
Design and Implementation of a
Virtual File System for Hostbased

Moving Target Defence in IoT
Devices

Rinor Sefa
Prizren, Kosovo

Student ID: 19-771-369

Supervisor: Jan von der Assen, Dr. Alberto Huertas Celdran
Date of Submission: October 11, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

M
A

S
T

E
R

T
H

E
S

IS
–

C
om

m
un

ic
at

io
n

S
ys

te
m

s
G

ro
up

,P
ro

f.
D

r.
B

ur
kh

ar
d

S
til

le
r

Master Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Cryptographic ransomware encrypts files and demands a ransom for their decryption.
Ransomware is increasingly targeting Internet of Things (IoT) devices that contain criti-
cal data. Due to limited resources, IoT devices cannot implement resource-intensive pro-
tection mechanisms to defend against ransomware. To provide a lightweight ransomware
protection mechanism for IoT devices, three overlay file systems have been implemented.
The overlay file systems use moving-target defence techniques to hide file type identifi-
cation, increase encryption time, and trap ransomware in infinite directories. The evalu-
ation results show that the implemented overlay file systems provide protection against
ransomware attacks. The main limitations of the overlay file systems are the inability
to distinguish between malicious and non-malicious applications and the performance
overhead for small file sizes.

i

ii

Abstract Deutsch

Kryptografische Ransomware verschlüsselt Dateien und fordert Lösegeld für ihre Entschlüs-
selung. Ransomware zielt zunehmend auf Internet of Things (IoT)-Geräte ab, die kritische
Daten enthalten. Aufgrund begrenzter Ressourcen können IoT-Geräte keine ressourcenin-
tensiven Schutzmechanismen zur Abwehr von Ransomware implementieren. Um einen
einfachen Ransomware-Schutzmechanismus für IoT-Geräte bereitzustellen, wurden drei
Overlay-Dateisysteme implementiert. Die Overlay-Dateisysteme verwenden Moving-Target-
Verteidigungstechniken, um die Dateitypidentifikation zu verbergen, die Verschlüsselungszeit
zu erhöhen und Ransomware in unendlichen Verzeichnissen einzufangen. Die Bewer-
tungsergebnisse zeigen, dass die implementierten Overlay-Dateisysteme Schutz vor Ransomware-
Angriffen bieten. Die Haupteinschränkungen der Overlay-Dateisysteme sind die Un-
fähigkeit, zwischen schädlichen und nicht schädlichen Anwendungen zu unterscheiden,
und der Leistungsaufwand für kleine Dateien.

iii

iv

Acknowledgments

I’d like to thank Jan and Alberto, my thesis advisors, for their guidance. I’d like to thank
Prof. Dr. Burkhard Stiller for giving me the opportunity to complete my master’s thesis
at the Communication Systems Group. I’d like to thank the GoFuse project’s creators
and maintainers for creating and maintaining such a wonderful project. I’d like to thank
the developers of IOzone for creating the tool for evaluating file system performance. I’d
like to thank the authors of the Govdocs1 corpus for their hard work in compiling the
data set. I’d like to thank every author whose work I have referenced. I’d like to express
gratitude to all the lecturers who contributed to my education. I’d like to thank my family
and friends for their continued support. Finally, I would like to thank the family of my
uncle Ferid for supporting my stay in Switzerland.

v

vi

Contents

Abstract i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Thesis Outline . 2

2 Background 3

2.1 Moving Target Defence . 3

2.1.1 Cyberattack Effort Measurement 3

2.1.2 System Attributes and Change Techniques 4

2.2 Malware . 4

2.2.1 Malware Behavior . 4

2.2.2 Malware Analysis . 5

2.3 File System . 6

2.3.1 Building a File System . 6

2.3.2 Malware Interaction with the File System 7

2.4 The Electrosense Project . 7

3 Related Work 9

3.1 Methodology . 9

3.2 Related Research on Moving Target Defence 10

3.3 Related Research on File System Protection Against Ransomware 13

vii

viii CONTENTS

4 System Documentation 15

4.1 Requirement Specification and Analysis . 15

4.1.1 Ransomware Analysis . 15

4.1.2 Requirement Specification . 16

4.2 Design . 17

4.2.1 Infinite Directory Depth . 17

4.2.2 Changing File Type Identification 17

4.2.3 Reduced Read and Write Speeds 18

4.2.4 Directory Name Change . 18

4.2.5 File Identification Change . 18

4.3 Implementation . 19

4.3.1 Overlay File-System . 19

4.3.2 Infinite Directory Depth . 20

4.3.3 Reduced Read/Write Speeds . 22

4.3.4 File Type Change . 25

5 Evaluation 29

5.1 Hardware and Software Specification . 29

5.1.1 File Corpus . 29

5.1.2 Ransomware Selection . 29

5.2 Result . 30

5.3 Performance Overhead . 31

6 Limitations, Future Research 43

6.1 Limitations . 43

6.2 Recommendations for Future Research . 44

7 Conclusion 45

Bibliography 47

CONTENTS ix

List of Figures 51

List of Tables 54

A Appendix A 57

A.1 ACM Full- Text Collection . 57

A.2 IEE . 59

A.3 Springer . 60

x CONTENTS

Chapter 1

Introduction

Ransomware is defined as ”malware that inhibits the use of resources until a ransom,
usually monetary, is paid” [1]. Cryptographic ransomware is a type of ransomware that
encrypts files and then demands payment to decrypt them. Ransomware targets users
of all types, including end users, governments, and hospitals, on a range of platforms
including PCs, workstations, mobile devices, and IoT devices [2]. In press releases [3],
[4], the U.S. Department of Treasury reported that $590 million in ransomware payments
were reported in the U.S. in the first half of 2021, compared to a total of $480 million in
2020, which was more than four times the amount in 2019. While ransomware payments
can be measured, the damages are unmeasurable, as some files lost can not be traded
for monetary value for users. Although research on ransomware defences has advanced,
protection is still necessary because ransomware are continually evolving.

To accomplish ransomware’s goal of encrypting files, cryptographic ransomware interacts
with the file system. The file system is responsible for storing, retrieving, locating, and
manipulating files. This work aims to defend against cryptographic ransomware by lever-
aging the file system and the cyber defence paradigm known as Moving Target Defence.
Moving Target Defence is a cyber defence paradigm that was introduced in 2009 [5]; it aims
to increase the effort required to exploit a vulnerability by changing system attributes,
thereby making the attack surface unpredictable.

To protect against ransomware, three overlay file systems utilising moving target defence
techniques were implemented. The file type file system protects against ransomware that
targets specific file types. The file type file system removes elements that indicate the
type of file, such as the file’s name extension and file’s signature bytes.

The infinite-directory file system is implemented for ransomware that traverses the file
system using a depth-first strategy. The ransomware is trapped in an infinite directory
tree. The files are not encrypted because encryption in a depth first strategy begins after
traversal.

The slow-read-write file system reduces the read and write speeds of encryption. It reduces
the speed by modifying the read and write system call parameters and by minimizing file
system performance enhancements.

1

2 CHAPTER 1. INTRODUCTION

The evaluation result demonstrates that the file-type file system is effective against Ran-
somPoc and DarkRadiation ransomware, as these ransomware use file name extensions to
determine whether a file should be encrypted. The infinite-directory achieves its objec-
tive against RansomPoc and DarkRadiation, as the ransomware were unable to encrypt
files after becoming trapped in the infinite directory tree. The slow-read-write file system
also achieves its goal of increasing the encryption time for DarkRadiation from 1 minute
and 14 seconds to 15 minutes and 7 seconds. Even though the purpose of the slow-read-
write file system is not to protect against encryption, the RansomPoc encrypted files were
recoverable due to the features implemented in the slow-read-write file system.

The main limitation of the implemented file systems is that they cannot distinguish be-
tween malicious and non-malicious applications. Consequently, malicious applications can
also be impacted by the file system’s features. In addition, the implemented file systems
lack the read and write speeds of the default file system. For reading small files, the per-
formance of the default file system is up to 2.9 times greater than that of the implemented
file systems and up to 2.1 times faster for writing small files.

1.1 Thesis Outline

Chapter 2 introduces the topics of moving target defence, malware, file systems, and
the electrosense project. Chapter 3 describes previous work on moving target defence
techniques and ransomware-aware file systems. The requirements, design specifications,
and implementations of the built file systems are documented in Chapter 4. In Chapter 5,
the implemented file systems are evaluated against ransomware and their performance is
compared to the performance of the default file system. Chapter 6 discusses the limitations
of the implemented file systems and the report.

Chapter 2

Background

The objective of the background chapter is to introduce readers to the topics covered in
this report. Topics covered include moving target defence, malware, file systems, and the
Electrosense project.

2.1 Moving Target Defence

Moving Target Defence (MTD) is a cyber defence paradigm first described in the 2009 Na-
tional Cyber Leap Year Summit report [5] by the Networking and Information Technology
Research and Development (NITRD). The MTD aims to increase the work effort needed
to exploit a vulnerability. This aim is to be achieved by changing system attributes,
effectively making the attack surface unpredictable.

2.1.1 Cyberattack Effort Measurement

MTD aims to increase the amount of work required to exploit a vulnerability which can
be determined by analysing the flow of the attack. The cyber kill chain is one model that
describes the flow of a cyberattack. The cyber kill chain is presented through a seven-layer
model in the paper [6].

In the reconnaissance phase, the attacker gathers information about the potential target.
This phase can be broken down into stages of identifying, selecting, and profiling the
target. The goal of this phase is to use the gathered information to design and deliver a
malicious payload. In the weaponization phase, the attacker designs a backdoor and a
penetration plan to successfully deliver the backdoor. In the delivery phase, the attacker
tries to transfer the malware to the target environment. In the exploitation phase, the
attacker attempts to exploit the malware. In the installation phase, the attacker tries
to install the malicious payload. In the command-and-control phase, the attacker gains
remote access to the compromised machine. In the actions and objectives phase, the
attacker takes action to achieve their goals.

3

4 CHAPTER 2. BACKGROUND

Examining the cyber kill chain with the objective of identifying measures that can be
used to determine the amount of work required to exploit a vulnerability is a challenging
task. It is a challenging task because it is not known what is happening on the attacker’s
side. Details such as their level of knowledge, or available resources are not known on the
defender’s side. Once the attack begins on the defender’s side, we can start identifying
measures to determine the effort required to exploit a vulnerability. Depending on what
we are attempting to defend, these measures will vary. In the evaluation section, the
measures for this project are defined.

2.1.2 System Attributes and Change Techniques

MTD aims to achieve its goals of increasing the effort of attacking a system by changing
system attributes. The paper [7] categorises system attributes according to the software
stack model. In addition, techniques for dynamically changing these system attributes
within an MTD system are proposed.

The data layer can be changed using dynamic data techniques. Dynamic data techniques
dynamically change the data format, syntax, encoding, or representation of application
data. The application layer can be changed using dynamic software application tech-
niques. Dynamic software application techniques change the application code by modify-
ing program instructions. The runtime environment layer can be changed using dynamic
runtime environment techniques. Dynamic runtime environment techniques change the
environment presented to an application by the operating system. These techniques in-
clude address space randomization, which dynamically changes the layout of memory.
Instruction set randomization dynamically changes the interface presented to an applica-
tion by the operating system. The operating system layer and part of the hardware layer
can be changed with dynamic platform techniques. These techniques change the platform
properties (e.g., CPU, operating system). The network layer is changed by the dynamic
network techniques. This technique includes protocol and address changes.

Changes in system attributes can occur at a fixed period of time, at random, or in response
to an event [8].

2.2 Malware

Malware is any software that intentionally causes harm. In order to understand how to
defend against malware, the report describes what malware does and how it does it.

2.2.1 Malware Behavior

Based on malware behavior, [9] categorises malicious malware behaviors as:

The behavior of stealing information which compromises users confidentiality. Stolen
information can be used in a variety of ways, such as to access other resources or to

2.2. MALWARE 5

cause harm. Examples of information include passwords, login credentials, private keys,
banking information, and private chats.

The behavior of creating a vulnerability in security is used to gain access to the victim’s
resources. As a result, the integrity of the system is compromised. The vulnerability
can be made in numerous ways, such as when the antivirus protection is turned off, the
software is downgraded, the firewall settings are changed, etc.

The availability of a service is affected by a denial of service behavior. This prevents
legitimate users from using the service. Examples of denial of service are denial of access
(DDos), denial of access attacks, hardware corruption, etc.

The execution behavior of CandC commands. Authors can gain complete control of a
system using the CandC malware. This action jeopardizes the system’s integrity. RATs
are one example of this type of malware.

