
Design and Implementation of a
SC-based System for the Tracking

within a Cheese Supply Chain

Matteo Gamba
Zurich, Switzerland

Student ID: 19-752-443

Supervisor: Eder J. Scheid, Jan von der Assen, Christian Killer
Date of Submission: August 25, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Da ein Grosser Teil der Schweizer Käseproduktion exportiert werden, stellt gefälschter
Käse, der im Ausland unter geschütztem Namen verkauft wird, eine ernsthafte wirtschaftliche
Bedrohung für die Schweizer Käseindustrie dar. Aus diesem Grund hat sich eine Gruppe
privater und staatlicher Organisationen in der Schweiz zusammengetan, um die CheeseChain
aufzubauen, eine Blockchain-basierte Lösung zur Erhöhung der Transparenz und des Ver-
trauens entlang der Wertschöpfungskette des Tête-de-Moine, einem Schweizer Käse, sowie
zur Authentifizierung des Produkts mithilfe eines DNA-basierten Authentifizierungssys-
tems und zur Veröffentlichung der Ergebnisse in der öffentlichen Blockchain (BC). In
dieser Arbeit wird eine Smart-Contract-Lösung zur Verfolgung eines Käses durch seine
Lieferkette und beinhaltet ein Frontend, das die Interaktion mit dem Smart Contract
(SC) vereinfacht, sowie einen Server, mit dem Daten aus den bestehenden Systemen über
Netzwerkanfragen in die BC geschrieben werden können. Der SC abstrahiert eine Liefer-
kette in Lieferkettenteilnehmer, Produktionschargen und einzelne Produktionsschritte,
die an eine Charge angehängt werden können, wodurch der SC mit nur geringfügigen
Änderungen des Quellcodes auch für andere Anwendungsfälle der Lieferkettenverfolgung
einsetzbar ist. Dies wird durch benutzerdefinierte Datenstrukturen, so genannte Structs,
für Produktionschargen und -schritte erreicht, wobei jede Charge den Zeitstempel der
Erstellung, weitere Informationen über das Produkt und einen Zeiger auf den letzten in-
nerhalb der Lieferkette durchgeführten und für die Charge registrierten Schritt enthält.
Jeder Schritt selbst verweist auf seinen Vorgänger und speichert daneben eine Beschrei-
bung des Schrittes, den Teilnehmer, der den Schritt durchgeführt hat, den Zeitstempel
und die Koordinaten. Dies bildet eine unveränderliche und nur durch Anhängen verän-
derbare, rückverfolgbare verknüpfte Liste von Schritten, die über das benutzerdefinierte
Frontend eingesehen werden kann, das für die manuelle Interaktion mit dem SC durch die
Teilnehmer der Lieferkette und die Abfrage der Lieferkettenhistorie für einen bestimmten
Käse durch den Kunden und die Überprüfung der Echtheit eines Produkts konzipiert
ist. Darüber hinaus implementiert der SC einen Zugangskontrollmechanismus, der alle
Funktionen schützt, die den Zustand des SCs verändern. Sie können nur von registrierten
Teilnehmern der Lieferkette aufgerufen werden, die vom Systemadministrator verwaltet
werden, der gleichzeitig der Bereitsteller des Vertrags und die einzige Instanz ist, die
alle verfügbaren Funktionen aufrufen darf. Der oben erwähnte Server dient als Abstrak-
tion über den SC und erleichtert die Injektion von Daten, die in einem privaten System
verfügbar sind, um automatisch über eine API in die BC geschrieben zu werden. Die
Evaluierung des Systems hat gezeigt, dass die Auswahl der am besten geeigneten BC
für eine bestimmte Anwendung sorgfältig und mit Bedacht erfolgen muss, da sie sich di-
rekt auf die Systemleistung und die Betriebskosten auswirkt, die von der Blockzeit der

i

ii

ausgewählten BC bzw. dem Token- und Gaspreis abhängen. Darüber hinaus wird der
vorgestellte SC aus Sicht der Sicherheit von SCs als risikoarm eingestuft, da es einen
Mechanismus zur Zugangskontrolle gibt und keine monetären Anreize zur Ausnutzung
des Systems bestehen. Das grösste Sicherheitsrisiko besteht in der falschen Verwaltung
und Weitergabe privater Schlüssel durch die registrierten Teilnehmer der Lieferkette oder
den Administrator, wodurch der Inhaber die Möglichkeit hat, fehlerhafte Informationen
in den SC zu schreiben.

Abstract

With a major part of the Swiss cheese produced being exported, counterfeit cheeses selling
under their protected name abroad pose a serious economic threat to the Swiss cheese
industry. Consequently, a group of Swiss private and federal entities have teamed up to
build the CheeseChain, a blockchain-based solution to increase transparency and trust
along the Tête-de-Moine (a Swiss cheese) value chain, as well as provide proof-of-origin
using a PCR-based system and publish the results to the public Blockchain (BC). This
thesis presents a smart contract (SC) solution to track a cheese through its supply chain
including a frontend to facilitate interactions with the SC and a server that allows data
from the existing systems to be written to the BC via network requests. The SC abstracts a
supply chain into supply chain participants, production batches, and individual production
steps that are appended to a batch, which makes the SC applicable to supply chain
tracking use cases other than cheese with only minimal modifications of the source code.
This is achieved using custom data structures, called structs, for production batches and
steps, where every batch contains the timestamp of creation, further information about the
product, and a pointer to the last step performed within the supply chain and registered
on the batch. Each step itself points to its predecessor and stores a description of the step,
the participant who performed the step, the timestamp, and the coordinates alongside.
This forms an immutable and append-only backward traceable linked list of steps that
can be inspected via the custom frontend designed for manual interaction with the SC
by supply chain participants and the retrieval of supply chain history for a specific cheese
by the customer allowing for verification of a product’s authenticity. Further, the SC
implements an access control mechanism that guards all functions that change the SC’s
state. All functions are only callable by registered supply chain participants, which are
managed by the system administrator, who is at the same time the deployer of the contract
and the only entity that is allowed to call all available functions. The server provides an
abstraction over the SC and facilitates injecting data available in a private system to be
written into the BC automatically through an API. Evaluating the system has shown
that choosing the best suitable BC for a specific application has to be done diligently and
carefully since it directly implies the system’s performance and operational costs, which
depend on the selected BC’s block time, respectively token and gas price. Further, the
presented SC is evaluated to carry a low risk from a SC security standpoint, due to the
access control mechanism in place and the absence of monetary incentives to exploit the
system. The biggest security risk is introduced by the mismanagement and leakage of
private keys by the registered supply chain participants or the administrator, which gives
the holder the ability to write faulty information into the SC.

iii

iv

Acknowledgments

I would like to thank my primary supervisor Eder John Scheid for his invaluable assistance
and insights leading to the writing of this paper. Your continuous feedback and input
always gave me a clear view of the current standpoint, potentials for improvement, as well
of the remaining road map for the thesis. Your support is greatly appreciated and was
crucial for this thesis.

Further, I would like to express my gratitude to Prof. Dr. Burkhard Stiller, the whole
Communication Systems Group (CSG) of the University of Zurich and the CheeseChain
consortium for allowing me to solve this real-world economical problem as part of this
work.

Finally, I would also like to thank my friends and family for providing me with a supportive
environment, which has allowed me to thrive as a person and succeed in my educational
career.

v

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Description of Work . 1

1.2 Thesis Outline . 2

2 Background 3

2.1 Blockchain and Distributed Ledger Technologies 3

2.1.1 Technical Structure . 3

2.1.2 Public Key Cryptography . 4

2.1.3 Deployment Types . 5

2.1.4 Consensus Mechanism (CM) . 6

2.2 Ethereum . 8

2.2.1 Smart Contracts (SC) . 8

2.2.2 Ethereum Addresses . 11

2.2.3 Gas and Fees . 11

2.3 The CheeseChain Project . 12

3 Related Work 15

3.1 Solutions . 15

3.2 Comparison and Discussion . 19

vii

viii CONTENTS

4 Design and Implementation 23

4.1 Application Scenario . 23

4.2 Design . 24

4.2.1 External . 24

4.2.2 On-Chain . 25

4.2.3 Off-Chain . 29

4.3 Implementation . 30

4.3.1 Smart Contract . 30

4.3.2 Server . 38

4.3.3 Frontend . 43

5 Evaluation and Use Case 49

5.1 Cost Analysis . 49

5.2 Performance Analysis . 50

5.3 Security Analysis . 52

5.4 Use Case . 53

5.4.1 Stakeholders . 53

5.4.2 Scenario . 55

5.5 Discussion . 57

6 Summary, Conclusions, and Future Work 59

6.1 Summary . 59

6.2 Conclusions . 60

6.3 Future Work . 60

Bibliography 61

Abbreviations 69

List of Figures 69

CONTENTS ix

List of Tables 71

A Installation Guidelines 75

A.1 Overview . 75

A.1.1 Chain . 75

A.1.2 Frontend . 76

A.1.3 Server . 77

B Contents of the CD 79

x CONTENTS

Chapter 1

Introduction

Blockchain (BC) offers many benefits in different areas [60]. One such area is supply chain
tracking (SCT) [46], in which a BC allows untrusted parties to share data in an immutable
manner containing information on (1) how the product left the producer (e.g., to meet
regulatory standards), (2) how was its conditions during transport (e.g., temperature
collected by sensors), and (3) how it arrived at the final destination. Further, such integrity
is helpful for consumers and governmental bodies to verify the origin of the product they
acquired and that it was not tampered with during any step in the supply chain. In the
context of agricultural products such as cheese, governmental entities (e.g., Federal Office
for Agriculture) may also include information regarding tests conducted on the specific
product. For example, the test results show (e.g., positive or negative) if the cheese was
made with the correct bacteria culture sent to the cheese makers.

