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Zusammenfassung

Das explosionsartige Wachstum des IoT geht mit einer Zunahme von Cyberangriffen ein-
her, wobei Ransomware, Rootkits und Command-and-Control-Malware besonders häufig
vorkommen. Ein vielversprechender Ansatz zur Schadensbegrenzung ist Moving Target
Defense (MTD), wo die Angriffsfläche eines Ziels dynamisch verändert wird. Der Stand
der IoT-MTD ist jedoch noch unausgereift, und es mangelt an Forschung zur Koordinie-
rung mehrerer MTD-Techniken in realen Anwendungen. Als Mittel zur Optimierung eines
solchen Systems erforscht diese Arbeit die Anwendung von Reinforcement Learning (RL),
um MTD-Techniken reaktiv gegen die zuvor genannten Malware-Familien einzusetzen in
einem realen Crowdsensing-Szenario. Zunächst wird die Aufgabe RL-basierter MTD-
Auswahl analysiert und die wichtigsten Systemanforderungen herausgearbeitet. Danach
werden drei Simulationen, sowie die Implementierung eines kompletten Online-MTD-
Agenten vorgestellt. Da Online-RL kostspielig ist, verlagern sich die Simulationen von
einer zunächst eher theoretischen Perspektive hin zur Realität, um die Übertragung von
MTD-Strategien auf eine reale Umgebung zu ermöglichen. Die erste Simulation stellt eine
Baseline dar und setzt einen Supervisor zur Erzeugung von Belohnungssignalen ein. Die
Zweite tauscht diesen Supervisor gegen eine Komponente zur Erkennung von Anomalien
aus. Zur Vergleichbarkeit wird in beiden Simulationen ein neu gesammelter Datensatz
mit Rohdaten zum Angriffsverhalten verwendet. Die dritte Simulation nutzt ebenfalls die
Anomalieerkennung, verwendet jedoch einen zweiten Datensatz von Verhaltensweisen, die
von einem echten Online-Agenten aufgezeichnet wurden. Während der Agent der ersten
Simulation lernt, MTD-Techniken für alle Angriffe der oben genannten Familien auszu-
wählen, zeigen die zweite und dritte Simulation, dass die Konvergenz eines realistischen
Agenten durch Ungenauigkeiten bei der Anomalieerkennung beeinträchtigt wird, Angrif-
fe jedoch mehrheitlich abgewehrt werden (>91%). Schließlich werden die Auswirkungen
des Online-Agenten diskutiert und der Ressourcenverbrauch auf einem Raspberry Pi 3
evaluiert. Mit einem Speicherbedarf von weniger als 1 MB und einer Auslastung von
weniger als 80% der verfügbaren CPU und des Arbeitsspeichers stellt die Hardware keine
Einschränkung dar. Die Zeit für das Erlernen neuer Angriffe, kann jedoch ein Hindernis
darstellen.
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Abstract

The explosive growth of the IoT has come along with an increase of cyberattacks with
ransomware, rootkits and Command-and-Control malware being particularly common
families. One promising approach for mitigation is offered by Moving Target Defense
(MTD), which works by dynamically altering a target’s attack surface. However, the
state of IoT MTD is still immature, especially lacking research dedicated to coordinating
multiple MTD techniques in real applications. As a means to optimize such a system,
this work explores the application of reinforcement learning (RL) to reactively deploy
MTD techniques against the aforementioned malware families in a real crowdsensing sce-
nario. First, the task of RL-based MTD selection is analyzed to distill major system
requirements. Thereafter, three training simulations are presented along with the im-
plementation of a complete, online MTD agent. As online RL is costly, the simulations
gradually shift from a rather theoretical perspective towards approximating reality to al-
low policy transfer to a real environment. Using a supervisor to create reward signals, the
first simulation marks a baseline. The second exchanges this supervisor for an anomaly
detection component. For comparability both simulations use a new dataset of raw attack
behaviors. The third simulation also leverages anomaly detection, yet utilizes a second
dataset of behaviors monitored by a real online agent. While the agent of the first simu-
lation learns to select MTD techniques against all attacks of the aforementioned families,
the second and third simulations show that a realistic agent’s convergence is affected by
anomaly detection inaccuracies, but generally attacks are effectively mitigated. Finally,
implications of the online agent are discussed and its resource consumption is evaluated
on a Raspberry Pi 3. Requiring less than 1MB storage and always utilizing below 80% of
the available CPU and RAM, hardware poses no limitation. However, the time required
to learn new attacks may impair viability
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Chapter 1

Introduction

The Internet of Things (IoT) has experienced explosive growth over recent years and
forcasts estimate the number of connected devices to continue to grow by billions annually
[19], [53]. IoT devices permeate many areas of modern society with applications spreading
from smart-homes and cities, over healthcare and industrial tracking to crowdsourcing [19].

A particular IoT crowdsourcing scenario is given by crowdsensing, where large groups of
individuals share benefits of data monitored via resource-constrained sensor devices [37].
As an example, the ElectroSense initiative provides a global crowdsensing platform for
sharing radiofrequency spectrum data with participants typically employing Raspberry
Pi (RP) devices equipped with software-defined radio kits (SDR) [51],[43].

The rapid growth of the IoT, the resource-constrained nature of respective devices and
the heterogeneity of application scenarios have accelerated the emergence of related cy-
berattacks [61]. Against this background, crowdsensing participants are at particular
risk, as static sensor devices typically are not subject to the scrutiny and security mea-
sures employed at more resourceful machines of everyday usage [46]. This clearly shows
the need for novel and automated approaches to security management that take these
circumstances into account.

One security approach of great potential is Moving Target Defense (MTD). MTD aims
to thwart off adversaries who rely on the static nature of the attack target by proactively
or reactively moving certain system parameters [41]. As a security paradigm, MTD fol-
lows the philosophy that perfect security is most likely not achievable, which matches
the current state of IoT security. Rather than preventing any attacks, the idea is to de-
fend against them in a dynamic manner [14], [19]. Despite being promising as a defense
paradigm against cyberattacks on IoT devices, there are many open research questions to
achieve desired security benefits. In particular, the optimal deployment of MTD solutions
is a frequently-observed limitation of existing MTD-based frameworks [14]. This is even
more prevalent if multiple MTD techniques must be coordinated to cope with a series of
different attack vectors [14].

A promising solution to manage the MTD deployment control task in an automated and
comprehensive manner is Reinforcement Learning (RL). As opposed to other machine

1



2 CHAPTER 1. INTRODUCTION

learning (ML) approaches which typically work offline, RL is designed to also operate in
a completely online manner. Further, it does not require cumbersome labelling efforts as
normal for supervised ML. Instead, RL provides a flexible framework for learning from
successes and failures by interacting with an environment. As such, it is tailored to
dynamically learn policies for sequential decision problems - like the problem of how to
optimally coordinate MTD techniques.

1.1 Motivation

Considering the rapid growth of the IoT and its increasingly complex attack surface, this
work aims to explore how Moving Target Defense (MTD) can be optimally applied within
a comprehensive framework leveraging Reinforcement Learning (RL).

The combination of RL and MTD is a relatively young and diverse field of research, so
the number of open challenges is naturally large. However, based on a literature review,
the following key challenges can be distilled:

The current state of MTD on its own is still considered immature with respect to tech-
niques targeted specifically for IoT devices [41],[14]. Further, there is a clear lack of work
evaluating MTD solutions in real world scenarios. Thus, the focus should be on novel
IoT-MTD techniques validated within real and exemplary IoT applications, such as the
ElectroSense crowdsensing platform [41],[14].

Against this background, a number of MTD techniques have been developed at the Uni-
versity of Zurich to thwart off ransomware, rootkits as well as command and control
(CnC-based) malware [12]. However, while having been validated in the ElectroSense sce-
nario for their effectiveness, it is unclear how these techniques can be optimally leveraged
to maximize IoT defense capabilities.

Besides the general lack of literature on real-world IoT MTD, there is a lack of research
dedicated to deploying among multiple MTD techniques [14]. Where single MTD tech-
niques have been utilized and enhanced against specific attacks, it has not yet been inves-
tigated how multiple MTD solutions that mitigate a range of attacks can be coordinated
and optimized within a well-defined and holistic defense framework [14]. There is a clear
need to address issues revolving around the construction of such a framework, including
the question of what MTD techniques to deploy, when, and how. Certainly, in order to
apply MTD thoroughly as a security paradigm, this is a crucial challenge to solve.

As new attacks arise and MTD techniques are developed, it is imperative to dynamically
adapt to these changing circumstances and figure out how mitigating techniques can be
mapped to given attacks. RL-based agents are very promising to solve this task as they
can learn online and discover optimal MTD choices by trial and error. However, to the
best of our knowledge, it has not yet been investigated how multi-purpose MTD can be
embedded in the RL framework.

Where RL has been used to optimize single MTD techniques, the resulting agents have not
been validated sufficiently in real-world scenarios. Most often, agents are being trained in
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artificial simulations, without any transfer of the learnt policies to a real context for vali-
dation. Further, generally there are no results available regarding resource requirements
that are necessary to judge solution feasibility in the IoT context. Thus, to derive stronger
statements about the viability, the effectiveness and the efficiency of an RL-based MTD
system targeted for the IoT, it should be constructed based on real environment data and
tested for its resource consumption.

1.2 Aims

This work aims to construct an RL-based framework for optimized MTD deployment.
As a primary goal, the focus is on deciding WHAT MTD technique to utilize given any
possible state of the IoT device. In particular, and based on the open challenges identified
in the previous section, this work aims to present the following contributions:

1. An analysis of currently available MTD techniques [12], targeted malware (ran-
somware, rootkits and CnC), as well as the general RL framework to generate a de-
scription of the problem domain. Thereby, the goal is to identify basic requirements
and to formulate relevant assumptions for constructing an RL-based multi-MTD
system capable of thwarting off a range of attacks in the ElectroSense crowdsensing
scenario.

2. The design, implementation and performance evaluation of three different MTD
agent prototypes that learn offline in simulated environments. Having the aim of
iteratively mimicking reality more and more closely, these environments are con-
structed at increasing levels of complexity. In essence, the proposed simulation
prototypes vary along the dimensions environment data used, as well as the degree
of training supervision:

(a) The first prototype acts as a baseline and aims to show what RL can achieve
under ideal conditions, respectively how well an agent can learn to choose MTD
techniques when presented an attack behavior state. This simulation uses raw
attack behavior data and employs a supervisor to determine the construction
of episodes and rewards.

(b) The second prototype leverages an anomaly detector, which allows to construct
episodes in a completely unsupervised manner. Positive or negative reward
signals are estimated by the anomaly detector based on the normality of states
after MTD execution. Thus, while still sampling from ideal raw behavior data,
this simulation aims to measure how much impact imprecisions given by the
anomaly detector have on the system’s learning capabilities.

(c) The third prototype also works completely unsupervised, yet considers realistic
data, that also an online agent would observe. Essentially, the data used for
this simulation environment accounts for noise introduced by an MTD agent
controller itself, besides the raw attack behavior used in previous prototypes.
Thus, this prototype aspires not only to be useful for analyzing a potential
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online learning process, but also for pretraining agents for later online deploy-
ment. This further implies that the performance evaluation of the learnt policy
aims to be transferrable to the real-world crowdsensing scenario.

3. The design and implementation of a fully functional online MTD controller agent,
capable of autonomously learning in a real sensor environment. This comprises
the orchestration of tasks like observing behavior states on the sensor, interpreting
them, deploying MTD techniques and performing agent learning updates.

4. An evaluation of the resource requirements induced by the online MTD agent on
the sensor device to validate the feasibility of the proposed RL-based MTD system.

1.3 Outline

As an initial step towards achieving the aims stated above, Chapter 2 starts off with rel-
evant background regarding malware families of interest, MTD design and techniques, as
well as RL. Besides introducing the main concepts in these areas, related work is presented
to point out the lack of existing, RL-based MTD solutions and contextualize the present
work. Subsequently, Chapter 3 discusses the problem domain of fitting reactive MTD into
the RL framework as well as assumptions needed to establish a base for a well-defined
training process. Further, the chapter derives the minimally required functional compo-
nents for an RL-based MTD controller as well as desired security and efficiency properties.
This marks the first aim of this work. Next, Chapter 4 dives into data needs for RL and
implications for constructing simulated environments. The chapter introduces the features
considered for states and explores properties of a collected raw device behavior dataset.
Furthermore, the most important aspects of data preprocessing are explained as used for
later chapters. The following Chapter 5 seeks to fulfill the goal 2a and 2b of this thesis by
presenting the first two offline prototypes. Besides elaborating on the construction of the
corresponding simulation environments, the performance of accordingly trained agents
is evaluated. After these preliminary considerations of applying RL for MTD selection,
Chapter 6 continues with measures undertaken to make the simulated environment as
realistic as possible. Thus, the chapter explains the design of a full-fledged, online MTD
controller which is required to collect refined data as used for a third and more realistic
simulation environment. After discussing the data collection procedure and analyzing
an accordingly refined dataset, an agent is trained in the corresponding simulation and
evaluated for its performance. This ensures the accomplishment of aim 2c and 3 from the
previous section. Next, Chapter 7 discusses implications of running an MTD controller
agent online. Moreover and dedicated to the final goal 4 of this thesis, the full MTD
controller is evaluated on a RP device for its resource consumption. Finally, Chapter 8
concludes with a summary, points out limitations and proposes directions for future work.



Chapter 2

Background and Related Work

This chapter gives an overview of the background technologies relevant for this work. It
starts by shortly describing the crowdsensing platform used as a base. Next, it introduces
the general concepts of Moving Target Defense, three different malware families as well
as corresponding, selected MTDs that subsequent chapters will build upon. Additionally,
the most important theoretical background is covered with regards to RL. After having
considered the main aspects thereof, related work is presented to contextualize the present
work.

2.1 Crowdsensing: ElectroSense

Frequently, IoT devices are not just deployed in a standalone manner, but work inter-
connectedly in larger networks, such as in the case of crowdsensing [37]. Crowdsensing
denotes a special application of crowdsourcing, that leverages sensor data monitored by
a large and diversified group of collaborating individuals [49].

In this work, the ElectroSense Platform is used as an exemplary, open-source real-world
representative of an IoT crowdsensing network to develop and test the proposed sys-
tem [51],[43]. ElectroSense is a crowd-sourcing initiative that uses Raspberry Pi devices
equipped with radio sensors to collect spectrum data worldwide. The goal is to make
this data available in real-time for analysis by different kinds of stakeholders. As an open
initiative, everyone can contribute with sensor measurements and access the commonly
collected data.

Setting up a sensor requires a RP 3 or higher, an SDR (USB dongle) receiver, as well as a
dipole antenna-set and an internet connection. An image of the RP OS preconfigured for
ElectroSense can be burned onto an SD card to boot up the RP. Upon assembly of the
RP, the SDR and the antenna, the device can be connected to the internet (typically via
ethernet), powered on and registered onto the ElectroSense platform. This is sufficient to
start contributing spectrum data [10]. For this thesis a setup with a RP3 of 1GB RAM
is considered.

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Malware Threats

IoT devices in general and RPs used for ElectroSense in particular are subject to a large
number of potential cyberattacks. Despite this variety, three different families of malware
are especially common and thus chosen for this work: Command and Control (CnC-
based) malware, rootkits as well as ransomware. This section briefly presents each of
these families and provides information about selected examples of malware used in later
chapters.

2.2.1 Command and Control

CnC-based malware tries to establish a communication channel between a target machine
and a controlling server with the goal of remotely instructing this compromised device
to perform some harmful activity [23]. CnC functionality marks a central component for
botnets, where a botmaster command and controls an army of infected devices (bots) [32].
IoT devices are frequent targets of CnC malware as they usually lack the security measures
leveraged for more resourceful machines and often malware can operate for prolongued
periods of time before it is detected. Types of malicious CnC activity include, but are
not limited to executing DDoS attacks, installing backdoors, spreading other malware,
exfiltrating sensitive data (data leakage) or unwanted digital currency mining [67]. For
this work, four different CnC-based malware are considered. First, the tick [42], allows to
remotely control a number of bots via a server by means of a remote shell or extract files
from victim devices. Next and similarly, jakoritarleite provides a python implementation
for client- (victim) and server-side components enabling data leakage and remote control
[29]. Besides these two attacks, two further data leakage attacks are utilized as provided by
an own proof of concept implementation using shell script and the netcat command [56].
The first, periodically leaks a file of interest from a victim to an attacker machine. The
second allows to periodically send commands (ps aux, ls /etc, df -h, free) from an attacker
to a victim. The victim then executes these commands and sends the results back to the
server. Thus, this second option is further characterized by malicious activity, besides the
system information data leakage. In later chapters these attacks will be referred to as
data_leak_1 and data_leak_2 respectively.

The CnC channel marks a single point of failure for sending commands to the victim.
Thus, detection of the CnC channel and disruption of communication is of great impor-
tance for finding effective countermeasures [23].

2.2.2 User-Level Rootkits

Another family of malware potentially targeting IoT devices is given by rootkits. While
there exist both kernel- and user-level rootkits, the focus will be on the latter here. Linux
User-level rootkits operate in user space (ring 3) by abusing the dynamic linker to preload
shared libraries specified by an attacker before legitimate libraries can be loaded. Thus,
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libraries modified to perform malicious actions may be injected between the kernel and
regular, shared libraries [52].

As per normal operation, there are three main ways of specifying libraries to preload:
First, via the LD PRELOAD environment variable, secondly by the –preload command
line option if the dynamic linker is evoked directly, and third by manipulating the file
/etc/ld.so.preload [39]. All three methods define a list of paths to shared libraries that
should be loaded before all others and are considered by the dynamic linker as per the
order above. The file /etc/ld.so.preload has a system-wide effect. This means that such
specified libraries are preloaded for all programs running on the system [39].

User-level rootkits effectively manipulate LD PRELOAD, /etc/ld.so.preload or the the
dynamic linkers filepath considered for preloading. Linux allows for multiple definitions
of symbols in shared libraries, but they are only resolved once. Thus, a user-level rootkit
takes precedence. By preloading malicious library implementations it may completely
alter the normal flow of execution [52]. The Umbreon rootkit, for instance, may hijack
about 100 symbols, including the chown command [65]. The beurk rootkit, effectively
manipulates /etc/ld.so.preload by appending malicious libraries [71]. The bdvl rootkit
tampers with the location where the dynamic linker checks for preloading shared libraries
(in the file /lib/arm-linux-gnueabihf/ld-2.24.so). Instead of /etc/ld.so.preload it adds a
custom path, which points to a malicious version [21]. This way the rootkit may hide its
presence, as /etc/ld.so.preload remains as usual. Both beurk and bdvl are used for this
work.

A further issue is that rootkits often hide relevant files, such as /etc/ld.so.preload or its
replacement [8] [21]. This is an obstacle for sanitizing the system as a hidden file may
neither be opened nor adapted. Further, it might also not be possible to create a file
with the same name with a clean version. Resource-constrained IoT devices and remotely
deployed spectrum sensors are particularly vulnerable to such threats due to more difficult
intrusion detection.

2.2.3 Crypto Ransomware

Ransomware has become a lucrative cybercrime business and yields millions of dollars
every year [24]. Further, as one of the fastest emerging attack categories for the IoT,
crypto ransomware may also be launched against Raspberry Pi devices as employed in
ElectroSense [70].

Crypto Ransomware tries to hijack user files and other relevant resources on a target
system with the aim of forcing the victim to pay a ransom for the locked data. Typically,
this is achieved by using strong cryptography to encrypt named parts of a system and
displaying a message demanding the ransom. Upon payment the data can be decrypted
at the attackers will [2], [24]. Crypto ransomware usually does not encrypt an entire hard
drive, but only targets specific files (text, images, video files) which are not essential for
the system to function [70]. Locker ransomware in contrast, locks a user from accessing the
system, but leaves data files untouched [70]. In this work however, only crypto ransomware
will be considered, specifically the Ransomware-PoC attack by jimmy-ly00 [30].



8 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Moving Target Defense

This section presents background information about MTD as a security paradigm, as well
as MTD design principles necessary to understand the mode of operation of selected MTD
techniques explained in subsequent sections.

The security of networked systems is heavily impacted by the asymmetric nature of attack
and defense [9]. While attackers need to find and exploit only one vulnerability to com-
promise a system, defenders must aim to patch the entirety of potential vulnerabilities.
Thus, the theoretical effort required by the defender to secure a system is a multitude
larger than the attackers effort - alongside the usual maintenance requirements. Attackers
have a time and informational advantage as they can analyze a static system for longer
durations and launch targeted penetration tests repeatedly. Once a vulnerability has been
found, the attacker may exploit it for prolonged periods of time - possibly also in homo-
geneous, similar systems - until it is patched by the defender [9]. However, even if the
defender knows about a security breach, a patch might not be available on short notice,
if at all. This all leads to a significant security disadvantage for systems configurations
which are deterministic, static and homogeneous [9].

Against this background, a novel cyberdefense paradigm called Moving Target Defense
(MTD) was introduced in 2009 [45], [14]. As a proactive means to thwart off attacks, MTD
proposes to continuously ”move” or alter certain aspects of a given system or device. By
targetedly manipulating such system configurations, the attack surface effectively changes,
such that the attacker’s task becomes increasingly complex and uncertain [14]. Due to
the moving attack surface, vulnerable components are harder to identify and exploit as
one system state of the past cannot predictably be leveraged for subsequent attacks [14].
Thus, the MTD paradigm aims to reverse parts of the asymmetric nature for attack and
defense in traditional, static system settings by limiting time, complicating reconnaissance
and thus introducing higher cost for attackers [9].

However, assuming that it is impossible to achieve perfect security in any system, the
objective of MTD is not to prevent attacks completely, but to enable normal system oper-
ation even if there are malicious actors present [14]. Thus, MTD can be either employed
proactively to hamper attacks, or to reactively mitigate or thwart off ongoing attacks.

2.3.1 MTD Design Principles

According to Cai et al. [9] there are three main questions that need to be clarified to
design a technique following the MTD paradigm: What to move in the system, When to
move, and How to move it [9]. This work, will mainly be concerned with deciding on the
What to move, respectively with choosing among multiple MTD technique the one which
fits best a given situation.
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WHAT

An MTD technique changes the attack surface of a system by moving a number of system
attributes, properties or features which a potential attack would rely upon. Thus, the
range of features to alter becomes a parameter, the so-called ”Moving Parameter” (MP)
[9]. Based on the system layer to which the MP belongs the following categorization has
been proposed for MTD techniques [68]:

1. dynamic data: techniques changing the encoding, the representation or the format
of application data [68], [12], [35]. Here, the aim is to adapt data regarding certain
aspects, that malware needs to rely upon, such as file format or storage location or
directory structures [12]. [35].