Deception of user behavior. This behavior compromises the system’s integrity and confi-
dentiality. Phishing and man-in-the-middle attacks are examples of this type of behavior.

Annoying user behavior. This behavior disrupts the normal workflow of the user but
does not compromise the integrity, availability, or confidentiality of the system. Adware,
unwanted pop-ups, etc., are examples of such malware.

Stealing computer resources behavior. This behavior is intended to generate profits. This
behavior compromises the system’s availability and integrity. Cryptominer malware is an
illustration.

Malware designed to cause malicious behavior also causes other behaviors that aid it
in achieving its objective. The paper [9] classifies these behaviors as follows: Evading
analysis in order to remain stealthy. Techniques of evasion include privilege escalation,
logic bombs, etc. Avoiding detection via code obfuscation, fileless malware, network
evasion techniques, etc. Supporting operations-related behaviors, such as communicating
with the CandC and gaining persistence, among others.

2.2.2 Malware Analysis

The knowledge of how malware causes damage can aid in the development of anti-malware
defences. Two types of malware analysis exist: statistical analysis and dynamic analysis.

Static analysis is the process of analysing malware without running it. Techniques such
as string signature, byte-sequence n-grams, syntactic library calls, control flow graphs,
and opcode frequency distribution are utilised [10]. Dynamic analysis is the process of
analysing malware as it is being executed. Dynamic analysis techniques include function
call monitoring, function parameter analysis, information flow tracking, and instruction
traces [10].

6 CHAPTER 2. BACKGROUND

Figure 2.1: FUSE High-level Architecture [12]

2.3 File System

The file system is a component of the operating system. The file system’s responsibility
is to store, retrieve, locate, and manipulate files. Due to the varying task requirements,
different file systems perform these tasks using different implementations.

2.3.1 Building a File System

File systems are implemented within the kernel and the user space of an operating sys-
tem. Due to the complexity of the kernel, the development of file systems seems to be a
challenging task. Such challenges include the complex kernel code and its data structure,
a lack of development tools, kernel code debugging, and error handling [11]. User-space
code is easier to develop, port, and maintain than kernel code [11]. In some cases, user
space-based file systems perform worse than kernel based file systems. When a work-
load contains numerous metadata operations, the performance overhead becomes more
visible [11]. When performing large sustained I/O performance, user-based file systems
achieve comparable performance to kernel file systems [11].

Fuse is a framework for creating user-space file systems for Unix-based operating systems.
Since version 2.6.14, Fuse has been a part of the Linux kernel. Fuse can be used to
implement a desired file system by utilising an application programming interface (API)
composed of file system operations.

Using an application programming interface (API) consisting of file system operations, a
desired file system can be programmed with FUSE.

Fuse includes the FUSE kernel module and the libfuse user system library. The reference
implementation for communicating with the FUSE kernel module is provided by Libfuse.
When an application makes a system call to the FUSE mount point, it is forwarded to the
FUSE kernel. The FUSE kernel then forwards the system call to libfuse, which invokes
a custom callback for the system call operation. The results of the callback are then
returned to libfuse, which passes them through the kernel to the system.

2.4. THE ELECTROSENSE PROJECT 7

Figure 2.2: The Virtual File System [13]

2.3.2 Malware Interaction with the File System

Applications on the Unix platform are called processes. Processes interact with the file
system by making system calls. There are several file system implementations, each with
its own specific details. It would be costly for a process to address them all individually.
To solve this problem, Linux includes a virtual file system. The virtual file system is an
abstraction layer for file system operations, and each file system provides an implemen-
tation of the VFS. VFS implements the calls that a file system would implement in a
generic interface such as open, read, and write.

fd = open(pathname, flags, mode) opens the file specified by the pathname for reading,
writing, or both, depending on the attributes of the flag. The flag also specifies whether
the file should be created if it does not already exist. If the open call creates a file,
the mode argument specifies the file’s permissions. The open system call returns a file
descriptor that is used by subsequent system calls to refer to the file.

numread = read(fd, buffer, count) reads bytes from the file referenced by the file descriptor
and stores them in the buffer. The read returns the number of bytes read.

numwritten = write(fd, buffer, count) writes the specified number of bytes from the buffer
to the file specified by the file descriptor. The write function returns the number of bytes
actually written to the file.

2.4 The Electrosense Project

The Electrosense project uses crowdsourcing to collect and analyse spectrum data from
low-cost sensors in various parts of the world [14]. Software-defined radio (SDR) front
ends and an embedded platform constitute Electorsense sensors. The Raspberry Pi 3 B
model is recommended by Electrosense as an embedded platform.

The Raspberry Pi is a credit card-sized, Linux-based, open-source computer board with
ARM processors. The Electrosense project uses a Raspbian-based image. Raspbian is a
Debian-based operating system designed specifically for the Raspberry Pi hardware.

8 CHAPTER 2. BACKGROUND

Figure 2.3: Raspberry Pi Model B+ [15]

Figure 2.4: Software-Defined Radio [16]

Chapter 3

Related Work

The purpose of this chapter is to provide a summary of previous works related to our
project of using Moving Target Defence techniques to protect against ransomware via
the file system. Beginning the chapter is a description of the method used to discover
related work. The remaining two sections discuss related work on moving target defence
techniques and file systems designed to prevent ransomware.

3.1 Methodology

To ensure the comprehensiveness of the related work, search strategies such as boolean
search, the snowballing technique, and domain-specific literature were utilised.

Boolean search is a technique for defining a specific area of interest in combining keywords
with the logical operators and, or, and not. The IEEE Explore digital library, the ACM
Full-Text Collection, and Springer were used for our literature search. These are the most
comprehensive libraries in the field of computer science. ”Moving target defence” and ”file
system” were the Boolean search phrases.

A review of 23 ACM articles/essays (list Appendix A) revealed that none was relevant.
None of the twelve articles/essays (list Appendix A) reviewed in IEEE explore was rel-
evant. None of the three Springer articles (list Appendix A) reviewed was relevant. A
disadvantage of Boolean search is that the search term may produce false negative re-
sults if an article employs the ”moving target defence” technique without using the term
”moving target defence.”

The snowballing technique is a search technique for finding related works from the bibli-
ographies of articles. The articles chosen for this methodology were moving target defence
focused surveys [7], [17]–[21]. In reviewing the articles, we determined that none were
relevant to our work.

Domain-specific conferences discussing the ”moving target defence” technique. The ACM
Workshop on MTD was the only conference specifically dedicated to MTD. The conference

9

10 CHAPTER 3. RELATED WORK

began in 2014 and is still ongoing. In reviewing 89 papers from conference [22]–[29] no
papers relevant to our work were found.

Despite using three distinct techniques to find related work on our specific topic of employ-
ing moving target defence techniques on a file system to defend against malware, no such
work was found. To gain a better understanding of the subject matter and due to a lack
of existing approaches following similar directions, we changed the objective to include
related work on moving target defence without the file system component and related
work on file system defence against malware without the moving target techniques.

3.2 Related Research on Moving Target Defence

This section discusses how various techniques for moving target defence were implemented.

Dynamic Address Validation Array is a Controller Area Network Bus protocol (CAN Bus).
CAN buses can be found in automobiles, robots, and prosthetic devices. CAN enables
components to communicate with one another. The CAN bus is unable to implement
security mechanisms such as encryption to protect against threats due to the limited
hardware capability of the microcontrollers in the CAN bus and the CAN bus eight-
byte packet messages protocol. DAVA [30] attempts to mitigate security attacks such
as reconnaissance and replay attacks on CAN BUS by employing moving target defence
techniques. CAN bus has a manufacturer-determined ID. In a reconnaissance attack,
an adversary can reuse an ID to communicate with another component. As a result,
an attacker is able to trick another component into performing a task. To prevent such
attacks, DAVA periodically modifies the device ID of CAN nodes, preventing the attacker
from identifying the devices and preventing communication with them.

Nomad [31] is a system designed to prevent malicious web bot activity in web applica-
tions. Malicious web bots engage in a variety of activities, including account registration,
spamming comments, and spamming emails. Such activities have detrimental effects on
a web application. These activities are carried out by malicious bots, which in the pro-
cess extract semantic meanings from HTML elements. This semantic includes the name
and ID parameter values of HTTP form elements utilised by server-side logic. Due to
the dynamic nature of the element, the authors of the paper were able to implement a
randomization technique that prevented malicious web bots from obtaining semantic in-
formation from such elements. For instance, if the ID of an HTML email field is ”email”,
the Noman system will convert this ID to ”random123”. The XRumer, Magic Submitter,
SENuke, UCWCS, and Comment Blaster bots have been stopped from performing mali-
cious activities on login pages, thread posting pages, and comment pages by the NOMAD
system’s randomization method.

The paper [32] presents a method for minimising user tracking through browser fingerprint
techniques. The browser fingerprint method derives from the fact that browsers have
distinct configurations. Websites may use these distinct configurations to distinguish one
browser from another, allowing them to track users for various purposes. The approach
of this paper is to modify the browser configuration proactively so that its fingerprint is

3.2. RELATED RESEARCH ON MOVING TARGET DEFENCE 11

shared with other browsers. As a result, browser fingerprinting will be less effective, as
the configuration of the majority of browsers will be similar.

Solution Attack type What to move? How to move? When to move? Implementation ?

[33], 2011 Unknown attacks Software Stack (Application Layer, Diversification Randomly Ideation
Web Server Layer, OS, Virtualization Layer)

[34], 2011 DoS Network configuration (ip address and routes) Shuffling Fixed period of time Ideation
[35], 2011 Unknown attacks Hardware, operating system Diversification Triggered by an event, Randomly Live
[31], 2013 Malicious bots activities HTML elements Shuffling Triggered by an event Live

(spamming, fake account registration, etc)
[36], 2014 Reconnaissance attacks Operating system Diversification Fixed period time Live
[32], 2019 Browser Fingerprinting Browser configuration Shuffling Triggered by an event Ideation
[37], 2019 Input based attacks Algorithm Diversification Triggered by an event Live
[38], 2020 Memory corruption attacks. Deployment Redundancy, Diversification Triggered by an event Live
[30], 2020 Reconnaissance attack CAN bus Shuffling Fixed period of time Virtual
[39], 2020 Reconnaissance attacks AP range Redundancy Triggered by an event Ideation
[39], 2020 Reconnaissance and physical attacks AP physical location Redundancy Triggered by an event Ideation
[40], 2021 Input based attacks Model Diversification Triggered by an event Live

Table 3.1: Research Overview Related to Moving Target Defence

The paper [35] presents a design for the Trusted Dynamic Logical Heterogeneity Sys-
tem implementation (TALENT). The objective of Talent is to ensure cyber survivability
through platform diversity. It achieves its objectives by sand-boxing the application at the
level of the operating system, including the file system, open files, and network connec-
tions. The application is then portable checkpoint compiled, making it compatible with
multiple architectures and PT platforms. In the paper implementation, 37 combinations
were achieved with a migration time of approximately one second.

Multiple Operating System Rotation Environment is proposed and implemented in the
paper [36]. MORE is an MTD strategy that rotates multiple operating systems. This
technique aims to reduce the likelihood of a reconnaissance attack and restrict the time
an attacker has access to a compromised host. It rotates multiple operating systems using
virtual machines that host WordPress applications and have different Linux distributions.
Using two live and one space IP addresses, the VMS are periodically rotated to become
hosts. The results indicate that vulnerabilities can still be exploited in this environment;
however, a shorter interval between rotations increases protection against their exploita-
tion. In addition, the effect of the availability of the WordPress application is examined.
The test was conducted by using only the metric of packet loss; on average, 2% of packets
were lost per minute, and 0.5% per half-minute rotation.

The paper [34] describes the Mutable Networks or Mute. Mute’s goal is to prevent DoS
attacks from being launched, botnet structures from being created, and network targets
from being discovered. It employs random address hopping, in which network systems are
assigned new addresses frequently based on random functions. In addition, it utilises a
technique known as the ”random fingerprinting approach,” in which responses are altered
to provide a false identity for the operating system and applications. MUTE claims to
protect critical infrastructure against scanning and DoS attacks.