Counterfeits of Swiss cheeses with protected designation of origin (PDO) are seen as
a real threat to the Swiss cheese industry [50]. It is estimated that 10% of the Swiss
Emmentaler AOP sold worldwide happen to be counterfeits, which causes a yearly loss
of 20 Million Swiss Francs [10]. A group of Swiss private and federal entities proposed
to create a solution to address that, called the CheeseChain solution. It is a Blockchain-
based solution to target the problem mentioned above and increase transparency and
trust within the Tête-de-Moine PDO value chain using a DNA-based intrinsic product
authentication system [17].

1.1 Description of Work

This thesis aims to design and develop a BC-based Smart Contract (SC) that will con-
tain public information regarding the cheese, e.g., proof-of-origin test results, production
steps, and stakeholders involved in the production. Further, as the goal is to increase
transparency in the supply chain, the system contains an easy-to-use web-based frontend
platform for consumers to verify their product using a unique identifier of the cheese, e.g.,
the lot number.

1

2 CHAPTER 1. INTRODUCTION

By improving fraud detection and in-transit identification, the system will allow instant
access to a verifiable audit trail from the milk’s processing to the consumer, benefiting
all actors in the value chain. Fromarte, the umbrella association of Swiss artisan cheese
makers, foresees this project as a future-oriented solution for their quality management
and an enhancement of the cheeses produced within Swiss artisan structures. By integrat-
ing with their widely used quality management system, our approach will benefit from
the option to validate adherence to prescribed guidelines. This thesis is conducted within
the CheeseChain project [17], a project developed in conjunction with the Swiss Confed-
eration’s center of excellence for agricultural research (Agroscope). It targets developing
and implementing a platform to improve transparency and trust along the Tête-de-Moine
value chain. This significant advance for proof of origin, immutability and transparency is
achieved by combining biological data with storage in a BC and partner-specific databases,
e.g., from Fromarte.

Lastly, an evaluation and discussion of the working implementation are performed con-
sidering the fulfillment of requirements and possible areas of improvement (e.g., costs of
interaction and frontend usability).

1.2 Thesis Outline

Following the introductory and motivational information, some theoretical Background
about BCs, Smart Contract (SC) languages and the SC interaction solution is given in
Chapter 2. This chapter forms the basis for understanding the subsequent design and
implementation. Chapter 3 discusses the current state of the art regarding SC and BC
solutions around supply chains documented in peer-reviewed papers. With that knowl-
edge, a suitable technology stack (BC and SC language) is chosen. Chapter 4 presents
the design and implementation of the architecture of the overall system, including the
SC, a backend and a frontend. The developed system is then evaluated in Chapter 5 in
terms of cost, performance and security. Subsequently, Chapter 6 concludes the thesis. It
summarizes the work and proposes suggestions for improvement of the system.

Chapter 2

Background

This chapter forms the technical and theoretical basis and aims to provide all the back-
ground information needed to comprehend later chapters of the thesis. More specifically,
the BC and SC concept, related technical details and the CheeseChain project are pre-
sented.

2.1 Blockchain and Distributed Ledger Technologies

As stated in [4], “Blockchain at its core is a peer-to-peer distributed ledger that is cryp-
tographically secure, append-only, immutable (extremely hard to change) and updateable
only via consensus or agreement among peers”. Hence, a BC is essentially a distributed
database that allows a community of users to store all digital events (transactions) and
shares them among all participants [27]. Under the regular operation of the BC network,
no transaction can be changed once included in a block [68].

The idea of BC was first introduced in 2008 with the Bitcoin Whitepaper written under
the pseudonym Satoshi Nakamoto [51]. Since then, the interest in the technology has been
increasing given its central attributes: Security, anonymity and data integrity without the
interference of a third party. Despite attracting the attention of many different industries,
the financial industry currently dominates the mindshare in the blockchain space [69].

2.1.1 Technical Structure

The term BC describes the technical structure of the system. It is a chain of blocks, where
each block is linked to the previous block’s cryptographic hash, making it tamper evident
[67]. The block hash can be considered a unique identifier for a certain block obtained by
hashing all the block’s content. Changing a transaction within a block changes the block
hash [31] and disconnects the parent from the child block since the block hash that the
parent is pointing to does not exist anymore. Figure 2.1 visualizes a typical example of
this structure.

3

4 CHAPTER 2. BACKGROUND

Figure 2.1: Chain of Blocks [68]

In the Bitcoin system, each block consists of six parts (see Figure 2.2): A 4-byte version
number, the SHA-256 hash value (PreHash) of the previous block, the Merkle root, times-
tamp, nonce and Target Hash obtained after verifying all transactions [70]. The BC is
extended block by block and represents the entire transaction history [55].

Figure 2.2: Block Structure [70]

Transactions are created and exchanged by peers of the BC network and are the only
way to modify its state. Typical types of transactions are monetary exchanges or the
execution of SCs, essentially arbitrary pieces of code deployed onto the BC [67]. In the
example of Ethereum, transactions are network messages that include a sender, recipient,
value (amount in Ether) and data payload. The sender and recipient must be specified,
while the value and the data payload can be left empty [3].

2.1.2 Public Key Cryptography

BCs use cryptographic proofs instead of trusting a third party for two willing parties to
execute a transaction over the Internet. Every transaction is protected through a digital
signature leveraging public-key/asymmetric cryptography [36]. Every transaction is sent
to the public key of the receiver and digitally signed with the private key of the sender,
creating a digital signature [27].

Public and private keys always come in pairs. In the case of Ethereum, they form an
Ethereum Account controlled by everyone possessing the private key. This is the case

2.1. BLOCKCHAIN AND DISTRIBUTED LEDGER TECHNOLOGIES 5

because a public key is always derived from the corresponding private key through an
asymmetric algorithm [3]. More specifically, in Ethereum, only the last 20 of the 42
character long public key are used to create the Ethereum Address, which can be identified
by the 0x prefix [11]. Therefore, the public key derives the address, essentially the public
account identifier every participant can see in the network. The private key is the password
protecting the account.

These mathematical functions used in BC applications have a unique property: They are
easy to calculate but hard to reverse. Every public key is derived from the private key, but
the private key can not easily be derived from the public key. This characteristic enables
the creation of unforgeable digital signatures. For a transaction to go through, the sender
must prove the ownership of the private key [3]. Bitcoin and Ethereum use the Elliptic
Curve Digital Signature Algorithm (ECDSA), which takes a message, the private key and
a random secret as input. Reversing the process reveals the signer’s public address and
the message, while the private key and the secret remain unknown [73]. Elliptic curve
mathematics (ECDSA’s super set) allows for anyone to verify a transaction or message
by comparing the digital signature to the public address and the transaction details. This
process proves that the transaction could have only come from somebody possessing the
private key behind the public address. [3].

2.1.3 Deployment Types

BCs can be classified regarding their deployment type regarding read and write permis-
sions. The classification is done across two dimensions: permissioned vs. permissionless
and public vs. private [59]. The former relates to data visibility (i.e., which information
can be viewed by whom). The latter describes data writability (i.e., who is allowed to
append data and change the state of the BC) [67]. Among these two dimensions, four
categories emerge [59]:

• Public permissionless BCs: All peers have read/write rights.

• Public permissioned BCs: All peers have read rights, but writing is limited to
selected peers.

• Private permissionless BCs: Only selected peers within a closed network have read-
/write rights.

