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Abstract

Switzerland allows its citizens to participate in elections and votes by casting ballots via
postal mail. This practice, referred to as “Remote Postal Voting”, is a convenient way for
voters to cast their ballots without visiting a polling station. However, the application of
Remote Postal Voting has raised security concerns regarding vote- and election manipula-
tions by voting officials or third parties. These concerns have been confirmed in practice,
where malicious activities have been discovered on multiple occasions. This thesis aims at
providing verifiability for Remote Postal Voting procedures by presenting the design and
implementation of a verifiable Remote Postal Voting system. The design integrates well
into the existing Swiss Remote Postal Voting procedures. It leverages blockchain technol-
ogy, Homomorphic Encryption, Non-Interactive Zero Knowledge Proofs, and Threshold
Cryptography to meet privacy and verifiability requirements. The evaluation shows that
the proposed system scales well in the Swiss Remote Postal Voting scenario, whereas
further optimization would be necessary for larger countries.
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Kurzfassung

Die Schweiz erlaubt ihren Staatbürgerinnen auf dem brieflichen Weg an Abstimmungen
und Wahlen teilzunehmen. Dieses Vorgehen, oft als “Remote Postal Voting” bezeichnet,
stellt einen einfachen und bequemen Weg der Stimmabgabe dar, ohne dass Wählerin-
nen zu diesem Zweck ein Stimmlokal aufsuchen müssen. Allerdings gibt es bezüglich des
Vorgehens der brieflichen Stimmabgabe Sicherheitsbedenken, insbesondere in Bezug auf
Wahl- und Abstimmungsmanipulation, sei es durch Wahlhelfer oder Drittparteien. Diese
Bedenken wurden in der Praxis mehrfach durch einschlägige Vorfälle bestätigt. Das Ziel
dieser Arbeit ist es, die Vorgänge der brieflichen Stimmabgabe verifizierbar zu machen,
indem sowohl das Design als auch die Implementation eines verifizierbaren brieflichen Ab-
stimmungssystems präsentiert wird. Dabei lässt sich das vorgestellte Design nahtlos in die
aktuellen Vorgänge der brieflichen Stimmabgabe in der Schweiz integrieren, indem eine
Kombination von Blockchain Technologie, Kryptographie, wie beispielsweise homomorphe
Verschlüsselung, Non-Interactive Zero Knowledge Proofs und Threshold Kryptographie
angewandt wird. Dadurch lassen sich die Anforderungen bezüglich des Datenschutzes und
der Verifizierbarkeit erfüllen. Die Evaluation zeigt, dass das vorgeschlagene System im
Rahmen der Schweizerischen brieflichen Stimmabgabe skaliert, während für den Einsatz
in grösseren Ländern noch Optimierungen erforderlich wären.
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Chapter 1

Introduction

Nowadays, electronic voting systems are in use all over the world to run elections and
votes. The broad term of remote voting systems can be divided into Remote Electronic
Voting (REV) systems and Remote Postal Voting (RPV) systems. The former describes
systems that allow voters to cast their ballots from any location using an electronic device
(e.g., a PC or tablet computer). The latter defines systems using postal mail to cast
the voters’ ballots. The use of RPV depends on the legal frameworks of the respective
country. Thus, RPV has been in place for many years in some countries, sometimes with
only minimal degrees of digitization. Compared to modern REV systems (e.g., [26, 63]),
RPV systems often lack adequate means of verification. Consequently, several approaches
have been proposed for providing verifiability in an RPV setting [5, 6, 20, 51].

REV and RPV systems are subject to the trade-off between privacy and verifiability. In
other words, the difficulty lies in providing as much verifiability as possible without sac-
rificing the voter’s privacy. For this purpose, REV and RPV systems rely heavily on the
use of cryptography, such as Homomorphic Encryption (HE), Mix Networks (MN), Com-
mitment Schemes (CS), and Zero-Knowledge Proofs (ZKP). Consequently, such systems
are usually more complex than their analog paper-based predecessors.

This work focuses on Swiss RPV procedures. Switzerland is a direct democracy, allowing
Swiss citizens of age 18 and above to vote at municipal, cantonal, and federal levels [15,
22]. Thus, compared to other countries, Swiss citizens have far-reaching voting rights.
Consequently, votes and elections occur frequently, which has led to multiple accepted
ways of casting a ballot. Apart from casting a ballot at the municipalities’ polling stations,
Switzerland also allows RPV since 1994 [55], meaning eligible voters can cast their ballot
by postal mail or by posting the voting envelope into the municipalities’ mail box [42].
Note that the RPV procedures are decentralized as they are implemented by cantons and
municipalities, mirroring the federal structure of Switzerland [42].

While RPV is convenient for voters, this approach raises concerns in terms of verifiability:
In Switzerland, there have been multiple incidents involving fraudulent activities during
elections or votes (e.g., [2, 39, 40, 46, 47]) to manipulate the outcome of the election or
vote. Thus, this raises the following question: How can a voter be sure that her ballot
was cast, recorded, and counted as she intended? With the current procedures, voters can

1



2 CHAPTER 1. INTRODUCTION

check their ballot before putting it into the voting envelope to ensure it was cast correctly.
Alternatively, voters could cast their ballot at the polling station, ensuring that the ballot
was cast and recorded correctly. Thus, there is currently no way of verifying that a vote
or election has been performed correctly, as current procedures rely on statistical analyses
of the results to discover anomalies (e.g., [47]). The lack of verifiability is particularly
serious if voters cast their ballots by postal mail.

This work presents Helverify : the design and implementation of a verifiable RPV system
for use in Switzerland, the first of its kind to the author’s knowledge. Consequently, the
current Swiss RPV procedures primarily influence the requirements for such a system
(e.g., regarding scalability, performance, and usability). The system designed and imple-
mented during this work aims at augmenting the current Swiss RPV procedures instead
of replacing them, allowing to fall back on said procedures in case something goes wrong.
Helverify leverages the combination of a Proof-of-Authority (PoA) Blockchain (BC) and
a distributed file system (i.e., IPFS) to provide a Public Bulletin Board (PBB) for stor-
ing the election evidence. The combination of these two technologies allows to leverage
immutability, public accessibility, and scalability, which are crucial properties of a PBB.
Moreover, the decentralized PBB design permits seamless integration into the current
Swiss RPV procedures, which are decentralized by design [42]. Furthermore, HE, thresh-
old cryptography, and NIZKPs have been applied to achieve End-To-End Verifiability
(E2E-V) while preserving Ballot Privacy (BP) at the same time.

1.1 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 delves into the fundamen-
tals of the Swiss RPV procedures, with serves as a basis for the protocol design. Next,
Chapter 3 presents the mathematical foundations of the cryptographic primitives used
in the Helverify prototype, namely HE, Threshold Cryptography, and Non-Interactive
ZKPs (NIZKP). Chapter 4 compares relevant related work in the domain of RPV. Chap-
ter 5 shows the Helverify protocol design and the requirements considered for its creation.
Chapter 6 documents the technical and architectural aspects of the Helverify prototype’s
implementation. Chapter 7 delves into various characteristics of the Helverify prototype,
such as performance, scalability, security, and more. Finally, Chapter 8 concludes this
thesis, providing an overview over the work done, the derived conclusion, and potential
areas of future work.



Chapter 2

Background

This chapter features an overview of the context, basic principles, and notions used
throughout this work. Section 2.1 provides an introduction to the voting procedures
of Switzerland, with a focus on RPV. Furthermore, this chapter delves into the basics of
voting protocol properties, consisting of privacy and verifiability notions.

2.1 Remote Postal Voting in Switzerland

In Switzerland, Swiss citizens aged 18 and above can vote on the federal [22], cantonal and
municipal levels [15]. Municipalities are responsible for maintaining an Electoral Register
(ER) [42], which has the purpose of keeping a record of all the eligible voters living within
the municipality [23]. The voter has three possibilities for casting her ballot: The first
option is the traditional ballot casting at the urn [42]. As an alternative, voters have
the right to cast their ballot through postal voting, sending the voting envelope to the
municipality using the Swiss Post mail service [42]. The third option involves submitting
the voting envelope to the mailbox of the local municipality [42]. In the context of this
work, the focus lies on the postal voting approach.

2.1.1 Voting Artifacts

Offering RPV to cast votes requires producing and distributing specific voting artifacts.
As the names of these artifacts are in German, the following English names and definitions
provided by [42] are used throughout this work:

The Paper Ballot Envelope (PBE) (”Stimmkuvert” [14]) serves as a container for the filled
Paper Ballots (PB) (”Stimmzettel”[14]). The Voting Signature Card (VSC) (”Stimmrechts-
ausweis” [14]) is a pre-printed personalized document that the voter needs to sign to ren-
der her vote valid. Finally, the Two-Way Voting Envelope (VE) (”Kuvert zur brieflichen
Abstimmung” [14]) is the envelope in which the voter receives all artifacts (PBs, PBE,
VSC) needed for RPV. Additionally, the VE is also used as an envelope for sending the
completed voting artifacts back to the municipality [42].

3



4 CHAPTER 2. BACKGROUND

2.1.2 Voting Procedures

According to [42], the process of RPV in Switzerland (cf. Figure 2.1) can be divided into
six subsequent phases [42]:

1. Setup: This phase consists of the production and the subsequent assembly of the
VEs. Each VE consists of a VSC, a BPE, and one or more BPs. Municipalities
usually outsource this process to external suppliers.

2. Delivery: The Swiss Post delivers the VEs to eligible voters.

3. Casting: After filling in the PBs and concealing them inside the PBE, the voter puts
the signed VSC and the PBE into the VE. The voter now faces the three options
mentioned above for casting the VE. For the following steps, however, we assume
that the voter submits the VE via RPV.

4. Storage: When the VEs arrive at the municipalities’ premises, they are stored safely
until the tallying phase starts.

5. Tallying: First, election officials validate the signature on the VSC, as an invalid
(or missing) signature renders the ballot invalid. The PBs are then tallied. Some
municipalities manually count the PBs, while others use counting machines or scales
to weigh the PBs. After tallying, the municipalities report the results to the cantons,
which forward the results to the federal level. PBs and VSCs are stored until the
results are final and validated, as these two artifacts are indispensable for recounting.

6. Destruction: The last phase consists of physically destroying all PBs and VSCs.

2.1.3 Security Threats and Manipulations

[42] provides an extensive list of threats regarding the current postal voting procedures
in Switzerland, identifying potential threats in all but the last phase. Amongst others,
threats involve tampering with the ER during the setup phase, interfering with the phys-
ical delivery of the VEs, manipulating stored VEs, and manipulations during the tallying
phase, to name a few examples [42].

Real-world examples show that these threats are not solely theoretical: During the elec-
tions for the cantonal parliament of the canton of Thurgau in 2020, a statistical plausibility
check revealed irregularities in the ratio of unaltered and altered ballot lists in the city of
Frauenfeld [47]. Investigations revealed that a person involved in the tallying process re-
placed several PBs containing votes for a particular party with ballots in favor of another
party [47]. In 2021, the city of Moutier in the canton of Berne voted on whether it should
join the canton of Jura [2]. In this case, a controversy emerged because many people
registered as city residents before the vote [2]. The cantonal authorities suspected that
some of these new residents only registered to be eligible to vote while not intending to
live in Moutier [2]. Another manipulation incident occurred in 2012 during the elections
for the city mayor in Porrentruy in the canton of Jura, where someone was caught stealing
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VEs to cast manipulated ballots [39, 46]. Similarly, during the cantonal elections in 2012,
a person stole VEs from people’s mailboxes in the canton of Valais to cast votes instead
of them [40, 46].

Figure 2.1: Process flow of Remote Postal Voting in Switzerland [42]

2.1.4 Discussion

The Swiss RPV system heavily relies on trusted relationships between the involved actors
(i.e., authorities, external suppliers, the Swiss Post, and election helpers) [42]. Despite
the decentralization of the system [42], together with the distribution of the trust, which
is an advantage of the Swiss RPV [42], manipulation is still possible (e.g., [2, 39, 40, 46,
47]). These incidents raise a question: How can the voters and the election authorities
discover manipulation (attempts)? In its current state, the Swiss RPV provides very little
verifiability. Thus, the solution is integrating additional verifiability mechanisms into the
existing procedures. Chapter 4 presents possible solutions to this problem, leading to a
design proposal for the Swiss context in Chapter 5.
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2.2 Properties of Voting Protocols

This section introduces the required definitions and terminology for analyzing and com-
paring voting protocols in Chapter 4. The definitions of the following privacy and verifi-
ability notions are essential for discussing the suitability of a protocol toward the Swiss
RPV use case.

Note that the author of this work has already discussed the privacy and verifiability
notions in the context of REV in [45]. However, as these properties are also essential
to classify RPV protocols, the relevant properties and notions for this work are shortly
explained for completeness (cf. Sections 2.2.1 and 2.2.2).

2.2.1 Privacy Notions

The privacy properties discussed in this work represent a revised version of the defini-
tions in [45], namely for the following terms: Ballot Privacy, Receipt-Freeness, Coercion
Resistance, and Everlasting Privacy.

Privacy is a fundamental challenge in voting systems. In 1981, Chaum [18] delineated a
concept for holding privacy-preserving elections, thereby sparking research on privacy in
voting systems [37]. This work builds on the following privacy definition:

Definition 1 Ballot Privacy (BP):
BP implies that “no outside observer can determine for whom a voter voted” [37].

Benaloh and Tuinstra [7] noticed that in previous protocols, a voter could keep a receipt
of her vote, leading to potential vote selling and coercion. To prevent this issue, they [7]
suggested that such systems must be receipt-free:

Definition 2 Receipt-Freeness (RF):
RF denotes that “a voter cannot prove after the election how she voted” [37].

In 2005, Juels et al. [38] presented an even stricter privacy notion, which protects the
voter from blackmail [37]:

Definition 3 Coercion Resistance (CR):
CR means that “a voter cannot interact with a coercer during the election to prove how
she is voting” [37].

The final privacy notion considers the means of achieving privacy in a voting system:

Definition 4 Everlasting Privacy (EP):
EP is achieved if “even a computationally unbounded party does not gain any information
about individual votes” [54].
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2.2.2 Verifiability Notions

The verifiability notions also represent a revised notion of the definitions discussed in [45],
specifically for the terms Individual- and Universal Verifiability, while leaving the defi-
nitions of End-To-End-Verifiability, Cast-as-Intended, Recorded-as-Cast, and Tallied-as-
Recorded unaltered.

