
Continuous
Semi-Supervised Binary
Classification of Data

Streams
Patrick Muntwyler
of Wohlen AG, Switzerland

Student-ID: 14-711-337
patrick.muntwyler@uzh.ch

Thesis June 13, 2021

Advisor: D. Dell’Aglio, PhD

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I want to express my deepest thanks to Daniele Dell’Aglio, PhD who supervised this
thesis. I am grateful for his valuable inputs, constructive criticism and guidance. I
would like to thank Professor Abraham Bernstein, PhD for making this research project
possible. Further on, I want to thank my family and friends who supported me during
this time. Last but not least, I would like to thank Christoph Weber for proofreading
this thesis.

Zusammenfassung

Die Anzahl der Datenströme wächst täglich und damit auch ihre Bedeutung in un-
serem täglichen Leben. Es ist wichtig, Datenströme automatisch analysieren zu können,
zum Beispiel um verdächtige Aktivitäten in einem System zu erkennen oder interessante
Datenpunkte zu filtern. Viele Systeme setzen heute auf überwachte Ansätze. Diese
haben jedoch den Nachteil, dass sie sich nicht an neue Trends in den Datenströmen
anpassen können. Hierfür werden teilüberwachte Ansätze benötigt. Dieser Bereich ist
jedoch weniger gut erforscht. Wir entwickeln daher SSDenStream. SSDenStream basiert
auf DenStream, einem unüberwachten dichte-basierten Stream-Clustering-Algorithmus,
und ist in der Lage, Online-Klassifikation durchzuführen. Wir geben einen Überblick
über dichte-basiertes Stream-Clustering und teilüberwachte Erweiterungen davon. Wir
führen mehrere Experimente mit synthetischen und realen Datensätzen durch, um die
Funktionalität von SSDenStream zu beweisen. Die Experimente zeigen, dass SSDen-
Stream in der Lage ist, mit überlappenden Clustern umzugehen und bei realen Daten
gute Ergebnisse erzielt.

Abstract

The number of data streams is growing every day, and so is their importance in our daily
lives. It is important to be able to analyze data streams automatically, for example to
find suspicious activities in a system or to filter interesting data points. Many systems
today rely on supervised approaches. However, these have the disadvantage that they
cannot adapt to new trends in the data streams. Semi-supervised stream approaches
are needed for this. However, this area is not yet well explored. We therefore develop
SSDenStream. SSDenStream is based on DenStream, an unsupervised density-based
stream clustering algorithm, and is able to perform online classification. We give an
overview of density-based stream clustering and semi-supervised extensions of it. We
perform several experiments on synthetic and real-world data sets to prove the func-
tionality of SSDenStream. The experiments show that SSDenStream is able to handle
overlapping clusters and performs well on real-world data.

Contents

1 Introduction 1

2 Motivating Example - Vandalism Detection 3
2.1 Wikidata Vandalism Detection . 3

2.2 Vandalism Detection for Other Knowledge Bases 5

2.3 Wrap-Up . 6

3 Background and Related Work 9
3.1 Clustering and Stream Mining . 9

3.2 DenStream . 10

3.3 Further Work Based on DenStream . 14

4 SSDenStream: An Approach for Semi-Supervised Binary Stream Classification 17
4.1 Storing Labels . 17

4.2 Propagating Labels . 20

4.2.1 Finding neighbors using K-Nearest Neighbors (k-NN) 20

4.2.2 Finding neighbors using a Minimum Spanning Tree (MST) 20

4.2.3 Propagating labels from neighbors to new micro-cluster 21

4.3 Classifying unlabeled sample . 24

4.4 Finding Neighbors Using MST vs. k-NN 24

5 Evaluation 27
5.1 Experimental Setup . 27

5.1.1 Data Set Split . 27

5.1.2 Data Sets . 28

5.1.3 SSDenStream Configuration . 30

5.1.4 Evaluation Metrics . 31

5.2 Experiment 1 - Influence of the Hyper Parameters 31

5.3 Experiment 2 - Comparing Different Graph Approaches 34

5.4 Experiment 3 - Comparing SSDenStream to State-of-the-Art Algorithms . 36

5.5 Use Case - Wikidata Vandalism Detection 38

6 Limitations and Future Work 41

x Contents

7 Conclusions 43

A Experiment Data 49
A.1 G2 Data Sets . 49
A.2 Wikidata Vandalism Data Sets . 52

B Evaluation Results 53
B.1 Hyper Parameter Analysis . 53
B.2 Comparing the Influence of MST and k-NN 63
B.3 Comparison to State of the Art . 65

x

Abbreviations

1-NN K-Nearest Neighbors | k = 1.

2-NN K-Nearest Neighbors | k = 2.

3-NN K-Nearest Neighbors | k = 3.

5-NN K-Nearest Neighbors | k = 5.

CWD Class Weight Dictionary.

k-NN K-Nearest Neighbors.

MST Minimum Spanning Tree.

ROC AUC Receiver Operating Characteristic Area Under Curve.

1

Introduction

A data stream is a continuous flow of data which can be of high volume and potentially
infinite. Data streams are becoming increasingly important, whether in everyday life, in
industry or in research. There are countless examples: Netflix, video conferences, results
from sensors, for example at CERN or from telescopes, monitoring of financial assets or
the monitoring of collaborative knowledge graphs (vandalism detection).

Wikidata1 is a well known example for a knowledge graph. Multiple studies exist that
address the topic of Wikidata vandalism detection, most notably [Sarabadani et al.,
2017] and [Heindorf et al., 2019]. This topic was also covered at the WSDM Cup 20172.
All solutions build on a supervised learning algorithm.

There exist other fields of activity where algorithms are required to filter large data
streams for interesting samples which are then investigated manually. One example is
astronomy where telescopes gather huge amount of data and algorithms determine can-
didates for certain phenomena. [Lyon et al., 2016] presents a semi-supervised approach
for finding pulsar candidates (a certain type of star) in data streams.

For such tasks, a semi-supervised learning approach has some advantages compared to
supervised approaches: Training a supervised model normally requires a large amount of
labeled data which is expensive to create. Once it is trained, it cannot adapt to changes
in the data, i.e. to drifting data. Semi-supervised models are able to learn continually
from only a few labeled data samples over time and thus adapting to evolving data
streams. In both mentioned fields of activities new labeled data is available over time as
experts review suspicious data samples and evaluate them.

We want to tackle such problems by using a density-based stream clustering algorithm.
Density-based clustering algorithms have certain advantages, e.g. they can process data
of various shape and can handle noise while no previous knowledge about the number of
clusters is required. We use DenStream as base algorithm which was proposed by [Cao
et al., 2006]. It is an unsupervised algorithm and is able to work in a streaming envi-
ronment. There exist many extensions of DenStream for different use cases. But there
exists only little work on semi-supervised extensions. CDenStream applies instance-
based constraints to define if certain samples belong to the same cluster [Ruiz et al.,
2009]. It lacks a mechanism to forget old constraints, as data samples lose importance

1https://www.wikidata.org/wiki/Wikidata:Main Page (18.05.2021)
2https://www.wsdm-cup-2017.org/vandalism-detection.html (05.05.2021)

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wsdm-cup-2017.org/vandalism-detection.html

2 CHAPTER 1. INTRODUCTION

over time. SemiStream tackles these drawbacks by applying a cost function based on
the constraint when searching for the best cluster a sample can be assigned to [Halkidi
et al., 2012]. But neither work directly with labels. The instance-based constraints must
first be derived from the labels. SSE-Stream, an extension of a different stream clus-
tering algorithm called SED-Stream, is an approach that works with labels instead of
instance-based constraints [Treechalong et al., 2015]. But all of these algorithms focus
on building clusters in an offline step after accumulating data in the online phase. None
of them can do online classification.

To tackle challenges like vandalism detection or finding pulsar candidates with Den-
Stream we need a semi-supervised extension that is able to do online classification. We
develop such an extension and call the resulting algorithm SSDenStream. We introduce
a mechanism that stores the class labels of the labeled data samples. Based on the col-
lected class labels, unlabeled data points are classified. We apply a decaying function to
the class labels so that old class labels have less influence than new ones. This allows the
algorithm to learn new trends. We also present different approaches to propagate class
label information into previously unallocated parts of the vector space. We perform an
exploratory analysis on the hyper parameters and show their impact on the classification
quality. We show that proper hyper parameter tuning is essential for SSDenStream. We
conduct various experiments with synthetic and real-world data sets and compare them
to state-of-the-art algorithms. Our experiments show that SSDenStream can handle
overlapping clusters and achieves good results on real-world data.

Chapter 2 presents a motivating example for this thesis: vandalism detection. Chapter
3 shows related work and introduces the necessary background knowledge. Chapter 4
explains the functionality of SSDenStream. Chapter 5 explains the experiments and
their results. Chapter 6 presents the limitations and future work. Chapter 7 draws the
conclusion about this thesis.

2

2

Motivating Example - Vandalism
Detection

Knowledge graphs play a major role in our daily lives. Google maintains a knowledge
graph which is used to improve search results1. BBC connects news items to knowledge
graph entity identifiers to be able to query their content meaningfully and find related
content2. Wikidata is a collaborative system that is used by countless applications and
people every day. Wikidata may be edited by anyone. This has the great advantage that
anyone can contribute their knowledge to the knowledge graph. However, there are also
people who deliberately or unintentionally enter incorrect data. To maintain high data
quality of Wikidata or other collaborative knowledge graphs, changes must be quality
checked. This requires automatic systems that report suspicious changes.

This is the motivation of this thesis. We first had to evaluate state-of-the-art research
to find out where there is room for improvement. This led to the realization that semi-
supervised approaches are not being pursued for this use case. Therefore, we developed
SSDenStream to counter vandalism with a new approach. Below we present recent
literature in the field of vandalism detection which can serve as a basis for further
research on this topic.

2.1 Wikidata Vandalism Detection

When conducting research on a certain topic it is beneficial to have a public data corpus
which people can use to engineer features, train algorithms and compare their results
on. [Heindorf et al., 2015] presents the creation of a vandalism corpus for Wikidata
revisions. The corpus comprises all Wikidata revisions which were manually done by
users since the launch of Wikidata in October 2012 until November 2014. Altogether
the corpus includes about 24 million samples of which all are labeled as vandalism or
not. The labeling is done by a machine as labeling this amount of samples manually is
infeasible.

There exist two types of operations on Wikidata to correct wrong revisions. The
rollback operation can only be used by administrators and privileged users and ”should

1https://www.blog.google/products/search/introducing-knowledge-graph-things-not/ (05.05.2021)
2https://www.bbc.co.uk/blogs/internet/entries/d6d2e984-1acd-30dd-a75a-afe9f12f5b46 (05.05.2021)

https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.bbc.co.uk/blogs/internet/entries/d6d2e984-1acd-30dd-a75a-afe9f12f5b46

4 CHAPTER 2. MOTIVATING EXAMPLE - VANDALISM DETECTION

only be used to revert vandalism and test edits”3. The undo and restore functionalities
can also be used to revert revisions but they are available to all non-blocked users. [Hein-
dorf et al., 2015] shows that revisions which were rolled back can be seen as vandalism
where as undone or restored revisions were often no vandalism attempts. In the end,
the automated labeling mechanism only uses the rollback operation to find vandalism
attempts and leaves the undo and restore revisions to be examined further in future
work.

This vandalism corpus is used by [Heindorf et al., 2016] to train a supervised learning
algorithm which categorizes Wikidata revisions as vandalism or non-vandalism attempts.
[Heindorf et al., 2016] describes all 47 features that were used for the final classifier. The
features are divided into content and context features. Content features are created from
the content of revision at either character, word, sentence or statement level. Examples
are digitRatio (ratio of digits to all characters) or longestWord (length of longest word
in the revision). Contextual features describe either the user (e.g. country of a user),
the revised item (e.g. the frequency of that item to be part of a revision) or the revision
itself (e.g. the type of a revision). The features do not require high computational power
and thus are suitable for online classification.

In 2017, there was a conference called WSDM Cup 20174. One of the available tasks
was vandalism detection on Wikidata revisions5. The provided training corpus follows
the same creation logic as described by [Heindorf et al., 2015] but is a more up-to-date
version containing data from October 2012 until June 2016 which makes around 65 mil-
lion revisions. The intention of the task chair and committee was to transfer the gained
knowledge to Wikimedia Germany by inviting the winning team for a couple of days.
[Crescenzi et al., 2017] presents the features and algorithm used by the winning team
called Buffaloberry. The corresponding repository is available on GitHub6. [Heindorf
et al., 2017] gives an overview over the data, all the features and the algorithms used by
the participating teams.

[Sarabadani et al., 2017] criticises the corpus presented by [Heindorf et al., 2015]
because it only considers revisions reverted by the rollback operation as vandalism at-
tempts. [Sarabadani et al., 2017] presents their own corpus which contains 500’000
samples and is created by a different strategy. According to the authors only 63% of the
vandalism attempts are reverted using the rollback operation. The remaining 37% of
the vandalism attempts are reverted using the restore or other operations. This means
that the corpus of [Heindorf et al., 2015] overlooks a big part of the vandalism attempts.
The model trained on the new corpus performs well, but is strongly influenced by the
features that reflect the user who performed the edit.

3https://www.wikidata.org/wiki/Wikidata:Rollbackers (03.05.2021)
4https://www.wsdm-cup-2017.org/ (03.05.2021)
5https://www.wsdm-cup-2017.org/vandalism-detection.html (03.05.2021)
6https://github.com/wsdm-cup-2017/buffaloberry (03.05.2021)

4

https://www.wikidata.org/wiki/Wikidata:Rollbackers
https://www.wsdm-cup-2017.org/
https://www.wsdm-cup-2017.org/vandalism-detection.html
https://github.com/wsdm-cup-2017/buffaloberry

2.2. VANDALISM DETECTION FOR OTHER KNOWLEDGE BASES 5

[Nishioka and Scherp, 2018] describes a different approach. The data set contains
the Wikidata changes between April 2014 and August 2016. The incorrect changes are
identified using a simple heuristic: every change that is reverted up to four weeks af-
ter publication is categorized as vandalism. Compared to the other two corpora this
approach results in a higher rate of incorrect changes. The data set consists of subject-
predicate-object triples with a timestamp and a flag. The flag defines if the change was
a deletion or an addition of information. The features created from this data set solely
base on graph metrics such as node in-degree, node out-degree and node age. No user
metrics are used at all.

[Heindorf et al., 2019] states that the vandalism detection algorithms used at Wiki-
data heavily rely on user metadata features. These features induce user bias and thus
encourage discrimination against new users and anonymous users. The authors present
two algorithms, called FAIR-E and FAIR-S, which evaluate Wikidata revisions based on
their content without taking into account the reputation of the users. FAIR-E is based
on graph embedding using the subject-predicate-object triples mirroring the Wikidata
edits. FAIR-S uses already existing features from state-of-the-art Wikidata vandalism
detection frameworks and a few newly created features leaving out all features that are
not linked to the content of an edit.