2. dynamic software: techniques altering the code of an application dynamically. This
comprises modification of program instructions, their order, format or grouping [68].
The goal is to use the software as a moving parameter by creating multiple variants
(diversification) that are functionally equivalent, but differ with respect to their
behavior out of the specification [9]. Among other approaches this can be achieved
compiler-based, by hand, or via computational outsourcing over the web [27], [9].

3. dynamic runtime environment: techniques changing the execution environment,
such as address space randomization (changing memory layout and location of
code/libraries and functions, i.e. against stack-overflow attacks) [22], [4], or in-
struction set randomization (changing the interface of the operating system (OS) to
an application, i.e. system calls for I/O devices, i.e. against code injection attacks)
[68], [60].

4. dynamic platform: techniques changing platform properties. This includes CPU
architecture and OS version, virtual machine instance, platform data format etc
[68], [41]. Virtualization technologies are especially noteworthy in this category as
an application service can be flexibly run from an active virtual environment, or
a pool of backup instances with different OS/configurations such as to maximize
diversity [47], [6].

5. dynamic networks: techniques modifying network properties like protocols, ad-
dresses or topology [68], [41]. Such MTD techniques aim to invalidate knowledge
that an attacker may gain from reconnaissance attacks by periodically shuffling po-
tential target addresses (network address shuffling) [9].

WHEN

Besides defining what system features to utilize as the MP, it must be decided When the
current value of the MP should be altered. This means the points in time, respectively
the frequency of moving must be determined [9]. Dependent on the MTD technique, this
may heavily influence the performance of the system to protect. If the MP is not changed
frequently enough, the attack surface is almost static from an attackers point of view.
If the MP is changed within too short intervals however, the system might be harder to
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attack, yet a considerable overhead is introduced, possibly deteriorating the availability
of the system [9], [11], [12].

Clearly, the effectiveness of moving is related to the time of potential attacks. If there are
no attacks, moving a target does not provide any clear benefit (except maybe deterrence).
In an ideal setting, the target remains unchanged without any attacks, but moves with
high frequency when there is an immediate threat of an attack [9]. Practically, there
are three main types of solutions prevalent in the literature to trigger the MP value
change: time-based, event-based, or a combination of the two [41]. For instance, time-
based approaches alter the MP in fixed or varying intervals or at certain dates [9], [11]
and follow therefore a proactive scheme. Event-based solutions may be triggered by an
anomalous event and work in collaboration with an intrusion detection system or another
attack detection component [14], [15]. These approaches are reactive by nature. A hybrid
of time- and event-based schemes may work both proactively and reactively [72], [54].

HOW

Deciding on how the MP is exactly changed implies determining a selection and a re-
placement operation [9]. This means that in order to change the MP, first a value has to
be selected from a defined set of valid MP states [9],[41] and then, the old value of the
MP needs to be replaced by the new one [9]. Selecting the new MP value has been clas-
sified into three types of methods: diversification, shuffling (randomization), or general
redundancy-based approaches [26],[14],[41].

Diversification-based MTD techniques employ system components that have different im-
plementations yet are functionally equivalent [14]. System diversity can be realized based
on a variety of domains. Azab et al. for instance, proposed a [5] code diversity MTD
mechanism, based on exchanging variants of code components. [33] examines automatic
software diversification on instruction-, program- or system level. Further, in [63] diversi-
fication of programming languages is used within the context of web applications to avoid
code and SQL injection attacks.

Shuffling-based MTD techniques rearrange system or network configurations in a typically
randomized fashion. The most prevalent approach is notably network address shuffling,
where host IP addresses are altered periodically [28],[3],[11],[4]. Port-hopping marks a fur-
ther example with the aim to hide service identities and thwart off reconnaissance attacks
[38]. Shuffling techniques are not limited to network addresses, but may also include plat-
form properties. In [64] for instance, an OS-Rotation scheme is employed, where virtual
machines with different OS distributions and web applications are periodically exchanged
for each other.

The remaining approach to select new values of the MP is called redundancy-based as it
builds upon identical replicas of system components. In [36], the authors propose to pro-
tect cyber-physical system (CPS) sessions by keeping open a number of indistinguishable
and redundant network sessions and disseminating messages via a randomized one.
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2.4 MTD Techniques

As a starting point for this thesis, four different MTD techniques have been implemented
at the University of Zurich, which mitigate malware from the three families explained in
Section 2.2. In the following, the mode of operation of each of these MTD techniques is
explained and classified according to the previously elaborated MTD design principles.

2.4.1 MTD against CnC - Private IP Address Shuffling

As the CnC channel is a single point of failure for sending commands to the victim and
leaking data, parameters that may disrupt this channel are promising to use as the moving
parameter in an MTD technique.

An option to break the CnC channel is to migrate the victim’s private IP address to a new
one such that the control server cannot reach the victim anymore. The proposed MTD
technique works as follows [16], [12]: First, it creates a list of all the possible private IP
addresses within the local network of the target device. Then, all addresses currently in use
(obtained by the arp-scan command) are removed, yielding a list of available IP addresses.
The target device then randomly chooses an address from this list and requests to migrate
to it via the ifconfig command. Next, the MTD checks if the device can connect to the
internet to decide whether the migration was successful. If the internet can be reached,
the MTD restarts all required services (in the case of this work the ElectroSense service
as this connection is disrupted as well) and the MTD is complete. However, if there is no
connectivity, the requested IP is removed from the list of available addresses and a new
address is chosen until the IP address migration was successful. There may be no internet
connectivity in case that the previously requested IP address is reserved and belongs to
an offline device that has not been found using arp-scan. But this just triggers a new
migration request. The code for the MTD described can be found in [16]. This MTD
technique operates on the network-layer and can either be used proactively, or reactively
to disrupt CnC communication.

2.4.2 MTD against Rootkits

In order to sanitize a system from user-level preloading rootkits, all the malicious libraries
or the links pointing to them need to be removed. Thus, ld-2.24.so has to be checked for
whether it contains /etc/ld.so.preload. If not, this sane file path has to be relinked [12].
Further, /etc/ld.so.preload has to be replaced by a backup version, in case it has also been
tampered with. This is sufficient to deal with the beurk or bdvl rootkits as decribed above,
independent of their file hiding efforts. This MTD may be executed either proactively, or
reactively upon detection of malicious activity. With using paths of linked libraries as the
moving parameter, this MTD technique belongs to the runtime environment layer. The
code can be found in [16].
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2.4.3 MTD against Ransomware - Encryptor Trapping with Dummy
Files

Typically, crypto ransomware encrypts files recursively by stepping through chosen di-
rectory structures. This and the following section elaborate on two MTD solutions that
can be used against such an encryption approach. Both leverage data files as the mov-
ing parameter and therefore belong to data-layer MTD techniques. The code for both
techniques can be found in [16], further explanations in [12].

The idea of this MTD technique is to trap the executing ransomware on the victim device
by dynamically expanding and collapsing the directory tree with dummy files. Simulta-
neously the encrypting process is searched for and killed. As a means of mitigation, this
MTD works reactively with the goal of keeping as much data safe as possible.

First, a directory is identified, where the ransomware is expected to do damage. The
MTD then moves to a random sub-directory and therein creates a new subdirectory with
dummy files. After a preset number of dummy files are created, again a new subdirectory
is created and the process repeats, always moving one level deeper.

It is important to note that the dummy files are always created in a subdirectory two levels
deeper as the current target directory. Because once encryption has already started in a
directory, files that are added later cannot be read and encrypted anymore. The goal is to
create dummy files at a path which is not yet in memory. At some point the ransomware
will step into a dummy directory and gets stuck in there, because of the recursive file
creation.

To make sure that no scarce disk space is depleted, the MTD further deletes dummy
files which have already been encrypted. To make sure the process terminates, the MTD
monitors all processes to find the encryptor and kill it. The monitoring is based on
the CPU consumption as the encryption of files is per assumption an extremely CPU-
intensive task. All processes below a certain threshold can be filtered out, just as well
as whitelisted processes (here, i.e. the ElectroSense es sense process). Subsequently, the
remaining, suspicious processes can be checked for how many files are opened per minute.
If the number is above a configurable threshold, the process is killed.

2.4.4 MTD against Ransomware - File Ending Randomization

This MTD technique is based on the fact that malware often targets files with specific
extensions. By randomizing the file endings of important files, they can be hidden from
this type of malware and kept safe from manipulation. Tested against ransomware en-
crypting specific files types, the technique works as follows: First pseudo file extensions
are generated by randomly sampling alphanumeric strings. Next, selected file extensions
are replaced with the random ones, while a directory is maintained, to track the mapping
of real to generated file extensions. Clearly, the mapping is ensured to be one to one, such
that for any pseudo file extension the original can be found. Finally, once the malware
is mitigated, the complete file names can be reconstructed. Clearly, to keep critical data
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safe, the file endings need to be changed before an attack happens. Respectively, in case
of a recursively encrypting ransomware, file extensions are only worth changing if they
are not yet read into memory. Concludingly, this MTD can be deployed both proactively
and reactively.

2.5 Reinforcement Learning

RL is a major pillar of ML and is concerned with learning by interaction with an envi-
ronment in order to achieve long-term goals [62]. Examples for such goals can be to make
a robot learn how to walk, how to win a chess game or how to optimally deploy MTD
techniques. The core idea of any successful RL method is that actions whose long-term
consequences are beneficial with respect to the goal are being reinforced over time, while
presumably unfavourable actions are inhibited and exchanged for better actions. First,
general terms of RL are clarified, and the concept of policy iteration is introduced. Next,
a brief overview of RL methods is given, and finally the combination of neural networks
and RL as used in this work is highlighted.

2.5.1 Agent, Environment, Policies and Value

RL does not rely on sample supervision or complete environmental models, but instead
follows a systematic trial-and-error learning approach within a specified framework of
interaction. The main components of this framework are depicted in Figure 2.1.

Figure 2.1: Agent-Environment Interaction [62]

The learner and decision-maker is called agent. The environment marks everything outside
of the agent and is represented in the form of states. States are vectors of relevant
environmental features observable by the agent. The agent cannot directly control the
environment, but may indirectly influence it via actions. An action causes an effect in the
environment, a state change, which can be translated into a reward, a numerical signal. If
the action taken is in line with the long-term goal, a positive reward is yielded. In contrast,
if the consequences of an action appear to be negative with respect to the goal, the reward
will be minimal. The environment feeds its new state, as well as the reward signal back
to the agent. Based on this new information, the agent selects the next action and this
interaction loop repeats. If the interaction naturally breaks into sequences, because there
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is a terminal state, where there is no more action possible (such as in case of success
or failure to achieve the goal, i.e. winning/losing a game), the observed series of states,
actions and rewards is called an episode. In contrast, continuing tasks refer to interaction
patterns that do not have a clear terminal state and go on continually. In both cases, the
states, actions and rewards are correspondingly defined by their time step t at which they
occur.

Mathematically speaking, the goal of the agent maps to maximizing the expected return,
meaning to maximize the expected cumulative discounted future rewards over all time
steps: Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

∑∞
k=0Rt+k+1 Here, Rt denotes the reward at

time step t, where γ corresponds to a discount factor.

In order to maximize this expected return Gt, the agent needs to learn a so-called policy.
A policy is generally defined as a mapping from states to probabilities of selecting each
possible action: πt(a|s)∀s ∈ States, a ∈ Actions. With experience these probabilities are
shifted towards actions which lead to higher cumulative rewards.

Experience in the form of a sequence of observed rewards can be captured by a so-called
value function. A value function maps a state to a value, the estimated expected return
to be in that state. Clearly, this value depends on the policy the agent follows. Therefore,
the value of state s under policy π is defined by: vπ(s) = Eπ[Gt|St = s] with Gt as defined
above. The value of taking action a in state s under policy π is analogously defined
as the action-value function: qπ(s, a) = Eπ[Gt|St = s, At = a]. Phrased differently, value
functions are estimates how rewarding it is for the agent to be in a given state, respectively
how good it is to perform a certain action in that state.

2.5.2 Finding Optimal Policies

Ideally, the agent always selects those actions that yield the highest value in the long-run,
which corresponds to acting upon an optimal policy. Correspondingly, a value function is
said to be optimal if it assigns to each state or state-action pair the maximum expected
return that is achievable by any policy. Hence, there is an interdependency between value
functions and policies.

RL methods generally aim to find the optimal policy by iteratively and alternatingly
estimating value functions and improving a current policy. This idea is called generalized
policy iteration (GPI) and is shown in Figure 2.2.

Estimating the value function is called policy evaluation, or the prediction problem, as
the goal is to predict the state/action-state values taking the current policy as fixed. The
way the values are predicted heavily depends on the concrete RL method applied. Policy
Improvement on the other hand is achieved by making the policy greedy with respect
to the current value function. This means that a new policy is derived by utilizing the
equation πt(s) = argmaxa q(s, a). Here the action value function is used, as the action
presumably yielding the greatest reward can be directly determined. If only the state-
value function is given, a complete transition model of the environment is needed to derive
a policy improvement.
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Figure 2.2: Generalized Policy Iteration [62]: π∗, v∗ denote the optimal policy and value
function. Note that the greedy improvement of the policy may either happen via the
state-value function vπ(s), or (more commonly) the action-value function qπ(s, a)

Where policy evaluation changes the current value function, policy improvement changes
the current policy, but in the limit, with sufficient experience, alternating these two pro-
cesses strives towards an optimal policy corresponding to an unchanged optimal value
function.

2.5.3 Overview of RL methods

After considering the main components of the RL framework and covering the general
concept of policy iteration, different RL methods can be contextualized. Where policy
improvement usually does not depend on the concrete method, the means of policy eval-
uation differs heavily. The manner how an agent estimates the value function determines
how it learns from experience. In general, policy evaluation aims to approximate a table
of states and actions. This requires to find the value for each state-action pair.

If the state-action space is particularly small, the optimal value function may even be
found by calculating the Bellman-Optimality equation[62]. However, this is a rare case
and requires a complete model of the environment, as well as the rewards issued for
all state-action pairs. Another, purely computational approach, which also requires a
complete transition model is Dynamic Programming (DP). In DP, the value function is
estimated based on the estimated values of successor states. This is called bootstrapping
and is repeated until the calculated state values stabilize.

Another simple, yet effective way of estimating action values is to take the average of
rewards received after observing each state-action pair as done by Monte Carlo (MC)
Methods. In the limit, if a state-action pair is experienced infinitely many times, the
average will converge to the true action value for the evaluated policy. MC Methods
only require experience from actual or simulated interaction with the environment, and
no model is needed. This is a huge advantage for tackling most RL problems. Compared
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to DP, MC methods do not bootstrap from other estimates, but action values cannot be
calculated before the end of an episode.

Temporal Difference (TD) Learning is another approach to estimate action values, com-
bining ideas of DP and MC methods. In TD, value estimates can build on estimates of
successor states (limited bootstrapping) and use immediately received rewards instead of
waiting until the end of an episode (as in MC). This means that, as no model is required
of the environment, learning updates may happen during episodes. TD is often faster in
practice than MC methods.

If the state-action space is sufficiently small, DP, MC and TD methods (i.e. SARSA,
Q-Learning etc.) can be implemented using a table with an entry for each action value.
However, in many cases the state-action space is too large such that the value function
must be approximated. The next section presents Deep RL as a solution and the relevant
algorithm as used for this work.

2.5.4 Deep RL

The combination of Deep Learning (DL) and RL algorithms is referred to as Deep RL.
Deep RL has paved the path to a series of impressive results in artificial intelligence, such
as the achievement of super human level performance in Atari Games [40], Go [58], or
Poker [7] and robot navigation [44]. In Deep RL, the action-value function is approximated
via a deep neural network. This network outputs the q-values of available actions given a
state, whereby the maximum-valued action is called the greedy action, belonging to the
greedy policy. Figure 2.3 shows the accordingly modified agent-environment interaction
loop.

Figure 2.3: RL interaction loop with a neural network as a q-value function approximator.
A probability distribution over actions is predicted by the network given a state as input.
[66]

In traditional supervised DL, where data is labeled upfront, network parameters are learnt
by performing gradient descent on the loss calculated as the distance of the networks
predicted labels to the real labels. In Deep RL, however, target labels are not known.
According to classic Temporal Difference RL methods, action-values are updated partly
based on bootstrapping from other action values, and based on experienced reward. Anal-
ogously, the target q-values needed to update the action-value network are set to be based
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on immediately observed reward, as well as the network’s action-value prediction of the
successor states. This poses an inherent difficulty to train a neural network in a stable
manner, as the targets are based on the network itself. Notably, the key algorithm to
overcome these problems which has first led to reasonably stable convergence results on
high-dimensional RL tasks is Deep Q-Learning. Algorithm 1 presents a variant of Deep
Q-Learning as it is used to train prototypical RL agents throughout this work.

Algorithm 1 Deep Q-Learning with Experience Replay

1: Initialize replay memory D to capacity N
2: Initialize online and target action-value functions QO and QT with random weights
3: Initialize exloration factor ϵ close to 1
4: for episode 1, M do
5: Initialize st
6: for t = 1, T (max timesteps within an episode) do
7: With probability ϵ select a random action at
8: Otherwise select at = maxa(Q

O(st, a; θ))
9: step: Execute action at and observe reward rt and state st+1

10: Store trainsition (st, at, rt, st+1) in D
11: Sample random minibatch of transitions (st, at, rt, st+1) from D
12: Calculate targets:
13:

yj =

{
rj for terminal st+1

rj + γmaxa′ (Q
T (st+1, a

′
; θ)) for non-terminal st+1

}
14: Perform a batch gradient descent step using (yj −QO(st, aj; θ))

2

15: st ← st+1

16: Perform ϵ-decay to minimize exploration over time
17: if tot steps mod update freq == 0 then
18: QT ← QO, update target net
19: end if
20: end for
21: end for

Algorithm 1 has a few key features. First, as can be observed by the nested for loop,
learning happens over a number of episodes, each consisting of a certain number of action
choices as well as state and reward observations (transitions). Each transition is stored in
a memory buffer (line 10). Now, as the core of the learning procedure, the action-value
network is updated based on targets y derived from a random-sample of all transitions
stored in this buffer (line 11-14). In fact, in each step, learning does not necessarily happen
based on presently observed state-action pairs, but on arbitrary samples replayed from
memory. This is of crucial importance for decorrelating sequences of state-action pairs
that often occur in reality (i.e. a lot of transitions from state z to state u happen during
time window w). Without this decorrelating memory, gradient descent would update the
network in an unstable manner making convergence difficult. The next key feature is the
temporal difference target (line 13). Structurally, yj exactly corresponds to the update in
classic, tabular Q-learning. The target q-value is calculated based on the current reward
rj as well as the maximum-valued action (instead of the chosen one, determined by lines 7
and 8). The maximum-valued action is further weighted by the so-called discount factor
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γ, which, as set between 0 and 1, determines the importance of future rewards. Another
specialty in Deep Q-Learning is the use of two networks, a network used for the target
calculation QT and a network used for choosing the current action and learning updates
QO (online network). The reason for this is to have more target stability and thus, to
have more robustness in the training procedure. After a certain number of update steps
(line 17-19, update freq) the weights of the online network QO are copied over to the
target network QT .

In summary, first there is an action choice given a state st. This choice is based on an
exploitation-exploration tradeoff (line 7-8). Next, a state, action, next state, reward tuple
is observed and stored in the replay memory. Next, a batch is sampled from memory and
targets are calculated based on the temporal difference update, using a separate target
network. The online network is updated with gradient using these targets as momentary
labels. Finally, every certain number of steps the target net is updated with the online
net’s weights and the next action is taken or the next episode is started.

Note, that this procedure can either be executed in a simulated, offline-manner, or online
in a real environment. There, the key difference for the algorithm is given by a single
agent-environment interaction step (line 9). In online-learning, the interaction happens
for real, whereas in offline-learning, the environment feedback is artificially constructed,
given an action.

2.6 Related Work

This section presents related work done in the area of Reinforcement Learning, Moving
Target Defense and the IoT with the aim of identifying aspects of interest that have not
yet been considered.

2.6.1 Combining MTD and RL techniques

While there exist a number of MTD techniques applicable in the IoT, the current state
of IoT MTD is still considered immature with a need to prioritize real-world scenarios
[41],[14]. This work thus leverages four novel, and real-application tested IoT MTD tech-
niques as proposed by [12] and aims to utilize them within an RL-based MTD Selection
framework.

To the best of our knowledge, the usage of RL to select the correct MTD strategy among
multiple MTD techniques as done in this work has not yet been studied in literature. In
line with this, Cho et al. found in their 2020 survey on general MTD that it has not been
investigated yet how to optimally deploy among multiple MTD techniques [14]. However,
there are a number of works considering the application of RL to optimize a single MTD
technique. Even so, in general these works do not focus on IoT devices.

For instance, [17] presents an RL-based approach to generate a desirably diverse and secure
set of software configurations for general MTD. The authors formulate the MTD strategy



2.6. RELATED WORK 19

as a single player game using Monte Carlo Prediction and test their system’s success
of finding secure configurations as per fitness scores derived from STIG [sti], achieving
10-90% of the maximum fitness score.

Next, Chai et al. [13] present DQ-MOTAG, an anti-DDoS system combining Deep RL
(DRL) and proactive network address shuffling MTD to block bot-like behavior. Their
RL Algorithm adaptively adjusts the shuffling periods, meaning the WHEN of the MTD,
and thus reduces network resource consumption, while maintaining defense performance.
The system is evaluated in a simulated environment of jikecloud servers by measuring the
number of blocked malicious actors in an exemplary setting.

[59] considers the application of MTD in Beyond 5G networks, requirements and a pro-
totypical design incorporating a DRL component but does neither provide an implemen-
tation nor an evaluation. However, the author proposes DRL for MTD action selection
based on continuous monitoring of the network state. There DRL is sketched to be de-
ployed either in a single-agent setup with an MTD-Controller for proactive defense, or in
a multi-agent setup with a game theoretic model including an attacker and a defender for
reactive defense.

Multiple works have modeled RL for MTD as an adaptive multi-agent process between an
attacker and a defender using game theory. For example, [20] presents such an approach
formulated as a two-player general-sum game of an attacker and a defender competing for
the control over a set of servers. There, Deep Q-Learning and the Double Oracle Algorithm
is used to derive an optimal MTD policy. As by nature of purely game theoretic settings,
the results are evaluated in a simulated, computational manner. By finding a mixed-
strategy Nash equilibrium of an own utility function, the feasibility and stability of the
approach is shown.

