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Abstract

Classification of handwritten symbols like digits or letters is well-studied. This master thesis
focuses on the novel domain of Kinderlabor computer science exercises. It contributes a dataset
of symbols handwritten by children in the corresponding domain and evaluates different clas-
sification models. This thesis is part of a larger project which aims to implement an automated
correction process for those exercises using existing localization and correction algorithms in com-
bination with a symbol classification model developed in this thesis, which classifies each symbol
independently. The dataset is collected using different types of exercise sheets, of which the data
collected from productive exercise sheets have a significant drawback of lacking or even entirely
missing some symbols. To overcome this limitation, a very time-efficient exercise sheet that con-
tains all symbols is contributed. This thesis starts by inspecting the data, where different char-
acteristics of the handwritten symbols and the prevalence of certain symbols are studied. Then,
three different data splits are defined, including a data split to assess performance in the pro-
ductive application scenario, where the model has to classify symbols from new school classes.
Two important characteristics of the dataset are the label imbalance and that the dataset contains
a certain amount of unknown symbols, making the classification problem an open set classifica-
tion problem. In an open set classification problem, a classification model must not only correctly
classify a set of known symbols, but also reject unknown symbols. Two types of experiments
are then performed on the dataset: First, baseline models for correctly classifying all known sym-
bols, including empty fields, are created that are not explicitly trained to reject unknown symbols.
Subsequent experiments are performed to evaluate the ability of the models to reject unknown
symbols while maintaining good performance on the prediction of known symbols. As existing
work lacks an open set evaluation metric for imbalanced datasets, an adaptation to the existing
open set classification rate curve is contributed and used throughout the experiments.





Zusammenfassung

Die Klassifizierung handgeschriebener Symbole wie Zahlen oder Buchstaben ist gut erforscht.
Diese Masterarbeit beschäftigt sich mit Programmieraufgaben im Rahmen der Kinderlabor Organ-
isation. Diese Arbeit trägt einen neuen Datensatz bei, welcher handgeschriebene Symbole von
Kindern im Rahmen dieser Aufgaben enthält und evaluiert verschiedene Klassifizierungsmod-
elle. Sie ist Teil eines übergeordneten Projektes mit dem Ziel, einen automatischen Korrektur-
prozess für solche Aufgaben zu implementieren auf Basis von existierenden Ortungs- und Kor-
rekturalgorithmen und einem im Rahmen dieser Masterarbeit entwickelten Klassifizierungsmod-
ell, welches jedes Symbol unabhängig klassifiziert. Der Datensatz wird mithilfe von verschiede-
nen Typen von Arbeitsblättern gesammelt, wobei die Daten der produktiven Arbeitsblätter den
Nachteil haben, dass gewisse Symbole nur sehr selten bis gar nicht vorkommen. Um diese
Knappheit zu überwinden, trägt diese Arbeit ein zeiteffizientes Arbeitsblatt zur Datensamm-
lung bei, welches alle Symbole enthält. Die Masterarbeit analysiert zuerst den Datensatz, wo
verschiedene Aspekte der handgeschriebenen Symbole und deren Häufigkeit untersucht wer-
den. Es werden drei verschiedene Datentrennungen definiert, von welchen eine genutzt werden
kann, um die Genauigkeit in der produktiven Benutzung durch neue Schulklassen zu evaluieren.
Zwei wichtige Charakteristiken des Datensatzes sind die ungleiche Häufigkeit der Symbole und
das Auftreten von unbekannten Symbolen, was das Klassifizierungsproblem zu einem Open Set
Klassifizierungsproblem macht. In einem Open Set Klassifizierungsproblem muss ein Modell
nicht nur bekannte Symbole richtig klassifizieren, sondern auch unbekannte Symbole zurück-
weisen. Im Anschluss werden zwei Arten von Experimenten durchgeführt: In einem ersten
Schritt werden verschiedene Referenzmodelle für die korrekte Klassifizierung bekannter Sym-
bole, inklusive leeren Feldern, verglichen. Diese Modelle werden nicht explizit darauf trainiert,
unbekannte Symbole zurückzuweisen. In einem zweiten Schritt werden Modelle auch explizit
darauf trainiert, unbekannte Symbole zurückzuweisen, währenddem sie eine hohe Genauigkeit
auf bekannten Symbolen halten sollen. Da in bestehenden Werken keine angemessene Open Set
Bewertungsmetrik für unausgeglichene Datensätze existiert, wird in dieser Masterarbeit eine An-
passung der Open Set Klassifizierungsratenkurve beigetragen und in den Experimenten benutzt.
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Chapter 1

Introduction

Optical Character Recognition (OCR) has evolved rapidly in the past. Current state-of-the-art
OCR systems such as Google Docs OCR allow the localization and classification of a large number
of written languages, including languages that originate from Latin, Arabic, Chinese or other al-
phabets Tafti et al. (2016). Many different systems have been built to recognize different domains,
such as mathematical expressions or musical symbols. While the first systems were rule-based,
the introduction of Deep Learning (DL) models has further improved the performance of OCR
systems Wei et al. (2018).
Kinderlabor, an independent Swiss organization that provides teaching materials for children
aged 4 to 12, is working on a project with the goal of using OCR technology to correct their
computer science exercises. Those computer science exercises can be grouped into three exercise
types that differ in the symbols that children need to draw to solve the exercise. The general theme
of the exercise is that a robot called Robo moves on a grid by executing a sequence of instructions.
Figure 1.1 shows an example of the first two exercise types. In the first type of exercise, children
need to draw symbols, which represent instructions, to reach a given target after executing these
moves on the grid. In the second type of exercise, children need to draw the location of the robot
on the grid after it has executed all the instructions starting from a given starting position on the
grid. The third type of exercise is simpler as it consists of a user marking a checkbox using an X or
leaving it empty. A full list of all valid symbols and some examples of how children write them
are provided in the following chapters.
The project foresees that the correction process is implemented using a sequence of three inde-
pendently developed modules that solve different steps of the correction process. From the per-
spective of a child, the correction process shall be made as simple as taking a photograph of
an exercise sheet and getting the correction drawn into this photograph. First, a software enti-
tled Herby is used to identify the sheet in the photograph and localize pre-defined symbol boxes,
where the children need to draw the symbols. Subsequently, a classification model is used on each
of those boxes independently to classify which symbol is written in this box. It uses the cropped
box as input and returns a probability for each symbol, with the objective of the actual symbol
having the highest probability. As a third step, a correction algorithm uses these probabilities in
combination with the definition of the exercise to generate visual feedback for the child.
This thesis evaluates different DL models that can be used in the correction process to solve the
second step of independently classifying symbols handwritten by children. Having no existing
labeled data on this domain, this thesis contributes a dataset which is collected from photographs
and scans of Kinderlabor exercise sheets solved by children, where the symbol boxes are individ-
ually cropped from the original photograph with the location determined by the aforementioned
Herby software. As the localization of the symbol using existing Herby software precedes the
classification, errors in the localization may propagate to the symbol classification and subse-
quently to the correction. Hence, this thesis also seeks to mitigate the impact of slight localization
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(a) Instruction Exercise Type Example (b) Location Exercise Type Example

Figure 1.1: EXAMPLES OF (A) INSTRUCTION AND (B) LOCATION EXERCISE TYPE. In (a), children
are shown a grid and need to instruct Robo to move to the target field (circle) and in (b), children are shown
a starting position and a sequence of instructions and need to draw the final location of Robo. The bounding
boxes predicted by the preceding Herby localization algorithm are illustrated as orange boxes.

errors in the preceding Herby localization.
Because the collected dataset contains different types of unknown symbols, as explained in more
detail in Chapter 3, the classification problem can be viewed as an open set classification problem.
In an open set classification problem, the model is not limited to classifying a list of known sym-
bols, but also has to reject unknown symbols. In the foreseen correction process, this information
can be used by the correction algorithm in order to provide a better visual feedback stating that a
symbol is unknown and cannot be interpreted. This can be seen as a way to explain the concept
of syntax errors in programming languages to children.
Based on the problem statement, this thesis addresses the following three research questions (RQ):

• RQ1: How can the dataset be used to assess the model performance for productive use,
which is classifying symbols originating from new school classes?

• RQ2: What techniques can be used to maximize model performance and minimize the im-
pact of preceding localization offsets for an independent classification model?

• RQ3: How can the open set performance of a model be assessed for the dataset and can it
possibly be improved by using some sort of unknown symbols in training?

The thesis first presents additional background information on the specific domain and DL tech-
niques in Chapter 2. In Chapter 3, the collected dataset for this domain is explained in more detail
by showing examples, label distributions, particular observations, and how the data are split into
training and test sets. Subsequently, Chapter 4 explains the approaches used in the experiments
and particular design choices. Chapter 5 contains the experiments, where different training ap-
proaches for DL models and their performances are compared. Chapter 6 discusses the results,
lists limitations, and proposes future work. Finally, Chapter 7 gives a conclusion of the thesis.



Chapter 2

Background

This chapter includes background information on the different topics relevant to this work. It
starts by providing more details about the real-world application that this project builds around
and then explains the technical concepts used in the experiments. The chapter is rounded off with
a list of related work.

2.1 Kinderlabor Exercises
The productive Kinderlabor computer science booklet includes open-text exercises, as well as
the three different types of code evaluation and coding exercises mentioned in the introduction
chapter Gärtner et al. (2021). While open-text exercises are not covered in this thesis, the other
three types of exercises each involve a specific alphabet, for which a domain-specific classification
model is created. This section provides the set of symbols that children are intended to draw in
the respective exercise types and their semantic meanings.

1. Instruction: The first type of exercise is to give Robo a sequence of instructions on how
to reach its target based on a grid that depicts the starting position of Robo and a target
field it is supposed to reach, as well as some obstacles that Robo has to avoid on its way.
Robo can be given four basic instructions: move forward by one field (+1), move backward
by one field (−1), turn clockwise in place (⟳), and turn anti-clockwise in place (⟲). More
advanced exercises introduce (nested) loops of fixed sizes, instructing Robo to execute the
code within this loop either twice, three, or four times. As in many programming languages,
the notation consists of a loop start symbol (2⌜, 3⌜, 4⌜) and the end-of-loop symbol (⌟) that
enclose the sequence of code to be executed multiple times. If the program is shorter than
the maximum number of instructions allowed, an instruction symbol box can be left empty.

2. Orientation: The second type of exercise covers the question At which field does Robo end
up after executing a given sequence of instructions from the starting point and what direction is it
looking at? In this type of exercise, the exercise contains a grid with Robos starting position
as well as a sequence of instructions, and the children are then supposed to draw the final
location of Robo, as well as its orientation on the grid. Thus, there are five different states of
each field: The first state is that this field is empty because Robo is not located in this field
after executing the sequence of instructions. The other four states are drawn as arrow tips
that point in the respective direction into which Robo is looking as it is located on this field
after finishing the execution of all the instructions. For example, > represents that Robo is
located in the respective field and looking to the right. Looking up (

<

), left (<) and down
( <) are other valid symbols that a child can draw into such a field.
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3. Checkbox: The third type of exercise covers binary questions like Can Robo execute this code
without crashing into an obstacle? or Can Robo find a way from the starting point to the endpoint?
This type of exercise shall be responded to by the children with yes by checking the box with
a cross (X) or with no by leaving the box empty.

This thesis uses a slightly different notation in tables and figures to simplify the distinction and
interpretation of symbols. In particular, the notation 2x, 3x and 4x is used for the loop start
symbols and end is used for the end-of-loop symbol. The orientation symbols are represented by
full arrows (↑,→, ↓,←) and an empty symbol box is denoted empty.