2.2 Vandalism Detection for Other Knowledge Bases

Vandalism detection is an important topic for other knowledge bases as well. [Tan et al.,
2014] presents work about vandalism detection on Freebase7. The created features can
be split into three categories: user contribution history, triple features and user contribu-
tion expertise. Two out of three categories rely only on the information about the users
who edit the knowledge base. Therefore this work has the disadvantage of discriminating
new users.

[Wienand and Paulheim, 2014] presents an approach that concentrates on numerical
data in DBpedia8. The authors create subject-predicate-object (SPO) triple data sets
for different predicates, for example dbpedia-owl:populationTotal, dbpedia-owl:height or
dbpedia-owl:elevation. In other words, the first data set contains all SPO triples with
dbpedia-owl:populationTotal as predicate. In a second step the data sets are split by the
type of the subject. A resulting sub data set contains for example all SPO triples rep-
resenting the population of cities. Different unsupervised outlier algorithms are applied
to these sub data sets to find out if the information is correct or not. This approach has
the advantage that the learned algorithms are not biased against the user who created
a statement as it is solely based on the statement’s content. One disadvantage of this
work is that the applied algorithms cannot be used with data streams. They are not

7https://en.wikipedia.org/wiki/Freebase (database) (04.05.2021)
8https://www.dbpedia.org/ (03.05.2021)

5

https://en.wikipedia.org/wiki/Freebase_(database)
https://www.dbpedia.org/

6 CHAPTER 2. MOTIVATING EXAMPLE - VANDALISM DETECTION

able to do online computation.

Wikidata can also be used as external information source to verify data in other
databases. In [Olivieri et al., 2017] SPO triples in the form of actor-act-movie from the
movie database LinkedMDB9 are checked for truthfulness. This is achieved by querying
Wikidata. There are six queries defined which should find out if the actor is an actor,
the movie is a name of a movie and if the actor was part of that movie. This principle
can be transferred to other databases to verify if their content is true.

OpenStreetMap10 is a map project that relies on volunteers like Wikidata. As a con-
sequence there is vandalism. [Truong et al., 2018] describes how geometric data about
buildings can be checked for vandalism. The features are constructed to mirror the geo-
metric data and to work with the unsupervised clustering algorithm called DENCLUE.
[Neis et al., 2012] is an older work which concentrates on vandalism detection in Open-
StreetMap. The applied features only rely on user data and thus is biased against certain
user groups.

2.3 Wrap-Up

The literature research shows that a wide variety of approaches are being pursued to
counter the vandalism problem. However, all approaches have their limits. We see great
opportunities for improvement in three different directions.

(1) Corpus creation: [Sarabadani et al., 2017] criticizes the mechanism used to create
the corpus presented by [Heindorf et al., 2015] which is also used at WSDM Cup 2017.
Many vandalism cases are not marked as such in this corpus. [Sarabadani et al., 2017]
presents its own approach, but it relies heavily on users’ metadata which induces bias
against certain user groups. [Nishioka and Scherp, 2018] presents a different approach.
It would be of great use to compare the three different approaches and take the best
parts of each to generate a new corpus. It is important that a new corpus is made
available from time to time, as user behavior can also change over time. However, none
of the work presented includes data that is more recent than 2016.

(2) Using SPO triples: The SPO triples in a knowledge graph can be divided into
two groups. (i) A triple can connect two entities with a predicate and thus create a
semantic link between the two entities, for example France - capital - Paris. (ii) The
object is a literal and thus an attribute is assigned to an entity, for example France
- population - 66,628,000. [Heindorf et al., 2019] focuses on group (i). [Nishioka and
Scherp, 2018] examines both groups, but cannot present good results on group (ii). We
see potential for improvement here. A solution would be based purely on content and
thus not contain user bias. Perhaps an approach similar to [Wienand and Paulheim,
2014] can be successfully applied to Wikidata.

9Original URL is not valid anymore (04.05.2021)
10https://www.openstreetmap.org/ (04.05.2021)

6

https://www.openstreetmap.org/

2.3. WRAP-UP 7

(3) Semi-supervised learning: None of the works studied use a semi-supervised ap-
proach. Some use unsupervised algorithms, but the majority use supervised algorithms.
These algorithms cannot adapt to trends in the data and therefore have to be retrained
from time to time. We want to contribute to this problem with our work. We want to
develop a semi-supervised algorithm that can be used in future work to detect vandalism,
among other things.

7

3

Background and Related Work

3.1 Clustering and Stream Mining

Clustering and classification are similar tasks, differing mainly in whether labeled sam-
ples are available or not. Classification is a supervised learning approach in which
samples must be assigned to classes. The classes are known in advance. Clustering, on
the other hand, is unsupervised. The goal is to divide the data points into ”natural”
groups. There are many different definitions of the term cluster. However, they all
have in common that a cluster should contain similar samples and separate them from
dissimilar samples [Xu and Wunsch, 2008].

There exist different approaches how clustering algorithms compute clusters. Five
different groups of clustering algorithms are defined by [Mousavi et al., 2015]:

• Hierarchical methods: Usually in a top down approach, where in the beginning
all data points belong to the same cluster. Then the cluster is divided iteratively
into several sub-clusters until an optimal structure is found.

• Partitioning methods: Require a predefined number of cluster centers and their
position in the data space. Then all data samples are assigned to the closest cluster
center according to some distance function.

• Grid-based methods: They place a grid over the vector space and thus divide it
into cells. The density of a cell depends on the number of points in it. Clustering
is performed with the cells instead with the data points.

• Density-based methods: Work with a density threshold (i.e. number of data
points in a certain radius) to define which areas in the vector space can be seen as
clusters.

• Model-based methods: Statistical approach that runs a hypothesized model (a
probability distribution) for every cluster. Goal is to find a model that fits the
data points in a cluster as good as possible and thus decides which points belong
to which cluster.

10 CHAPTER 3. BACKGROUND AND RELATED WORK

In this thesis we work with a density-based clustering algorithm. Therefore, a suitable
definition for the term cluster is a region in the data space with a high density of data
samples separated by low density areas.

There is also the distinction between traditional and stream clustering. In a traditional
setup a data set is static, and therefore can be processed multiple times. The amount of
data does not exceed the storage capacities and thus can be stored. In stream clustering,
algorithms are able to work with data streams, i.e. perform stream mining. Data streams
are (i) continuous and potentially infinite; (ii) they contain evolving data and response
is required in real-time; (iii) data is available only once for processing; (iv) due to huge
amount of data only part of it can be stored so the important part of the data must be
found during processing; and, (v) data streams can be multidimensional which requires
advanced algorithms for the mining task [Mousavi et al., 2015].

According to [Mousavi et al., 2015], density-based clustering algorithms can handle
data of various shape, are able to handle noise, and need to process the data only once
(no iterative mechanisms). These properties make density-based clustering a good choice
for a streaming environment.

3.2 DenStream

Data streams are potentially infinite, they can include huge amounts of data and can
evolve over time. Due to these properties, traditional clustering algorithms cannot handle
data streams. [Cao et al., 2006] introduces a density-based clustering algorithm for
data streams, called DenStream, that can tackle these challenges. As data streams are
potentially infinite, the algorithm cannot store all data samples. At some point the
computer will run out of storage. A data structure called micro-cluster summarizes
the incoming data samples. There are more micro-clusters than final clusters but still
much fewer micro-clusters than data samples. DenStream distinguishes between two
phases: the online phase and the offline phase. During the online phase, the algorithm
maintains the micro-clusters to summarize the incoming data. At some point the user
requires a final clustering of the current situation. This is done in the offline phase,
where DenStream applies a variant of DBSCAN to the micro-clusters to create clusters.
DBSCAN was introduced by [Ester et al., 1996].

DenStream works with the damped window model. An old data sample will have less
influence on the clustering than new data samples. An exponential decaying function
decreases the weight of a data sample over time.

Definition 1. (decay factor λ [Cao et al., 2006]): The exponential decaying function
is defined as f(t) = 2−λ∗t, where λ > 0. The higher λ, the lower the influence of old
data samples.

We work with the DenStream implementation of [Weber, 2019] which uses a slightly
different definition of micro-clusters compared to the work of [Cao et al., 2006].

Definition 2. (micro-cluster [Weber, 2019]): A micro-cluster is defined by a weight
w, mean x̄ (which presents the cluster’s center) and a variance σ2.

10

3.2. DENSTREAM 11

The following three equations define how a micro-cluster’s properties are updated
when a new samples s is assigned to it at timestamp t. Timestamp tlast denotes the
timestamp when the last sample was added. Sample s has a value sx and a weight sw.

wt = wtlast ∗ 2−λ∗(t−tlast) + sw (3.1)

x̄t = x̄tlast +
sw ∗ (sx − x̄tlast)

wt
(3.2)

σ2t = σ2tlast ∗
wt − sw
wtlast

+ sw ∗ (sx − x̄t) ∗ (sx − x̄tlast) (3.3)

Figure 3.1 illustrates the process of adding samples to a micro-cluster. Table 3.1
contains the corresponding key figures. In the example, λ reduces the influence of past
samples by half every time unit. There is one time unit between each new sample and
each sample owns a weight sw of 1. Illustration (i) shows the situation when the first
sample S1 is added to the micro-cluster. S1 has the coordinates [0, 0] and is marked as
blue dot. As this is the first sample of this micro-cluster, the micro-cluster’s center has
the same coordinates.

S1 [0, 0]

2

2

-2

-2

S2 [1, 1]

2

2

-2

-2

S3 [1, 0]

2

2

-2

-2

(i) (ii) (iii)

Figure 3.1: Illustration of the process of adding samples to a micro-cluster. Blue
dots are samples and the black dot denotes the micro-cluster’s center

sx sw t λ w x̄ σ2

(i) [0, 0] 1 1 1 1 [0, 0] 0
(ii) [1, 1] 1 2 1 1.5 [0.67, 0.67] [0.33, 0.33]
(iii) [1, 0] 1 3 1 1.75 [0.86, 0.29] [0.21, 0.36]

Table 3.1: Key figures of the process illustrated in Figure 3.1

In (ii) sample S2 appears and is located at [1, 1]. The micro-cluster’s weight w
does not double now. The decaying function reduces the existing weight and adds the

11

12 CHAPTER 3. BACKGROUND AND RELATED WORK

new additional weight. Also, the center of the micro-cluster is not moved to the middle
between the two samples, but closer to S2. This is because S1 has already lost influence.
In (iii) sample S3 appears at [1, 0]. Current weight w is halved and the weight sw of S3
is added. The center x̄ moves into direction of S3. Due to the decaying function, the
past is gradually forgotten and the micro-cluster follows the new samples. Variation σ2

is required to describe the scattering of the samples.

There is a parameter required which limits the size of a micro-cluster. Otherwise, all
samples can be assigned to the same micro-cluster.

Definition 3. (maximum micro-cluster radius ε [Weber, 2019]): A micro-cluster
has an upper threshold for its radius r, such that r ≤ ε. It cannot absorb data samples
where the distance from the cluster’s center to the data sample is bigger than ε.

[Cao et al., 2006] defines different types of micro-clusters depending on their weights.

Definition 4. (core-micro-cluster [Cao et al., 2006]): A core-micro-cluster (c-
micro-cluster) is a micro-cluster which has a weight higher than some threshold µ, si-
multaneously not violating the maximum radius restriction, i.e., w ≥ µ and r ≤ ε. A
c-micro-cluster is what can be referred to as a dense micro-cluster.

[Putina et al., 2018] shows that µ can be automatically computed only depending on
the decaying factor λ: µ = 1

1−2−λ

As the data streams evolve, outliers can become cluster members and vice versa.
C-micro-clusters are only formed gradually. Therefore [Cao et al., 2006] defines the
potential c-micro-cluster (p-micro-cluster) and outlier-micro-cluster (o-micro-cluster).
O-micro-clusters are used to define regions where outlier points lie. The only difference
between the two types of micro-clusters is their weight.

Definition 5. (p-micro-cluster and o-micro-cluster [Cao et al., 2006]): If the weight
w of a micro-cluster is lower than a certain threshold, then it is defined as a o-micro-
cluster, i.e., w < β ∗ µ. Otherwise the micro-cluster is classified as p-micro-cluster. β is
a hyper parameter of DenStream.

The offline phase of DenStream uses the p-micro-clusters as input for DBSCAN to
create final clusters. [Weber, 2019] applies DenStream for outlier detection instead of
creating final clusters. Therefore, the offline phase is not implemented and we do not
describe it further at this point. If a new data sample cannot be assigned to a p-micro-
cluster then it is labeled as outlier. In a certain time interval the algorithm checks all
micro-clusters if their weight is higher or below the weight threshold β ∗µ. If a o-micro-
cluster becomes a p-micro-cluster, we can say that those points were early movers, i.e.
they set a trend. It is also possible that p-micro-clusters become o-micro-clusters if that
region is against the current trend of the data samples.

[Weber, 2019] introduces DenStream*, an extension of Denstream. It contains two
additional hyper parameters which are called drift-distance-influence δ and drift-weight-
influence ω. As mentioned, some outliers are early movers and will not be outliers in
the future and some cluster points will become outliers. This is due to the evolving

12

3.2. DENSTREAM 13

1 def DenStream ∗(ε , β , µ , λ , δ , ω) :
2 for s in data stream :
3 # t r y to merge sample i n t o n e a r e s t p−micro−c l u s t e r cp
4 cp = g e t n e a r e s t p m i c r o c l u s t e r (s)
5 # sw i s sample we igh t
6 c+p = merge (cp , s , λ , sw ∗ (1 + δ ∗ ω))

7 i f rad iu s (c+p) ≤ ε ∗ (1 + δ ∗ ω) :

8 cp = c+p
9 else :

10 # t r y merge sample i n t o n e a r e s t o−micro−c l u s t e r co
11 co = g e t n e a r e s t o r n e w o m i c r o c l u s t e r (s)
12 c+o = merge (co , s , λ , sw ∗ (1 + δ ∗ ω))
13 i f rad iu s (c+o) ≤ ε ∗ (1 + δ ∗ ω) :
14 # check i f b i g enough f o r promotion
15 i f weight (c+o) > β ∗ µ :
16 p m i c r o c l u s t e r s . append (c+o)
17 o m i c r o c l u s t e r s . remove (co)
18 else :
19 co = c+o
20 w r i t e r e a l t i m e o u t l i e r (s)
21
22 else :
23 # new o−micro−c l u s t e r
24 o m i c r o c l u s t e r s . append (c+o)
25 w r i t e r e a l t i m e o u t l i e r (s)

Algorithm 3.1: DenStream* Implementation

nature of data streams. The two parameters δ and ω include the trend of a stream into
the allocation of data points to micro-clusters. The drift-distance-influence parameter
adapts the distance a point can have from a cluster’s center. If the data point lies in
direction of the trend, then the distance from the cluster center can be higher as ε. The
drift-weight-influence adapts the weight a data sample adds to a micro-cluster. If the
data point lies in the direction of the trend, its weight is higher and vice versa.