Similarly, in [57], the authors pursue a game-theoretic multi-agent RL approach. They
leverage Bayesian Stackelberg Markov Games (BSMGs), which allow to model uncer-
tainty over attacker types and MTD specifics and the BSS-Q Algorithm to learn optimal
movement policies. [57] evaluates the system in a simulated web application scenario
where databases and programming language are being used as the moving parameter.
Comparing the rewards achieved by the agent for different approaches, the BSS-Q algo-
rithm appears superior against baselines (i.e. an unadaptive, equi-probabilistic moving
strategy).

Yoon et al. [69] also employ multi-agent DRL, yet for proactive, network MTD (IP Shuf-
fling) against reconnaissance attacks in in-vehicle SDNs. Their system aims to minimize
security vulnerability while maximizing service availability by choices on link bandwidth
allocation and the frequency (WHEN) of triggering IP shuffling. The evaluation is per-
formed on a proof-of-concept, in-vehicle SDN prototype with three agents executing dif-
ferent controlling tasks. The proposed algorithm outperforms different baselines regarding
metrics such as rewards received, packet loss rate, etc.

Table 2.1 summarizes the most important aspects of related works described above and
contextualizes the own contribution.
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Table 2.1: Overview of Related Works (Devices: C-Computers, Operation of MTD P-
Proactive, R-Reactive, Env/Environment: S-Simulation, R-Real-world application sce-
nario)

Source /
Year

Devices Attacks MTD type RL Approach Operation Env
State Data (S) /
Actions (A)

Rewards /
Metrics

Performance
Evaluation

[17],
2021

C Unspecific Unspecific Classic Monte Carlo R/P S
S: system
config. parameters
A: config. change

Parameter (security)
fitness scores (acc. to STIG),
+1 reward if improved,
otherwise -1

10-90% of the
max. fitness score

[57],
2020

C
Web App
attacks

Platform

Game Theory (Bayesian
Stackelberg Markov Game),
Multi-Agent RL Attacker-
Defender Model, BSS-Q

R S

S: system
config. states (Def),
A: config. change (Def)
CVE list (Att)

Reward derived from est.
impact of attacks (CVSS)

Convergence to max.
reward plot. Proposed BSS-Q
Algorithm achieves higher
rewards over episodes than
other algorithms

[20],
2020
[50],
2015

C
Control
over servers

Unspecific

Game Theory,
Two-player general sum game,
Multi-Agent RL, DQ-Learning
Double oracle algorithm

R S

S: set of servers, each
having a state indicating
the nr of probes launched,
who (Def./Att.) controls them
and availability (up/down).
A: reimage servers (Def.),
probe servers (Att)

Reward function dependent on
nr of servers under control
(confidentiality) / servers up
(availability)

Convergence to max.
reward plot. Payoff table
for different attacker/
defender strategy
combinations (relative
nrs)

[13],
2020

C / CPS DDoS Network
DRL-based adapting
shuffle periods (reconnections
of users and servers),

P S
S: network state vector
A: adapt shuffling period

Reward sinking with nr of
DDoS attacks on proxy
servers. Credit scores for user
connections + blocking
threshold

Exempl. setting of users
and spys showing blocked/
non-blocked connections.
Reduced nr of shuffling
rounds maintaining
security level.

[59],
2021

C

5G-attacks,
DDoS,
Spoofing,
MitM

Network
Only Planning Stage:
Single Agent (Proactive)
Multi-Agent (Reactive)

P/R None None None None

[69],
2021

In-Vehicle:
Sensors,
Actuators,
Controllers

Reconnaissance Network

DRL, Multi-Agent recurrent
deterministic policy gradient
with anomaly detector
(MARDPG-AG)

P S

S: network traffic, packet loss,
shuffling overhead and security
vulnerability score
of network slices
A: IP Shuffling

Reward function dependent
on bandwidth allocation
efficiency, Security
vulnerability and
Packet Loss

Convergence to max.
reward plot, comparison
against baseline algorithms,
Robustness against
adversarial attacks

own,
2022

IoT / C

Rootkits,
Ransomware,
Command
and Control,
Backdoors

Data,
Runtime
Environment,
Network

DRL and Anomaly Detection R R/S

S: On-device behavior
fingerprints
based on linux perf events
A: MTD Technique Selection

Reward function dependent
on correctness/effectiveness
of selected MTD technique
(binary).

Convergence to max.
reward plot. Correct MTD
technique selection accuracy
up to 100%, Real-world
resource consumption
evaluation

Most evidently, as can be seen from the ”Env”-column, there is a lack of research utilizing
RL and MTD in real-world IoT scenarios. All of the works previously considered, evalu-
ate the performance of their systems in a simulated setup without any clear connection
to a real and running application. This work thus utilizes data from RP devices linked
to ElectroSense to train and test an MTD deployment agent. Yet still there remains a
simulation component as detailed in later chapters since complete online learning requires
impractically more time and data. Moreover, most related works consider multi-agent se-
tups relying on game-theoretic models that simulate attackers and defenders. The present
work thus follows a completely different approach by performing single-agent DQ-Learning
on real-world data. As noted at the beginning of this section, there is no existing literature
that leverages RL for the deployment selection among multiple MTD techniques against
a variety of attacks. This can be read from the columns ”Attacks” and ”MTD type” in
Table 2.1. Only MTD techniques of a single type are considered. Regarding the type of
state data and actions, related works often use a defined set of system parameters that
the agent learns to move. This is in contrast to this work, that leverages real, on-device
behavioral fingerprints as states and a range of different MTD techniques as actions.

Despite the differences, the related works show that Deep RL, and notably DQ-Learning,
are feasible learning techniques for MTD-related control tasks. While the reward functions
and consequently also the metrics used for the evaluation specifically depend on the RL
task at hand, they hint at suitable options that can be made use of for this work. For
instance, plotting the convergence to the maximum of an own reward function over a
sequence of episodes. Where in most other works, no standardized numerical performance
metric is presented, this work also utilizes the accuracy as principal metric for correct
action choices.



Chapter 3

Problem Domain, Requirements and
Assumptions

This chapter derives a set of requirements and implications of fitting MTD deployment
into the RL framework based on a description of the problem domain as well as the
findings from the literature review in the previous chapter 2.

3.1 Mapping MTD Techniques to Attacks with RL

Deploying MTDs proactively can be an effective measure against attacks, provided that
the timing of the WHEN to move matches the attack execution. Thus, proactive MTD
must trade off a higher security level (given by a higher moving frequency) against resource
consumption or service quality impact. Certainly, it would be beneficial to launch MTD
techniques more targetedly and alongside attacks. This makes reactive MTD deployment
particularly appealing to study.

Coordinating MTD techniques in a reactive manner requires at its base that malicious be-
havior is recognized and matching MTD techniques are deployed for mitigation. As there
cannot exist an MTD technique against all kind of attacks this implies, that some kind of
mapping from device-, respectively attack behavior to corresponding MTD techniques is
needed. In the case of the MTD techniques explained in 2.4 a clear mapping exists from
techniques to malware families: The IP shuffling MTD mitigates attacks from the CnC
and Backdoor families, the directory trapping and file extension manipulation techniques
defend against ransomware, and the library sanitization MTD removes rootkits.

However, it is not straightforward to decide from an observed device behavior, which MTD
should be deployed. This mapping problem is the main aspect of the MTD coordination
task that RL aims to solve in this work. The deployment agent’s primary goal is to learn
WHAT MTD technique is correct for any given attack behavior state by interacting with
a sensor environment.

Where deciding on a simple mapping from state samples to MTD techniques can in
principle be phrased as a supervised learning task, this is not of concern here. The

21
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goal is to create a framework that avoids the need for any labelling supervisor as far as
possible. Consequently, and to remain in line with the MTD paradigm’s aim to reduce
the asymmetric nature of attackers and defenders, reactive, RL-based MTD should also
make as few assumptions as possible about specific malware threats and patterns. Thus,
the aspired RL-based MTD system should learn in the most unsupervised fashion feasible.
This property makes the system promising to also deal with zero-day attacks in a well-
defined manner.

The remainder of this chapter aims to provide an intuitive understanding of how to fit
MTD deployment selection into the RL framework and is structured as follows: First,
the main phases existing in the MTD process are analyzed to have a clear idea of where
an agent can make decisions or receive rewards. Next, both malware-specific properties
as well as peculiarities and limitations regarding the available MTD techniques must be
taken into account as they could influence the RL process. Subsequently, the previous
considerations are leveraged to formulate basic conditions for episodes within the RL
training loop, and, concludingly, requirements are specified for integrating an MTD agent
into a real-world scenario.

3.2 Phases in the MTD Process

On an abstract level, there exist three main phases relevant to RL in the reactive MTD
process: Device behavior before, during, and after MTD execution. Figure 3.1 provides
an abstract view on these phases as an RL agent may perceive them.

Figure 3.1: Phases in MTD

The first phase indicates a situation in which a decision must be made of whether an
MTD technique should be deployed or not, and if so, WHAT technique. For an RL agent,
this phase can be considered a decision state, meaning a device behavior state that is
used for deciding which action to take. This action can be either to deploy a chosen MTD
technique autonomously, or to send a deployment decision to another software component
handling the execution. The second phase of the MTD process marks the time during
which the MTD technique is executed. This moving phase is characterized by the time
period where the MP actually transitions to a new value. This phase heavily depends on
the concrete technique and may take from milliseconds to minutes or even hours. The
third phase is characterized by a so-called afterstate, denoting device behavior that
results after the MTD technique has finished executing, respectively the state after an RL
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agent’s deployment action. Ideally, this afterstate contains all the relevant information
about the effect of the prior moving phase and in particular, whether the MTD was
successful or not. As soon as the afterstate becomes available, rewards can, in theory, be
calculated to reinforce actions for the MTD deployment agent. To adhere to the RL loop
as described in Section 2.5, this afterstate alongside the rewards need to be fed back to
an agent which decides upon the next step to take. This implies that the afterstate is
turned into a decision state in the next iteration loop of the RL algorithm.

3.3 Environment, State and Reward Considerations

To learn to map attack behaviors to MTD techniques, an agent must not make any attack-
specific assumptions, as this could limit its general learning capabilities. Therefore, the
decision states considered by the agent as per the previous section, must cover a wide
range of system features that may be relevant for a variety of potential attacks.

Such system features can either be monitored directly on the sensor device or via an exter-
nal component that captures in- and outgoing traffic patterns. However, due to simplicity
and independence of other devices it is desirable to monitor system behavior on-device.
Additionally, features monitored on-device only are sufficient to capture patterns of var-
ious malware families, as both communication patterns (i.e. packets sent and received,
TCP connections, etc) as well as other low-level device behavior (like cpu consumption,
context switches, cache misses, etc) can be recorded at once. For example Perf as a
lightweight performance monitoring tool included in the Linux Kernel provides exactly
such capabilities for a range of different types of low-level device features.

The above described requirements for features provide hints as to how the RL environment
must be set up. The low-level features monitored on-device should directly correspond to
a decision state presented to the agent. This implies that an agent’s environment must
comprise the sensor device itself which at first might sound counterintuitive. However,
the agent as a logical controlling component must only be capable of interpreting decision
states of a sensor and launch corresponding MTD techniques. Therefore, it could in
principle reside on-device or off-device. While this is a matter of system design, this work
narrows the focus to on-device only agents to remain independent of any other external
components that are typically not given in the ElectroSense scenario where individuals
contribute flexibly and in a self-governed manner.

3.3.1 Reward Calculation Requirements

The way an MTD deployment agent interacts with the environment must be coupled to
the behavior prevailing in the afterstate. The afterstate is the result of the agent’s action,
more precisely, the state after the execution of an MTD technique. This must be the
base for calculating the rewards. In essence there are two cases: First, the case where
a selected MTD technique was correct for a given behavior state, and second, the case
where the MTD was not correct. Clearly, positive, reinforcing rewards should be fed back
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to the agent for a correct deployment decision and penalties, respectively negative reward
signals should be yielded for incorrect decisions.

But determining the correctness of an MTD technique is not a trivial task in general as
the devices’ behavior is not known upfront. However, patterns of normal behavior are
known and measurable. Given some malicious behavior, in the case of deployment of
the corresponding mitigating MTD technique, the afterstate should exactly correspond
to normal behavior. However, in case of an incorrect MTD technique, the afterstate
should exactly correspond to the previous attack behavior. Thus, a feedback statement
for a deployment action can be made by measuring the distance of the afterstate to
normal behavior. If the distance is very small, the MTD must have been correct and the
agent should be rewarded. But if it is large, the afterstate deviates heavily from normal
behavior and must thus correspond to anomalous behavior indicating an wrongful MTD
deployment. In the latter case the agent must be penalized. In summary, the calculation
of rewards requires a component that interprets and judges the afterstates for normality.

Note that afterstates only correspond exactly to normal behavior in case of perfectly
working MTD techniques. This assumes that defense works completely, killing all parts
of a given malware that influence device behavior. To assess whether this assumption
is valid, the malware families and MTD techniques considered must be scrutinized more
thoroughly. Chapter 4 as well as the next section deal with this matter alongside other
concerns.

3.4 Malware and MTD-Specific Properties

This section elaborates on properties of both the malware and MTD techniques consid-
ered that might impact the RL process. The MTD technique against rootkits runs only
milliseconds and effectively sanitizes the device from malicious libraries. Thus, no spe-
cial assumptions need to be made to learn how to deploy rootkit MTD with RL. But
ransomware as well as CnC/Backdoor malware and the corresponding mitigating MTD
techniques must be examined more closely.

3.4.1 CnC

As described in Section 2.2, CnC malware usually employs a client script running on
the victim machine as well as a server script that enables to send commands to the
client/victim. The IP shuffling MTD technique effectively disrupts the communication
channel, but it cannot free the victim device from the client script. Thus, dependent
on what this client part does, it might influence the devices’ normal behavior. In other
words, the afterstate might not correspond exactly to normal behavior even if the MTD
was successful. This theoretically breaks the assumption of perfectly working MTDs made
in the previous section, but it might not be a problem in practice. First, the remainders
of the CnC client scripts cannot accept commands and thus may have negligible effect.
And secondly, in order to provide the correct reward signal to an agent, the afterstate
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does not necessarily need to correspond exactly to normal behavior. It only needs to be
sufficiently close to normal behavior, such that it is not flagged as malicious behavior by
an interpreter of the afterstate. Yet clearly, not having to deal with such remainder client
scripts simplifies the training process.

3.4.2 Ransomware

Crypto ransomware usually encrypts data of specific target directories instead of locking
a user from the entire system. This means that for both the MTD techniques against
ransomware explained in Section 2.4, the target directory must be known such that they
achieve the promised benefits. The directory must be specified where the file tree is
expanded for the directory trap to capture and isolate the encrypting process. Similarly,
the file extensions must be changed in the target directory before the ransomware starts
encrypting the files. Consequently, the MTD against ransomware is only effective, if it
moves the right data at the right time.

This has consequences for training an RL agent. First, if the moving phase starts too
late even in case of a correctly deployed MTD, the malware might have encrypted all
the data already. Stated differently, it is very challenging to reactively deploy an anti-
ransomware MTD with success if the target directory to encrypt is fairly small in size and
the encryptor thus runs only shortly. Further, as the runtime of the ransomware is only
temporary, the device behavior corresponds exactly to normal behavior once the target
directory is encrypted. It can only be distinguished from a normal state in the sense that
a number of files or directories are unintentionally encrypted on the target device, but not
with respect to any malicious processes being active. While this can be used to penalize
the agent, it would be useless to redeploy MTD techniques if the ransomware has already
finished executing. Hence, the decision states taken into account by the agent should
only consider ransomware that is still actively in the process of encryption. This way it
still affects low-level device features and launching an MTD actually helps to mitigate the
attack. This assumption that theoretically temporarily executing malware can be dealt
with similarly to non-temporarily running malware is necessary for the RL interaction
loop to work in a well-defined manner without a-priori knowledge about the malware.
Otherwise, additional malware-dependent assumptions regarding affected features would
be needed. Anyhow, in the case of ransomware, this assumption is legitimate as usually
an encryptor does not just target a very small directory on the victim, but instead tries
to encrypt larger parts of the file system implying a much longer execution time.

3.4.3 Summary of MTD and Malware Assumptions for RL

In order to make an MTD deployment system fully autonomous with RL, an interpreter
is needed that checks whether the afterstate corresponds to normal behavior, to give pos-
itive/negative rewards for correctly/incorrectly deployed MTDs. This system can only
work for sure, if the normal system behavior is not altered sustainably by neither the at-
tacks, nor mitigating MTD techniques. This includes the assumption of perfectly working
MTD techniques. This assumption does not necessarily hold for all types of attacks (i.e.
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mitigating CnC malware with the IP shuffling MTD may keep client parts of the malware
active), but it is still valid if the impact to normal behavior is negligible (i.e. no work
done by a passive CnC client script) or potential sources of impact are removed (i.e. if
the CnC client process is killed by rebooting, or else).

There is malware executing either continuously (i.e. CnC, rootkits) or temporarily on the
device (i.e. ransomware). With regards to detecting malicious behavior, the RL agent
must assume that malware processes are still actively running to make any useful choice of
action. Otherwise, if malicious processes have already finished, the agent cannot observe
effects from taking deployment actions.

The MTD techniques explained in 2.4 have different execution durations, meaning that
their moving phases are not equally long. The MTD against rootkits takes only millisec-
onds to finish, the technique against CnC runs for a few seconds at most, and the runtime
of the ransomware MTD depends on the target directory size (minutes to hours). This
impacts the RL process as afterstates cannot be always observed in the same time win-
dow for different MTD techniques. This results in an online agent receiving feedback at
different times after its action choice. This is highly relevant for the implementation and
application, but is not assumed to represent an obstacle for applying the RL framework
itself.

3.5 RL Framework Implications

3.5.1 Need for Deep RL and Temporal Difference

As per Section 3.3, the feature space used for both the decision- and afterstates should be
sufficiently large to capture the low-level effects of a variety of different malware. Further,
features such as tasks running, packets sent and received or memory information cover a
wide range of different values that differ significantly dependent on the processes running
on the system. This means, that the whole state space presented to the agent is extremely
large. This creates the need for approximating the action-value function instead of learning
it exactly. Concludingly, a purely computational method like Dynamic Programming can
be excluded right away for an algorithmic approach. Instead, Deep RL, is a promising
approach as it allows to approximate the action-value function interactively via a neural
network.

In Monte Carlo methods, rewards only become available at the end of episodes. Accord-
ingly, a neural net could only be updated at the end of an episode. This, however, would
increase the required learning time for an agent and could make the training process more
unstable. Temporal Difference Learning is more desirable in the given setup as the neural
network for the action-value function can be updated after every action the agent takes,
making the training process faster. Concludingly, the Deep Q-Learning Algorithm (see
Algorithm 1) is an adequate choice for the MTD selection task at hand, as it utilizes
temporal difference and accounts for large state-spaces. Further, it allows to learn based
on randomly sampled transitions from a replay memory, which ensures that frequently
ocurring sequences of attacks and actions are decorrelated.
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3.5.2 Learning from Experience: Framing Episodes

Such that an MTD deployment agent can learn, it requires experience in the form of
episodes. An episode can be defined as a sequence of agent-environment interaction tuples:
E = {(St, At, St+1, Rt, Done)|t ∈ T}. Thus, an episode reflects a series of the agent
decisions, successor states and rewards as per the feedback provided by the environment.
Done is a binary variable indicating whether an episode ends, T is the set of all time steps
of the episode. The beginning of an episode is naturally given by the observation of an
attack behavior state. This can also be indicated by some interpreter that compares the
current device behavior to normal behavior. If there is an attack, the agent should start
deploying reactive MTD techniques until it launches the correct one. Thus, an episode
ends, if the mitigation was successful and the device behavior is restored to normal.
Figure 3.2 depicts a simplified state machine for this episodic pattern.

Figure 3.2: Episode State Pattern FSM: Repetitive observation of the same attack until
mitigation

This pattern can be repeated over and over, by detecting malicious behavior on the device,
deploying MTD techniques until mitigation and learning from the environmental feedback
until, ideally, the agent converges to a point where it chooses the correct MTD for any
given attack state with high accuracy.

Here it becomes clear, that an episode can only end regularly, if there is actually an MTD
that mitigates a given attack. If there is no reactive MTD available, the agent could get
stuck deploying useless MTDs. However, this problem can be avoided by simply limiting
the number of possible MTD executions within a single episode and upon exceeding them a
warning can be issued gracefully. That way, no special considerations need to be made for
attacks that cannot be defended against with the current set of existing MTD techniques.
For the training process it can simply be assumed that there is always a correct technique
available.

Theoretically, it is possible to deploy multiple MTD techniques at once. Certainly, this
is a waste of resources in general. But additionally, this would complicate the training
process extraordinarily since it is not clear how effects can be attributed to individual
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MTD techniques. Therefore, the agent should only learn how to deploy a single correct
MTD technique at a time. If there is another one running already it must wait and observe
afterstates first.

3.5.3 On- versus Offline Learning: Simulation for Pretraining

In spite of the achievements of temporal difference learning, it still requires thousands of
episodes to make an agent’s action-value function network converge to practically useful
accuracy. This is even more prevalent for the MTD coordination task since the state
space is very large. In the early phases of the learning process an agent’s action choices
are usually not much better than selecting randomly. This implies a very poor performance
of an unsufficiently trained agent.

The convergence directly depends on the number of episodes, respectively the number of
feedback loops completed. However, observing a very large number of episodes in a real
environment is extremely resource-intense and time-costly. As per the previous section,
the device would need to be attacked, MTD techniques would need to be launched and
afterstates observed until normal behavior is restored, just to start new episodes over and
over again. Being attacked this many times in a real environment is neither suitable,
nor practical for training an agent. Further, the speed of convergence also depends on
the speed of the feedback derived from the afterstate. If MTD techniques only run for a
very short duration, fast feedback loops are guaranteed, accelerating the agent’s progress.
However, in the case of MTD techniques executing for longer periods of time, the feedback
only arrives very delayed at the agent. Both the need of frequently observing new attacks
as well as the possibly prolongued exectution times of a single episode pose a severe
limitation for learning an RL-based MTD deployment agent from scratch in an online
manner. Dependent on the speed of the feedback loops it may take weeks or even months
of constant episode run-throughs to reach an effective and efficient deployment system.

Certainly, if there are no other options, a poorly trained (close to random) agent is still
better than nothing. In the worst case, such an agent just tries out the whole set of
available MTD techniques, possibly deciding that the attack cannot be mitigated with
the existing set.

However, often online RL in a real-world system is still not feasible from scratch. Espe-
cially in the case of IoT devices, it might not be possible to waste this many resources for
trial and error MTD deployment. Dependent on the resource constraints of the device it
might also severely degrade the service level of a live system. This could also be one of the
reasons why related work as studied in Section 2.6 has neither tackled online learning nor
online evaluation in real-world live systems. However, the effects of on-device RL should
be examined more closely for any given system at hand in order not to make prematurely
limiting assumptions.