2.2 Herby
As explained in the introduction, Herby is a closed-source software solution, which was devel-
oped by a startup named the same Pelican (2019). The software can be used to correct exercise
sheets based on a photograph of the exercise sheet solved by a student. Internally, the software
recognizes the corresponding document from a document pool and aligns the exercise sheet. This
allows the localization of pre-defined boxes, where a child has to write their answer, and each
box can then be cropped in an orientation-corrected manner if the original photograph was taken
rotated or similar. However, the localization algorithm and its rotation correction do not offer
perfect accuracy and therefore deviations from the predicted bounding box to the actual location
of the bounding box are possible.
Figure 2.1 shows the third step of the correction process, for which Herby provides a toolbox
of existing functionality: Herby allows the visualization of feedback directly projected into the
photograph of an exercise sheet by grouping symbol boxes and drawing feedback over a group
of one or more boxes. The implementation of the correction algorithm is not part of this thesis;
however, potential limitations introduced by the classification model that can propagate to the
correction algorithm are considered in the discussion.

2.3 Deep Learning
Deep learning (DL) is a machine learning technique that learns a parameterized differentiable
function. DL solutions have shown to be superior to previous machine learning algorithms on
different types of approaches, including computer vision tasks like image processing LeCun et al.
(2015).
DL models, also known as artificial neural networks, usually consist of multiple layers. Each
layer transforms an input signal in the form of a tensor and returns an output tensor. The sim-
plest example is a linear layer that applies a linear function of the form Ax+ b to the input signal
x. Each layer can have trainable parameters, which are called weights. For a linear function of
the form Ax+ b, those weights are the matrix A and the bias b. Other layers include nonlinear ac-
tivation functions such as Rectified Linear Units (ReLU), which apply the element-wise function
ReLU(x) = max(0, x). ReLU can also be parameterized so that the function multiplies negative
values with a trainable parameter, which is then referred to as PReLU He et al. (2015). Further-
more, different regularization layers exist, like dropout that randomly drops units with a given
probability Srivastava et al. (2014). A very important type of layer for the task of image process-
ing in particular are convolution layers. As an example, a 2D convolution with a kernel size of
3x3 iterates over the pixels of a grayscale image and applies a dot product of a 3x3 weight matrix
with the corresponding pixels of the 3x3 excerpt of the image. The convolution is applied to the
whole image in a sliding window, moving by at least 1 pixel in width and height. The number of
pixels that the convolution moves in the sliding window is called stride and additionally, padding
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Figure 2.1: EXAMPLE OF HERBY CORRECTION ON AN EXERCISE SHEET. A red box is drawn over a
wrong answer grid and a green box is drawn over a correct answer grid.

may be used at the border of the image. Usually, every convolution layer operates on a number
of input channels as channeled convolution, allowing it to detect shapes within multiple input
channels like the three color channels red, green and blue in RGB images. Another important
type of layer in image processing are pooling layers. As an example, 2D max pooling operates on
the image in a sliding window, summarizing the features in the region by returning the maximum
value. Like convolution layers, pooling layers can also be configured by changing the stride or
by adding padding. The pooling layers treat each input channel independently and traditionally
do not contain trainable parameters. Pooling can also be performed globally; for example, global
max pooling can be used to reduce the entire channel to a single number. After applying a num-
ber of layers, the model returns an output which represents the desired output, for example, the
probabilities of different image classes for the task of image classification.
The second important building block of DL is a loss function that is calculated based on the target
and the actual model output. Cross Entropy (CE) loss is a popular loss function used in classifi-
cation tasks to minimize cross entropy between a target label and the model output. It can also be
further adjusted by applying label smoothing Szegedy et al. (2016).
The last building block of DL are optimization algorithms. DL models are usually trained in an
iterative manner, updating the weights based on a fixed-size subset of input samples referred to
as mini-batch or batch. In the training loop, first, the output and the current loss of the model for
a batch is computed. Subsequently, the gradient of the loss with respect to the current weights
is computed. Lastly, the weights are updated to reduce the loss using gradient-based optimiza-
tion algorithms like (stochastic) gradient descent. After performing enough model update steps,
the model eventually converges toward a certain (local) minimum of the loss function, having
found the optimal parameters for the task. Update steps may also be measured in epochs, which
corresponds to a full iteration over all batches of the training set.
When a model is trained on a target originating from labeled data, such as the class of an image,
this is referred to as supervised learning. When no such labels are available, this is usually re-
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Figure 2.2: ORIGINAL LENET-5 ARCHITECTURE. The illustration is from the original authors LeCun
et al. (1998). In this thesis, slight adaptations are made to the network, for example, using a full connection
instead of Gaussian connections. Further differences exist in the use of activation functions and how the
subsampling is performed.

ferred to as unsupervised learning. Having explicit labels in the dataset presented in Chapter 3,
this thesis is limited to supervised learning.

2.3.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of artificial neural network that is typically
used in image processing, but they can also be adapted to work in other problem domains as well.
Like every other DL model, CNNs consist of multiple layers but mainly rely on convolution layers
to extract meaningful optical patterns or shapes from the image to generate a deep representation
Albawi et al. (2017). In image classification, the deep representation is usually flattened1 and then
a series of fully connected layers is applied to perform the classification.

LeNet-5

One of the first CNNs that has become very popular in the research community is the LeNet-5
model LeCun et al. (1998). Its architecture is relatively simple. The model consists of seven com-
putational layers and operates on a 32x32 grayscale input. The first layer, which is denoted as
C1 in Figure 2.2, applies a 5x5 channeled convolution that results in 6 channels. The subsequent
S2 subsampling layer reduces the size of each channel to 14x14. Subsequently, layer C3 applies
another channeled convolution of size 5x5 with a larger size of 16 channels, followed by subsam-
pling S4 that again reduces the size to 5x5. The resulting feature maps are then flattened and
followed by fully connected linear layers C5 and F6 that apply a linear transformation that trans-
forms the representation into a vector of size 120, respectively, 84. To obtain the classification,
the original model then applies a radial basis function to predict the probabilities of the labels,
denoted as Gaussian connections in Figure 2.2. The implementation in this thesis uses a fully
connected layer instead. The original LeNet-5 implementation also contains activation functions
applied after the convolution layers and linear layers. The adapted version in this thesis uses
ReLu after the convolutions and no activation functions after the linear layers. Furthermore, the
implementation in this thesis uses 2x2 max pooling to perform the subsampling.

1Flattening refers to reshaping tensor dimensions to a 1D vector
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(a) Original Dataset Distribution (b) Closed Set Decision Boundaries (c) Open Set Decision Boundaries

Figure 2.3: EXAMPLE OF (C) OPEN SET VS (B) CLOSED SET MODEL DECISION BOUNDARIES ON
(A) A GIVEN DATASET. The figure is from the survey paper Geng et al. (2020). There are two types of
unknown samples (UUC) present in the dataset. A closed set model creates decision boundaries that split
the whole space into five sub-spaces while an open set model aims to generate decision boundaries that
leave room for unknown samples in the open space.

SimpleNet

In recent years, wider and deeper networks have outperformed simple networks like the afore-
mentioned LeNet-5 on a number of image classification benchmarks. As an example, the 22-layer
deep GoogleNet architecture was presented, which consists of multiple inception modules. Such
an inception module combines convolutions of different sizes, as well as dimension reduction us-
ing max pooling Szegedy et al. (2015). Another popular approach was to use residual nets which
enable a deeper model to combine the output of a function with its input by using so-called resid-
ual functions He et al. (2016).
SimpleNet is a deep CNN that follows the paradigm suggested by the paper’s title Let’s keep it
simple, using simple Architectures to outperform deeper and more complex Architectures Hasanpour et al.
(2016). The architecture of the SimpleNet model consists of multiple convolution blocks. Each
convolution block applies a relatively simple (3x3 or 1x1) 2D convolution that is followed by batch
normalization2 and a ReLU activation function. After some of the aforementioned convolution
blocks, 2x2 max pooling with a stride of 2x2 and dropout regularization is applied. The model
then applies global max pooling after the last convolution layer before applying a linear layer and
returning the model output. The authors also propose a method to slim the model by reducing
the number of channels used in the convolution layers.

2.4 Open Set Classification
Traditionally, classification problems are limited to a set of known labels, and the goal is to classify
an input into one of those labels. However, reality can be different as unknown samples that do
not belong to any of the known labels can occur. For example, in the case of Kinderlabor exercises,
a child can draw a variation of a known symbol or even a completely unknown symbol in the
bounding box. Examples of unknown symbols are provided in the following chapter in Section
3.4.
Open set classification is visualized in Figure 2.3, where a dataset is shown in a 2D space. A
closed set classification approach splits the whole 2D space into the known labels, while an open
set classification approach generates boundaries that leave an open space for unknown samples.

2A regularization technique that rescales the values of each channel to have a trainable mean and standard deviation
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Source Domain Dataset
Ramadhan et al. (2016) Math Mouchère et al. (2016)

Lee et al. (2016) Music Calvo-Zaragoza and Oncina (2014)
Cireşan and Meier (2015) Chinese Liu et al. (2013)

Sonawane and Shelke (2018) Devanagari Script own
Dhamija et al. (2018) Various Deng (2012), Netzer et al. (2011), more

Miller et al. (2021) Various Deng (2012), Netzer et al. (2011), more
Suter (2022) Various Deng et al. (2009)

Anacona et al. (2022) Various Deng et al. (2009)

Table 2.1: COMPARISON OF RELATED WORK ON DOMAINS AND DATASETS. The related work in
open set classification is not limited to a specific domain, using either a variation of different datasets or a
set of selected classes from the ImageNet dataset, which is not limited to a specific domain.

Source Model Approach Open Set Approach
Ramadhan et al. (2016) CNN -

Lee et al. (2016) CNN -
Cireşan and Meier (2015) CNN -

Sonawane and Shelke (2018) CNN -
Dhamija et al. (2018) CNN Novel Loss Functions & Evaluation

Miller et al. (2021) CNN Novel Loss Function
Suter (2022) CNN Comparison of Techniques

Anacona et al. (2022) CNN Large Scale & Evaluation Metric

Table 2.2: COMPARISON OF RELATED WORK ON MODEL AND OPEN SET APPROACH. All entries
use CNNs as the model approach, which emphasizes the superiority of those networks over different model
approaches.

In open set classification, some types of unknown samples may be seen during training, and other
types of unknown samples from the open space may occur in testing Geng et al. (2020).
Different techniques to build models for open set classification are lined out in the respective
survey paper: A straightforward solution is to add a background class for unknown samples
during training. Another approach entitled OpenMax Wen et al. (2016) is one of the first distance-
based approaches to detect unknown samples, and more complex solutions, which do not require
unknown samples in training, have evolved since like class anchor clustering that learns a center
per label Miller et al. (2021). Another approach that does require some unknown samples in the
training phase is adapting the cross entropy loss function and turning it into the entropic open
set or the objectosphere loss, where the loss function is adapted to generate low probability scores
for each label when encountering an unknown sample Dhamija et al. (2018).