Algorithm 3.1 shows the pseudo-code of DenStream*. When a new sample s arrives,
the closest p-micro-cluster cp is retrieved. Sample s is merged into cp and if the updated
radius does not exceed maximum radius threshold ε, the algorithm ends here. If the
radius is too large then the closest o-micro-cluster co has to be retrieved. If sample s
can be merged into co, there has to be evaluated if co has enough weight now to be cat-
egorized as p-micro-cluster. If yes, co is now a p-micro-cluster, else sample s is marked
as outlier. If s cannot be merged into co, a new micro-cluster is generated, which is
automatically categorized as o-micro-cluster and thus s is defined as outlier.

13

14 CHAPTER 3. BACKGROUND AND RELATED WORK

The two hyper parameters β and λ are in the usual case very incomprehensible num-
bers. To make it easier to set them correctly, they are computed from minimum cluster
size ζ and half-life time t1/2 in the following way:

λ =
−log2(0.5)

t1/2
(3.4)

β = ζ ∗ (1− 2−λ) (3.5)

The following example illustrates the simplification through these pre-processing steps.
We want each p-micro-cluster to have a minimum cluster size ζ of 5 and that the weights
lose 50% of their influence after 100 time units. In the example we calculate λ, β and
µ and show the outcome of weight threshold β ∗ µ (see Line 15 of Algorithm 3.1 or see
Definition 5):

ζ = 5; t1/2 = 100 (3.6)

λ =
−log2(0.5)

t1/2
=
−log2(0.5)

100
= 0.01 (3.7)

β = ζ ∗ (1− 2−λ) = 5 ∗ (1− 2−0.01) = 0.0345 (3.8)

µ =
1

1− 2−λ
=

1

1− 2−0.01
= 144.7701 (3.9)

β ∗ µ = 0.0345 ∗ 144.7701 = 5 (3.10)

3.3 Further Work Based on DenStream

DenStream is a popular density-based stream clustering algorithm and thus there exist
many different extensions. DenStream is only able to process numerical features. But
categorical features can be as critical as numerical features to determine the correct
cluster structure. [Lin and Lin, 2009] proposes an extension of the DenStream algo-
rithm called HDenStream that can handle categorical data. HDenStream uses different
distance functions for categorical and numerical features which are summed up to deter-
mine the final distance of a sample to a cluster. The distance between two data points
for a categorical dimension is 0 if they both own the same category label or 1 other-
wise. A micro-cluster is able to sum up samples with different categories. It maintains
a two-dimensional array that stores the frequency for each valid label of a categorical
feature. The distance of a sample to a micro-cluster for a categorical feature is the sum
of the weights for all category labels that are different to the samples label. [Chen and

14

3.3. FURTHER WORK BASED ON DENSTREAM 15

He, 2016] introduces different distance functions for numerical and categorical features
depending on their proportion in the data set.

DenStream is an unsupervised clustering algorithm. But there may exist data sets
which have partially labeled samples. [Ruiz et al., 2009] introduces C-DenStream, a semi-
supervised approach of DenStream. C-DenStream can handle samples with instance-
based constraints. There exist must-link and cannot-link constraints, i.e., the constraint
describes if two samples belong to the same cluster or not. The algorithm takes the
constraints into account when adding samples to clusters. It does not allow for two
samples with a cannot-link constraint to be in the same cluster. [Halkidi et al., 2012]
criticises C-DenStream for creating many small micro-clusters, due to satisfying all con-
straints. Their approach, called SemiStream, uses instance-based constraints as well.
But SemiStream has not to satisfy all constraints; it rather uses them as penalty when
computing the distance from sample to cluster.

[Treechalong et al., 2015] proposes a semi-supervised stream clustering algorithm,
called SSE-Stream, which works with data labels instead of constraints. They argue
that using instance-based constraints in a streaming environment has some drawbacks,
e.g. not all constraints can be evaluated at the same time. Thus it is hard to find an
optimal solution. The algorithm tries to build micro-clusters so that a micro-cluster
does not contain different labels. It is using split and merge operations to keep the
micro-clusters as pure as possible. If there exist impure micro-clusters when the offline
clustering is done, the majority class label of a micro-cluster is used.

As mentioned in Section 3.2 DenStream uses DBSCAN for creating the final clusters.
DBSCAN has one big disadvantage: it cannot find clusters of different densities. Based
on the hyper parameters, DBSCAN computes a static density threshold that defines how
many data points must exist in a certain radius to form a cluster. [Campello et al., 2013]
introduces HDBSCAN, a hierarchical density-based clustering algorithm, that overcomes
that limitation.

[Hassani, 2015] presents the combination of DenStream and HDBSCAN, resulting
in a hierarchical density-based stream clustering algorithm called HASTREAM. In the
online phase, the streaming data is summarized through micro-clusters, with similar
definitions as specified by [Cao et al., 2006]. During the offline phase an adapted version
of HDBSCAN is used, which works with micro-clusters instead of single data points.
HDBSCAN requires the computation of a Minimum Spanning Tree with data points or
micro-clusters respectively as nodes. A Minimum Spanning Tree is a weighted graph that
connects all its nodes such that the sum of all used edges is minimal. Computing a MST is
an expensive task. Thus [Hassani et al., 2016] introduces I-HASTREAM, an improved
version of HASTREAM. The focus of I-HASTREAM lies on the computation of the
Minimum Spanning Tree. Instead of computing the whole graph each time the offline
phase is triggered, I-HASTREAM can recognize which micro-clusters have changed.
Only the affected regions of the graph are recomputed.

15

4

SSDenStream: An Approach for
Semi-Supervised Binary Stream
Classification

SSDenStream is a semi-supervised extension of the DenStream algorithm. It is based
on the DenStream implementation of [Weber, 2019] called DenStream*. [Weber, 2019]
uses the implementation of [Putina et al., 2018]. [Putina et al., 2018] introduces an
extended version of DenStream which detects outliers. The implementation of [Weber,
2019] extends the outlier detection with two additional hyper parameters δ and ω, which
improve the algorithm by following drifting data. For more information about the hyper
parameters see Section 3.2.

SSDenStream works with partially labeled data streams. Class labels from labeled
data samples are stored in the corresponding micro-clusters. When a new micro-cluster is
created, the class label information of the neighboring micro-clusters is used to initialize
class label information for the new micro-cluster. An unlabeled data sample is classified
by the class label information of the micro-cluster it is assigned to.

Algorithm 4.1 shows DenStream* with the extensions that result in SSDenStream.
The black pseudo-code represents DenStream* and the red lines are the extensions for
SSDenStream. The added mechanisms are explained in more details in the following
sections. Section 4.1 explains how the available information of the labeled data is stored
(Line 36 in Algorithm 4.1). Section 4.2 describes what happens when a new micro-cluster
is created which does not own any class information (Lines 30 & 31 in Algorithm 4.1).
Section 4.3 elucidates how unlabeled samples are classified (Line 37 in Algorithm 4.1).
Section 4.4 explains the advantages and disadvantages between different approaches for
finding the neighbors of a micro-cluster (Line 30 in Algorithm 4.1) in more details.

4.1 Storing Labels

In a semi-supervised setup, some data samples are labeled and some are not. SSDen-
Stream stores the available labels and uses them to classify unlabeled samples. It uses a
dictionary where the class label is the key and the value is the weight of the correspond-
ing class. We call it the Class Weight Dictionary (CWD). Every micro-cluster owns a

18
CHAPTER 4. SSDENSTREAM: AN APPROACH FOR SEMI-SUPERVISED

BINARY STREAM CLASSIFICATION

1 def SSDenStream (ε , β , µ , λ , δ , ω) :
2 for s in data stream :
3 # read the sample l a b e l sl . Can be None
4 sl = s . l a b e l
5 # v a r i a b l e to ac ces s f i n a l micro−c l u s t e r mc o f s
6 mc = None
7 # t r y to merge sample i n t o n e a r e s t p−micro−c l u s t e r cp
8 cp = g e t n e a r e s t p m i c r o c l u s t e r (s)
9 # sw i s sample we igh t

10 c+p = merge (cp , s , λ , sw ∗ (1 + δ ∗ ω))

11 i f rad iu s (c+p) ≤ ε ∗ (1 + δ ∗ ω) :

12 cp = c+p
13 mc = c+p
14 else :
15 # t r y merge sample i n t o n e a r e s t o−micro−c l u s t e r co
16 co = g e t n e a r e s t o r n e w o m i c r o c l u s t e r (s)
17 c+o = merge (co , s , λ , sw ∗ (1 + δ ∗ ω))
18 i f rad iu s (c+o) ≤ ε ∗ (1 + δ ∗ ω) :
19 # check i f b i g enough f o r promotion
20 i f weight (c+o) > β ∗ µ :
21 p m i c r o c l u s t e r s . append (c+o)
22 o m i c r o c l u s t e r s . remove (co)
23 else :
24 co = c+o
25 w r i t e r e a l t i m e o u t l i e r (s)
26
27 else :
28 # new o−micro−c l u s t e r
29 i f sl i s None :
30 n = f i n d n e i g h b o r s (c+o)
31 p r o p a g a t e l a b e l s (c+o , n)
32 o m i c r o c l u s t e r s . append (c+o)
33 w r i t e r e a l t i m e o u t l i e r (s)
34 mc = c+o
35 i f sl i s not None :
36 mc . u p d a t e c l a s s w e i g h t d i c t i o n a r y (sl)
37 c l a s s i f y s a m p l e (mc)

Algorithm 4.1: SSDenStream Implementation

18

4.1. STORING LABELS 19

CWD. Whenever a labeled data sample is assigned to a micro-cluster, the CWD stores
this information and accumulates the labels for each class. Thus, we need an extended
definition for micro-clusters.

Definition 6. (micro-cluster): A micro-cluster is defined by a weight w, mean x̄
(which presents the cluster’s center), a variance σ2 and a Class Weight Dictionary cwd.

Sample s is a new sample that is added to the micro-cluster at timestamp t. Sample
s owns a value sx, a weight sw and a class label scw. Timestamp tlast denotes the point
of time when the last sample was added to this micro-cluster.

wt = wtlast ∗ 2−λ∗(t−tlast) + sw (4.1)

x̄t = x̄tlast +
sw ∗ (sx − x̄tlast)

wt
(4.2)

σ2t = σ2tlast ∗
wt − sw
wtlast

+ sw ∗ (sx − x̄t) ∗ (sx − x̄tlast) (4.3)

cwdt = cwdtlast ∗ 2−λ∗(t−tlast) + scw (4.4)

There is a time decay function applied to the CWD to reduce the influence of old
labels. We use the same decay function as it is used for micro-cluster weights. If 100%
of the data is labeled, the sum of the weights for all classes together is exactly the weight
of the corresponding micro-cluster. This is illustrated in the following example:

For this illustration we choose λ such that a sample loses 50% of its influence after 1
time unit. There are two classes A and B and four samples with the same weight of 1.
The first sample is added at time 1, the second at time 2 and so on. We measure the
weight of the classes (cwA, cwB) and the micro-cluster’s weight (wmc) at time 4 which
means that the latest weight has not decayed at all and the oldest weight is 3 time units
old. The first two samples contain class label A, the last two samples contain class label
B. We can see that wmc = cwA + cwB.

wmc = 1 ∗ (0.5)3 + 1 ∗ (0.5)2 + 1 ∗ (0.5)1 + 1 ∗ (0.5)0 (4.5)

= 0.125 + 0.25 + 0.5 + 1 (4.6)

= 1.875 (4.7)

cwA = 1 ∗ (0.5)3 + 1 ∗ (0.5)2 + 0 ∗ (0.5)1 + 0 ∗ (0.5)0 (4.8)

= 0.125 + 0.25 (4.9)

= 0.375 (4.10)

19

20
CHAPTER 4. SSDENSTREAM: AN APPROACH FOR SEMI-SUPERVISED

BINARY STREAM CLASSIFICATION

cwB = 0 ∗ (0.5)3 + 0 ∗ (0.5)2 + 1 ∗ (0.5)1 + 1 ∗ (0.5)0 (4.11)

= 0.5 + 1 (4.12)

= 1.5 (4.13)

The resulting Class Weight Dictionary contains two key-value pairs, one for each class.
The class label is the key where as the class weight of the corresponding class is the value.

cwd = {′A′ : 0.375,′B′ : 1.5} (4.14)

4.2 Propagating Labels

When a new micro-cluster is created and the first data sample assigned to it does not
contain a class label, we must ensure that the micro-cluster gets some class label infor-
mation from its neighbors. Without that the new micro-cluster is not able to classify
the data sample. We implement and evaluate two different approaches. The first one
uses K-Nearest Neighbors, the second one uses a Minimum Spanning Tree to find the
neighbors of a micro-cluster. Whenever we mention the term ”graph approach” we mean
K-Nearest Neighbors or Minimum Spanning Tree for label propagation.

4.2.1 Finding neighbors using K-Nearest Neighbors (k-NN)

When a new micro-cluster mcnew is created, the algorithm calculates the distances be-
tween all existing micro-clusters and mcnew. The k micro-clusters with the shortest
distance to mcnew are defined as its neighbors. k is set as a hyper parameter. The
distance between two micro-clusters is the euclidean distance between their centers.

4.2.2 Finding neighbors using a Minimum Spanning Tree (MST)

A Minimum Spanning Tree is a graph that connects all vertices in a way such that the
sum of the edge weights is minimal. In our case the graph vertices are the micro-clusters
and the edge weights are the euclidean distances between the micro-clusters’ centers.
In a first step, we compute the distances between every possible pair of micro-clusters
and create a fully connected graph. In the second step, we apply the Prim’s algorithm
to build the MST. Prim’s algorithm is faster in dense graphs than Kruskal’s algorithm.
The neighbors of a micro-cluster are all micro-clusters that are connected to it by an edge.

Figure 4.1 illustrates the differences in defining the neighbors of a micro-cluster for
the different graph approaches. The blue micro-clusters are the existing ones, the grey
micro-cluster denotes mcnew. The black lines are the edges in the graph. The thick lines
define the edges to mcnew’s neighbors. According to the MST, mcnew has two neighbors

20

4.2. PROPAGATING LABELS 21

from which the class label information is inherited. 1-NN only defines the closest micro-
cluster as a neighbor, 2-NN the two closest micro-clusters and 3-NN defines all three 3
micro-clusters as neighbors. In this case MST and 2-NN do not create the same graph,
but the resulting neighbors are the same.