Moving Attack Surfaces (MAS) is an approach presented in the paper [33] for diversifying
web applications. The paper asserts that a single attack surface can be reached and
therefore is insecure. The purpose of this paper is to create as many attack surfaces
as possible. It proposes creating attack surfaces by diversifying each web stack layer.
The stacks would be selected based on the detection of an anomaly or at random. In
addition, the stacks will have a finite lifespan, reducing the window of opportunity for an
attack. The paper diversifies web application code by implementing the web application

12 CHAPTER 3. RELATED WORK

layer using various techniques, such as executing a Rails application with two interpreters;
”JRuby” and ”Matz”. It diversifies the Web Server Layer, where it utilises various web
server software, such as ”Apache”, ”Nginx”, ”lighttpd”, and ”Tomcat.” It diversifies the
operating system layer by using different operating systems such as Windows, Solaris, and
Linux. It diversifies the virtualization layer with VMware, Xen, and other hypervisors.
The paper concludes that there are 1,356 possible software stacks and attack surfaces for
a web server. However, the paper also highlights the difficulties of managing a software
stack with such diversity.

The paper [38] describes a moving target defence strategy for dealing with memory cor-
ruption attacks. The paper describes a method known as DMON. DMON orchestrates
and monitors the execution of a collection of diverse software variants that execute na-
tively on machines with varying instruction sets. A DMON is a particular type of NVX
system. An NVX system executes multiple software variants in parallel while monitoring
for divergence behaviour. DMON contributes because it executes the different variants
on two instruction sets (x86/x64-ARM) and can monitor for divergent behaviour despite
the different environments. The research concludes that in the presence of a DMON,
attackers must provide a cross-platform exploit to be successful.

The paper [39] proposes a moving target strategy for protecting wireless communications
and infrastructure from reconnaissance and targeted attacks (e.g., DOS, eavesdropping).
A targeted attack can compromise a specific wireless access point (AP). The author pro-
poses a random range mutation (RNM) technique for AP to prevent such attacks. RNM
randomly changes the AP range, compelling wireless clients to switch to a different APN
and route, thereby enabling clients to thwart potential attacks. The second protection is
based on Random Topology Mutation (RTM). In this instance, a mobile AP is utilised.
The authors propose altering the AP’s physical location. The authors claim that this
facilitates defence against physical attacks and provides similar functionality to RNM,
since in this case clients must move to another AP.

Moving target defence techniques are also being explored to protect machine learning
models. There are black-box and white-box input-based attacks that reduce the accuracy
of certain machine learning models. The authors of the paper [37] propose switching
between the algorithms used by the model. The switch is based on a cost model, i.e.,
if the cost of switching to another algorithm is not beneficial, the switch is not made.
The authors base the reasoning on the fact that multiple algorithms can perform a task
such as classification, clustering, etc. without a large loss of accuracy, making switching
a viable form. The authors test these moving target defence techniques against attacks
such as Carlini and Wagner (CW) on a Convolutional Neural Network, Fast Gradient
Sign Method against a logistic regression classifier. The authors achieved the worst case
accuracy of 0.5 for cases that could bring down the accuracy to 0.

The paper [40] also addresses adversarial attacks on machine learning and uses the ”moving
target defence” technique to defend against such attacks. The paper’s strategy is to use
different models, such that an attack that is successful in one model is less successful in
another. They propose to use these models in two ways: randomly or incrementally, as a
zero-day attack becomes a frequent attack. They evaluate the approach against attacks
such as CW, EAD, and MI-FGSM on the PreAct ResNet18 architecture. The reported

3.3. RELATED RESEARCHON FILE SYSTEM PROTECTION AGAINST RANSOMWARE 13

baseline accuracy is 94.13%. Papers A and B use different test approaches to evaluate
their techniques.

3.3 Related Research on File System Protection Against

Ransomware

This paper [41] introduces Rcryptect, a file system designed to detect malicious cryp-
tographic functions at runtime. It attempts to detect malicious behavior by comparing
entropy values. In entropy comparison, it is assumed that certain unencrypted file types
(MP3, JPG, ZIP) will have a non-random bit stream, as opposed to encrypted files, which
will have a random bit stream due to the use of randomness in cryptography. To analyse
the entropy as soon as possible, Rcryptect limits the I/O size to 64 KB using the file
system. This enables earlier detection of the use of a cryptographic function compared
to standard I/O size analysis. After detecting such conduct, the file system removes the
ability to write and delete for non-root users. Additionally, it eliminates the suspicious
process. The outcome demonstrates that Rcryptect is effective at detecting cryptographic
behavior. In the case of RansomEXX, four files were decrypted and two were corrupted
prior to detection and termination. JSorm was terminated after encrypting two files. Dur-
ing performance evaluation, the authors observed that writing performance was degraded
by less than 10%–15% compared to a naive FUSE file system.

DcyFS [42]is a file system designed to prevent data theft, unauthorised modification,
and destruction, to withstand reconnaissance attacks, and to log malicious behavior for
later analysis. This is accomplished by implementing a two-layer file system: the base
file system and the overlay layer. The overlay layer has many responsibilities, including
injecting decoy files, displaying different views of the file system to different processes,
and preventing modifications to the base file. Currently, the decoy object is created
through a manual process. A policy-driven approach achieves different viewpoints by
associating mount namespaces with file system objects and users with security domains.
Data integrity is achieved by enforcing a copy-on-write mechanism.

ShieldFS [43] is a layer on top of a native Windows file system. It has two objectives:
ransomware detection and file recovery. The detection of ransomware is approached as a
supervised classification problem, with a corpus of I/O requests generated by user land
code on both infected and uninfected machines. File recovery is possible because files
are never lost; instead, ShieldFS writes or deletes the file to a read-only storage area in
response to malicious activity. By using the log files, the file system is able to restore the
file system to a previous state once the malicious behavior has stopped.

RockFS [44] is a mechanism which offers recovery services capable of undoing unintended
operations to files. It achieved this by using a log system. The log system contains all
modifications performed to a file. This data is the difference between the new file and
the previous one, or if the difference in size is bigger than the file itself. To recover the
file, the selective re-execution technique is used, which executes selected operations from
the first valid version of the file. The paper assessed that the time to recover grows

14 CHAPTER 3. RELATED WORK

exponentially with the number of files. For a ransomware attack where there are 10,000
files with 100 versions each, it took the authors 2 hours and 5 minutes to recover every
file. Furthermore, the authors concluded that the storage overhead was significant, for
instance if users append 10 MB to a file, 10MB will be added to the log.

FITICIO [45] is a stackable file system add-on. Its purpose is to prevent unauthorised file
modifications that could corrupt file data. To achieve this, it validates file types whenever
a file modification occurs. The file type validation verifies that the file is of the claimed
type. It expands on the notion that when malicious behavior such as ransomware encryp-
tion occurs, the file is altered to the point where it no longer corresponds to the file type
it represents. Fitico’s prototype verifies the file’s validity by invoking the functionality of
popular libraries that support these file types and opening the file with their functionality.
As long as the call does not throw errors, the type of the file is considered valid. The
authors claim that a disadvantage of the validating file type method is that there is no
universal standard for what constitutes a valid file type for some file types, and that some
standards, such as txt, can contain any data, making them unvalidatable.

Solution Detection Prevention Recovery

[43], 2016 I/O supervised classification task None Read-only replica; Log System
[42], 2018 Decoy objects Security domains(permissions); Copy-on-Write None
[44], 2018 None None Log System
[45], 2021 File-type validation None None
[41], 2022 Entropy analysis Write, Delete permission None

Table 3.2: Research Overview Related to File System Protection Against Ransomware

Chapter 4

System Documentation

The system documentation chapter’s goal is to document the software development life cy-
cle. The chapter consists of requirement specification and analysis, design of the solution,
and implementation of the solution.

4.1 Requirement Specification and Analysis

4.1.1 Ransomware Analysis

To defend against ransomware, we should understand what it does and how it does it.
The paper [2] breaks down the malicious interaction between ransomware and the file
system into steps: The ransomware scans the file system, encrypts all or a subset of files,
and then deletes or overwrites the files.

This paper [46] examines how various ransomware scan the file system. The paper ob-
served that GandCrab and TelsaCrypt traverse the file system directories in depth-first
alphabetical order. Similarly, CryptXXX uses depth-first methods, but it traverses direc-
tories in reverse alphabetical order. The paper also reveals that depth-first is not the only
technique ransomware uses to traverse the file system, as the authors of the paper were
unable to identify the traversal pattern of the Osiris and Sage2.2 ransomware. Another
traversal mechanism described in [47] in CTB-Locker is ransomware traversing files in size
ascending order.

Ransomware encrypts all or a subset of files. The process of encrypting all files can
be time-consuming. Paper [47] describes CrpytoLocker and Android Defender as only
encrypting file types with specific extensions, such as (pdf, zip). These file formats are
commonly referred to as productivity file formats because users utilise them to complete
productive tasks. Various techniques, including file extension, specific byte values (magic
numbers), and file content analysis, can be used to identify file types [47]. Encoder
malware is ransomware that does not encrypt specific file types, but instead encrypts
specific directories and file names, such as logs and backups [48].

15

16 CHAPTER 4. SYSTEM DOCUMENTATION

The paper [47] presents three file interaction patterns for file encryption: Class A, Class B,
and Class C. The Class A pattern overwrites a file’s contents by opening the file, reading
its contents, writing the encrypted content in place, and then closing the file. According
to paper [49], a malicious Windows process opens the user’s file with the function IRP MJ
CREATE, reads the file with the function IRP MJ READ, and then overwrites the file
with the function IRP MJ WRITE. Class B moves the user file out of the user’s document
directory, then reads the content, encrypts the content, and moves the file back to the
user’s directory. Class C reads the original file, creates a new file with the encrypted data,
and deletes the original file. Reading and creation occur independently. The paper [49]
demonstrates that the Windows ransom process uses IRP MJ SET INFORMATION to
delete the file.

Ransomware provides users with information on how to return files. This document in-
cludes fees, due dates, and instructions. The paper [50] demonstrates that the most com-
mon ransom note file extension is txt, followed by htm, html, and hta. The papers [47],
[49], demonstrate that Teslacrypt creates a ransomware note after exploration of directo-
ries. In addition, the paper [50]demonstrates that JSWORM, ChaCha, StopDjvu, Lock-
erGoga, and GlobImposter generate the ransom notes prior to encryption. CryptoLocker
and Cerber generate ransom notes after encrypting the directory’s contents. In [50], the
characteristics of ransom notes, such as the information they contain, the filenames used
by the ransom node, and techniques for identifying a ransom note are described in detail.

4.1.2 Requirement Specification

The requirement specification section aims to document the needs of the stakeholders.
The stakeholder requirements arise from the concepts of confidentiality, integrity, and
availability.

From the analysis, ransomware encrypts files. By encrypting the files, they become in-
accessible. Being inaccessible breaches the availability of a system. Availability can be
achieved by preventing the encryption of files. Requirement 1: Prevent the encryption
of files. If prevention can not occur, meaning files are encrypted, then availability can be
achieved by recovering files. Requirement 2: Enable file recovery.

The ransomware reads the files to encrypt them. By not having the authorization to
read the file, the requirement of confidentiality is breached. To protect the requirement
of confidentiality, the requirement of preventing ransomware from reading the file arises.
Requirement 3: Prevent ransomware from reading a file.

Constraints also generate requirements. The objective of this project is to develop a file-
system-based solution that utilises the moving target defence technique and runs on a
Raspberry Pi 4. Constraint 1: The solution must be based on a file system implemen-
tation. Constraint 2: The solution should employ moving target defence techniques.
Constraint 3: The solution should run on a Raspberry Pi 4 device.

4.2. DESIGN 17

4.2 Design

The design section’s objective is to document the transformation of requirements into
system design specifications. The chapter includes five design specifications.

4.2.1 Infinite Directory Depth

According to Requirement 1, a solution must prevent file encryption. According to Re-
quirement 3, a solution must prevent ransomware from reading a file. According to an
analysis of ransomware behaviour traversal, some ransomware traverses directories in al-
phabetical order before beginning to read and encrypt files. If the depth of the first
alphabetic directory is infinite, ransomware that utilises depth-first traversal will take an
infinite amount of time to traverse the directory. If ransomware spends an infinite amount
of time traversing the directory, it will not begin encrypting or reading files, as file encryp-
tion and reading occur after directory traversal. Design 1 proposes making the depth of
the first alphabetical directory infinite to satisfy Requirements 1 and 3.

|−− !
| |−− !
| |−− !
| |−− !
| |−− ! (cont inues)
|−− docs
| |−− !
| | |−− !
| | |−− ! (cont inues)
| |−− csv . csv
| |−− doc . doc
| |−− docx . docx
|−− png . png
|−− pptx . pptx
|−− x l s . x l s
|−− z ip . z ip

Listing 4.1: Proposed Directory Structure

4.2.2 Changing File Type Identification

According to Requirement 1, a solution must prevent file encryption. According to an
analysis of the behavior of ransomware encryption, some ransomware encrypt only certain
file types. If a file is of a type in which ransomware has no interest, ransomware will
not encrypt it. Design 2 proposes restricting file type identification to file types that
ransomware does not encrypt, thereby meeting Requirement 1.