2.5 Related Work
The image classification task in general and the classification of handwritten symbols specifically
is well researched, as shown in Tables 2.1 and 2.2. Existing work is mostly limited in the sense
that it builds on a previously published dataset or only does closed set classification. Generally,
most recent papers use a variant of deep CNNs as the model approach for the different domains.
In the math domain, Mouchère et al. (2016) published a dataset of online handwritten mathemat-
ical expressions. In the domain of music, Calvo-Zaragoza and Oncina (2014) published the homus
dataset for the classification of pen-based music symbol notation. Another domain is the classifi-
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cation of language alphabets. For the language of Chinese, Liu et al. (2013) published a dataset for
online and offline handwritten Chinese character classification. Similarly, Sonawane and Shelke
(2018) published a dataset for the classification of handwritten Devanagari script characters. One
of the earliest and still most popular handwritten symbol datasets is the MNIST handwritten digit
classification dataset by Deng (2012).
As the publication of a dataset enables different researchers to evaluate and propose different
model approaches, multiple papers have been published on the aforementioned datasets. For
mathematical expressions, Ramadhan et al. (2016) provide a baseline using a simple CNN archi-
tecture. In the same way, Lee et al. (2016) provide a CNN baseline for the music dataset by com-
paring different CNN architectures, where the GoogleNet by Szegedy et al. (2015) achieves the
best performance. For the Devanagari script dataset, the authors themselves provide a baseline
by applying transfer learning3 to the AlexNet architecture by Krizhevsky et al. (2017). Cireşan and
Meier (2015) provide a baseline for the Chinese character classification task by using what they
call multi-column deep neural networks, which is a technique that combines multiple deep neural
networks in a single network by averaging their features.
Related work in the direction of open set classification is not limited to a specific domain. Dhamija
et al. (2018) propose the aforementioned novel loss functions and evaluate them in different
domains using a proposed evaluation metric entitled Open Set Classification Rate (OSCR) curve,
which is explained in more detail in Section 4.3.2. Their experiments include the aforementioned
handwritten digits, but also include domains beyond handwriting, such as house numbers from
Google Street View in the SVHN dataset Netzer et al. (2011). Similarly, Miller et al. (2021) propose
a different optimization approach entitled class anchor clustering that can be used in conjunction
with any deep neural network and also evaluate this approach on a number of different datasets
including the MNIST digits and SVHN. Due to the different datasets and evaluation metrics used,
it is hard to compare different open set techniques directly, which is addressed by Suter (2022),
where different open set techniques are compared on protocols of different difficulties. Each of
the protocols uses different labels of the ImageNet dataset by Deng et al. (2009). In order to assess
the applicability on real-world problems, Anacona et al. (2022) provide large-scale open set clas-
sification protocols for ImageNet as well as a novel validation metric that addresses the open set
goal of both classifying known samples correctly and rejecting unknown samples.
The first contribution of this thesis is that it provides a dataset for a novel domain of handwritten
symbols. Further, it provides a baseline for both closed and open set classification by applying
a selection of models and open set approaches from related work. Due to the lack of an existing
metric to evaluate open set performance on imbalanced datasets, an adaptation to the OSCR curve
is contributed to account for imbalanced datasets.

3A technique to transfer model knowledge from one domain to a related domain





Chapter 3

Dataset

This chapter explains the data collection process and provides observations made on the collected
dataset. It starts with the methodologies, where a specific sheet is contributed to efficiently col-
lect data. Subsequently, this chapter provides some statistics on the dataset and proposes how
the dataset can be split to simulate the real-world application. Finally, some examples illustrate
particular challenges associated with the dataset.

3.1 Process
The data collection used throughout the thesis was created with the intention of emulating the
productive use of the models as closely as possible while overcoming the limitations of data avail-
ability. Generally, the process was that different types of exercise sheets were given to a number of
participating primary school teachers, who then let their students solve those exercise sheets and
returned them to the authors. The different types of exercise sheets are explained in the following
section. For logistic reasons, some exercise sheets were returned digitally by scanning them. The
authors then used the Herby software to extract the predicted locations of the symbol boxes and
two annotators then labeled each symbol box independently within the Herby software. To avoid
inconsistencies in the labeling process, specific labeling guidelines were created that are listed in
the appendix in Section A.1.1. Additionally, the master annotator revised all the labels of both
annotators to enforce a consistent understanding of the labeling guidelines. Herby software was
then used to extract the dataset. The dataset contains the cropped symbol boxes1 as well as a
comma-separated values (CSV) file with the target label and additional meta-information about
the cropped symbol. The dataset contains the information listed, but some of this information is
anonymized in the process due to legal concerns. Bold items represent columns that are made
available in the public dataset CSV.

ID A unique ID of the cropped symbol

Photograph ID A unique ID of the photograph in Herby software. Each photograph contains a single exer-
cise sheet and can originate from either a scan or a photograph of the exercise sheet.

School Class A pseudonymous identifier of the school class (for example Cls01)

Student A pseudonymous identifier of the student who completed the exercise (for example Stud01)

Sheet The identifier of the exercise sheet (for example BookletP1)

1Each symbol box is provided as a JPEG image with the filename ID.jpeg
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Task Type The type of exercise associated with the symbol (see Section 2.1)

Exercise An identifier of the exercise to which this symbol belongs (for example 1a)

Label The target label of the symbol

3.2 Exercise Sheet Types
During the data collection phase, three different types of exercise sheets were used to collect data
of symbols handwritten by children. The first type is the productive booklet provided by the
Kinderlabor organization, the second type is a specific exercise sheet that this thesis provides in
order to efficiently collect balanced training data and the last type is a drastically reduced mini-
booklet, which was created in cooperation with an associated teacher in order to collect more
testing data from booklets.

3.2.1 Booklet
In order to work with Herby localization, the Kinderlabor exercise booklet was updated to con-
tain pre-defined symbol boxes. Using previously solved booklets or scans of those would require
manual localization, which is time-consuming and would differ in the sense that no such sym-
bol box would be present around the symbols. As a consequence, the data from the productive
booklets with symbol boxes were collected from scratch. During the process, it turned out that
the whole process including the distribution of the exercise sheets to the teacher is rather time-
consuming, as working through the whole booklet requires many lessons, which the teachers
need to fit into their teaching schedule. The benefit of this approach is that data are collected
in the exact same manner that the correction system including the classification models shall be
used in production, hence no deviation from the productive use is to be expected in these data.
A particular drawback is that some symbols are heavily underrepresented in the data collected
using this type of exercise sheet, as the teachers and their students only managed to work through
the first half of the booklet, which does not yet contain some of the symbols like the loop notation
and therefore those symbols are heavily underrepresented or even completely absent. As a test
user and reference, an associated teacher also solved the complete booklet.

3.2.2 Sheet
As a more time-efficient approach compared to the booklets, a specific exercise sheet with the
symbols of the Kinderlabor exercises was created, where the students have to continue drawing
the symbols in a given scheme. An example of a sheet filled out by the authors is provided in
the appendix in Figure A.1. Using such a sheet, where the symbols are written in a different
exercise context, data can be collected in a way such that the labels of the symbols are balanced
and should be very close to the way they are written in the booklets. Additionally, this approach
is faster because it requires a maximum of one lesson and no additional teacher input. As a
particular drawback, it may occur that the symbols differ slightly due to specifics of the sheet,
such as smaller boxes, the two-dimensional symbol grid, or students not receiving the same level
of explanations and support from the teacher as in the booklet approach.
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Figure 3.1: LABEL DISTRIBUTION OF INSTRUCTION SYMBOLS. The blue, orange and green bars rep-
resent the total number of labeled samples for each label in the respective approach on a logarithmic scale.
The question mark represents samples labeled as unknown and the asterisk represents samples marked for
manual inspection. The red bar represents a single booklet completely solved by an associated teacher and
hence is a subset of the green bar. It serves to show the magnitude of how many samples of each label are to
be expected in a fully solved booklet.

3.2.3 Mini-Booklet
As a second time-saving alternative to the booklet approach, a mini-booklet was created in co-
operation with an associated teacher. It contains both instruction tasks and orientation tasks, but
no checkbox tasks. It is designed to take fewer lessons than the original booklet and be self-
explanatory so that children can work on it independently. It consists of a total of eight tasks on
five pages, including both basic and advanced instruction tasks as well as orientation tasks. Its
degree of difficulty is higher than the aforementioned specific exercise sheet but lower than the
advanced exercises in the booklet. It differs from the specific exercise sheet approach in the way
that the exercises build on the true semantic meaning of the symbols. It also differs slightly from
the booklet, as the children do not receive an in-depth explanation and discovery of the logic by
using building blocks and other additional material provided along with the booklet.

3.2.4 Label Distributions
The dataset contains a total of more than 46’000 labeled samples, including a label for unknown
symbols (?) and a label for cases to be inspected manually (*), which are not considered in the ex-
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(b) Checkbox Symbols

Figure 3.2: LABEL DISTRIBUTIONS OF (A) ORIENTATION SYMBOLS AND (B) CHECKBOX SYMBOLS.
The Mini-Booklet does not contain any checkbox exercises, hence no orange bar is visible in (b). Again,
the question mark represents unknown symbols and the asterisk represents samples marked for manual
inspection.

periments. Additionally, an associated teacher solved the booklet completely as a reference. The
distribution of labels differs for both the task type considered and the data collection approach
used.
Figure 3.1 shows the distribution of labels for the instruction task and illustrates that the labels are
well-balanced for the sheet approach but highly unbalanced for the booklet approach. This can
be explained by the fact that a lot of school classes involved in the data collection phase could not
finish the booklet and the advanced exercises that use the loop symbols are meant to be solved
last due to their increased level of difficulty. The most extreme example is the 2x loop symbol,
which is only present within the sheets and the mini-booklet. While the associated teacher used
it in their booklet, no child used it in their booklet.
The distribution of the orientation task in Figure 3.2 shows that, due to the nature of this type of
exercise, a large number of empty symbol boxes are expected in the booklet, as the child must
decide on a single location where Robo ends up on a grid of a fixed size. The four arrow tips
are not perfectly balanced but are within the same order of magnitude. For the checkbox task,
the label distribution is very similar to that of the orientation task. Due to some single-choice
exercises, there are more empty symbol boxes than crosses.

3.3 Data Splits
To take into account different scenarios, three different data splits S1, S2 and S3 are created. These
form the basis for the evaluation protocols used in the experiments. Table 3.1 lists all the school
classes present in the dataset and how many exercise sheets of each type they contribute to the
dataset. Of the 12 school classes, the exercise sheets of four school classes were scanned, and the
remaining ones were photographed using a mobile phone, which corresponds to productive use.
The first school class (00) includes the associated teacher that filled out the complete booklet and
relatives of the author that filled out the sheet to test the sheet methodology. For each data split,
first, a training and test set is defined. The validation set is then selected by taking a random 15%
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School Class Capture S2 Students Sheet Pages Mini-Booklet Pages Booklet Pages
00 Photo train/valid 5 4 0 21
01 Scan train/valid 8 8 0 0
02 Scan train/valid 15 15 0 0
03 Scan test 18 12 71 0
04 Photo test 42 0 0 554
05 Photo train/valid 18 0 0 103
06 Photo test 7 0 0 45
07 Photo train/valid 22 22 0 0
08 Photo train/valid 17 0 101 0
09 Scan test 16 0 96 0
10 Scan train/valid 11 0 65 0
11 Photo test 12 0 56 0

Table 3.1: LIST OF SCHOOL CLASSES IN DATASET. Only data split S2 uses the school class information
to split samples. Data split S1 splits the samples based on the data collection methodology (corresponding
to the last three columns) and data split S3 splits the samples randomly.

fraction of the training set. Therefore, the model is trained on the remaining 85% of the training
set, and the validation set is used to select the hyperparameters and the best-performing model
using the validation metric. The following enumeration explains the three data splits in more
detail:

S1 Data split S1 splits the data into a training and a test set in such a way that the training set
contains all samples that were collected using the previously explained sheet methodology.
On the other hand, the test set contains all the samples that come from the booklet and
mini-booklet approach, including the booklet completely filled out by a teacher. This data
split serves to evaluate whether the sheet methodology is suited for data collection, which
is considered to be true if a model trained purely on samples from the sheet methodology
achieves good classification performance on the classification of symbols from the booklet
and mini-booklet methodologies.