MST 1-NN 2-NN 3-NN

Figure 4.1: Illustration of different graph approaches for finding
neighboring micro-clusters. Neighbors are searched for
the grey micro-cluster. Found neighbors are connect by
a thick line. All lines together denote the graph

4.2.3 Propagating labels from neighbors to new micro-cluster

Once the set of neighbors is defined, the new micro-cluster can inherit the class labels
from its neighbors. We apply a distance decay function, so that class labels from close
micro-clusters weigh more than those from distant micro-clusters.

Figure 4.2 shows three situations. Situation (1) shows the initial situation before a
new micro-cluster is created. There are three named micro-clusters K, L and M . All
the micro-clusters contain class weights for two classes . The class weights are denoted
by the numbers in the micro-clusters. Let’s assume the classes are called class A and
class B. Class weights are named cwA for class A and cwB for class B or in general cw
when referring to all class weights of a micro-cluster. cwA(K) denotes the class weight
A for micro-cluster K, which is 16. If class A outweighs class B the micro-cluster is
colored blue. Otherwise it is colored red. Then, a Minimum Spanning Tree with the
three micro-clusters is created. Neighbors are connected by an edge with edge weights
representing the distance between neighboring micro-clusters.

In Situation (1a) a new micro-cluster mcnew is created between the micro-clusters
K and L. The distance to micro-cluster K is 1, the distance to micro-cluster L is 2.

21

22
CHAPTER 4. SSDENSTREAM: AN APPROACH FOR SEMI-SUPERVISED

BINARY STREAM CLASSIFICATION

mcnew was created because a data sample could not been assigned to an existing micro-
cluster. This data sample has a weight of 1 and is unlabeled, thus class label information
from neighboring micro-clusters is required. The exact calculation steps for the label
propagation are illustrated for this example. Figure 4.2 contains a short version of the
calculation steps. On the following page, they are explained in more details.

16 : 4

2 : 8

3 : 7

3

(1)

16 : 4

2 : 8

3 : 7

1.5

1.5

(1b)

0.5 : 0.5

16 : 4

2 : 8

3 : 7

1

2

(1a)

0.6 : 0.4

1) norm(16 : 4) = 0.8 : 0.2
2) (0.8 : 0.2) * 0.5 = 0.4 : 0.1

2) (0.2 : 0.8) * (0.5) * (0.5) = 0.05 : 0.2
1) norm(2 : 8) = 0.2 : 0.8

3) (0.4 : 0.1) + (0.05 : 0.2) = 0.45 : 0.3
4) norm(0.45 : 0.3) = 0.6 : 0.4

K

L
M

0.4 : 0.1

0.05 : 0.2

Figure 4.2: Propagating class weights to the new micro-cluster

22

4.2. PROPAGATING LABELS 23

1. The class weights of the neighbors (micro-clusters K and L) are normalized. Due
to the normalization, heavy micro-clusters have not more influence than light ones.
Otherwise minor classes in imbalanced data sets will be easily overruled. The terms
heavy and light refer to the weight of a micro-cluster.

norm(cw(K)) = norm(16 : 4) = 0.8 : 0.2 (4.15)

norm(cw(L)) = norm(2 : 8) = 0.2 : 0.8 (4.16)

2. The normalized class weights are propagated to the new micro-cluster. There is
a distance decay function d decay applied to the class weights. Distance decay in
this example is 50% after distance d of 1, i.e. the weight loses half of its influence
after a distance of 1.

d decay(d) = 0.5d (4.17)

norm(cw(K)) ∗ d decay(1) = (0.8 : 0.2) ∗ (0.5)1 = 0.4 : 0.1 (4.18)

norm(cw(L)) ∗ d decay(2) = (0.2 : 0.8) ∗ (0.5)2 = 0.05 : 0.2 (4.19)

3. The propagated class weights of all neighbors are summed up.

(0.4 : 0.1) + (0.05 : 0.2) = 0.45 : 0.3 (4.20)

4. The sum is normalized. Total weight must sum up to 1 because this is the weight
of the data sample assigned to mcnew.

norm(0.45 : 0.3) = 0.6 : 0.4 (4.21)

cwA(mcnew) = 0.6 (4.22)

cwB(mcnew) = 0.4 (4.23)

Situation (1b) is similar to situation (1a) except for the coordinates of mcnew. In this
example, mcnew is located exactly in the middle between the micro-clusters K and L.
As these two micro-clusters have an exact opposite class weight ratio and the distances
to mcnew are identical, the propagated class weights result in 0.5 : 0.5. Calculation
steps are not further explained as they follow the same logic as in situation (1a). Label
propagation is only depending on the pureness of micro-clusters (ratio of class weights)
and the distance between micro-clusters.

For demonstrating how the label propagation works we chose distances and distance
decay such that the examples are easy to calculate. The implementation of SSDen-
Stream does not contain any static distance decays. We use two different distance decay
approaches for k-NN and MST. When working with k-NN, distance decay is depending
on the distance dmin of mcnew to its closest neighbor. Propagated class weights loose
50% of their influence after a distance of dmin. When using a MST, the distance decay is
depending on the median length dmed of all edges in the MST. After a distance of dmed
the propagated class weights loose 50% of their weight. We did not investigate further
distance decay functions and leave this for future work.

23

24
CHAPTER 4. SSDENSTREAM: AN APPROACH FOR SEMI-SUPERVISED

BINARY STREAM CLASSIFICATION

4.3 Classifying unlabeled sample

In Section 4.1 we explained how the micro-clusters store the available class label informa-
tion. This is done for all incoming labeled samples. If an unlabeled sample is assigned to
a micro-cluster, the stored information is used to classify it. The class weights contained
in the Class Weight Dictionary of the corresponding micro-cluster are normalized such
that the sum of all weights is 1. The resulting weights for each class are the final prob-
abilities of the unlabeled sample belonging to the related class. The following example
uses the Class Weight Dictionary of equation 4.14.

norm(cwA) =
0.375

1.875
= 0.2 (4.24)

norm(cwB) =
1.5

1.875
= 0.8 (4.25)

The sample is soft classified with the probability of 0.2 to belong to class A and
probability of 0.8 to belong to class B. If hard classification is required the probabilities
are rounded and thus the sample will be classified as class B.

4.4 Finding Neighbors Using MST vs. k-NN

There are some important differences in using k-NN or a MST for finding the neighbors
of a micro-cluster. We state them in this section and use some examples to illustrate
them.

The run time of both approaches is depending on the number of existing micro-clusters
and on the frequency of creating new micro-clusters. Searching for K-Nearest Neighbors
is done in linear run time because the distance from the new micro-cluster to every
other has to be computed. Creating a MST has a quadratic run time because in the first
step a fully connected graph has to be built by calculating the distances between every
pair of micro-clusters. In addition, the Prim’s algorithm for creating the MST from the
fully connected graph has a quadratic run time as well. [Hassani et al., 2016] presents
a technique which can be used to reduce the computation time for our MST approach.
Due to lack of time we leave the implementation of it as future work.

Another difference between MST and k-NN is that k-NN brings an additional hyper
parameter that must be tuned. Choosing the correct number of neighbors k has a
great impact on the results. Creating a MST is not depending on any further hyper
parameters.

Figure 4.3 shows two well separated round clusters and an illustration of micro-clusters
connected by a MST. In this example, using 1-NN will always outperform the MST
approach. The run time is much better and there won’t be any edges connecting two
micro-clusters of different classes.

Figure 4.4 shows a more complicated scenario. There are two overlapping clusters. If
a new micro-cluster in the overlapping part of the clusters is created and 1-NN is used,

24

4.4. FINDING NEIGHBORS USING MST VS. K-NN 25

1

1

1

1

2

1

1

Figure 4.3: Two well separated clusters and its illustration as
micro-clusters connected by a MST

there is a high chance that it will be connected to a micro-cluster of the wrong class.
If this neighbor has a pure ratio of class weights, the new micro-cluster will be pure as
well. This will result in a classification of samples, that look confident but that will be
completely wrong. Using a higher number for k can flatten this error by propagating
the class weights of several neighbors. But choosing k too high will have a negative
influence too, as micro-clusters in non-overlapping areas will be connected to opposite
class micro-clusters. A MST does not have this problem of finding the correct hyper
parameter k.

1 1 1 1

1

1

0.5

0.5

Figure 4.4: Two overlapping clusters and its illustration as micro-clusters
connected by a MST

Figure 4.5 shows two clusters with different shapes. Using 1-NN succeeds as long as
there is no overlap at all. Choosing a slightly higher value for k will result in wrong micro-
cluster connections, as k-NN extends the search for neighbors in a circular form. On
the contrary, a MST is able to connect micro-clusters of various shaped clusters. Other
density based clustering algorithms use MST exactly for this reason, e.g. [Campello
et al., 2013] and [Gertrudes et al., 2019].

25

26
CHAPTER 4. SSDENSTREAM: AN APPROACH FOR SEMI-SUPERVISED

BINARY STREAM CLASSIFICATION

1

1

1

1

2

1

1

Figure 4.5: Two differently shaped clusters and its illustration as
micro-clusters connected by a MST

26

5

Evaluation

We conduct three experiments. The first experiment explores the effect of hyper param-
eters on the method performance. The second experiment compares the performance of
the different graph approaches for label propagation. The last experiment compares SS-
DenStream to state-of-the-art algorithms. Section 5.1 describes the experimental setup
including a presentation of the used data sets. Sections 5.2, 5.3 and 5.4 present the three
experiments and their results. Section 5.5 describes how we apply SSDenStream to the
use case of Wikidata vandalism detection.

For the sake of reproducibility the scripts to create and prepare the data sets, the data
sets themselves, all hyper parameter combinations used for grid search and the finally
chosen hyper parameters are stored in the GitLab repository. We do not provide the
URL to the repository because it is not public.

5.1 Experimental Setup

In this section, we present the setup of our experiments. Section 5.1.1 explains how
and why we split our data sets. Section 5.1.2 presents the data sets we use for our
experiments. In Section 5.1.3 we explain the configuration of SSDenStream. Section
5.1.4 describes the evaluation metrics we use.

5.1.1 Data Set Split

We split all data sets into a train, validation and test set. The train set is relatively small
and is used to create initial micro-clusters with class label information. This is achieved
by running SSDenStream on the fully labeled train set. The remaining data is split into
validation and test set. We run grid search on the validation set to find a proper hyper
parameter configuration. The validation set must be big enough to successfully find good
hyper parameters. Especially the tuning of decay factor λ needs enough data samples.
Another reason we cannot use a small validation set is the threat of over-fitting. If the
validation set is small, the best results are achieved when each data sample in the train
set belongs to its own micro-cluster. We are able to counteract this trend with a large
validation set. After selecting hyper parameter values we run SSDenStream on the test
data set to evaluate its performance.

28 CHAPTER 5. EVALUATION

We compare the performance of SSDenStream for certain data sets with the perfor-
mance of SVM. We run grid search with 5-fold cross-validation to properly tune SVM’s
hyper parameters. For the 5-fold cross validation we merge the train and validation sets
because this split is not necessary when working with cross validation. Test set remains
the same as for SSDenStream.

5.1.2 Data Sets

We use three different data sets to evaluate the performance of SSDenStream. We
present them in this section.

Overlapping Clusters

We use synthetic 2-dimensional data sets to test the performance of SSDenStream on
simple overlapping clusters. The data sets were created by [Mariescu-Istodor and Zhong,
2016] and can be downloaded1. They are called the G2 data sets, come in nine different
variations and include two clusters with different degrees of overlap. G2-2-10 which has
no overlap at all and G2-2-90 which contains the highest amount of overlap are shown
in Figure 5.1. Figures A.1 and A.2 visualize all nine data sets. Each data set contains
2048 samples evenly distributed between the two classes.

475 500 525 550 575 600 625
x

475

500

525

550

575

600

625

y

G2-2-10
Class 1
Class 2

200 300 400 500 600 700 800 900
x

200

300

400

500

600

700

800

900

y

G2-2-90
Class 1
Class 2

Figure 5.1: Data sets G2-2-10 and G2-2-90 visualized as scatter plots

We split all of the nine data sets with the same approach. Each train set contains
200 samples. The remaining 1848 samples are equally split into validation and test data
set. The train sets contain 100% labeled data, each validation and test set contains 1%
labeled data. Table 5.1 shows an overview of the data sets’ characteristics.

1http://cs.joensuu.fi/sipu/datasets/ (31.05.2021)

28

http://cs.joensuu.fi/sipu/datasets/

5.1. EXPERIMENTAL SETUP 29

of Samples # of Samples Total Number Labeled
of Class 1 of Class 2 of Samples Data

Train 100 100 200 100%
Validation 462 462 924 1%
Test 462 462 924 1%

Table 5.1: Number of samples in train, validation and test split of
G2 data sets and their ratio of labeled data

Wikidata

We use the data sets from the WSDM Cup 2017’s vandalism detection challenge2 to
evaluate SSDenStream on the Wikidata vandalism task. The data on the website is split
in data sets which contain the chronologically ordered changes done to Wikidata from
October 2012 until June 2016. The changes are assigned to one of two classes: vandalism
and non-vandalism. The two classes are strongly imbalanced. The most recent data sets
have a vandalism rate of about 0.1%.

The data sets contain the Wikidata changes in XML format. We use the code of the
WSDM Cup 2017’s winning team, called Buffaloberry3, to create features. They cre-
ated 95 features, of which 67 are categorical, 4 represent ids and 24 are numerical. We
only use numerical features. There are two numerical features that represent meta data
about the user that initiated the corresponding change at Wikidata. We do not use them
as they induce user bias. These are the remaining 22 features that we use for SSDen-
Stream: alphanumericRatio, amount, badWordRatio, bracketRatio, commentTailLength,
digitRatio, fuzzy partial, fuzzy total, json len, lang prob, languageWordRatio, latinRatio,
longestCharacterSequence, longestWord, lowerCaseRatio, lowerCaseWordRatio, nonLat-
inRatio, punctuationRatio, simbolRatio, upperCaseRatio, upperCaseWordRatio, whites-
paceRatio. [Crescenzi et al., 2017] explains all features in more detail.

Validation set (wdvc16 2016 03) and test set (wdvc16 2016 05) are already given by
the WSDM Cup 2017. We use two different train sets. One contains all the data from
the data set called wdvc16 2016 01. The second train set is more balanced. We take all
vandalism attempts from wdvc16 2016 01 and randomly select non-vandalism samples
such that it results in a data set that contains a class ratio of one to ten. We call it
wdvc16 2016 01 10%. Table 5.2 gives an overview of these data sets. For an overview
of all data sets published by the WSDM Cup 2017, see Table A.1.