Nonetheless, a more appealing alternative to full online learning from scratch is to pretrain
an agent offline in a simulation to make it achieve a decent performance on a testbed
before actually deploying it on a real world system. This way resources can be saved and
longer feedback-loops and training time of online learning can be circumvented. However,
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in order for the simulated training to produce useful performance for a later real world
application, the simulation must be as close as possible to the real setting. The policy
learnt in the simulation can only be transferred to the real environment, if the simulated
environment data matches the states that an agent would observe in the real setting.

Where in online learning, time and practicality are limiting factors, offline learning in
simulations still has huge data requirements. In fact, environmental data, states and
episodes must be crafted in a way that makes it transferrable to a realistic online setting.
This requires the collection of environment data for the full range of possible states.
Stated differently, it requires to monitor data from the different phases in the RL-based
MTD process as introduced in Section 3.2. This means that data from decision states,
as well as afterstates (and possibly also the moving phase) must be monitored for a
sensor device without doing the full online training. Provided that there are a number of
different malware types and mitigating MTD techniques available, the sensor devices can
be infected with malware (decision state), MTD techniques can be executed (moving state)
and results observed (afterstate) all along the execution of a script which monitors low-
level device behavior. The subsequent Chapter 4 provides more detail on the environment
data and the collection procedures relevant for data used in both simulated, offline- as
well as online-learning.

During training the agent must observe a large and balanced range of different types of
malwares and MTD technique combinations (state-action pairs) to achieve good conver-
gence results without any bias towards certain attack-mitigation combination patterns.
This is a further advantage in offline learning, as there episodes can be sampled randomly,
thereby guaranteeing a sufficient degree of attack exploration. In a real online setting an
attack might be launched over and over again, whereas other attacks hardly ever occur in
the device, which possibly impacts an agent’s generalization capabilities. Even though,
this problem can be reduced by random sampling from a memory buffer to train a DQN,
in offline learning, the problem is less prevailing. More details that must be taken into
account for creating effective MTD deployment simulations are postponed to the subse-
quent Chapter 5 since they depend on the specific goals of the prototypical RL agent at
hand.

3.6 Required System Components and Properties

3.6.1 Online Agent Functional Requirements

Striving towards a fully working online, RL-based MTD deployment agent requires to
integrate the logical MTD decision-making component onto the platform of interest, which
is a RP device equipped with a sensor and linked to ElectroSense in this case.

Based on the preceding analysis of the problem domain in this chapter, the following
minimally required functional components can be deduced:

1. A monitoring component, which collects a wide range of system features that are
collectively influenced by malicious processes running on the device.
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2. An anomaly detection component, which interprets the data collected by the mon-
itoring component and recognizes ongoing suspicious behavior.

3. All MTD techniques, readily available as executables or scripts.

4. The core RL agent itself, which uses the monitored, suspicious data (decision states)
to decide upon and launch an MTD technique and learn from monitored, and cor-
respondingly interpreted afterstates.

5. A controlling component, which orchestrates and aligns all the previous components.

These components are sufficient to start learning from scratch in an online manner. How-
ever, as explained in the previous Subsection 3.5.3, in order to achieve an actually useful
online agent within the given time constraints of this work, there is an additional re-
quirement of a component simulating the environment. Ideally the agent can then be
pretrained in the simulation, employed in the real-world and make useful MTD choices
right from the beginning. Thus, the construction of suitable environment simulations
takes also an important role in this work. However, independent of whether the environ-
ment is simulated or not, Figure 3.3 summarizes this work’s primary task of learning by
interaction how to select MTD techniques to defend against malware of the CnC-, rootkit-
and ransomware families.

Figure 3.3: Agent-Environment Interaction Loop for RL-based MTD Selection
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3.6.2 Security and Efficiency

Clearly, the main security goal of an MTD deployment agent is to effectively deploy MTD
techniques which mitigate observed attack behavior.

Thus, the agent’s action-value function approximator must learn to generalize from expe-
rienced behavior states to new, unseen states. In other words, the function’s parameters
must learn to capture the patterns relevant for attack classes and consistently map re-
spective sample states to mitigating MTD techniques. The principal metric to assess
the quality of this state-action mapping interactively learnt by the agent is the accuracy.
This corresponds to measuring the percentage of correctly, selected MTD techniques us-
ing the agent’s greedy policy, given a series of states of priorly known attack classes. The
greedy policy corresponds to choosing the highest valued action (by the function approx-
imator), given a state. The percentage of correct action choices clearly dominates the
security properties of the system. Continuation of service, efficiency of mitigation and
other properties which are desirable and relevant for the IoT in general and ElectroSense
in particular directly depend on the policy learnt by the agent. This work thus mainly
focuses on the effectiveness of the policy to assess system security. Certainly, the viability
of the whole system, may also be heavily influenced by the anomaly detection compo-
nent’s estimates of the afterstates to be normal behavior. Thus, its accuracy should also
be assessed accordingly on both decision and afterstates.

In addition to the malware detection and the MTD technique selection capability, resource
consumption should also be considered to assess the feasibility in the IoT scenario. Espe-
cially important dimensions are given by processing times, disk space as well as CPU and
memory requirements. The processing times by the agent are relevant to assess attack
mitigation speeds in a real scenario. Disk space requirements should be validated to show
that the code and the ML models actually do fit on the target sensor device. Lastly, it
must be shown that the CPU consumption of the RL agent as well as its memory and
learning requirements do not exceed any hardware limitations of the sensors.
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Chapter 4

Environment Data

In essence, learning what MTD technique to deploy at any given time poses two main
challenges: First, to separate normal from attack behavior, and secondly, to distinguish
different malware families. Consequently, the quality of states and their range of features
considered by the agent are of primal importance for learning to occur. This chapter
aims to give an overview of the data leveraged for environment states and its relevant
properties.

It heads off by introducing the sensor configuration and the setup of the environment,
as well as the exact features considered for states. Next it provides general information
about the data collection, with a special focus on data needs of realistic simulations.
Subsequently, an initial dataset of raw behaviors is explored in two ways: First, by visu-
alizing the variation of the features over time, in order to validate whether the dataset
can be used for RL simulations. Secondly, the features are inspected with respect to their
distributions, to point out differences for the range of considered malware and normal
behavior. The chapter concludes with procedures applied for data preprocessing that will
be relevant for the agent prototypes presented in the following chapters 5 and 6.

4.1 Sensor Configuration and Feature Sources

4.1.1 Sensor Configuration

For the collection of data, a sensor setup as described in Section 2.1 is considered. To
facilitate testing, 3 RP devices equipped with an antenna were preconfigured with an image
of RP OS 9 (32-bit Stretch, Debian/Linux-based) that runs all ElectroSense services from
start up. Concretely, two RP 3 Model B+ with 1GB RAM and one RP 4 Model B with
2GB RAM were used. However, throughout this work, results are only presented for
the RP 3 due to the availability of two devices and thus the increased speed of testing.
While some experiments have also been conducted for the RP 4, as they generally led to
equivalent results, they won’t be shown here. All sensors have been installed indoors near
Zurich, Switzerland.
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4.1.2 Features: perf Events

As per Section 3.3, the data utilized should cover a wide range of system features to cover
a variety of potential attacks. In order to collect data with such features the Linux perf

command is used. perf is a powerful and lightweight profiling tool specific to the kernel
and can be leveraged to monitor a range of in-device event sources[18], [48]. Thus, it
provides adequate flexibility to record behavior patterns on RP spectrum sensors.

Event sources

Figure A.1 gives an overview of the event sources covered by perf [25]. There are six
types of event sources, of which only two are considered in this work: Software events,
as well as kernel tracepoint events. These two types of sources are readily available for
monitoring and cover an extremely wide range of events, which make them promising for
attack detection. Software events are based on low-level kernel counters. This comprises
context switches and CPU migrations. Kernel tracepoint events are static kernel-level
instrumentation points that are hardcoded in relevant logical places in the kernel. Ex-
amples of such events originate from the virtual memory (kmem, writeback), the block
device interface, the system call interface or the scheduler. The perf stat command
output counts for these events, which can be used as state features.

4.2 Data Collection

The function of gathering data from a sensor environment has two distinct purposes in
this work. The first and most straight forward reason for data collection is the provision of
state information to an online agent. But, due to learning time constraints, pretraining an
agent in an offline manner is desirable (see Subsection 3.5.3). Thus, the second purpose of
data monitoring is to create a dataset, suitable for offline-learning. The main goal of such
a precollected dataset is to be utilized in a simulation that mimics the online-environment.
The idea is to sample behavior states from this dataset in a manner that corresponds to
the sequences of states that an online agent would observe. For transferrability reasons,
for both cases of data collection for online- and offline-learning, the same procedure is
applied. A shell script is launched on the device which records the event count for all
the features at a fixed interval of 5 seconds. This series of feature vectors is stored in a
CSV file for further processing. Analogously to the work done in [55] by Sanchez et al.,
75 different perf events are monitored, belonging to 8 different event families. Figure A.2
visualizes all the features and their respective event family. For testing purposes, a few
selected features of interest have been added regarding CPU usage, tasks running as well
as packets sent and received. Although indirectly they may already be covered by the
selected perf features, these additional features may help improve the ML/DL models to
learn. Table A.1 and A.2 list the full range of features monitored. The full code of the
script used for monitoring as well as all collected datasets are available at [56].
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4.2.1 Crafting Realistic Simulation Data

From an application perspective, an RL-Agent trained in a simulation is only as useful as
it allows to transfer the learnt policy to the real-world setup. If the data used for states
in simulated pretraining does not correspond to what a real online agent would observe,
inevitably a policy different from the optimum policy of the online setting will be learnt.
Thus, as also stated in Chapter 3, the degree of similarity of simulated environment data,
to states in a real environment is crucial for policy transfer between the offline- and online
setting.

Hence, the question is how the data of a full-fledged online-learning agent looks like. The
goal is then to collect a dataset that is as close as possible to such data and to feed it
into a kind of episode-generator simulating the environment in offline learning. Here,
it becomes critical that the perf features explained above are inherently susceptible to
influences of processes running on the device. Scripts additionally running next to the
default ElectroSense services may substantially alter the behavioral fingerprint of the
device given by its perf event counts. While this may be beneficial to detect malicious
processes, it also poses a difficulty to monitor realistic simulation data. Since the sum of
all running processes affects the event counts, a fully functionally-working online agent
is required upfront and must be run in parallel to collect a dataset suitable for realistic
simulations. Essentially, this means that all the components as per Section 3.6.1 would
need to be actively included in a data monitoring setup.

Besides the processes running in total on the device, the environment data is also influ-
enced by the stage of the current processes. An agent that undergoes a cyclic pattern
of decision state monitoring, MTD choice and deployment, as well as afterstate moni-
toring, interpretation and learning can therefore be expected to show slightly different
patterns of event counts dependent on the stage of execution and the current stack. So
independent of the current device behavior, decision and afterstate data could in theory
be slightly different. This remains to be verified by inspecting the data monitored at these
two stages. Further, it is not transparent whether and how certain types of malware or
MTD techniques alter device behavior for extended periods of time despite mitigation.

The previous considerations show that technically it can be a very difficult task to craft
fully realistic simulation data. Without further analysis it is not clear how the features
are impacted by different stages of MTD mitigation as well as different kinds of malware
or agent processes running on the device. Additionally, it is not per se transparent how
the ML/DL components are influenced by these types of variation in the features.

This imposes the need for extensive exploration of both potential simulation data, and of
different setups for training the RL agent. Thus, the upcoming prototyping chapters give
more insight into the general learning capabilities in different simulated settings. These
chapters will also go more into depth of how different kinds of simulation environments
can be constructed with the goal of iteratively striving towards a more and more realistic
setting.

However, at this stage and as a starting point, the simplest possible way to generate
simulation environment data is to attack the sensor with a given malware and to record
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the perf event counts as explained in the beginning of this section. This can be repeated
for all the malware families considered in this work to gather an initial dataset. First,
in order to attribute variations in the data to the malicious processes exclusively, no
further non-default processes are executed on the device, i.e. no agent controller code is
executed in parallel. The next section explores such raw data of different malware families
regarding their stability over time and compares the distributions of these different types
of behaviors.

4.3 Data Exploration: Comparison of Raw Behaviors

4.3.1 Dataset Dimensions

The following sections focus on a dataset created using a RP 3 Model B+ with 1 GB
RAM. In addition to normal behavior, it contains data for malware belonging to the fam-
ilies ransomware (ransomware poc), rootkits (bdvl, beurk) and CnC/Backdoors (back-
door jakoritar, thetick, 2 data leak attacks) as explained in Section 2.2. Concretely, for
each type of behavior, the monitoring has been run for a minimum of 8 hours, resulting
in a total number of 59004 unfiltered, raw data points. Table A.3 gives an overview of
the dataset and the numbers of samples for each monitored behavior. Analogously, Ta-
ble A.4 displays the size of a smaller dataset created using a RP 4 exhibiting comparable
properties.

4.3.2 Variation over Time and Feature Distributions

In order to assess the usefulness of the data for RL-based MTD, it is analyzed with respect
to two main characteristics. First, regarding the stability of the features over time and
secondly, regarding the distributions of the features. The code used to generate all the
different data visualization plots hereafter can be found in [56].

In theory, RL algorithms can to a certain degree cope with non-stationary data, mean-
ing that the agent may learn to adapt to changing environments given enough training.
However, precollecting such changing data to be used in realistic simulations is extremely
cumbersome, if even possible. From a practical perspective it is much more desirable to
deal with stationary data, which is stable over time. This is an especially beneficial prop-
erty for creating simulated environments as it allows to randomly sample behaviors for
simulated states from a precollected dataset irrespective of any time step. But certainly,
random state sampling is only a good approximation of reality, if the dataset used has
negligible temporal dependencies. To visualize that this holds true for this work, the event
counts of each collected feature is plotted against the timeline. As an exemplary proof of
the stability of the features over time, Figure 4.1 shows the counts of the kmalloc event
belonging to the virtual memory family. It can be observed that the different attacks
cover a slightly different range of values and remain constant within that range except for
a few outliers.
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Figure 4.1: Feature timeline for different malware families for the virtual memory event
source and kmalloc event

Other features, like the tasks, or RAM currently used (monitored via the Linux top

command) are not as stable over time, showing cyclic increases and drops (see figures A.3
or A.4). Such features are excluded for building the environment due to their intransparent
temporal dependencies. A clear example for this is given by the tasks feature, which
counts the number of total tasks in the table of processes. This number is influenced by
the number of zombie tasks (finished, but not yet removed from the table of processes),
which depend on earlier system states. Dependent on previous computations, it is thus
possible that normal behavior has a much larger number of tasks than certain malwares,
making it an unsuitable environment feature.

However, plotting the timeline of all the features has shown that most of them are stable
within a certain range, and that different attack behaviors often occupy slightly different
ranges of event counts. Yet, as the variation over time can make it a bit fuzzy to visually
distinguish different behaviors, the kernel density is estimated for each feature distribu-
tion in the available dataset and plotted accordingly. The distribution of the features is
important to assess the overall potential of statistical models to learn a separation bound-
ary. Further, it can help explain performance results of the agent. Certainly, the more
distinct the distributions are, the higher are chances for the agent to separate the different
behaviors and correctly map MTD techniques.

As a means of comparison to Figure 4.1, Figure 4.2 displays the distributions of the
kmalloc feature for the different behaviors. The plot shows that for instance the backdoor
jakoritar attack and beurk largely overlap with normal behavior. This suggests that these
attacks may be harder to learn compared to attacks with more pronounced differences
like bdvl or the second data leak attack. However, other features show different patterns
as determined by the unique properties of the malware at hand. For instance, Figure 4.3
presents the distributions of the block getrq tracepoint. It can be observed that there,
different malware show much more distinct patterns. For this event, ransomware, the
first data leak attack and bdvl seem to be the most distinct from normal behavior.

The previous data analysis has shown, that the features are (with few exceptions) suffi-
ciently stable over time such that randomly sampled data points can be used as states
in simulated, yet approximately realistic environments. Thus, the collected raw behavior
dataset is suitable for prototypical applications of RL to the reactive MTD coordination
task. Further, the distribution of the features indicates that normal and attack behav-
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Figure 4.2: Feature Distributions of the kmem:kmalloc Event

Figure 4.3: Feature Distributions of the block getrq tracepoint

iors are in principle separable, but certain attacks (i.e. beurk/backdoor jakoritar) might
be more difficult to learn to defend against compared to others (ransomware, data leak
attacks).

4.4 Data Preprocessing

This section provides an overview of the data preprocessing steps that are relevant for all
subsequent chapters.

4.4.1 Cleaning and Scaling

Before the datasets collected are fed into any RL process, irrelevant or otherwise inappro-
priate columns and samples are removed. First, columns that are constant throughout all
types of behaviors are dropped as they provide no benefit with respect to learning a sepa-
ration boundary. Further, columns that only refer to a current status are left out. These
include timestamp or connectivity information. Note that these time status columns can
be dropped due to the limited variation of the features over time shown above. Table A.1
and A.2 list which concrete feature columns are constant or status information and thus
filtered. The tables show a further Exluded column, with selected features that are not
used as well as explained in more detail in Chapter 6. All other event counts are used
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throughout this work as input features for the agent and anomaly detection components
as derived in Subsection 3.6.1.

Regarding sample filtering, the goal is to minimize the impact of possible external events
and to clean the data from outliers. Therefore, data is only considered if the device is
linked to ElectroSense. If the device is not connected, it cannot fully correspond to the
behavior that should be considered normal. Next, the samples of the first five minutes as
well as the last sample in the monitoring are removed. This is because the monitoring is
launched via a secure shell (ssh), and potential noise introduced by logging in and out of
the device should be limited. Cleaning the remaining data from further outliers is essen-
tial for both RL and anomaly detection training. The reason of these outliers is generally
hard to determine, because the device can be influenced by various external or internal
anomalous events. For instance, hardware problems to read from the SD card, power fail-
ures or network delays and other events might notably impact the features. Independent
of any potential reason, outliers are filtered based on the Z-Score [34] throughout this
work. The Z-Score is computed as x−µ

σ
, where µ denotes the mean and σ the standard

deviation respectively. Data points of an absolute Z-Score ≥ 3 in any feature are not
included in any training or validation set used for model training.

Figures 4.2 and 4.3 show that the feature distributions vary considerably across different
behaviors. Thus, to ensure that all features influence the training process by the same
scale, a scaling is needed which does not make any limiting assumptions on the feature
distribution. MinMax Scaling does offer that property and is computed by the following
formula for each feature i in a given training set:

inputi =
(valuei −mini)

(maxi −mini)

This ensures that all features in the training set are scaled to a range between 0 and 1.
However, the scaled feature values in the test set may exceed this range as the features
may have different minima or maxima. At this point it should be highlighted that it can
be very challenging to perform adequate scaling in Deep RL tasks. If data is observed
only interactively from the environment, scaling is very difficult right from the first ob-
servations. There is an upfront need to have sufficient behavior data to get minimum
and maximum feature values that enable good scaling for later learning processes. Ex-
periments have been conducted with different ways of scaling, such as using only normal
behavior to make no assumptions about attack behavior feature values, or scaling based
on all behavior data leveraged within an offline learning simulation. However, the exact
way of scaling will be indicated specific for the given prototype section.

4.4.2 Principal Component Analysis

In the IoT context, prediction models should be kept smaller than models that can be
executed on more resourceful machines. Thus, this work also experimented with PCA
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to potentially decorrelate features, reduce the dimensions of the data and to speed up
learning and prediction times.

PCA aims to map the features into a lower dimensional space by means of linear combi-
nations and thereby distill components that maximize variance. In order not to distort
the principal components towards features of large variance, features should be scaled to
contribute equally with unit variance. This is however not the case in MinMax scaling,
but is possible via standard scaling using the Z-score formula z = x−µ

σ
. This poses the

problem of not accounting perfectly for the original feature distribution. But another
more practical problem for RL-based MTD is that the PCA transformation should be
calculated based on the complete training dataset including all behaviors. But in the
context of this work, not all attacks can be assumed available, since there is always the
possibility of zero-day attacks. Similarly to the difficulty of calculating ideal scaling pa-
rameters, it is even harder to derive an optimal PCA transformation in the RL use case
at hand. The option to use PCA to reduce the dimensions to a specifiable number of
components is available in the code [56]. However, the results presented in subsequent
prototyping chapters do not use any PCA due to the aforementioned reasons and in order
not to make any limiting assumptions. Despite that comparable results were achieved
with PCA and 10-20 principal components only, it is excluded as it may lead to more
unstable results in the general case.



Chapter 5

Prototypes for Offline RL-based MTD

This chapter extends the data exploration from the previous chapter and aims to discover
more about the application of RL and DL to the problem domain. The goal is to derive
the conceptual proof that an agent can learn to find mitigating MTD techniques, for
given attack behaviors by interacting with an offline, simulated environment under ideal
conditions.

Therefore, two different prototypes are presented and evaluated for their MTD deployment
choices. The first starts with the simplest possible scenario, where an agent learns to map
MTD actions to behavior states with the help of a supervisor. The second prototype strives
towards a more realistic scenario by introducing an anomaly detection component which
makes the learning process unsupervised. To facilitate the overview, only samples from
the raw behavior dataset will be used for both prototypes as per the previous Section 4.3.
Only the following Chapter 6 then goes a step further, by constructing the most realistic
simulation environment, making use of data monitored while an agent controller is running
in parallel. The code for all simulation environments and the performance results can be
found in [56].

5.1 Prototype 1: Supervised Simulation on Raw Data

As a baseline, the convergence of RL-based MTD should be verified under ideal conditions.
For this, the environment, and in particular the state and reward signals are constructed
in a completely supervised manner. In contrast, the agent’s action choices are independent
of offline or online learning and just correspond to the output of the online Q-network QO

or a random action (see Algorithm 1 in Subsection 2.5.4).

5.1.1 Simulation Environment

The core of a simulation environment marks an interface for the agent-environment in-
teraction step, meaning a function that takes a state and action as input and produces
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as output the next state and the reward. Figure 5.1 depicts such a single step, including
all actors, and components as relevant for this simulation. The attacker with a choice
of malware of the families CnC, rootkits and ransomware is abstracted away behind the
dataset of raw attack behaviors.

Figure 5.1: Prototype 1: Agent-Environment Interaction Step: Supervised

For this first prototype, all state signals are sampled from previously collected raw attack
behavior data. The reward signals are constructed based on a priori knowledge of the
mapping of mitigating MTDs to behaviors. A positive reward is given (+1) in case of
choosing the correct MTD, and a negative (-1) in case of an incorrect MTD. Figure 5.2
depicts the full simulated training process flow, abstracting away the details of the DQ-
Learning algorithm.