S2 Data split S2 serves to evaluate the classification performance of a model in the productive
application scenario, where it has to classify samples from new children, respectively, new
school classes that were not seen during training. Table 3.1 lists the 5 of 12 school classes
that were selected for the test set with the intention of using most of the productive booklet
data in the test set.

S3 Data split S3 splits the symbols randomly into a training and validation set consisting of 80%
of the samples and a test set consisting of 20% of the samples. In this split, the training set,
before splitting off the validation set, is limited to a maximum of 1’500 samples per label.
This data split serves to find an upper bound that may be achieved by a model having
data originating from each school class and each child in the training set. Also, the label
imbalance in the training set is the smallest for this data split due to the upper limit of
training samples per label, which is, however, not reached by the arrow tip symbols in the
orientation task type and the advanced instruction symbols in the instruction task type.

Section A.1.2 in the appendix shows the exact number of samples per data split and task type for
the training, validation and test sets. Generally, all test sets are imbalanced as some labels provide
many more samples than others. For example, there are 9087 empty symbols for the orientation
task in the test set of data split S2, and for the arrow tip down symbol, there are only 292 samples
in the test set of data split S2. All data splits and evaluation protocols that use them exclude the
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(a) Basic Instruction Symbol Examples (b) Advanced Instruction Symbol Examples

Figure 3.3: EXAMPLES OF (A) BASIC AND (B) ADVANCED INSTRUCTION SYMBOLS. The meaning of
the symbols is described in Section 2.1. The last row contains unknown symbols.

inspect label as this label includes severe localization errors, which are not analyzed in this thesis.
For each data split, a column is added to the public dataset CSV file to indicate whether it belongs
to the training, validation, or test set.

3.4 Observations
By visualizing five training samples per label and task type in Figures 3.3 and 3.4, differences can
be observed in both writing styles and lighting conditions. While the differences in the lighting
conditions apply globally to all the symbols and task types, some differences in the writing styles
only apply to specific symbols. Additionally, each figure contains a row of unknown samples for
the respective task type. All the symbols are rescaled to 32x32 despite the original aspect ratio
deviating in the specific case of instruction boxes in both the mini-booklet and the booklet, where
a rectangular symbol box is used.

3.4.1 Global Observations
Lighting Conditions

As can be seen in Figure 3.4, the lighting conditions in the images vary for all symbols. While some
samples are bright, others are relatively dark, but still provide sufficient contrast for a human
to recognize the symbol. This corresponds well to the intended application of the models in
production, where children can take photos in arbitrary lighting conditions.
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(a) Orientation Symbol Examples (b) Checkbox Symbol Examples

Figure 3.4: EXAMPLES OF (A) ORIENTATION AND (B) CHECKBOX SYMBOLS. The last row contains
unknown symbols for the respective task type.

Handwriting Color and Thickness

Another aspect where the symbols differ is the writing color. This is visible, for example, in Figure
3.3, where the first -1 symbol is written in blue, while the other -1 symbols are written in black
color. Further variation occurs in the thickness of the handwritten symbols, as can be seen in the
same figure. The first -1 is written thick, while the second -1 is written rather thin.

Font Size

As the term bounding box suggests, symbols are written in different font sizes within the printed
bounding box. Some children use the full box or even write slightly outside the bounding box,
and others only use part of this box, which leads to slightly different locations of the symbols
within the bounding box.

Bounding Box

Because the Herby localization introduces a slight error rate in the localization, the bounding box
is part of the cropped symbols and appears in different relative locations. This is visible for the
empty symbol row in both Figures 3.3 and 3.4. While its color is solid black, its contrast to both
the background and the written symbol also varies with the aforementioned lighting conditions.
The thickness and aspect ratio of the bounding box also vary due to the different data collection
methodologies described in Section 3.2.
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Unknown Symbols

A common type of unknown symbol is that children write symbols of another task type. For
example, they write an instruction to move forward (+1) into a checkbox field as depicted in
Figure 3.4. A further type of unknown symbol is when children change the symbol in an unclear
manner, either by crossing it out as shown in Figure 3.3 or by simply writing the new symbol over
the previous one as visible in Figure 3.4. Also, there are some incomplete symbols; for example,
in Figure 3.3 there are rotation instructions that miss the tip of the rotation arrow and a move
command (1) with no direction. A similar unknown symbol occurs for the checkbox task where
only half a cross is written.

3.4.2 Specific Observations
Different Versions of the Digit One

Figure 3.3 shows the two variations of the digit one, which are present in the dataset. For both
the +1 and -1 symbols, some children write the digit as a straight line only, while others include
the edge at the top.

Turn Arrows

The same figure also shows the variety of both the arrows indicating a clockwise as well as an
anti-clockwise turn. Some are written with an angle of more than 180 degrees, while others have a
much lower angle. Another variety comes with the tip of the arrow, which is strongly emphasized
by some children, while others draw only a small edge. Some children also fill the tip, while others
draw it transparently.

Loop Symbols

The intended notation of the loop symbols is to draw the number plus the upper and left edges of
the box as the start symbol of the loop and to draw the bottom and right edges as the end symbol
of the loop. As can be seen in Figure 3.3, there is a large variation, as many children draw a full
box, sometimes shadowing the respective edges to indicate the start, respectively, the end of the
loop, and sometimes children even draw a fully filled-out box.

Unknown Symbols

The figures also reveal some specific types of unknown symbols that occur repeatedly. The most
common one is reversing the order of conjunct instruction symbols as shown in Figure 3.3: Many
unknown symbols occur where children write 1- or 1+ instead of -1 or +1. For the loop symbols,
there are two sorts of unknown symbols that occur repeatedly as depicted in the same figure: The
first is trying to execute a loop more than four times by writing a number greater than 4 before
the loop start symbol. The second type is an instruction to move more than one field forward (or
backward) by writing, for example, +8.
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Approach

This chapter explains the approaches used in the experiments during training and evaluation for
both closed set and open set classification. It explains the novel approach to evaluating open set
models for imbalanced datasets and is rounded off by listing the protocols and hyperparameters
used in the experiments.

4.1 Models predicting Probabilities
The experiments use the two models described in Section 2.3.1. The LeNet-5 implementation
from the PyTorch tutorials is used1 which differs from the original implementation as described
in the respective section. The output size of the models is adjusted to the respective number of
output classes of each task type. The SimpleNet network is adapted based on the original author’s
PyTorch implementation.2 The SimpleNet model is slimmed down by dividing the number of
channels of all convolution layers by 4 in order to reduce model training time. In the closed
set experiments, the model uses a single, fully connected layer after the global max pooling and
random dropout with a probability of 0.1 to perform the classification. This model is referred to
as Slimmed SimpleNet due to the reduced number of channels in the convolution layers. For the
open set experiments, the slimmed SimpleNet is slightly adapted to what is referred to as Slimmed
SimpleNet EOS. The adaptation is that the EOS version uses a linear layer with no bias to do the
final classification.
The output of the models is transformed into probabilities. For orientation and instruction task
types, which both have more than two known output classes, this is achieved by using PyTorch’s
softmax function.3 For the binary checkbox classification task this probability is obtained using a
sigmoid function σ(x) on a single output neuron.4 The respective formulas are listed in Equation
4.1. To obtain per-label probabilities in the binary case, the value of the sigmoid function σ(x)
is interpreted as the probability of label 1 and 1 − σ(x) as the probability of label 0. The highest
model probability for a label is referred to as the model confidence throughout the thesis.

Softmax(xi) =
exi∑
j e

x
j

, σ(x) =
1

1 + e−x
(4.1)

1https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
2https://github.com/Coderx7/SimpleNet_Pytorch/blob/master/models/simplenet.py
3https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
4https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html
https://github.com/Coderx7/SimpleNet_Pytorch/blob/master/models/simplenet.py
https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
https://pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html
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Although the slimmed SimpleNet architecture is more complex than the LeNet-5 architecture,
the number of trainable parameters is still manageable. For a model with 5 output classes, the
proposed slimmed SimpleNet has 346’405 trainable parameters compared to the LeNet-5’s 61’281
trainable parameters. In comparison, the original SimpleNet would have more than 5 million
trainable parameters.

4.2 Data Augmentation
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Figure 4.1: AUGMENTATION OF SELECTED SAMPLES. The first column shows the original symbol and
the second column the input to the model, which is grayscaled and inverted. All other columns show a type
of augmentation that is used (alone or in combination with others) in the experiments.

Data augmentation is used in the closed set classification to enhance the size and quality of the
training data. In open set classification, a different data augmentation technique is used to gen-
erate unknown symbols to be used in training. There exist various different techniques, ranging
from simple geometric transformations, such as rotations and cropping, to more complex so-
lutions, such as training adversarial generative networks to artificially generate more samples
Shorten and Khoshgoftaar (2019). Data augmentation in the experiments is limited to different
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geometric transformations and autocontrast implemented using PyTorch transforms.5 Semantic
restrictions apply to the transformations: A significantly too strong rotation of 90 degrees in the
orientation task causes a sample to change its meaning, for example, from looking left (<) to look-
ing up (

<

). Analogously, cropping and scaling factors should be kept in a range where the whole
symbol is still entirely visible, as otherwise the minus or plus in front of the one may be lost,
obfuscating the meaning of the symbol.
Throughout the experiments, all symbols are grayscaled and rescaled to 32x32 pixels. Further-
more, the grayscale values are inverted as to have a higher input value for the drawn symbols
instead of the background. Figure 4.1 shows the different transformations used in the experi-
ments for six different symbols. The second column shows that grayscaling and inverting the
symbols can already eliminate some of the lighting and color differences from the original pho-
tograph, but the contrast difference remains. Hence, the third column applies autocontrast6 to
the inverted symbol, leading to a solid black background and a solid white symbol and bound-
ing box for different lighting conditions. Columns 4-7 show geometric transformations on the
inverted grayscale symbol and its bounding box with the respective parameter chosen randomly
from a uniform distribution. The fourth column shows rotations up to 90 degrees in both direc-
tions. A translation with a factor of 0.5 along both axes is shown in the fifth column and scaling
with factors in the range [0.5, 1.5] is shown in the sixth column. While the center remains the
same for rotating, scaling, and cropping the center of the bounding box, a translation along the
x- or y-axis shifts the symbol along the respective direction. The seventh column shows a center
crop of the symbol, which uses the original bounding box predicted by Herby.
The last two columns show the addition of Gaussian noise, which is the only data augmentation
technique used to generate unknown symbols to be used in training in open set experiments.
Gaussian noise is added to known samples after the pixels are already scaled to be in the range [0,
1]. Gaussian noise adds a random tensor that is sampled from a normal distribution with mean
0 and standard deviation 1 multiplied by σ to the original symbol. The first of the two Gaussian
noise columns shows a σ of 0.05, and the second noise column shows a stronger perturbation
value using a σ of 0.15.
In the experiments, the following data augmentation schemes are compared:

none No transformations, scaling is performed by dividing the grayscale pixel values by 255.
This transform serves to provide a baseline for the use of no data augmentation scheme in
training.

ac Autocontrast transformation, which is equivalent to scaling the symbols relative to their
darkest and brightest pixel. Hence, the scaling is performed (for both training and test
samples) using the following formula: Xscaled = X−Xmin

Xmax−Xmin
where Xmin is the minimum

pixel value in the symbol and Xmax the maximum pixel value in the respective symbol. This
augmentation (or scaling adaptation) serves to evaluate whether the different scaling alone
can already improve classification performance.

geo Basic geometric transformations using the PyTorch RandomAffine transformation7 that ap-
plies different geometric transformations in combination: It combines random scaling by
a factor in range [0.85, 1.15] with random translation along the x-axis and y-axis using the
range [-0.2, 0.2] and a random rotation in range [-20, 20] degrees. This augmentation scheme
serves to evaluate whether the use of geometric transformations can improve classification
performance.