18 CHAPTER 4. SYSTEM DOCUMENTATION

4.2.3 Reduced Read and Write Speeds

A solution must prevent file encryption according to Requirement 1. According to an
analysis of ransomware’s encryption behavior, ransomware reads the file’s contents and
writes the encrypted version of the read file. Read and write times depend on the per-
formance of the underlying hardware. Encrypting a file will take longer if the read and
write speeds are slower than the default read and write speeds. If a file’s encryption will
take longer than the default, the start of encryption for the following file will be delayed
relative to the standard read and write speeds. There is a possibility that ransomware
will be detected and stopped by other mechanisms if it persists for an extended period
of time. Design 3 suggests slowing the read and write speeds, thus indirectly meet-
ing Requirement 1. It indirectly satisfies requirement 1 because some files may not be
encrypted if another protection mechanism is in place.

4.2.4 Directory Name Change

According to requirement 1, a solution must prevent file encryption. According to Re-
quirement 2, a solution must prevent ransomware from reading a file. According to an
analysis of ransomware encryption behavior, some ransomware targets specific directo-
ries, such as administration directories, or files with specific names, such as ”backup.” If
the ransomware discovers a directory with an irrelevant name, it will not encrypt that
directory. In addition, ransomware will not encrypt files with a non-relevant name. De-
sign 4 recommends changing the default file and directory names. Design 4 satisfies
Requirement 1, as neither non-default directory files nor files with non-default names are
encrypted. Design 4 meets Requirement 2 because files in non-default directory names
and files with no default name are not read.

mysql/data −> lorem/ipsum/
mysql/data/mysql −> lorem/ipsum/ lorem
share /mysql/ cha r s e t −> do lo r / lorem/ cha r s e t
share /mysql/ eng l i s h / −> do lo r / lorem/ eng l i s h /
share /mysql/ −> do lo r / lorem/

Listing 4.2: Changing MySQL Default Directory Names

4.2.5 File Identification Change

According to Requirement 1, a solution must prevent file encryption. According to ran-
somware encryption pattern C, ransomware reads the original file, creates a new file con-
taining the encrypted data, and then deletes the original file. If the file name is altered
after each file is read, the ransomware will be unable to delete the file and will fail to
achieve its objective of rendering the file inaccessible. Design 5 proposes renaming the
file after each read, thus satisfying Requirement 1.

4.3. IMPLEMENTATION 19

Figure 4.1: Ransomware Encryption Pattern C

4.3 Implementation

The purpose of the implementation section is to document the system’s implementation in
accordance with the design. Due to time constraints associated with the project, designs
1, 2, and 3 were chosen for implementation. The chapter begins with a discussion of the
overlay file system, a fundamental component of all three implementations. The chapter
then describes each implementation separately.

4.3.1 Overlay File-System

An overlay file system is a stacked file system with a default file system and an overlay
layer. Ext4 is the default file system in the majority of Linux distributions; alternative file
systems are available. The overlay layer is a file system that forwards both the request and
the response from the base file system to the requesting process. In addition to forwarding
the request to the file system, the implementations described in this report modify the
request based on design decisions. The same concept also applies to responses. Depending
on the design decision, the response may be modified prior to transmission to the process.
This is due to the fact that creating a file system from scratch would be a task for which
this project lacks the time and resources, and the added value is in implementing the
design decisions rather than creating the file system.

The advantage of an overlay file system is that it only implements the essential and value-
added features. The majority of the remaining features pertain to the default file system’s
implementation and performance. This results in a ransomware-aware file system with
similar performance to the default file system.

The overlay file system that redirects the request to the underlying file system was devel-
oped by the authors of go-fuse/library as a demonstration of how their library functions

20 CHAPTER 4. SYSTEM DOCUMENTATION

Figure 4.2: Renaming the File After Each Read

and is licensed under the BSD license. Rinor Sefa, the thesis author, is the author of
modifications performed to the overlay file system and documented in the report. These
modifications implement the design decisions of this project.

Figure 4.3: Default File System (left) and Overlay File System (right)

4.3.2 Infinite Directory Depth

A process such as ransomware begins its file system traversal at the root directory. To
traverse the file system, it must first open the directory in order to retrieve the names of
files and directories. To open the directory, the opendir(3) system call is used. Given an
input directory name, the opendir() system call returns a pointer to the directory stream.
A Dirstream is a structure that stores file and directory names as well as their metadata.

4.3. IMPLEMENTATION 21

The next step is to invoke the readdir system call, passing the directory stream (DIR) as
input. The function returns a pointer to the directory entry. The dir entry contains the
next entry, which includes the file i-node number, file or directory name, and, in some file
systems, the file type. In situations where the file system does not return the file’s type,
the lstat(2) function can be invoked.

Design 1 proposes making the depth of the first alphabetical directory infinite. When a
process uses the readdir system call to determine the contents of a directory, the overlay
layer uses the default file system to create a directory in the directory from which readdir
was invoked. The created directory name is set to ”!” because ”!” is the first alphabetic
character in the ASCII sort order format. If the ransomware uses a depth-first search that
is sorted alphabetically, it will be trapped in a loop of traversing the directory ! then !/!
then !/!/! until it is terminated or runs out of system memory. Thus achieving Design 1’s
objective.

Figure 4.4: Ransomware BFS traversal

This feature is also extended to ransomware utilising depth-first search with readdir results
as the ordering criterion. The filenames returned by readdir() are not in alphabetical order,
but rather in the order specified by the underlying file system. To change this, each time
the readdir method is invoked, the overlay file system traverses the dir stream, retrieves
all the dir entries, and sorts them alphabetically. Then, when the readdir function is
invoked, the result will be returned in alphabetical order. Thus, if ransomware uses a
depth-first search based on the order of results returned by readdir, it will be trapped in
a loop traversing the directory!, then!/!, then!/!/! until it is terminated or runs out of
system memory resources. Thus, achieving the objective of Design 1.

The virtual file system must also be modified to achieve the Design 1 specification. The
directory entry cache is a feature of the virtual file system. Its purpose is to provide a quick

22 CHAPTER 4. SYSTEM DOCUMENTATION

Figure 4.5: Infinite Directory Depth Sequential Diagram

lookup mechanism for translating a path name (file name) to a particular directory entry.
Without the directory entry cache, a process wishing to access directory c, which resides
in the parent directory a/b/c, would be required to first open directory a, then directory
b, and finally directory c. The directory entry cache stores this information in memory to
accelerate the process. This Directory Entry Cache will reduce the resources used by the
malicious process to discover the file system, allowing encryption to begin. One feature
of the directory entry cache is the ability to specify the data’s caching duration. This
caching time varies based on the file system implementation. In order to address this
issue, the overlay file system configures the cache timeout to 1 millisecond. The directory
cache is therefore no longer useful.

4.3.3 Reduced Read/Write Speeds

This section describes the implementation of Design 3, which necessitates slowing the read
and write speeds.

The read and write speeds of the file are dependent on the underlying hardware. The
implementation uses the underlying file system to implement the slowed read and write

4.3. IMPLEMENTATION 23

speeds. A process uses the read() system call to read a file. The process invokes the read
system call with the count argument specifying the number of bytes to read.

Typically, the count argument is set to the maximum number of bytes that the underlying
hardware can read. After a successful read, the system calls return the number of bytes
that were successfully read. The read() function may read fewer bytes than requested.
After receiving a read() system call, the overlay file system implementation modifies the
count argument from the typical maximum number to a minimum number and forwards
the call to the default file system.

The default file system honors the count argument and returns the bytes it reads to the
overlay file system. The returned value is passed back to the calling process. As a result,
a file that previously required 10 system calls to read can now require 1,000 system calls.
This value is dependent on the maximum and minimum bytes that can be read from the
underlying device.

#inc lude <uni s td . h>

s s i z e t read (i n t fd , void ∗buf , s i z e t count) ;

s s i z e t wr i t e (i n t fd , const void ∗buf , s i z e t count) ;

Listing 4.3: Read and Write function synopsis

Similar to the read system call, the write system call also accepts a count argument value
specifying how many bytes to read. The overlay file system modifies the count value to
the bare minimum and then forwards the request to the underlying default file system.
The default file system honors the count argument and returns how many bytes it has
read. The number of system calls needed to write 4MB of data has increased from 1
to 4000. Since each system call is an expensive operation, 4000 times more system calls
would result in a performance degradation. Design 3 requirements are met as read and
write performance degrades.

Figure 4.6: Read Flow Chart

The kernel applies optimizations such as clustering disc blocks, allowing processes to access
the same file, and sequential read-ahead using the buffer cache. The kernel provides the

24 CHAPTER 4. SYSTEM DOCUMENTATION

option to bypass the buffer cache using the O DIRECT flag when calling the open()
system call. Applications, like databases, that have their own caching solutions use this
flag. When the O DIRECT flag is set, performance is typically degraded. To implement
Design 3, which requires slower read and write speeds, the open() system call is invoked
with the O DIRECT flag.

Figure 4.7: Open with O DIRECT flag

Additional adjustments can be made to the virtual file system to decrease the writing
speed. The write() system call is asynchronously callable. For example, while one system
call is writing the first block of bytes, another system call may be writing the second block
of bytes. This results in increased writing speed.

For applications that require synchronous writes, the kernel provides the O-SYNC flag
with the open() system call. Calling open with the O-SYNC flag can degrade performance,
as the application is blocked until the buffer is written to disc. To implement Design 3,
which requires slower write speeds, the open() system call with the O SYNC flag is invoked.

Figure 4.8: Open with O SYNC flag

Modifying the kernel’s read-ahead functionality can also result in a decrease in reading
speed. The read-ahead functionality ensures that the next block of bytes is read into the

4.3. IMPLEMENTATION 25

buffer before the reading process requires it. On the assumption that a process will read
the data sequentially from the lower offset to the higher offset of the files, this enables
faster file reading. The size of the read-ahead buffer can be modified within the file system.
This value has been set to its minimum to slow down the reading process.

4.3.4 File Type Change

This section describes the implementation of Design 2, which proposes restricting file type
identification to file types that ransomware does not encrypt.

As described in the analysis, ransomware typically does not encrypt all files due to the
required resources, but instead encrypts ”productive” files to persuade the user into pay-
ing the ransom fee. As described in Chapter 42, ransomware and other programs can
determine the file type in three ways: file name extension, specific byte values (magic
numbers), and analysis of file content.

The file extension or suffix appears at the end of the file name, for example, docx or pdf.
A user or an application assigns the file extension, which aids the operating system in
determining which application should be used to process the file. Linux does not use file
extensions to recognise the file type. File extensions are typically present in the Linux
system for cross-platform operability with Windows. Ransomware can determine the file
type by using the file extension.

Since ransomware can use the file extension to identify a file type, one solution would be
to remove the extension from the file name. The file name’s lifecycle is analyzed in order
to determine how to remove the extension. When a file is created, it is given its initial
name. Open or create system calls can be used to create a file. The create() system call
accepts the file’s name as a parameter. Before passing the call to the default file system,
the overlay file system removes the extension from the file name. Additionally, the file
name can be altered after the file has been created. The rename() system call is used to
change the file name. The rename system call accepts the new file name as a parameter.
Before passing rename() to the default file system, the overlay file system removes the
extension from the name. The Design 2 requirements are met by removing the name
extension, which can be used to identify the file type.

Magic numbers are bytes within a file that can be used to identify the file type. There
are applications such as libmagic, DROID, TrID, and Outside-In that use magic numbers
to identify file types. This report examines in greater detail how the open source project
Libmagic identifies files in order to determine how to counter it. The file(1) command
determines the file type. The file command attempts to recognize signature bytes from the
file. The detection uses a database of signature byte-to-file-type mappings. The example
file shown below specifies the rules for identifying a PDF file.

0 s t r i n g %PDF− PDF document
>5 byte x \b , v e r s i on %c
>7 byte x \b.%c

Listing 4.4: Example of a PDF file type test

26 CHAPTER 4. SYSTEM DOCUMENTATION

Figure 4.9: Overlay File-System Removing Name Extension

Each line indicates a test to be executed. The line contains a number that specifies the
offset, the data type to be tested, the value to be compared, and the message to be printed.
The test follows a level approach. The test with no ”>” will be evaluated first, followed
by ”>” and then ”> >.” Only after the 0 level test has passed can the 1 level test be
attempted.

