOnWriteArrayList;
but i want it to just work as
an arraylist at this point im
screwed i wasted 3 days doing
the wrong this could i please get
help This is the zip of my three
files Term class Polynomial class
and Tester class Could I please
get some help

>Why are you using an `Copy-
OnWriteArrayList` just use a
normal `ArrayList`
[Fig:B.9]

ID : 223918
"Iterating through a Collection avoiding
ConcurrentModificationException when
removing in loop"

>"We all know you ca not do this Con-
currentModificationException etc.. this ap-
parently works sometimes but not always
Here’s some specific code This of course re-
sults in e .. even though multiple threads
are not doing it.. Anyway What’s the best
solution to this problem How can I remove
an item from the collection in a loop with-
out throwing this exception I am also using
an arbitrary Collection here not necessarily
an ArrayList so you ca not rely on get.
[Fig:B.10]
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ID : 959725068391432212
> does anyone know about jpa
and hibernate here? <URL>
does anyone know why I am
getting two id’s inserted into my
user_profile table with spring
jpa and hiberate? figured it out,
thanks anyways
[Fig:B.11]

ID : 71714015
Why is my Entity class inserting two Ids
into my table?
> Spring Boot JPA I have two Entity classes
User and UserProfile. The User table has
a primary key for the User ID which is a
long data type. This User ID is supposed to
be the primary key in user_profile as well.
User also has email as a column, which I
want to be linked to the user_profile also.
The issue I am having is that for some rea-
son, a column named id is being inserted
into my table when I already have the pri-
mary key user_id set in the user_profile ta-
ble. Does anyone know what I am do-
ing wrong? User: User_Profile: User table:
User_Profile table:
[Fig:B.12]
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Figure 5.4: Example of the retrieval score calculation as defined by the Pytorch framework.

5.3 RQ3: Semantic Retrieval Task
In the previous Section, we tested how well the created model can perform on unseen Discord
Conversations under the premise of the classification task. The next question to be examined is
the following:

RQ3: Can the same methodology be used for semantic question retrieval?

In other words, can it maintain the performance and does the model have the ability to identify
semantic relatedness when used for retrieval tasks?

In practice, the inference function needs to evaluate a given query’s semantic interaction with
each available SO post in our available dataset. Therefore, for each conversation in the Discord
dataset(query), pairs of KUs between the query and all the SO posts need to be created and fed
to the model in batches, to avoid running into memory issues. We evaluate the model outputs by
calculating the total retrieval recall-rate for all queries. The number reported is the average of five
runs due to the small dataset size, similar to [RMG19]. Following the paradigm of previous work,
Silva et al. [SPM18] and Zhang et al. [ZSL+18] used approximately 1000 questions for ranking the
evaluation. For this reason, 1000 random SO posts are selected for each evaluation as a sample
of the 160K questions. This is also a way to calculate the recall rates of our small dataset while
eliminating the majority of potentially false negative results.

A note on the calculation of recall-rate@k. As discussed in Section 3.5, the recall-rate assumes a
single relevant result for each query. To implement the generalized case, the retrieval-recall metric
implementation from Pytorch was utilized, which calculates the fraction of relevant documents
that were retrieved among all the relevant documents. Recall-rate@k calculates the fraction of the
relevant results in the top k results, among all the relevant documents. This means that if, for
instance, k = 1 and the first returned result is relevant, but the total amount of relevant results is
two, the recall-rate@1 for this query is 0.5. Naturally, if the k is adapted to the maximum number
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Dataset recall@2 recall@5 recall@10 recall@20

Discord-SO
(Full Conversation) 0.39 0.55 0.69 0.80

Stack Overflow KU 0.36 0.47 0.57 0.65

Table 5.4: Retrieval Recall Performance of the best performing model (ASIM-RV3) on the Discord-SO
dataset and the Stack Overflow dataset.

of relevant results, then the metric is not affected by the aforementioned limitation. Therefore, we
adapt the lowest k for the evaluation of the current discord-SO dataset at k = 2. Figure 5.4 shows
an example that illustrates the above point for an evaluation run of two queries.