Individual and Universal Verifiability are early verifiability notions (cf. [37]). For the
context of this thesis, the following definitions apply:

Definition 5 Individual Verifiability (IV):
IV means that “a voter can verify that the ballot containing her vote is in the published
set of ‘all’ [...] votes” [37].

Definition 6 Universal Verifiability (UV):
UV implies that “anyone can verify that the result corresponds with the published set of
‘all’ votes” [37].

End-to-End Verifiability is a more recent verifiability notion, consisting of the following
three notions [37]:

Definition 7 Cast-as-Intended (CaI):
CaI verifiability is provided if“a voter can verify that [...] her choice was correctly denoted
on the ballot by the system” [37].

Definition 8 Recorded-as-Cast (RaC):
RaC verifiability is achieved if “a voter can verify that [...] her ballot was received the
way she cast it” [37].

Definition 9 Tallied-as-Recorded (TaR):
TaR verifiability means that“a voter can verify that [...] her ballot counts as received”[37].

Finally, this leads to the notion of:

Definition 10 End-To-End Verifiability (E2E-V):
E2E-V is achieved if a system provides CaI, RaC, and TaR verifiability at once [37].

When analyzing a voting protocol, either IV and UV or E2E-V is used to describe verifi-
ability [43]. In the context of this work, the comparison in Chapter 4 (cf. Table 4.1) lists
IV/UV and E2E-V (i.e., as CaI, RaC, and TaR) together to improve comparability.

Finally, the eligibility of voters to participate in an election or vote can be verified:

Definition 11 Eligibility Verifiability (EV):
EV means that “anyone can check that each vote in the election outcome was cast by a
registered voter and there is at most one vote per voter” [44].
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Chapter 3

Cryptography

This chapter elaborates on the cryptographic mechanisms used in this work. It starts
with introducing two cryptographic primitives, namely HE and Threshold Cryptography,
followed by NIZKPs.

Note that the author of this work has discussed the basic definitions of the terms HE
and Zero-Knowledge Proofs in [45]. However, this work discusses these two terms in more
detail, focusing on the mathematical foundations of specific schemes. They are crucial for
designing and implementing an RPV system.

3.1 Homomorphic Encryption

HE algorithms allow performing operations on ciphertext without prior decryption [58],
a valuable property for electronic voting. More formally (cf. Equation 3.1):

Definition 12 Homomorphic Encryption (HE):
An encryption scheme is “homomorphic over an operation ‘⋆’ if it supports the following
equation:

E(m1) ⋆ E(m2) = E(m1 ⋆ m2),∀m1,m2 ∈ M (3.1)

where E is the encryption algorithm and M is the set of all possible messages” [1].

3.1.1 ElGamal Cryptosystem

A popular HE scheme for electronic voting systems is the ElGamal [27] cryptosystem,
which is based “on the difficulty of computing discrete logarithms over finite fields” [27].

The ElGamal cryptosystem consists of four algorithms [8]. The KeyGen algorithm relies
on the parameters p and q (both large primes) [8] and a generator g [1]. KeyGen (cf.
Equation 3.2) generates a secret key sk by selecting a random number from Zq, which is
used to derive a public key pk [8]:

9
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Definition 13 ElGamal KeyGen() algorithm [8]:

(pk, sk) = (gsk (mod p), sk) (3.2)

The Encrypt (cf. Equation 3.3) algorithm creates a ciphertext representation of a message
by first choosing a random number r from Zq and then performing the following operation
to obtain the ciphertexts c and d [8]:

Definition 14 ElGamal Encrypt(pk,m) algorithm [8]:

(c, d) = (gr (mod p),m · pkr (mod p)) (3.3)

To decrypt the ciphertexts c and d, the receiver applies the Decrypt (cf. Equation 3.4)
algorithm [8], which reveals the original message:

Definition 15 ElGamal Decrypt(sk,(c,d)) algorithm [8]:

m =
d

csk
(mod p) (3.4)

Alternatively, the ElGamal cryptosystem is also compatible with an elliptic curve group
instead of a cyclic group [8]. Moreover, this version of the ElGamal cryptosystem is
homomorphic for multiplications [1, 8].

To combine two ciphertexts, we can use the Add (cf. Equation 3.5) algorithm, which
performs a homomorphic multiplication [8]:

Definition 16 ElGamal Add((c,d),(c′,d′)) algorithm [8]:

(c′′, d′′) = (c · c′ (mod p), d · d′ (mod p)) (3.5)

3.1.2 Exponential ElGamal

The Exponential ElGamal version is homomorphic for additions [8], making it suitable
for homomorphic tallying. For this purpose, the Encrypt algorithm (cf. Equation 3.6)
needs a slight change [8]:

d = gm · pkr (mod p) (3.6)

The Add algorithm now results in addition [8]. The downside of this approach is the
Decrypt algorithm: It requires solving the discrete logarithm problem to restore m, which
for small numbers can be circumvented by brute-forcing the result [8].
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3.2 Threshold Cryptography

Threshold cryptography prevents single entities from decrypting messages independently [8,
41], which is especially useful for preserving privacy in voting systems.

This work relies on a threshold version of the ElGamal cryptosystem, where all par-
ticipants must cooperate [8] to decrypt messages. Provotum 2.0 [41] applies the same
principle for ballot encryption.

In the beginning, all participants generate standard ElGamal key pairs (pki, ski), which
are then combined into a single public key pk (cf. Equation 3.7) [8, 41]:

Definition 17 ElGamal Distributed Key Generation [8, 41]:

pk =
n∏

i=1

pki (mod p) (3.7)

Then, encryption is performed with the ElGamal encryption algorithm (cf. Equation 3.3)
using the public key pk [8, 41]. To restore the original message, the participants must first
decrypt (c, d), which yields their shares si (cf. Equation 3.8), as these shares (n denotes the
number of shares) are needed for restoring the original message (cf. Equation 3.9) [8, 41]:

Definition 18 ElGamal Cooperative Decryption [8, 41]:

si = cski (mod p) (3.8)

m =
d∏n
i=1 si

(mod p) (3.9)

3.3 Non-Interactive Zero-Knowledge Proofs

RPV and REV systems usually require one entity to be able to prove a fact to another
entity, while keeping any additional details secret. These systems often use ZKPs for this
purpose. As previously discussed in [45], the term ZKP is defined as follows:

Definition 19 Zero-Knowledge Proof (ZKP):
“Zero-knowledge proofs are defined as those proofs that convey no additional knowledge
other than the correctness of the proposition in question.” [31]

ZKPs are interactive per se, which means that the prover and the verifier must be able
to send messages to each other [31]. This interactivity is usually not desirable for voting
systems, as the interaction between a voter and the Voting Authority is not recurring.
This interaction includes the verifier sending a challenge to the prover, which must then
respond accordingly [8]. To adapt ZKPs toward the requirements of voting systems,
they can be made non-interactive. For this purpose, Fiat and Shamir [29] defined a
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transformation allowing to convert interactive ZKPs to NIZKPs: Instead of the challenge-
response mechanism, the prover creates a challenge by hashing a commitment [8]. The
following proofs all use this technique to make them non-interactive.

3.3.1 Chaum-Pedersen Proof

The Chaum-Pedersen Proof [17] was initially designed as a signature scheme [17]. Helver-
ify uses the Chaum-Pedersen proof in two variations. The first version proves the correct
decryption of a ciphertext share when cooperatively decrypting a ciphertext (cf. Provo-
tum [41]). The other version of the Chaum-Pedersen Proof proves that a ciphertext
contains a specific value (i.e., in this case, the value 1). While, at first, this might not
seem of use, it is beneficial for proving that the homomorphic addition of multiple ci-
phertexts is equal to 1. Helverify uses this approach to ensure the correct construction
of ballots.

Proof of Correct Decryption

Definition 20 Proof of Correct Decryption [8, 41]:
To create the proof, the prover must provide the ciphertext (a, b), the public key share
pki, the private key share ski, and the public parameters p, q, and g as inputs. The prover
selects a random number r from Zq. Then, she calculates the two values u and v:

(u, v) = (ar (mod p), gr (mod p))

To make the proof non-interactive, the challenge c is obtained by applying a hash function
H on the public key share pki, the ciphertext (a, b), and the values (u, v):

c = H(pki, a, b, u, v) (mod q)

Next, the prover calculates the values s and d, where ski is the private key share of
the prover:

s = r + c · ski (mod q)

d = aski (mod p)

Finally, the proof π is constructed as follows:

π = (d, u, v, s)

Definition 21 Verification of Correct Decryption [8, 41]:
The inputs for the verification consist of the ciphertext (a, b), the public key share pki,
and the public parameters p, q, and g. To verify the proof, the verifier must first recreate
the challenge hash c:

c = H(pki, a, b, u, v)

Afterward, the verifier checks if the following equation holds:

as = u · dc (mod p) ∧ gs = v · (pki)c (mod p)

A successful check verifies that the decryption has been performed correctly.
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Proof of Ciphertext Value

Definition 22 Proof that a ciphertext contains the value 1 (modified version of Disjunctive
Chaum-Pedersen Proof (DCP) [8, 41]):
The input for creating this proof consists of the ciphertext (a, b), the public key h, the
private key x, and the public parameters p, q, and g. As in the proof of correct decryption,
the prover starts by selecting a random number r from Zq. Afterward, she calculates the
values (u, v):

(u, v) = (gr (mod p), hr (mod p))

Again, the challenge is the result of applying a hash function H to the ciphertext (a, b)
and the parameters (u, v):

c = H(h, a, b, u, v) (mod q)

Finally, the prover calculates s as

s = r + c · x (mod q)

which is the final parameter needed to construct the proof π:

π = (u, v, s)

Definition 23 Verification that a ciphertext contains the value 1 (modified version of
DCP [8, 41]):
For the verification, the verifier must provide the ciphertext (a, b), the public key h, and
the public parameters p, q, and g as inputs. Again, the first step of the verification is to
recreate the challenge hash c:

c = H(h, a, b, u, v) (mod q)

The actual verification consists of checking the following equation:

gs (mod p) = u · ac (mod p) ∧ hs (mod p) = v · ( b
g
)c (mod p)

If this equation evaluates to true, it means that the given ciphertext (a, b) contains the
value 1.

3.3.2 Disjunctive Chaum-Pedersen Proof

Cramer et al. [19] provide a mechanism applicable to the Chaum-Pedersen proof, which
allows a verifier to verify that the prover knows one out of two secrets [8]. Like Provo-
tum [41], Helverify uses the DCP to prove that a ciphertext represents either 0 or 1, which
helps ensure the correct ballot creation.
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Definition 24 Proof if the message is 0 [8, 41]:
As inputs, the prover provides the ciphertext (a, b) together with the public key h and the
randomness x, which have been used to encrypt the message. Also, the prover provides
the public parameters p, q, and g. First, the prover selects three random values r′0, r1,
and c1 from Zq. Then, the prover simulates a proof for the scenario where the message is
equal to 1 (as this is not the case) by calculating the values u1 and v1:

u1 =
gr1

ac1
(mod p)

v1 =
hr1

( b
g
)c1

(mod p)

Afterward, the prover calculates the prove parameters u0 and v0 for the actual message
(i.e., message is equal to 0):

u0 = gr
′
0 (mod p)

v0 = hr′0 (mod p)

As in all the other proofs discussed in this chapter, the construction of the challenge
involves applying a hash function H as follows:

c = H(h, a, b, u0, v0, u1, v1) (mod q)

The final two values needed for the proof are c0 and r0:

c0 = c− c1 (mod q)

r0 = r′0 + c0 · x (mod q)

The resulting proof π looks as follows:

π = (u0, u1, v0, v1, c0, c1, r0, r1)

Definition 25 Proof if the message is 1 [8, 41]:
The input parameters are the same as in the first scenario. As before, the prover chooses
three random values r′1, r0, and c0 from Zq. In this scenario, the actual message contains
the value 1. Thus, the verifier simulates the proof for the case where the message is 0 by
calculating the values u0 and v0:

u0 =
gr0

ac0
(mod p)

v0 =
gr1

bc1
(mod p)

The proof for the actual message is produced in analogy to the first scenario, this time
yielding the variables u1 and v1:

u1 = gr
′
1 (mod p)

v1 = hr′1 (mod p)
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Again, the challenge is the result of applying a hash function H to the calculated public
proof elements:

c = H(h, a, b, u0, v0, u1, v1) (mod q)

The prover calculates the values c1 and r1:

c1 = c− c0 (mod q)

r1 = r′1 + c1 · x (mod q)

The resulting proof π looks exactly like the proof in the other scenario:

π = (u0, u1, v0, v1, c0, c1, r0, r1)

Definition 26 Verification of message being either 0 or 1 [8, 41]:
For the verification, the verifier provides the ciphertext (a, b) together with the public
key h and the public parameters p, q, and g. The verifier then checks the following five
equations to find out if the proof is valid:

gr0 (mod p) = u0 · ac0 (mod p)

gr1 (mod p) = u1 · ac1 (mod p)

hr0 (mod p) = v0 · bc0 (mod p)

hr1 (mod p) = v1 · (
b

g
)c1 (mod p)

c0 + c1 (mod q) = H(h, a, b, u0, v0, u1, v1) (mod q)

If these equations all yield true, the verifier knows that the corresponding ciphertext
contains either the message 0 or 1.

3.3.3 Schnorr Proof

The Schnorr Proof [60] is often used to prove that someone owns the private key to a partic-
ular public key (e.g., in [41]). Helverify uses the Schnorr Proof [60] for the same purpose.

Definition 27 Proof of Private Key Ownership [60, 41]:
The prover must provide the public key h and the corresponding private key x, together
with the public parameters p, q, and g, to create the proof. Then, the prover picks a
random number a from Zq and calculates the value b:

b = ga (mod p)

The prover applies the hash function H to the public key h and b to create the challenge
c, making the proof non-interactive:

c = H(h, b) (mod q)

The prover calculates the parameter d as follows:

d = a+ c · x (mod q)

The proof π consists of the values c and d:

π = (c, d)
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Definition 28 Verification of Private Key Ownership [60, 41]:
The verifier provides the public key h to be verified as an input, together with the public
parameters p, q, and g. As a first step, the verifier must recalculate the value b:

b =
gd

hc
(mod p)

Then, the verifier reconstructs the challenge c′

c′ = H(h, b) (mod q)

which is then compared against the challenge c according to the following equation:

c′ = c (mod q) ∧ gd (mod p) = b · hc (mod p)

If this equation holds, then the verifier can be sure that the prover owns the private key
to the corresponding public key h.