The first line specifies that the application begins reading the file at offset 0 and continues
until it encounters a printable character sequence that is at least four characters long and
is followed by an unprintable character. The application then verifies whether the bytes
match the string %PDF-. If this condition is met, the application prints the file as a
PDF document. The following test will occur at the offset: 5. It examines whether this
one-byte value is equal to x. In this case, X indicates any value. The application then
prints the PDF document version.

00000000 25 50 44 46 2D 31 2E 33 %PDF−1.3
00000008 0D 0A 25 E2 E3 CF D3 0D . . %
00000010 0A 0D 0A 31 20 30 20 6F . . . 1 0 o
00000018 62 6A 0D 0A 3C 3C 0D 0A bj . .<< . .
00000020 2F 54 79 70 65 20 2F 43 /Type /C
00000028 61 74 61 6C 6F 67 0D 0A ata l og . .
00000030 2F 4F 75 74 6C 69 6E 65 /Outl ine
00000038 73 20 32 20 30 20 52 0D s 2 0 R.

Listing 4.5: Hex viewer of a PDF file

For demonstration purposes, the identification of a sample PDF file’s content is explained.
The first row of listing 4.5 represents the binary representation of the offset, the second
row represents the byte representation in hex, and the third row represents the hex-to-
text conversions. The first test will determine whether the first four printable characters
followed by a non-printable character are PDF-. Since this is true, ”PDF document” will

4.3. IMPLEMENTATION 27

be printed. The second and third tests will check offsets 5 and 7 to determine the PDF
file’s version number and print 1.0.

Assuming that the malware uses a similar method to recognise file types an approach
to defend against it would be to not provide these magic numbers. Malware and other
processes read these numbers by utilising the read() system call to read the file’s contents.
The second parameter of the read system call is the buffer, which is filled with bytes from
the file after the read() command is executed. In the preceding example, a portion of the
buffer would contain information about the magic numbers that could be used to identify
the file type.

Based on this information, the malware would decide whether or not to encrypt the file.
Before filling the buffer with data, it must be determined if it contains information of this
file type. If it contains file type information, it should not be included in the buffer. As a
result, the malware will be unaware of the file’s extension. The alternative strategy would
consist of filling this buffer with file type information for a file type that malware would
not be interested in encrypting, such as Linux system file types (ELF, BIN).

Figure 4.10: Overlay File-system Removing Identifier Flow Chart

Content analysis is an additional method for identifying file types. Unlike magic numbers,
which typically appear at the beginning of a file or at specific offsets, content analysis
examines a portion of the file or the entire file. This analysis is more resource-intensive
and time-consuming than identification by magic numbers. For example, txt and CVS
files do not contain magic numbers.

To determine if a file is txt, an application like libmagic verifies that the file contains read-
able characters, such as those defined in the ASCII standard. Or, it verifies whether CSV
files adhere to the format specified in RFC-4180 and RFC-7111. The solution strategy
suggested for the magic numbers could also be applied to this problem with the adjust-
ment that, while for magic numbers only reads beginning at offset 0 were analysed, for
content analysis all reads should be analysed.

28 CHAPTER 4. SYSTEM DOCUMENTATION

Figure 4.11: Overlay File-System Removing Identifier on Each Read Flow Chart

Chapter 5

Evaluation

The evaluation chapter discusses whether the implemented file systems conform to the
requirement’s specification. Additionally, it describes how the performance of the imple-
mented file systems compares to that of the default file systems.

5.1 Hardware and Software Specification

The evaluation is conducted using a Raspberry Pi 4 B Rev 1.4. The Raspberry Pi board
includes a 64 GB class 10 microSD card with a performance rating of 10. At the time of
evaluation, 11G of the 63G storage capacity was occupied. The system software is Debian
GNU/Linux 11.

5.1.1 File Corpus

Files are encrypted by ransomware. A set of files is required to evaluate the implemen-
tations presented in the report. The chosen data set is the Govdocs1 data set. The
Govdocs1 corpus is a publicly available data set containing one million documents. One
million documents may not be manageable, so a subset of data is selected for evaluation.
The selected subset of data consists of 1000 randomly selected files from the Govdocs1
data set. The advantage of using Govdocs1 is that it facilitates evaluation repetition
because the data is publicly available. It permits evaluation comparison with other Gov-
docs1 implementations. It closely resembles a potential attack environment due to the
techniques used to collect the data set.

5.1.2 Ransomware Selection

Historically, malware primarily affected Microsoft Windows-based computers. Various
types of devices are currently under attack by malware. These devices have different CPU

29

30 CHAPTER 5. EVALUATION

architectures, different hardware, different operating systems, and different libraries. Con-
sequently, malware or software designed for one device may not function on another device
due to a lack of available resources on that platform. Two ransomware known to target
Raspberry Pi 4 devices are examined during the evaluation. DarkRadiation is a Bash-
written ransomware that targets Linux operating systems. It targets files with.txt,.sh,.py,
and database extensions and encrypts all /home directory files. The RansomPoc is a
Python-based proof-of-concept ransomware that targets files with certain extension.

5.2 Result

In this section, the results of an evaluation based on two criteria are presented: lost files
and encrypting time.

RansomwarePoc successfully encrypted 946 out of 979 files on the default file system and
took 7 minutes to complete. DarkRadiation successfully encrypted all files on the default
file system and took 1 minute 37 seconds to complete.

RansomwarePoc, against the infinite directory file system implementation. RanspomPoc
was unable to encrypt files because it terminated itself while traversing the directories.
When RanspomPoc reached a depth of 955 directories, it terminated with a recursion
error. A recursion error is a Python error that is thrown when a function is called more
than the default recursion limit of 1000 times. The number 1000 is close to the temporary
directory depth of 995 at which the recursion error occurred. The total time from appli-
cation start to application termination was 10 minutes. The creation of 995 directories
resulted in the storage of 3.9 MiB of metadata.

DarkRadiation was similarly incapable of encrypting files in the infinite file system. Dark-
Radiation was trapped while traversing the endless directories. Following a 31-minute
traversal of DarkRadiation, 1005 directories with a memory size of 3.9 MB were pro-
duced.

RansomPoc, against the ”slow write and read speed” implementation. RansomPoc was
able to encrypt 1 byte of all files. Based on RansomPoc’s dynamic analysis, files are
encrypted using the Class A encryption pattern. The Class A pattern overwrites the
contents of a file by opening the file, reading the contents, writing the encrypted contents
to the location, and then closing it. RansomPoc performed only one read and one write
per file. The ”slow read and write speed” implementation reduces the read and write size
to 1 byte; consequently, RansomPoC encrypted only the first byte of the file. Since only
the first byte of each file was encrypted, file recovery is possible. The RansomPoc took
four seconds to execute.

DarkRadiation was able to encrypt all files on the slow read-write file system. DarkRadi-
ation followed the class B encryption pattern. The Class B encryption pattern moves the
file from the original directory, then reads the contents, encrypts the contents, and moves
the encrypted file back to the user’s directory. DarkRadiation moved the file out of the
read-write file system and then returned the encrypted version of the file to the original

5.3. PERFORMANCE OVERHEAD 31

Ransomware Implementation Lost files Time

RansomPoc Default file system 946/979 7m 51s
Infinite-directory file system 0 10m 32s
File-type file system 0 4s
Slow-read-speed 0 4s

DarkRadiation Default file system 976/979 1m 14s
Infinite-directory file system 0 31m
File-type file system 0 1m 50s
Slow-read-write file system 976/979 15m 7s

Table 5.1: Evaluating File System Protection Against Ransomware

directory. We cannot verify that the returned file is a result of encrypting the original file.
All encrypted files had a size of 32 bytes, which differs from the original file sizes.

RansomPoc was unable to encrypt any files against the file-type file system. Based on
dynamic analysis, RansomPoc encrypts files with specific file name extensions. Ransom-
Poc was not interested in encrypting files because the implementation of the file-type file
system prohibits file names with extensions. The execution of the RansomPoc took four
seconds.

DarkRadiation was able to encrypt all files located in the file type file system. DarkRa-
diation’s static analysis revealed that DarkRadiation encrypts all files under the home
directory. Since the file type file system is mounted under the /home directory, DarkRa-
diation is able to encrypt all files. If the mount point of the file type is changed outside
the home directory, DarkRadiation is not able to encrypt files. DarkRadiation cannot en-
crypt files because DarkRadiation is only interested in files with certain extensions outside
the /home directory. Since the file type file system removes extensions from file names,
DarkRadiation loses interest in encrypting files if they are outside the home directory.

5.3 Performance Overhead

To measure the performance overhead of the developed file systems, the IOzone benchmark
is utilised. The IOzone is a specialised tool that analyses the performance of a file system
using various load generation and file access patterns.

The MicroSD disc standard specification guarantees I/O speeds of 10 MB/s and a maxi-
mum boost speed of 25 MB/s. With a ”small” file size of 16384 kilobytes, the read speeds
for the default file systems can reach up to 2450 MB/s, while the infinite directory file sys-
tem and the file type file system can reach up to 1164 MB/s and 817 MB/s, respectively.
We believe performance mechanisms such as buffer cache, processor cache, read-ahead,
etc. are responsible for these significant differences in performance compared to the Mi-
croSD specification. Once the file size approaches the RAM size, as in the case of a 4 GB
file, the reading speed begins to approach the hardware specification. The reading speed

32 CHAPTER 5. EVALUATION

of the default file system is 22 MB/s, while the infinite directory and file type file systems
reach 21 MB/s. In terms of read performance for small file sizes, the default file system
outperforms the infinite directory file system and the file type file system by a factor of
2.1 and 2.9, respectively. The CPU utilisation data for read performance reveals that the
default file system utilises the CPU at 96.9%, whereas the infinite directory file system
and the file type file system only utilise the CPU at 61.87% and 65.03%, respectively. The
read speeds of the infinite directory file system and the file-type file system are compara-
ble, with the infinite directory file system exhibiting better performance. We believe the
difference is due to the additional analysis performed during the first read operation on
the file-type file system. During the first read system call, the file type checks to see if
the first block has identification bytes.

The evaluation data for write performance indicates that all file systems exceed the mi-
croSD specification performance of 25 MB/s for small files. The default file system achieves
a speed of 326 MB/s for a file size of 16394 kilobytes, whereas the infinite directory file
system and file type file system achieve speeds of 155 MB/S and 157 MB/S, respectively.
We believe that this is because the write system call is called asynchronously. Once the
file size reaches 4GB, the maximum performance of the default file system is 15 MB/s,
while the maximum performance of the infinite and file type file systems is 15 MB/s and
14 MB/s, respectively. When the file size is small, the write performance of the default
file system is 2.1 times greater than that of the infinite directory file system and the file
type file system. The performance of the write system call is similar for files with a size
of 4 GB.

The ZIP file includes the other IOZone measurements (re-read, re-write, read backwards,
random-read, random-write, backward read, record rewrite, stride read, fwrite, re-write,
and fe-fread) using different file sizes and record sizes. As the objective of the project
was not to develop a file system focused on performance, the remaining results are not
discussed.

Note: Note: The IOzone was unable to test the performance of slow-read-write file systems
because the record size could not be altered due to design decision.