In addition, the metric assumes the binary case for the result relevancy, which means that it
considers a retrieved post either as relevant or non-relevant. To adapt the metric for multi-class
labeling, we consider a result relevant if it is classified with a positive class and non-relevant
otherwise, and the probability of relatedness is the combined probability of the positive classes.

5.3.1 Results
To benchmark the recall-rate for the Discord-SO dataset, we can again use the source dataset of
SO. A randomly created subset of the test dataset is utilized, to create a dataset proportionally
similar to the target dataset. For the same reason, the complete conversations are used as the
query inputs and the retrieval results are used to calculate recall-rate@k for k =∈ {2, 5, 10, 20}. The
experimental results are presented in Table 5.4 and show that the model performs equally well
on both datasets. Specifically, for the Discord-SO dataset recall-rate@2 is 0.39 and reaches 0.80 for
recall-rate@20.

Comparing these results with the previous work that was examined in Chapter 2, ASIM-RV3
performs better than the original, the replication of DupPredictor [SPM18], and better than DQ-
LSTM overall ( [WZJ19]) who reported a recall-rate@20 at 0.59. Conversely, our model performs
worse than WV-LSTM [WZJ20] who report a recall-rate@20 of 0.82 in the Java Question group. Al-
though these benchmark results are not directly comparable, as they were evaluated on different
datasets, they are nonetheless provided as an indication of performance in past work.

The performance of the Stack Overflow dataset in the retrieval task indicates that while the
model is able to identify semantic relatedness between conversations as seen in 5.2.1, it needs
re-training to predict the scoring between pairs. The same becomes more apparent if we consider
that the Discord-SO pairs are more distinct within the dataset and in a Knowledge Unit graph
context, would have relatively few connections with other nodes. The same could explain the
slightly better performance in the Discord-SO dataset for this task.
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5.4 RQ4: Conversation Length Variability
The motivation behind RQ4 is ultimately drawn from the motivation of the thesis. In order to
develop an applied solution that can be used in the help channels of Discord servers, one has to
keep in mind how the inference is performing in real-time. Therefore, a significant parameter to
consider is the available information at runtime. When a user is asking for help, they initially
form their query in some type of a question. Ideally, we would like to successfully identify simi-
lar questions from the moment the inquirer forms their first sentences. This is arguably the case
in which the most community effort is avoided and the inquirer gets the most value. However,
the best case is rarely the most realistic one, so we can also consider the case where the inquirer
provides some further clarifications, potentially even after the first responses of other commu-
nity members. The goal is to explore how well the model performs under the aforementioned
circumstances. In other words:

RQ4: How is model performance affected when different parts of the conversation
thread are considered as input?

To answer this question, two levels of conversation length with respect to utterance count will be
considered. As a reminder, by the term utterance under the examined Discord domain, we define
all the consecutive messages of a community member before a message from another member
appears in the conversation. One conversation length that will be examined is the first utterance
of the user who initiates the conversation, whom we call OP. The second will examine the first
utterance of the OP, a first utterance from another user, and a second utterance of the OP. In case a
third user joins the conversation before the second OPs utterance occurs, the conversation length
is limited to the first two utterances.

In terms of the model evaluation, we examine how the metrics are affected when we use as
input the aforementioned conversation segments, and we evaluate both the classification and
retrieval tasks. The performance will thus be compared to the observed performance of RQ2
(Section 5.2) and RQ3 (Section 5.3) for which the complete conversation thread was used. In
addition to the ASIM-RV3 model that was used so far, we will evaluate the above using the ASIM-
RV5 as well. To reference Section 4.6, the second model was trained using only the title and
question body of KU1 and the complete conversation of KU2. By using that as well, we seek
to evaluate what effect it will have on the Discord dataset when its conversations are similarly
limited in length.

5.4.1 Results
The question can be answered by the observations in Table 5.5. Considering the classification task
in Table 5.5a, we see that the longer the conversation, the better the performance. The difference
between using the full conversation versus the first question as an input translates to a difference
of roughly 20% in both Precision and F1 Score. We continue to see that the model which was
trained on shorter KU1 conversations, i.e. ASIM-RV5, performs worse than the standard ASIM-
RV3 and the same occurs in every Discord conversation length. One might have expected the
limited input model to perform better with test data that have limited input, but we clearly see
that there is no benefit in a separate model.