Chapter 4

Related Work

This chapter elaborates on related work proposing protocols to enable verifiability in RPV
systems. Furthermore, these works are compared and analyzed concerning the feasibility
of application in Swiss RPV processes.

4.1 Verifiable Postal Voting

Benaloh et al. [6] propose ”Verifiable Postal Voting”, a protocol to enhance existing RPV
procedures by adding cryptographic information to the PBs. The protocol is based on
three pieces of paper that the voter prints at home: The first paper (VR) contains the
voters’ choice in plaintext. The second paper (VI) contains an encrypted version of the
content of VR, together with the random values RI and RE used to encrypt both VI and VE

respectively. Finally, the third piece of paper (VE) contains a re-encrypted version of VI
alongside a digital signature of the voter. The voter puts all these three papers into the
envelope and sends it to the municipality. Note that the voter keeps a copy of VE, which
is later used for verification [6].

When arriving at the tallying facility, officials open the envelopes and verify the signatures
on VE [6]. Afterward, VI is physically stapled to either VR or VE. Next, the papers are
sorted according to their contents, resulting in 4 shuffled piles (VR, VI + VE, VR + VI,
VE). Finally, from each of these piles, specific information is published to the PBB (cf.
Figure 4.1). Thus, the PBB contains all three papers of each voter but only one of two
links (RE or RI) to preserve privacy [6].

This protocol achieves BP under the assumption that the tallying personnel complies with
the process rules defined in the protocol [6]. However, the system does not achieve RF, as
the voter can prove how she voted if she keeps VI as a receipt. IV and CaI verifiability are
achieved by letting the voter check the plaintext vote VR before sealing the envelope. As all
plaintext votes (VR) are published to the PBB, the protocol fulfills UV. The protocol also
achieves Counted-as-Cast (CaC) verifiability by letting the tallying observers decide for
each envelope whether to check for the equality of VE and VI or VR and VI, respectively [6].

17
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Figure 4.1: Contents of the Public Bulletin Board [6]

4.2 Towards Verifiable Remote Postal Voting with Paper

Assurance

McMurtry et al. [51] provide a similar approach for a verifiable RPV system. This ap-
proach also leverages cryptography to enhance the traditional approach to conducting
RPV, e.g., using CS in combination with other cryptographic primitives.

1. Setup: To set up the election, the Voting Authority (VA) stores a double envelope
with the encrypted (inner) and the plaintext (outer) Voter IDs onto the PBB [51].

2. Cast: The voter then generates two random secrets for producing two commitments.
These commitments are then posted to the PBB. The voter now chooses her vote.
Afterward, a MAC is generated and published on the PBB. The voter can now print
two pieces of paper: Paper 1 contains the vote in plaintext, the inputs for the two
commitments, and two ZKPs. Paper 2 consists of the Voter ID. The voter now
places Paper 1 in a PBE, puts it into the VE together with Paper 2, and sends it
to the tallying location via postal service [51].

3. Processing: After the VE has arrived at the tallying location, the VA opens the VE
and removes Paper 2, which allows them to validate the voter’s identity. Then, the
VA gets the encrypted Voter ID from the inner envelope on the PBB. The encrypted
Voter ID is then stapled to Paper 1 blindly. Afterward, the VA destroys Paper 2.
Before Paper 1 and the encrypted Voter ID are stored on the PBB, both ZKPs are
validated [51].

4. Tallying: The VA trustees cooperatively decrypt the voters’ secrets to start the
tallying process. They then validate whether the commitments are valid. Finally,
the system generates a new MAC from the decrypted parameters and compares it
to the original MAC as posted by the voter [51].

The suggested protocol provides BP assuming that an attacker does not collude with the
VA, the postal service, or the voter’s device [51]. Furthermore, RF is achieved, assuming
that all actors strictly follow the protocol. Moreover, the protocol fulfills CaI verifiability
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by letting the voter verify the plaintext on Paper 1 before casting. Recorded-as-Intended
(RaI) verifiability is achieved by first performing the CaI check, then validating that the
Voter ID on Paper 2 is correct, followed by checking the inclusion of the Voter ID in the
PBB after the voting phase. The protocol achieves UV by verifying the proofs generated
during the tallying phase and verifying the uniqueness of Voter IDs on the PBB. The
presence of an EV mechanism provided by the VA is assumed [51].

4.3 STROBE-Voting

With STROBE-Voting [5], Benaloh presents a protocol for achieving E2E-V in both postal
and in-person voting processes.

1. Setup: For each eligible voter, the VA generates two ballots containing the same
options. Both ballots are encrypted using the ElGamal [27] cryptosystem on a per-
row basis (cf. Figure 4.2), which means that each candidate option is represented
as an encrypted vector of zeros and a one [5]. Subsequently, each encrypted vector
is hashed and truncated to generate shortcodes, which serve as a reference for the
voter to ensure verifiability. Next, all encrypted options on the ballot are input
into a hash function, producing a ballot hash, a hash string that ensures that all
encrypted options remain unaltered. Finally, the printed ballot (cf. Figure 4.3)
contains the ballot hash and the shortcodes for each option [5].

2. Voting: When receiving the PBs, the voter fills out one of the PBs and keeps the
other for verification. The voter memorizes the selected options’ shortcodes and the
ballot hash of the selected PB and then casts the PB [5].

3. Receival: When the VEs arrive at the VA’s premises, the VA publishes encryptions,
shortcodes, and the ballot hashes of the cast and the retained PB. For the PB cast,
the selected shortcodes (together with the ballot hash) are also published. The
retained PB is decrypted and published, together with the randomness factors used
to encrypt it in the first place. Finally, the VA publishes multiple NIZKPs to ensure
the correctness of the PBs [5].

4. Tallying: The process involves homomorphically adding the encrypted votes and
decrypting the tally results [5].

Figure 4.2: Encryption of ballot options in STROBE-Voting [5]
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Figure 4.3: Example of PB in STROBE-Voting [5]

STROBE-Voting [5] provides E2E-V by applying the following mechanisms: The voter
memorizes shortcodes selected and validates against the published shortcodes for the
particular ballot hash. Additionally, the correctness of the cast PB is checked by verifying
the NIZKPs and the PB’s twin. Furthermore, it achieves BP by applying encryption to
the PBs [5].

4.4 RemoteVote

RemoteVote [20] has been inspired by STROBE-Voting [5]. The PB (cf. Figure 4.4)
consists of the options, two encrypted ballots, each defining a column of shortcodes for
all options, and a ballot ID that combines the identifiers of each encrypted ballot [20].

Figure 4.4: Example of PB in RemoteVote [20]

1. Election Setup: First, the VA constructs the ballots according to the requirements
of the specific election, which involves encrypting the options together with the
corresponding commitments and the generation of shortcodes and ballot codes [20].
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2. Paper Ballot Creation: For each voter, the VA combines two encrypted ballots into
one physical PB, which follows the structure described above (and in Figure 4.4).
Note that the ballot ID, the longcodes of the encrypted ballots, and the shortcodes,
together with the generated commitments, are published on the PBB, allowing for
later verification. The PBs are then sent to the voters by postal mail [20].

3. Vote Casting: The voter selects the candidates on the PB by filling in the ballot
by hand while memorizing selected candidates’ shortcodes, together with the ballot
ID, as these attributes allow the voter to perform verification later [20].

4. Receival: When the VA receives the PBs, it posts the PBs’ evidence (ballot ID and
selected shortcodes) to the PBB. From this point, voters can verify if their vote has
been recorded correctly [20].

5. Tallying: An MN anonymizes the commitments before calculating the final tally by
revealing the committed values [20].

Like STROBE-Voting [5], RemoteVote [20] achieves E2E-V by allowing the voter to ver-
ify that their shortcodes have been processed correctly. From a privacy standpoint, Re-
moteVote achieves BP and RF. Additionally, it fulfills EP, as it uses commitments for the
tallying process instead of HE [20].

4.5 SAFE Vote

SAFE Vote [20] can be regarded as a sibling protocol to RemoteVote [20], which manifests
in identical steps 1, 4, and 5. However, the PB (cf. Figure 4.5) is slightly different, as it
contains one row of shortcodes, a scratch-off label hiding a random value, the ballot ID,
and a QR-Code [20].

1. Election Setup: Identical to RemoteVote [20].

2. Paper Ballot Creation: The VA produces the PB by printing a QR-Code containing
the ballot commitment onto the PB and the random value used to produce the
commitment as a scratch-off label [20].

3. Vote Casting: Before the voter selects her candidates, she can verify that the short-
codes printed on the ballot are valid by removing the scratch-off label and scanning
the QR-Code. With these two items, the voter can reconstruct the ballot and check
whether the reconstructed ballot matches the actual PB [20].

4. Receival: Identical to RemoteVote [20].

5. Tallying: Identical to RemoteVote [20].

SAFE Vote fulfills the same properties as RemoteVote while providing individual CaI
verification compared to the collective CaI verification in RemoteVote [20].
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Figure 4.5: Example of PB in SAFE Vote [20]

4.6 Comparison and Discussion

This section discusses the suitability of the presented protocols regarding their use in the
context of Swiss RPV. Table 4.1 compares the protocols by highlighting their properties
and cryptographic primitives.

4.6.1 Trust Assumptions

The presented protocols use different trust assumptions to achieve the listed properties.
Verifiable Postal Voting [6] assumes that the election procedures are public and are as-
serted by observers, with at least one honest observer [6]. McMurtry et al. [51] base the
privacy of their system on the assumption that, amongst others, the election authority,
the postal services, and the voter’s device are honest [51]. Further, STROBE-Voting [5]
presumes that the ballot printers do not store secret information about the ballots they
print [5]. RemoteVote and SAFE Vote do not list any explicit assumptions [20].

4.6.2 Swiss RPV Criteria

A desirable property of an RPV protocol for use in Switzerland is the compatibility with
existing voting procedures. Thus, a protocol should be compatible with ballot delivery
and casting by postal mail. Likewise, such a protocol should not interfere with other
voting channels, such as in-person voting. Furthermore, the goal is to achieve as much
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verifiability (e.g., E2E-V) while keeping the protocol complexity as low as possible, as
introducing complexity into a system can lead to security issues [50], which is undesirable
in a voting system. Moreover, a general requirement is the ease of use for voters and VA
alike when running the protocol. A system with poor usability could negatively impact
voter turnout, which is unwanted.

Last but not least, an RPV system should remain operable despite the failure of computer
systems. This resilience could be achieved by basing the system on the existing RPV
procedures, which can serve as a fallback. After all, this work does not aim to build an
REV system but to augment the existing postal voting procedures toward verifiable RPV.

Table 4.1: Comparison of RPV protocols

Pr
ot
oc
ol

B
P

R
F

EP IV U
V

C
aI

R
aC

Ta
R

EV C
ry
pt
og
ra
ph
ic

Pr
im
iti
ve
s

Verifiable Postal
Voting [6]

✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓
HE/MN, DS,
NIZKP, (CS)

Towards Verifiable
Remote Postal

Voting with
Paper Assurance [51]

✓ (✓) ✗ [✓] ✓ ✓ ✓ ✗ ✓
HE, MN, NIZKP,
MAC, CS

STROBE-Voting [5] ✓ ✓ [20] ✗ [✓] [✓] [✓] [✓] [✓] ✓* HE, NIZKP
RemoteVote [20] ✓ ✓ ✓ [✓] [✓] ✓ ✓ ✓ ✓ HE, CS, MN
SAFE Vote [20] ✓ ✓ ✓ [✓] [✓] ✓ ✓ ✓ ✓ HE, CS, MN

[]=deduced, ()=partially, *=compatible with existing mechanisms

4.6.3 Protocol Suitability

Determining a suitable protocol as a basis for the design of this work requires comparing
the highlighted protocols to the criteria explained above. [6] and [51] do not provide E2E-
V and are not designed for postal ballot delivery. The three remaining protocols [5, 20]
are compatible with postal ballot delivery and ballot casting while providing E2E-V. Fur-
thermore, they do not impede other voting channels. When comparing the cryptographic
primitives used, STROBE-Voting [5] uses HE and NIZKPs resulting in relatively low com-
plexity. RemoteVote [20] and SAFE Vote [20] use HE, CS, and an MN. From a privacy
standpoint, STROBE-Voting [5] trades EP in favor of a more straightforward design while
still achieving a similar degree of verifiability compared to RemoteVote and SAFE Vote.

The design specified in Chapter 5 will be based on STROBE-Voting [5], as it provides a
suitable combination of privacy and verifiability despite its simple design. It also offers a
single-ballot variant, which fits nicely into the context of Swiss RPV, requiring only minor
additions to existing voting procedures. Moreover, the design of STROBE-Voting [5] is
easily extendable with ideas from RemoteVote [20] or SAFE Vote [20], as both are based
on STROBE-Voting [5].
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Chapter 5

Design

This chapter delves into the requirements of Helverify for its use as a verifiable Swiss
RPV protocol. The protocol itself is based on the mechanisms of STROBE-Voting [5],
with adaptions toward the Swiss RPV context. Furthermore, this chapter discusses the
system architecture, which is the basis for the implementation (cf. Chapter 6).

5.1 Requirements

Before delving into concrete use cases, it is essential to elicit and classify the requirements
of an RPV system. The requirements for this work are mainly influenced by the current
Swiss RPV procedures [42] and the current Swiss legislation [22, 23]. The following
sections discuss the functional and non-functional requirements and constraints to be
considered in the context of Swiss RPV.

Voting Authority

Voter

Set up Election

Create Ballots

Cast Ballot

Terminate Election

Verify Recorded-as-Cast

Verify Cast-as-Intended

Tally

Verify Tallied-as-
Recorded

Publish Evidence

<<include>>

<<include>>

<<include>>

Anyone

Verify Evidence
<<include>>

<<include>>

Municipality Calculate Partial Results
(Decrypted Shares)

<<extend>>

Figure 5.1: Use Cases of Helverify
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5.1.1 Functional Requirements

The functional requirements (A) for a verifiable Swiss RPV system are relatively straight-
forward, as they mainly focus on providing verifiability:

• A1. The voting process must provide E2E-V for the voter.

• A2. Verification procedures must be optional for voters.

• A3. The VA must be able to create the PBs and publish evidence of correct ballot
creation.

• A4. The VA runs the tallying process and publishes evidence of correct tallying.

• A5. The voter must be able to cast a ballot.

5.1.2 Non-functional Requirements

Quality aspects are fundamental in RPV systems, as the user base of such a system
is potentially very large. Thus, the non-functional requirements (B) primarily revolve
around scalability and usability:

• B1. The system must scale for national elections and votes.