• Private permissioned BCs: Read/write access is managed by a centralized organi-
zation.

Bitcoin and Ethereum are examples of public permissionless BCs. Since they are open and
decentralized, any peer can join and leave the network as a reader or writer at any time [67].
In contrast to permissionless BCs, where no central authority exists and every peer stores
an identical copy of the current state of the BC, private permissioned BCs have a central
authority that has the right to overwrite and roll back any transaction. Furthermore,
the master copy of transaction records is not distributed among all participants [49] but

6 CHAPTER 2. BACKGROUND

instead maintained by a selected set of nodes. A permissioned BC is advantageous in
specific business applications since it is better at maintaining privacy and fitting business
governance needs than a permissionless BC [1].

2.1.4 Consensus Mechanism (CM)

In distributed computing, distrust among network participants is inevitable. To ensure
network reliability and consistency, the participants, so-called nodes, negotiate to agree
upon a state of the BC, known as consensus. This includes an agreed understanding
of account balances and transaction orders and is achieved through relevant protocols,
or so-called consensus mechanisms [70]. Most importantly, it prevents users from double
spending their coins and makes it difficult to attack a network [23]. Since every new
transaction aims to alter the state of the BC, CMs are crucial for new blocks to be created
and appended to the BC [2]. There exist several different CMs e.g., Proof of Work (PoW),
Proof of Stake (PoS), Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). Out
of all options, most existing BCs leverage the computationally expensive PoW algorithm
[40]. The following paragraph describes selected consensus algorithms.

Proof of Work (PoW): The core idea of the PoW CM is to ensure data consistency and
consensus security by allowing the computing power of the distributed network nodes
to compete [70]. These validating nodes are called miners, and the process is known as
mining. Each miner is constantly calculating the block header’s hash in a trial and error
approach [71]. The goal is to find a hash value that is smaller or equal than the target
hash by hashing the block header values iteratively with a random number, the nonce.
The BC network defines the target hash, which implicitly defines the mining difficulty.
The lower the target, the higher the difficulty since fewer hash values match the criteria
[43]. Once a node succeeds, it broadcasts the block to the entire network to be appended.
Each node must confirm the correctness of the nonce first before appending the block to
their local copy of the BC [71]. In PoW, it is hard to find the right solution, but easy
to verify it. The values in the header are hashed and compared to the target hash [7].
Since mining is time and resource-consuming, an incentive mechanism exists, rewarding
the miner with the BCs’ native token [54]. [70] describes the mining process as follows:

1. Each node selects a certain number of transactions from the current memory pool.

2. Verify the legitimacy of the selected transaction and then package it.

3. Find the right nonce, so that Hash(PreHash, Merkle Root, Timestamp, Nonce) ≤
Target Hash.

4. Upon success, create a block and broadcast it to the network.

Should more than one miner find the nonce which meets the requirements, the BC under-
goes bifurcation. Figure 2.3 visualizes how two forks coexist until one is eventually cut
off. Bitcoin follows the principle of the longest chain, which requires six more blocks to
be successfully appended to the current block before a fork is recognized [70].

2.1. BLOCKCHAIN AND DISTRIBUTED LEDGER TECHNOLOGIES 7

Figure 2.3: A Scenario of BC Branches [71]

The pace at which Blocks are appended is network-specific. Bitcoin has a block time
of 10 minutes while Ethereum averages around 15 seconds [31]. As more miners join a
network and computers become faster, blocks are found faster. To ensure a predictable,
average block time of 10 minutes in Bitcoin, the target hash and, therefore, the difficulty
is automatically adjusted every 2016 blocks [43].

Proof of Stake (PoS) was proposed in 2011 in a Bitcoin talk forum as an alternative
solution to the resource-intensive PoW mechanism [70]. Instead of demanding miners to
find a nonce in unlimited numerical space, a validator for the next block is randomly
selected proportionally to the node’s stake of native tokens in the network [48]. The
rationale is that nodes with a higher stake in the network are interested in the network’s
success and therefore are unlikely to perform malicious acts and attacks on the BC [71].
If a validator were to approve a malicious block, he/she would lose the entire stake. In the
case of Ethereum, a stake of 32 Ether is needed to qualify as a validator node. In PoS new
blocks are not mined but forged or minted and validating nodes are called forgers [57].
Some benefits of PoS over PoW are higher decentralisation, security and speed [22, 70].

Delegated Proof of Stake (DPoS) is a variation of PoS that seeks to reach consensus
more efficiently by speeding up transactions and block creation without compromising the
decentralized incentive structure of the BC. In DPoS, nodes ’vote’ to select a witnesses
(users they trust to validate transactions), from which the ones with the most votes earn
the right to validate transactions. The primary incentive against malicious behavior for
a witness is their loss of income and reputation. Votes are weighted according to the size
of the voter’s stake and can be delegated to other users to choose a trustworthy witness
on their behalf. Users of DPoS systems can vote for another group of users, the delegates,
a trusted party responsible for maintaining the network. They oversee the governance
and performance and can propose changes to the protocol, like altering the block size
or rewards for validations. Lisk, EOS, Steem, BitShares and Ark are examples of BCs
that have adapted the DPoS CM [22]. Overall, DPoS dramatically reduces the number
of participating nodes in verification and therefore reaches consensus at a much higher
pace than PoW and traditional PoS [70]. However, all of that comes at the cost of more
centralization [59].

Proof of Authority (PoA) PoS algorithms work under the assumption that validators
are incentivized to act in the network’s interest since they would be losing their stake
otherwise. Therefore, it makes sense that a more significant stake automatically makes
the node more trustworthy. However, this assumption is not entirely correct. Two equal
stakes might be equal from a monetary perspective, but they could be valued differently by

8 CHAPTER 2. BACKGROUND

their holders. This difference in perceived value is what PoA aims to improve. Instead of
tokens, network participants stake their identity, which can help ensure that all validators
have an equal incentive for the network’s success [9].

In PoA, every round, one of the N authorities is elected as the mining leader in charge
of block validation. For this mechanism to work properly, at least N

2+1
nodes must act

honestly. In short, PoA improves performance, cost, scalability and power consumption
but compromises decentralization, privacy and censorship resistance [33, 32]. Current
projects using PoA are Ethereum’s Kovan Testnet, PoA Network (an Ethereum sidechain)
and VeChain’s VeChainThor platform.

2.2 Ethereum

Like Bitcoin, Ethereum is an open-source BC network that allows to build an economic
system in software and provides account management and a native unit of exchange,
so-called tokens, out of the box [31].

Ethereum shares many common elements with other open BCs: A peer-to-peer network
connecting nodes, a PoW CM and cryptographic primitives, such as digital signatures,
hashes and a digital currency (ether). Unlike Bitcoin, Ethereum’s primary purpose is not
to be a digital currency payment network. Ethereum is often also described as the world
computer. It is a globally decentralized computing infrastructure that executes programs
called Smart Contracts on a virtual machine. A BC network is used to synchronize and
store the system’s state changes, along with ether as a form of payment and constraint
for execution resource costs. Solidity, Ethereum’s programming language is Turing com-
plete, meaning that Ethereum has everything needed to function as a general-purpose
computer [3].

2.2.1 Smart Contracts (SC)

BCs have various features that are not shared by all implementations to the same extent.
Since Ethereum’s main feature is the ability to execute business logic, this chapter will
explore how that is realized.

In Ethereum terms, that equals having a SC running on the Ethereum virtual machine
(EVM). [31] defines SC as some business logic that runs on the network, semi-autonomously
moving value and enforcing payment agreements between parties. They are similar to
classes in conventional object-oriented programming.

Smart Contracts Languages

Programming a BC has many similarities with traditional programming. A programming
language, more specifically a Smart Contract Language (SCL) is needed to express the

2.2. ETHEREUM 9

Table 2.1: SCLs Overview [66]
Language Blockchain Syntax similar to Built with Turing complete

Solidity Ethereum JavaScript C++ +
Vyper Ethereum Python Python -
Go Hyperledger Fabric - Rust +

Neo
C / C++ EOS - Rust +

Solana
C# Neo - Go +
Rust Solana - C / C++ +

Near
Polkadot

Haskell Cardano - GHC +
Clarity Bitcoin Lisp C# +

logic to be executed, which can be achieved with various toolsets. Table 2.1 gives an
overview over selected programming languages.