Continuing on the retrieval task and Table 5.5b, we can again see the trend of longer input
performing better. The recall-rates for each k were produced as the average of five evaluation runs,
and for each run, the retrieval dataset was enriched with random questions from the complete SO
Knowledge Unit Corpus. The detailed results of each run can be observed in Table A.1, but we
can clearly see that the retrieval results are quite stable for a rather small dataset and unseen
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Length of
Discord Input

ASIM-RV3 ASIM-RV5
Precision F1 Score Precision F1 Score

Full Conversation 0.77 0.70 0.68 0.60
Short Conversation

(Two OP Utterances) 0.68 0.66 0.64 0.60

First question
(One OP Utterance) 0.61 0.58 0.60 0.55

(a) Classification Evaluation of Discord Dataset using Different Combinations of Conversation
Length and Models

Length of Discord Query recall-rate@2 recall-rate@5 recall-rate@10 recall-rate@20

Full Conversation 0.39 0.56 0.69 0.80

Short Conversation
(Two OP Utterances) 0.34 0.51 0.65 0.75

First Question
(One OP Utterance) 0.28 0.43 0.55 0.64

(b) Retrieval Recall Performance of the best performing model (ASIM-RV3) on the Discord-SO
dataset using different query length.

Table 5.5: Classification and Retrieval Evaluation of Different Conversation Lengths.

Discord data. Irrespective of input length, the average Recall-rate@2 ranges between 0.28 and
0.39, whereas Recall-rate@20 between 0.64 and 0.80.

The better performance of longer conversations could be explained in two ways. The main
reason could be that the conversations were labeled while taking into consideration a sizeable
part of the conversation and not necessarily the first question. Another reason could be that longer
conversations simply contain more signal, which helps in attributing more semantic relatedness
to pairs. Ultimately though, the exact point in the conversation where a user is presented with
useful information is less relevant than the value that the results provide and their utilization.
However, a way to both improve performance on shorter conversations and increase the rate of
relevant results in the top retrievals, is to create or find datasets that explicitly rank the pairs by
relatedness, so that the model can learn a ranking function.

5.4.2 Retrieval Examples
In addition to the experimental results, we can also evaluate the ranking performance by manu-
ally reviewing a few ranking results and empirically assessing their relatedness. For retrieving the
top candidate results for a conversation, we consider the input length of a Short Conversation, i.e.
the first two utterances of the inquirer. Tables 5.6 and 5.7 showcase two retrieval examples. The
left columns contain the Discord Conversation queries and the right columns the top-5 retrieved
results. Once again, the complete conversations and original links are available in Appendix B.

The first example of Table 5.6 showcases the way the retrieval evaluation is performed. This
means that the retrieval corpus includes all the SO posts associated with the Discord dataset
plus an additional 500 random posts from the complete corpus. For this example, an identified
as a frequently asked question is selected, because it has a higher chance of retrieving multiple
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relevant results even with the reduced dataset. Indeed, among the top results, three of them can
be considered relevant, and specifically, the first one is the identified duplicate question from the
Discord-SO dataset. In other words, this is a query for which recall@1 = 1.

The second example of Table 5.7 involves an already visited conversation (Ex. 2 of Table
5.2) which was classified as related with its SO pair. The goal of this example is to explore the
value behind related pairs. Another difference in this example is that we are using the complete
corpus for retrieval. The retrieved results are ranked by the maximum combined probability of
the positive classes, or simply by the minimum probability of the negative class (isolated). At first
look, it appears that the identified as relevant SO question is not present in the top-5 results and
not in the top-20 results either. By tweaking the ranking to prioritize the classified as duplicate
results with the highest probability, we get the results shown in the table. We can easily infer that
the results are rather relevant to the query, while especially the second result is also close to the
identified as related original pair.