Note that in this process flow, the behaviors are randomly sampled from the dataset of
raw behaviors. Initially, a random attack is chosen as decision state to start an episode.
Thereafter, the sequence of behaviors always matches the one that a real online agent
would observe (i.e. bdvl attack - wrong MTD - bdvl attack - wrong MTD - bdvl attack
- correct rootkit MTD - normal behavior). However, using this episodic pattern is a
simplification regarding two important aspects: First, an episode is always started with
an attack. In a real scenario, such an attack must be recognized first to reactively deploy
MTDs. An episode may also start wrongfully upon normal behavior. Secondly, episodes
are terminated by sampling raw normal behavior after the correct MTD technique is
chosen. This does not necessarily correspond to reality as it is possible that an MTD
technique does not erase the effects of an attack completely (see Subsection 3.4.3). In
fact, this simulation procedure ensures that the assumption of perfectly working MTDs
is always valid throughout training. The possibility of device behavior being sustainably
altered by an attack or an MTD technique is thus excluded.

As a further important simulation property, it should be highlighted that it is not necessary
to actually execute any MTD techniques during the training process. Technically, this
implies that for this simulation, there is not even a need be in possession of any MTD
technique. It can be done completely time-agnostic of any MTD and on a separate device
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Figure 5.2: Flowchart of the training process used for Prototype 1: Supervised Simulation
Environment. Note that rewards are set directly based on the correctness of the MTD
choice (+1 if correct - terminate episode, -1 if incorrect - continue episode)

- as long as there is a dataset with known behaviors to sample from. These are all crucial
advantages of having a simulation compared to learning online from scratch.

All states are assumed to contain all relevant information for taking an action. This
corresponds to modelling the environment as a markov decision process (MDP). By having
a supervisor, there is always a correct and time-independent action, reward and successor
state, given a state of a certain behavior. The exact state transitions are stochastic. In
essence, this simulation corresponds to a sequential game of a non-adaptive adversary and
a learning defender on ideal data.

5.1.2 Performance Evaluation

For the evaluation of an agent in the previously described simulation environment, all raw
behavior data is read and split into 80% training and 20% test samples. The training set
is used for the agent-environment interaction, the test set to assess the performance on
unseen state samples after convergence. The data is preprocessed by removing a range
of features suspected to be constant, time-related, cyclic or otherwise unstable, and by
filtering outliers in the train split (as per Section 4.4). Further, in order to make as
few assumptions about the malware as possible, the data is scaled based on minimum
and maximum values of normal data only. Next, DQ-Learning as per Algorithm 1 is
applied to train an agent interacting with the simulation environment. For this, a number
of hyperparameters need to be selected. As input for the DQ-Network 46 features are
considered corresponding to the number of state dimensions after excluding all irrelevant
features (see feature column in Tables A.1 and A.2). The output size of the DQ-Network
corresponds to four actions, one for each available MTD technique. The replay memory is
set up as a ring buffer containing 500 transitions at maximum, and is initialized with 100
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sample transitions before the agent starts to learn. The batch size for the gradient descent
step in the RL loop is accordingly set to 100 transitions. 1e−4 is chosen as the learning
rate and the reward discount factor γ is set to 0.1. Choosing γ close to 0 ensures that
immediate rewards are weighted much more than future rewards, which is desirable for
correct MTD selection and speeds up the training process. ϵ as the exploration parameter
starts at probability 1 and decays with every learning update by 1e−4 until it reaches
a minimum level of 0.01 (ensuring that the agent continues to explore indefinitely). As
a final hyperparameter, the frequency of replacing the target network QT by the online
network QO is set to every 100 learning update steps.

The convergence of an agent with the above hyperparameters is shown in Figure 5.3 over
10000 episodes. The maximally achievable score is 1 as measured by a running average of
the last 20 average rewards per episode. The average episode reward is calculated as the
sum of all rewards received per episode divided by the number of interaction steps per
episode. In the best case, there is only one interaction step, meaning the correct MTD
technique is chosen at the first observation of an attack state, yielding reward 1.
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Figure 5.3: Learning process over episodes and epsilon decay

Figure 5.3 shows that the agent’s action choices effectively improve over time despite
a certain range of fluctuation. Overall, the convergence is relatively stable, reaching a
desirable level of accuracy after approximately 6000 episodes. Initially there is a larger
variation due to a larger exploration probability given by epsilon, and relatively uncertain
action choice. This also explains the slight curve in the epsilon decay as initially a larger
number of steps are required per episode.
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Table 5.1: Prototype 1: Greedy MTD Selection Accuracy of the Online DQ-Network QO.

Behavior Accuracy Objective
ransomware poc 98.93% ransomware mtds
bdvl 99.03% rootkit sanitizer
beurk 67.28% rootkit sanitizer
the tick 97.65% cnc ip shuffle
backdoor jakoritar 69.13% cnc ip shuffle
data leak 1 99.38% cnc ip shuffle
data leak 2 100.00% cnc ip shuffle

Where Figure 5.3 clearly demonstrates the agent’s learning progress, it does not show how
well the agent performs on different attack behavior states, respectively how accurately it
chooses MTD techniques. Therefore, after the training process is finished, the accuracy
of the agent’s greedy action choices is evaluated on the separate and unseen test set. This
corresponds to feeding test state vectors into the priorly trained online DQ-Network QO

and comparing the predictions as in a supervised setting to the correct MTD objective.
The results are shown in Table 5.1.

As expected from the data analysis in the previous chapter, the beurk and backdoor
jakoritar attacks are the hardest to map to an MTD technique as both of them are very
close to normal behavior. Our agent selects the correct rootkit sanitizer MTD technique
in only 67% of the cases when observing beurk behavior, for the backdoor jakoritar attack,
the IP shuffling objective is achieved with about 69% accuracy. However, all other attacks
are correctly mapped to the mitigating MTD technique with accuracies between 97% and
100%. These results serve as a reference to an upper bound of performance for the
subsequent prototypes, which aim to approximate the real-world setting by gradually
loosening assumptions and making the training process fully unsupervised.

5.2 Prototype 2: Unsupervised Simulation on Raw Data

Clearly, the type of training environment presented in the previous section is an idealized
and simplified version, which cannot accurately simulate an online environment. From the
agent’s learning perspective, this is mainly due to two reasons: First, in reality, rewards
cannot be calculated with the help of a supervisor since attacks must be assumed unknown.
Secondly, it is not known when an episode should start or be marked as finished.

This section presents a simulation scenario, that does not need to rely on a supervisor for
neither the reward calculation nor the start and termination of episodes. To achieve that,
an anomaly detection component is utilized as motivated in Chapter 3.

In the context of this work, an autoencoder neural network is used as anomaly detector.
An autoencoder is a deep neural network with an equal number of input and output
dimensions, but hidden layers of smaller size. Figure B.1 presents a sample architecture.
The goal of this network is to learn an encoding for the input features x via a compressed
bottleneck, and to reconstruct the original input features as close as possible as output
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x̃. The mean squared error loss, MSE = ||x̃− x||22, of the input to the output is used for
backpropagation. Thus, by training on normal behavior only, an autoencoder effectively
learns to reconstruct normal behavior with minimal loss. Upon feeding a different type
of behavior to the network, there is a larger MSE between input and output. And if the
MSE exceeds a certain threshold, an anomaly can be flagged. For all later experiments,
the threshold is calculated based on the mean plus a multiple of the standard deviation
of a separate validation set.

5.2.1 Simulation Environment

Analogously to the previous prototype, Figure 5.4, displays a single agent-environment
interaction step as used for this second simulation, including all relevant actors and com-
ponents.

Figure 5.4: Prototype 2: Agent-Environment Interaction Step: Unsupervised

Furthermore, and in more detail Figure 5.5 shows the exact training process for the second
simulation. While it also uses raw behavior data as in the previous section, it increases
the complexity of the flowchart 5.2 by anomaly detection at two key stages: First, at the
beginning, before starting a new episode - at decision states. At this point the aim is
to only trigger the MTD deployment agent, if there is actually an ongoing attack on the
device. The second stage where anomaly detection is used is after an MTD has finished
running. Here, the goal is to interpret such afterstates for whether the previously executed
MTD was successful or not. Then, the MTD’s estimated success determines rewards for
the agent, whether to deploy new MTDs or to terminate an episode.

As indicated by the second branching condition (in the middle of Figure 5.5), the sam-
pling of behavior states still happens by making use of a supervisor. However, this only
guarantees that a realistic sequence of behaviors is fed to the agent. If for instance attack
behavior b is running on the device, this behavior should still be on the device, if the
MTD chosen does not mitigate the attack. In case the MTD mitigates the attack, the
simulation should also restore the device behavior to normal. In a real environment, this
sequence of behavior states is just given naturally, but in a simulation, this can only be
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Figure 5.5: Flowchart of the training process used for Prototype 2: Unsupervised anomaly
detection for reward calculation and episode framing. Inaccuracy of the autoencoder opens
up the possibility of false negatives or false positives resulting in incorrect RL update
targets.

done via a supervisor based on known behaviors. However, this poses no problems with
respect to the unsupervision of the learning process itself, as it does neither affect rewards,
nor the flow within episodes.

Using an anomaly detector adds another conceptual layer to the training process, that
makes it completely unsupervised. To see that it is helpful to closely examine all the paths
in Figure 5.5, especially at the outcomes of the anomaly detection step on the afterstates
(visible by the bottom two branching conditions in the figure). Essentially there are four
cases:

1. True Negatives (TN, agent correctly chooses an MTD technique mitigating a given
attack b, and the autoencoder correctly flags the normal afterstate as normal)

2. True Positives (TP, agent chooses a wrong MTD technique, which does not miti-
gate a given attack b, yet the autoencoder correctly flags the attack b afterstate as
anomalous)
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3. False Negatives (FN, agent chooses a wrong MTD technique, which does not mitigate
a given attack b, and the autoencoder flags the attack b afterstate incorrectly as
normal)

4. False Positives (FP, agent correctly chooses an MTD technique mitigating a given
attack b, yet the autoencoder incorrectly flags the normal afterstate as anomalous)

Note that the cases of TP and TN exactly correspond to what happens in prototype 1
from the previous section. Stated differently, a perfectly working anomaly detector leads
to the exact same training process flow as in the supervised simulation. However, FN and
FP are generally inevitable and require a special treatment to create a realistic simulation.
FN basically mean, that the behavior on the device is malicious (i.e. attack b), but it is
not recognized as such. Thus, the reward signal is mistakenly positive (r = +1) and a
single episode should be terminated. However, obviously the malicious behavior b is still
running on the device. Thus, the next episode must start again with this behavior b. This
ensures that the simulated training directly mimics a real-world setting.

FP, as a second flaw of the autoencoder, mean that the behavior on the device is normal,
but it is recognized as an anomaly. Therefore, the reward signal is mistakenly negative
(r = -1) and an episode does not end, even if it should, and another MTD is set to be
deployed on normal behavior. If the FP-Rate is large this can lead to a loop where many
MTDs are deployed without mitigating any attack. In both cases of FN and FP, the key
problem for the RL agent is that incorrect transitions are stored in the memory buffer.
This implies that each FN or FP can be considered an adversarial sample in the training
data, possibly distorting the training process.

Please note, that the anomaly detection may not only make imperfect predictions at
afterstate time (bottom two branching conditions), but also at decision state time, before
new episodes are started (first branching condition). For the cases of states predicted
normal, the MTD agent is not triggered. This includes both TNs and FNs. In case of a
TN, device behavior has been correctly recognized as normal and nothing is done. But in
case of a FN, an attack has gone undetected and the simulation will continue to restart
the next episode with this attack, until it is detected and the agent is triggered. Certainly,
in a real setting, if an attack is very hard to distinguish from normal behavior this may
lead to long periods of no MTD deployment without further measures. This clearly marks
the worst case in this scenario.

If the decision state is flagged abnormal, the MTD agent is triggered in both cases of
TPs and FPs. TPs correspond to the desired process flow, where MTDs are deployed in
a useful manner. FPs, on the other hand, trigger the agent without any direct benefit
until the normality of behavior is recognized. It is however interesting to note, that MTD
techniques launched due to FP can be seen as a means of unintentional proactive defense.

In special cases, it is possible that a behavior is repetitively flagged as malicious by the
anomaly detector (both as TP, or FP), such that MTD techniques are launched again
and again. This is for instance a problem for attacks that cannot be mitigated with the
existing set of techniques. To account for this case, the agent is only allowed to deploy
each MTD technique once per episode. Concretely, for each episode an action buffer is
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maintained that stores the previously taken actions. When this buffer is exhausted, an
episode is terminated with a warning, and a new episode starts with an empty action
buffer. Note however, that this only happens in extremely rare cases due to FP in the
simulation considered here, as no attacks are injected in the training process that cannot
be defended against.

In summary, TP and TN always lead to correct transitions in the agent’s replay mem-
ory buffer. But FP and FN result in wrong transition entries, possibly distorting the
training process. FNs either do not correctly trigger MTD deployment in the first place,
or they result in mistakenly positive rewards, and premature termination of episodes.
FPs in contrast trigger the agent mistakenly, resulting in wasteful and unnecessary MTD
deployments as episodes are either started on normal behavior or when episodes do not
terminate on time. Clearly, to guarantee stable convergence of the overall learning system,
the optimization of the anomaly detector, respectively the minimization of FN and FP
is crucial. The next section evaluates the performance of an autoencoder pretrained for
this simulation and discusses its effect on the performance of the agent as the primary
maximization target.

5.2.2 Performance Evaluation

As for the previous prototype, all raw behavior data is read and split into 80% training
and 20% test samples, unsuitable columns are dropped and outliers are removed from
the training data. Again, Minmax-Scaling is performed based on the extreme values of
normal training data only to avoid assumptions about attack behaviors. Of the normal
training data 70% of samples (ca. 7000) are used for pretraining an autoencoder and 30%
are set aside as sufficient for the actual RL simulation.

Anomaly Detection Performance

The autoencoder is trained on 80% of its dedicated normal data over 100 epochs with
a batch size of 64 samples, a learning rate of 1e−4 and a momentum term of 0.9. The
remaining 20% of the samples are used to calculate the threshold as the mean predicted
MSE reconstruction loss + 2.5 standard deviations. The anomaly detection results on the
test set of the accordingly trained autoencoder are depicted in Table 5.2.

Here, beurk and backdoor jakoritar stand out with a particularly bad performance, being
recognized as malicious in only 12-13% of the cases, which is in line with the foregoing data
exploration. Similarly, the tick attack is insufficiently detected with 32% indicating that
these attacks may result in incorrect replay memory transitions due to FN, hampering
the agent’s learning progress. However, normal behavior as well as all other attacks are
detected well with accuracies between 84% and 100%.
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Table 5.2: Prototype 2: Autoencoder Performance on Raw Behavior Data

Behavior Accuracy
normal 84.33%
ransomware poc 100.00%
bdvl 100.00%
beurk 12.31%
the tick 32.67%
backdoor jakoritar 13.03%
data leak 1 94.61%
data leak 2 100.00%

Agent Convergence and MTD Selection Accuracy

The model of the previously trained autoencoder is stored to be employed within the
simulation environment as per Figure 5.5. To ensure comparability to the first prototype,
the exact same hyperparameters are selected to train the agent. However, an additional
hyperparameter for this simulation is given by a probability level, to which either normal
or attack behaviors are sampled at the beginning of new episodes. In reality, it is unlikely
that attacks are launched constantly against the agent (as done in the first prototype). To
account for this fact, the simulation samples normal behavior with a chosen probability
of 80%, and else a random attack behavior before starting an episode. This ensures that
the performance results consider the case of possibly many FP being introduced during
training.

Another important hyperparameter is the number of samples considered to make the
decision of whether a behavior is anomalous or not. In theory, it is possible to monitor
an arbitrary number of samples and then make the prediction based on the majority of
samples. However, at this point and for comparability only one sample will be considered
here.

Figure 5.6 displays the convergence of the agent towards the maximum score as the average
over the last 20 episodes (as in Figure 5.3). As already observed from the first prototype,
this second agent reaches a stable level of performance after about 6000 episodes. It can
be appreciated here, that the agent’s learning progress is relatively constant, despite FN
and FP introduced by the autoencoder.

After finishing the training process, the accuracy of the agent’s greedy action choices is
evaluated on the separate and unseen test set as done for the first prototype. Analogously,
Table 5.3 shows the accuracies of the agent’s QO online DQ-Network to select the correct
MTD technique given attack behaviors. Note that here, no meaningful accuracy can be
evaluated for normal behavior, as every MTD technique is both incorrect (as nothing
needs to be deployed) and correct (as the resulting afterstate correctly corresponds to
normal behavior from a learning perspective).

When comparing Table 5.2 and Table 5.3, it can be observed that the autoencoder’s pre-
diction performance approximately translates to the agent’s MTD selection performance.
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Figure 5.6: Learning process over episodes and epsilon decay: AE predictions are based
on a single state sample.

The correct rootkit sanitizer technique is chosen in less than 5% of the cases when ob-
serving Beurk behavior, matching the poor autoencoder prediction for this attack with
12% accuracy. Further, the backdoor jakoritar attack is also only correctly mitigated
with the IP shuffle MTD in a bit more than half of the cases. The fact that the agent’s
performance on the tick and the backdoor attack is not impacted as hard by their poor
anomaly detection rate, may be due to the other two CnC-based data leak attacks, that
are recognized with near perfect accuracy.

When comparing this agent’s performance to the performance of the baseline agent from
prototype one, two important things can be noticed: First, the selection accuracy de-
creases the most for behaviors that are hardest to distinguish from normal behavior.

Table 5.3: Prototype 2: Agent Performance on Raw Behavior Data

Behavior Accuracy Objective
ransomware poc 99.14% ransomware mtds
bdvl 95.93% rootkit sanitizer
beurk 4.72% rootkit sanitizer
the tick 83.28% cnc ip shuffle
backdoor jakoritar 54.69% cnc ip shuffle
data leak 1 99.47% cnc ip shuffle
data leak 2 100.00% cnc ip shuffle
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These behaviors have a high percentage of incorrect transitions stored in the agent’s re-
play memory, acting as unintentional adversarial samples. Secondly, it appears that the
wrongful replay buffer entries do not remarkably impact the MTD selection accuracy for
other attack behaviors. In fact, ransomware, bdvl, as well as the two data leak attacks are
almost perfectly recognized and considered in the agents MTD selection policy (accuracies
between 95%-100%). One potential factor which contributes to this relative robustness
may be due to the general variation given in DQ-Learning by the dynamic update targets
and the exploration strategy. In other words, since the algorithm is designed to cope
with imperfect action choices, it may be to some extent robust against incorrect rewards.
However, studying this in more detail is certainly out of the scope of this work.

5.3 Summary

This chapter establishes a proof of concept that an RL agent can learn to map mitigating
MTD techniques to given attack behaviors by interacting with a simulated environment
that leverages ideal, raw behavior data to represent states. Two different kinds of proto-
typical simulations are presented where both sample behaviors from a precollected dataset
in the sequential manner that corresponds to what an online agent would observe in a real
environment. Both simulations sample normal behavior as next states when the agent cor-
rectly selects an MTD technique. This ensures that the assumption of perfectly working
MTDs always holds during training as no unclear temporal dependencies between device
states need to be considered.

The first prototype employs a supervisor to decide on the calculation of the reward and
the termination of episodes. It shows what can be achieved in an optimal learning setup
and therefore it establishes a reference to an upper bound for more complex simulations
which more accurately model reality. The performance of an agent trained in this setup
shows, that some attacks are naturally harder to map to MTD techniques than others.
However, apart from two attacks that are mitigated with ≈69% accuracy, all behaviors
are correctly mapped to an MTD technique with 97% accuracy and more.

The second prototype extends the previous simulation and gets rid of any supervised com-
ponents in the learning process. An autoencoder is used for anomaly detection at both
decision state and afterstate time. This enables to determine a start signal for episodes,
to calculate rewards, and to terminate episodes in a fully unsupervised fashion. However,
this comes with the drawbacks of potential misclassifications from the anomaly detec-
tor. Due to FN, episodes might be terminated prematurely, giving wrongfully positive
rewards and due to FP MTD techniques are deployed despite the absence of any attack,
giving mistakenly negative rewards. This leads to unintentional, adversarial samples in
the agent’s replay memory. The performance results show that the autoencoder’s pre-
diction performance approximately translates to the agent’s performance in selecting the
correct MTD techniques. The convergence of the agent is relatively stable, despite the au-
toencoder’s imperfection and most behaviors are correctly mapped to a mitigating MTD
with 95% accuracy and more. The agent only fails to find the correct MTD technique
for behaviors that are very hard to distinguish from normal behavior (notably beurk and
backdoor jakoritar). As the second prototype ensures that the learning process in itself
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is completely unsupervised, it sets the stage for moving the RL agent towards a real,
online-learning environment.
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Chapter 6

Towards Full Online RL-based MTD

As stated in section 3.6.1, integrating an MTD deployment agent and its core - the Deep
Q-Network - into an online environment requires additional components for monitoring,
anomaly detection and orchestration of tasks. In the following, these components are
presented and it is described how they can work together to achieve online learning.

Accordingly, the chapter starts off with the design of an agent controller that manages
the process flow of autonomous interaction and learning in a real environment. Where
this agent could, in principle, learn from scratch in an online manner, the remainder of
the chapter focuses on crafting a simulation that aims to utilize the most realistic data
possible to pretrain an agent, which can later be deployed in a real environment. Thus,
the goal is to craft a simulation that allows the transfer of the learnt policy to the real
world. As explained in Section 4.2.1, the data, respectively the states observed by an
online agent are influenced by the concrete processes running on the device, including the
agent’s components itself. Thus, this chapter continues by presenting a dataset collected
while such an agent controller has been actively running on the device in parallel. Besides
detailing the steps undertaken for the data collection, the data is analyzed similarly to
Chapter 4. After that, a third training simulation can be presented in Section 6.3, which
extends the simulated environment from Section 5.2 with the new, more refined data.
Analogously, performance results are shown and finally, the contributions of the chapter
are summarized.

6.1 Online Agent Controller Design

Figure 6.1 presents an architectural view of an online MTD controller agent, including
required modules for the MTD decision (WHAT & WHEN), as well as MTD specification
(HOW). Each of the depicted components affects perf features and must be taken into
account for simulations which aim to utilize realistic environment data. This comprises
components for perception and interpretation of the environment, RL-based reactive MTD
selection, as well as the MTD technique themselves.