5.3. PERFORMANCE OVERHEAD 33

0

500000

1000000

1500000

2000000

2500000

3000000

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

K
b

yt
es

/s
ec

Record size in Kbytes

Read performance (16394 kbytes file size)

Default Filesystem Infinite Directory Filesystem File Type Filesystem

MicroSD Max Data Transfer Rate MicroSD Min Data Transfer Rate

Figure 5.1: Read Performance (16MB File Size)

34 CHAPTER 5. EVALUATION

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

64 128 256 512 1024 2048 4096 8192 16384

K
b

yt
es

/s
ec

Record size in Kbytes

Read performance (524288 Kbytes file size)

Default Filesystem Infinite Directory Filesystem File Type Filesystem

MicroSD Max Data Transfer Rate MicroSD Min Data Transfer Rate

Figure 5.2: Read Performance (524MB File Size)

5.3. PERFORMANCE OVERHEAD 35

0

5000

10000

15000

20000

25000

64 128 256 512 1024 2048 4096 8192 16384

K
b

yt
es

/s
ec

Record size in Kbytes

Read performance (4194304 Kbytes file size)

Default Filesystem Infinite Directory Filesystem File Type Filesystem

MicroSD Max Data Transfer Rate MicroSD Min Data Transfer Rate

Figure 5.3: Read Performance (4GB File Size)

36 CHAPTER 5. EVALUATION

96.8%

61.87%

56.03%

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 u

ti
lis

at
io

n
%

Read CPU utilisation (16394 kbytes file size)

Default filesystem Infinite Directory Filesystem File Type Filesystem

Figure 5.4: Read CPU Utilisation (16MB File Size)

5.3. PERFORMANCE OVERHEAD 37

6.2% 5.63%
7.45%

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 u

ti
lis

at
io

n
%

Read CPU utilisation (4194304 kbytes file size)

Default filesystem Infinite Directory Filesystem File Type Filesystem

Figure 5.5: Read CPU Utilisation (4GB File Size)

38 CHAPTER 5. EVALUATION

0

50000

100000

150000

200000

250000

300000

350000

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

K
b

yt
es

/s
ec

Record size in Kbytes

Write performance (16394 kbytes file size)

Default Filesystem Infinite Directory Filesystem File Type Filesystem

MicroSD Max Data Transfer Rate MicroSD Min Data Transfer Rate

Figure 5.6: Write Performance (16MB File Size)

5.3. PERFORMANCE OVERHEAD 39

0

50000

100000

150000

200000

250000

300000

350000

64 128 256 512 1024 2048 4096 8192 16384

K
b

yt
es

/s
ec

Record size in Kbytes

Write performance (524288 Kbytes file size)

Default Filesystem Infinite Directory Filesystem File Type Filesystem

MicroSD Max Data Transfer Rate MicroSD Min Data Transfer Rate

Figure 5.7: Write Performance (524MB File Size)

40 CHAPTER 5. EVALUATION

0

5000

10000

15000

20000

25000

64 128 256 512 1024 2048 4096 8192 16384

K
b

yt
es

/s
ec

Record size in Kbytes

Write performance (4194304 Kbytes file size)

Default Filesystem Infinite Directory Filesystem File Type Filesystem

MicroSD Max Data Transfer Rate MicroSD Min Data Transfer Rate

Figure 5.8: Write Performance (4GB File Size)

5.3. PERFORMANCE OVERHEAD 41

5.74%
3.03% 2.97%

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 u

ti
lis

at
io

n
%

Write CPU utilisation (16394 kbytes file size)

Default filesystem Infinite Directory Filesystem File Type Filesystem

Figure 5.9: Write CPU Utilisation (16MB File Size)

42 CHAPTER 5. EVALUATION

4.69%
2.27% 3.33%

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 u

ti
lis

at
io

n
%

Write CPU utilisation (4194304 kbytes file size)

Default filesystem Infinite Directory Filesystem File Type Filesystem

Figure 5.10: Write CPU Utilisation (4GB File Size)

Chapter 6

Limitations, Future Research

6.1 Limitations

The performance of file systems is not evaluated on an SD card that is empty and has a
fresh operating system installation. The performance of the current file system is evaluated
on an SD card containing additional data. Evaluations that are not conducted in a
clean environment make it difficult for others to reproduce. In addition, the SD card’s
performance may suffer if it is not empty.

The evaluation compares different file systems. In the file type file system, for example,
there are two implementations: one corresponds to removing the file’s extension and the
other corresponds to removing the file’s identity bits. It is difficult to determine which
feature, the extension remover or the bit remover, prevented file encryption by comparing
file systems. For a more comprehensive evaluation, we would recommend comparing the
file system implementations.

The evaluation revealed that the developed file systems are inferior to the default file
system in terms of performance when the file size was small. This is due to the file
system’s underlying structure. If file systems are developed from the ground up with
performance requirements, performance of the implemented file systems can be enhanced.

The implemented file systems cannot differentiate between malicious and benign processes.
Thus, a benign application may become trapped in the infinite directory trap or be unable
to open a file because it does not recognise the file’s extension. To address this issue, it
may be necessary to modify the applications that interact with the file system, or to add
an access control mechanism to the file system.

The file systems implemented were only evaluated against two ransomware. More ran-
somware should be considered during the evaluation phase for a more reliable assessment.

43

44 CHAPTER 6. LIMITATIONS, FUTURE RESEARCH

6.2 Recommendations for Future Research

During the period of research, only a few articles analysing ransomware on Linux were
identified. The majority of ransomware analysis research focuses on ransomware that
runs on the Microsoft Windows operating system. Additionally, since Linux platforms are
also ransomware targets, additional research is needed to comprehend how ransomware
interacts with Linux platforms.

Due to time and resource constraints, only 3 out of 5 design specifications were imple-
mented. Both the directory name change and file identifier change design specifications
would protect files from ransomware like DarkRadiation. If the directory name change
were to be implemented, DarkRadiation would not be able to encrypt all files under the
home directory because there would be no home directory. Since DarkRadiation imple-
ments encryption pattern C, the design specification for the file identifier change could
have protected the original files from being deleted by DarkRadiation. We suggest con-
sidering whether it is worth implementing these designs in future projects.

When evaluating ransomware, we had to rely on manual review of log files to understand
how RansomPoc and DarkRadiation perform traversal, encryption, and selection tasks.
We believe researchers can save a lot of time by automating the log review task.

Chapter 7

Conclusion

The increasing use of IoT devices in a variety of projects that contain valuable data makes
IoT devices a target for ransomware. Due to their limited resources, IoT devices cannot
implement resource-intensive ransomware protection mechanisms. This work implements
a light-way protection mechanism comprised of overlay file systems that use moving target
defence techniques to defend against ransomware.

The file type overlay file system removes file-type-indicating elements. These elements are
present in the file name extension and file signature bytes. When evaluated against Ran-
somPoc and DarkRadiation ransomware, the file type file system successfully prevented
all files from being encrypted.

The Infinite Directory file system uses an infinite directory to trap ransomware that use a
depth-first traversal strategy. Both the RansomPoc and DarkRadiation ransomware were
trapped while traversing the infinite directory and failed to encrypt any files.

The slow-read-write file system reduces the encryption speed by changing the parameters
of read and write system calls and minimizes the performance enhancement of the file
system. The goal of the Slow-Read-Write file system is to increase the encryption time
of files. DarkRadiation encrypted all files in 15 minutes and 6 seconds, compared to 1
minute and 14 seconds in the default file system. In the case of RansomPoc, the encrypted
files could be recovered because the ransomware encrypted only the first byte of the files,
compared to 4096 bytes in the default file system.

The main limitation of implemented file systems is that they cannot distinguish between
malicious and non-malicious applications. Consequently, non-malicious applications can
also be impacted by the file system’s features. In addition, the implemented file systems
are not fast compared to the default file system for reading and writing small file sizes.
The performance of the default file system is up to 2.9 times faster than the implemented
file systems when reading small files and up to 2.1 times faster when writing small files.

45

46 CHAPTER 7. CONCLUSION

Bibliography

[1] M. Bishop, E. Sullivan, and M. Ruppel, Computer security: art and science, en,
Second edition. Boston: Addison-Wesley, 2019, OCLC: on1076675266, isbn: 978-0-
321-71233-2.

[2] H. Oz, A. Aris, A. Levi, and A. S. Uluagac,
”
A Survey on Ransomware: Evo-

lution, Taxonomy, and Defense Solutions“, ACM Computing Surveys, Jan. 2022,
Just Accepted, issn: 0360-0300. doi: 10.1145/3514229. [Online]. Available: http:
//doi.org/10.1145/3514229 (visited on 05/16/2022).

[3] Treasury Continues to Counter Ransomware as Part of Whole-of-Government Ef-
fort; Sanctions Ransomware Operators and Virtual Currency Exchange, en. [Online].
Available: https://home.treasury.gov/news/press-releases/jy0471 (visited
on 09/25/2022).

[4] Treasury Takes Robust Actions to Counter Ransomware, en. [Online]. Available:
https://home.treasury.gov/news/press-releases/jy0364 (visited on 09/25/2022).

[5]
”
National Cyber Leap Year Summit 2009“, en, p. 58,

[6] T. Yadav and R. A. Mallari,
”
Technical Aspects of Cyber Kill Chain“, en, arXiv:1606.03184

[cs], vol. 536, pp. 438–452, 2015, arXiv: 1606.03184. doi: 10.1007/978-3-319-
22915-7_40. [Online]. Available: http://arxiv.org/abs/1606.03184 (visited on
05/08/2022).

[7] B. C. Ward, S. R. Gomez, R. Skowyra, et al.,
”
Survey of Cyber Moving Targets Sec-

ond Edition“, en, MIT Lincoln Laboratory Lexington United States, Tech. Rep., Jan.
2018. [Online]. Available: https://apps.dtic.mil/sti/citations/AD1055276
(visited on 04/26/2022).

[8] R. Zhuang, S. A. DeLoach, and X. Ou,
”
Towards a Theory of Moving Target De-

fense“, en, in Proceedings of the First ACM Workshop on Moving Target Defense
- MTD ’14, Scottsdale, Arizona, USA: ACM Press, 2014, pp. 31–40, isbn: 978-1-
4503-3150-0. doi: 10.1145/2663474.2663479. [Online]. Available: http://dl.
acm.org/citation.cfm?doid=2663474.2663479 (visited on 04/20/2022).

[9] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach,
”
Dynamic Malware Analysis in

the Modern Era—A State of the Art Survey“, en, ACM Computing Surveys, vol. 52,
no. 5, pp. 1–48, Sep. 2020, issn: 0360-0300, 1557-7341. doi: 10.1145/3329786.
[Online]. Available: https://dl.acm.org/doi/10.1145/3329786 (visited on
04/27/2022).

[10] E. Gandotra, D. Bansal, and S. Sofat,
”
Malware Analysis and Classification: A

Survey“, en, p. 9,

47

48 BIBLIOGRAPHY

[11] A. Rajgarhia and A. Gehani,
”
Performance and extension of user space file systems“,

en, in Proceedings of the 2010 ACM Symposium on Applied Computing - SAC ’10,
Sierre, Switzerland: ACM Press, 2010, p. 206, isbn: 978-1-60558-639-7. doi: 10.
1145/1774088.1774130. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=1774088.1774130 (visited on 05/09/2022).

[12] B. K. R. Vangoor, V. Tarasov, and E. Zadok,
”
To FUSE or Not to FUSE: Perfor-

mance of User-Space File Systems“, en, p. 15,

[13] M. Kerrisk, The Linux programming interface: a Linux and UNIX system program-
ming handbook, en. San Francisco: No Starch Press, 2010, isbn: 978-1-59327-220-3.

[14] S. Rajendran, R. Calvo-Palomino, M. Fuchs, et al.,
”
Electrosense: Open and Big

Spectrum Data“, en, IEEE Communications Magazine, vol. 56, no. 1, pp. 210–217,
Jan. 2018, issn: 0163-6804. doi: 10.1109/MCOM.2017.1700200. [Online]. Available:
http://ieeexplore.ieee.org/document/8121869/ (visited on 05/10/2022).

[15] Teach, learn, and make with the Raspberry Pi Foundation, en. [Online]. Available:
https://www.raspberrypi.org/ (visited on 10/03/2022).

[16] RTL-SDR Blog R820T2 RTL2832U 1PPM TCXO SMA Software Defined Radio
with Dipole Antenna, en-US. [Online]. Available: https://www.rtl- sdr.com/
product/rtl-sdr-blog-r820t2-rtl2832u-1ppm-tcxo-sma-software-defined-

radio-with-dipole-antenna-kit/ (visited on 10/03/2022).

[17] R. E. Navas, F. Cuppens, N. Boulahia Cuppens, L. Toutain, and G. Z. Papadopou-
los,

”
MTD, Where Art Thou? A Systematic Review of Moving Target Defense Tech-

niques for IoT“, en, IEEE Internet of Things Journal, vol. 8, no. 10, pp. 7818–7832,
May 2021, issn: 2327-4662, 2372-2541. doi: 10.1109/JIOT.2020.3040358. [On-
line]. Available: https://ieeexplore.ieee.org/document/9270287/ (visited on
04/20/2022).

[18] J.-H. Cho, D. P. Sharma, H. Alavizadeh, et al.,
”
Toward Proactive, Adaptive De-

fense: A Survey on Moving Target Defense“, en, arXiv:1909.08092 [cs], Sep. 2019,
arXiv: 1909.08092. [Online]. Available: http://arxiv.org/abs/1909.08092 (vis-
ited on 04/20/2022).

[19] G.-l. Cai, B.-s. Wang, W. Hu, and T.-z. Wang,
”
Moving target defense: State of

the art and characteristics“, en, Frontiers of Information Technology & Electronic
Engineering, vol. 17, no. 11, pp. 1122–1153, Nov. 2016, issn: 2095-9184, 2095-9230.
doi: 10.1631/FITEE.1601321. [Online]. Available: http://link.springer.com/
10.1631/FITEE.1601321 (visited on 04/20/2022).