Among the SCLs listed in Table 2.1 some were created explicitly for BC development,
while others were adjusted from existing languages to work with SCs. When choosing the
right SCL, there is no absolute answer. It depends on which BCs support the SCL, which
traditional programming languages the developer is familiar with, and whether the SCL is
Turing complete or not. A downside of Turing completeness is that there is no theoretical
guarantee for how much time is needed to solve a given problem. Since Ethereum executes
SCs serially, an infinite loop would prevent other SC from being executed. This problem
is solved in Ethereum by setting a gas limit which essentially bounds the maximum
complexity of a single execution. Furthermore, Turing incomplete SCLs support much
more in-depth static analysis and enhanced security. As a result, Turing incompleteness
has become the new feature of SCL [66].

Smart Contract interaction Solutions

In decentralized applications (dApps) SCs serve as the backend providing the business logic
[21]. To write data to the BC and send a transaction, we need a way to interact with the
SC. While transactions can theoretically be initiated from any node in the network, most
users typically interact with SCs on the BC via the web browsers, contacting another node
in the background. This interaction can be achieved either via a browser extension like
Metamask or programmatically from code running in the browser by leveraging libraries
like Web3.js or Ethers.js [3, 65]. These libraries allow users to interact not only with SC
but with the BC as a whole (e.g., read data, make transactions and deploy SCs) [18].

Solidity Example

10 CHAPTER 2. BACKGROUND

1 pragma solidity ^0.8.4;

2
3 contract Coin {

4 // The keyword "public" makes variables

5 // accessible from other contracts

6 address public minter;

7 mapping (address => uint) public balances;

8 // Events allow clients to react to specific

9 // contract changes you declare

10 event Sent(address from , address to, uint amount);

11 // Constructor code is only run when the contract

12 // is created

13 constructor () {

14 minter = msg.sender;

15 }

16 // Sends an amount of newly created coins to an address

17 // Can only be called by the contract creator

18 function mint(address receiver , uint amount) public {

19 require(msg.sender == minter);

20 balances[receiver] += amount;

21 }

22 // Errors allow you to provide information about

23 // why an operation failed. They are returned

24 // to the caller of the function.

25 error InsufficientBalance(uint requested , uint available);

26
27 // Sends an amount of existing coins

28 // from any caller to an address

29 function send(address receiver , uint amount) public {

30 if (amount > balances[msg.sender])

31 revert InsufficientBalance ({

32 requested: amount ,

33 available: balances[msg.sender]

34 });

35 balances[msg.sender] -= amount;

36 balances[receiver] += amount;

37 emit Sent(msg.sender , receiver , amount);

38 }}

Listing 2.1: Solidity Example [25]

The Solidity code described in Listing 2.1 is retrieved from the official Solidity [25] website
and is an example of what Solidity code looks like. It is the simplest example of a token
that can be created on the Ethereum BC and nicely introduces relevant concepts.

As with classical classes, this SC’s lifetime starts with the constructor’s execution. In this
case, the function assigns the address of the creator (contract or person) of the contract to
the variable minter. This variable has the type address which is a 160-bit value that does
not allow any arithmetic operations and is used to store contract or account addresses.
The keyword public exposes the variable to other contracts and users. msg, tx and block

are special variables that provide access to BC values.

The mint function takes an address and an unsigned integer (uint) as parameters and
assigns the specified amount of new tokens to the desired address. The tokens belonging
to a specific address are not stored on the address but directly in the token contract.

2.2. ETHEREUM 11

Mapping is a more complex data structure that serves this purpose perfectly and can be
thought of as a hash map. As specified in parenthesis in the variable balances, an address
is mapped to a uint, the token amount of the corresponding address. Require serves as
a guard that reverts the transaction if the condition is not met.

The send function implements the logic of transferring tokens from one address to another
and emits an event by doing so. The event has to be specified in the contract and allows
clients or block explorers to be notified when certain things on the BC happen.

An error is similar to the require function but is a way to provide more detailed infor-
mation why a transaction did not complete [25].

2.2.2 Ethereum Addresses

An Ethereum account is an entity with an ether (ETH) balance that can send transactions
on Ethereum. Accounts can be user-controlled or deployed as SCs. Ethereum has two
types of accounts:

• Externally Owned Accounts (EOAs): Controlled by anyone who has the private
key.

• Contracts: A SC deployed to the network, controlled by code.

Accounts always come with their corresponding 42-character-long address, serving as their
identifier within the network. For EOAs, this represents the last 20 bytes of the public
key, prefixed with 0x. The contract address is derived from the deployer address and the
number of transactions originating from that address, the nonce [19].

2.2.3 Gas and Fees

Gas fees exist to secure the Ethereum network from bad actors spamming it by charging
a fee for every computation on the network. The fees are paid in ETH, and gas prices are
denoted in gWei, a denomination of ETH and equal to 10−9 ETH.

Gas represents the fundamental unit of computation. To avoid accidental or hostile infinite
loops, every transaction must set the maximum amount of gas it wants to use.

Transaction fees can be calculated as presented in Equation 2.1. The base fee represents
the minimum amount of gas needed for a transaction to be eligible for inclusion in a block.
At the same time, the tip (also called priority fee) is the miner’s reward for including it
in a block.

GasUnits(limit)× (BaseFee+ Tip) (2.1)

Gas limit allows the user to set a maximum amount of gas he/she is willing to consume
on a transaction. More complex transactions involving SCs require more computational
work and a higher gas limit than a simple payment (21’000 units).

12 CHAPTER 2. BACKGROUND

To emphasize the irreversible nature of BC transactions, we quote from [20]:

”For example, if you put a gas limit of 50,000 for a simple ETH transfer, the EVM would
consume 21,000, and you would get back the remaining 29,000. However, if you specify
too little gas, for example, a gas limit of 20,000 for a simple ETH transfer, the EVM
will consume your 20,000 gas units attempting to fulfill the transaction, but it will not
complete. The EVM then reverts any changes, but since the miner has already done 20k
gas units worth of work, that gas is consumed [20].”

In times of high network congestion, the base fee rises to lower the congestion. At the
same time, miners prioritize transactions with a high tip. As a result, we experience spikes
in transaction fees during times of high network usage [20].

2.3 The CheeseChain Project

Since the design and implementation of a SC-based SCT solution for the CheeseChain
project is the primary focus of this work, this section provides a background on the
CheeseChain project and its stakeholders.

The CheeseChain is a BC-based application to enhance transparency and trust among
the Tête-de-Moine PDT value chain by combining DNA-based proof-of-origin laboratory
tests, data from partner-specific databases and BC technology.

This combination is integrated with a BC-based approach for the first time, which pro-
duces a tamper-proof and immutable audit trail. The increased transparency and verifi-
ability of the published data guarantee the authenticity of the food product, here cheese.
The in-product DNA-based certification system developed by Agroscope has been used
by Tête-de-Moine since 2013.

Including information on material flows and laboratory data will allow for efficient sam-
pling by the trademark owner and simplified access for authorities, distributors and even-
tually, customers [17].

Figure 2.4 illustrates three groups of stakeholders served by the CheeseChain. The most
important ones are the above-defined primary stakeholders, followed by national and
international suppliers, retailers and consumers, as well as the responsible parties for
custom clearance [41].

The primary stakeholders of this project are Agroscope, the federal competence center
for agricultural research, Interprofession Tête-de-Moine, the trademark owner of Tête-de-
Moine PDT and Fromarte, the umbrella association of Swiss artisan cheese makers. The
latter foresees this project as a future-oriented solution for their quality management and
enhancement of the cheeses produced within Swiss artisanal structures [41].

2.3. THE CHEESECHAIN PROJECT 13

Figure 2.4: Illustration of the CheeseChain Network [41]

14 CHAPTER 2. BACKGROUND

Chapter 3

Related Work

This chapter aims to identify, organize and analyze papers in peer-reviewed journals about
BC in a supply chain context. The focus lies in understanding the main BC applications
in supply chain research and the significant disruptions and challenges.

3.1 Solutions

[8] proposes to use BC and SCs to tackle the traceability of temperature-sensitive pharma-
ceutical goods e.g., vaccines. The work uses the following elements to check the recorded
temperature data during transport against regulatory requirements and make the results
publicly available:

• Ethereum Blockchain Network: is used to record and verify temperature data.

• Smart Contract: is issued for each shipment and used to compare the recorded data
against regulations.

• Database: a relational database to store raw temperature data and user credentials.

• Server: lies between the BC network and frontend users, creates and modifies SCs
and stores data in the database.

• Mobile Devices: are used by end-users to register new shipments and track/send
temperature data records to the server.

• Sensors: based on Bluetooth technology that record and send thermal data in a
fixed interval to a mobile device.