55
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Figure 6.1: Online MTD Controller Architecture

For further clarification of how the components collaborate Figure 6.2 displays the logical
view of the on-device process flow relevant for online learning. The components are listed
in swimlanes, to indicate the separation of responsibilities. The controller orchestrates
the timed invocation of all other components and manages the passing of information
between them. Further, it is responsible for setting the points in time when a new episode
should be started. As indicated in the caption of Figure 6.2, the process flow between the
controller lane and the other lanes is minimized for better overview. The monitoring com-
ponent is responsible for collecting relevant state information from the (real) environment.
This happens via a shell script that collects all perf features of interest as explained in
Figure 6.2 for a predefined monitoring duration. Monitoring is necessary at two different
stages, at decision and afterstate time. Analogously, the anomaly detector component
is invoked for two different purposes. As already discussed for the second simulation in
Section 5.2, the anomaly detector is responsible for making the decision whether or not
to trigger the agent at decision state time. At afterstate time, the anomaly detector esti-
mates from the observed state whether the MTD technique was successful. In the cases
where behavior is recognized as normal (TN or FN), the controller waits for a duration d
until it initiates the next episode cycle. In the cases where anomalous behavior is detected
(TP or FP), the agent is triggered to choose an action. The agent is the core component
responsible for the policy and interactive learning updates. More concretely, it is in charge
of the action selection strategy (ϵ-greedy, action prediction via DQ-Network), the storage
of experienced transitions in its replay memory, as well as the whole learning update step.
Finally, in order to be able to execute an MTD technique according to the agent’s choice,
the mechanisms must be readily available. All MTD techniques are thus summarized
in a single lane for an MTD Launcher. However, the execution of a particular MTD
mechanism is handled and tracked by the controller. Note that here, the process flow
is considerably simpler compared to the complex sampling in Section 5.2 for prototype
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2. Here, the agent’s actual state observations stemming from an unknown environment
replace the previous sampling of behaviors. The only defining information for taking the
next step in the process flow is whether a state is considered normal or anomalous by the
anomaly detector independent of whether it is a TP, FP, TN or FN. Algorithm 2 in the
next chapter presents more implementation details of the online agent controller. This
chapter, however abstracts away from such specific online implications, as the primary
focus is on the control flow as needed for constructing a realistic simulation. Further, the
complete code for this online MTD controller can be found in [56].

Figure 6.2: Online Agent Learning Process Flow. Technically, the controller orchestrates
all of the other components. But for the sake of a better overview, the respective arrows
back and forth from the controller lane are left out. Instead, information and responsibil-
ities are directly passed between sequential components in the diagram.

All components are intended to be run on-device only. This ensures that the whole system
can function in a standalone fashion, independent of any other devices. This is in line with
the choice of on-device only features. Further, no communication overhead or latencies to
off-device components have to be dealt with.

Another important aspect of this process design is the waiting mechanism employed by
the controller to govern when the next monitoring loop should start. Theoretically, the
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time to wait can be set to a fixed duration or adapted flexibly according to a separate
logical component. Anyhow, setting this time duration is a generally non-trivial task as it
depends on the desired security level, the resource consumption of the agent code and thus
also its service quality impact. Where Chapter 7 gives more information regarding this
matter, this chapter focuses more on the flow of the training process itself to construct a
simulation that approximates reality.

As already mentioned above, states are monitored at two logically different places in the
learning process: decision- and afterstates. Thus, a simulation which tries to learn as
close as possible to this online setup must also consider both decision and afterstate data
during training. The next section provides details about the collection of a corresponding
dataset that enables the separate treatment of decision and afterstates within an extended
simulation.

6.2 Refined Environment Data: Decision- and Afterstates

This section provides details on the collection of a dataset refined for decision and af-
terstates. Further, peculiarities of this dataset are analyzed to assess its suitability for
simulated environments, and to get a feeling for the separability of behavior states.

6.2.1 Data Collection

For the collection of decision state and afterstate data, the exact same script is used as for
the raw behaviors. However, here the monitoring is launched via the agent controller itself.
Thus, as the first step, the whole online agent code is moved to a RP 3 Model B+ and all
dependencies are installed. Then, the monitoring procedure slightly differs for decision-
and afterstates. For decision states no MTD execution is required. The device has been
infected with each of the attack behaviors already considered in previous sections and the
controller script has been launched with the decision state monitoring duration set to four
hours. After the monitoring has finished, the newly created datafile is just copied to a
different device to perform the simulation. Monitoring real afterstates in contrast requires
first to step through the whole process of monitoring decision states, detecting an anomaly,
choosing an action and deploying the corresponding MTD technique. To standardize this
afterstate monitoring, the monitoring duration of decision states has been set to three
minutes and the anomaly detector is preconfigured to flag an anomaly. Moreover, the
desired MTD technique to monitor the afterstate for is hardcoded in the controller and the
subsequent afterstate monitoring duration is set to four hours. All possible combinations of
available MTD techniques and device behaviors (normal and attacks) have been monitored
accordingly by infecting the device and starting the preconfigured controller. [56] contains
the complete code used to monitor all decision and afterstates. Further it lists the parts
of the code that are left as comments due to the monitoring setup (i.e. the autoencoder
prediction, or the learning update as it happens only after the afterstate monitoring).
Anyhow, without loss of generality of the monitoring and training process, it is assumed
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that the commented parts have negligible influence on behavior separability and thus the
learning process.

Table C.1 and Table C.2 list the number of samples collected for all decision and afterstate
combinations. In total, there are 77881 unfiltered samples available.

6.2.2 Data Exploration

To analyze the suitability of the collected decision- and afterstate dataset for a simulation
environment, essentially the same characteristics as analyzed earlier for raw behaviors are
relevant: The variation over time as well as the feature distributions. Since the results
of this data exploration largely overlap with Section 4.3, only peculiarities pertaining to
decision and afterstate data are presented here. This comprises comparing decision and
afterstates, as well as the dimensions of different MTD techniques and behaviors. The
code to generate the all plots can be found in [56].

As discussed in Section 4.3, the features should be stable over time, such that states
can be randomly sampled from the precollected dataset to construct simulated episodes.
Figure C.1 shows analogously to raw behaviors that the timeline of decision state behaviors
occupies a dedicated range of event counts. The variation of afterstate data over time is
similarly constrained. This implies that the data collected as per the procedure above is
suitable for sampling realistic states in simulations.

Besides the variation, again the distributions prevailing in the decision and afterstate
dataset are analyzed. Figure 6.3 compactly depicts a range of important properties that
are exemplary for this dataset. Here, using only the bdvl attack and normal behavior,
illustrated for the mm page alloc event.

First, it should be noted, that decision and afterstates may considerably differ for certain
features. For instance, a normal decision state (dark green) shows a slightly different
distribution than the state after launching a rootkit MTD upon normal behavior. This is
in line with the foregoing analysis that all processes running on the device have an influence
on the perf features. Further, it confirms the need to consider such a dataset when
striving towards a real-world application scenario of RL-based MTD. However, decision
and afterstates do not differ for all behaviors and features. For instance, bdvl (blue
in Figure 6.3) decision state does not differ substantially from most of its afterstates.
Concretely, the distribution of the mm page alloc feature is almost identical for decision
state bdvl and the afterstates resulting from launching an incorrect MTD (shown as
purple, red and lightblue).

In contrast, the distribution, when deploying the correct rootkit sanitizer MTD technique
has a much narrower range of values. In fact, the afterstate when deploying a mitigating
MTD is close to the distribution of normal behavior (the closest to the afterstate of normal
behavior and the given MTD). This is necessary for the anomaly detector to estimate
a positive reward signal (TN) for a mitigating MTD. But to avoid FN, inappropriate
MTD techniques should yield notably differnt distributions than the correct ones. Thus,
judging from exclusively looking at the kmem feature in Figure 6.3, incorrect rewards
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might be predicted frequently due to the large overlap of the distributions. The fact
that an afterstate combination of normal behavior and a deployed MTD m is closest to
the afterstate of an attack behavior mitigated by m, further provides insights on what
training data the anomaly detector component should consider. To correctly recognize
mitigating MTDs, the data used for anomaly detector training should contain afterstates
of deploying MTDs upon normal behavior.

Figure 6.3: Comparison of decision states and all afterstates for bdvl as well as normal
behavior for the kmem event mm page alloc. There are almost identical distributions for
bdvl decision state as well as all afterstates with incorrect MTDs, not mitigating bdvl.
However, as visible by the three green distributions, the correct rootkit sanitizer MTD
leads to a distribution similar to normal behavior. Normal behavior at decision state
time also follows a slightly different distribution than after having deployed the rootkit
sanitizer. The afterstates for normal and bdvl behavior for the rootkit sanitizer are most
similar.

When imagining all afterstate data as points in the space of num features dimensions,
ideally there are distinct clusters for each type of behavior. Under best circumstances,
there is a single cluster containing normal behavior data as well as all afterstate combi-
nations of attacks and corresponding, mitigating MTDs. Besides that, there should be
separate clusters for each attack, meaning for decision states and afterstates stemming
from deploying incorrect MTDs upon a given attack. Realistically, this separation bound-
ary is blurred in most features and not recognizable in lower-dimensional visualizations.
This can also be observed by the large overlap of the distributions in Figure 6.3. To
learn how to map MTD techniques to states, behavior data should be separable despite
the effects of any deployed MTD technique. For instance, in the worst case, an incorrect
MTD technique could affect the afterstate of an attack a in a way that makes it very hard
to distinguish from a certain decision or afterstate of an attack b of a different family. In
order to limit this possibility of undesirable effects of MTDs, features are excluded from
training if they show heavily distinct distributions between decision and afterstates. For
instance, the raw syscalls event source is extremely sensititve to such fluctuations induced
by the agent itself as can be observed from Figure 6.4. For the sys exit event, the distri-
butions of decision state normal and normal afterstate after deploying the rootkit MTD
have absolutely minimial overlap. Similarly, the distribution of all incorrect MTDs differ
heavily. The complete list of features excluded via such an analysis can be found in tables
A.1 and A.2.

Where Figure 6.4 compared afterstates for a single behavior, it is also interesting to visu-
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Figure 6.4: Undesired effects of MTD deployment on decision and afterstate for normal
and bdvl behavior. The distributions differ significantly due to the agent, even if the
behaviors to be detected are the same.

alize a the same MTD technique for the different behaviors. For the sake of completeness,
and to verify that behaviors are in principle distinct, and show specific patterns despite
MTD execution, an according comparison can be found in Figure C.2.

6.2.3 Refined Data Summary

The previous data exploration shows, that decision and afterstates may differ in general
along the dimensions behavior, MTD techniques and features, confirming the need for
an according dataset to craft realistic simulations. Further, the features remain stable
over the duration of monitoring of the different states, even though the data collection
is governed by the controller. This makes the collected decision- and afterstate dataset
suitable for RL simulations as it is possible to randomly sample states from it to con-
struct episodes. Further, the distributions of different behaviors show that afterstates
resulting from deploying a correct MTD technique upon observing some attack closely
approximate normal behavior afterstates. However, afterstates of incorrect MTD tech-
niques follow similar distribution patterns that the malware exhibits in general. After
excluding particularly sensitive features, the employment of particular MTD techniques
does not seem to influence behaviors in a manner that makes them visibly less distinct.

6.3 Prototype 3: Unsupervised Simulation on Refined Data

Striving towards a more realistic online scenario, the second prototype presented in Sec-
tion 5.2 is refined with close-to-online decision and afterstate data, monitored while a
functionally working agent controller has been running in parallel under real conditions.
In the following the implications of this new simulation are elaborated and performance
results are presented.
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6.3.1 Simulation Environment

As in the previous prototypes, Figure 6.5 depicts a single agent-environment interaction
step of this third simulation, including all actors and components. Here, the attacker, and
different combinations of malware and MTD techniques are abstracted away behind the
decision- and afterstate dataset.

Figure 6.5: Prototype 3: Agent-Environment Interaction Step: Unsupervised on Refined
Data

This refined simulation environment follows exactly the same logic as depicted in Fig-
ure 5.5, yet the complexity increases at two locations in the process: First, the sampling
of states now corresponds to the given stage in the learning loop. Decision states are ran-
domly sampled from all the behaviors monitored at decision state time, and afterstates
are sampled dependent on the combination of the current behavior and the agent’s MTD
choice. Secondly, the anomaly detector component also needs to take into account the
new data. Concretely, the anomaly detector used to decide upon rewards and whether to
start or terminate an episode must consider both normal behavior at decision state and
afterstate time in training. This is in line with the above data exploration.

The fact that afterstates are sampled specifically is a step towards relaxing the assumption
of perfectly working MTDs (see Subsection 3.3.1). In contrast to the previous prototypes,
afterstates are not just sampled as raw normal behavior if a correct MTD is chosen. Where
for the first two prototypes it was not even necessary to execute any MTD technique for the
data collection, now simulation afterstates correspond to the real monitoring observation
after actually having deployed an MTD technique on the device. This implies that if
certain MTDs alter behavior a bit, or if attacks are not mitigated fully despite the correct
MTD, this is reflected in the data used in the training process. As explained in the
data exploration, the effects of MTDs should be minimized, by excluding the most MTD-
reactive features, but that does not change the fact that data is used which considers real
MTD deployments. Essentially, this removes the assumption of perfectly working MTDs
for a single agent-environment interaction step. However, across multiple interaction
steps, the assumption does still hold in this simulation environment. New states are
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sampled from the pool of collected decision and afterstate data irrespective of any previous
malware that ran on the device. Clearly, a fast data collection procedure cannot follow
the exact same steps that an online agent would perform. So this one-step relaxation of
the assumption of perfectly working MTDs already aims to push the practical boundaries
of how realistic simulated states can get. As already explained in detail in Chapter 3,
such an assumption is fairly reasonable when considering periodic reboots, or killing of
unknown processes.

6.3.2 Performance Evaluation

For this third training simulation, the whole decision- and afterstate dataset (tables C.1
and C.2) is read and split into 80% training and 20% test samples. As in the previous
prototypes and motivated in the data exploration of this chapter, unsuitable columns are
dropped and outliers are removed from the training data. Minmax-Scaling is performed
based on the extreme values of normal decision state and normal afterstate training data,
which ensures that no assumptions have to be made about any attack behavior feature
values. Next, 70% of the normal decision state and normal afterstate training data are
used for for pretraining an autoencoder and the remaining 30% are set aside as sufficient for
the actual RL simulation. Using both decision state and afterstate normal data ensures,
that normal behavior is recognized as such despite possible effects of MTD deployment
on some features. Thus, it is in line with the previous data exploration.

Anomaly Detection Performance

The autoencoder is trained on 80% of its dedicated normal data over 100 epochs with
a batch size of 64 samples, a learning rate of 1e−4 and a momentum term of 0.9. The
remaining 20% of the samples are used to calculate the threshold as the mean predicted
MSE reconstruction loss + 2.5 standard deviations. Thus, the selected hyperparameters
exactly correspond to those used for the autoencoder trained for the second prototype.
The results on the test set of this new autoencoder trained on refined normal data are
shown in Table 6.1 for decision states and in Table 6.2.

In principle, there are many possibilities to utilize autoencoders within this simulation.
One could train multiple autoencoders for each normal - MTD technique combination
separately, on all such normal afterstate data combined, or on normal decision state data
only. Autoencoders have been trained for all of these options, and generally they lead
to comparable performance. This result can also be expected as features which are most
sensitive to the effects of MTDs have been removed. However, the autoencoder trained
on both normal decision- and afterstate data slightly outperforms the other variants.
As it learns most accurately what exactly normal behavior is - independent of MTD
deployment, it is the preferred option in our application context. The corresponding
autoencoder experiments are available in [56].

Focusing first on Table 6.1 as the simpler table, it can be observed, that similar results are
achieved on decision state behavior data as for the raw behaviors with the autoencoder
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Table 6.1: Prototype 3: Autoencoder Performance on Behaviors at Decision State Time

Behavior Accuracy
normal 94.99%
ransomware poc 100.00%
bdvl 100.00%
backdoor jakoritar 6.81%
beurk 5.09%
the tick 6.50%
data leak 1 100.00%
data leak 2 100.00%

of prototype 2 (see Table 5.2). Some attacks (beurk, backdoor jakoritar and the tick) are
recognized poorly with only 5%-7% accuracy due to their proximity to normal behavior.
Note, that especially the tick is detected much worse here compared to the autoencoder
results (83%) of the second prototype in Table 5.2. Clearly, the influence of the agent
controller has a non-negligible impact on the detection rate of attack behaviors. The other
attacks are detected with perfect accuracy and normal behavior is correctly recognized in
94% of the cases.

Next, Table 6.2 displays the performance on all afterstate combinations, showing the
original behavior in the first column and the deployed MTD technique in the second.
Despite the accuracy, this table lists the anomaly detection objective as a further column.
The purpose of this column is to make clear whether the afterstate should be considered
normal behavior or an anomaly. For instance, for all MTD techniques deployed upon
normal behavior, the resulting afterstate should be considered normal. Similarly, all
afterstates with correct MTD techniques for a given attack should be recognized as normal.
For instance, the fifth and sixth row in Table 6.2 with correct MTD techniques against
ransomware have a normal detection objective. Here two main results can be observed:
First, the accuracies achieved on decision states more or less correspond to the accuracies
achieved on afterstates. If an incorrect MTD technique is deployed, the afterstate is
recognized poorly in case of the attacks beurk, backdoor jakoritar and the tick (5%-12%),
and with high accuracy for the remaining attacks. The second important result is however,
that in case of deploying correct MTD techniques, this is recognized for all behaviors,
including beurk, the backdoor and the tick (>87% accuracy). This is a desirable result
for the later RL agent training. As in the previous simulations, the agent can only deploy
each MTD technique once per episode at maximum. This ensures that the behaviors
beurk, backdoor jakoritar and the tick are correctly mitigated at some point, even though
there might be incorrect entries in the replay memory due to many FN.

Agent Convergence and MTD Selection Accuracy

For the agent’s learning process, the exact same hyperparameters are selected as for the
second simulation. Again, assuming that normal behavior is running on the device most
of the time, the simulation samples normal behavior before starting an episode with 80%
probability level, and an attack in 20% of the cases. Further, the autoencoder is set to
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Table 6.2: Prototype 3: Autoencoder Performance on Behaviors at Afterstate Time

Behavior MTD Accuracy Objective
normal ransomware directory trap 95.76% normal
normal ransomware file extension hide 94.29% normal
normal rootkit sanitizer 93.79% normal
normal cnc ip shuffle 94.79% normal
ransomware poc ransomware directory trap 93.33% normal
ransomware poc ransomware file extension hide 94.21% normal
ransomware poc cnc ip shuffle 100.00% anomaly
ransomware poc rootkit sanitizer 100.00% anomaly
bdvl ransomware directory trap 100.00% anomaly
bdvl ransomware file extension hide 100.00% anomaly
bdvl cnc ip shuffle 100.00% anomaly
bdvl rootkit sanitizer 88.92% normal
backdoor jakoritar ransomware directory trap 5.05% anomaly
backdoor jakoritar ransomware file extension hide 12.06% anomaly
backdoor jakoritar cnc ip shuffle 91.57% normal
backdoor jakoritar rootkit sanitizer 6.63% anomaly
beurk ransomware directory trap 5.68% anomaly
beurk ransomware file extension hide 6.45% anomaly
beurk cnc ip shuffle 6.61% anomaly
beurk rootkit sanitizer 92.91% normal
the tick ransomware directory trap 6.06% anomaly
the tick ransomware file extension hide 6.72% anomaly
the tick cnc ip shuffle 87.87% normal
the tick rootkit sanitizer 5.09% anomaly
data leak 1 ransomware directory trap 100.00% anomaly
data leak 1 ransomware file extension hide 100.00% anomaly
data leak 1 cnc ip shuffle 88.35% normal
data leak 1 rootkit sanitizer 100.00% anomaly
data leak 2 ransomware directory trap 100.00% anomaly
data leak 2 ransomware file extension hide 100.00% anomaly
data leak 2 cnc ip shuffle 89.47% normal
data leak 2 rootkit sanitizer 100.00% anomaly

make the decision of whether the current behavior is normal or anomalous based on a
single behavior sample.

Figure 6.6 shows the convergence of the agent towards the maximum episode reward as
for the previous prototypes for a total of 10000 episodes.

Comparing Figure 6.6 to the convergence of the previous prototypes, it can be observed
that there is much more variation in the learning progress, but the tendency to approx-
imate an optimal policy is clearly evident. This variation may be due to the fact that
the agent’s learning problem has become increasingly multifaceted with the refined data.
Essentially, when interacting with the environment, the agent is facing two slightly dif-
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Figure 6.6: Prototype 3: Learning Progress over episodes and epsilon decay: 1 sample
used for AE predictions.

ferent challenges: First, to predict a correct MTD from a decision state, and secondly,
to choose the right MTD from afterstates when it fails on decision states. Analogously,
the anomaly detection task has become more versatile as many combinations of MTD
techniques and behaviors have to be recognized. More possibilities for states also imply
that there are theoretically more points of failure and chances of encountering FN or FP.
The transition from the second to the third simulation prototype reflects the growth of
the general state-space which has the goal of approximating reality.

After finishing the training process, the accuracy of the agent’s greedy action choices is
evaluated on the separate and unseen test set as done for the previous prototypes. In
contrast, here both decision state and afterstate is used for the evaluation of the agent’s
greedy action selection according to its QO online DQ-Network. Table 6.3 presents the
results on decision state data, and Table 6.4 those of afterstates respectively. Note that
here, no meaningful accuracy can be evaluated for all behaviors that should be considered
normal (see column Objective in Table 6.2). Thus, all these states considered normal
are not listed in the tables. After deploying the correct MTD technique, but flagging it
mistakenly as a FP, every MTD technique can be executed and it is both correct (as the
afterstate is normal) and incorrect (as nothing needs to be deployed).