Pulsar Candidates

We test SSDenStream on another real world data set called HUTR2. This data set4 is
introduced by [Lyon et al., 2016]. It contains data about pulsar candidates. A pulsar

2https://www.wsdm-cup-2017.org/vandalism-detection.html (01.06.2021)
3https://github.com/wsdm-cup-2017/buffaloberry (01.06.2021)
4http://archive.ics.uci.edu/ml/datasets/HTRU2 (01.06.2021)

29

https://www.wsdm-cup-2017.org/vandalism-detection.html
https://github.com/wsdm-cup-2017/buffaloberry
http://archive.ics.uci.edu/ml/datasets/HTRU2

30 CHAPTER 5. EVALUATION

Total number # of Vand. Vandalism Labeled
of Samples Samples Rate Data

Train (wdvc16 2016 01) 9’336’013 9’551 0.10% 100%
Train 1:10 (wdvc16 2016 01 10%) 95’510 9’551 10% 100%
Validation (wdvc16 2016 03) 7’214’141 10’784 0.15% 1%
Test (wdvc16 2016 05) 10’433’991 11’043 0.11% 1%

Table 5.2: Key figures of Wikidata train, validation and test sets

is a certain type of star. The data set contains 17898 samples of which 1639 are pulsar
candidates. There are eight features which are all numeric. Further feature processing
is not required. [Lyon et al., 2016] presents an experiment that is run on a train set
containing 200 samples of both classes. The experiment is repeated 500 times and for
each run the train set is sampled randomly. Thus we cannot use the exact same train,
validation and test sets because they are not reproducible. We decide to use the same
size and same class balance in the train set as is presented by [Lyon et al., 2016]. The test
set contains 50% of all data samples. The remaining 8549 samples are used as validation
set. Table 5.3 gives an overview of the different data splits.

Total number # of Pulsar Pulsar Labeled
of Samples Candidates Rate Data

Train 400 200 50% 100%
Validation 8549 619 7.2% 1%
Test 8949 820 9.2% 1%

Table 5.3: Overview of HUTR2 train, validation and test sets

5.1.3 SSDenStream Configuration

We evaluate the influence of the hyper parameters half-life time t1/2, maximum radius
ε and minimum cluster size ζ and the different graph approaches on the performance
of SSDenStream. The remaining hyper parameters and configuration options are kept
constant for all experiments.

We set the drift hyper parameters δ and ω to 0. Our focus is not on evaluating
the effectiveness of those two hyper parameters, thus we deactivate the drift hyper
parameters to reduce the number of hyper parameters to tune.

SSDenStream has inherited the functionality of DenStream* to scale the data sam-
ples on the run. There is the choice between Min-Max and Z-Score normalization.
Z-Score normalization works better with normally distributed data. We do not make
any assumptions about the data distribution of our data sets and thus choose Min-Max
normalization. Parameters for the Min-Max normalization are extracted from the train

30

5.2. EXPERIMENT 1 - INFLUENCE OF THE HYPER PARAMETERS 31

set and applied to the validation and test sets.

5.1.4 Evaluation Metrics

We select hyper parameter values from the grid search by choosing a combination that
results in a high F1 score and in a low run time. Often there are several hyper parameter
combinations that result in a similar F1 score but which have different run times. A high
run time is the result of having many small micro-clusters or when micro-clusters are
created and deleted often. We do not want to have such a configuration as this indicates
over-fitting or unstable micro-clusters.

We refer to soft classification as when data samples are given a probability of belonging
to a class. The probabilities of all classes together sum up to 1. Hard classification does
not make any use of probabilities.

SSDenStream is able to do soft and hard classification. Soft classification is evaluated
on the G2 data sets. As these data sets are balanced, we use ROC AUC. When evaluating
SSDenStream’s hard classification we use the confusion matrix, precision, recall and F1
score. These are widely used metrics in classification tasks and thus allow us to compare
our results to other studies.

5.2 Experiment 1 - Influence of the Hyper Parameters

In this section, we investigate the influence of the hyper parameters on the performance
of SSDenStream. There are three hyper parameters to tune, besides selecting a graph
approach, namely half-life time t1/2, minimum cluster size ζ and maximum radius ε. ε
defines the radius of a micro-cluster, i.e. the distance a data sample is allowed to have
to a micro-cluster’s center. The bigger ε, the larger a micro-cluster’s radius.
ζ influences two thresholds: (i) the weight threshold that differentiates between o-

micro-clusters and p-micro-clusters and (ii) the weight threshold that defines if an o-
micro-cluster gets deleted. The higher ζ, the higher the weight threshold becomes.
t1/2 determines how fast a micro-cluster is losing importance in form of weight. A

high value for t1/2 states a high half-life time which results in low weight decay.
The hyper parameters determine the granularity with which the available information

in form of labelled data is stored. If we choose large micro-clusters the class labels are
aggregated in few micro-clusters. If we choose small micro-clusters, the vector space
is divided more granularly. If the different classes of the data are well separated and
occupy large areas in the vector space, big micro-clusters can be used. But if the data
is overlapping, smaller micro-clusters are required because we need to distinguish the
vector space’s regions with a higher granularity. The hyper parameters also determine
the adaptability of SSDenStream to changing patterns in the data, for example drifting
data. If the data is static or only barely moving, a high value for t1/2 can be chosen. But
if there is a lot of drift in the data set, the micro-clusters must forget their information
faster, thus selecting a low value for t1/2 makes sense.

31

32 CHAPTER 5. EVALUATION

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.087 0.86 0.93 0.94 0.94 0.94

0.047 0.67 0.9 0.95 0.95 0.94

0.57 0.093 0.097 0.93 0.81 0.93

0.54 0.1 0.059 0.67 0.94 0.78

0 0.57 0.1 0.61 0.34 0.93

0 0.54 0.52 0.034 0.079 0.16

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.69 0.88 0.93 0.93 0.93 0.92

0.075 0.38 0.87 0.95 0.93 0.93

0 0.1 0.9 0.88 0.92 0.94

0 0 0.086 0.84 0.95 0.93

0 0 0.059 0.099 0.88 0.91

0 0 0 0.099 0.87 0.91

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.59 0.93 0.9 0.9 0.9 0.9

0.21 0.87 0.83 0.87 0.88 0.88

0 0.77 0.95 0.9 0.89 0.9

0 0 0.72 0.89 0.87 0.89

0 0 0 0.93 0.91 0.87

0 0 0.52 0.83 0.94 0.86

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.55 0.76 0.74 0.77 0.77 0.76

0.74 0.74 0.73 0.84 0.88 0.88

0 0.8 0.79 0.77 0.77 0.77

0 0.82 0.89 0.74 0.88 0.89

0 0 0.94 0.68 0.58 0.91

0 0.25 0.013 0.72 0.7 0.73

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.77 0.87 0.78 0.78 0.77 0.78

0.81 0.85 0.86 0.86 0.87 0.87

0 0.013 0.55 0.56 0.56 0.57

0 0.0086 0.0043 0.53 0.0086 0.36

0 0.0086 0.0086 0.03 0.45 0.49

0 0.0086 0.0086 0.042 0.15 0.38

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: F1 scores for all hyper parameter combinations of the
grid search done on G2-2-40 with 1-NN

32

5.2. EXPERIMENT 1 - INFLUENCE OF THE HYPER PARAMETERS 33

Figure 5.2 shows the different F1 scores for all hyper parameter combinations that
were examined during grid search for SSDenStream with 1-NN on the G2-2-40 data set.
One heat map shows the results for all combinations of ζ and t1/2 for a fixed value of
ε. One tile contains the result of one hyper parameter configuration. A tile which is
located bottom left in the heat map represents a configuration that creates short-living
micro-clusters. The more top right a configuration, the more stable and long-living the
micro-clusters. They lose weight slowly and must fall below a small weight threshold to
be deleted.

We observe that for ε = 0.01, especially attempts in the upper right corner are suc-
cessful. For an increasing ε, more short-living micro-clusters are also viable and the heat
map turns blue from the top right towards the bottom left, indicating good results. This
makes sense because with a larger ε the micro cluster’s area and thus the inflow of data
samples grows. The micro-cluster can thus hold enough weight not to be deleted.

Above a certain value of ε, the quality of the classification decreases again. The
radius of the micro-clusters becomes too large and thus overlapping regions are no longer
clearly delimited. The data set G2-2-40 has only a small area of overlapping clusters. If
the micro-clusters are larger than this overlapping area, data points which are actually
located in the pure part of the cluster are added to these impure micro-clusters.

There are combinations that let SSDenStream fully fail. This is the case when the
micro-clusters are created and deleted more often than new class labels appear. There
will be micro-clusters with no class label information at all and therefore the incoming
data samples cannot be classified. In this case, the run is considered failed and is assigned
an F1 score of 0.

This illustration states the dependence and influence of the different parameters on
each other and on the results. A good result can only be achieved if all three parameters
are set properly. Working on a 2-dimensional data set is easy, because data can be
displayed. With some experience a range of proper hyper parameter values can be
estimated. Working with high dimensional data is much harder because we cannot
display it and get an estimation of the data distribution. Therefore grid search is required
to find optimal values for the hyper parameters.

Table 5.4 shows the hyper parameters for the G2 data sets that were found to work
good for all further examined graph approaches. The results of the G2 data sets that are
presented in the following sections are computed with these hyper parameters. Half-life
time is set to 1000 for the most of the data sets which is high compared to the size of the
data sets. This states that there is no drift in the data. Generally, it can be said that the
combinations of ζ and ε prefer lower values with increasing cluster overlap. This results
in higher granularity. More granularity in strongly overlapping clusters makes sense as
the regions must be distinguished more precisely.

Our analysis shows that there exists a range for the hyper parameter values for which
SSDenStream achieves good results. On all nine G2 data sets SSDenStream performs
reliably for ζ ≤ 5, t1/2 ≥ 500 and 0.03 ≤ ε ≤ 0.05 (see Appendix B.1). But this does not
guarantee that they work on other data sets as well. The characteristics of a data set
determine which range of values will work. For example the data distribution, number
of clusters, dimensionality, the size of the data set, or the degree of drift in the data play

33

34 CHAPTER 5. EVALUATION

Data Set Half-Life Time t1/2 Minimum Cluster Size ζ Maximum Radius ε

G2-2-10 500 5 0.15
G2-2-20 500 5 0.15
G2-2-30 1000 5 0.15
G2-2-40 1000 10 0.03
G2-2-50 1000 5 0.03
G2-2-60 1000 5 0.03
G2-2-70 1000 5 0.03
G2-2-80 1000 2 0.03
G2-2-90 250 1 0.05

Table 5.4: Selected hyper parameters for the different G2 data sets

all an important role.

We do not discuss the selected hyper parameters for the two other data sets as the data
sets are high dimensional and cannot be visualized. Thus we cannot draw a comparison
between the parameters and the shape of the clusters in the data sets.

5.3 Experiment 2 - Comparing Different Graph Approaches

In Section 4.4 we argue that using MST prevents new micro-clusters in overlapping areas
from being labeled completely wrong by connecting it to several neighbors. We also state
that this can be achieved by using k-NN with k > 1. But if we choose a value for k that
is too big, it results in poor performance as it unites the class label weights of too many
micro-clusters and therefore generalizes the distribution of the data samples too much.
From these statements, we derive the following three hypotheses:

Hypothesis 1 MST outperforms 1-NN on overlapping clusters.

Hypothesis 2 MST outperforms 5-NN on overlapping clusters.

Hypothesis 3 There exist values for k such that MST and k-NN achieve similar
results on overlapping clusters.

We run SSDenStream with four different graph approaches on the G2 data sets and
compare their performance. We evaluate their performance using ROC-AUC for soft
classification and the F1 score for hard classification. Figures 5.3 and 5.4 show the
results for this experiment.

For soft classification MST achieves better results on all nine data sets compared to
1-NN, thus Hypothesis 1 holds. Using 2-NN or 5-NN achieves similar results as MST
and therefore Hypothesis 3 holds. We are surprised that 5-NN performs that good. We
expected the value to be too high for k and thus it should perform worse than MST
or 2-NN. These results indicate that k-NN performs stable with 1 < k <= 5 on soft

34

5.3. EXPERIMENT 2 - COMPARING DIFFERENT GRAPH APPROACHES 35

10 20 30 40 50 60 70 80 90
Cluster Overlap Degree

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
RO

C-
AU

C
MST
1-NN
2-NN
5-NN

Figure 5.3: ROC-AUC for different graph approaches on the G2
data sets

classification for trivial cluster shapes. Therefore Hypothesis 2 does not hold. Further
experiments have to be executed to examine what values of k let the performance of
k-NN decrease.

Comparing the performances on hard classification (Figure 5.4) results in a different
picture. Surprisingly, 1-NN achieves the best results on all data sets. MST and 2-NN
perform similar where as 5-NN performs the worst. Thus Hypothesis 1 does not hold
for hard classification but Hypothesis 3 and 2 do.

We cannot explain the differences in the performance of 1-NN with full certainty
but present the following hypothesis. In overlapping clusters there exist areas where
samples of both classes occur with the same frequency. This leads to micro-clusters with
class weight ratios of about 0.5 : 0.5. The higher the value of k, the larger must this
area become because the label weight information of more micro-clusters are aggregated
when a new micro-cluster is created. For soft classification this aggregation seems to be
of advantage but hard classification achieves higher results when this area is kept as small
as possible (k = 1). Further analysis is required to fully understand this phenomena.
We leave this for future work.

35

36 CHAPTER 5. EVALUATION

10 20 30 40 50 60 70 80 90
Cluster Overlap Degree

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

MST
1-NN
2-NN
5-NN

Figure 5.4: F1 scores for different graph approaches on the G2 data
sets

5.4 Experiment 3 - Comparing SSDenStream to State-of-the-

Art Algorithms

We want to compare the performance of SSDenStream with a supervised offline state-
of-the-art algorithm to see if the performances correlate. If they correlate, it means that
the principle of SSDenStream works and the performances are not random. Since the
G2 and HUTR2 data sets do not contain drifting data, the state-of-the-art algorithm
should perform better.

Hypothesis 4 SSDenStream performs worse than supervised offline state-of-the-art
algorithms.

We compare the results of the G2 data sets with the performance of SVM. SVM works
with numerical features and depends on the local separation of the two classes in the
vector space. Thus the performance of SVM should decrease with increasing overlap of
the clusters. This makes it easy to compare its results with those of SSDenStream. We
also use SVM as a comparison to SSDenStream on the HUTR2 data set, as proposed
by [Lyon et al., 2016]. We cannot directly compare our results to those of [Lyon et al.,
2016] because we cannot reproduce their data split.