• B2. Verifiability mechanisms must be easy to use for voters and observers.

• B3. The voter’s privacy must be protected (BP).

5.1.3 Constraints

RPV systems must comply with many legal and procedural guidelines, referred to as
constraints in the context of requirements engineering. Thus, to design a usable RPV
system in the context of Swiss RPV, it is crucial to account for the following constraints:

• C1. The voting protocol must be compatible with existing Swiss RPV procedures.

• C2. The system must allow EV procedures as in the Swiss RPV system.

• C3. RPV procedures must be resilient to computer infrastructure outages.

• C4. The voting processes must be compatible with on-site ballot casting.

• C5. The system should use a decentralized PBB to store evidence.

Fulfilling the listed requirements and their corresponding use cases (cf. Figure 5.1) requires
the definition of a protocol, which is presented in the next section.
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Figure 5.2: Helverify Protocol Phases

5.2 Helverify Protocol

The Helverify protocol follows the phases of [42], as these phases represent the current
procedures of Swiss RPV. Furthermore, the mechanisms applied in these phases follow
the suggestions of STROBE-Voting [5]. Figure 5.2 depicts the Helverify protocol phases.

Figure 5.3 shows a high-level overview of the process of running an election with Helverify.
In particular, it shows the required steps from the VA’s but also the voter’s perspective,
including their interactions. The following sections delve into the steps of this process in
more detail.
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Figure 5.3: Process of running an election in Helverify

5.2.1 Setup

At the beginning of the setup phase (cf. Figure 5.4), the VA sets up a Proof-of-Authority
(PoA) BC in cooperation with multiple municipalities. This mechanism is inspired by
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Provotum [41], which follows a similar approach. The municipalities are responsible for
running Consensus Nodes forming the PoA BC. Once the municipalities have registered
their Consensus Nodes, the VA generates a new BC configuration, which it deploys onto
the Consensus Nodes. After successfully deploying the BC, the VA creates a new election
by specifying the parameters, such as candidates/options, title, and encryption. Further-
more, the VA requests each Consensus Node to create a public-private key pair and then
collects the public keys of all Consensus Nodes. Next, the VA uses these public keys to
create a composite (election) public key. For this Distributed Key Generation (DKG)
process, each Consensus Node has to provide proof that it owns the private key to the
submitted public key, which is done by generating a Schnorr Proof [60]. Finally, the Smart
Contract (SC) for the election is deployed on the BC. At this point, the BC is ready to
store evidence.

Setup

Consensus Node
Registration

Blockchain Setup Election Setup
Smart Contract

Deployment

Figure 5.4: Helverify Protocol Setup Phase

5.2.2 Ballot Creation

Next, the VA (or a delegated third party) creates the ballots (cf. Figure 5.5). The ballots
correspond to the STROBE-Voting scheme [5]: Each paper ballot consists of a pair of
‘virtual’ ballots. A virtual ballot contains a vector of zeros and ones for each candidate or
option, where the position inside the vector designates an option/candidate. If the value
of a vector element is equal to one, it means that this vector represents the candidate at
the element’s position. A valid ballot must only contain one occurrence of one per row
and per column, respectively. Each value inside this vector is encrypted with the election
public key using the exponential ElGamal cryptosystem. To guarantee the correctness of
the created ballot, the VA must generate the following proofs for each ballot and publish
them to the PBB [5]:

• Proof that the sum of the encrypted values in each row equals one (Chaum Pedersen
Proof [17]).

• Proof that the sum of the encrypted values in each column equals one (Chaum
Pedersen Proof [17]).

• Proof that each encrypted value is either an encryption of zero or one (Disjunctive
Chaum-Pedersen Proof [19]).

The virtual ballots also contain shortcodes and a ballot code, which are created as fol-
lows [5]: The VA produces a hash value of each vector of encryptions and takes the first
two characters of the resulting hexadecimal representation. These characters serve as
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shortcodes, which are printed next to the corresponding candidate/option on the ballot.
The ballot code is the hashed value of all encrypted vectors of both virtual ballots, and
it is also printed onto the ballot. Finally, the VA publishes the encrypted ballots and
the corresponding evidence on the PBB [5]. The final step of the setup phase consists of
creating PDF files of the generated ballots for printing.
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Ballot Encryption
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Generate Ballot
PDF

Figure 5.5: Helverify Protocol Ballot Creation Phase

5.2.3 Delivery

The first step in the delivery phase (cf. Figure 5.6) is to print the ballot PDFs on paper.
Following the Swiss RPV process [42], the resulting PBs, PBE, and VSC are placed inside
the VE. The Swiss Post then delivers the assembled ballots to the voters. Thus, the
delivery phase is the same as in [42].

Delivery

Print Ballot
Assemble Voting

Envelopes
Delivery by Postal

Mail

Figure 5.6: Helverify Protocol Delivery Phase

5.2.4 Casting

This phase encompasses the ballot casting process (cf. Figure 5.7). When the voter re-
ceives the VE, she can verify that the ballots have been correctly encrypted by verifying
the proofs from the PBB [5]. If the encryptions are correct, the voter chooses a candi-
date/option by marking the respective checkbox on the PB. The remainder of this phase
follows the current Swiss RPV procedures [42], with minor additions from [5] for verifiabil-
ity: If the voter wants to perform RaC and TaR verification at the end of the election, she
crosses the checkbox of one of the two short code columns, indicating that her selection
from this set of shortcodes must be published to the PBB (cf. single ballot variant in [5]).
The voter memorizes the shortcode(s) of the selected option(s) and the ballot code for
later verification. Furthermore, the voter notes the shortcodes of the second (unselected)
column and their corresponding options/candidates [5]. At this point, the voter verifies
that she has selected the intended option (CaI). Next, the voter signs the VSC and puts
the PB into the PBE and seals it. Finally, the voter puts the signed VSC and the sealed
PBE into the VE, seals it, and sends the VE to the municipality by postal mail [42].
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Figure 5.7: Helverify Protocol Casting Phase

5.2.5 Storage

The storage phase (cf. Figure 5.8) remains unaltered from the original process described
in [42]. In other words, the municipalities store the VEs sent by the voters until the
tallying process begins.

Storage

Storage of Voting
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Figure 5.8: Helverify Protocol Storage Phase

5.2.6 Tallying

The first step of the tallying phase (cf. Figure 5.9) is to verify the voter’s eligibility by
checking the signature on the VSC [42]. Next, the VA publishes two pieces of evidence
on the PBB [5]:

• The shortcodes from the selected short code column representing the voter’s choice.

• For the other set of shortcodes (i.e., which the voter did not select), the correspond-
ing decrypted virtual ballot containing the options in plain text and the shortcodes.

The published shortcode(s) enable the voter to verify that her vote has been RaC and
the decrypted virtual ballot allows verifying that the shortcodes correspond to the correct
options [5]. Note that a malicious VA is caught producing incorrect shortcodes with the
probability of 1

2
for each ballot, as it does not know in advance which virtual ballot the

voter chooses [5]. Thus, for n validating voters, the probability of detecting a cheating VA
is 1

2n
[5]. To determine the final results of the election, the VA performs a homomorphic

addition of all selected options, which yields a ciphertext containing the tallies for each
candidate/option. To retrieve the result in plaintext, Helverify follows the approach of
Provotum [41] in applying Cooperative Decryption (CD): The VA sends the ciphertext
to the Consensus Nodes, which produce a decrypted share by decrypting the ciphertext
with their private keys. The Consensus Nodes also generate a proof of correct decryp-
tion (Chaum-Pedersen Proof [17]). The VA verifies the proofs and then combines the
shares, which yields the final result in plaintext. Finally, the VA publishes the results on
the PBB [5].
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5.2.7 Verification

In the verification phase (cf. Figure 5.9), the published results and the corresponding
evidence [5] allows voters and observers to perform RaC and TaR verification.

5.2.8 Destruction

The destruction phase (cf. Figure 5.9) involves the physical destruction of the PBs and
VSCs [42] and the tear-down of the PoA BC.

Tallying

Register Choices
Reveal Spoilt

Ballots
Calculate &

Publish Results

Destruction

Destroy Ballots

Verification

Verify Results

Figure 5.9: Helverify Protocol Tallying, Verification, and Destruction Phases

5.3 Architecture

This section provides an overview of Helverify ’s architecture consisting of the components
depicted in Figure 5.10. The following paragraphs explain the capabilities and purposes
of these components.

5.3.1 Voting Authority

The VA component consists of a frontend with a corresponding backend. It serves the
purpose of allowing election officials to set up the blockchain infrastructure and elections.
Furthermore, officials can generate ballots and export them as PDF files. In the tallying
phase, the VA component allows registering ballot selections while publishing evidence of
the process. Finally, election officials can initiate the tallying process. For this purpose,
the ballot selections are homomorphically added and then cooperatively decrypted by the
Consensus Nodes. Lastly, the results are persisted on to the election SC.

5.3.2 Consensus Node

The Consensus Nodes serve two purposes: Operating the PoA BC, which hosts the election
SC, and participating in the DKG and CD processes for ballot encryption and decryption.
Each Consensus Node contains a ‘Blockchain Node’. The Blockchain Nodes of all Consen-
sus Nodes are responsible for operating the BC network. The Consensus Node Backend
orchestrates both the Blockchain Node and the cryptographic operations by providing an
API, which the VA Backend consumes.
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5.3.3 Interplanetary File System

Depending on the key length of the ElGamal cryptosystem chosen for an election, ci-
phertext representations of a ballot can exceed the capabilities of BC-based SCs. Thus,
Helverify uses a private Interplanetary File System (IPFS) [35] swarm to store encryptions
and proofs for the ballots, improving the scalability of the solution. The VA Backend uses
the IPFS swarm for storing and retrieving encryptions and evidence (i.e., proofs). Finally,
the Voter Frontend uses the IPFS swarm to retrieve evidence for verification.

5.3.4 Voter

The Voter Frontend allows the voter to perform multiple forms of verification. Firstly, the
voter can verify that the ballot she received has properly been encrypted by checking the
proof of correct encryption for each of the encrypted values in the ballot. After the VA
has registered the selected choices from the ballot, the voter can verify that the VA has
registered the the ballot choices correctly. In addition, the spoilt ballot verification allows
the voter to be assured that the ballot encryption has been performed correctly. Thus,
the Voter Frontend allows the voter to perform the verification steps described in [5].

5.3.5 Proof-of-Authority Blockchain

Helverify uses an Ethereum BC for hosting its PBB. Due to the scalability and privacy
requirements, Helverify uses a BC with the PoA consensus algorithm. As mentioned
earlier, the Consensus Nodes operate the BC. Helverify ’s BC is a platform for hosting
the election SC, which provides the PBB functionality for a particular election. The
election SC stores references to the storage locations of ballots on IPFS, the selections of
a particular ballot, and the results of an election.
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Figure 5.10: Architecture of Helverify



Chapter 6

Implementation

This chapter highlights the fundamental aspects of the Helverify implementation. From
a technological standpoint, several options were available initially, ranging from NodeJS
over Rust to C#. The selection of an appropriate technology stack for this implementation
was based on the following criteria:

1. Quality of cryptographic libraries

2. Availability of documentation

3. Support for safe cryptographic key lengths (i.e., minimum 2048 bit according to
NIST [4])

4. Ease of use

After evaluating the available options, the choice of technology for this implementation is
the following:

• C# with ASP.NET 6 [59] for the backend applications providing REST APIs (in-
cluding cryptographic primitives)

• TypeScript [53] with React [52] for the frontend applications

• Solidity [62] for the election SC

• Docker [24] for containerizing the individual components

6.1 Cryptography Library

The cryptography library is a crucial component of Helverify, providing implementa-
tions of the ElGamal cryptosystem and various ZKPs. The implementation follows the
definitions provided in Chapter 3. This library is implemented in C#, using the Bouncy
Castle [48] cryptographic library. The following sections highlight the cryptographic prim-
itives provided in detail.

33
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6.1.1 ElGamal Cryptosystem

The library includes both the standard and exponential versions of the ElGamal cryptosys-
tem. In particular, this comprises key generation, encryption, and decryption algorithms.
Furthermore, the library also provides implementations for DKG and CD, which allow the
creation of composite public keys and the decryption and combination of decrypted shares
to retrieve the plain text cooperatively. Another important feature is the homomorphic
addition of ciphertexts, which is essential for the tallying process in the election.

6.1.2 Zero-Knowledge Proofs

The Helverify cryptography library also contains the implementations of four types of
NIZKPs: Namely, proof of private key ownership, proof of correct decryption, proof of
containing zero or one, and proof of containing one. Each proof consists of a proof
generation (e.g., Listing 1) and a verification method (e.g., Listing 2).

1 /// <summary>

2 /// Creates a proof that the specified ciphertext has been decrypted correctly.

3 /// </summary>

4 /// <param name="a">First component of an ElGamal ciphertext</param>

5 /// <param name="b">Second component of an ElGamal ciphertext</param>

6 /// <param name="publicKeyShare">Public key share</param>

7 /// <param name="privateKeyShare">Private key share</param>

8 /// <returns>Proof of correct decryption</returns>

9 public static ProofOfDecryption Create(BigInteger a, BigInteger b,

10 DHPublicKeyParameters publicKeyShare, DHPrivateKeyParameters privateKeyShare)

11 {

12 BigInteger p = publicKeyShare.Parameters.P;

13 BigInteger q = p.Subtract(BigInteger.One)

14 .Multiply(BigInteger.Two.ModInverse(p))

15 .Mod(p);

16 BigInteger g = publicKeyShare.Parameters.G;

17 BigInteger pk = publicKeyShare.Y;

18 BigInteger sk = privateKeyShare.X;

19

20 BigInteger r = new BigInteger(privateKeyShare.X.BitLength, SecureRandom)

21 .Mod(q);

22

23 BigInteger u = a.ModPow(r, p).Mod(p);

24 BigInteger v = g.ModPow(r, p).Mod(p);

25

26 BigInteger c = HashHelper.GetHash(q, pk, a, b, u, v).Mod(q);

27

28 BigInteger s = r.Add(c.Multiply(sk).Mod(q)).Mod(q);

29

30 BigInteger d = a.ModPow(sk, p).Mod(p);

31

32 return new ProofOfDecryption(d, u, v, s);

33 }

Listing 1: Exemplary proof generation (proof of correct decryption)
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1 /// <summary>

2 /// Allows to verify that the specified ciphertext has been

3 /// decrypted correctly.