Similarly to the MTD selection accuracies achieved in the second prototype Table 5.3, the
performance on decision state data of the backdoor jakoritar (77%) and the tick attack
(64%) are better than the poor autoencoder performance would suggest (5%-7%). The
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Table 6.3: Prototype 3: Agent Performance on Decision State Data

Behavior Accuracy Objective
ransomware poc 96.58% ransomware mtds
bdvl 93.15% rootkit sanitizer
backdoor jakoritar 77.10% cnc ip shuffle
beurk 15.31% rootkit sanitizer
the tick 63.92% cnc ip shuffle
data leak 1 100.00% cnc ip shuffle
data leak 2 100.00% cnc ip shuffle

Table 6.4: Prototype 3: Agent Performance on Afterstate Data

Behavior MTD Accuracy Objective
ransomware poc cnc ip shuffle 100.00% ransomware mtds
ransomware poc rootkit sanitizer 96.67% ransomware mtds
bdvl ransomware directory trap 94.93% rootkit sanitizer
bdvl ransomware file extension hide 91.87% rootkit sanitizer
bdvl cnc ip shuffle 91.47% rootkit sanitizer
backdoor jakoritar ransomware directory trap 70.07% cnc ip shuffle
backdoor jakoritar ransomware file extension hide 73.25% cnc ip shuffle
backdoor jakoritar rootkit sanitizer 60.48% cnc ip shuffle
beurk ransomware directory trap 16.58% rootkit sanitizer
beurk ransomware file extension hide 15.40% rootkit sanitizer
beurk cnc ip shuffle 15.52% rootkit sanitizer
the tick ransomware directory trap 64.27% cnc ip shuffle
the tick ransomware file extension hide 63.37% cnc ip shuffle
the tick rootkit sanitizer 60.10% cnc ip shuffle
data leak 1 ransomware directory trap 100.00% cnc ip shuffle
data leak 1 ransomware file extension hide 99.76% cnc ip shuffle
data leak 1 rootkit sanitizer 100.00% cnc ip shuffle
data leak 2 ransomware directory trap 100.00% cnc ip shuffle
data leak 2 ransomware file extension hide 100.00% cnc ip shuffle
data leak 2 rootkit sanitizer 100.00% cnc ip shuffle
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agent only fails to learn to select the correct MTD for decision state beurk in the majority
of cases. All other attacks are correctly mapped to the mitigating MTD technique with
accuracies between 93% and 100% as can be seen in Table 6.3.

The agent’s performance on afterstate is very close to the performance on the decision
states as also observed from the autoencoder results. After deploying incorrect MTDs
first, the correct MTD technique is selected with 60%-70% accuracy for the tick and the
backdoor, and 92%-100% for all other afterstate combinations except those with beurk
behavior. As beurk behavior is seldomly detected as anomalous in both decision and
afterstates, incorrect replay memory entries also translate to poor MTD selection accuracy.
As also shown in the second simulation, the convergence seems to be relatively robust
despite the possibility of attacks (like beurk) that are not detected well and thus lead to
incorrect training samples.

6.4 Summary

This chapter establishes the transition from the more theoretical offline learning scenarios
presented in the previous Chapter 5, towards an increasingly realistic simulation environ-
ment that is based on real data observed from an online MTD controller agent.

First, as a base, the design of such an MTD controller is presented, including all its
components, which enable to autonomously learn and interact in a real environment.
Then, this controller is used to collect a second, more refined dataset that distinguishes
decision- and afterstates. This dataset is analyzed and its suitability to be used for
sampling states in a further, third simulation environment is demonstrated. It is shown,
that features remain stable over time for given behaviors, but that there are differences
for decision- and afterstates, dependent on deployed MTD techniques. Features that
maximize these differences are removed, such that undesirable effects of the agent’s actions
on the malware detection can be reduced. In line with this, and as expected, correct MTD
techniques generally lead to behavior that is close to normal, and incorrect techniques
result in behavior that is close to the behavior of the device prior to MTD execution.

Coming from this analysis an autoencoder is trained on normal decision- and afterstate
data and utilized for constructing the environment signals within a third simulation. With
a few exceptions (beurk, backdoor jakoritar, the tick), most behavior states are recognized
correctly for their normality which translates to the agent’s learning capability. Thus, the
optimization of the anomaly detection step is critical. Despite showing a little more
variance in the learning progress due to a larger state-space, an accordingly trained agent
effectively converges towards a strategy which is close to optimal. Apart from beurk, the
agent learns to map mitigating MTDs to all behaviors. A beneficial factor for training
the agent is also given by not allowing to deploy a technique more than once per episode.
Further, when comparing the results of this chapter to the previous agents from Chapter 5,
no loss in performance can be identified due to the refined data, validating the choice of
the autoencoder and DQ-network models.

In summary, this chapter achieves the pretraining of an agent which effectively mitigates
attacks as observed from a real environment with its available set of MTD techniques.
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Within given limitations of the simulation environment, the agent thus effectively learns a
policy which can be transferred to an online, real-world setting. This significantly reduces
problems arising from learning online from scratch. However, to effectively work in an
online scenario, further considerations need to be made. Therefore, the next chapter
provides insights into concrete implications of deploying an agent online.
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Chapter 7

Online Agent Implications

The previously presented simulations work offline based on precollected data. Thus, the
challenge was primarily to construct environments that simulate reality as close as possi-
ble. Yet, coming from this point of view, many issues did not have to be addressed that
are more urgent in the online setting. Hence, this chapter discusses the implications of
utilizing an RL-based MTD agent in a real, online environment.

It heads off with implementation details of the MTD controller to lay a base for under-
standing the major hyperparameter options. Next, besides elaborating on options of the
anomaly detection component and the state monitoring duration, the chapter discusses
the case of non-mitigatable attacks. Finally, to assess the viability and feasibility of RL-
based MTD, the chapter concludes with an evaluation of the agent’s required resources
when deployed on a RP device.

7.1 Controller

Algorithm 2 presents the pseudocode for the implementation of the online MTD controller.
As already explained in Section 6.1, the controller marks the core component, which
orchestrates the observation of states, anomaly detection, RL and MTD execution. In
essence, Algorithm 2 displays the code corresponding to Figure 6.2, while abstracting
away the details of DQ-Learning (as per Algorithm 1) behind methods of an agent object
and autoencoder object.

As visible from lines one to five in Algorithm 2, several initialization steps have to be per-
formed, before online RL-based MTD can be activated. First, an autoencoder model as
pretrained from the third simulation (on normal decision- and afterstate data as per Sec-
tion 6.3.2) should be loaded, with an accordingly set threshold. Analogously, a pretrained
agent has to be loaded with a prefilled replay memory D. This agent should be pretrained
in the most realistic simulation environment possible (as in the third prototype), to en-
sure that the learnt policy as given by its online DQ-Network QO is transferrable to the
online setting. Besides QO, the target network QT also needs to be loaded to ensure stable
update targets. The agent’s remaining hyperparameters need to be selected specifically

71
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for the use case at hand. The reward discount factor γ should be set close to zero to focus
more on immediate rewards. Further, the batch size used for the learning update can be
considered similar as in the simulation environments. However, the other hyperparame-
ters need more careful consideration:
If the simulation environment can be trusted to model reality accurately and if the agent
was trained on a large number of different attacks and selects correct MTD techniques,
the exploration rate ϵ should be set to a relatively low number (i.e. performing random
actions in only 2% of the cases). However, if training happens only on few attacks and
the online environment differs remarkably from the simulated states, the exploration rate
should be much larger. Another important aspect is given by choices regarding the replay
memory. If pretraining is difficult, the replay memory does not necessarily need to be
prefilled. However, the agent can only perform the learning update if at least batch size
samples are stored in the replay memory. Thus, in that case, sample transitions must first
be stored as the agent observes them on the fly using a random policy before it starts
learning.
Besides the choice of how the memory is initialized, it is crucial to decide on the size of
the memory. The replay memory is set up as a ring buffer, meaning that old transitions
are exchanged for new ones, based on a first-in first-out (FIFO) manner. In the previous
simulation prototypes it is possible to randomly sample attack behaviors which ensures
that the replay memory always contains a relatively balanced set of attacks. However, in
the online case, it is realistic to assume that the device is not attacked in such a balanced
manner. In fact, a certain family of malware (i.e. CnC-based) may heavily dominate
other attacks. Thus, if the replay memory size is very small, almost no transitions for the
other malware families are considered for learning as they are pushed out of the buffer.
Of course, the problem of unbalanced attacks still persists with a very large memory size.
However, with a very large memory we can guarantee that transitions of rare attacks can
actually be sampled as they are at least within memory. Thus, if a lot of storage space is
available the replay memory should be initialized to contain many samples.
In theory, there is again a potential problem due to non-stationarity in the environment,
meaning if the environment changes over time. As already touched upon in Subsec-
tion 2.5.4, the replay memory allows to decorrelate actions that often occur in sequence.
This is also the case if the device is attacked with the same malware repetedly for longer
periods. So if the environment changes fast and the memory is large, there will be a lot of
”old” transitions stored in memory, not allowing the agent to timely adapt to the changed
circumstances. This is also the case if the agent needs to adapt to new, unseen attacks.
In the application context of ElectroSense, where the environment can be assumed sta-
tionary, the replay memory should be very large, yet limit its size according to adaptation
needs. A smaller memory also comes at the expense of a slightly more unstable learning
progress. The memory size should also be dependent on the number of attacks available
for pretraining and certainly must be analyzed in more detail for a particular use case.

Apart from RL-related decisions, two further important parameters need to be selected
related to time. First, an interval I (in seconds) must be specified for which the controller
waits before it starts the next monitoring cycle. In theory, it is possible to not wait at all
and continuously restart monitoring decision states, if the service quality of the device is
not remarkably impacted by the MTD controller. However, in any case it would also lead
to a lot of wasted resources. A waiting interval in the range of a few minutes seems to
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be a good trade-off between security level and limiting resource consumption. Section 7.4
provides further details on this matter. The last and time-related parameter to select
concerns the duration for which decision- and afterstates should be monitored. Certainly,
this duration may neither be too long nor too short. For instance, if the duration is too
short, it is possible that no state samples can be collected, or that they are removed as
outliers, which results in an error. The monitoring script is set to record a vector of perf
events every 5 seconds, besides adding some features monitored via the top command.
Thus, to be safe for the given scenario, the monitoring duration should be set to at
least 20-30 seconds. In case of the duration being too long, a temporary running malware
might already be finished by the time the agent gets to choose an MTD technique. Aiming
to exclude these two cases as far as possible, the monitoring duration should be set in
the range of 50-100s. Note that in principle, for both the autoencoder prediction, as
well as the agent’s action choice, multiple state samples can be considered (lines 9, 12
and 16 in Algorithm 2). Moreover, based on that, it is also possible to store multiple
transitions per agent-environment interaction step in the replay memory, which influences
the agent’s learning progress. Further considerations regarding the monitoring duration
are postponed to Section 7.2.

7.2 Multisampling

As already mentioned in Section 7.1, the monitoring duration for decision- and afterstates
is an important parameter influencing the security level and overall resource consumption.
In addition to that, the number of behavior samples collected opens up different imple-
mentation options. This is especially relevant for the anomaly detection step (lines 9 and
16 in Algorithm 2). Instead of just using a single sample to judge a state for normality, it
is also possible to feed multiple samples in the anomaly detector and make the judgement
based on the average prediction. Intuitively, if there is a confidence level of above 50%
for a single sample prediction, the probability for making the correct judgement increases
with the number of samples if an average is taken. For instance, if there are 19 state
samples available and if the autoencoder predicts with 80% accuracy on average, it is
extremely likely that at least 10, meaning more than 50% of the samples are predicted
correctly. Ideally, this fact can be leveraged to make a sound decision on the number of
state samples to monitor and use for the anomaly detection steps. The probability for
the previous example can be calculated using the upper binomial cumulative distribution
function:

P (X ≥ x) =
n∑

k=n/2

(
n

k

)
· pk(1− p)n−k

p denotes here the probability of success, meaning the accuracy of the anomaly detector
to correctly predict a single state sample. Thus, the total probability for making a correct
judgment is given as the sum of the probabilities of all cases where more than 50% of
total n samples are predicted correctly.

Figure 7.1 displays the curves for accordingly calculated probabilities for different levels
of anomaly detection accuracies p and number of state samples n available. As can be
observed from the black curve (accuracy p = 0.8) it is almost certain to make the correct
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Algorithm 2 Online MTD Controller Implementation Pseudocode

1: Load pretrained autoencoder model and threshold
2: Load pretrained agent, including online- and target networks QO and QT and prefilled

replay memory D
3: Select learning rate, reward discount factor γ, exploration ϵ, batch size, buffer size

dependent on the training status of the agent
4: Select time interval I in seconds to wait before starting the next episode
5: Select monitoring duration d for decision and afterstates
6: for episode 1, ∞ do
7: Monitor decision state for d seconds
8: Read and preprocess decision state decision data from csv file
9: isAnomaly ← autoencoder.interpret(decision data)
10: if isAnomaly then
11: for t = 1, T (max timesteps within an episode = 4 MTD Techniques) do
12: mtd ← agent.choose action(decision data)
13: Execute MTD technique mtd
14: Monitor afterstate for d seconds
15: Read and preprocess afterstate after data from csv file
16: isAnomaly ← autoencoder.interpret(after data)
17: reward ← calculate reward(isAnomaly)
18: Store transition (decision data,mtd, reward, after data) in D
19: agent.perform learning update(D)
20: if not isAnomaly then
21: Terminate Episode
22: else
23: decision data ← after data
24: end if
25: end for
26: end if
27: Wait for I seconds
28: end for

decision on normality with 20 samples available. Thus, it could approximate what a
supervisor achieves (as in Section 5.1.2). However, if the anomaly detector performance
is below 50% accuracy, the probability of making a correct decision approaches zero with
n increasing.

The previous analysis shows that it can be both good and bad to make the anomaly
detection decision based on multiple samples. If the autoencoder performs well with 70%
accuracy and above on some behavior, the correct decision will be made with near perfect
certainty with even 10 - 20 samples considered. However, the exact opposite applies for
a poor detection accuracy of 30%. Thus, when such multi-sampling is applied, it can
be expected that it is increasingly difficult for agent to learn to map MTD techniques to
attacks which are hard to distinguish from normal behavior. Attacks distinct from normal
behavior on the other hand will very rarely result in incorrect transitions for the replay
memory.
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Figure 7.1: Probability for making the correct anomaly detection decision based on an
average of different numbers of state samples n and anomaly detection accuracy levels p

To assess the effects of this, multisampling has been implemented for the second and third
simulation and the number of samples considered can be selected as a hyperparameter
[56]. Experiments show that considering multiple samples for anomaly detection generally
leads to more extreme results. Some attacks (like beurk) are mitigated very rarely, others
with perfect certainty (i.e. ransomware).

Thus, dependent on the security goals and type of malware considered as the most impor-
tant to defend against, multiple samples should be considered or not. A security strategy
that aims to reactively catch every possible type of attack should certainly go for a single
sample. But dependent on the attacks which are most probable against the system, more
attacks may be mitigated in total if multiple samples are leveraged. Respectively, conver-
gence may be faster as no incorrect transitions are stored for the primary target malware.
More than 15 samples (corresponding to ≈140 seconds of monitoring) should certainly be
avoided such that no resources are wasted. There is no advantage in monitoring for longer
durations. Further, as can be observed from Figure 7.1, the probability to detect an attack
may drop to zero if the autoencoder accuracy is below 50%. Thus, in the worst case the
agent is never even triggered at all and stuck in an endless loop until another attack is
launched on the device that can be detected. To avoid this, a low number of samples is
recommended or a combination with different security strategies, such as proactive MTD
for instance. In fact, a proactive defense can be integrated naturally with the RL-based
reactive MTD system. Data monitoring and anomaly detection starts at defined inter-
vals (I in Algorithm 2). Thus, a proactive strategy could simply deploy certain MTD
techniques in a random manner, despite detecting normal behavior. Another option is to
launch proactive MTD techniques completely decoupled from anomaly detection, during
the waiting interval I. This would certainly add to making the attack surface of the device
increasingly dynamic and randomized. Further, it is symbiotic to reactive MTD as the
agent does not need to have found a perfectly optimal strategy yet. However, lastly, it
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should also be noted that this might impact some state features, even though they have
been optimized to minimize effects of MTD techniques.

7.3 Non-Mitigatable Malware

When executing an RL-based MTD controller in an online environment, the possibility
of attacks that cannot be fully defended against with the current set of MTD techniques
must be taken into account. Note that this also includes the case of imperfectly working
MTD which may sustainably alter device behavior. If this is not done, there is the threat
of filling the replay memory with many useless samples, that possibly destroy the agent’s
performance.

Anomaly detection is the principal measure to decide upon the presence of malware. In
theory, assuming that the anomaly detection and all MTD techniques work perfectly, each
MTD technique can be executed exactly once (one episode) and then, if device behavior
is still recognized as anomalous, it can be concluded that malware of an unknown, non-
mitigatable type is running. In such a case, a special warning can be issued and special
measures must be taken to clean the device. However, in reality, neither anomaly detection
nor MTD techniques can be guaranteed to work perfectly. Thus, due to FP, one episode
may not be enough to decide on whether non-mitigatable malware is present on the
device. However, with multiple episodes (and deployment of all MTD techniques), the
presence of non-mitigatable malware can be detected with increased confidence. Luckily,
as per the autoencoder results in Table 6.1 and Table 6.2, FP are relatively rare, as
normal behavior is generally detected well (normality detected in afterstates of correct
MTD techniques with >87% accuracy). Thus, the probability to thwart-off mitigatable
malware within the first two to three episodes already approaches near perfect certainty.
In conclusion, after executing the number of available MTD techniques twice and still
detecting an anomaly, the decision that non-mitigatable malware is running, can be made
with very high confidence. Respectively, it is extremely likely that the original, normal
device behavior has somehow been changed due to malicious activities. Thus, the device
should be taken offline for a reset. In an context like ElectroSense, where it is not an issue
to temporarily go offline, the decision about non-mitigatable malware may also already be
made after only a single episode of MTD deployments. However, in the general case the
number of episodes to consider before cleaning the device certainly depends on the impact
on a system’s service quality, security goals as well as the anomaly detection accuracy.

7.4 Resource Consumption Evaluation

In order to assess the feasibility of the full online agent presented in Section 6.1, it should
be evaluated for its resource requirements on the platform of deployment. In the context
of this work, this is done for a RP 3 Model B+ running RP OS 11 (Bullseye). Information
of particular interest comprises the processing time of the agent’s components, storage ca-
pacity needs, as well as CPU and RAM requirements. Such data on one hand helps to
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determine the resource demands on the device itself, and on the other hand provides a
reference for comparable applications in the IoT context. In order to gather such data, the
complete online agent code [56], including the monitoring and anomaly detection compo-
nents and MTD scripts are moved to the RP. For the anomaly detector, an autoencoder
pretrained on decision- and afterstate normal behavior is used as described in Section 7.1
and Section 6.3. Similarly, the agent component itself is based on a pretrained and saved
model of the agent from the third simulation.

7.4.1 Processing Time

As the proposed MTD Agent is thought to be run as a permanent service, processing
times can be measured more meaningfully for each functional component than for a com-
plete training cycle. The functional components match the different lanes presented in
Figure 6.2, for monitoring, anomaly detection, MTD execution and RL. Certainly, pro-
cessing times may vary dynamically, dependent on attack behaviors, MTD techniques
deployed, the current status of the agent as well as external effects. Thus, it is in general
most useful to estimate an upper bound for processing times.

Accordingly, Table 7.1 displays processing times monitored by setting timestamps at ded-
icated locations in the agent controller code for each functional component. The first
column shows the time required to execute the environment monitoring script for a cho-
sen duration of 100 seconds and to preprocess the resulting state samples (here both 11
samples for decision and afterstate). The time indicated includes outlier filtering as well
as scaling with a preloaded Min-Max scaler from the third prototype (based on normal
decision- and afterstate extreme values). While the monitoring duration can vary as a
hyperparameter for the online agent, the preprocessing comes with negligible overhead
on the RP (0.08s). The time required for the anomaly detector to evaluate the decision,
respectively the afterstate (here 8 filtered samples each) is also in the range of few hun-
dredths of a second, similar to the agent’s action choice as well as the learning update
step. The time for the agent’s action choice is evaluated by feeding all decision state sam-
ples (8) into the Deep Q-Network and taking the most frequently predicted action. As
both the anomaly detection and the action choice could also be based on a single sample,
the processing times indicated mark an upper bound (lines 9, 12 and 16 in Algorithm 2).
The time for the agent update comprises both storing the newly observed samples in the
replay memory as well as performing the gradient descent step as shown in Algorithm 1
on a random batch of 100 stored transition samples. For this evaluation, the online agent
leverages a preloaded replay memory from the agent trained in the third simulation.

Table 7.1: Processing Times

Monitoring & Data Processing Anomaly Detector Evaluation Agent Action Choice MTD Execution Agent update
decision/afterstate decision/afterstate ϵ-greedy/DQN agent action DQN SGD on replay memory
100.08s/100.07s 0.025s/0.02s 0.014s ms-mins 0.05s

Table 7.1 clearly shows that no stage of online, RL-based MTD is notably hampered
by excessive processing times. This means that a pretrained agent as from the third
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simulation will be an effective and efficient measure against the considered families of
malware.

Besides the case of simply using a pretrained agent, it is interesting to estimate how
long it would take to learn an agent from scratch in the online, real-world setting. The
formula below estimates the total processing time T for the worst case scenario where the
maximum of 4 available MTD techniques is deployed per episode:

T = num episodes · (1 · ds monitor duration+ 4 · sum processing time controller

+ 4 · as monitor duration+ 4 · worst case MTD duration+ waiting interval) (7.1)

When setting num episodes to 6000 in this formula, using 100s as the decision- and
afterstate monitoring duration, taking 2s as an upper bound for the
sum processing time controller, 1 minute for the worst case MTD duration and choosing
a waiting interval of 3 minutes between new episodes, the total processing time required to
train the agent accumulates to 64.4 days. This is based on the assumption that the agent
actually converges after 6000 episodes (as estimated from figures 5.6 and 6.6), and that
new attacks are being launched constantly. Thus, the waiting interval is set as relatively
short with only three minutes from a realistic point of view. The result of requiring more
than sixty days to train an online agent once more clearly demonstrates the need for
pretraining in simulations.

However, an agent does not need to have fully converged to achieve significantly better
than a random MTD deployment strategy. Thus, by assuming that there is an agent
pretrained on some attack behaviors and moved online, we can simply take a lower num-
ber of episodes in the above formula to estimate the time required to a sufficient level
convergence. For instance by setting num episodes = 3000 the required time is reduced
to 32.2 days with the same assumptions as above. Despite that this is still a very long
duration, it might not be as dramatic. One reason for this is that each MTD is deployed at
most once per episode, so any attack behavior that is detected as an anomaly is mitigated
at some point. Only attacks too close to normal, or attacks that only run temporarily
might slip this defense. However, if an attack is too close to normal, not even a fully
trained agent may correctly react to it. Further, short and temporary attacks are hard to
reactively mitigate in general without continuous monitoring, independent of the chosen
defense approach.

Additionally, due to the possibility of zero-day attacks, an agent can always be seen as
only partially converged. This is the advantage of RL in the first place: To dynamically
figure out new mitigation strategies without making any assumptions about current device
behavior or attacks in general. Thus, partially trained or not, the agent’s MTD selection
policy is still significantly better than random action selection or proactive MTD only. As
already mentioned at the end of Section 7.2, by additionally employing proactive MTD
deployments aside from the agent’s reactive deployment strategy, a fairly good level of
security can be achieved, less dependent on the current learning progress.
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7.4.2 Disk, CPU and RAM Requirements

To measure disk requirements imposed by the agent, the du command is used. The
complete directory of the online controller, including all MTD techniques, agent code and
models requires less than a single MB of storage (964KB). The pretrained agent takes the
majority of space as it stores all hyperparameters, online and target networks, as well as a
prefilled replay memory of 500 transitions. The model of the pretrained autoencoder takes
8KB of disk space and the csv files resulting from monitoring decision and afterstates for
100 seconds (11 samples) take 8KB each as well.