In conclusion, this chapter followed the process of mining and creating the novel Discord con-
versation, verified the generalizability of the ASIM-RV3 model in terms of identifying semantic
relatedness through the classification task (RQ2), and explored the possibilities of adapting the
methodology and the dataset to a retrieval task (RQ3). The experimental results for the retrieval
task showed that performance is analogous to previous work cases and empirical evaluation re-
vealed positive signs of model utilization for near-duplicate question mining. Regarding RQ4
and the variability of input-query length, we observed that our current model performs better
when longer conversations are considered at inference time.
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Table 5.6: Example: Retrieval Results Using Short Conversation Query

Discord Conversation k Top-5 Retrieved SO Posts
ID : [966404222058893322]

When the if / if else conditions
are true why the `String english =
scan.nextLine(); and String sentence
= scan.nextLine();` does not get exe-
cuted the program just exists with no
errors Whats your expected output
and whats the actual output ? And
why should both if and else if both be
true ? the user should enter a morse
code and the program will translate
it to english words opposite for the
else if condition And the tranlation
doesnt work? [Fig:B.13]

1

ID : [13102045]
Scanner is skipping nextLine after using next nex-
tInt or other nextFoo
> I am using Scanner methods nextInt and nextLine
for reading input Basically it looks like this The
problem is that after entering the numerical value
the first input.nextLine is skipped and the second
input.nextLine is executed so that my output looks
like this I tested my application and it looks like
the problem lies in using input.nextInt If I delete
it then both string1 = input.nextLine and string2 =
input.nextLine are executed as I want them to be.
[...] [Fig:B.14]

2

ID : [17443201]
Why doesn’t == work on String
> I just started Java programming I love it so far but
I have been stuck on this problem for a while When
I run this code whenever I type in “boy” it will just
respond with GIRL Why [...] [Fig:B.15]

3

ID : [12273794]
Scanner nextLine NoSuchElementException
> I\’ve been programming a Bukkit plugin for a
while now and this one issue has me stumped I
am trying to read a line from a file using a Scanner
and add everything on the line before to a Hash-
Set Every time I try I get a NoSuchElementExcep-
tion looking like this This is the class where I try
to do what I explained above I\’ve been told that
I am calling in.nextLine twice and when I asked
for advice on how to fix it he just ignored me [...]
[Fig:B.16]

4

ID : [12544564]
Why this output when comparing args 0 with a
string
> When I run the following code as java XYZ BOY
the output is Invalid type how However when I
use args 0 .equals BOY it gives the desired output
I want to know why things go wrong here when I
do not use String.equals [...] [Fig:B.17]

5

ID : [36096097]
I am doing an assignment and I keep getting a Null-
PointerException error in Processing what is this
and what can I do to fix it
> I am writing this code for an assignment and I
would greatly appreciate anyone\’s help It\’s sup-
posed to be a video game it\’s more like a choose
your own adventure game and I keep getting er-
rors that say NullPointerException On top of that
I ca not get my images to show up and my video
in the code is not playing If anyone could possibly
give me some pointers [...] [Fig:B.18]
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Table 5.7: Example: Mining Results Using Short Conversation Query

Discord Conversation k Top-5 Retrieved SO Posts
ID : [979813430401835078]

> Good evening, I’ve got this nice and
easy Proxmox Request with pass-
word and username as Paramters in
Postman. Is there any way to recre-
ate this exact thing in Java? I’ve tried
using the HTTPSUrlConnection but I
found no way to do it and possible
solutions just did not work. Best so-
lution I could do till now is to add
them as Parameters in the URL but
that’s not save and would basically
mean that I’m sending my passwords
across the Internet xD
> java has an http client, or multiple
http client libraries that you can use
to send parameters in the the request
body/or as a form [...] [Fig:B.3]

1

ID : [4185320]
hitting a URL using java
> How to use java.net.URLConnection to fire and
handle HTTP requests using java how do i hit
any url for instance opening of http www.xyz.com
node1 in a browser will tell xyz.com that node1 is
hit so in this java program which sends sms text say
\’node1\’ in example above embedded in the url
itself to a sms gateway server how do i achieve it
without opening any browser or using servlet.
>You can use an HttpURLConnection [...] For
more advanced flexible URL fetching you could
use HttpClient http hc.apache.org httpclient-3.x [...]
[Fig:B.19]

2

ID : [7487341]
Send Http Post Message using a stream in Java
> I have to send an http post message to a server
This message must have an header and a body and
to send it i must use a Stream Both the header and
the body must be an array of Byte
> From the server you can get header information
separately from HttpServletRequest.getHeaders
[...] [Fig:B.20]