[20] C. Lei, H.-Q. Zhang, J.-L. Tan, Y.-C. Zhang, and X.-H. Liu,
”
Moving Target Defense

Techniques: A Survey“, en, Security and Communication Networks, vol. 2018, pp. 1–
25, Jul. 2018, issn: 1939-0114, 1939-0122. doi: 10.1155/2018/3759626. [Online].
Available: https://www.hindawi.com/journals/scn/2018/3759626/ (visited on
04/20/2022).

[21] J. Zheng and A. S. Namin,
”
A Survey on the Moving Target Defense Strategies: An

Architectural Perspective“, en, Journal of Computer Science and Technology, vol. 34,
no. 1, pp. 207–233, Jan. 2019, issn: 1000-9000, 1860-4749. doi: 10.1007/s11390-
019-1906-z. [Online]. Available: http://link.springer.com/10.1007/s11390-
019-1906-z (visited on 04/20/2022).

BIBLIOGRAPHY 49

[22] MTD ’14: Proceedings of the First ACM Workshop on Moving Target Defense,
Scottsdale, Arizona, USA: Association for Computing Machinery, 2014, isbn: 9781450331500.

[23] MTD ’15: Proceedings of the Second ACM Workshop on Moving Target Defense,
Denver, Colorado, USA: Association for Computing Machinery, 2015, isbn: 9781450338233.

[24] MTD ’16: Proceedings of the 2016 ACM Workshop on Moving Target Defense, Vi-
enna, Austria: Association for Computing Machinery, 2016, isbn: 9781450345705.

[25] MTD ’17: Proceedings of the 2017 Workshop on Moving Target Defense, Dallas,
Texas, USA: Association for Computing Machinery, 2017, isbn: 9781450351768.

[26] MTD ’18: Proceedings of the 5th ACMWorkshop on Moving Target Defense, Toronto,
Canada: Association for Computing Machinery, 2018, isbn: 9781450360036.

[27] MTD’19: Proceedings of the 6th ACM Workshop on Moving Target Defense, London,
United Kingdom: Association for Computing Machinery, 2019, isbn: 9781450368285.

[28] MTD’20: Proceedings of the 7th ACM Workshop on Moving Target Defense, Virtual
Event, USA: Association for Computing Machinery, 2020, isbn: 9781450380850.

[29] MTD ’21: Proceedings of the 8th ACM Workshop on Moving Target Defense, Vir-
tual Event, Republic of Korea: Association for Computing Machinery, 2021, isbn:
9781450386586.

[30] R. Brown, A. Marti, C. Jenkins, and S. Shannigrahi,
”
Dynamic Address Validation

Array (DAVA): A Moving Target Defense Protocol for CAN bus“, in Proceedings of
the 7th ACM Workshop on Moving Target Defense, ser. MTD’20, New York, NY,
USA: Association for Computing Machinery, Nov. 2020, pp. 11–19, isbn: 978-1-
4503-8085-0. doi: 10.1145/3411496.3421221. [Online]. Available: http://doi.
org/10.1145/3411496.3421221 (visited on 05/24/2022).

[31] S. Vikram, C. Yang, and G. Gu,
”
NOMAD: Towards non-intrusive moving-target

defense against web bots“, in 2013 IEEE Conference on Communications and Net-
work Security (CNS), Oct. 2013, pp. 55–63. doi: 10.1109/CNS.2013.6682692.

[32] A. Gómez-Boix, D. Frey, Y.-D. Bromberg, and B. Baudry,
”
A Collaborative Strategy

for Mitigating Tracking through Browser Fingerprinting“, in Proceedings of the 6th
ACM Workshop on Moving Target Defense, ser. MTD’19, New York, NY, USA:
Association for Computing Machinery, Nov. 2019, pp. 67–78, isbn: 978-1-4503-6828-
5. doi: 10.1145/3338468.3356828. [Online]. Available: http://doi.org/10.
1145/3338468.3356828 (visited on 05/24/2022).

[33] Y. Huang and A. K. Ghosh,
”
Introducing Diversity and Uncertainty to Create

Moving Attack Surfaces for Web Services“, en, in Moving Target Defense, S. Ja-
jodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Eds., vol. 54, Series
Title: Advances in Information Security, New York, NY: Springer New York, 2011,
pp. 131–151. doi: 10.1007/978-1-4614-0977-9_8. [Online]. Available: http:
//link.springer.com/10.1007/978-1-4614-0977-9_8 (visited on 06/20/2022).

50 BIBLIOGRAPHY

[34] E. Al-Shaer,
”
Toward Network Configuration Randomization for Moving Target

Defense“, en, in Moving Target Defense, S. Jajodia, A. K. Ghosh, V. Swarup, C.
Wang, and X. S. Wang, Eds., vol. 54, Series Title: Advances in Information Security,
New York, NY: Springer New York, 2011, pp. 153–159. doi: 10.1007/978-1-4614-
0977-9_9. [Online]. Available: http://link.springer.com/10.1007/978-1-
4614-0977-9_9 (visited on 06/20/2022).

[35] H. Okhravi, A. Comella, E. Robinson, S. Yannalfo, P. Michaleas, and J. Haines,

”
Creating a Cyber Moving Target for Critical Infrastructure Applications“, en, in
Critical Infrastructure Protection V, J. Butts and S. Shenoi, Eds., vol. 367, Series
Title: IFIP Advances in Information and Communication Technology, Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2011, pp. 107–123. doi: 10.1007/978-3-642-
24864-1_8. [Online]. Available: http://link.springer.com/10.1007/978-3-
642-24864-1_8 (visited on 06/20/2022).

[36] M. Thompson, N. Evans, and V. Kisekka,
”
Multiple OS rotational environment

an implemented Moving Target Defense“, in 2014 7th International Symposium on
Resilient Control Systems (ISRCS), Aug. 2014, pp. 1–6. doi: 10.1109/ISRCS.2014.
6900086.

[37] A. Roy, A. Chhabra, C. A. Kamhoua, and P. Mohapatra,
”
A moving target defense

against adversarial machine learning“, en, in Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, Arlington Virginia: ACM, Nov. 2019, pp. 383–
388, isbn: 978-1-4503-6733-2. doi: 10.1145/3318216.3363338. [Online]. Available:
https://dl.acm.org/doi/10.1145/3318216.3363338 (visited on 08/02/2022).

[38] A. Voulimeneas, D. Song, F. Parzefall, et al.,
”
Distributed Heterogeneous N-Variant

Execution“, en, in Detection of Intrusions and Malware, and Vulnerability Assess-
ment, C. Maurice, L. Bilge, G. Stringhini, and N. Neves, Eds., ser. Lecture Notes
in Computer Science, Cham: Springer International Publishing, 2020, pp. 217–237,
isbn: 978-3-030-52683-2. doi: 10.1007/978-3-030-52683-2_11.

[39] Q. Duan, E. Al-Shaer, and J. Xie,
”
Range and Topology Mutation Based Wire-

less Agility“, in Proceedings of the 7th ACM Workshop on Moving Target De-
fense, ser. MTD’20, New York, NY, USA: Association for Computing Machinery,
Nov. 2020, pp. 59–67, isbn: 978-1-4503-8085-0. doi: 10.1145/3411496.3421228.
[Online]. Available: http://doi.org/10.1145/3411496.3421228 (visited on
05/24/2022).

[40] S. Abdelnabi and M. Fritz,
”
What’s in the box: Deflecting Adversarial Attacks by

Randomly Deploying Adversarially-Disjoint Models“, in Proceedings of the 8th ACM
Workshop on Moving Target Defense, New York, NY, USA: Association for Com-
puting Machinery, Nov. 2021, isbn: 978-1-4503-8658-6. [Online]. Available: http:
//doi.org/10.1145/3474370.3485659 (visited on 05/24/2022).

[41] S. Lee, N.-s. Jho, D. Chung, Y. Kang, and M. Kim,
”
Rcryptect: Real-time detection

of cryptographic function in the user-space filesystem“, en, Computers & Security,
vol. 112, p. 102 512, Jan. 2022, issn: 01674048. doi: 10.1016/j.cose.2021.
102512. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0167404821003369 (visited on 08/16/2022).

BIBLIOGRAPHY 51

[42] T. Taylor, F. Araujo, A. Kohlbrenner, and M. P. Stoecklin,
”
Hidden in Plain Sight:

Filesystem View Separation for Data Integrity and Deception“, en, in Detection of
Intrusions and Malware, and Vulnerability Assessment, C. Giuffrida, S. Bardin, and
G. Blanc, Eds., vol. 10885, Series Title: Lecture Notes in Computer Science, Cham:
Springer International Publishing, 2018, pp. 256–278. doi: 10.1007/978-3-319-
93411-2_12. [Online]. Available: http://link.springer.com/10.1007/978-3-
319-93411-2_12 (visited on 07/30/2022).

[43] A. Continella, A. Guagnelli, G. Zingaro, et al.,
”
ShieldFS: The Last Word In Ran-

somware Resilient Filesystems“, en, p. 20,

[44] D. R. Matos, M. L. Pardal, G. Carle, and M. Correia,
”
RockFS: Cloud-backed File

System Resilience to Client-Side Attacks“, en, in Proceedings of the 19th Interna-
tional Middleware Conference, Rennes France: ACM, Nov. 2018, pp. 107–119, isbn:
978-1-4503-5702-9. doi: 10.1145/3274808.3274817. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3274808.3274817 (visited on 08/02/2022).

[45] T. McIntosh, P. Watters, A. Kayes, A. Ng, and Y.-P. P. Chen,
”
Enforcing situation-

aware access control to build malware-resilient file systems“, en, Future Generation
Computer Systems, vol. 115, pp. 568–582, Feb. 2021, issn: 0167739X. doi: 10.1016/
j.future.2020.09.035. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0167739X20305641 (visited on 08/02/2022).

[46] L. Grant and S. Parkinson,
”
Identifying File Interaction Patterns in Ransomware

Behaviour“, en, in Guide to Vulnerability Analysis for Computer Networks and Sys-
tems, S. Parkinson, A. Crampton, and R. Hill, Eds., Series Title: Computer Commu-
nications and Networks, Cham: Springer International Publishing, 2018, pp. 317–
335. doi: 10.1007/978-3-319-92624-7_14. [Online]. Available: http://link.
springer.com/10.1007/978-3-319-92624-7_14 (visited on 07/29/2022).

[47] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler,
”
CryptoLock (and Drop It):

Stopping Ransomware Attacks on User Data“, en, in 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), Nara, Japan: IEEE, Jun.
2016, pp. 303–312, isbn: 978-1-5090-1483-5. doi: 10.1109/ICDCS.2016.46. [On-
line]. Available: http://ieeexplore.ieee.org/document/7536529/ (visited on
08/01/2022).

[48] Linux.Encoder. - Wikipedia, en. [Online]. Available: https://en.wikipedia.org/
wiki/Linux.Encoder. (visited on 10/04/2022).

[49] A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda,
”
Cutting the

Gordian Knot: A Look Under the Hood of Ransomware Attacks“, en, in Detection of
Intrusions and Malware, and Vulnerability Assessment, M. Almgren, V. Gulisano,
and F. Maggi, Eds., vol. 9148, Series Title: Lecture Notes in Computer Science,
Cham: Springer International Publishing, 2015, pp. 3–24. doi: 10.1007/978-3-
319-20550-2_1. [Online]. Available: http://link.springer.com/10.1007/978-
3-319-20550-2_1 (visited on 07/30/2022).

[50] Y. Lemmou, J.-L. Lanet, and E. M. Souidi,
”
In-Depth Analysis of Ransom Note

Files“, en, Computers, vol. 10, no. 11, p. 145, Nov. 2021, issn: 2073-431X. doi:
10.3390/computers10110145. [Online]. Available: https://www.mdpi.com/2073-
431X/10/11/145 (visited on 08/16/2022).