5https://pytorch.org/vision/stable/transforms.html
6Linearly Rescaling pixels such that the minimum value is 0 and the maximum value is 255
7https://pytorch.org/vision/stable/generated/torchvision.transforms.RandomAffine.html#

torchvision.transforms.RandomAffine

https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/vision/stable/generated/torchvision.transforms.RandomAffine.html#torchvision.transforms.RandomAffine
https://pytorch.org/vision/stable/generated/torchvision.transforms.RandomAffine.html#torchvision.transforms.RandomAffine
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geo_ac First applies autocontrast and then the geometric transformations from geo. This augmen-
tation scheme overcomes the limitation seen in Figure 4.1, where for geometric transfor-
mations, the background resulting from the geometric transformations is darker than the
darkest pixel of the cropped symbol. It serves to evaluate whether a combination of geo-
metric transformations with autocontrast can improve classification performance.

crop Applies a center crop that uses the original Herby bounding box.8 This serves to evaluate
whether the decision to crop larger than the originally predicted bounding box from Herby
helps to improve classification performance.

crop_plus This augmentation scheme first applies the same center crop, followed by autocontrast and
geometric (geo) transformations. It serves to evaluate whether the performance with the
original bounding box can be improved by applying geometric transformations and auto-
contrast.

4.3 Evaluation Metrics
While a full analysis of model performance and model errors goes far beyond a single number or
curve, this section explains the two evaluation metrics used in the experiments. Both evaluation
metrics account for the imbalance in the test sets.

4.3.1 Balanced Accuracy
In the closed set classification, the model prediction corresponds to the label for which the model
returns the highest probability. Every label can be classified as either the target label or one of the
other labels. Therefore, for N labels, classifications can be visualized using a N x N confusion
matrix, where the rows correspond to the target (or true) label and the columns to the predicted
label. Figure 4.2 shows an example of such a confusion matrix for an imbalanced test set with
three labels. The example serves to illustrate a weakness of using the accuracy for imbalanced
classification as the accuracy divides the correct classifications (corresponding to all values in the
diagonal of the confusion matrix) by the total number of samples. In the example, the accuracy
would be relatively high with a value of Accuracy = 2+40+3

50 = 90%. However, only 2 out of 5
samples of the label 0 are correctly classified. The recall obtained on this label corresponds to the
number of correctly predicted samples of this label divided by the total number of samples of this
label: Recall0 = 2/5 = 40%. This value is less than half the accuracy value. Balanced accuracy is
calculated as the average recall obtained on each label, which corresponds to Accuracybalanced =
Recall0+Recall1+Recall2

3 = 0.4+1+0.6
3 ≈ 66.67% for the confusion matrix shown in the example.

Because performance on all the labels is important for a correction algorithm that builds on the
model output, balanced accuracy is used as the main metric for the closed set classification, both
as the validation metric as well as to report model performance on the test set.

4.3.2 Balanced Open Set Classification Rate Curve
An appropriate evaluation metric for the open set experiments has to consider that with entropic
open set loss, the goal is to minimize model confidence for unknown samples. Further, it is
desirable that it takes into account the label imbalance of the known samples in the test set. While
the open set classification rate curve (OSCR) considers the aspect of the separation of known

8Slight deviations are to be expected because the symbol is first scaled to 32x32, then cropped to 22x22 and subse-
quently scaled to 32x32 again
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and unknown samples based on the model confidence Dhamija et al. (2018), it does not take into
account label imbalance of the known samples Anacona et al. (2022). To include the aspect of label
imbalance as well, this thesis proposes an adaptation to the OSCR curve that takes into account
label imbalance in known samples and can be called Balanced Open Set Classification Rate Curve
(Balanced OSCR curve). To explain the adaptation made, the basic principle of the original OSCR
curve has to be considered first. The OSCR curve iterates over different θ values and calculates
the correct classification rate (CCR) and the false positive rate (FPR) for each of those values. The
value θ serves as the decision boundary for the model confidence. It decides whether a sample is
rejected as unknown or classified as the respective label with maximum probability. The sample
is rejected as unknown if its model confidence Pmax meets the criterion Pmax ≤ θ. FPR is defined
as the fraction of unknown samples in the test set that is classified as a known label out of all
unknown test samples with respect to the decision boundary θ. CCR is defined as the fraction of
known samples in the test set that is correctly classified with a model confidence of Pmax(x) > θ
out of all known samples in the test set. This is expressed as follows by the authors of the OSCR
curve (incorporating the adaption proposed in Anacona et al. (2022)), where the test set is divided
into two subsets Dl and Du, where Du represents the subset of unknown samples in the test set
and Dl represents the subset of known samples in the test set. Each known sample has a known
target label ĉ. P (c|x) is the probability of a known label c ∈ C for the sample x and C is the set of
all known labels.

FPR(θ) =

∣∣{x|x ∈ Du ∧maxcP (c|x) > θ}
∣∣

|Du|
(4.2)

CCR(θ) =

∣∣{x|x ∈ Dl ∧ arg maxcP (c|x) = ĉ ∧ P (ĉ|x) > θ}
∣∣

|Dl|
(4.3)

Similar to the difference between balanced accuracy and accuracy, the proposed adaptation is to
calculate the CCR per known target label (label-wise) and then average it to obtain what can be
called Balanced Correct Classification Rate (BCCR). The balanced OSCR curve then uses the BCCR
instead of the original CCR on the y-axis and the FPR on the x-axis to show the trade-off between
achieving high classification performance on the known samples in the dataset and rejecting un-
known samples by returning a low model confidence for them. The formula for calculating the
CCR for a single label is the same as for the global CCR, but instead of using the subset of all
known samples in the test set as Dl, the label-wise CCR only uses the subset of the test set which
has the respective target label as Dl.
Figure 4.3 shows an example of a balanced OSCR curve using the function sqrt(x). Throughout
the experiments, a list of all the probabilities of unknown samples in the test set, as well as a value
of zero, are used as the values of θ. Additionally, a list of FPRs ([0.01, 0.05, 0.1, 0.33, 0.5]) and the
BCCR achieved for each rate are provided in tabular form in the appendix for the experiments
considered. The values for those FPRs are obtained by performing linear interpolation on the
values of the balanced OSCR curve.

4.4 Protocols
All experiments use the entire set of known labels per task type. By differentiating which type of
unknown samples is used in training and validation (as known unknowns or known unknown
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classes, in short KUC) and which type of unknown samples is used in testing (as unknown un-
knowns or unknown unknown classes, in short UUC), the protocols can be divided into four
types of protocols. The first type are closed set protocols, which build on the data splits described
in Section 3.3 and do not use any KUC or UUC. The second type of protocol uses all unknown
samples of the respective task type as UUC but does not use any KUC in training. The third type
of protocol uses a fixed number of different symbols as KUC and all unknown samples of the
respective task type as UUC. In the third protocol, KUC are created in three different ways. The
first approach is to generate random pixel values using the torchvision FakeData dataset9. The
second approach is to use randomly selected letters from the EMNIST dataset Cohen et al. (2017)
and the last approach uses Gaussian noise with a σ of 0.05 on the respective amount of randomly
selected training samples. Generally, all KUC samples use the same data augmentation scheme
as the known labels in training. In the case of Gaussian noise, first, the Gaussian noise is applied
and subsequently the augmentation scheme. The fourth type of protocol uses the S2 data split
to assign unknown samples to KUC or UUC. This protocol can be referred to as a case of mixed
unknowns, as some types of unknown samples may be present in both the KUC and the UUC. A
particular example is that students from different school classes have drawn 1+ instead of +1 as
an unknown instruction symbol.

Closed Set Closed Set Protocols compare the data splits S1, S2 and S3 described in Section 3.3 without
using any KUC or UUC. The exact number of samples per label and data split is listed in
the appendix in Section A.1.2.

Closed Set + UUC This protocol uses the S2 data split for the known samples. All unknown samples of the
respective task type are used as UUC.

Open Set This protocol also uses the S2 data split for known samples. Additionally, 1’700 samples of
KUC are added to the training and 300 such samples are added to the validation set. Again,
all unknown samples of the respective task type are used as UUC.

Mixed Set This protocol not only uses the S2 data split for known samples, but also uses the S2 data
split to differentiate between KUC and UUC. Therefore, the KUC and the UUC differ in the
way that they originate from different school classes. As unknown samples are relatively
scarce, additional random images are added to the KUC to achieve a total of 1’700 KUC
samples in the training and 300 in the validation set.

4.5 Hyperparameters
Through all experiments, Adam is chosen as the optimization algorithm with a learning rate of
0.001 and betas of 0.9 and 0.999. Adam is a gradient-based optimization algorithm that computes
individual adaptive learning rates for different parameters, and is designed to combine the ad-
vantages of the previously developed RMSProp and AdaGrad algorithms Kingma and Ba (2015).
It is also used in related work Suter (2022), Dhamija et al. (2018).
Furthermore, in training, a batch size of 64 samples is used, and the training samples are ran-
domly shuffled by the data loader in each epoch. Early stopping is used to stop the training
process if the model does not improve on the validation metric for a given number of epochs.
The maximum number of training epochs is set to 125 for closed set models with early stopping
allowing a maximum of 25 epochs without improvement in the validation metric. For the open
set and mixed set experiments (including the closed set baseline model in those experiments),

9https://pytorch.org/vision/stable/generated/torchvision.datasets.FakeData.html

https://pytorch.org/vision/stable/generated/torchvision.datasets.FakeData.html
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these numbers are increased to a maximum of 200 epochs and the training is stopped early after
50 epochs of no improvement on the validation metric.
The loss function used in closed set experiments is generally the cross entropy loss function10 and
its binary variant11 is used for the checkbox task. Balanced accuracy is used as the validation
metric. If there are unknown samples in the training set, the entropic open set loss is used both as
the loss function in training and as the validation metric.
Entropic open set loss is equal to cross entropy loss for known samples. For unknown samples,
it generates a target vector where the probability of each label is set to 1

N with N being the total
number of known labels Dhamija et al. (2018).
The softmax baseline models in open and mixed set protocols, which do not use any unknown
samples in training, use balanced accuracy as the validation metric, but all other hyperparameters
are the same in order to maintain comparability. This baseline also uses the slimmed SimpleNet
EOS adaptation, which does not have a bias in the classification layer.

10https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
11https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html


Chapter 5

Experiments

This chapter contains the experiments, which use the protocols explained in Section 4.4. First, the
general setup of the experiments is explained. Subsequently, different experiments are performed
that provide a baseline for closed set and open set classification on the dataset.

5.1 Experiment Setup
All experiments are implemented using version 1.11 of the PyTorch library, which allows an
easy implementation of DL models and supports the use of hardware accelerators during train-
ing Paszke et al. (2017). The implementation of the experiments, model checkpoints, and the
anonymized dataset are all publicly available on Github.1 A custom function first splits the data
as described in the evaluation protocol and returns a data loader that shuffles the training samples
randomly in each epoch. Subsequently, a CNN is trained on the training set and the parameters of
the best models are selected based on the validation metric. Different visualizations of the train-
ing process, the model output and resulting classification errors are used to observe the training
process and the results. Each experiment is structured in such a way that, first, the scope of the
experiment is defined and the performance is reported using the evaluation metrics explained in
Section 4.3. Subsequently, observations are made, and interpretations are given.