3

ID : [13056980]
HttpClient with redirect
> I am making a request using httpclient and af-
ter receiving the response I get automatically redi-
rected to another page How can I stop this from
happening Here are some more details I am trying
to get a token from Google using oAuth2.0 I make
the request for the token from the server using http-
client but because of the redirect_uri I get somehow
redirected [...] [Fig:B.21]

4

ID : [11328043]
Java What is the purpose of setDoInput in URLCon-
nection
> Would this method be used for example if I want
to read the response to a POST method call from the
server I am connected to [...] [Fig:B.22]

5

ID : [12888780]
how to send HTTP request to a servlet
> I only have one servlet running on the Tomcat
server side Now I want to send a HTTP request to
this servlet from a Swing application and it\’s not
an APPLET application because I see some exam-
ples sending request from applet [...] [Fig:B.23]



Chapter 6

Discussion

In the previous two chapters, we presented the results of two semantic similarity tasks on a small
and novel Discord dataset. This chapter will discuss the merits and applicable use cases for the
presented methodologies, as well as their limitations, and guidance for future work.

The performed experiments showed that the presented methodologies work quite well in the
examined tasks of near-duplicate question classification and semantic search. For the second
task, in particular, the work examined both symmetric and asymmetric approaches with respect
to the query input, i.e. it sought to retrieve relevant KUs using both full conversations and short
questions as a query. The experimental results of the first task, firmly support our belief that
the solution has proven capable of detecting semantic similarity, a capability that we argue can
facilitate more semantic relatedness tasks.

A prime candidate task is near-duplicate question mining. Given a large corpus of Knowledge
Units, and a separate corpus of input queries, the model could be used to create semantically
relevant pairs with little to no manual effort depending on the methodology. Furthermore, the
semi-automated creation of the Discord-SO pair dataset which is based on real-world conversa-
tion pair instances can be further utilized. The same methodology can be applied to extract pairs
from additional communities and domains. Manually identifying relevant questions to new con-
versations is not only time-consuming but also requires a certain level of domain knowledge to
effectively perform the matching. And certainly as the question complexity increases, so does the
need for nuanced domain understanding. There might still be a need for human ranking or eval-
uation of the results, but the effort is certainly brought to a minimum with an automated pairing
approach. The analysis identified many cases where links from other websites were shared under
a similar context to the SO links, which indicates that help is not limited to SO. In fact, for the pur-
pose of creating a sophisticated solution that can be utilized by a community, the corpus can be
expanded to include documents from other sources such as the language’s documentation pages
and other resource-rich websites. That would constitute a more complete semantic information
retrieval solution that certainly would require significant amounts of data.

6.1 Limitations
One of the biggest limitations of the approach is probably the scarcity of labeled data and the
bias that might be introduced while labeling them. Certainly, good domain knowledge is es-
sential during the creation of conversation pairs, especially if the task is to score the relevancy
of candidate results. This work aims to avoid this limitation by automatically finding the pairs,
but the need for scoring the results was not mitigated entirely. In terms of labeling bias, it can
be mitigated in the future by being manually labeled by more researchers and ensuring that the
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inter-rater agreement is acceptable. A good Cohen’s Kappa inter-rater agreement score [McH12]
would provide more confidence in the results. However, the two positive labels were not taken
too much into consideration for the retrieval task, as we are evaluating whether a positive class
is present in the results overall. So, the retrieval task is not currently significantly affected by this
limitation.

Furthermore, the observed performance at inference time was less optimal when considering
performance that is fitting to a scalable retrieval solution. Granted, the inference was performed
on a CPU and had to use a reduced batch size due to memory, but there are certainly ways beyond
the use of a GPU to speed up the inference and support the scalability of a future solution, which
will be discussed in a following Section.

6.2 Threats to Validity

The following Section discusses a few fundamental threats to validity as it pertains to the used
data, methodologies, generalization potential, and bias.

Starting with threats to internal validity, the term refers to errors in the experimental data
and methodology implementation. The approach taken for this thesis is based on pre-existing
methodology and data that have proven effective in similar tasks under specific conditions ac-
cording to research standards. We made sure to evaluate each step to ensure that each one was
fitting for the applied domain. Furthermore, checks were performed to ensure that noise and bias
were not introduced in the dataset by ensuring the uniqueness of pairs within the dataset and
by removing duplicate-question signals from the Discord conversation text (Sec. refsec:dataset-
exploration).