Figure 5.5 shows the F1 scores of SSDenStream and SVM on the G2 data sets. The
fluctuation in SSDenStream’s curve is bigger compared to the one of SVM. But both
curves have a similar shape. SVM’s curve can be seen as a flattened version of SSDen-
Stream’s curve. For example both curves have a peak at cluster overlap degree 70, the

36

5.4. EXPERIMENT 3 - COMPARING SSDENSTREAM TO STATE-OF-THE-ART
ALGORITHMS 37

10 20 30 40 50 60 70 80 90
Cluster Overlap Degree

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
F1

 S
co

re
SVM
SSDenStream
with 1-NN

Figure 5.5: F1 scores for SVM and SSDenStream on the G2 data
sets

one of SSDenStream is just bigger. There is a correlation between the results of the
two algorithms. SVM achieves better results on all nine data sets. The difference in
performance becomes greater with increasing overlap.

It is possible that the bigger fluctuation in SSDenStream’s curve is linked to the data
split. SSDenStream uses 200 data points for the initial clustering and 924 for validation.
SVM’s cross validation is done on all 1124 data samples and therefore more robust to
the stochasticity introduced by data splits.

F1 Score Precision Recall

SSDenStream 0.84 0.86 0.82
SVM 0.90 0.95 0.85

Table 5.5: Result comparison between SVM and SSDenStream
with 1-NN on the HUTR2 data set

Table 5.5 shows the results of SVM and of SSDenStream on the HUTR2 data set.
SVM produces slightly better results. Especially positive is that SSDenStream realizes
only 3% less recall compared to SVM. This means that SSDenStream detects approxi-
mately the same amount of interesting data samples, in this case pulsar candidates, as
SVM. Again, one has to be aware that SVM uses 8949 data points for the 5-fold cross
validation. The initial clustering of SSDenStream uses only 400 samples. This shows
that SSDenStream achieves decent results even with a small number of labeled samples.

37

38 CHAPTER 5. EVALUATION

But it also indicates that the data set’s features are of high quality. It seems that a large
part of the data points are well separated in the vector space and that it is difficult to
classify the remaining points cleanly.

We confirm Hypothesis 4: SVM outperforms SSDenStream on all data sets. The per-
formance difference is small on data sets with well-separated clusters. The greater the
overlap (the poorer the quality of the features), the greater the performance difference.

This experiment shows that the principle of SSDenStream works. However, there
is still an important experiment missing that examines how it works on drifting data.
Such an experiment is required to prove that SSDenStream inherits the characteristics
of DenStream which allow to process evolving data. There SSDenStream should have
clear advantages over offline supervised state-of-the-arts algorithms like SVM. Due to
time constraints of this thesis we could not perform this experiment and have to leave
it for future work.

5.5 Use Case - Wikidata Vandalism Detection

The motivation behind this project comes from vandalism detection on knowledge bases.
We first apply SSDenStream to the Wikidata data set wdvc16 2016 01. SSDenStream
does not find a single vandalism attempt. As we have shown, the reliability of SSDen-
Stream correlates with the quality of a data set’s features.

Graph Configuration Metric wdvc16 2016 01 wdvc16 2016 01 10%

1-NN
F1 Score 0.00 0.02
Precision 0.00 0.04
Recall 0.00 0.02

SVM
F1 Score - 0.08
Precision - 0.05
Recall - 0.20

Table 5.6: Resulting F1 score, precision and recall of our experiments on the
two Wikidata train sets

Since this data set is very imbalanced, the features must be correspondingly good. We
change the imbalance of the train set to focus on the vandalism attempts. Therefore,
we create wdvc16 2016 01 10%. SSDenStream can correctly classify some vandalism
attempts with this train set, but still performs very poorly.

To check if the poor performance is due to the feature selection or our algorithm, we
apply SVM to it. Also SVM performs poorly: Table 5.6 shows the results in form of F1
score, precision and recall; Table 5.7 shows the confusion matrices. We did not apply
SVM to wdvc16 2016 01 because of its quadratic run time. We conclude from these
results that our feature selection is the reason for the poor performance.

38

5.5. USE CASE - WIKIDATA VANDALISM DETECTION 39

1-NN SVM

Normal Vandalism Normal Vandalism

wdvc16 2016 01
Normal 10’433’984 0 - -
Vandalism 11’043 0 - -

wdvc16 2016 01 10%
Normal 10’429’000 4’977 10’393’685 40’306
Vandalism 10’861 182 8’802 2241

Table 5.7: Confusion matrices of our experiments on the two Wikidata train
sets

Table 5.8 shows the results of team Buffaloberry on the Wikidata vandalism challenge.
Buffaloberry uses a supervised learning algorithm which can process categorical and
numerical data. They use a total of 95 features. Buffaloberry is the winning team of the
competition but still only achieves 26% recall. Around three quarters of all vandalism
attempts are not found. This illustrates how hard the Wikidata vandalism problem is
to solve and that it is not solved yet.

ROC PR Accuarcy Precision Recall F1 Score

Buffaloberry 0.94702 0.45757 0.99909 0.68197 0.26370 0.38033

Table 5.8: Performance of the winning team of the WSDM Cup 2017 on the
Wikidata data set

We propose a detailed feature analysis and if necessary the creation of new features.
Such an evaluation expands the range of algorithms that can be applied to the vandalism
problem.

39

6

Limitations and Future Work

Using SSDenStream with MST is not suitable for data sets where a large number of
micro clusters are created. This is due to the quadratic computation time of a MST.

Our experiments do not contain any data sets with evolving data. We were also not
able to examine the influence of all hyper parameters (distance decay factor) and the
amount of labeled data. There are further experiments required to fully evaluate the
potential of SSDenStream.

The performance of SSDenStream was never compared to any other semi-supervised
stream algorithm. We did not find any running implementation of the algorithms we
introduced in the related work. Thus we compared our results only to SVM.

We use Min-Max normalization in our experiments. Min-Max normalization is not
suitable for evolving data because new minimum or maximum values can appear. When
conducting experiments with drifting data, either a different normalization method must
be used or normalization must be omitted.

We use micro-clusters to map the incoming data stream. However, we have not verified
whether there are other options and what advantages or disadvantages micro-clusters
have compared to those. We do not know whether micro-clusters perform particularly
well in terms of required memory or processing speed.

To overcome some of these limitations and to close knowledge gaps regarding the per-
formance of SSDenStream we propose the following topics for future work.

Drifting Data A characteristic of a data stream is that it can contain evolving data.
Our experiments do not involve any drifting data. Thus we cannot present any results
of SSDenStream on such data. We propose to apply SSDenStream on synthetic and
real world data sets with evolving data. This allows to further investigate the utility of
SSDenStream for real world stream applications.

Impact of Labeled Data The validation and test sets of our experiments always
contained a labeling rate of 1%. We do not know what impact the amount of labeled
data has on the hyper parameter tuning and on the choice of the graph approach. We
suggest to add further experiments with varying amount of labeled data samples. We
recommend to combine these experiments with the exploration of SSDenStream’s utility
on drifting data. The amount of labeled data should have an influence on the ability of

42 CHAPTER 6. LIMITATIONS AND FUTURE WORK

SSDenStream to classify drifting clusters correctly.

Distance Decay Function The distance decay function is used during label propa-
gation. It regulates the influence of a micro cluster to its neighbor based on its distance.
The influence of this distance decay function has not yet been further investigated. We
propose to add further experiments to examine the distance decay function. Maybe it
is possible to find any correlation between the data distribution and the distance decay
function and thus to automatically tune it.

Use Different Underlying Clustering Algorithm We use DenStream as base
algorithm which we extend with a semi-supervised mechanism to classify samples on
the run. We use DenStream’s definition of micro clusters for data aggregation of a
data stream. DenStream has certain drawbacks, for example hierarchical distinction
of clusters is not possible. It is also not able to merge or split micro clusters like in
evolution-based algorithms. We propose to investigate if our semi-supervised extension
can be applied to a more modern density-based stream clustering algorithm. Possible
starting point can be [Hassani et al., 2016].

Multiclass Our experiments were conducted only on binary data sets. Theoretically,
our approach also fits the application area of multiclass problems. We propose to conduct
experiments on multiclass data sets. If the applicability of SSDenStream to multiclass
problems were confirmed, the scope of this application would increase significantly.

Categorical Features Many data sets contain categorical features. SSDenStream,
however, is only able to handle numerical features. In the related work section, we
present [Lin and Lin, 2009] and [Chen and He, 2016] that introduce mechanisms to
extend micro clusters to handle categorical features. We recommend analyzing these
works and extending SSDenStream accordingly. This will increase the applicability of
SSDenStream.

Hyper Parameter Evaluation We use an unconventional train and validation split
for our experiments. The validation set is quite large compared to the train set. One
reason is that an ordinary train and validation split results in over-fitting. If the vali-
dation set is small, the best results can be achieve if each data sample in the train set
has its own micro cluster. We propose to investigate if a new metric can be created
that compares the number of micro clusters to the quality of classification. Good hyper
parameters should produce as precise a classification as possible and at the same time
as few micro clusters as possible.

42

7

Conclusions

Data streams are becoming increasingly important. Methods are needed to evaluate
them continuously. This can be to discover interesting data points or to monitor a
system. It is possible that patterns in the data change over time. However, today’s
solutions are often based on a supervised approach. These cannot adapt to evolving
data. Semi-supervised algorithms are needed to meet this challenge.

We present in this thesis SSDenStream, a semi-supervised stream clustering algorithm
capable of doing online classification. SSDenStream is based on DenStream, an unsu-
pervised stream clustering algorithm. We extend DenStream with a mechanism that is
able to process partially labeled data.

DenStream aggregates the samples of a data stream into micro-clusters. It is able to
recognize clusters in different shapes and distributions. We extend the structure of micro-
clusters to store the class membership of labeled data. This serves as a basis to classify
unlabeled data points. We apply a decay function so that class label information loses
influence over time. This is required so that SSDenStream can react to changing data and
adapt the classifications accordingly. When new micro-clusters emerge, they obtain class
label information from neighboring micro-clusters. We present two different approaches
to define which micro-clusters are adjacent. One uses a Minimum Spanning Tree, and the
second approach relies on K-Nearest Neighbors. We describe the theoretical advantages
and disadvantages of these approaches and evaluate some of those in our experiments.

We perform several experiments to evaluate the potential of SSDenStream. We use a
synthetic data set with overlapping clusters for this purpose. In addition, we evaluate
SSDenStream on two real world data sets. We first show how the hyper parameters are
related. It turns out that correct hyper parameter tuning is essential for SSDenStream
to work. Then we evaluate the performance of MST and k-NN. It turns out that the
higher computation time of MST does not pay off with our data sets.

Finally, we compare the performance of SSDenStream with state-of-the-art algorithms.
It is shown that the performance of SSDenStream correlates with the performance of
SVM. The better the features distinguish the classes of a data set, the better the results
of SSDenStream. SSDenStream performs well on the pulsar candidates data set as well.
SVM outperforms SSDenStream. This is not surprising as SVM is an offline super-
vised algorithm. However, SSDenStream can offer the advantages of a semi-supervised
algorithm.

44 CHAPTER 7. CONCLUSIONS

SSDenStream is an interesting approach for semi-supervised stream classification.
However, more experiments are needed to further evaluate its performance. We sug-
gest several directions that can be pursued to make further progress in the field of
semi-supervised stream classification.

44

References

[Campello et al., 2013] Campello, R. J., Moulavi, D., and Sander, J. (2013). Density-
based clustering based on hierarchical density estimates. In Pacific-Asia conference
on knowledge discovery and data mining, pages 160–172. Springer.

[Cao et al., 2006] Cao, F., Estert, M., Qian, W., and Zhou, A. (2006). Density-based
clustering over an evolving data stream with noise. In Proceedings of the 2006 SIAM
international conference on data mining, pages 328–339. SIAM.

[Chen and He, 2016] Chen, J.-Y. and He, H.-H. (2016). A fast density-based data stream
clustering algorithm with cluster centers self-determined for mixed data. Information
Sciences, 345:271–293.

[Crescenzi et al., 2017] Crescenzi, R., Fernandez, M., Calabria, F. A. G., Albani, P.,
Tauziet, D., Baravalle, A., and D’Ambrosio, A. S. (2017). A production oriented
approach for vandalism detection in wikidata-the buffaloberry vandalism detector at
wsdm cup 2017. arXiv preprint arXiv:1712.06919.

[Ester et al., 1996] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-
based algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231.

[Gertrudes et al., 2019] Gertrudes, J. C., Zimek, A., Sander, J., and Campello, R. J.
(2019). A unified view of density-based methods for semi-supervised clustering and
classification. Data mining and knowledge discovery, 33(6):1894–1952.

[Halkidi et al., 2012] Halkidi, M., Spiliopoulou, M., and Pavlou, A. (2012). A semi-
supervised incremental clustering algorithm for streaming data. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pages 578–590. Springer.

[Hassani, 2015] Hassani, M. (2015). Efficient clustering of big data streams. Apprimus
Wissenschaftsverlag.

[Hassani et al., 2016] Hassani, M., Spaus, P., Cuzzocrea, A., and Seidl, T. (2016). I-
hastream: density-based hierarchical clustering of big data streams and its application
to big graph analytics tools. In 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), pages 656–665. IEEE.

46 References

[Heindorf et al., 2017] Heindorf, S., Potthast, M., Engels, G., and Stein, B. (2017).
Overview of the wikidata vandalism detection task at wsdm cup 2017. arXiv preprint
arXiv:1712.05956.

[Heindorf et al., 2015] Heindorf, S., Potthast, M., Stein, B., and Engels, G. (2015). To-
wards vandalism detection in knowledge bases: Corpus construction and analysis.
In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 831–834.

[Heindorf et al., 2016] Heindorf, S., Potthast, M., Stein, B., and Engels, G. (2016). Van-
dalism detection in wikidata. In Proceedings of the 25th ACM International on Con-
ference on Information and Knowledge Management, pages 327–336.

[Heindorf et al., 2019] Heindorf, S., Scholten, Y., Engels, G., and Potthast, M. (2019).
Debiasing vandalism detection models at wikidata. In The World Wide Web Confer-
ence, pages 670–680.

[Lin and Lin, 2009] Lin, J. and Lin, H. (2009). A density-based clustering over evolving
heterogeneous data stream. In 2009 ISECS international colloquium on computing,
communication, control, and management, volume 4, pages 275–277. IEEE.

[Lyon et al., 2016] Lyon, R. J., Stappers, B., Cooper, S., Brooke, J. M., and Knowles,
J. D. (2016). Fifty years of pulsar candidate selection: from simple filters to a new
principled real-time classification approach. Monthly Notices of the Royal Astronom-
ical Society, 459(1):1104–1123.