5.2 Closed Set Baseline

5.2.1 Scope and Results
The baseline experiment compares the two models described in Section 4.1 and the data aug-
mentation schemes described in Section 4.2 for each data split and task type using the closed set
protocol. The results for each of those combinations are shown in Figure 5.1. A numerical list of
the balanced accuracy achieved by each model is provided in the appendix in Table A.4.

5.2.2 Difficulties of Data Splits and Task Types
By comparing the different data splits and task types for the same model and augmentation
scheme, a trend becomes visible on which data splits and task types are harder than others. The

1https://github.com/aditen/hw-cs-sb-classifier

https://github.com/aditen/hw-cs-sb-classifier
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Figure 5.1: BASELINE ERROR RATE COMPARISON. Each task type represents a row, while in each row
the performance of the slimmed SimpleNet is shown in the left and the performance of the LeNet-5 in the
right subplot. Each of these subplots then shows the error rate for each data augmentation strategy on each
data split. The error rate is obtained by subtracting the balanced accuracy from 100%.
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hardness is assessed by comparing the error rate: The higher the error rate achieved by the best
model, the harder the task.
A general trend for the data splits is that the data split S3 is the simplest and S1 the hardest. A
particular explanation for this phenomenon is the fact that in data split S3, some symbols of every
child are already seen in the training set, and therefore the model can learn decision boundaries
for that child. For both the data splits S1 and S2, the models must classify samples of new children
in the test set. However, data split S1 contributes fewer training samples than S2, and those
samples originate from a different type of exercise sheet, making this data split the hardest.
Another trend is visible in the difficulty of the task types: The instruction task type is the hardest,
the orientation task type is the second hardest, and the checkbox task type is the easiest. Two
different reasons can explain this phenomenon. The first reason is that the hardest type has the
most labels and the easiest task type has the least labels, being a binary classification task. Second,
the labeling guidelines permit minor variations in the instruction task type for the loop notation,
which may increase the difficulty of this task type further.

5.2.3 Superiority of slimmed SimpleNet
The results show the superiority of the slimmed SimpleNet over the LeNet-5 in a number of sce-
narios, but not in all. This superiority can be explained by differences in model architectures. In
particular, the slimmed SimpleNet is deeper and contains more convolution layers. Additionally,
the included regularization may help the model to generalize better. However, this superiority
mainly applies to the instruction task type, which is the hardest. For both the orientation and
checkbox task types, the LeNet-5 model performs very closely to the SimpleNet for the best-
performing augmentation scheme.

5.2.4 Influence of Data Augmentation
The influence of different data augmentation schemes on training data differs for the respective
data splits and task types. For each data split and task type, at least a minor improvement over
no augmentation can be found.
Different scaling introduced with the autocontrast augmentation can in some, but not all cases
help to improve model performance. While there is only one case where the LeNet-5 performs
worse with autocontrast than with default scaling, there are more such cases for the slimmed
SimpleNet. The higher error rate on data split S1 when using autocontrast for the checkbox is the
strongest, with the model performance degrading most.
Geometric transformations help for all models, task types, and data splits to reduce the error rate,
except for the checkbox type with data split S3 and the LeNet-5 model. However, the absolute
difference, in this case, is very small (≤0.5%) and therefore should not be over-interpreted.
The crop augmentation, which uses the original bounding box predicted by Herby, performs
worse than no augmentation in most scenarios. This can be explained by the fact that if the
bounding box is predicted correctly by Herby, then the border of the bounding box is not in-
cluded in the crop augmentation scheme, but it is included in all other schemes except crop_plus.
However, if it is slightly off, then the border is included in both scenarios and therefore such
localization offsets can add noise to the data in form of the border of the bounding box.
The combination of autocontrast and geometric transforms (geo_ac) helps to reduce the error rate
the most in all cases except one for the LeNet-5. For the SimpleNet, this combination helps to
reduce the error rate over no data augmentation in all cases but one. However, it is sometimes
outperformed by geometric transformations with default scaling. Still, this augmentation scheme
is considered the most promising and, therefore, is used in further experiments.
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Figure 5.2: CONFUSION MATRIX OF INSTRUCTION MODEL ON DATA SPLIT S2. Every element
represents the absolute number of samples in the test set for the respective classification case. Those are the
numbers for the slimmed SimpleNet using the geo_ac augmentation scheme.

Applying the same geometric transformations and autocontrast to the bounding box originally
predicted by Herby (crop_plus) also helps to improve performance over the crop augmentation
scheme in most cases, which can be explained by the same reasoning as the improvement seen for
geometric transforms over no augmentation. The phenomenon that this setup performs slightly
worse than geo_ac, which crops the symbol with a margin of 25% added to the symbol on each
side, can be explained by the possibility that when the predicted bounding box is slightly off,
then geo_ac still gets to see a bigger part of the actual bounding box while crop may miss out on
a semantically important part of the symbol like the arrow tip indicating the turning direction in
the rotate instruction. This indicates that cropping larger than the predicted bounding box can
help mitigate minor offsets in the preceding localization algorithm.

5.2.5 Model Errors
As model errors differ for each of the 108 trained models, model error observations are limited to
the three slimmed SimpleNet models using the geo_ac augmentation scheme on data split S2 for
each task type.
Figure 5.2 shows the confusion matrix of the slimmed SimpleNet on the symbols of the instruc-
tion task. Four specific types of error occur more frequently than others with respect to the total
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Figure 5.3: CONFUSION MATRICES OF (A) ORIENTATION AND (B) CHECKBOX MODEL ON DATA
SPLIT S2. Those are the numbers for the slimmed SimpleNet using the geo_ac augmentation scheme. The
confusion matrix also shows the strong label imbalance in test data for the orientation task, where more than
9’000 empty boxes are present and less than 2’000 symbols of the other labels combined.

number of samples of the respective target label. First, it happens that the direction of the instruc-
tion symbols is predicted wrongly by the model. A particular explanation for this phenomenon
are differences in drawing the arrow tip and that children use different angles of rotation as the
labeling guidelines allow any angle whose absolute value is greater than 10 degrees. The second
common error is that +1 and -1 are confused. The +1 symbol can be seen as an extension of the
-1 symbol with a vertical line across the minus. However, if this vertical line is very short or not
drawn as thick as the minus, this may confuse the model. The third frequent type of error is that
different symbols are misclassified as the end-of-loop symbol. This may be due to the model mis-
interpreting the bounding box as the end-of-loop symbol. Lastly, the end-of-loop symbol itself is
frequently misclassified as the symbol to loop four times. An explanation for the fourth and also
third types of error may be that the labeling guidelines are a bit more relaxed with regard to the
loop notation than with regard to the other symbols.
The confusion matrices of the best orientation and checkbox models on data split S2 are shown in
Figure 5.3. For both models, no type of error has a very high occurrence, as the balanced accuracy
for both task types is ≥ 99%. In both task types, errors may arise because the bounding box is
considered a part of the symbol by the model. For example, the conjunction of one edge of the
orientation and a bounding box border may be misinterpreted as another orientation. Further,
the borders of an empty bounding box may be misinterpreted as a symbol, or a symbol may be
misinterpreted as the borders of an empty bounding box.

5.3 Closed Set Classifier on unknown Samples

5.3.1 Scope and Results
This experiment uses the slimmed SimpleNet models that were trained in the closed set baseline
experiment on data split S2 using the geo_ac augmentation scheme. It follows the protocol closed
set + UUC described in Section 4.4 and adds all the unknown samples of the respective task type
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Figure 5.4: BALANCED OSCR CURVE USING S2 FOR KNOWN LABELS AND ALL UNKNOWN SAM-
PLES AS UUC. Each task type is represented as a separate curve.

to the test set. The total number of unknown samples differs for each task type. There are only
a total of 29 unknown samples for the orientation task type and 180 unknown samples for the
checkbox task type. For the instruction task type, a total of 615 unknown samples are available.
The balanced OSCR curve for each task type is shown in Figure 5.4. Selected false positive rates
and their balanced correct classification rate are listed numerically in Table A.5 in the appendix.

5.3.2 Prediction and Model Confidence on unknown Samples
Looking at the model prediction for some of the unknown samples in Figure 5.5, it can be seen
that the models of all task types produce relatively high model confidence for many unknown
samples. While some of those can be explained by visual similarity like a 1- being classified as
-1 with a high probability, other predictions are not that intuitive to explain. As an example,
from two different crosses in an orientation symbol box, the first is classified as an arrow tip up
with high model confidence, and the second is classified as an arrow tip right with high model
confidence. An interesting phenomenon is that, for the checkbox task, all unknown symbols
shown in the figure are classified as a checked box with a model confidence ≥ 99%. This may be
explained by a checkbox task model that only learns to distinguish whether something is written
into the box or not, but not whether the symbol written into this box actually corresponds to a
cross or not.

5.3.3 Trade-Off Performance on known Samples vs Rejection
of unknown Samples

The balanced OSCR curve in Figure 5.4 illustrates the trade-off between achieving high perfor-
mance in the classification of known samples (corresponding to a high balanced correct classifi-
cation rate) and achieving high performance in rejecting unknown samples (corresponding to a
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(a) Predictions on unknown Instruction
Samples

(b) Predictions on unknown
Orientation Samples

(c) Predictions on unknown Checkbox
Samples

Figure 5.5: PREDICTION ON (A) UNKNOWN INSTRUCTION, (B) UNKNOWN ORIENTATION AND
(C) UNKNOWN CHECKBOX SAMPLES. Each subfigure contains 3x3 predictions on unknown samples of
the respective task type. The title of each sample shows the predicted label and the model confidence.

low false positive rate). The trade-off when using the closed set models seems to be stronger for
the checkbox and instruction task than for the orientation task. As there are only 29 unknown
samples available for the orientation task, however, the meaningfulness of the OSCR curve of the
instruction task model is limited, especially for low false positive rates.

5.4 Training with known Unknowns

5.4.1 Scope and Results
This experiment aims to evaluate whether using known unknowns in training helps to reduce the
strength of the aforementioned trade-off in open set classification. It uses the open set protocol
explained in Section 4.4, where a total of 2’000 known unknowns are added to the training and
validation set and the models are trained using entropic open set loss. As hyperparameters are
slightly different and this experiment uses the EOS version of the slimmed SimpleNet, a baseline
using exactly the same model and hyperparameters (except the validation metric) is trained with
no known unknowns in training. Models are evaluated on known samples from different school
classes and unknown samples from all children as the test set, as in the previous experiment. Due
to the limited amount of unknown samples for the orientation task (29), this experiment is limited
to the instruction and checkbox task. The resulting balanced OSCR curves are shown in Figure
5.6. Selected points of the curve are listed numerically in Tables A.6 and A.7 in the appendix.

5.4.2 Impact on Trade-Off
The balanced OSCR curves show that for the instruction task type, all types of known unknowns
are relatively close to the baseline. This indicates that for the instruction task, no significant im-
provement can be achieved by using those types of known unknowns during training. This can
be explained by the known unknowns used for training being more distant from the known sam-
ples than the unknown samples in the test set. For example, both random images and letters
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(b) Balanced OSCR curve for Checkbox Task

Figure 5.6: BALANCED OSCR CURVE FOR USING KNOWN UNKNOWNS FOR (A) INSTRUCTION
AND (B) CHECKBOX TASK TYPE. Both task types use a total of 2’000 unknowns in training (300 of them
in the validation set).

do not include a bounding box around the symbol. While Gaussian noise uses noisy versions of
known samples and therefore contains such a bounding box, it also cannot help to significantly
improve this trade-off for the instruction task.
For the binary checkbox task, no visible improvement in the trade-off is found either. The same
reasoning as for the instruction task may be used that the known unknowns seen in training are
more different from the known symbols than the unknown symbols in the test set.