Threats to external validity refer to the generalizability of the proposed methodology. We
made sure that the work focused on carefully selected methodologies that have proven successful
in terms of their generalizing strength. Complimentary to the past research, are the findings from
this work as well. We believe, that given the careful selection of data and methodologies, the
approach will be able to produce similar results in more domains. In addition, the usage of a
small-sized dataset does pose a threat to external validity, but in the future, such threats can
be mitigated by expanding the Discord dataset to include more question pairs as well as new
domains to extend the generalizability of the methodology to communities beyond Java. As a
result, the research will have more data to train and test the performance of a methodology. In
addition, a fundamental next step is to perform a user study, in which people that have a certain
level of domain knowledge can evaluate the retrieval results and rate how helpful they are.

Construct validity relates to the identification and usage of the appropriate measures during
evaluation. To mitigate the threat, we performed an extensive analysis of the appropriate evalu-
ation metrics per task, while referring to previous work to ensure best practices are adhered to.
Thus we believe that the use of precision and F1 score is pertinent to the classification task and
recall-rate@k to the retrieval task. Furthermore, the reasons why other commonly used metrics
were not utilized, are presented and discussed. Therefore, we argue that there is little to no threat
in terms of construct validity.

Finally, instrumentality bias is a threat to the reproducibility of the results, which is mitigated
by providing the code, data, and a detailed description of experiments and implementation.
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6.3 Toward an Efficient, Real-Time Neural Retrieval
Application

When designing a solution that can retrieve fast, reliable, and ultimately useful results for devel-
opers, one has to consider the fundamental requirements of real-time usage. The ideal applied
solution must work as a semantic search engine that can almost instantly provide the most rel-
evant results from an input query. It is true that the utilized solution can successfully identify
semantic relatedness between candidate results and with further training, we believe that it can
be used for effective semantic retrieval under certain conditions. However, in terms of efficiency,
it requires each candidate pair to be passed through the network in order to calculate their align-
ment through attention and produce their sequence representations.

Certainly, an efficient solution should have minimal latency which means that evaluating ev-
ery pair is not practical, and especially as the candidate corpus increases, the solution’s scalability
and feasibility suffer. This means that in order to build a real-time neural retrieval application, it
is crucial that the embeddings of the search corpus are already calculated, ideally hashed for fast
retrieval, and stored so that they can be easily accessible.

Retrieve and Rerank

To avoid the computational complexity of comparing the query with each embedding in the cor-
pus, the solution has to involve two steps. The first step needs to efficiently limit the search space
of the query. It has to be fast and inexpensive and can be as simple as performing a lexical search
with BM25 or TF-IDF, or it can also be a bi-encoder model that is trained for semantic search and
can be very computationally efficient. The goal of this step is to eliminate the most irrelevant
results and limit the candidate results to a small subset. The next step involves a trained model
that can perform the reranking step. This is where our trained model can be used and utilize the
limited candidate list of the first step and rerank the results to produce the final output.

Another approach involves the usage of Fast Near Neighbour Lookup using (Facebook AI
Similarity Search (FAISS)) [JDJ19,JDJ18] for retrieval, which allows for quick comparison between
embedding vectors by inputting the faiss index of the embedded question, and then returns the
desired number of the most similar documents. This of course requires a solution that allows
for pre-computed sentence embeddings of the corpus which can be achieved with the bi-encoder
architecture of sentence transformers [RG19], [WK20].





Chapter 7

Conclusion and Future Work

7.1 Conclusion
This thesis examined past research in duplicate question detection for SO posts and reproduced
the state-of-the-art model successfully. In addition, a Discord software-related community was
explored, and a dataset of approximately 500 conversations was created. Mining Discord con-
versations and SO pairs led to the creation of a test dataset that was annotated for evaluation.
The transferability of the model was then tested against the created dataset in a classification
and retrieval task. Lastly, the reusable methodology can be an aid for expanding the examined
communities and domains as well as for the task of creating and enriching novel datasets.