[Mariescu-Istodor and Zhong, 2016] Mariescu-Istodor, P. F. R. and Zhong, C. (2016).
Xnn graph. LNCS 10029:207–217.

[Mousavi et al., 2015] Mousavi, M., Bakar, A. A., and Vakilian, M. (2015). Data stream
clustering algorithms: A review. Int J Adv Soft Comput Appl, 7(3):13.

[Neis et al., 2012] Neis, P., Goetz, M., and Zipf, A. (2012). Towards automatic vandal-
ism detection in openstreetmap. ISPRS International Journal of Geo-Information,
1(3):315–332.

[Nishioka and Scherp, 2018] Nishioka, C. and Scherp, A. (2018). Analysing the evolu-
tion of knowledge graphs for the purpose of change verification. In 2018 IEEE 12th
International Conference on Semantic Computing (ICSC), pages 25–32. IEEE.

[Olivieri et al., 2017] Olivieri, A. C., Shabani, S., Sokhn, M., and Cudré-Mauroux, P.
(2017). Assessing data veracity through domain specific knowledge base inspection.
In 2017 International Conference on Advanced Computer Science and Information
Systems (ICACSIS), pages 291–296. IEEE.

[Putina et al., 2018] Putina, A., Rossi, D., Bifet, A., Barth, S., Pletcher, D., Precup,
C., and Nivaggioli, P. (2018). Telemetry-based stream-learning of bgp anomalies. In
Proceedings of the 2018 Workshop on Big Data Analytics and Machine Learning for
Data Communication Networks, pages 15–20.

46

References 47

[Ruiz et al., 2009] Ruiz, C., Menasalvas, E., and Spiliopoulou, M. (2009). C-denstream:
Using domain knowledge on a data stream. In International Conference on Discovery
Science, pages 287–301. Springer.

[Sarabadani et al., 2017] Sarabadani, A., Halfaker, A., and Taraborelli, D. (2017).
Building automated vandalism detection tools for wikidata. In Proceedings of the
26th International Conference on World Wide Web Companion, pages 1647–1654.

[Tan et al., 2014] Tan, C. H., Agichtein, E., Ipeirotis, P., and Gabrilovich, E. (2014).
Trust, but verify: Predicting contribution quality for knowledge base construction
and curation. In Proceedings of the 7th ACM international conference on Web search
and data mining, pages 553–562.

[Treechalong et al., 2015] Treechalong, K., Rakthanmanon, T., and Waiyamai, K.
(2015). Semi-supervised stream clustering using labeled data points. In International
Workshop on Machine Learning and Data Mining in Pattern Recognition, pages 281–
295. Springer.

[Truong et al., 2018] Truong, Q. T., Touya, G., and de Runz, C. (2018). Towards van-
dalism detection in openstreetmap through a data driven approach. In GIScience
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Weber, 2019] Weber, C. (2019). Online anomaly detection on multivariate data streams.
Master’s thesis, University of Zurich.

[Wienand and Paulheim, 2014] Wienand, D. and Paulheim, H. (2014). Detecting in-
correct numerical data in dbpedia. In European Semantic Web Conference, pages
504–518. Springer.

[Xu and Wunsch, 2008] Xu, R. and Wunsch, D. (2008). Clustering, volume 10. John
Wiley & Sons.

47

A

Experiment Data

This appendix provides a more detailed overview of the G2 and Wikidata data sets. The
first section contains the plots for each of the nine G2 data sets. The second section
presents a table which presents key figures of all available data sets from the WSDM
Cup 2017.

A.1 G2 Data Sets

Figures A.1 and A.2 show the plots for all nine G2 data sets.

50 APPENDIX A. EXPERIMENT DATA

475 500 525 550 575 600 625
x

475

500

525

550

575

600

625

y

G2-2-10
Class 1
Class 2

450 500 550 600 650
x

450

500

550

600

650

y

G2-2-20
Class 1
Class 2

400 450 500 550 600 650 700
x

400

450

500

550

600

650

700

y

G2-2-30
Class 1
Class 2

400 450 500 550 600 650 700 750
x

400

450

500

550

600

650

700

y

G2-2-40
Class 1
Class 2

400 500 600 700
x

400

500

600

700

800

y

G2-2-50
Class 1
Class 2

300 400 500 600 700
x

300

400

500

600

700

y

G2-2-60
Class 1
Class 2

Figure A.1: Data sets G2-2-10 to G2-2-60 visualized as scatter plots

50

A.1. G2 DATA SETS 51

300 400 500 600 700 800
x

300

400

500

600

700

800

y

G2-2-70
Class 1
Class 2

300 400 500 600 700 800 900
x

300

400

500

600

700

800

y

G2-2-80
Class 1
Class 2

200 300 400 500 600 700 800 900
x

200

300

400

500

600

700

800

900

y

G2-2-90
Class 1
Class 2

Figure A.2: Data sets G2-2-70 to G2-2-90 visualized as scatter plots

51

52 APPENDIX A. EXPERIMENT DATA

A.2 Wikidata Vandalism Data Sets

Table A.1 shows the number of samples, number of vandalism samples and their ratio
for each data set that is part of the WSDM Cup 2017.

Data Set Name # of Samples # of Vandalism Samples Vandalism Rate

wdvc16 2012 10 264’618 18 0.0068%
wdvc16 2012 11 432’420 289 0.0668%
wdvc16 2013 01 562’204 2’628 0.4674%
wdvc16 2013 03 1’623’142 16’580 1.0215%
wdvc16 2013 05 1’766’531 9’614 0.5442%
wdvc16 2013 07 1’530’703 6’848 0.4474%
wdvc16 2013 09 1’322’024 9’733 0.7362%
wdvc16 2013 11 1’716’302 8’004 0.4664%
wdvc16 2014 01 1’731’642 10’153 0.5863%
wdvc16 2014 03 1’786’761 9’481 0.5306%
wdvc16 2014 05 3’388’967 11’004 0.3247%
wdvc16 2014 07 4’159’129 11’217 0.2697%
wdvc16 2014 09 3’997’261 8’133 0.2035%
wdvc16 2014 11 3’406’975 10’820 0.3176%
wdvc16 2015 01 3’909’428 14’703 0.3761%
wdvc16 2015 03 4’257’680 10’609 0.2492%
wdvc16 2015 05 3’650’018 7’053 0.1932%
wdvc16 2015 07 3’543’306 5’868 0.1656%
wdvc16 2015 09 4’864’681 7’434 0.1528%
wdvc16 2015 11 7’760’154 6’580 0.0848%
wdvc16 2016 01 9’336’013 9’551 0.1023%
wdvc16 2016 03 7’214’141 10’784 0.1494%
wdvc16 2016 05 10’433’991 11’043 0.1058%

Overall 82’658’091 198’147 0.2397%

Table A.1: Vandalism rate per Wikidata vandalism data set

52

B

Evaluation Results

This appendix contains further evaluation results. The first section shows the hyper
parameter heat maps for SSDenStream with 1-NN for all nine G2 data sets. The second
section contains the precision and recall line charts showing the results of different graph
approaches on the G2 data sets. Additionally, all confusion matrices are listed. The third
section shows the confusion matrices of SVM run on the G2 and HUTR2 data sets.

B.1 Hyper Parameter Analysis

This section contains the hyper parameter heat maps for SSDenStream with 1-NN which
was run on all nine G2 data sets.

54 APPENDIX B. EVALUATION RESULTS

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.25 1 1 1 1 1

0.6 0.71 1 1 1 1

0 0.67 0.72 1 1 1

0 0 0.56 1 1 1

0 0 0 0 1 1

0 0 0 0.67 0.9 1

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.64 1 1 1 1 1

0.6 1 1 1 1 1

0 0.7 1 1 1 1

0 0.64 1 1 1 1

0 0 0.64 1 1 1

0 0 0.65 1 1 1

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

1 1 1 1 1 1

0.83 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 0 1 1 1 1

0 0 0.034 1 1 1

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.99 1 1 1 1 1

1 1 1 1 1 1

0.0043 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

1 1 1 1 1 1

1 1 1 1 1 1

0.0043 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.1: F1 scores for all hyper parameters combinations of the
grid search done on G2-2-10 with k-NN | k = 1

54

B.1. HYPER PARAMETER ANALYSIS 55

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.18 1 1 1 1 1

0.6 0.72 1 1 1 1

0 0.56 0.66 1 1 1

0 0 0.51 0.76 1 1

0 0 0 0.68 0.71 1

0 0.64 0 0.53 0.61 1

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.34 1 1 1 1 1

0.63 1 1 1 1 1

0 0.73 1 1 1 1

0 0.51 0.8 1 1 1

0 0 0.51 1 1 1

0 0 0 0.43 1 1

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

1 1 1 1 1 1

0.63 1 1 1 1 1

0 1 1 1 1 1

0 0.63 1 1 1 1

0 0 0.67 1 1 1

0 0 0.66 1 1 1

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.9 0.92 1 1 1 1

0.88 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 0.93 1 1 1 1

0 0.56 1 1 1 1

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

1 1 1 1 1 1

1 1 1 1 1 1

0.0043 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

0 1 1 1 1 1

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.2: F1 scores for all hyper parameters combinations of the
grid search done on G2-2-20 with k-NN | k = 1

55

56 APPENDIX B. EVALUATION RESULTS

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.16 0.87 0.98 0.99 0.99 0.99

0.4 0.12 0.96 0.98 0.98 0.99

0 0.54 0.65 0.97 0.98 0.97

0 0.49 0 0.63 0.98 0.98

0 0 0.49 0.63 0.57 0.98

0 0 0 0.042 0.13 0.95

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.32 0.98 0.97 0.98 0.98 0.98

0.25 0.97 0.96 0.97 0.98 0.98

0 0.05 0.85 0.99 0.98 0.98

0 0 0.62 0.98 0.98 0.98

0 0 0 0.71 0.97 0.98

0 0 0 0.61 0.97 0.98

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.32 0.93 0.98 0.98 0.98 0.98

0.43 0.98 0.98 0.97 0.98 0.98

0 0.96 0.98 0.98 0.97 0.98

0 0.051 0.84 0.98 0.97 0.98

0 0 0.046 0.97 0.99 0.98

0 0 0 0.91 0.98 0.98

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.97 0.88 0.86 0.86 0.87 0.87

0.038 0.87 0.92 0.88 0.92 0.92

0 0.98 0.99 0.98 0.98 0.98

0 0.97 0.98 0.97 0.93 0.93

0 0 0.97 0.97 0.96 0.93

0 0 0.81 0.97 0.95 0.93

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.94 0.89 0.87 0.82 0.82 0.83

0.98 0.66 0.85 0.84 0.84 0.83

0.013 0.98 0.98 0.99 0.99 0.99

0 0.98 0.98 0.021 0.98 0.98

0 0.99 0.98 0 0.0086 0.14

0 0.42 0.98 0.0086 0.98 0.92

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.3: F1 scores for all hyper parameters combinations of the
grid search done on G2-2-30 with k-NN | k = 1

56

B.1. HYPER PARAMETER ANALYSIS 57

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.087 0.86 0.93 0.94 0.94 0.94

0.047 0.67 0.9 0.95 0.95 0.94

0.57 0.093 0.097 0.93 0.81 0.93

0.54 0.1 0.059 0.67 0.94 0.78

0 0.57 0.1 0.61 0.34 0.93

0 0.54 0.52 0.034 0.079 0.16

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.69 0.88 0.93 0.93 0.93 0.92

0.075 0.38 0.87 0.95 0.93 0.93

0 0.1 0.9 0.88 0.92 0.94

0 0 0.086 0.84 0.95 0.93

0 0 0.059 0.099 0.88 0.91

0 0 0 0.099 0.87 0.91

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.59 0.93 0.9 0.9 0.9 0.9

0.21 0.87 0.83 0.87 0.88 0.88

0 0.77 0.95 0.9 0.89 0.9

0 0 0.72 0.89 0.87 0.89

0 0 0 0.93 0.91 0.87

0 0 0.52 0.83 0.94 0.86

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.55 0.76 0.74 0.77 0.77 0.76

0.74 0.74 0.73 0.84 0.88 0.88

0 0.8 0.79 0.77 0.77 0.77

0 0.82 0.89 0.74 0.88 0.89

0 0 0.94 0.68 0.58 0.91

0 0.25 0.013 0.72 0.7 0.73

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.77 0.87 0.78 0.78 0.77 0.78

0.81 0.85 0.86 0.86 0.87 0.87

0 0.013 0.55 0.56 0.56 0.57

0 0.0086 0.0043 0.53 0.0086 0.36

0 0.0086 0.0086 0.03 0.45 0.49

0 0.0086 0.0086 0.042 0.15 0.38

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.4: F1 scores for all hyper parameters combinations of the
grid search done on G2-2-40 with k-NN | k = 1

57

58 APPENDIX B. EVALUATION RESULTS

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.14 0.9 0.87 0.85 0.84 0.84

0.4 0.03 0.82 0.73 0.85 0.84

0 0.54 0.64 0.64 0.82 0.85

0 0.49 0.24 0.67 0.7 0.86

0 0 0.49 0.038 0.69 0.78

0 0 0.52 0.29 0.094 0.7

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.28 0.7 0.77 0.77 0.76 0.77

0.4 0.73 0.72 0.75 0.76 0.76

0 0.71 0.54 0.67 0.68 0.78

0 0 0.55 0.8 0.62 0.69

0 0 0 0.74 0.7 0.6

0 0 0 0.58 0.79 0.82

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.03 0.57 0.7 0.69 0.67 0.67

0.27 0.82 0.53 0.7 0.68 0.68

0 0.23 0.81 0.52 0.6 0.66

0 0.52 0.72 0.84 0.65 0.62

0 0 0.52 0.29 0.85 0.67

0 0 0 0.0086 0.73 0.8

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.76 0.44 0.46 0.31 0.29 0.26

0.034 0.0043 0.34 0.22 0.25 0.25

0 0 0 0.14 0.2 0.16

0 0.026 0 0 0.017 0.15

0 0 0.026 0.42 0.067 0.038

0 0 0.0043 0 0.071 0.12

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.28 0.67 0.64 0.6 0.6 0.61

0.78 0 0 0 0 0

0 0 0.3 0 0 0

0 0 0 0 0 0.22

0 0 0 0 0.042 0.4

0 0.0043 0 0.0086 0.067 0.31

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.5: F1 scores for all hyper parameters combinations of the
grid search done on G2-2-50 with k-NN | k = 1

58

B.1. HYPER PARAMETER ANALYSIS 59

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.14 0.82 0.83 0.83 0.83 0.83