As a first step, the sensors and shipment must be associated. This is done by storing
the sensor’s MAC address and the shipment’s track-and-trace number in the database
and in the Internet of Things (IoT) device’s storage. These numbers are encoded as a
Quick Response (QR) code, retrieved by scanning with a mobile device and sent to the

15

16 CHAPTER 3. RELATED WORK

server. The server configures a new SC with the corresponding regulatory temperature
requirements for every new shipment containing medical products and deploys it. Now
the sensor can be placed into the packet to record the temperature every 10 minutes and
store it in the internal memory.

After the shipment is received at the destination, the track-and-trace number is scanned.
The mobile client sends it to the server, which responds with a MAC-Address. Then the
client automatically downloads all the raw temperature data via Bluetooth and sends it
to the SC. The SC evaluates the regulatory compliance and stores the result on-chain.
For cost-efficiency reasons, only a URL that points to the raw temperature data stored
in a DB is stored inside a contract. Figure 3.1 visualizes the proposed architecture.
Within such a context, [61] further expands the architecture by introducing a BC-agnostic
interoperability API so that the solution can work with different BCs without requiring
specific knowledge.

Figure 3.1: Modum.io BC Architecture [8]

FoodChains [30] tackles the challenge of SCT of food with the help of BC. More specifically,
it tries to increase transparency, trust, digitization and sustainability within the value
chain of Swiss dairy products. The project is conducted by the Communication Systems
Research Group (CSG) at the Department of Informatics at the University of Zurich in
collaboration with Molkerei Fuchs, a Swiss milk producer. The proposed system records
raw product, transport, manufacturing, and sold product data, enabling geographical and
temporal traceability of milk and milk products, thus increasing trust in the brand. For
cost-efficient data storage, only hashes of their raw data are stored on Ethereum, their
BC of choice, while the complete data is accessible in an off-chain DB. This information is
accessible to all stakeholders within the supply chain, and as configured to the public. An
Android Application with an integrated QR-code scanner is used to communicate with
the system.

The authors of [58] propose a high-level solution to food fraud within the food supply chain
and implemented a simple SC on the Ethereum BC as a proof of concept. They claim
that tampering or misrepresentation of food occurs the most in milk-related products,
accounting for around 49 billion dollars of cost, and can be attributed to 420’000 deaths
yearly. The leader in regards to unreported origin foods is seafood with 24-36%. To
increase transparency, efficiency, security and food safety, they propose the following 4-
stage system:

3.1. SOLUTIONS 17

1. Stage 1: Farmers store food data on the BC (e.g., type of crop, procedure used for
sewing, manufacturing, time and date).

2. Stage 2: Food processors place bids through a SC and store processing data on the
BC.

3. Stage 3: Wholesalers place bids through a SC for processed food and update trans-
portation information details such as time and location.

4. Stage 4: Consumers verify the history on-chain.

Within the same context of food, [5] implemented a prototypical system to identify and
verify the quality of agricultural products. The Ethereum BC was used to ensure trans-
parency and allow anyone to access the network. Instances of the proposed SC were
created for each physical product and deployed to the BC. A QR code containing the
Ethereum address of the SC was used as the reference to the virtual instance of the prod-
uct. With every transaction, the ownership and location of the product were updated,
enabling traceability through the supply chain. In addition, they propose a token-based
mechanism that indicates the farmers’ reputation, which serves as a solution for the mis-
use of paper certifications. Farmers could place a certification request for every process
and gain tokens for each certification done by peers (peer farmers, agricultural officers,
or related persons). Finally, consumers are eligible to trace back a product and identify
every owner throughout the supply chain via their public Ethereum address and rate the
product quality.

While the previously described papers primarily focus on traceability and sparingly on
the credibility of actors within the supply chain, [64] developed a complete solution that
ensures not only traceability but also trust and a smooth delivery experience. Different
from storing off-chain data in private BCs like in the case of [30], [64] upload it all to
the Interplanetary File System (IPFS) and store the IPFS hash of that data on the BC.
This approach decentralizes the data storage and provides an efficient, secure and reliable
solution. Ethereum and its platform native SCs assure an efficient, secure and trusted
environment for supply chain activities. The system categorizes the actors within the
supply chain in the following entities: Farmer, processor, distributor, retailer, consumer,
logistic company (LC), and arbitrator. Figure 3.2 visualizes the architecture of the pro-
posed system. The arbitrator sits at the same level as the storage layer to represent him
as an off-chain entity. His job is to monitor and manage the network, which includes
handling disputes.

Traceability is achieved through the use of three SCs, i.e., registration contract (RC), add
to lot contract (ALC) and add transaction contract (ATC). The RC registers the supply
chain entities and the products available to each entity. This product registration process
contains the address of ALC, where additional lot and product details are specified. Lastly,
ALC has a reference to ATC. Every entity has its own set of transactions that can be
performed. In the case of a malicious entity, only the arbitrator has the authority to
remove it.

In order to trade registration through the RC must have taken place. After that, a trading
contract between the seller and the buyer can be initiated. The buyer specifies the product

18 CHAPTER 3. RELATED WORK

Figure 3.2: BC-Based End-to-End Solution for Agricultural and food supply chain [64]

he is interested in and the product code, and the seller uploads a current picture of the
product and the price on IPFS. Next, both parties must deposit a security amount into
the contract as punishment in case of a dispute. In case of dispute, all funds are sent to
the arbitrator and distributed according to the off-chain settlement.

The system further includes a process to evaluate the trustworthiness of sellers through a
reputation contract triggered after every trade event. The buying entity can request that
stored reputation before every trade. All supply chain entities except the farmer and the
end customer act as buyers and sellers and profit from the BC-stored immutable reviews.

Figure 3.3: Data Flow Between Entities [6]

Still within the context of food supply chain traceability, but with the focus on anti-
counterfeiting [6] designed a prototype that benefits the wine industry. Wine counterfeit-
ing is very prominent, while the most prevalent type of fraud is the relabelling of cheaper
wines to expensive and highly collectible ones. The implementation works on a private

3.2. COMPARISON AND DISCUSSION 19

BC, where a subset of the entities within the supply chain are part of the consensus and
act as miners. Figure 3.3 shows the involved entities and data flow throughout the system
and highlights the mining entities in gray color.

Every transaction is represented in its block, with the grape grower generating the genesis
block. Every individual bottle of wine can be traced back by its unique id that points to
the batch number, which traces back every step until the genesis block is reached. The
purchase information of every bottle is recorded, ensuring that no ID can be sold twice.
Data is stored in each block either as plain text or as cypher text which is encrypted and
decrypted with a shared secret key distributed among all entities in the system.

[72] defines traceability as the core component in preventing counterfeiting of products.
Their implementation focuses on information storage, inquiry and anti-counterfeiting
along a medication supply chain. According to the World Health Organization (WHO),
10% of medications sold worldwide are counterfeit, and the percentage is as high as 30%
in some developing counties.

As a solution [72] proposes a BC-based system where, equally to the last described so-
lution, each transaction represents a block that includes the BC addresses of the two
involved parties in the trade, the transaction time and the specific contents of the trans-
action. After a medication has passed the quality inspection in the manufacturing stage,
the manufacturer publishes information about the product on the BC. Following the cre-
ation of the genesis block and the quality inspection, the medicine goes through the hands
of intermediary entities before reaching the consumer. These intermediary entities, such
as wholesalers and retailers, can update the medications’ current status through the BC.
All stages in the supply chain can then be queried by the authorized entities, while regu-
lators join the network to monitor and verify all relevant mechanisms. An access control
policy model based on SCs prevents the information from being altered or disclosed by
unauthorized entities. In order to be assigned a role, the entities along the supply chain
must register for a role first.

3.2 Comparison and Discussion

The above-cited papers have successfully introduced systems and mechanisms to store
relevant supply chain data in an immutable manner on a public or private BC, together
with different access control mechanisms. The proposed solutions range from very vague
frameworks to very practical and specific implemented prototypes. Their overview is
presented in Table 3.1.

Four out of the six presented works chose to use Ethereum as the underlying infrastructure
powering their application, out of which the two more sophisticated solutions implemented
some off-chain elements into their system for cost-efficiency purposes. They only store
the hash of the full data on-chain. This approach maintains immutability while bringing
down storage costs. While [30] used a private DB for storing the large amount of data,
[64] pursued the decentralized ideology and chose IPFS instead. Whether it is better to
use a public or a private BC approach cannot be defined but depends on the goal of the

20 CHAPTER 3. RELATED WORK

Table 3.1: An Overview of Related Work

Ref Use Case Blockchain Off-chain Elements Interaction Type

[8] SCT & regu-
latory compli-
ance

Ethereum Storage of raw data
& user credentials

QR codes, sensors
and Android app

[30] SCT Ethereum Storage of full data QR codes and An-
droid app

[58] Food Safety
& trading

Ethereum - Through SC

[5] Food SC Ethereum - QR codes and user
interface

[64] SCT, trading
& account-
ability

Ethereum IPFS & disputes not specified

[6] SCT & anti-
counterfeiting

Private BC - Custom GUI

[72] SCT & anti-
counterfeiting

not defined - web client

particular system. Public BC have relatively high transaction and storage costs but no
infrastructure costs; the opposite holds for their private counterparts [42, 45].