5.4.3 Difference in Model Confidence
To improve the trade-off illustrated by the balanced open set classification rate, the model has
to produce reduced confidence for unknown samples and maintain high confidence for known
samples. However, models still have high confidence for unknown samples in the instruction
task, as illustrated in Figure 5.7. Most unknown samples maintain a confidence ≥ 95% which is
far away from the entropic open set optimization target to generate a probability of 11.11% for
unknown symbols in the instruction task type.

5.5 Mixed Unknowns

5.5.1 Scope and Results
To evaluate whether the addition of unknown samples in training data can help to reduce the
strength of the open set trade-off, this experiment uses the mixed set protocol described in Section
4.4. Due to the scarcity of unknown samples for the orientation and checkbox task type, this
experiment only covers the instruction task type. Therefore, unknown samples from only some of
the school classes are used in training, contributing 296 unknown samples to the training set and
51 unknown samples to the validation set. 268 unknown samples from different school classes
contribute to the test set. Hence, the results cannot be directly compared to the results of the
previous open set experiment as the unknown symbols in the test set in this protocol are only a
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Figure 5.7: COMPARISON OF CONFIDENCE BETWEEN (A) NO KNOWN UNKNOWNS AND (B) LET-
TERS AS KNOWN UNKNOWNS ON INSTRUCTION TASK. The absolute number of samples at the respec-
tive confidence are plotted. The red bars represent unknown samples and the green bars represent correctly
classified known samples from all known labels.
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Figure 5.8: OSCR CURVE USING S2 TO DISTINGUISH BETWEEN KNOWN AND UNKNOWN UN-
KNOWNS. The blue curve represents the baseline that uses no known unknowns in training. The orange
curve represents the use of only random images as known unknowns as a reference and the green curve
represents the use of unknown samples from some students as known unknowns, which corresponds to
mixed unknowns.
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(a) Unknowns with high Model Confidence (b) Unknowns with low Model Confidence

Figure 5.9: COMPARISON OF (A) UNKNOWNS WITH HIGH MODEL CONFIDENCE AND (B) UN-
KNOWNS WITH LOW MODEL CONFIDENCE IN MIXED UNKNOWNS PROTOCOL. Some types of un-
known samples can be rejected with low model confidence while others maintain high model confidence.
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Figure 5.10: COMPARISON OF CONFIDENCE BETWEEN (A) NO KNOWN UNKNOWNS AND (B)
MIXED UNKNOWNS. Both subplots show the absolute number of samples at different confidence lev-
els.

subset of the unknown symbols in the test set of the open set protocol. To have more unknown
samples in training, the total number of unknowns in training is raised to 1’700 in the training set
and 300 in the validation set by adding images with random pixel values. The resulting balanced
OSCR curves are shown in Figure 5.8 and selected points of the curve are listed numerically in
Table A.8 in the appendix.

5.5.2 Reduced Model Confidence on unknown Samples
The comparison of the model confidences for correctly predicted known samples and all un-
known samples shown in Figure 5.10 illustrates that in the case of mixed unknowns, the model
confidence for many unknown symbols can be drastically reduced compared to the baseline.
However, a relevant number of unknown samples maintains high confidence. This can be ex-
plained by the different types of unknown symbols. The model learns to reduce the confidence
for types of unknown symbols that are seen during training as known unknowns like a 1+ instead
of +1. For the types of unknown symbols that occur only in the test set, on the other hand, the
confidence remains high. This is shown in Figure 5.9, where the confidence for two different types
of unknown symbols is compared.
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Discussion

This chapter discusses the collected dataset, the approaches used in the experiments, and the
results of the experiments. This chapter further lists limitations and proposes future work that
could be done.

6.1 Dataset
As part of the work, a dataset containing nearly 50’000 labeled samples was collected. To address
RQ1, the information of school class affiliation present in the dataset is used to create a data split
to emulate the productive use of the model (S2), which is to classify samples originating from
new school classes. Another data split (S3) is created to provide an upper bound by randomly
splitting the dataset. However, the S3 data split for this upper bound is very unrealistic to achieve
in productive use, as it would require somebody to label correctly at least some samples of each
child before it uses a model trained on these data to correct the exercises.
Another limitation of the dataset is that only little to no data are available from the productive
exercise sheets (booklet) for some symbols. This limitation is shown to be not that severe because
evaluating a specific data split S1 shows that a model trained on the data from the contributed
sheet methodology achieves good performance on a test set from productive sheets and mini-
booklets. An extended dataset from productive sheets may also provide further types of unknown
samples and increase the meaningfulness of the experiment results.
Another important aspect of the dataset and the performed experiments are the chosen labeling
guidelines, especially with regard to unknown symbols. Labeling samples differently would in-
fluence both the baseline performance and the open set trade-off between performance on known
samples and rejecting unknown samples. Even having relatively clear labeling guidelines, differ-
ences occurred between the two annotators during the labeling process that had to be resolved by
the master annotator.

6.2 Baseline
RQ2 is addressed by comparing a very simplistic model to a deeper model and comparing differ-
ent combinations of geometric transformations and autocontrast on each data split in the baseline
experiment. Both a deeper model as well as a particular combination of geometric transforma-
tions and autocontrast improve the classification performance over no data augmentation in most
scenarios. Further performance improvements may be achieved by optimizing hyperparameters
or by using a different model. A possible limitation is that, in the SimpleNet, there is only a
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dropout layer followed by a single linear layer after the final convolution block to perform the
classification.
The baseline experiment also shows that by cropping the fields larger than the bounding box
predicted by Herby, better performance can be achieved. However, this performance gap can be
reduced in many cases by using geometric transformations and autocontrast during training.
Further, the input samples’ original aspect ratio in the case of the instruction task is lost as the
input symbols are all scaled to a square of size 32x32 throughout all task types and experiments
in order to maintain comparability. This limitation also applies to the open set experiments per-
formed in this thesis. Different strategies for dealing with rectangular symbol boxes could be
evaluated in future work.

6.3 Open Set Classification
The open set experiments that address RQ3 generally indicate that there is a relatively strong
trade-off between achieving a low false positive ratio for unknown samples and a high classifi-
cation performance for known samples. The separability of unknown and known samples based
on the model confidence is only improved in the mixed unknown scenarios but still is limited to
unknown samples that are very close to the known unknowns seen in training.
Further analysis could try to distinguish different types of unknown symbols, for example, by
distinguishing them semantically: a first group could be crossed out symbols, a second group
could be symbols of a different task type, and a third group could be misspelled symbols like 1+
instead of +1. Some of those types of unknown symbols could potentially be created synthetically
like crossed-out symbols, which could be created by adding a line over a known symbol. Even
better for the error type of children drawing the wrong symbol into the box, there would be hun-
dreds to thousands of samples available for a different task type. As an example, an instruction
model could be trained to reject orientation symbols as unknown and the data split S2 could be
used to ensure that symbols from the same children do not appear in the training and test set.
Furthermore, the conducted open set experiments are limited to the entropic open set loss func-
tion. In further experiments, different open set approaches outlined in the background chapter
could be compared.

6.4 Evaluation and Validation Metrics
The open set experiments use the balanced OSCR curve to plot the results. The adapted y-axis
is regarded as an improvement over the traditional OSCR curve with respect to RQ3 because the
balanced correct classification rate is closer to the balanced accuracy, which is used as the closed
set evaluation metric. However, the information visualized by this curve is still limited, similar
to how the information when only providing balanced accuracy is limited. For example, the
balanced correct classification rate does not show which type of error the model makes at a given
point. To perform such an analysis, the confusion matrix would be more appropriate.
Also, the balanced OSCR curve only improves the analysis at test time. An appropriate validation
metric for imbalanced validation data is not proposed in this thesis. However, a novel validation
metric that averages two terms could be adapted in future work. Specifically, what the authors
call confidence metric uses γ+ to evaluate the classification of known samples, and γ− to evaluate
the rejection of unknown samples Anacona et al. (2022). In an adaptation for imbalanced datasets,
the term for known samples (γ+) could be calculated label-wise and then averaged in the sense of
a balanced confidence metric, similar to the adaptation of the OSCR curve proposed in this thesis.
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Figure 6.1: EXAMPLE OF MULTIPLE ORIENTATION SYMBOLS DRAWN ON A RESPONSE GRID. In
tasks (c), (d) and (e) a child corrected the answer without fully erasing the old symbol.

6.5 Influence of Hyperparameters
The meaningfulness and interpretation of the results are generally limited to the design choices
made in the experiments, especially with respect to the hyperparameters. Different results may
be obtained on the same data when using different hyperparameters.
In addition, randomness also affects the experiment results as model parameters are initialized
randomly and the data split S3 uses a given random seed. The impact of randomness could
be assessed by repeatedly performing the experiments with different random seeds and then
evaluating the distribution of values considering the mean and standard deviation of numeric
results. A set of hyperparameters could be compared by performing a manual or grid search.

6.6 Independent Classification
A general limitation of this work is that the dataset and models are designed for independent
classification. However, having the context of a whole exercise could help. As an example, it
happens that children do not completely erase a symbol in the orientation task, leaving clearly
visible drawing traces and drawing an even better visible robot in another field. This is shown in
Figure 6.1. A human seeing the grid as context can clearly see that the location is at the corrected
point, but a model doing independent classification can only decide based on a single field inde-
pendently, hence may detect two robots on the grid and the predicted probability may not even
be higher for the actual intended location.
Furthermore, the error rate expected in correcting entire exercises using independent classifica-
tion is larger than the error rate of classifying an individual symbol. As an example, if six random
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Figure 6.2: EXAMPLE OF A LOCALIZATION ERROR. In task (c), the first seven boxes are all localized
badly. Using this bounding box to crop the symbol, the classification model gets to see half of the actual box
and half of another box.

symbols must all be classified correctly with such a model having a balanced accuracy of 95%,
then the expected error rate ϵ may be estimated as ϵ̂ by subtracting the probability of a model
predicting six random characters correctly: ϵ̂ = 1 − 0.956 ≈ 26.49%. Instead of estimating this
error, its true value could also be calculated directly by using the photograph ID and exercise in-
formation from the original dataset, which is both not published in this thesis for privacy reasons.
Future work could also evaluate how a model could directly incorporate the exercise information.