4 /// </summary>

5 /// <param name="a">First component of an ElGamal ciphertext</param>

6 /// <param name="b">Second component of an ElGamal ciphertext</param>

7 /// <param name="publicKeyShare">Public key share</param>

8 /// <returns>True if decryption has been performed correctly,

9 /// false otherwise.</returns>

10 public bool Verify(BigInteger a, BigInteger b,

11 DHPublicKeyParameters publicKeyShare)

12 {

13 BigInteger p = publicKeyShare.Parameters.P;

14 BigInteger q = p.Subtract(BigInteger.One)

15 .Multiply(BigInteger.Two.ModInverse(p)).Mod(p);

16 BigInteger g = publicKeyShare.Parameters.G;

17 BigInteger pk = publicKeyShare.Y.Mod(p);

18

19 BigInteger c = HashHelper.GetHash(q, pk, a, b, U, V).Mod(q);

20

21 bool firstCondition = a.Mod(p).ModPow(S, p).Mod(p)

22 .Equals(U.Multiply(D.ModPow(c, p).Mod(p)).Mod(p));

23

24 bool secondCondition = g.Mod(p).ModPow(S, p).Mod(p)

25 .Equals(V.Multiply(pk.ModPow(c, p).Mod(p)).Mod(p));

26

27 return firstCondition && secondCondition;

28 }

Listing 2: Exemplary proof verification (proof of correct decryption)

6.2 Consensus Nodes

As the name suggests, the Consensus Nodes are responsible for runningHelverify ’s Ethereum
PoA private BC. For this purpose, each Consensus Node exposes a REST API. Thus, the
Consensus Node backend allows configuring the BC and provides endpoints for key pair
management and CD, as the Consensus Node serves as a trusted entity for DKG and CD
in an election.

6.2.1 Blockchain Node

Helverify uses Go Ethereum (GETH) [64] to run private Ethereum nodes, forming the
BC for deploying the election SCs. The Blockchain Node consists of a series of scripts
that encapsulate GETH interactions:

• init.sh: Sets up a clean GETH environment and creates a new Ethereum account
for the node.

• init-genesis.sh: Initializes the genesis block for the PoA BC.
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• enode.sh: Extracts the node’s identifier, which is needed for discovering other peers.

• start-consensusnode.sh: Starts the GETH node, which exposes it to the network.

• start-mining.sh: Starts the block sealing process, rendering the node ready for
executing BC transactions.

These scripts allow the backend to control the node’s state and configuration conveniently.

6.2.2 Backend

The Consensus Node backend is implemented in C# using ASP.NET 6 [59]. It provides
a selection of REST API endpoints (cf. Figure 6.1), which allow configuring the BC,
generating key pairs, and performing CD of ballots. The following sections discuss these
three aspects in more detail.

Blockchain Configuration

As mentioned in Section 6.2.1, the backend interacts with the BC node through a series
of scripts. The scripts are specifically tailored towards their usability in the API methods.
Thus, the structure of the API largely follows the structure of the scripts:

• /api/blockchain/account: Uses the init.sh script to create a new account and
returns the account’s address.

• /api/blockchain/genesis: Takes a genesis block and initializes the node using
init-genesis.sh.

• /api/blockchain/peer: Starts the node using start-consensusnode.sh and then
announces the other nodes’ addresses by calling enode.sh.

• /api/blockchain/nodes: Takes the node identifiers of the other BC nodes in the
network and announces them to this node.

• /api/blockchain/sealing: Calls the start-mining.sh script to start the sealing
process on the node, after which the Consensus Node is operable.

Key Pair Management

The Consensus Node participates in an election’s encryption and decryption. Thus, each
Consensus Node holds an ElGamal key pair per election. An election’s public key consists
of the combination of all the Consensus Nodes’ public keys. Thus, it generates and stores
these key pairs on the file system by providing the following endpoints:
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• /api/key-pair: Generates a new ElGamal key pair for the specified election using
the ElGamal public parameters p and g. The generated key pair is then stored on
the file system and the public key is returned.

• /api/key-pair/public-key: Returns the Consensus Node’s ElGamal public key
for the specified election.

Cooperative Decryption

Due to the encryption of ballots and results with the election’s public key, the decryption
of the respective ciphertexts involves partial decryptions by each Consensus Node. For
this purpose, Consensus Nodes expose the following endpoints to decrypt shares of ballots
and results:

• /api/decryption: Calculates and returns the decrypted share of a single ElGamal
ciphertext together with a proof of correct decryption.

• /api/decryption/ballot: Retrieves an encrypted ballot from IPFS to calculate
the decrypted share of each ciphertext in the ballot. It returns the decrypted shares
together with the respective proof of correct decryption.

Figure 6.1: Consensus Node Backend REST API

6.3 Voting Authority

The VA application consists of two main components: the backend and the frontend. The
following sections delve into the implementation specifics of these components.
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6.3.1 Backend

The VA backend is implemented in C# using ASP.NET 6 [59]. It exposes a REST
API to the VA frontend, which encapsulates the backend’s functionality. In terms of
functionality, the VA backend implements all the VA’s use cases, i.e., from BC setup and
election management to ballot recording and evidence publishing. While the essential
endpoints are explained in the following sections, a complete overview of the VA backend
REST API is depicted in Figure 6.8.

Blockchain Setup

The BC must be set up once and is usable for multiple elections. The VA backend provides
a REST API endpoint (i.e., /api/blockchain) which allows the creation of a new BC
network on the specified Consensus Nodes. The setup process (cf. Figure 6.2) consists of
the following steps initiated by the Consensus Node backend:

1. The VA backend orders each Consensus Node to create a new BC account. The
Consensus Node creates the account and returns the account address to the VA
backend. The VA backend also creates an account, which it later uses to interact
with the BC.

2. With all the account addresses collected, the VA backend generates the genesis
block configuration, which specifies the sealers and the pre-funded accounts. All
Consensus Nodes are sealers for the PoA BC. In addition, the sealers’ accounts and
the VA backend’s account are pre-funded, which enables them to issue contract
state-changing calls later.

3. The VA backend then propagates the genesis block configuration to all Consensus
Nodes, which use this configuration to initialize the genesis block on their side.

4. Afterward, the VA backend tells the Consensus Nodes to start their BC nodes. Each
node then returns its enode ID to the VA backend.

5. With the enode IDs collected, the VA backend creates a list of nodes participating
in the network and distributes this list to all Consensus Nodes, which store this
information on the file system.

6. Next, the VA backend orders the Consensus Nodes to start the sealing process.
During this step, the Consensus Nodes learn about the other peers in the network
by loading the enode IDs from the file system.

7. Finally, the VA backend initializes the genesis block and starts a BC node, which
serves as an RPC endpoint (i.e., HTTP and WebSocket) for later BC interactions.

After these steps, the BC is ready for the deployment of SCs. Thus, the next step is to
set up an election.
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Figure 6.2: Sequence diagram showing the BC setup orchestrated by the VA backend.

Election Setup

Creating a new election is a three-step process (cf. Figure 6.3):

1. The first step involves persisting the election data (i.e., question, candidates/op-
tions, cryptographic parameters) to the VA backend via a REST API call (/api/elections).
This data is then stored in a MongoDB database.

2. The second step involves calling the /api/elections/{id}/public-key endpoint,
which leads the VA backend to call every registered Consensus Node to generate an
ElGamal key pair for this election. After receiving the public keys of all Consensus
Nodes, the VA backend combines them into one composite election public key (i.e.,
DKG), which it stores on the MongoDB database.

3. Via the /api/elections/{id}/contract endpoint, the VA backend deploys the
election SC onto the PoA BC. This step also includes initializing the SC by register-
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ing the election information, such as candidates/options, ElGamal parameters, and
all public keys (of the election and all Consensus Nodes).

The election infrastructure and data are set up at this point, which means the election is
ready for ballot generation.

Voting Authority
Backend

POST /api/elections

election
store election (db)

load election (db)

combine public keys

update election (db)

update consensus node registration 
(db)

POST /api/elections/
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load election (db)

election

Consensus Node PoA Blockchain

PUT /api/elections/
{id}/public-key

POST /api/key-pair

public key

election

deploy election smart contract

contract address

update election (db)

set up election

sd Election Setup

Figure 6.3: Sequence diagram showing the setup process of an election.

Ballot Generation

The VA backend provides an endpoint (/api/election/{id}/ballots) that allows gen-
erating new ballots for an election. The process of generating a ballot (cf. Figure 6.5)
works as follows:
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1. The first step is to generate a ballot template from the election parameters, yielding
an object that contains all the election options/candidates in plaintext.

2. The ballot template allows the generation of encrypted ballots, also referred to as
virtual ballots.

3. The VA backend stores the generated (encrypted) virtual ballots on IPFS. Note
that the encryptions are sorted according to their shortcodes because otherwise, the
position of an encryption would reveal which candidates/options they represent [5].
Furthermore, the MongoDB database stores the plain text paper ballots, where they
are available for ballot printing.

4. Due to size limitations on the BC, the VA backend only stores the ballot ID, the
ballot codes of both virtual ballots, and the IPFS references, also called Content
Identifiers (CID) [33], of the virtual ballots on the SC.

In the process of generating ballots, there are multiple different ballot representations.
Figure 6.4 depicts the relationships between these representations. Each election has its
BallotTemplate. The BallotTemplate contains a reference to the Election to which
it belongs. Furthermore, it contains a list of plaintext options representing the option-
s/candidates for this particular election (i.e., PlainTextOption). A PlainTextOption

represents one candidate/option, consisting of the candidate’s name, the shortcode (af-
ter encryption), and a vector of zeros and a one, where the one represents the current
candidate. The BallotTemplate can encrypt the plaintext options to yield a Virtu-

alBallot. The VirtualBallot consists of plain- and ciphertext representations of all
candidates/options. The EncryptedOptions consist of the shortcode, the hash of the en-
cryptions, and the encryptions the number vector (EncryptedOptionValue, consisting of
the ElGamal ciphertext and a proof that the encryption contains either the value zero or
one). The VirtualBallot also contains the proofs for guaranteeing that each candidate
is only represented once and that each vector of numbers only represents one candidate.
Furthermore, the VirtualBallot is only usable if all generated shortcodes are unique [5].
When storing a virtual ballot to IPFS, the plaintext values are not included, as these
values would compromise ballot privacy. The construction of a PaperBallot takes two
VirtualBallots. Note that the PaperBallot contains all options in plaintext, along
with the shortcodes, ballot codes, and ballot ID, as this information is needed for printing
ballots later.

Each option/candidate has an accompanying shortcode. A shortcode is derived as follows
(cf. Listing 3, lines 19-23): First, the SHA-256 hash of all encrypted values of the option
is calculated and then reduced to the first two characters. In case of duplicate shortcodes
in a VirtualBallot, the ballot is discarded and a new VirtualBallot is generated.

Ballot Printing

The /api/elections/{electionId}/ballots/pdf endpoint allows to print ballots to
PDF. Printing the ballots to PDF is a fairly straightforward process:
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1 /// <summary>

2 /// Constructor

3 /// </summary>

4 /// <param name="publicKey">Public key of the election</param>

5 /// <param name="plainTextOption">Option in plaintext, list of zeros and a one

6 /// (position of one = selected candidate / option)</param>

7 public EncryptedOption(DHPublicKeyParameters publicKey, IList<int> plainTextOption)

8 {

9 Values = new List<EncryptedOptionValue>();

10

11 foreach (int option in plainTextOption)

12 {

13 EncryptedOptionValue encryptedOptionValue

14 = new EncryptedOptionValue(option, publicKey);

15

16 Values.Add(encryptedOptionValue);

17 }

18

19 HashHelper hashHelper = new HashHelper();

20

21 Hash = hashHelper.Hash(Values.Select(v => v.Cipher).ToArray());

22

23 ShortCode = Hash.Substring(0, 2);

24 }

Listing 3: Short Code Calculation

1. The specified number of paper ballots are loaded from the MongoDB database.

2. A PDF is produced according to a pre-defined template for each ballot. Afterward,
the paper ballot is updated to mark it as printed.

3. The VA backend produces a Zip archive of all generated PDFs and returns the
archive for download.

Ballot Recording

The /api/elections/{electionId}/ballots/{ballotId}/evidence endpoint serves the
purpose of registering the voter’s choice as marked on the printed paper ballot. Addition-
ally, the VA backend publishes evidence in the shape of the spoilt ballot marked by the
voter. The process of recording ballot choices (cf. Figure 6.6) works as follows:

1. The first step involves loading the respective paper ballot from the database.

2. The VA backend retrieves the IPFS references of the ballot from the contract.

3. Next, the voter’s selections (i.e., the selected shortcodes of the chosen code column)
are persisted on the election SC.

4. The other column (i.e., the column that has not been selected) indicates the virtual
ballot to be spoilt. Spoiling a ballot involves decrypting the values before storing
the ballot as plaintext on the PBB.
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cd Ballots

PaperBallot

Election: Election

BallotId: string

Ballots: IList<VirtualBallot>

Options: IList<PaperBallotOption>

Printed: bool

GetRandomness()

CreatePdf()

HasShortCodes()

ClearConfidential()

VirtualBallot

Code: string

EncryptedOptions: IList<EncryptedOption>

PlainTextOptions: IList<PlainTextOption>

RowProofs: IList<SumProof>

ColumnProofs: IList<ColumnProof>

IpfsCid: string

AreShortCodesUnique()

GetRandomness()

GetSelectedEncryptions()

BallotTemplate

Election: Election

PlainTextOptions: IList<PlainTextOption>

Encrypt(): VirtualBallot

2

Use

PlainTextOption

ShortCode: string

Name: string

Values: IList<int>

Clone(): PlainTextOption

EncryptedOption

ShortCode: string

Hash: string

Values: IList<EncryptedOptionValue>

EncryptedOptionValue

Cipher: ElGamalCipher

ProofOfZeroOrOne: ProofOfZeroOrOne

IsValid(): bool

Election

Id: string

Name: string

Question: string

Options: IList<ElectionOption>

P: BigInteger

G: BigInteger

PublicKey: BigInteger

Blockchain: Blockchain

ContractAddress: string

CombinePublicKeys()

Encrypt()

CombineShares()

GenerateBallotTemplate()

Use

Use

Figure 6.4: Class diagram showing the structure and composition of ballots in plaintext
and encrypted states.

5. The Consensus Nodes cooperatively decrypt the virtual ballot to be spoilt. For this
purpose, each Consensus Node retrieves the encryptions from IPFS by using the
IPFS CID of the ballot to be spoilt and then produces a decrypted share, which the
VA backend collects.