The more elaborate systems like [30, 64, 6, 72] stand out by providing or proposing a user
interface to connect to their system instead of relying on communication through SCs
directly. QR codes were used in [30, 5] to simplify the interaction further.

Traceability and transparency are the main focus points in BC-based supply chain solu-
tions. These efforts benefit supply chains in terms of improved efficiency of transactions
and storage as well as sustainability and security. The temporal and geographical trace-
ability further improves trust in brands and among supply chain entities. Research by
[58, 64] has shown that trading mechanisms can be constructed that encourage trading
even in low-trust environments. The solutions proposed come at the cost of decentraliza-
tion, as a centralized entity handles disputes. Decentralized dispute handling would solve
that problem while possibly introducing new magnitudes of complexity to the system.

As a solution to increase transparency and trust benefiting transactions within the supply
chain, a token-based trustworthiness score and a SC-powered review system are proposed.
Granting these trust-tokens based on reviews from off-chain or entities outside of the
supply chain exposes the system to the risk of corruption and manipulation.

However, maliciously acting supply chain entities might still be incentivized to inject
false information into the BC. This poses a significant threat to the trustworthiness and
credibility of the available information on-chain.

Under the assumption of trustworthy supply chain entities participating on-chain, these
systems provide excellent technical solutions for enhanced supply chain traceability and
anti-counterfeiting possibilities. However, no mechanism is specified to connect a physical

3.2. COMPARISON AND DISCUSSION 21

product to the digital on-chain twin. In other words, if the on-chain data is correct,
but the physical product is a forgery that claims to be the product traceable on-chain,
the systems would lose all its value-added. The authors of [47] introduce a solution for
that issue using the example of counterfeits of 3D printed manufacturing materials. They
printed the QR code linking to the transaction hash, identifying the physical product on-
chain in fluorescent material. Information about the fluorescent color is stored together
with the other data on-chain. It can be verified with a standard phone camera setup,
which detects the color, quantifies it, and compares it to the stored data. This is one of
many possible solutions for physical signatures connecting digital representations securely
and trustworthy to their physical counterparts.

22 CHAPTER 3. RELATED WORK

Chapter 4

Design and Implementation

This chapter describes the application scenario of the designed system within the CheeseChain
in Section 4.1 to understand the requirements and evaluate the value provided. Further,
Section 4.2 aims to give an overview of the system architecture and explain each sys-
tem component’s design. Finally, Section 4.3 explains the associated source code and the
technologies used in development.

4.1 Application Scenario

The implementation is based on a specific SCT scenario in the production of the Tête-
de-Moine PDO cheese, tailored to serve the main stakeholder of the system, the customer
and other stakeholders involved in the production process.

Figure 4.1 shows the primary use case of the system. A stakeholder involved in production
of the cheese, e.g., milk or cheese producer records information about the production step
in Fromartre’s quality management tool. This information is recorded within a form for
each lot of cheese and contains information about every production step and additional
information. Once the production step is completed, the form is frozen and cannot be
modified. This is when the system will be called with the information needed. From that
point, the lot number printed on the product package can be used to retrieve details about
the production process.

After the cheese is produced and has entered the shelves of grocery stores, Agroscope
picks a sample and conducts laboratory tests on the cheese. Of primary interest is the
result of the PCR test that compares the bacteria culture of the sample cheese with the
one Agroscope provided for the production of the cheese. A mismatch of the colonies
would mean that the tested product is a counterfeit. The result is then communicated to
the interprofession Tête-de-Moine, who is responsible for feeding the information into the
system, which publishes it on-chain and makes it accessible to the public. Now the test
result is visible next to the production history of a given lot. An access control mechanism
(ACM) is implemented with the primary features discussed above to give only authorized
entities the right to make changes e.g., record new steps or add laboratory results. The

23

24 CHAPTER 4. DESIGN AND IMPLEMENTATION

administrator is in charge of registering those roles, overseeing the overall system, and
has the authority to make changes if needed.

checking cheese
information

record production
step and details

add laboratory results

Oversee systemProductive Stakeholder

Laboratory

Administrator

Consumer

Manage Access
Control

Make changes

Tête de Moine supply chain

Figure 4.1: Specific Use Case

4.2 Design

In the following section, an overview of the system is provided. In contrast to Section
4.3, which focuses on the implementation, this chapter is technology-agnostic, showing
the components and their respective responsibilities.

The system’s design followed a top-down approach, first focusing on building a general
purpose SC framework for SCT on the BC. That framework was then narrowed down in
the implementation to fit the specific use-case of the CheeseChain project described in
Section 4.1. Figure 4.2 shows a visualization of the system’s architecture.

As visually separated, the system consists of three main parts: external, off-chain, and
on-chain. On-chain and off-chain aim to serve end consumers while the external part
forms the private system and mainly serves internal stakeholders of the supply chain.
From now on, the public system will be referred to as the Public CheeseChain Solution
(PUC).

4.2.1 External

The external part of the system forms the private system, which includes a private con-
sortium BC and the Fromartre DB. It is an integral part of the overall system but is
not developed by the author of this thesis. The PUC depends on the external part and

4.2. DESIGN 25

Private Blockchain

User

Frontend Smart
Contract

REST

Web3 Library

Web3 Library

SC Connector

API Layer

Fromarte
DB

External

On-ChainOff-Chain

Figure 4.2: Proposed SCT System Architecture

extends its feature set to serve the public. The previously mentioned Fromartre quality
management system stores the information in the DB referred to as Fromartre DB in
Figure 4.2.

The data is pulled via its GraphQL Application Programming Interface (API) after freez-
ing a form and fed into the private BC. The data available in the private system is an
immutable copy of the data stored in the Fromartre DB and a superset of the data avail-
able in PUC; therefore, it is not accessible to the public in its entirety. All information in
the private BC is intended to enhance transparency and trust along the Tête-de-Moine
value chain. The selected subset of data, the public data, is injected into PUC through
API endpoints exposed by its API layer.

4.2.2 On-Chain

All PUC elements are built to enhance the functionality of the on-chain part, which is
the core of the system and consists only of one SC. The SC is the core of this thesis and
presents an extendable and adaptable SC implementation that can be used in a broad
range of SCT use cases. The SC offers the following features and operates under the
following assumptions and limitations: The SC implements and exposes publicly callable
methods whose execution is restricted by an ACM.

26 CHAPTER 4. DESIGN AND IMPLEMENTATION

Assumptions and Limitations

All features of the SC are underpinned via the following assumptions and limitations:

• The production of a product has a determined starting point.

• Every step is performed only by a single entity.

• All production steps are performed in sequence and only one at a time.

• The product itself or its corresponding production batch, e.g., a lot of cheese, must
be uniquely identifiable by a number.

Features

Under the assumptions and limitations listed above, the SC allows stakeholders to register
a new production entity and append any number of sequential production steps to it, and
retrieve each step and entity independently. Additionally, information can be registered on
a production entity. In the context of the CheeseChain, this translates into the following
supported actions:

• Add Milk Batch: A milk producer registers a new batch of milk and informs the
cheese producer about the milk batch identifiers at the time of purchase.

• Add Lot: By providing a list of milk batches being used in the production, a desig-
nated lot of cheese can be registered. This generates and stores a unique identifier
for the new lot and allows appending production steps.

• Get Lot: Returns information about a lot, identified by its id, and the option to
trace back its entire supply chain history.

• Add Step: By providing the lot identifier, a new step can be appended to the
referenced lot. The entity performing the step can implicitly be derived and iden-
tified through the BC address that added the step. For every step, a unique id is
generated.

• Get Step: Returns information about a step, identified by its id.

• Add Laboratory Results: Once Agroscope has completed the laboratory tests, the
results can be stored in the SC by specifying the outcome (true: bacterial colonies
match, false: bacterial colonies do not match) and the corresponding lot identifier.