52 BIBLIOGRAPHY

List of Figures

2.1 FUSE High-level Architecture [12] . 6

2.2 The Virtual File System [13] . 7

2.3 Raspberry Pi Model B+ [15] . 8

2.4 Software-Defined Radio [16] . 8

4.1 Ransomware Encryption Pattern C . 19

4.2 Renaming the File After Each Read . 20

4.3 Default File System (left) and Overlay File System (right) 20

4.4 Ransomware BFS traversal . 21

4.5 Infinite Directory Depth Sequential Diagram 22

4.6 Read Flow Chart . 23

4.7 Open with O DIRECT flag . 24

4.8 Open with O SYNC flag . 24

4.9 Overlay File-System Removing Name Extension 26

4.10 Overlay File-system Removing Identifier Flow Chart 27

4.11 Overlay File-System Removing Identifier on Each Read Flow Chart 28

5.1 Read Performance (16MB File Size) . 33

5.2 Read Performance (524MB File Size) . 34

5.3 Read Performance (4GB File Size) . 35

5.4 Read CPU Utilisation (16MB File Size) . 36

5.5 Read CPU Utilisation (4GB File Size) . 37

53

54 LIST OF FIGURES

5.6 Write Performance (16MB File Size) . 38

5.7 Write Performance (524MB File Size) . 39

5.8 Write Performance (4GB File Size) . 40

5.9 Write CPU Utilisation (16MB File Size) 41

5.10 Write CPU Utilisation (4GB File Size) . 42

List of Tables

3.1 Research Overview Related to Moving Target Defence 11

3.2 Research Overview Related to File System Protection Against Ransomware 14

5.1 Evaluating File System Protection Against Ransomware 31

55

56 LIST OF TABLES

Appendix A

Appendix A

A.1 ACM Full- Text Collection

Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu, Guest-transparent honey files via hypervisor-
level access redirection, Comput. Secur., vol. 77, no. C, pp. 737–744, Aug. 2018, doi:
10.1016/j.cose.2018.02.014.

P. Larsen and M. Franz, “Adoption Challenges of Code Randomization,” in Proceedings
of the 7th ACM Workshop on Moving Target Defense, New York, NY, USA, Nov. 2020,
pp. 45–49. doi: 10.1145/3411496.3421226.

Z. Shu and G. Yan, “Ensuring Deception Consistency for FTP Services Hardened against
Advanced Persistent Threats,” in Proceedings of the 5th ACM Workshop on Moving Tar-
get Defense, New York, NY, USA, Jan. 2018, pp. 69–79. doi: 10.1145/3268966.3268971.

S. Lee, H. K. Kim, and K. Kim, “Ransomware protection using the moving target defense
perspective,” Comput. Electr. Eng., vol. 78, no. C, pp. 288–299, Sep. 2019, doi:
10.1016/j.compeleceng.2019.07.014.

J. Sun, S. Liu, and K. Sun, “A Scalable High Fidelity Decoy Framework against Sophis-
ticated Cyber Attacks,” in Proceedings of the 6th ACM Workshop on Moving Target
Defense, New York, NY, USA, Nov. 2019, pp. 37–46. doi: 10.1145/3338468.3356826.

C. E. Rubio-Medrano, J. Lamp, A. Doupé, Z. Zhao, and G.-J. Ahn, “Mutated Policies:
Towards Proactive Attribute-based Defenses for Access Control,” in Proceedings of the
2017 Workshop on Moving Target Defense, New York, NY, USA, Oct. 2017, pp. 39–49.
doi: 10.1145/3140549.3140553.

H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A Survey on Ransomware: Evolution, Tax-
onomy, and Defense Solutions,” ACM Comput. Surv., Jan. 2022, doi: 10.1145/3514229.

C. A. Odell, M. R. McNiece, S. K. Gage, H. D. Gage, and E. W. Fulp, “Using Probability
Densities to Evolve more Secure Software Configurations,” in Proceedings of the 2015
Workshop on Automated Decision Making for Active Cyber Defense, New York, NY,
USA, Oct. 2015, pp. 27–32. doi: 10.1145/2809826.2809831.

57

58 APPENDIX A. APPENDIX A

N. Nissim, O. Lahav, A. Cohen, Y. Elovici, and L. Rokach, “Volatile memory analysis
using the MinHash method for efficient and secured detection of malware in private cloud,”
Comput. Secur., vol. 87, no. C, Nov. 2019, doi: 10.1016/j.cose.2019.101590.

R. Moussaileb, N. Cuppens, J.-L. Lanet, and H. L. Bouder, “A Survey on Windows-based
Ransomware Taxonomy and Detection Mechanisms,” ACM Comput. Surv., vol. 54, no.
6, p. 117:1-117:36, Jul. 2021, doi: 10.1145/3453153.

S. Liu, P. Feng, S. Wang, K. Sun, and J. Cao, “Enhancing malware analysis sandboxes
with emulated user behavior,” Comput. Secur., vol. 115, no. C, Apr. 2022, doi:
10.1016/j.cose.2022.102613.

H. Kurra, Y. Al-Nashif, and S. Hariri, “Resilient cloud data storage services,” in Pro-
ceedings of the 2013 ACM Cloud and Autonomic Computing Conference, New York, NY,
USA, Aug. 2013, pp. 1–9. doi: 10.1145/2494621.2494634.

M. S. Kashkoush, M. Azab, G. Attiya, and A. S. Abed, “Online Smart Disguise: real-time
diversification evading coresidency-based cloud attacks,” Cluster Computing, vol. 22, no.
3, pp. 721–736, Sep. 2019, doi: 10.1007/s10586-018-2851-2.

R. Jolak et al., “CONSERVE: A framework for the selection of techniques for monitoring
containers security,”J. Syst. Softw., vol. 186, no. C, Apr. 2022, doi: 10.1016/j.jss.2021.111158.

D. J. John, R. W. Smith, W. H. Turkett, D. A. Cañas, and E. W. Fulp, “Evolutionary
based moving target cyber defense,” in Proceedings of the Companion Publication of the
2014 Annual Conference on Genetic and Evolutionary Computation, New York, NY, USA,
Jul. 2014, pp. 1261–1268. doi: 10.1145/2598394.2605437.

O. Hireche, C. Benzäıd, and T. Taleb, “Deep data plane programming and AI for zero-
trust self-driven networking in beyond 5G,” Comput. Netw., vol. 203, no. C, Feb. 2022,
doi: 10.1016/j.comnet.2021.108668.

X. Han, N. Kheir, and D. Balzarotti, “Deception Techniques in Computer Security: A
Research Perspective,” ACM Comput. Surv., vol. 51, no. 4, p. 80:1-80:36, Jul. 2018,
doi: 10.1145/3214305. [14] G. Gu, H. Hu, E. Keller, Z. Lin, and D. E. Porter, “Build-
ing a Security OS With Software Defined Infrastructure,” in Proceedings of the 8th
Asia-Pacific Workshop on Systems, New York, NY, USA, Sep. 2017, pp. 1–8. doi:
10.1145/3124680.3124720.

K. Falzon and E. Bodden, Dynamically Provisioning Isolation in Hierarchical Architec-
tures, in Proceedings of the 18th International Conference on Information Security - Vol-
ume 9290, Berlin, Heidelberg, Sep. 2015, pp. 83–101. doi: 10.1007/978-3-319-23318-55.

B. Coppens, B. De Sutter, and S. Volckaert, “Multi-variant execution environments,” in
The Continuing Arms Race: Code-Reuse Attacks and Defenses, vol. 18, Association for
Computing Machinery and Morgan AND Claypool, 2018, pp. 211–258. Accessed: May
16, 2022.

M. Barbareschi, A. De Benedictis, and N. Mazzocca, “A PUF-based hardware mutual
authentication protocol,” J. Parallel Distrib. Comput., vol. 119, no. C, pp. 107–120, Sep.
2018, doi: 10.1016/j.jpdc.2018.04.007.

A.2. IEE 59

A. Bajic and G. T. Becker, “Automated benchmark network diversification for realistic
attack simulation with application to moving target defense,” Int. J. Inf. Secur., vol. 21,
no. 2, pp. 253–278, Apr. 2022, doi: 10.1007/s10207-021-00552-9.

C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, “From Security to Assurance in the
Cloud: A Survey,” ACM Comput. Surv., vol. 48, no. 1, p. 2:1-2:50, Jul. 2015, doi:
10.1145/2767005.

A.2 IEE

T. Kong, L. Wang, D. Ma, K. Chen, Z. Xu, and Y. Lu, “ConfigRand: A Moving Target
Defense Framework against the Shared Kernel Information Leakages for Container-based
Cloud,” in 2020 IEEE 22nd International Conference on High Performance Computing
and Communications; IEEE 18th International Conference on Smart City; IEEE 6th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Dec.
2020, pp. 794–801. doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00104.

J. Sianipar, M. Sukmana, and C. Meinel, “Moving Sensitive Data Against Live Memory
Dumping, Spectre and Meltdown Attacks,” in 2018 26th International Conference on
Systems Engineering (ICSEng), Dec. 2018, pp. 1–8. doi: 10.1109/ICSENG.2018.8638178.

Y. Zhang, D. Ma, X. Sun, K. Chen, and F. Liu, “What You See Is Not What You Get:
Towards Deception-Based Data Moving Target Defense,” in 2020 IEEE 39th International
Performance Computing and Communications Conference (IPCCC), Nov. 2020, pp. 1–8.
doi: 10.1109/IPCCC50635.2020.9391522.

T. Masumoto, W. K. Kyi Oo, and H. Koide, “MTD: Run-time System Call Mapping
Randomization,” in 2021 International Symposium on Computer Science and Intelligent
Controls (ISCSIC), Nov. 2021, pp. 257–263. doi: 10.1109/ISCSIC54682.2021.00054.

R. Biswas and J. Wu, “Protecting Resources Against Volumetric and Non-volumetric
Network Attacks,”in 2021 IEEE 27th International Conference on Parallel and Distributed
Systems (ICPADS), Dec. 2021, pp. 387–395. doi: 10.1109/ICPADS53394.2021.00054.

S. Huang and J. Pan, “A Software MTD Technique of Multipath Execution Protection,” in
2020 IEEE 3rd International Conference on Information Systems and Computer Aided Ed-
ucation (ICISCAE), Sep. 2020, pp. 489–496. doi: 10.1109/ICISCAE51034.2020.9236800.

W. K. Kyi Oo, H. Koide, D. Vasconcellos Vargas, and K. Sakurai, “A New Design for
Evaluating Moving Target Defense System,” in 2018 Sixth International Symposium on
Computing and Networking Workshops (CANDARW), Nov. 2018, pp. 561–563. doi:
10.1109/CANDARW.2018.00111.

G.-C. Luh and W.-W. Liu, “Potential Field Based Immune Network for Dynamic Motion
Planning of Mobile Robots,” in 2006 International Forum on Strategic Technology, Oct.
2006, pp. 151–155. doi: 10.1109/IFOST.2006.312275.

60 APPENDIX A. APPENDIX A

F. Mohsen and H. Jafaarian, “Raising the Bar Really High: An MTD Approach to Protect
Data in Embedded Browsers,” in 2019 IEEE 43rd Annual Computer Software and Appli-
cations Conference (COMPSAC), Jul. 2019, vol. 1, pp. 786–794. doi: 10.1109/COMP-
SAC.2019.00116.

X. Tao, F. Esposito, A. Sacco, and G. Marchetto, “A Policy-Based Architecture for Con-
tainer Migration in Software Defined Infrastructures,” in 2019 IEEE Conference on Net-
work Softwarization (NetSoft), Jun. 2019, pp. 198–202. doi: 10.1109/NETSOFT.2019.8806659.

M. Thompson, M. Mendolla, M. Muggler, and M. Ike, “Dynamic Application Rotation
Environment for Moving Target Defense,” in 2016 Resilience Week (RWS), Aug. 2016,
pp. 17–26. doi: 10.1109/RWEEK.2016.7573301.

B. Tozer, T. Mazzuchi, and S. Sarkani, “Optimizing Attack Surface and Configuration
Diversity Using Multi-objective Reinforcement Learning,”in 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), Dec. 2015, pp. 144–149.
doi: 10.1109/ICMLA.2015.144.

A.3 Springer

G. Li, W. Wang, K. Gai, Y. Tang, B. Yang, and X. Si, “A Framework for Mimic Defense
System in Cyberspace,” J. Signal Process. Syst., vol. 93, no. 2–3, pp. 169–185, Mar.
2021, doi: 10.1007/s11265-019-01473-6.

M. S. Kashkoush, M. Azab, G. Attiya, and A. S. Abed, “Online Smart Disguise: real-time
diversification evading coresidency-based cloud attacks,” Cluster Computing, vol. 22, no.
3, pp. 721–736, Sep. 2019, doi: 10.1007/s10586-018-2851-2.

A. Bajic and G. T. Becker, “Automated benchmark network diversification for realistic
attack simulation with application to moving target defense,” Int. J. Inf. Secur., vol. 21,
no. 2, pp. 253–278, Apr. 2022, doi: 10.1007/s10207-021-00552-9.