6. The VA backend combines the decrypted shares to restore the original plaintext of
the virtual ballot.

7. The restored virtual ballot is published on IPFS.

8. The IPFS CID of the spoilt ballot is published on the election SC.

Tallying and Publishing Evidence

The last feature of the VA backend is tallying and publishing the results of an election
(cf. Figure 6.7), including evidence that the results are correct. A call to the /api/elec-
tions/{id}/tally endpoint starts the following process:
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sd Ballot Generation

Voting Authority
Backend

POST /api/elections/
{id}/ballots

create virtual ballot 1

create virtual ballot 2

generate ballot template

IPFS MongoDB

store virtual ballot 1

cid

store paper ballots (plaintext)

store paper ballots (references)

create paper ballot

store virtual ballot 2

cid

Election
Smart Contract

Figure 6.5: Sequence diagram showing the ballot generation process of an election.

1. The election data is loaded from the database.

2. The VA backend retrieves the number of cast ballots from the election SC.

3. The VA backend loads each ballot ID from the election SC in this step. With the
ballot ID, the VA backend can retrieve the ballot references from the election SC,
including the selected options/candidates of the ballot.

4. Using the ballot references, the VA backend loads the selected options of each ballot
from IPFS in encrypted form.

5. The VA backend homomorphically adds all encrypted selections, yielding one ci-
phertext per candidate containing the tally of said candidate.

6. Each candidate’s ciphertext is cooperatively decrypted by all Consensus Nodes,
yielding the tally for each candidate after the VA backend has combined the de-
crypted shares. The decrypted shares also include the proofs of correct decryption.

7. The VA backend publishes the results and the corresponding proofs on IPFS.
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sd Ballot Recording

Voting Authority
Backend

POST /api/elections/
{electionId}/ballots/
{ballotId}/evidence

load election from db

verify proofs of decryption

IPFSElection
Smart Contract

get ballot references

ballot references

Consensus Node
Backend

store ballot selections

decrypt share of ballot (cid)

decrypted shares

get encrypted ballot

encrypted ballot

decrypt shares of 
ballot ciphertexts

combine shares

store decrypted (spoilt) ballot

cid

store spoilt ballot reference

Figure 6.6: Sequence diagram showing the ballot recording process of an election.

8. The last step consists of the VA backend storing the IPFS reference (i.e., CID) and
the final results on the election SC. Thus, the results are available for verification
from now.

6.3.2 Frontend

The VA frontend allows the election organizers to set up elections and handle all life-cycle
events of an election. From a technology standpoint, the VA frontend is implemented in
React [52] using TypeScript [53]. Figure 6.9 depicts the VA frontend, particularly the
details view of a specific election. The following sections elaborate on the most significant
use cases implemented in the frontend.

Blockchain Setup

Before creating elections, the first step is to set up a new BC consisting of multiple Con-
sensus Nodes. For the registration, the user must specify the Consensus Nodes’ backend
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sd Tallying

Voting Authority
Backend

POST /api/elections/
{id}/tally

load election from db

results

loop

IPFSElection
Smart Contract

get number of cast ballots
number of ballots

Consensus Node
Backend

get cast ballot

cast ballot

get ballot IDs

ballot IDs

get encryptions of ballot selection

selected encrypted options

homomorpically add
encrypted selections

decrypt shares of tally ciphertexts
decrypted shares

verify proofs of decryption

combine decrypted shares

store results + evidence

cid

store results + reference

Figure 6.7: Sequence diagram showing the tallying and evidence publishing process of
an election.

addresses (i.e., URL to the REST API). The Consensus Nodes are supposed to be op-
erated by municipalities or cantons, thereby distributing the trust to multiple trusted
entities. Note that the setup procedure only has to be done once. Afterward, multiple
elections can run on the same BC.

Election Setup

Election officials can set up new elections using the VA frontend. For this purpose, the
VA frontend offers a step-by-step process guiding the user through the different aspects of
creating an election. Initially, the user enters the election data, such as name, question,
candidates/options, and cryptographic parameters. In the next step, the system generates
an election public key, followed by the deployment of the election SC in the last step. At
this point, the election is ready for ballot generation.
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Figure 6.8: Voting Authority Backend REST API

Ballot Generation and Printing

The VA frontend offers modal dialogues for generating and printing ballots. First, the user
specifies how many ballots she wants to create. Note that more ballots can be generated
later, if necessary. After generating the ballots, the next step consists of printing the
ballots. Figure 6.10 shows an example of a paper ballot. A paper ballot comprises the
election name, the questions, and the options/candidates. For later ballot recording and
verification, the ballot also contains a QR code in the top right corner, which allows the
effortless loading of the the ballot- and election parameters. The ballot ID is printed
below the options. It helps to distinguish two ballots from each other. From a verification
standpoint, the ballot contains two columns of shortcodes: The voter selects one of the two
columns. For the voter’s choices, the shortcodes of the selected column will be published
after recording the ballot [5]. The other column is spoilt, meaning that the virtual ballot
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Figure 6.9: Voting Authority UI

is decrypted and shown together with the respective shortcodes, allowing to verify the
correct encryption of the ballot [5]. The printed ballots are in PDF format, consisting of
two pages: The first page contains the actual ballot. The second page, however, contains
a watermarked copy, which the voter can use to memorize her choices for later verification.
The system provides all ballots generated in a Zip file for download. The VA can hand
this Zip file to a service partner for bulk printing.

Ballot Recording

Next, the voters fill in their choices and send the ballots back to the VA. Then, the
election officials register the choices marked on the ballot into Helverify. For this purpose,
an official scans the QR code of the ballot and fills in the user’s selection into the ballot
recording form. This form is a digital version of the paper ballot allowing the officials to
enter the voter’s selections and the selected column. The author knows that this could
be considered inefficient and error-prone in real-world scenarios, as it relies on manually
entering the voter’s choices. However, an OCR approach could be implemented in such
scenarios for more efficient ballot recording.
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Mayor of Randomville
Who do you want to elect as Mayor of Randomville?

John Doe c5 8c

Jane Doe 11 8b

did not vote 60 27

304128db2af41797563fd8387f7b80ac3b75767554c9bc2cb20b8174894baaf6

Figure 6.10: Printed Ballot

Results

When the VA has registered all ballot selections, the officials can use the VA frontend
to calculate the final results and publish them with the corresponding evidence. After
publishing the results, the VA and voter frontends visualize the election outcomes by
providing multiple visualizations (i.e., pie chart, bar charts, and a table, cf. Figure 6.9).

6.4 Voter Frontend

The voter frontend allows the voter to verify the election proceedings, with different means
of verification available in each phase of an election. Furthermore, the voter frontend
directly interacts with the election SC and the IPFS nodes to access evidence and ballots.

6.4.1 Ballot Authenticity

When receiving the paper ballot by postal mail, the voter can verify that the ballot is
well-formed and properly encrypted (as in [5]). First, the voter scans the QR code on the
ballot (or the ballot copy), which loads the required data from the election SC (i.e., the
ballot references) and the IPFS network (i.e., the ballot data). The voter frontend offers
the dialogue depicted in Figure 6.11 to perform this verification. While the figure shows
all verification results in detail, the details are hidden by default not to confuse voters.
Instead, the frontend only shows a single verification status. The verification includes the
following checks (according to the mechanisms defined in [5]):

1. The ballot ID is correct, meaning it results from hashing the ballot codes of both
virtual ballots.
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1 /**

2 * Verifies that the provided ciphertext indeed contains the value zero or one.

3 * @param a C component of the ElGamal ciphertext

4 * @param b D component of the ElGamal ciphertext

5 * @param h Election public key

6 * @param p ElGamal parameter p

7 * @param g ElGamal parameter g

8 */

9 verify(a: bigInt.BigInteger, b: bigInt.BigInteger, h: bigInt.BigInteger,

10 p: bigInt.BigInteger, g: bigInt.BigInteger) {

11 const q: bigInt.BigInteger = p.subtract(bigInt.one)

12 .multiply(bigInt(2).modInv(p)).mod(p);

13

14 const c = HashHelper.getHash(q,

15 [h, a, b, this.u0, this.v0, this.u1, this.v1]);

16

17 const gInverse: bigInt.BigInteger = g.modInv(p).mod(p);

18

19 const condition1: boolean = g.modPow(this.r0, p)

20 .equals(this.u0.multiply(a.modPow(this.c0, p).mod(p)).mod(p));

21 const condition2: boolean = g.modPow(this.r1, p)

22 .equals(this.u1.multiply(a.modPow(this.c1, p).mod(p)).mod(p));

23 const condition3: boolean = h.modPow(this.r0, p)

24 .equals(this.v0.multiply(b.modPow(this.c0, p).mod(p)).mod(p));

25 const condition4: boolean = h.modPow(this.r1, p)

26 .equals(this.v1.multiply(b.multiply(gInverse)

27 .mod(p).modPow(this.c1, p)).mod(p));

28 const condition5: boolean = this.c0.add(this.c1).mod(q).equals(c);

29

30 return condition1 && condition2 && condition3 && condition4 && condition5;

31 }

Listing 4: Verification of proof that a ciphertext either contains the value 0 or 1.

2. For each virtual ballot:

(a) Each set of encryptions (i.e., vector of a candidate/option) represents precisely
one candidate/option.

(b) Each option/candidate is only represented once.

(c) Each ciphertext contains either the value 0 or 1.

(d) The shortcodes are correct (i.e., the two first characters of the SHA-256 hash
of the corresponding ciphertexts).

(e) The ballot code is correct (i.e., it is the SHA-256 hash of all encryptions).

The verification algorithms of the proofs mentioned above have been implemented in
TypeScript. Listing 4 shows the TypeScript implementation of the proof that a ciphertext
either contains the value 0 or 1. The implementations of the other proof verification
algorithms follow the same principle.
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Figure 6.11: Ballot Authenticity Verification

6.4.2 Ballot Choice and Spoilt Ballot

The next step in the verification procedures consists of verifying that the VA has registered
the voter’s choices correctly and that the spoilt ballot’s shortcodes match the shortcodes on
the ballot copy (as in [5]). Figure 6.12 shows this verification step on the voter frontend.
First, the voter checks that the shortcodes displayed in the voter frontend match the
selected options on the selected column of her ballot. If they match, the voter can be sure
that her choices are registered correctly. As suggested by STROBE-Voting [5], the spoilt
ballot allows the voter to expose a cheating VA with a probability of 1

2
. Additionally,

the voter frontend re-encrypts the spoilt ballot to check whether the resulting ciphertext
matches the original ciphertext stored on IPFS.
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Figure 6.12: Choice and Spoilt Ballot Verification

6.4.3 Results and Summary

After verifying the ballot choices, the voter can inspect the election results. This step
includes the verification of the proofs that the results have been decrypted correctly.
Finally, a summary is presented to the voter (cf. Figure 6.13), which shows the properties
achieved during the verification. The summary marks the end of the verification process.

Figure 6.13: Verification Summary
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1 {

2 "config": {

3 "chainId": 13337,

4 "homesteadBlock": 0,

5 "eip150Block": 0,

6 "eip155Block": 0,

7 "eip158Block": 0,

8 "byzantiumBlock": 0,

9 "constantinopleBlock": 0,

10 "petersburgBlock": 0,

11 "clique": {

12 "period": 2,

13 "epoch": 30000

14 }

15 },

16 "difficulty": "1",

17 "gasLimit": "100000000"

18 }

Listing 5: Excerpt of a genesis block used by Helverify

6.5 Proof-of-Authority Blockchain

To run the election SC, Helverify operates a private Ethereum [28] PoA BC, consisting of
the Consensus Nodes mentioned in 6.2. The following sections feature the details of the
BC configuration and delve into the implementation of the election SC.

6.5.1 Configuration

The idea of using Consensus Nodes in Helverify is to have municipalities and cantons run
these nodes, thereby forming the Ethereum PoA private network. Hence, Helverify uses
Ethereum’s Clique [56] consensus algorithm. Thus, each Consensus Node is a signer in
the Ethereum network, allowing it to mine blocks [56].

In terms of configuration, Helverify uses a custom chain ID (i.e., 13337) to not collide
with any official Ethereum network. Furthermore, the gas limit is set to 180’000’000 to
allow large transactions, thereby improving transaction scalability. For the same reason,
Helverify uses a block period of 8 seconds, as this proved to be the sweet spot between
performance and stability. Listing 5 shows parts of the genesis block generated for each
election. Note that the extradata (i.e., the definition of signers) and alloc (i.e., pre-
funded accounts) sections have been omitted for better readability.

6.5.2 Election Smart Contract

The election SC serves as a PBB for elections in Helverify. Thus, the SC is responsible
for storing election parameters, ballot references, selections, evidence, and results in an
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immutable manner. From a technological perspective, the election SC is implemented in
Solidity [62].

The following functions allow the VA to alter the state of the contract:

• setUp: Allows the VA to initialize the SC with the election parameters. These pa-
rameters include candidates, cryptographic parameters, and public keys (of election
and Consensus Nodes).

• storeBallot: After the VA has generated a ballot, it stores the ballot on IPFS
and persists the references on the SC (cf. Listing 6). Note that this function allows
storing multiple ballots at once, increasing the throughput on the BC (i.e., ballots
per transaction).

• publishBallotSelection: Stores the shortcodes of a virtual ballot’s selections.

• spoilBallot: Stores the IPFS reference to a spoilt (i.e., decrypted) ballot.

• publishResult: Publishes the final tally for each candidate, together with the
evidence accompanying the results on IPFS.

1 string[] public ballotIds;

2

3 struct PaperBallot{

4 string ballotId;

5 string ballot1Code;

6 string ballot1Ipfs;

7 string ballot2Code;

8 string ballot2Ipfs;

9 }

10

11 function storeBallot(PaperBallot[] memory ballots) public {

12 if(msg.sender != votingAuthority){

13 revert("Only voting authority is allowed to store ballots.");

14 }

15

16 for(uint i = 0; i < ballots.length; i++){

17 string memory ballotId = ballots[i].ballotId;

18

19 paperBallots[ballotId] = ballots[i];

20

21 ballotIds.push(ballotId);

22 }

23 }

Listing 6: Excerpt of Election Smart Contract that allows to store ballots

Apart from these state-altering functions, the SC also offers accessors (i.e., view func-
tions) that conveniently allow observers and verifiers to access the data stored on the
SC. Furthermore, these view functions are free to call, meaning anyone can call them to
retrieve the verification data. This division between free functions and functions with cost
was deliberately chosen, as this allows only pre-funded accounts (i.e., the VA) to carry
out state-changing operations on the SC while still allowing verification for anyone.
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6.6 Interplanetary File System

Helverify uses IPFS [35] as decentralized storage for storing ballots in plain and encrypted
form. The decision to use IPFS for storage instead of storing the ballot data on the
election SC is due to the poor suitability of BCs for storing medium to large-size data.
Thus, the election SC only stores references (i.e., CID) to the IPFS network. Moreover,
due to the delicate nature of Helverify as a voting system, data must be stored in an
immutable manner. Both the BC and IPFS achieve this property. In the case of IPFS,
content is addressed by hashing the content itself, where the hash value is the CID of the
content [33]. Thus, attempts to alter the content eventuate in a new CID [34], so if the
CID is immutably stored on the BC, immutability is preserved.