The SC design’s central and most important feature lies in the ability to trace back the
entire history of sequential append-only steps and generate a unique history for each lot.
Figure 4.3 depicts how this is achieved. Every lot has three properties:

• Time Stamp: The time it was registered, respectively added to the SC;

4.2. DESIGN 27

• Last Step: The ID of the last step added to the lot; and

• Test Result: Additional information on the lot. In this case, the test results of
Agroscope’s laboratory test.

Tracing back a given lot’s production history starts with identifying the latest added
step, which is stored inside the last step property of the lot struct. Each step is uniquely
identified by an ID and can be retrieved from a mapping (a dictionary-like data structure)
that maps the ids to the corresponding struct. Every step consists of five properties, out of
which the previousStep points to its predecessor. The entire history of a lot is obtained
by identifying the last step added to the lot and then tracing back all steps until a step
has a previousStep of 0. In this case, the first step added to the lot is found, and the
entire history is retrieved. All properties present on the Step struct are explained below:

• Time Stamp: The time it was registered, respectively added to the SC

• Previous Step: The ID of the step proceeding the current step

• Owner: The BC address of the entity or person that registered (and performed) the
step

• Description: A short description of what actions were included in the step

• Coordinates: Identifies the geographical location where the step was performed

Figure 4.3: Tracing Back Production Steps in a SC

Access Control Mechanism

Since the SC is part of a public system on a public permissionless BC with no encryption
for the stored data, all information present in the SC is accessible to the public and can
be read by any interested party. On the other hand, state-changing write actions are
controlled by an ACM, which defines five different scopes, referred to as roles.

28 CHAPTER 4. DESIGN AND IMPLEMENTATION

• View Only: This is an implicit role not defined in the SC that every user of the PUC
enjoys that is not registered as a system participant by the administrator. This role
grants all read rights but no write rights on the SC.

• Milk Producer: A milk producer has one single task in the supply chain: to produce
and register the produced milk. Hence, this role is only allowed to register new
batches of milk.

• Basic: Any entity involved in the production other than the production of milk
enjoys write rights for adding a lot and a step.

• Laboratory: Similar to the milk producer, the laboratory also has one single respon-
sibility in the supply chain. That is to conduct a polymerase chain reaction (PCR)
test and communicate the results publicly on-chain. Therefore, this role only has
the right to add test results for specific lots to the SC.

• Admin: The entity or person deploying the SC is implicitly awarded the adminis-
trator role, which grants her the right to perform all read and write actions to the
SC and, as such, oversees the system.

Which role is assigned to a user is determined by the administrator only. In addition to
the features presented above, the SC implements functions to register a user, remove a
user and change a user’s role, which are only executable by the system administrator.

• Add Participant: Registers a user’s BC address with the assigned role and name.

• Change Participant Role: Allows a participant’s role to be changed.

• Remove Participant: Removes a participant, leaving him with read-only rights.

Table 4.1 gives an overview of all write actions that can be performed on the SC and sets
them against the access rights defined for each role.

Table 4.1: ACM Roles and Their Functions

Function View Only Milk Producer Basic Laboratory Administrator

Add Milk Batch ✗ ✓ ✗ ✗ ✓

Add Lot ✗ ✗ ✓ ✗ ✓

Add Step ✗ ✗ ✓ ✗ ✓

Add Participant ✗ ✗ ✗ ✗ ✓

Remove Partici-
pant

✗ ✗ ✗ ✗ ✓

Change Role ✗ ✗ ✗ ✗ ✓

Add Lab Results ✗ ✗ ✗ ✓ ✓

4.2. DESIGN 29

4.2.3 Off-Chain

The off-chain part relies on the on-chain as well as on the external part. It connects
the different parts of the system and enhances the User Xperience (UX). The Frontend,
Smart Contract Connector (SCC) and API Layer components together form the off-chain
part of the system; the SCC and the API layer respectively work together as the server.
Together they abstract the SC and isolate it from the private system.

API Layer

In order to route requests to the public system, handle data payloads and forward them to
the correct location, an API layer is put into place. It is the mediator between the private
BC and the SCC, commonly referred to as the controller in the software architectural
pattern Model-View-Controller (MVC). In order to fulfill this task, the component exposes
and implements a set of endpoints to perform all read and write actions available on the
SC.

Smart Contract Connector

The SCC bridges the gap between off-chain and on-chain components by processing the
received data from the API layer to the proper data structure that the SC accepts. Fur-
ther, state-changing (write) transactions are signed by leveraging a BC library and sent
to a remote BC node via Hypertext Transfer Protocol (HTTP).

Frontend

The frontend offers a convenient and user-friendly way to interact directly with the SC
and, therefore with the system core. It is the entry point for consumers or supply chain
entities that want to make manual changes. It consists of the following three components:

• User Interface: The User Interface (UI) provides a visual representation of all write
actions that can be performed on the SC and the functionality to retrieve a lot’s
complete history and PCR test results. They change based on the user’s role to
show only the allowed actions.

• BC Wallet: Having a BC wallet connected to a frontend is necessary to perform
actions that write to the BC. Read actions can be done without a wallet connected.
Further, the BC address of the connected wallet eliminates the need for a conven-
tional log-in since the authentication is done by proving the possession of the private
key.

• Smart Contract Connector: It is a more lightweight version of the SCC component
inside the server. The main difference is that it allows for direct communication
with the SC instead of calling a different component to perform that task.

30 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.3 Implementation

This section highlights the key aspects of the system’s implementation. Thus, the tech-
nologies used to build the components introduced in Section 4.3 are presented. With
the help of code snippets, it is shown how their interplay is achieved from a technical
standpoint.

4.3.1 Smart Contract

The SC is written in Ethereum’s native programming language, Solidity [3], and is in-
tended to be deployed to a Testnet for testing and on the Mainnet in production. We use
Hardhat, a development environment that facilitates compiling, deploying, testing and
debugging Ethereum software [37], for local development. Hardhat comes with Hardhat
Network, a local Ethereum Network, similar to Ganache or geth -dev.

In order to make use of the SC functionality, it must first be deployed, which grants
the Ethereum address of the deployer the administrator role. Administrator rights are
assigned implicitly by setting the public administrator variable to the msg.sender as
presented on line 4 in Listing 4.1. Therefore, there can only exist one administrator per
SC.

1 address public administrator;

2
3 constructor () {

4 administrator = msg.sender;

5 }

Listing 4.1: Constructor Function

Thereon, a set of read and write functions are exposed for interaction. These will be
discussed in more detail in the following sections. All state changes are stored in the SC
itself. This means that the SC is the PUC’s single source of truth.

Towards understanding the core functions of the SC e.g., addParticipant, addLot or
addStep, one must first understand the variables, structs, enums, mappings and function
modifiers.

Public variables

In addition to the administrator, the SC defines four more publicly readable variables:

1 uint public totalSteps; // starts at 0

2 uint public totalLots; // starts at 0

3 uint public totalMilkBatches; // starts at 0

4 Participant public laboratory; // only one laboratory can exist

Listing 4.2: Public Variables

4.3. IMPLEMENTATION 31

TotalSteps, totalLots and totalMilkBatches, all work as incremental counters starting
at 0. The values are unique identifiers for lots, steps and batches of milk. At the same
time, they provide an insight into how many entities were recorded by the SC.

Structs

In order to define the use case of the CheeseChain more accurately, a set of custom
data types, called structs, are defined. For instance, every participant is registered as
a Participant struct, which includes a name, a role and a corresponding BC address.
Listing 4.3 introduces all structs used inside the SC.

1 struct Participant {

2 string name;

3 Role role;

4 address owner;

5 }

6
7 struct Coordinates {

8 string latitude;

9 string longitude;

10 }

11
12 struct MilkBatch {

13 uint timestamp;

14 address producer;

15 Coordinates coordinates;

16 }

17
18 struct TestResult {

19 bool result;

20 uint timestamp;

21 }

22
23 struct Lot {

24 TestResult testResult;

25 uint lastStep;

26 uint timestamp;

27 uint[] milkBatchId;

28 }

29
30 struct Step {

31 address owner;

32 uint previousStep;

33 uint timestamp;

34 string description;

35 Coordinates coordinates;

36 }

Listing 4.3: Structs

32 CHAPTER 4. DESIGN AND IMPLEMENTATION

Enums

Listing 4.4 shows the definition of the Role enum, which is used to define a participant’s
role inside the Participant struct. Using enums over any other data structure for roles
e.g., integers or strings, allows for compile-time checking and prevents errors from passing
invalid values during development. Internally the roles are represented as integers from 0
to 3.