0.63 0.68 0.59 0.87 0.85 0.82

0 0.087 0.26 0.7 0.85 0.85

0 0.52 0.12 0.45 0.73 0.78

0 0 0.52 0.67 0.58 0.76

0 0 0.52 0.042 0.15 0.59

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.046 0.68 0.77 0.78 0.76 0.76

0.3 0.67 0.74 0.75 0.77 0.78

0 0.32 0.22 0.79 0.79 0.77

0 0 0.17 0.16 0.73 0.74

0 0 0 0.57 0.7 0.76

0 0 0 0.021 0.31 0.79

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.12 0.74 0.74 0.77 0.74 0.75

0.051 0.19 0.71 0.72 0.72 0.73

0 0.05 0.021 0.67 0.72 0.7

0 0.098 0.14 0.59 0.73 0.73

0 0 0.098 0.021 0.5 0.72

0 0 0 0.0086 0.43 0.7

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.056 0.63 0.67 0.58 0.6 0.58

0.025 0.56 0.63 0.62 0.67 0.67

0 0 0.52 0.58 0.6 0.6

0 0.0043 0.5 0.34 0.48 0.49

0 0.22 0 0.59 0.56 0.57

0 0 0 0.17 0.58 0.6

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.057 0.47 0.44 0.3 0.29 0.28

0.0043 0.45 0 0 0.53 0.65

0.0043 0 0 0 0.49 0.59

0 0 0 0.54 0.51 0.34

0 0 0 0.026 0.43 0.46

0 0.013 0 0 0.082 0.4

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.6: F1 scores for all hyper parameters combinations of the
grid search done on G2-2-60 with k-NN | k = 1

59

60 APPENDIX B. EVALUATION RESULTS

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.66 0.65 0.81 0.78 0.78 0.78

0.52 0.11 0.68 0.76 0.78 0.78

0 0.49 0.52 0.67 0.73 0.78

0 0.65 0.66 0.54 0.66 0.76

0 0 0.65 0.6 0.68 0.58

0 0.52 0 0.52 0.13 0.64

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.67 0.75 0.72 0.73 0.73 0.73

0.52 0.15 0.59 0.73 0.76 0.76

0 0.66 0.67 0.68 0.71 0.75

0 0 0.6 0.73 0.67 0.71

0 0 0 0.12 0.6 0.6

0 0 0 0.66 0.16 0.63

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.013 0.63 0.7 0.7 0.69 0.68

0.21 0.6 0.66 0.68 0.71 0.71

0 0.15 0.31 0.63 0.63 0.58

0 0.66 0.53 0.51 0.63 0.64

0 0 0.66 0.72 0.49 0.61

0 0 0 0.12 0.47 0.63

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.2 0.58 0.59 0.48 0.47 0.49

0.021 0.35 0.62 0.47 0.49 0.55

0 0.61 0.51 0.5 0.58 0.59

0 0.017 0.52 0.42 0.45 0.52

0 0.021 0.021 0.51 0.39 0.54

0 0 0.013 0.44 0.29 0.42

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.45 0.4 0 0 0 0

0.013 0.44 0 0 0 0

0 0.03 0 0.0043 0.0043 0.0043

0 0.026 0.013 0 0.017 0.038

0 0.021 0.017 0.0086 0 0.055

0 0.025 0.013 0.017 0.0043 0

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.7: F1 scores for all hyper parameters combinations of the
grid search done on G2-2-70 with k-NN | k = 1

60

B.1. HYPER PARAMETER ANALYSIS 61

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.67 0.7 0.67 0.69 0.69 0.69

0.48 0.68 0.43 0.68 0.7 0.68

0 0.53 0.56 0.4 0.58 0.61

0.52 0.53 0 0.67 0.45 0.65

0 0 0.53 0.67 0.56 0.25

0 0 0.52 0.038 0.042 0.098

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.025 0.67 0.58 0.61 0.62 0.62

0.21 0.059 0.43 0.59 0.61 0.64

0 0.51 0.72 0.61 0.58 0.63

0 0 0.5 0.74 0.56 0.63

0 0 0 0.14 0.48 0.58

0 0 0 0 0.082 0.44

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.053 0.58 0.63 0.57 0.54 0.58

0.2 0.071 0.6 0.54 0.48 0.53

0 0.05 0.27 0.41 0.44 0.46

0 0 0.026 0.59 0.46 0.54

0 0 0 0.021 0.31 0.43

0 0 0 0.038 0.44 0.39

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0 0.19 0.25 0.37 0.36 0.35

0.0043 0.31 0 0.14 0.23 0.23

0 0.0086 0 0.46 0.43 0.45

0 0 0 0.36 0.36 0.4

0 0 0 0 0.48 0.13

0 0 0 0 0.32 0.41

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.037 0.41 0.37 0.39 0.29 0.29

0 0 0.18 0.29 0.28 0.26

0.0043 0 0 0.35 0.38 0.41

0 0 0 0 0.24 0.36

0 0 0 0 0.2 0.33

0 0.017 0 0.56 0 0.26

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.8: F1 scores for all hyper parameters combinations of the
grid search done on G2-2-80 with k-NN | k = 1

61

62 APPENDIX B. EVALUATION RESULTS

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.28 0.74 0.71 0.7 0.7 0.7

0.36 0.081 0.51 0.67 0.68 0.7

0.54 0.53 0.61 0.24 0.57 0.65

0 0 0.26 0.64 0.36 0.66

0 0.54 0 0.021 0.67 0.18

0 0 0 0.034 0.067 0.61

Maximum Radius = 0.01

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.038 0.67 0.6 0.6 0.6 0.6

0.36 0.14 0.49 0.59 0.61 0.61

0 0.53 0.66 0.54 0.6 0.61

0 0 0.67 0.6 0.62 0.6

0 0 0 0.67 0.47 0.62

0 0 0 0.66 0.67 0.64

Maximum Radius = 0.03

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0 0.61 0.64 0.63 0.64 0.63

0.52 0.0086 0.41 0.54 0.61 0.62

0 0.4 0.31 0.54 0.58 0.64

0 0.64 0.0043 0.11 0.5 0.54

0 0 0.64 0.5 0.47 0.55

0 0 0.03 0.31 0.42 0.58

Maximum Radius = 0.05

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.16 0.47 0.52 0.36 0.36 0.33

0.22 0.46 0.47 0.54 0.47 0.48

0 0.37 0 0.0043 0.18 0.2

0 0.0043 0.52 0.48 0.45 0.48

0 0 0.013 0.37 0.46 0.47

0 0 0.049 0.48 0.41 0.43

Maximum Radius = 0.1

10.0 50.0 100.0 250.0 500.0 1000.0
Half-Life Time t1/2

1.
01

2.
0

5.
0

10
.0

20
.0

25
.0

M
in

im
um

 C
lu

st
er

 S
ize

0.29 0.36 0.4 0.42 0.43 0.43

0.18 0 0 0 0 0

0.0043 0 0 0 0.0043 0.021

0 0.013 0.0086 0 0 0

0 0.0043 0.017 0 0 0

0 0.0043 0.0086 0 0 0

Maximum Radius = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure B.9: F1 scores for all hyper parameters combinations of the
grid search done on G2-2-90 with k-NN | k = 1

62

B.2. COMPARING THE INFLUENCE OF MST AND K-NN 63

B.2 Comparing the Influence of MST and k-NN

This section contains the performance results of different graph approaches on the G2
data sets in form of precision, recall and the confusion matrices.

10 20 30 40 50 60 70 80 90
Cluster Overlap Degree

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Pr
ec

isi
on

MST
1-NN
2-NN
5-NN

Figure B.10: Precision for different graph approaches on the G2
data sets

10 20 30 40 50 60 70 80 90
Cluster Overlap Degree

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

MST
1-NN
2-NN
5-NN

Figure B.11: Recall for different graph approaches on the G2 data
sets

63

64 APPENDIX B. EVALUATION RESULTS

MST 1-NN 2-NN 5-NN

0 1 0 1 0 1 0 1

G2-2-10
0 462 0 462 0 462 0 462 0
1 0 462 0 462 0 462 0 462

G2-2-20
0 462 0 462 0 462 0 462 0
1 0 462 0 462 0 462 0 462

G2-2-30
0 460 2 460 2 460 2 460 2
1 5 457 5 457 5 457 5 457

G2-2-40
0 457 5 455 7 457 5 457 5
1 61 401 41 421 55 407 101 361

G2-2-50
0 454 8 453 9 455 7 455 7
1 201 261 158 304 199 263 265 197

G2-2-60
0 446 16 440 22 450 12 450 12
1 183 279 176 286 208 254 216 246

G2-2-70
0 407 55 404 58 408 54 413 49
1 131 331 122 340 133 329 180 282

G2-2-80
0 431 31 402 60 425 37 433 29
1 239 223 212 250 237 225 257 205

G2-2-90
0 414 48 414 48 418 44 419 43
1 245 217 244 218 252 210 258 204

Table B.1: Confusion matrices for the G2 data sets for different
graph configurations in SSDenStream

64

B.3. COMPARISON TO STATE OF THE ART 65

B.3 Comparison to State of the Art

This section contains the confusion matrices showing the performance of SVM on the
G2 and HUTR2 data sets.

SVM

Data Set 0 1

G2-2-10
0 462 0
1 0 462

G2-2-20
0 462 0
1 0 462

G2-2-30
0 456 6
1 2 460

G2-2-40
0 445 17
1 14 448

G2-2-50
0 434 28
1 39 423

G2-2-60
0 407 55
1 49 413

G2-2-70
0 371 91
1 37 425

G2-2-80
0 374 88
1 80 382

G2-2-90
0 347 115
1 93 369

Table B.2: Confusion matrices for the G2 data sets classified by
SVM

65

66 APPENDIX B. EVALUATION RESULTS

SVM

Data Set 0 1

HUTR2
0 8094 35
1 127 693

Table B.3: Confusion matrix for the HUTR2 data set classified by
SVM

66

List of Figures

3.1 Illustration of the process of adding samples to a micro-cluster. Blue dots
are samples and the black dot denotes the micro-cluster’s center 11

4.1 Illustration of different graph approaches for finding neighboring micro-
clusters. Neighbors are searched for the grey micro-cluster. Found neigh-
bors are connect by a thick line. All lines together denote the graph . . . 21

4.2 Propagating class weights to the new micro-cluster 22

4.3 Two well separated clusters and its illustration as micro-clusters connected
by a MST . 25

4.4 Two overlapping clusters and its illustration as micro-clusters connected
by a MST . 25

4.5 Two differently shaped clusters and its illustration as micro-clusters con-
nected by a MST . 26

5.1 Data sets G2-2-10 and G2-2-90 visualized as scatter plots 28

5.2 F1 scores for all hyper parameter combinations of the grid search done on
G2-2-40 with 1-NN . 32

5.3 ROC-AUC for different graph approaches on the G2 data sets 35

5.4 F1 scores for different graph approaches on the G2 data sets 36

5.5 F1 scores for SVM and SSDenStream on the G2 data sets 37

A.1 Data sets G2-2-10 to G2-2-60 visualized as scatter plots 50

A.2 Data sets G2-2-70 to G2-2-90 visualized as scatter plots 51

B.1 F1 scores for all hyper parameters combinations of the grid search done
on G2-2-10 with k-NN | k = 1 . 54

B.2 F1 scores for all hyper parameters combinations of the grid search done
on G2-2-20 with k-NN | k = 1 . 55

B.3 F1 scores for all hyper parameters combinations of the grid search done
on G2-2-30 with k-NN | k = 1 . 56

B.4 F1 scores for all hyper parameters combinations of the grid search done
on G2-2-40 with k-NN | k = 1 . 57

B.5 F1 scores for all hyper parameters combinations of the grid search done
on G2-2-50 with k-NN | k = 1 . 58

68 List of Figures

B.6 F1 scores for all hyper parameters combinations of the grid search done
on G2-2-60 with k-NN | k = 1 . 59

B.7 F1 scores for all hyper parameters combinations of the grid search done
on G2-2-70 with k-NN | k = 1 . 60

B.8 F1 scores for all hyper parameters combinations of the grid search done
on G2-2-80 with k-NN | k = 1 . 61

B.9 F1 scores for all hyper parameters combinations of the grid search done
on G2-2-90 with k-NN | k = 1 . 62

B.10 Precision for different graph approaches on the G2 data sets 63
B.11 Recall for different graph approaches on the G2 data sets 63

68

List of Tables

3.1 Key figures of the process illustrated in Figure 3.1 11

5.1 Number of samples in train, validation and test split of G2 data sets and
their ratio of labeled data . 29

5.2 Key figures of Wikidata train, validation and test sets 30
5.3 Overview of HUTR2 train, validation and test sets 30
5.4 Selected hyper parameters for the different G2 data sets 34
5.5 Result comparison between SVM and SSDenStream with 1-NN on the

HUTR2 data set . 37
5.6 Resulting F1 score, precision and recall of our experiments on the two

Wikidata train sets . 38
5.7 Confusion matrices of our experiments on the two Wikidata train sets . . 39
5.8 Performance of the winning team of the WSDM Cup 2017 on the Wikidata

data set . 39

A.1 Vandalism rate per Wikidata vandalism data set 52

B.1 Confusion matrices for the G2 data sets for different graph configurations
in SSDenStream . 64

B.2 Confusion matrices for the G2 data sets classified by SVM 65
B.3 Confusion matrix for the HUTR2 data set classified by SVM 66

List of Algorithms

3.1 DenStream* Implementation . 13

4.1 SSDenStream Implementation . 18

	Introduction
	Motivating Example - Vandalism Detection
	Wikidata Vandalism Detection
	Vandalism Detection for Other Knowledge Bases
	Wrap-Up

	Background and Related Work
	Clustering and Stream Mining
	DenStream
	Further Work Based on DenStream

	SSDenStream: An Approach for Semi-Supervised Binary Stream Classification
	Storing Labels
	Propagating Labels
	Finding neighbors using k-Nearest Neighbors (k-NN)
	Finding neighbors using a Minimum Spanning Tree (MST)
	Propagating labels from neighbors to new micro-cluster

	Classifying unlabeled sample
	Finding Neighbors Using MST vs. k-NN

	Evaluation
	Experimental Setup
	Data Set Split
	Data Sets
	SSDenStream Configuration
	Evaluation Metrics

	Experiment 1 - Influence of the Hyper Parameters
	Experiment 2 - Comparing Different Graph Approaches
	Experiment 3 - Comparing SSDenStream to State-of-the-Art Algorithms
	Use Case - Wikidata Vandalism Detection

	Limitations and Future Work
	Conclusions
	Experiment Data
	G2 Data Sets
	Wikidata Vandalism Data Sets

	Evaluation Results
	Hyper Parameter Analysis
	Comparing the Influence of MST and k-NN
	Comparison to State of the Art