6.7 Localization Errors
As per the labeling guidelines, severe localization errors are excluded from the dataset. How-
ever, such errors can occur in productive use as shown in Figure 6.2 with a photograph of an
empty sheet where some of the boxes are localized in between two printed boxes. In such cases,
cropping according to this predicted bounding box and then classifying the cropped part of the
photograph independently is very prone to errors. Hence, an analysis of the localization errors
as well as potential improvements by adapting the exercise sheets could be studied. A potential
improvement could be to add more (local) orientation points to the exercise sheets that can be
used by the localization algorithm. An important limitation of such adaptations is that they are
not backwards compatible, hence the localization error of existing sheets cannot be reduced this
way.
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Conclusion

In this thesis, an image classification dataset for a novel domain of handwritten symbols is created
and different classification models are evaluated.
A particular challenge of the data from productive use is the scarcity of some symbols. To
overcome this limitation, a custom exercise sheet is contributed as an alternative data collection
methodology, where children are instructed to draw the same symbols in a different exercise con-
text. The experiments show that the data from the contributed exercise sheet do not differ severely
from the data from the booklet that is used in production, as a model trained exclusively on the
data from this exercise sheet performs reasonably well in classifying the symbols of the produc-
tive booklet. Should more productive data originating from booklets become available in the
future, this would allow to further assess the impact of the data originating from the contributed
exercise sheet. As an example, two different data splits could be compared, where the first data
split uses only the data originating from the booklets for training, and the second data split uses
the data originating from both the booklets and the contributed exercise sheet for training.
The experiments evaluate (closed set) baseline, open set and mixed set classification models. Base-
line models that have to classify handwritten symbols from new school classes achieve good per-
formance for each task type. As the best error rate for each task type is less than 4% for samples
from new school classes, this is considered sufficient to use the models in production for the clas-
sification step of the correction process. With additional labeled data, its performance could be
further improved. A limitation of the error analysis is that it cannot use the information of which
child drew the symbol, its school class affiliation and the whole photograph. If legal concerns are
resolved, further analysis could be made using this information.
The open set experiments indicate that the task of rejecting unknown symbols is relatively hard
because the unknown symbols are close to the known symbols. In the case of mixed unknowns,
the model learns to at least reject unknown symbols that are similar to the unknown symbols
seen in training. In order to elaborate on the usability of an open set model in production, the
impact of a high false positive rate on the whole correction process has to be assessed, which
is not considered in this thesis. A relatively high false positive rate of 33% or even more could
already be sufficient considering the relatively low occurrence of unknown symbols in the dataset.
For such false positive rates, the models can achieve relatively high balanced correct classification
rates ≥ 90%.
Regarding the adaptation of the OSCR curve to a balanced OSCR curve, an improvement in the
interpretability of the y-axis of the curve for imbalanced test sets is achieved. Still, other limi-
tations of the OSCR curve cannot be overcome. Its suitability for imbalanced datasets could be
further assessed by using different datasets and by considering specific edge cases. A validation
metric considering both label imbalance and the rejection of unknown samples is desirable for the
training process and a proposal is made in the discussion.
Regarding the target labels, the labeling guidelines are determined from the authors’ point of
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view. From a purely educational point of view, those could be set differently, treating both +1 and
1+ as the +1 symbol, for example. Different labeling guidelines would lead to different experiment
results, based on which the usability of the approaches would have to be reassessed.
Summing up with respect to the productive use, this thesis provides baseline models which can
be used in an initial version of a productive correction system for the step of independently classi-
fying the handwritten symbols. The models can also learn to reject the types of unknown symbols
that are seen in training with low model confidence, but rejecting all types of unknown symbols
is hard to achieve without suffering from heavily reduced classification performance on known
symbols. Further analysis could consider the correction system as a whole, including an educa-
tional point of view and a greater amount of productive data when available.
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Attachments

A.1 Dataset

A.1.1 Labeling Guidelines
1. Symbols shall be labeled independently and context shall be ignored. Only what is written

inside the printed bounding box and 10% above it shall be considered when labeling.

2. In case of a very bad Herby localization (<60% of the bounding box detected) the field shall
be labeled for inspection unless all the fields within the detected box are empty, then it shall
be labeled as empty.

3. Symbols significantly lacking contrast, potentially because they were erased, shall also be
labeled for inspection. Significantly lacking contrast means that the opacity of the symbol is
less than 33% the opacity of the bounding box.1

4. If there are clear drawing traces (opacity ≥ 33% compared to the bounding box) in the
bounding box, but the symbol is not clearly assignable, it shall be labeled as unknown.
Examples include A) wrong order of conjunct symbols (like 1+ instead of +1), B) mixing up
completely the two edges of start and end-of-loop symbol (at least one edge has to be correct
or a whole box has to be drawn), C) rotation instructions that are drawn with a rotation of
maximum 10 degrees (like a straight arrow to the right or left) or if no tip at all is visible,
D) orientation symbols where the angle is very close (+/- 10 degrees) to +/- 45 or +/- 135
degrees

A.1.2 Labels per Data Split
Tables A.1, A.2 and A.3 show the absolute number of samples for each symbol in the training,
validation and test set. Values are separated using /, where the first number represents the num-
ber of training samples, the second number represents the number of validation samples and the
last number represents the number of test samples. When referring to all unknown samples in the
thesis, the numbers from the training, validation and test set in the question mark column can be
added up to get the respective number.

1Can be visualized using CSS, an example is in the Mozilla MDN Docs: https://developer.mozilla.org/
en-US/docs/Web/CSS/opacity?retiredLocale=de

https://developer.mozilla.org/en-US/docs/Web/CSS/opacity?retiredLocale=de
https://developer.mozilla.org/en-US/docs/Web/CSS/opacity?retiredLocale=de
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Figure A.1: EXAMPLE OF THE CONTRIBUTED EXERCISE SHEET. The task is to continue the pattern
using the symbols printed into the boxes. The sheet was filled out as a test by the author.

Data Split empty ↓ ← ↑ → ?
S1 177/48/12663 621/108/213 621/90/290 626/110/548 618/114/372 1/0/28
S2 3231/570/9087 539/111/292 558/103/340 652/113/519 612/88/404 9/3/17
S3 1281/219/11388 642/101/199 671/124/206 885/164/235 735/134/235 19/5/5

Table A.1: NUMBER OF SAMPLES FOR EACH DATA SPLIT IN ORIENTATION TASK. The first number
denotes the number of training samples, the second number is the number of validation samples and the
last number is the number of test samples.
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Data Split -1 ⟲ empty ⟳ +1 3x end 4x 2x ?
S1 655/117/2179 650/125/1839 154/39/8384 661/104/2139 672/112/3861 668/121/66 746/110/293 666/117/152 658/130/86 93/17/505
S2 1030/179/1742 933/185/1496 732/124/7721 928/159/1817 1301/237/3107 551/99/205 677/112/360 584/104/247 567/91/216 296/51/268
S3 1289/211/1451 1285/215/1114 1269/231/7077 1283/217/1404 1279/221/3145 572/108/175 783/133/233 628/127/180 586/113/175 421/82/112

Table A.2: NUMBER OF SAMPLES FOR EACH DATA SPLIT IN INSTRUCTION TASK. The first number
denotes the number of training samples, the second number is the number of validation samples and the
last number is the number of test samples.

Data Split empty X ?
S1 1408/237/1030 1313/244/264 2/0/178
S2 1276/226/1173 1112/198/511 26/2/152
S3 1274/226/1175 1242/220/359 113/18/49

Table A.3: NUMBER OF SAMPLES FOR EACH DATA SPLIT IN CHECKBOX TASK. The first number
denotes the number of training samples, the second number is the number of validation samples and the
last number is the number of test samples.

A.2 Experiments
For the baseline experiment from Section 5.2, Table A.4 shows the balanced accuracy rounded to
two decimals of all 108 baseline models.
Table A.5 shows the balanced correct classification rate for selected false positive rates when using
some of those models to detect unknowns using a confidence threshold as described in Section
5.3.
Tables A.6 and A.7 show the balanced correct classification rate for the same false positive rates
for the experiments of Section 5.4 using different types of known unknowns in training.
Finally, Table A.8 shows selected points in the OSCR curve for the experiment from Section 5.5,
comparing the use of unknown symbols from different children during training.
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Data Split Augmentation Instruction Orientation Checkbox
SimpleNet LeNet SimpleNet LeNet SimpleNet LeNet

S1

none 91.02% 65.71% 95.78% 92.08% 98.74% 93.04%
ac 92.17% 67.36% 97.90% 87.88% 95.15% 93.64%

geo 93.34% 79.32% 99.16% 94.48% 99.62% 96.75%
geo_ac 93.28% 87.19% 98.65% 98.28% 100.00% 98.83%

crop 87.47% 67.14% 97.54% 89.38% 99.23% 94.03%
crop_plus 89.39% 81.61% 95.72% 92.49% 99.66% 96.46%

S2

none 95.31% 81.32% 98.72% 95.45% 98.82% 95.36%
ac 95.08% 83.90% 98.82% 97.10% 98.80% 96.25%

geo 96.59% 87.96% 99.38% 97.66% 99.96% 99.83%
geo_ac 96.92% 90.88% 99.15% 99.03% 99.91% 99.91%

crop 94.16% 77.96% 98.30% 94.55% 98.15% 96.31%
crop_plus 96.59% 90.27% 98.84% 98.41% 99.35% 98.62%

S3

none 97.71% 87.76% 99.67% 98.84% 99.73% 99.83%
ac 98.26% 89.32% 99.79% 98.95% 99.86% 99.86%

geo 99.00% 92.14% 99.87% 98.99% 99.87% 99.79%
geo_ac 99.11% 94.73% 99.90% 99.70% 99.55% 99.78%

crop 97.34% 85.74% 99.58% 98.02% 99.78% 99.45%
crop_plus 98.39% 93.32% 99.62% 99.16% 99.83% 99.78%

Table A.4: BASELINE PERFORMANCES PER DATA SPLIT, AUGMENTATION SCHEME AND TASK
TYPE. Each cell reports the balanced accuracy of the respective model. SimpleNet refers to the slimmed
SimpleNet.

Task Type 0.01 0.05 0.1 0.33 0.5
Orientation 0.8413 0.859 0.9302 0.9603 0.9796
Instruction 0.6514 0.8108 0.8799 0.9368 0.9527
Checkbox 0.3746 0.4176 0.4414 0.7518 0.9508

Table A.5: BCCR@FPR FOR CLOSED SET CLASSIFIER PREDICTING ON UNKNOWN SAMPLES. Each
column represents a False Positive Rate (FPR) and the entry the Balanced Correct Classification Rate (BCCR)
achieved by the model.

Known Unknowns 0.01 0.05 0.1 0.33 0.5
None 0.7896 0.8425 0.8857 0.9552 0.9711

Random Images 0.7583 0.8737 0.887 0.9478 0.9683
Letters 0.5443 0.8078 0.8611 0.9143 0.94

Gaussian Noise 0.5333 0.7809 0.8539 0.9534 0.9681

Table A.6: BCCR@FPR FOR CHECKBOX OPEN SET CLASSIFIER USING DIFFERENT KNOWN UN-
KNOWNS. Values represent the BCCR for a given FPR per column. Gaussian noise uses a σ of 0.05.

Known Unknowns 0.01 0.05 0.1 0.33 0.5
None 0.4475 0.7297 0.8393 0.9301 0.9496

Random Images 0.4305 0.7702 0.837 0.928 0.9462
Letters 0.506 0.7675 0.8614 0.9353 0.9519

Gaussian Noise 0.4661 0.724 0.8224 0.9326 0.9517

Table A.7: BCCR@FPR FOR INSTRUCTION OPEN SET CLASSIFIER USING DIFFERENT KNOWN UN-
KNOWNS. Values represent the BCCR for a given FPR per column. Gaussian noise uses a σ of 0.05.
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Known Unknowns 0.01 0.05 0.1 0.33 0.5
None 0.363 0.6097 0.7797 0.9261 0.9497

Random Images 0.3 0.7234 0.8367 0.9235 0.9404
Unknown Symbols + Random Images 0.4687 0.759 0.8656 0.9559 0.9699

Table A.8: BCCR@FPR FOR INSTRUCTION OPEN SET CLASSIFIER IN THE MIXED UNKNOWNS
PROTOCOL. Values represent the BCCR for a given FPR per column. Gaussian noise uses a σ of 0.05.
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