Certainly required storage depends a lot on all the different hyperparameters selected, as
well as the concrete implementation and functionality. However, the overall disk space
occupied is absolutely minimal. Thus, storage is certainly not a limiting factor for the
application of RL-based MTD in the ElectroSense context.

In order to assess CPU and memory requirements of the agent, we are again interested
in an upper bound that an IoT device must be able to handle. Ransomware certainly
belongs to the most CPU and memory impacting malwares, due to the resource-intensive
encryption process. This has been shown in [12], and is also visible from the data analysis
in this work. Correspondingly, the MTD technique that requires most resources is the
MTD that aims to trap the encryptor process with an expanding and collapsing directory
structure.

Thus, CPU and RAM usage is recorded along the execution of ransomware-poc and
the directory trap MTD launched from within a single agent-environment interaction
step. The exact monitoring procedure performed on the RP is as follows: First, Nigel’s
performance monitor (nmon) is launched in recording mode on the RP using the command
nmon -f -s1 -c400. This ensures that 400 samples on memory and cpu statistics are
taken at an interval of one second and stored to a file. Next, after 10s, ransomware-poc is
used to attack the device by encrypting a nested test directory structure containing 1MB
of random files. Finally, the online agent is started with a monitoring duration set to 100s,
and the directory trap technique hardcoded after the online-network action choice. After
finishing a single agent-environment interaction step, the recorded vectors for CPU and
RAM usage are plotted against the timeline. Figure 7.2 displays the according resource
usage.

Focusing first on the figure showing the free memory over time, it is possible to see the
different stages of the agent execution. First, about 70% of the memory are free as neither
malware, nor agent code is running. Then, there is a sudden drop in free memory to about
30% when the ransomware is launched against the RP. The minimum is reached at ≈ 20%
when the agent controller is actively running. At about 120 seconds in the timeline, the
controller has finished monitoring and launches the directory trap MTD. After mitigation
at about 200 seconds the level of free memory stabilizes at ≈ 45%. The percentage of
CPU dedicated to user-level operations reaches its maximum at approximately 55%, after
140 seconds which is in line with the MTD execution. The maximum of CPU system
usage is reached during the same time window with ≈ 25%. Together, the minimum level
of idle CPU is reached at about 25%. Essentially, this window corresponds to the time
when the agent has launched the directory trap MTD, and it is trying to capture the
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Figure 7.2: CPU and RAM Usage of the MTD Controller Agent for Ransomware and
Mitigation with the Directory Trap MTD Technique

ransomware’s encryptor process. Once the encryptor is killed, a lot of memory can be
freed, as visible by an increase of ≈ 20% at 190 seconds. Similarly, a drop to close to zero
till 7% CPU usage can be observed after a bit more than 200 seconds. The percentage
of the active memory also stabilizes after this timewindow on a about a fourth of the
available memory (250MB). The timewindow between ca 210 and 320 seconds is used for
monitoring the afterstate and performing the learning update and storing of transitions
in the replay memory.

Even though this is the most resource-consuming scenario that the agent may encounter
with the given attacks and MTD techniques, the RP 3 does not seem to have any trou-
bles executing all the agent’s processes in parallel. Thus, from a resource requirements
perspective, the agent should be fully functional without delays or other issues along its
execution.

7.5 Summary

This chapter presents the major implications of setting up an MTD controller agent in
a real, online environment. First, the learning loop as orchestrated by the controller is
analyzed with a view towards selecting the most important hyperparameters. An autoen-
coder pretrained on normal decision- and afterstate data is necessarily required for the
learning loop to work and its model needs to be preloaded. The agent itself does not
necessarily need to be pretrained in a simulation, but it is highly desirable to ensure an
effective MTD policy.

Important hyperparameters regarding the agent concern the initialization and the size of
the replay memory, as well as the waiting interval (I) between episodes, and the state
monitoring duration. If sufficient storage capacity is available and attacks can be ex-
pected to be launched against the device in a relatively balanced manner, the replay
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memory should contain as many samples as possible. However, if attacks occur relatively
unbalanced, a medium size replay memory size is recommended to not limit the agent’s
adaptation capability, but still ensure decorrelation of transitions. If possible, the replay
memory should be initialized with monitored samples, such that learning can occur right
at time of online deployment.
For the ElectroSense use case the waiting interval between episodes should be set to a
few minutes as a tradeoff between security level and resource consumption. This also
takes into account the option for possible proactive MTD deployments during the waiting
interval.
The duration to monitor states must ensure that there is at least one sample available.
Taking outlier filtering and processing delays into account, the duration should not be
set below 30 seconds for the given use case. Further, the monitoring duration should not
exceed approximately 140 seconds (corresponding to around 15 samples) to avoid wasting
resources and precious mitigation time.
The number of state samples collected can further be exploited for improved anomaly
detection. When the accuracy of the autoencoder is well above 50%, confidence in decid-
ing whether the device behavior is abnormal can be greatly improved by considering an
average of the predictions of multiple state samples. However, behaviors that are detected
poorly (<50% accuracy) are detected worse when such multisampling is applied. Thus,
dependent on the security strategy a single to few samples should be used for anomaly
detection. Ideally, a multisampling strategy of the reactive MTD controller could be com-
bined with a proactive strategy that randomly deploys techniques dependent on how long
they have not been utilized.

Further, in the online scenario, the case of non-mitigatable malware cannot be neglected.
If an attack cannot be fully defended against with the current set of available MTD
techniques, the learning loop must be interrupted to avoid filling the replay memory with
useless transitions. If correct MTD techniques are chosen that thwart off a given attack,
the normality in the afterstate is recognized with high accuracy (>87%). Thus, a warning
about the presence of non-mitigatable malware can be issued with high confidence after
very few episodes of complete MTD technique deployments.

Finally, this chapter evaluates the resource requirements of the implemented MTD con-
troller agent along the dimensions processing time, as well as disk, CPU and RAM usage.
Processing times needed for each functional component show that there is no notable
time-related issue that could prevent the proposed system from effectively mitigating at-
tacks. However, the time required for training from scratch poses a severe limitation.
Accounting for 64 days in a selected worst case scenario once again clearly shows the
need for realistic pretraining in a simulation. But even with pretraining, the adaption
to new attacks may take a considerable amount of time, such that further strategies are
needed. The complete MTD controller, including all models and MTD techniques takes
less than a MB of disk space. The CPU and RAM usage was evaluated for the most
resource-consuming scenario as given by the ransomware attack mitigated by the direc-
tory trapping MTD technique. The results show that the amount of free memory never
drops below 20% (leaving approximately 800MB free for the RP 3 with 1 GB RAM) and
the total CPU load never exceeds 70%-80%. Thus, the feasibility and viability of the
proposed RL-based MTD system is not impeded by any hardware constraints.
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Chapter 8

Conclusions, Limitations and Future
Work

8.1 Conclusions

This work explores the use case of RL for MTD technique selection to thwart off a range
of malware families (ransomware, rootkits and CnC-based) against an exemplary, real-
world crowdsensing platform. In particular, this work analyzes the problem of integrating
reactive MTD into the RL framework and distills the functional components required to
enable the interaction of an agent with an online environment.

Further, this work presents three prototypical simulations for training MTD selection
agents. Initially starting from rather theoretical simulated environments to explore the
application domain, the complexity is increased at different levels to account better for a
real online scenario.

The first simulation prototype marks a baseline and shows what RL can achieve under
ideal conditions. It samples states from a precollected dataset of ideal and raw attack
behaviors upon which the RL agent has to learn what MTD technique to choose. The
feedback on the agent’s action is given in a supervised manner based on prior knowledge
of what MTD technique mitigates which attack. This ensures always providing correct
rewards and episode states to the agent, but obviously it cannot transfer to an online
scenario. All malware families considered (ransomware, rootkits and CnC-based) are
correctly mapped to mitigating MTD techniques with slight differences among specific
attacks (≈70% minimum accuracy for beurk, and backdoor jakoritar, 98% and above for
all others).

The second prototype removes the previous need for a supervisor by adding an anomaly
detection component which is used to interprete states after MTD execution to estimate
environment signals. This is based on the assumption that correct MTD techniques result
in normal behavior, and should be rewarded, whereas incorrect MTDs do not change
the attack behavior and should be penalized. This prototype theoretically enables the
transfer to fully unsupervised and autonomous online learning, but it comes with the

83



84 CHAPTER 8. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

drawback of imprecisions given by anomaly detection. Thus, while still sampling from
ideal raw behavior data, this simulation measures how much impact anomaly detection
has on the system’s learning capabilities. Poor anomaly detection accuracy on attacks
results in the storage of incorrect transitions in the agents replay memory, which effects
the agent’s MTD selection performance. When comparing the accordingly trained agent
to the supervised prototype, the selection accuracy drops considerably for attacks which
are hard to distinguish from normal behavior (notably beurk and the backdoor jakoritar
attack). The MTD selection accuracy on other attacks is, however, not affected.

The third prototype works exactly as the second, yet increases the complexity with re-
spect to the data used for state sampling. It leverages a second precollected environment
dataset that accounts for disturbances induced by an MTD agent controller itself, besides
the raw attack behavior. This dataset includes afterstates monitored after launching all
combinations of MTD techniques and attack behaviors on an ElectroSense sensor. As
this simulation considers fully realistic data, that also an online agent would observe, it
is not only useful for analyzing the learning process, but also for pretraining agents that
can be used in a real, online environment. Hence, it allows the transfer of the policy
learnt in the simulation, to the real world, which ensures that there is no need for an
extremely resource-consuming process of learning online from scratch. The evaluation of
such a pretrained agent shows, that the MTD selection performance does not decrease
compared to the previous prototypes, but that there may be a slightly larger variation in
the learning progress. One influential factor for this is certainly an increased state-space
as the simulated environment approximates reality. The agent’s learning is impacted by
anomaly detection inaccuracies similarly to the second prototype, highlighting again the
importance of improving anomaly detection performance for the given approach.

Furthermore, aside from training in simulations, this work presents the design and im-
plementation of a fully functional, online MTD controller agent. This controller can
autonomously perceive states in a real sensor environment, detect anomalies, select and
execute MTD techniques reactively and is capable of interpreting resulting afterstates.
Hence, it theoretically allows to learn from scratch without any prior knowledge. Yet
within specified limits, by making use of the autoencoder and action-value networks as
pretrained in the third simulation, it represents a fully operational online learning agent
right after deployment.

Finally, this work presents an evaluation of the resource consumption induced by the
online agent on a RP 3 device with 1GB RAM as it is used for ElectroSense. The full
code takes less than a single MB of disk space of the RP and the usage of CPU and RAM
never exceeds 80%. Hence, the leveraged hardware clearly does not pose a limiting factor
for the feasibility or viability of the proposed MTD agent in the crowdsensing use case.
However, executing 6000 episodes is estimated to take as long as ≈64days in the worst
case. Thus, dependent on the pretraining options and possibility of policy transfer to the
online setup, it could take very long for an agent to become both effective and efficient.
For a more holistic defense, and to reduce the issues of online-learning, the combination
of the current reactive approach with proactive MTD is recommended.
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8.2 Limitations

As given by the assumptions discussed throughout this work, RL-based MTD selection
comes with some limitations. The most important limitation is the time and data required
for RL. RL is a very resource- and time-consuming process that requires a lot of interaction
data. Online trial and error learning from scratch is generally impractical or unfeasible
such that a realistic simulation is needed for pretraining an agent before deploying it
online. But even in case of employing a pretrained agent, the agent might take very long
to learn to mitigate new attacks that have not been observed in the simulation. Thus,
a simulation environment must consider a wide range of different attacks as they might
occur for real and leverage a precollected dataset of real state samples. If this cannot be
guaranteed, the transferrability of the policy learnt in the simulation to a real environment
is severely limited.

A further potential limitation to the learning capability of an MTD agent is the case of
imperfectly working MTD techniques. If for instance, some part of a malware continues
to run after all MTD techniques are executed but it does not have a malicious effect, the
RL-based MTD system is trapped in a bad state of changed normal behavior and requires
a reset (as per Section 7.3).

Finally, an important limitation with respect to extensibility of the proposed RL-based
approach is given by the action value networks utilized for DQ-Learning. The size of the
output layer of the Q-networks must be set according to the number of actions, respectively
MTD techniques available. Thus, if new MTD technique must be integrated, the output
layer of the action-value networks need to be removed, its size must be increased by the
number of new techniques and retraining is required. Thus, to avoid expensive learning
operations, the set of MTD techniques utilized for RL should not be changed frequently.

8.3 Future Work

Besides addressing the previously described limitations, there are multiple promising op-
tions for future research going in a similar direction as the approach proposed in this work.
First, future work could consider incorporating a larger amount of attacks and MTD tech-
niques in the current RL-based MTD system and assess different learning scenarios. In
particular, it would be beneficial to analyze how long it takes a pretrained agent to learn
new, unseen attacks for different ways of pretraining and behaviors available. Next, a
more elaborate feature engineering approach could be pursued to select the features con-
sidered for state samples. Thereby, a special focus should pe put on the improvement
of anomaly detection. Further, in order to fully exploit MTD as a paradigm and apply
it more holistically, it could be a great improvement to the current reactive RL-based
system, to explore the integration with proactive defense and their joint optimization.

A further highly promising direction of future work encompasses the integration of more
fine-grained MTD decisions in the current RL-based MTD selection framework. As in this
work the primary goal is to decide upon WHAT to move by selecting among multiple MTD
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techniques, the RL-based defense could be extended to also include decisions regarding
WHEN and HOW to move. At the core this involves creating a more complex reward
function that takes not only the fact of correct mitigation of attacks into account, but also
HOW efficient the defense system operates. For instance, further MTD techniques could
be implemented and be made parameterizable, and the agent’s goal is extended to select
an optimal combination of parameters that thwarts off an attack in the most economic
manner possible. Essentially, this includes analyzing not only decision- and afterstates,
but also the moving phase during the execution of MTD techniques. Finally, one possible
approach for learning decisions on WHAT, WHEN and HOW to move could be to leverage
hierarchical RL for multiple stages of learning granularity.
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A.1 perf

Figure A.1: Linux perf Event Sources [25]
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A.2 Environment Features

A.2.1 Perf Events

Figure A.2: Considered Event families [55]

A.2.2 List of Features

CSV column names which are too long are abbreviated and .. is appended. In this case,
the full column name is composed as the concatenation of the Event Source, a colon and
the Event.
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Table A.1: Monitored Features and Basic Properties: constant, time-status related, ex-
cluded or used as feature for the models.

CSV Column Event Source Event Constant Status Excluded Feature
time x
timestamp x
seconds x
connectivity x
cpuUser cpuUser x
cpuSystem cpuSystem x
cpuNice cpuNice x
cpuIdle cpuIdle x
cpuIowait cpuIowait x
cpuHardIrq cpuHardIrq x
cpuSoftIrq cpuSoftIrq x
tasks tasks x
tasksRunning tasksRunning x
tasksSleeping tasksSleeping x
tasksStopped tasksStopped x
tasksZombie tasksZombie x
ramFree ramFree x
ramUsed ramUsed x
ramCache ramCache x
memAvail memAvail x
iface0RX iface0RX x
iface0TX iface0TX x
iface1RX iface1RX x
iface1TX iface1TX x
numEncrypted numEncrypted x
alarmtimer:al.. alarmtimer alarmtimer fired x
alarmtimer:al.. alarmtimer alarmtimer start x
block:bl.. block block bio backmerge x
block:bl.. block block bio remap x
block:bl.. block block dirty buffer x
block:bl.. block block getrq x
block:bl.. block block touch buffer x
block:bl.. block block unplug x
cachefiles:ca.. cachefiles cachefiles create x
cachefiles:ca.. cachefiles cachefiles lookup x
cachefiles:ca.. cachefiles cachefiles mark active x
clk:cl.. clk clk set rate x
cpu-migrations cpu-migrations x
cs cs x
dma fence:dm.. dma fence dma fence init x
fib:fi.. fib fib table lookup x
filemap:mm.. filemap mm filemap add to page cache x
gpio:gp.. gpio gpio value x
ipi:ip.. ipi ipi raise x
irq:ir.. irq irq handler entry x
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Table A.2: Monitored Features and Basic Properties: continued

CSV Column Event Source Event Constant Status Excluded Feature
irq:so.. irq softirq entry x
jbd2:jb.. jbd2 jbd2 handle start x
jbd2:jb.. jbd2 jbd2 start commit x
kmem:kf.. kmem kfree x
kmem:km.. kmem kmalloc x
kmem:km.. kmem kmem cache alloc x
kmem:km.. kmem kmem cache free x
kmem:mm.. kmem mm page alloc x
kmem:mm.. kmem mm page alloc zone locked x
kmem:mm.. kmem mm page free x
kmem:mm.. kmem mm page pcpu drain x
mmc:mm.. mmc mmc request start x
net:ne.. net net dev queue x
net:ne.. net net dev xmit x
net:ne.. net netif rx x
page-faults page-faults x
pagemap:mm.. pagemap mm lru insertion x
preemptirq:ir.. preemptirq irq enable x
qdisc:qd.. qdisc qdisc dequeue x
random:ge.. random get random bytes x
random:mi.. random mix pool bytes nolock x
random:ur.. random urandom read x
raw syscalls:sy.. raw syscalls sys enter x
raw syscalls:sy.. raw syscalls sys exit x
rpm:rp.. rpm rpm resume x
rpm:rp.. rpm rpm suspend x
sched:sc.. sched sched process exec x
sched:sc.. sched sched process free x
sched:sc.. sched sched process wait x
sched:sc.. sched sched switch x
sched:sc.. sched sched wakeup x
signal:si.. signal signal deliver x
signal:si.. signal signal generate x
skb:co.. skb consume skb x
skb:kf.. skb kfree skb x
skb:sk.. skb skb copy datagram iovec x
sock:in.. sock inet sock set state x
task:ta.. task task newtask x
tcp:tc.. tcp tcp destroy sock x
tcp:tc.. tcp tcp probe x
timer:hr.. timer hrtimer start x
timer:ti.. timer timer start x
udp:ud.. udp udp fail queue rcv skb x
workqueue:wo.. workqueue workqueue activate work x
writeback:gl.. writeback global dirty state x
writeback:sb.. writeback sb clear inode writeback x
writeback:wb.. writeback wbc writepage x
writeback:wr.. writeback writeback dirty inode x
writeback:wr.. writeback writeback dirty inode enqueue x
writeback:wr.. writeback writeback dirty page x
writeback:wr.. writeback writeback mark inode dirty x
writeback:wr.. writeback writeback pages written x
writeback:wr.. writeback writeback single inode x
writeback:wr.. writeback writeback write inode x
writeback:wr.. writeback writeback written x
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A.3 Raw Behavior Dataset Size

Table A.3: Number of Raw Samples per Behavior for Raspberry Pi 3 Model B+, 1GB
RAM, Total size of 59004 samples

Behavior Count
normal 14702
bdvl 5698
beurk 7358
backdoor jakoritar 4312
the tick 7704
data leak 1 5687
data leak 2 4162
ransomware poc 9381

Table A.4: Number of Raw Samples per Behavior for Raspberry Pi 4 Model B, 2GB
RAM, Total size of 9414 samples.

Behavior Count
normal 5092
bdvl 853
beurk 636
backdoor jakoritar 1002
the tick 739
ransomware poc 1092

A.4 Data Exploration

Figure A.3: Timeline for different malware families for the ramUsed feature monitored via
the top command. Excluded in training due to cyclic patterns, intransparent temporal
dependencies.



106 APPENDIX A. ENVIRONMENT DATA

Figure A.4: Timeline for different malware families for the tasks feature monitored via
the top command. Excluded in training due to cyclic patterns, intransparent temporal
dependencies.
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Anomaly Detection

B.1 Prototype 2 and 3: Unsupervised State Interpretation

Figure B.1: Autoencoder Architecture [31]
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Appendix C

Refined Simulation Data

C.1 Decision- and Afterstate Dataset Size

Table C.1: Number of Decision State Samples per Behavior for RP 3 Model B+ 1GB
RAM, Total size of 17332 samples.

Behavior State Count
normal decision 4178
bdvl decision 1658
beurk decision 2012
backdoor jakoritar decision 2018
the tick decision 1507
data leak 1 decision 2080
data leak 2 decision 2075
ransomware poc decision 1804
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Table C.2: Number of Afterstate Samples per Behavior-MTD technique combination for
RP 3 Model B+ 1GB RAM, Total size of 60549 samples.

Behavior State Count
normal after cnc ip shuffle 2031
normal after ransomware directory trap 2084
normal after ransomware file extension hide 1971
normal after rootkit sanitizer 1971
bdvl after cnc ip shuffle 657
bdvl after ransomware directory trap 1392
bdvl after ransomware file extension hide 624
bdvl after rootkit sanitizer 1995
beurk after cnc ip shuffle 1975
beurk after ransomware directory trap 1969
beurk after ransomware file extension hide 1990
beurk after rootkit sanitizer 2081
backdoor jakoritar after cnc ip shuffle 2024
backdoor jakoritar after ransomware directory trap 2017
backdoor jakoritar after ransomware file extension hide 2013
backdoor jakoritar after rootkit sanitizer 2085
the tick after cnc ip shuffle 2086
the tick after ransomware directory trap 2095
the tick after ransomware file extension hide 2087
the tick after rootkit sanitizer 2093
data leak 1 after cnc ip shuffle 2079
data leak 1 after ransomware directory trap 2091
data leak 1 after ransomware file extension hide 2085
data leak 1 after rootkit sanitizer 2081
data leak 2 after cnc ip shuffle 2089
data leak 2 after ransomware directory trap 2072
data leak 2 after ransomware file extension hide 2095
data leak 2 after rootkit sanitizer 2082
ransomware poc after cnc ip shuffle 636
ransomware poc after ransomware directory trap 2095
ransomware poc after ransomware file extension hide 2092
ransomware poc after rootkit sanitizer 1812
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C.2 Data Exploration

Figure C.1: Comparison of different behaviors at decision state for the net dev queue
event. The of event counts vary across behaviors but remain stable within a certain
range, as also shown in Section 4.3 for raw behaviors

Figure C.2: Comparison of different behaviors after deploying the rootkit sanitizer MTD
for the writeback mark inode dirty event. Ransomware and the data leak 2 attack are
most distinct, independent of any MTD deployment.
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