The Helverify prototype uses a private IPFS swarm [36], meaning that a set of trusted
IPFS nodes form the network. The swarm runs on instances based on the go-ipfs Docker
image [25]. Listing 7 shows the configuration of a private swarm IPFS node.

1 ipfs-node1:

2 image: ipfs/go-ipfs

3 volumes:

4 - ./ipfs1/export:/export

5 - ./ipfs1/data:/data

6 - ./ipfs1/home:/home/ipfs

7 environment:

8 - ipfs_staging=/export

9 - ipfs_data=/data

10 - IPFS_SWARM_KEY_FILE=/home/ipfs/swarm.key

11 ports:

12 - 4001:4001

13 - 5001:5001

14 - 8080:8080

Listing 7: Docker Compose configuration of a private IPFS node
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Chapter 7

Evaluation

Helverify is the prototype of a verifiable RPV system for use in Switzerland. It aims at
empowering the voter to detect malicious activity during election procedures. For this
purpose, Helverify adapts the principles of STROBE-Voting [5], which, combined with
the procedures of Swiss RPV [42], allow providing E2E-V for voting procedures while
preserving BP at the same time. Consequently, Helverify combines HE, threshold cryp-
tography, and NIZKPs to achieve these properties. Furthermore, it uses a combination of
an Ethereum PoA BC and a private IPFS swarm to host an immutable (and auditable)
PBB. The protocol steps are visualized in Figures 5.2 and 5.3.

This chapter focuses on evaluating various aspects of Helverify : First, the performance
and scalability are evaluated concerning ballot creation and tallying, which heavily depend
on cryptographic operations. Afterward, the section on Helverify ’s security highlights
key lengths, trust assumptions, and their implications on the overall system security
level. Moreover, this chapter elaborates on the RPV properties and the requirements (as
specified in 5.1) Helverify achieves. Finally, the evaluation concludes with a discussion on
the benefits and limitations of the Helverify prototype.

7.1 Performance and Scalability

This section discusses the influence of particular variables (i.e., number of options, key
length) on the duration of executing specific use cases for varying numbers of ballots (i.e.,
1’000, 10’000, 100’000, and 1’000’000). In particular, the scenarios consist of creating
ballots and calculating the final results. All of the measurements are based on Helver-
ify running with a BC period of 8 seconds and a gas limit of 180’000’000, which proved
stable while offering decent performance. The performance figures in this section have
been measured on an AMD Ryzen 5950X (16C/32T) with 64 GB of system memory avail-
able, running Ubuntu 22.04 LTS [16] with Docker [24]. Note that, for this evaluation, a
private IPFS swarm was used for all measurements, with the data being stored at a single
IPFS node. The reason for this setup lies in the reproducibility of the results, as it still al-
lows spotting differences in storage durations caused by the variables in the measurements
of this chapter.

57
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7.1.1 Ballot Creation

The two main influencing factors when creating ballots are the cryptographic key length
and the number of options/candidates available for an election. Figure 7.1 shows the ballot
creation duration in relation to the number of ballots created with 2048-bit and 4096-bit
keys, respectively. Within each series of measurements (cf. Table 7.1) of the same key
length, the relation between the number of ballots and duration is roughly linear; a slight
performance decrease is noticeable, though: For 1’000 ballots at 2048-bit key length, each
ballot is created in 0.0172 seconds, while at 1’000’000 ballots, the time increases to 0.02868
seconds per ballot. The same pattern can be observed for 4096-bit key length (i.e., 0.045
seconds per ballot at 1’000 ballots, 0.05682 seconds per ballot at 1’000’000 ballots). This
effect could partially be due to performance advantages for short workloads, as the CPU
can clock at higher frequencies during short workloads. When comparing ballot creation
duration with 2048-bit and 4096-bit key lengths, it can be observed that the ratio between
these durations decreases with an increasing number of ballots (i.e., 2.61 at 1’000, 1.98 at
1’000’000). This behavior could be due to the influence of the BC period, which introduces
variance in the results, especially for low numbers of ballots. Namely, the timing of when
a block is mined has more impact on short timespans, which is the case for 1’000 and
10’000 ballots. Thus, increasing the number of ballots created reduces this effect.

Table 7.1: Duration measurements in minutes for creating ballots

Scenario 1’000 10’000 100’000 1’000’000

2048-bit 3 options 0.29 3.27 40.50 478.00
4096-bit 3 options 0.75 7.85 93.10 947.00
2048-bit 6 options 0.85 8.92 106.58 1’117.00
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Figure 7.1: Ballot creation duration for different key lengths (3 options)

Figure 7.3 depicts the durations of creating ballots depending on the number of option-
s/candidates specified for the election. Again, the durations for creating 1’000, 10’000,
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100’000, and 1’000’000 ballots were measured (cf. Table 7.1). When changing the number
of options from three to six, the time for creating 1’000’000 ballots increases by 133.68%.
As a major part of ballot creation consists of generating NIZKPs, the number of proofs to
be created significantly impacts the creation duration: In Helverify, the number of proofs
required for n options can be described by the polynomial n2 + 2n (cf. Figure 7.2). Con-
sequently, for three options (n = 3), one ballot requires 15 proofs, while for six options
(n = 6), each ballot requires 48 proofs. Other factors, however, such as BC transaction
processing, stay the same, as the key length did not change in this case.
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Figure 7.2: Number of NIZKPs required for number of options/candidates
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Figure 7.3: Ballot creation duration for different number of options (2048-bit key length)



60 CHAPTER 7. EVALUATION

7.1.2 Result Calculation

The performance and scalability analysis for the result calculation requires registered votes
in Helverify. A dedicated evaluation endpoint on the VA backend allows selecting random
choices for each ballot. As in the previous analysis, the measurements consist of runs with
1’000, 10’000, 100’000, and 1’000’000 ballots, respectively (cf. Table 7.2). Furthermore,
the variables remain the same (i.e., key length and the number of options/candidates).

Table 7.2: Duration measurements in minutes for tallying ballots

Scenario 1’000 10’000 100’000 1’000’000

2048-bit 3 options 0.08 0.59 6.05 61.30
4096-bit 3 options 0.34 2.05 20.60 215.00
2048-bit 6 options 0.15 1.10 11.28 113.07
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Figure 7.4: Tallying duration for different key lengths (3 options)

Figure 7.4 shows the results of tallying specific numbers of ballots with different key
lengths while constantly using three options/candidates. The results show that using
longer keys comes at a performance penalty: This is mainly due to the computational
effort of performing homomorphic addition, which takes between 78.81% (2048-bit key,
10’000 ballots) and 81.31% (4096-bit key, 10’000 ballots) of the total result calculation
duration. In this case, doubling the key length (2048-bit to 4096-bit) increases the duration
from 61.3 to 215 minutes (+250.7%) for tallying 1’000’000 ballots. Furthermore, the data
size of a ballot increases with growing key lengths, which contributes to the longer ballot
creation durations. On the other hand, other interactions, such as SC and MongoDB
calls, remain the same for varying key lengths and are, thus, negligible. Lastly, the time
for cooperative decryption can vary, as the decryption is parallelized in a divide-and-
conquer manner. This mechanism was implemented to optimize decryption, leveraging
the capabilities of multi-core CPUs. Consequently, for some tallies, the decryption can
be faster than others, mainly influenced by the partition borders for brute-forcing the
exponential ElGamal ciphertext.
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Figure 7.5: Tallying duration for different number of options (2048-bit key length)

Increasing the number of options/candidates (cf. Figure 7.5 and Table 7.2) does not come
with the same performance penalty as ballot creation. At 1’000’000 ballots, the time to
calculate the final results increases from 61.3 (3 options, 2048-bit key) to 113 minutes
(6 options, 2048-bit key), which is less than double the time (+84%). Again, this could
be due to the influence of the NIZKP creation during ballot generation, which is absent
during the result calculation.

7.2 Security Level

From a security standpoint, key lengths and trust assumptions are critical subjects, as
they influence the overall security level of Helverify. This section delves into Helverify ’s
key length, trust boundaries, and the implications.

NIST recommends using key lengths of at least 2048-bit for Diffie-Hellman keys [4]. In
this respect, Helverify fulfills the requirements: During the evaluation, key lengths from
2048-bit keys up to 8192-bit have been tested. While performance at 2048-bit is decent,
there are decreases in performance at 4096-bit and significant impacts when using 8192-bit
key length. This effect can be reduced by upgrading to server-grade hardware, especially
regarding CPUs.

7.2.1 Trust Boundaries

Regarding trust assumptions, Helverify distributes the trust between multiple entities (cf.
trust boundaries in Figure 7.6): The PBB contains all the ballot encryptions, selections,
spoilt ballots, results, and election evidence. These artifacts are publicly available; thus,
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the PBB forms a trust zone. The VA’s components are located inside a confidential trust
zone, as it contains the PBs in plaintext. Thus, the VA backend is the only component
allowed to write into the PBB. Other components, be it in this or other zones, are only
allowed to read from the PBB. The Consensus Node zone is the second confidential zone
of Helverify. It is classified as confidential because each Consensus Node stores multiple
key pairs: The backends each store a key pair per election and a single key pair for the BC
account. Moreover, the verification zone is another publicly accessible part of Helverify.
It contains the Voter Frontend, the verification application for the voters. Finally, the
voter zone classifies as confidential, as it involves the voter storing the ballot copy, which
she needs for verifying the election procedures via the Voter Frontend. The ballot copy
is considered sensitive data, as it contains the voter’s selections and the spoilt column
choice, mirroring the original cast ballot.
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Figure 7.6: Helverify ’s trust boundaries (notation inspired by [61])

7.2.2 Implications

The trust boundaries, as shown in Figure 7.6, form the following trust assumptions, which
must hold for the system to be secure:

• Voter: The voter must keep the ballot (copy) secret. Otherwise, third parties could
learn about the voter’s selection. However, the ballot copy does not necessarily
prove how the voter voted, as she could deceive third parties by selecting different
choices on the copy than in the original ballot.

• Voting Authority: The PBs must be kept secret. Revealing the PBs would mean
revealing the mapping between ballot codes and their plaintext options, indirectly
exposing voters’ selections. Furthermore, the VA must behave honestly.
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• Consensus Nodes: The private keys of all key pairs (i.e., election and BC) must
remain secret. Due to applying threshold cryptography, an attacker could decrypt
ballots and results only if she learns about all Consensus Nodes’ private keys of
an election. If the BC account private key of a Consensus Node is exposed, an
attacker could sign blocks in the name of the Consensus Node. As with the VA, the
Consensus Nodes must behave honestly.

• Public Bulletin Board and Verification: These zones are public; thus, the informa-
tion is freely available. However, writing to the PBB must be restricted (i.e., only
by VA). Additionally, data integrity is guaranteed by the immutability property of
the BC and IPFS.

Thus, if these assumptions hold, Helverify can be considered secure. However, this raises
the need for mechanisms to detect if these trust assumptions are violated. Hence, the
following mechanisms are available for detecting malicious activities and trust violations:
The voter can use the evidence on the PBB to verify the VA’s compliance with election
procedures using the Voter Frontend. Thus, the voter can detect a VA behaving mali-
ciously. Moreover, the voter and VA rely on the Consensus Nodes to act honestly. Hence,
using multiple Consensus Nodes applying threshold cryptography (i.e., DKG and CD)
prevents a single entity from decrypting ballots, which lowers the trust assumption on
each Consensus Node and the VA.

7.3 RPV Properties

As Helverify is based on STROBE-Voting [5] and the Swiss RPV procedures [42], it
achieves the same properties. Said properties are discussed in this section, including the
aspects of privacy and verifiability, which are crucial to any voting system.

7.3.1 Privacy

When it comes to privacy, Helverify achieves BP by applying HE. Applying HE allows the
VA and the Consensus Nodes to calculate the final results without decrypting individual
ballots, except for the spoilt ballots, which are not associated with selected options/can-
didates. Furthermore, Helverify fulfills RF, assuming that the voter does not deliberately
reveal her choices. Even the voter’s ballot copy does not necessarily prove to a coercer
that the voter voted in a specific way, as the voter could also create another copy to
deceive a coercer. According to [20], STROBE-Voting [5] fulfills RF, which is also the
case for Helverify.

7.3.2 Verifiability

Regarding verifiability, Helverify achieves full E2E-V by applying the following mecha-
nisms: The voter plays a crucial role in the verification process. First, the voter must
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ensure that the choices marked on the ballot are correct from her perspective before in-
serting the PB in the PBE. This verification guarantees CaI fulfillment, as in the current
Swiss RPV procedures. As the evidence of the cast ballots is publicly accessible, the
voter can verify that the published selection shortcodes match the selections marked on
her ballot copy. Furthermore, she can also verify that the spoilt ballot shortcodes match
the spoilt column shortcodes. By performing these two checks [5], the voter ensures that
RaC is achieved. Finally, verifying TaR is more involved: The voter can verify that the
final results have been decrypted correctly. However, this is where the automatic verifi-
cation possibilities reach the limit. If the voter (or any observer) wants to ensure that all
votes are represented correctly in the final results, they must inspect the BC themselves.
Furthermore, they need to re-run the homomorphic addition of the selected ciphertexts
to retrieve the ciphertext representation of the results. These ciphertexts serve as inputs
to the decryption proofs, which completes the TaR check and E2E-V. Note that this last
step of performing homomorphic addition is deliberately not implemented in another tool
accompanying Helverify. The voter would have to trust this implementation the same
way she must trust the original implementation for calculating the results. Thus, the only
way to verify TaR is to have third parties implement homomorphic addition to verify
the decryption proofs. Helverify supports this option by storing the required evidence on
the PBB. Finally, EV works the same as in the current Swiss RPV procedures [42] by
requiring the voter to sign the VSC, which election officials verify before registering the
ballot choices.