7.2 Future Work
There are two directions future work could take with respect to the Neural Retrieval Task and
more specifically in terms of the type of search it will seek to implement. A clear distinction
should be made in terms of whether a Symmetric or an Asymmetric search is the desired approach
(Sec. 1.3.3). We propose that future work focuses on an asymmetric approach, where a single
question or small parts of the conversation are used as query input to retrieve Knowledge Units
from the corpus. This way, different parts of the same conversation can contain multiple queries
and thus the results are less affected by shifts in conversation. More importantly, a Retrieval-
Rerank approach should be utilized, to make the retrieval as efficient as possible and mitigate
bottlenecks in retrieval. The retrieval results could potentially be improved by using a dataset
that provides relevance-scoring of questions, information that a model could utilize to finetune
relatedness.

Ultimately though, at the forefront of any future work should be the evaluation of a neural
retrieval application in terms of helpfulness for developers who can empirically evaluate the per-
formance. Therefore, we propose that future work considers a study in which the participants are
provided with a top-k list of relevant posts to various input queries and can evaluate the helpful-
ness of the retrieval results by adding a helpfulness score to the results. The scoring results can
further be used as training data in a reinforcement learning task that will aim to further improve
the reranking by predicting relatedness scores.

The expansion of the labeled Discord Conversation and SO pairs could really facilitate future
research. Given the automated mining of conversation pairs described in section 5.1.2, more
Discord community servers can be parsed with little effort. The same would also expand the
task domain to more languages and frameworks. The existence of a larger dataset would allow
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for the implementation of other techniques such as Adversarial Domain Adaptation, that seeks
to blend the source and target domain and make the two indistinguishable to the model, thus
gaining more generalization power. It is worth mentioning that since the beginning of this thesis,
there has been a small paradigm shift in the examined Discord community. The help channels
are slowly phased out and a new way of asking questions is introduced. The new channel allows
for distinct conversations that have a structure that includes title, question, tags, etc, and more
closely resembles the SO question-answering format. Certainly, if this new beta version becomes
the standard for Discord help channels, it will facilitate further research in the field. Finally,
given that Discord conversations rely heavily on code snippets, i.e users tend to ask for help
by providing code than trying to describe the issue in detail, similarity based on code could be
explored in the future. The approach certainly comes with its own set of challenges, but some
work is already been done in the space [SLL+18], [YDC+18].
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Appendix A

Implementation Details

A.1 Stack Exchange API
To call the Stack Exchange API one should take into consideration the rate limits set in place by
the service. From experience, the limit for requests for an application without an access token
seems to be 300 per day when hitting the same endpoint - despite the limit of 10,000 stated in the
documentation. 1. A wait time of 10 seconds between calls helps avoid getting a backoff response.
According to documentation, the same care should be exercised when sending requests that re-
turn the same results semantically, reportedly due to the API’s heavy caching implementation.
To avoid hitting the endpoint for the same ID multiple times, the raw response of each query is
saved in a JavaScript Object Notation (JSON). Before a new query, the JSON keys are checked
against the query ID, and if a match is found the query is not sent but returns the saved JSON. To
bypass the cache are refresh the output, the JSON dump file needs to be deleted.

1https://api.stackexchange.com/docs/throttle

https://api.stackexchange.com/docs/throttle


62 Chapter A. Implementation Details

A.2 Discord Retrieval Runs

Full Conversation

#Run recall-rate@2 recall-rate@5 recall-rate@10 recall-rate@20

1 0.33 0.49 0.59 0.69

2 0.40 0.56 0.71 0.81

3 0.39 0.55 0.69 0.80

4 0.43 0.60 0.75 0.85

5 0.42 0.60 0.73 0.84

Avg. 0.39 0.56 0.69 0.80

(a) Retrieval Runs with Discord Full Conversation Input

Short Conversation

#Run recall-rate@2 recall-rate@5 recall-rate@10 recall-rate@20

1 0.29 0.53 0.64 0.73

2 0.35 0.50 0.64 0.73

3 0.34 0.48 0.62 0.75

4 0.36 0.54 0.69 0.78

5 0.35 0.51 0.66 0.76

Avg. 0.34 0.51 0.65 0.75

(b) Retrieval Runs with Discord Short Input

Single Question

#Run recall-rate@2 recall-rate@5 recall-rate@10 recall-rate@20

1 0.21 0.46 0.55 0.65

2 0.28 0.41 0.54 0.62

3 0.29 0.42 0.54 0.62

4 0.31 0.44 0.58 0.67

5 0.29 0.43 0.56 0.66

Avg. 0.28 0.43 0.55 0.64

(c) Retrieval Runs with Discord Question Input

Table A.1: Retrieval Evaluations of Discord-SO pairs. For each run the Retrieval Dataset is enriched by
Random Subsets of Stack Overflow Knowledge Units.



Appendix B

Discord-SO Conversation
Examples



64 Chapter B. Discord-SO Conversation Examples

Figure B.1: Discord Conversation #977541076548222976.

https://discord.com/channels/648956210850299986/893828550946328606/977541076548222976
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Figure B.2: Stack Overflow Question #3699141.

https://stackoverflow.com/questions/3699141/how-to-sort-an-array-of-ints-using-a-custom-comparator
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Figure B.3: Discord Conversation #979813430401835078.

https://discord.com/channels/648956210850299986/894881243617955850/979813430401835078
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Figure B.4: Stack Overflow Question #56728398.

https://stackoverflow.com/questions/56728398/java-11-new-http-client-send-post-requests-with-x-www-form-urlencoded-parameter
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Figure B.5: Discord Conversation #971797369874182194.

https://discord.com/channels/648956210850299986/894881275230437396/971797369874182194
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Figure B.6: Stack Overflow Question #33595941.

https://stackoverflow.com/questions/33595941/how-to-convert-jsonarray-to-hashmap
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Figure B.7: Discord Conversation #963170643640213576.

https://discord.com/channels/648956210850299986/894881243617955850/963170643640213576
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Figure B.8: Stack Overflow Question #43130952.

https://stackoverflow.com/questions/43130952/why-chdir-does-not-support-in-java
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Figure B.9: Discord Conversation #904644087200755723.

https://discord.com/channels/648956210850299986/894881366326525962/904644087200755723
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Figure B.10: Stack Overflow Question #223918.

https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
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Figure B.11: Discord Conversation #959725068391432212.

https://discord.com/channels/648956210850299986/894881533716992030/959725068391432212
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Figure B.12: Stack Overflow Question #71714015.

https://stackoverflow.com/questions/71714015/why-is-my-entity-class-inserting-two-ids-into-my-table-spring-boot-jpa
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Figure B.13: Discord Conversation #966404222058893322.

https://discord.com/channels/648956210850299986/894881243617955850/966404222058893322
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Figure B.14: Stack Overflow Question #13102045.

https://stackoverflow.com/questions/13102045/scanner-is-skipping-nextline-after-using-next-or-nextfoo
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Figure B.15: Stack Overflow Question #17443201.

https://stackoverflow.com/questions/17443201/why-doesn-t-work-on-string
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Figure B.16: Stack Overflow Question #12273794.

https://stackoverflow.com/questions/12273794/scanner-nextline-nosuchelementexception
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Figure B.17: Stack Overflow Question #12544564.

https://stackoverflow.com/questions/12544564/why-this-output-when-comparing-args0-with-a-string
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Figure B.18: Stack Overflow Question #36096097.

https://stackoverflow.com/questions/36096097/im-doing-an-assignment-and-i-keep-getting-a-nullpointerexception-error-in-proce
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Figure B.19: Stack Overflow Question #4185320.

https://stackoverflow.com/questions/4185320/hitting-a-url-using-java


83

Figure B.20: Stack Overflow Question #7487341.

https://stackoverflow.com/questions/7487341/send-http-post-message-using-a-stream-in-java
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Figure B.21: Stack Overflow Question #13056980.

https://stackoverflow.com/questions/13056980/httpclient-with-redirect


85

Figure B.22: Stack Overflow Question #11328043.

https://stackoverflow.com/questions/11328043/java-what-is-the-purpose-of-setdoinput-in-urlconnection
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Figure B.23: Stack Overflow Question #12888780.

https://stackoverflow.com/questions/12888780/how-to-send-http-request-to-a-servlet
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