7.4 Requirements

Chapter 5 lists the requirements for building an RPV system suitable for use in Switzer-
land. At this point, the question is whether Helverify fulfills said requirements. In terms
of functional requirements (A), the main goal was to achieve E2E-V, which Helverify ful-
fills by allowing the voter to use the Voter frontend to perform the necessary verification
steps (A1). Moreover, verification is optional for voters, allowing them to choose whether
they want to verify election procedures (A2). Furthermore, using Helverify, the VA can
manage the life-cycle of an election effortlessly (A3, A4). Finally, the voter can cast her
ballot by postal mail, as in the current system (A5).

From a quality standpoint (B), Helverify also fulfills the specified requirements. It scales
for national elections and votes by adapting the principles of the current Swiss RPV pro-
cedures, where municipalities and cantons execute the elections and report the results to
the federal level [42]. Regarding usability, both the Voter- and the VA frontend are based
on the Material Design principles [32, 49] to ensure an adequate user experience (B2).
Lastly, by applying HE for ballots, the voter’s privacy is protected (B3). Furthermore,
the association between paper ballots and voters is not stored anywhere, which allows
storing the paper ballots in the VA database without violating BP.

In terms of constraints (C), Helverify is fully compatible with current election procedures
in Switzerland (C1), including EV (C2). Furthermore, Helverify augments the current
Swiss RPV procedures while leaving the current mechanisms as they used to be (C4).
Thus, during system outages, election procedures can continue according to the current
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procedures (C3). Ultimately, Helverify uses an Ethereum PoA BC and IPFS for hosting
the PBB of an election (C5), fulfilling decentralization requirements.

In summary, Helverify fulfills all requirements specified in section 5.1.

7.5 Projection to Real-World Votes

After discussing the performance and scalability through benchmarking, this section ex-
plores the hypothetical performance of Helverify for two real-world votes. These votes
took place in Switzerland in 2021 and are related to the Swiss Covid 19 law [21]. The first
vote took place on June 13th, 2021, with the subject of approving a new law on Covid
19 measures in Switzerland [12]. The second vote occurred on November 28th, 2021,
regarding changes to the same Covid 19 law [9]. For one thing, the reason for choosing
these two options lies in the high voter participation [13] due to intense discussions and
campaigns at the forefront of both votes [57, 30]. Secondly, both votes were executed
on a national level, which allows using these numbers to project the ballot creation and
tallying durations in a realistic, high-volume (in proportion to other Swiss elections and
votes) nationwide scenario.

The projection is constructed as follows: The measurements, as shown in Tables 7.1
and 7.2, were used to deduce interpolation functions for ballot creation and tallying. For
both real-world votes, the time to create the required number of ballots (i.e., number of
eligible voters) and the time to tally the number of cast ballots was calculated for each
Swiss canton using the interpolation functions. Thus, the assumption is that each canton
would run an instance of Helverify (i.e., the canton is the VA). From a methodologi-
cal perspective, the interpolation polynomials have been calculated using [65] for ballot
creation1 and [66] tallying2, yielding the polynomials used for calculating the estimated
durations in both scenarios.

The results for the first vote [12] (cf. Table 7.3) indicate that the ballot creation would
take between 4 (AI, 12’157 eligible voters) and 480.9 minutes (ZH, 954’327 eligible vot-
ers). Furthermore, tallying would take between 30 seconds (AI, 7’919 cast ballots) and
38.9 minutes (ZH, 566’730 cast ballots). Moreover, under the assumption that one federal
instance of Helverify was used for all of Switzerland, the roughly estimated durations for
creating the ballots (i.e., 5’507’117 ballots) and tallying (i.e., 3’285’326 ballots) amount
to 2795.8 minutes and 210.4 minutes, respectively. Note, however, that this total esti-
mation is only a rough indicator for real-world ballot creation and tallying durations, as
performance penalties of some degree are likely for large amounts of ballots.

For the second vote [9] (cf. Table 7.4), the results are similar to the first vote: The
ballot creation would last between 4 (AI, 12’175 eligible voters) and 480.8 minutes (ZH,
956’792 eligible voters). In this case, the tallying process would take between 30 seconds
(AI, 8’615 cast ballots) and 44 minutes (ZH, 643’227 cast ballots). Again, assuming one
federal instance for all of Switzerland would yield roughly estimated durations of 2807.2

1 −0.0357181 + 0.000321505 · x+ 9.143035291183397 · 10−10 · x2 − 7.5777236271063045 · 10−16x3

2 0.0206561 + 0.0000563001 · x+ 4.38172 · 10−11 · x2 − 3.88379 · 10−17 · x3
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Canton Eligible Voters Cast Ballots Participation Create Ballots [min] Tally [min]

AG 435’285 256’371 58.9% 250.6 16.7
AI 12’157 7’919 65.1% 4.0 0.5
AR 38’912 25’665 66.0% 13.8 1.5
BE 743’476 462’982 62.3% 433.0 31.6
BL 189’815 112’652 59.3% 88.8 6.9
BS 114’147 66’301 58.1% 47.4 3.9
FR 209’893 129’670 61.8% 100.7 8.0
GE 271’111 137’841 50.8% 139.2 8.5
GL 26’580 15’774 59.3% 9.1 0.9
GR 140’933 84’068 59.7% 61.3 5.0
JU 54’016 31’610 58.5% 19.9 1.8
LU 281’961 183’604 65.1% 146.3 11.6
NE 113’266 61’157 54.0% 47.0 3.6
NW 31’659 21’605 68.2% 11.0 1.3
OW 27’058 19’328 71.4% 9.3 1.1
SG 327’307 194’989 59.6% 176.6 12.4
SH 52’945 38’565 72.8% 19.4 2.3
SO 181’363 107’135 59.1% 83.8 6.5
SZ 106’765 73’070 68.4% 43.8 4.4
TG 176’200 107’938 61.3% 80.9 6.6
TI 223’768 108’809 48.6% 109.2 6.6
UR 26’880 17’077 63.5% 9.3 1.0
VD 460’172 265’969 57.8% 267.7 17.4
VS 229’071 135’932 59.3% 112.5 8.4
ZG 78’050 52’565 67.3% 30.3 3.1
ZH 954’327 566’730 59.4% 480.9 38.9

Total 5’507’117 3’285’326 59.7% 2795.8 210.4

Table 7.3: Projected durations: Vote on Covid 19 law (13.06.2021) [11]

minutes for creating ballots (i.e., 5’528’244 ballots) and 233.8 minutes for tallying (i.e.,
3’633’801 ballots).

Overall, these projected durations indicate that Helverify could handle the scalability and
performance requirements regarding the Swiss RPV scenario.

7.6 Discussion

The evaluation reveals that, while performance and scalability are acceptable for munici-
pal and cantonal elections in Switzerland, there is room for improvement regarding these
aspects. Notably, the evaluation revealed the main influences and bottlenecks when it
comes to the performance and scalability of Helverify. In terms of performance, crypto-
graphic operations greatly influence overall system performance. While at the moment,
2048-bit key lengths are considered secure [4], this might change in the future. Helver-
ify allows using longer keys, but this comes at a performance penalty to the point where
cryptography can become a system bottleneck. One option to anticipate this issue would
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Canton Eligible Voters Cast Ballots Participation Create Ballots [min] Tally [min]

AG 437’516 287’482 65.7% 252.2 18.9
AI 12’175 8’615 70.8% 4.0 0.5
AR 39’012 28’425 72.9% 13.9 1.7
BE 744’859 496’811 66.7% 433.6 34.0
BL 190’760 127’723 67.0% 89.3 7.8
BS 113’956 73’682 64.7% 47.4 4.4
FR 211’226 133’306 63.1% 101.5 8.2
GE 273’057 147’460 54.0% 140.5 9.2
GL 26’637 17’616 66.1% 9.2 1.0
GR 141’383 93’112 65.9% 61.6 5.6
JU 54’022 32’780 60.7% 19.9 1.9
LU 282’643 200’131 70.8% 146.8 12.7
NE 113’589 65’787 57.9% 47.2 3.9
NW 31’789 23’889 75.1% 11.1 1.4
OW 27’332 20’600 75.4% 9.4 1.2
SG 328’286 226’148 68.9% 177.2 14.5
SH 53’170 40’372 75.9% 19.5 2.4
SO 182’004 120’868 66.4% 84.2 7.4
SZ 107’265 79’656 74.3% 44.0 4.8
TG 177’080 122’364 69.1% 81.4 7.5
TI 224’027 133’645 59.7% 109.4 8.2
UR 26’864 18’915 70.4% 9.2 1.1
VD 464’365 283’944 61.1% 270.5 18.7
VS 230’387 150’666 65.4% 113.3 9.4
ZG 78’048 56’577 72.5% 30.3 3.3
ZH 956’792 643’227 67.2% 480.8 44.0

Total 5’528’244 3’633’801 65.7% 2807.2 233.8

Table 7.4: Projected durations: Vote on changes to Covid 19 law (28.11.2021) [10]

be to refactor the cryptographic primitives to use Elliptic Curve Cryptography (ECC),
allowing shorter keys while assuring the same security level (cf. security strength com-
parison of [3]). Another limiting factor is the throughput of the PoA BC: During the
evaluation, the block period of 8 seconds proved stable while allowing a decent number
of transactions with a block gas limit of 180’000’000. With more fine-tuning, the trans-
actions per second could probably be increased a bit. Finally, the most limiting factor
is the number of options/candidates per election, where the duration to create ballots is
subject to polynomial growth.

The conclusion of this evaluation leads to the following recommendation. Helverify should
be run on the premises of municipalities or cantons to get the most out of the system. By
following this strategy, Helverify achieves nationwide scalability.
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Chapter 8

Summary, Conclusion, and Future Work

This chapter begins with a summary of this thesis, followed by the conclusions drawn. Re-
sulting the conclusions, potential areas of future work to improve Helverify are presented
and briefly discussed.

8.1 Summary

This thesis introduces the design and implementation of an RPV system for use in Switzer-
land. First, the fundamentals of the Swiss RPV procedures have been highlighted, as they
serve as a basis for the protocol design in this work. In addition, relevant cryptographic
primitives were explained, particularly the concepts of HE, NIZKPs, and threshold cryp-
tography. Furthermore, relevant related work has been highlighted and compared, leading
to the selection of a protocol (i.e., STROBE-Voting [5]) serving as a basis for the design
of Helverify. Moreover, a prototype of Helverify has been implemented: It leverages an
Ethereum PoA BC in combination with a private IPFS swarm as a PBB for storing elec-
tion evidence publicly. The Helverify prototype also uses HE, threshold cryptography, and
multiple variants of NIZKPs for fulfilling selected privacy and verifiability requirements.
Further, the prototype has been evaluated regarding performance, scalability, security,
RPV properties, and requirements fulfillment. Additionally, the evaluation results have
been interpolated to real-world votes, indicating the real-world performance for votes and
elections in Switzerland.

8.2 Conclusion

This thesis’ main objective was to design and implement a verifiable RPV system usable in
the context of Swiss RPV procedures. In conclusion, the Helverify prototype designed and
implemented during this thesis meets the requirements regarding verifiability by providing
E2E-V. Moreover, the prototype proved to meet the scalability requirements for use in
Switzerland by scaling horizontally (i.e., run Helverify per municipality or canton), which

69
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is supported by the projection of the evaluation results to real-world elections in Switzer-
land. More precisely, in the largest canton of Switzerland (i.e., Zürich), the projected
duration for creating and tallying ballots for a real-world scenario amounts to 8 hours
for creating 954’327 ballots and 38.9 minutes for tallying 566’730 ballots [11]. Further
optimization is recommended for larger countries, despite these results, especially con-
cerning vertical scalability. In terms of security, Helverify distributes the trust amongst
voters, the VA, Consensus Nodes, and the PBB. This trust distribution lowers the trust
assumptions of each entity. Consequently, if the trust assumptions hold, Helverify can
be considered secure, meaning that it fulfills the privacy (i.e., BP) and verifiability (i.e.,
E2E-V) properties as specified in the requirements.

The limitations of Helverify are primarily influenced by the type of cryptography used:
The computational effort of finite-field cryptography is a limiting factor for scalability.
Furthermore, the number of NIZKPs per ballot grows polynomially with the number
of candidates/options of an election and is, thus, another limiting factor in terms of
performance and scalability. Finally, the PoA BC is also a limiting factor, as the number
of transactions per second is determined by the block period and the block gas limit.
These two factors proved challenging to balance, forming a trade-off between performance
and stability.

In the end, voter acceptance probably remains one of the biggest challenges of RPV:
Due to the complexity of verifiable RPV protocols, the average voter will struggle to
understand the principles that guarantee verifiability and privacy in such a system. This
difficulty primarily stems from using cryptography, BC, and distributed systems, which
are complicated concepts to grasp for laypeople. Consequently, the voter has to trust
the judgment of experts who certify the correctness and the guarantees of a verifiable
RPV system. The same issue also concerns REV systems. In the case of Helverify, the
protocol augments the existing Swiss RPV procedures while still allowing for the existing
process to coexist. Thus, a fallback to the existing procedures is always an option during
a system outage.

8.3 Future Work

Thus, for tackling said limitations, future work might consist of the following topics:

• Optimizing Cryptography: Refactoring the cryptographic primitives to use ECC
instead of finite-field cryptography, which promises performance and storage space
advantages. Using ECC might also positively affect scalability regarding the number
of options/candidates because of performance improvements for generating NIZKPs.

• Ballot Scanning: The ballot scanning process could be optimized by implementing
an OCR scanning mechanism, replacing the manual inputs by election officials,
yielding an increase in ballot processing speed. Additionally, this reduces the manual
work an election official must do to register ballot choices.

• Write-In Elections: Support for write-in elections could be another area of future
work, as the current prototype only supports predefined lists of candidates/options.
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• Authentication & Authorization: Authentication and authorization have been largely
omitted in the Helverify prototype. However, these aspects would have to be im-
plemented for real-world usage of the VA application.

• IPFS Cluster: In addition to the private IPFS swarm, an IPFS cluster could be
configured to provide more resilience by allowing data replication across the entire
IPFS swarm.
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Appendix A

Installation Instructions

The installation instructions for Helverify are straightforward, as it is built using Docker
containers. Thus, to simply start and run Helverify, run the following scripts inside the
root folder of the Helverify repository:

1. cd docker

2. docker compose up

For further instructions and details concerning application start up and development,
please consult the README.md file in the root of the repository.
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