1 enum Role {

2 ViewOnly ,

3 Basic ,

4 Laboratory ,

5 MilkProducer

6 }

Listing 4.4: Enums

Mappings

Mappings act as the main data storage element inside the PUC SC. In this case, they
always take a Solidity primitive data type (uint or address) and point to a custom data
type defined by a struct. This structure is ideal for storing an unknown amount of
data that can and should be uniquely identifiable through a single key. This is the case
with MilkBatches, Lots, Steps and Participants, which are uniquely identifiable via
an unsigned integer (uint), respectively by an Ethereum address. Listing 4.5 defines all
mappings used in the SC.

1 mapping(uint => Step) public steps;

2 mapping(uint => Lot) public lots;

3 mapping(uint => MilkBatch) public milkBatches;

4 mapping(address => Participant) public participants;

Listing 4.5: Mappings

Function Modifiers

In Solidity, function modifiers allow appending functionality to a function in a declarative
manner. They are beneficial to reduce code redundancy since they can be reused for mul-
tiple functions once defined. Their main use case is to check a condition prior to executing
a function [29, 25]. This is useful when implementing an ACM that checks if the caller is
allowed to call a specific function. If this is not the case, the function call is reverted with
the appropriate error message defined in the function modifier. Should a participant with
any role different from administrator or basic call the addLot function in Listing 4.12, the
transaction would revert with the error message defined in the onlyBasicParticipant

function modifier in Line 5 of Listing 4.6. As shown in Listing 4.6, a function modifier is
implemented for every role defined in the SC.

4.3. IMPLEMENTATION 33

1 modifier onlyAdministrator {

2 require(msg.sender == administrator , ' This function is only callable

by an admin! ');
3 _;

4 }

5 modifier onlyBasicParticipant {

6 require(isAdministrator(msg.sender) || isBasicParticipant(msg.sender

), ' Msg.sender is not basic or admin ');
7 _;

8 }

9 modifier onlyLaboratory {

10 require(isAdministrator(msg.sender) || isLaboratory(msg.sender), '
Msg.sender is not lab or admin ');

11 _;

12 }

13
14 modifier onlyMilkProducer (){

15 require(isAdministrator(msg.sender) || isMilkProducer(msg.sender), '
This function is only callable by a milk producer! ');

16 _;

17 }

Listing 4.6: ACM Function Modifiers

Listing 4.6 shows the implementation of all function modifiers belonging to the ACM.
In addition, five more function modifiers are defined in Listing 4.7 and will be addressed
within their context of use further below.

1 modifier notEmptyAddress(address _address) {

2 require(_address != address (0), ' The address cannot be a 0 address! '
);

3 _;

4 }

5
6 modifier participantDoesntExist(address _address){

7 require(participants[_address].owner == address (0), "A participant

with this address exists already");

8 _;

9 }

10
11 modifier participantExists(address _address){

12 require(participants[_address].owner != address (0), "A participant

with this address does not exist");

13 _;

14 }

15
16 modifier milkBatchExists(uint[] calldata _batchIds){

17 require(_batchIds.length > 0, "Please provide at least one milk

batch identifier!");

18 for (uint i=0; i < _batchIds.length; i++){

19 require(milkBatches[_batchIds[i]]. timestamp != 0, "Please

provide only existing milk batch identifiers");

20 }

21 _;

22 }

23
24 modifier lotExists(uint _lotId){

34 CHAPTER 4. DESIGN AND IMPLEMENTATION

25 require(lots[_lotId]. timestamp != 0, ' The lot with the given number

does not exist! ');
26 _;

27 }

Listing 4.7: Additional Function Modifiers

Add Participant

Upon deployment of the SC, the administrator is the only entity having write permissions.
In order to support a real SCT use case with different entities responsible for different
steps in production, these must first be registered to the SC.

1 event ParticipantAdded(Participant participant);

2
3 function addParticipant(Participant calldata participant)

4 onlyAdministrator

5 notEmptyAddress(participant.owner)

6 participantDoesntExist(participant.owner)

7 public {

8 participants[participant.owner] = participant;

9 emit ParticipantAdded(participant);

10 }

Listing 4.8: Add Participant

A participant is added by calling the addParticipant function in line 3 in Listing 4.8
with a Participant struct, which is defined by a name, a role and an address. The
name, different from the Ethereum address, serves as a human-readable identifier for a
particular participant and can be an arbitrary string. The role on the other side must be
of the Role enum type. A set of requirements set by the modifiers must be satisfied for
the function to execute successfully. The function can only be called by the administrator,
the address provided for the participant can not be an empty address, respectively a 0x0,
address, and no existing participant is allowed to have the same address.

Remove Participant

Removing a participant by calling removeParticipant in Listing 4.9 only requires the
address, which must be present in the participants mapping. The function removes the
identified entry from the mapping and is limited to only being callable by the adminis-
trator.

1 function removeParticipant(address _address) onlyAdministrator

participantExists(_address) public {

2 delete participants[_address];

3 }

Listing 4.9: Remove Participant

4.3. IMPLEMENTATION 35

Change Participant Role

Should the need ever appear to change a participant’s role, this can be achieved by calling
the changeParticipant function in line 3 of Listing 4.10. The function takes the user
address and the new role as parameters. If the address does not match any registered
participants, the function reverts.

1 event RoleChanged(Participant participant);

2
3 function changeParticipantRole(address _address , Role _newRole)

onlyAdministrator participantExists(_address) public {

4 participants[_address].role = _newRole;

5 emit RoleChanged(participants[_address]);

6 }

Listing 4.10: Change Participant Role

Adding Milk Batch

As milk is produced before the cheese, it is not clear in which lot of cheese the milk will
be used. For this reason, milk production is a special step within PUC. To reflect this
property, the addMilkBatch function in line 3 of Listing 4.11 allows the registration of a
batch of produced milk before the initialization of a lot of cheese. Only the administrator
or a milk producer can add a milk batch to the SC.

1 event NewMilkBatch(uint indexed _milkBatchId , uint _timestamp);

2
3 function addMilkBatch(Coordinates coordinates) onlyMilkProducer external

{

4 totalBatches += 1;

5 milkBatches[totalBatches] = MilkBatch(block.timestamp , msg.sender ,

coordinates);

6 emit NewMilkBatch(totalBatches , block.timestamp);

7 }

Listing 4.11: Adding a Milk Batch

Adding Lot

Registering a lot of cheese requires knowledge about the origin of the milk used to produce
the lot. Only basic participants and the administrator have the authority to perform this
action.

1 event LotAdded(uint indexed _lotId , uint _timestamp);

2
3 function addLot(uint[] milkBatchIds) onlyBasicParticipant external {

4 totalLots += 1;

5 TestResult memory test = TestResult(false , 0);

6 lots[totalLots] = Lot(test , 0, block.timestamp , milkBatchIds);

7 emit LotAdded(totalLots , block.timestamp);

8 }

Listing 4.12: Adding a Lot

36 CHAPTER 4. DESIGN AND IMPLEMENTATION

Listing 4.12 shows how the totalLots variable is used as a unique identifier for a newly
created lot. Additionally, an empty TestResult and the timestamp of the current block
are added to the lot. Upon successful creation, the lotAdded event is emitted, which gives
any entity interested in knowing when the function was executed the option to watch the
SC by subscribing to the given event.

Adding Step

The addStep function on line 3 of Listing 4.13 is called with the lotNumber (specifying the
lot to append the step to), a description, as well as coordinates where the step took place.
The lotExists function modifier makes sure the lot exists, while onlyBasicParticipant
checks if the caller is authorized to perform this action. TotalSteps follows the same
mechanic as totalLots and is used as the step identifier. Line 6 in Listing 4.13 saves
a new step to the steps mapping. Within this newly constructed step, previousStep
is set to the lastStep recorded in the lot referenced. Lastly, lastStep of the lot is
updated to the step identifier of the current step, which constructs a chain of steps, and
the StepAdded event is emitted.

1 event StepAdded(uint indexed _stepId , uint _timestamp);

2
3 function addStep(uint lotNumber , string calldata description ,

Coordinates calldata coordinates)

4 onlyBasicParticipant lotExists(lotNumber) external {

5 totalSteps += 1;

6 steps[totalSteps] = Step(msg.sender , lots[lotNumber].lastStep , block

.timestamp , description , coordinates);

7 lots[lotNumber]. lastStep = totalSteps;

8 emit StepAdded(totalSteps , block.timestamp);

9 }

Listing 4.13: Adding a Step

Adding Laboratory Result

When a laboratory test result becomes available, it can easily be added by calling the
addLabResult function, which takes the lotNumber and a boolean: whether the bacterial
colonies were a match or not. This action can only be performed by the one participant
registered as the laboratory and emits the LabResultAdded event.

1 event LabResultAdded(uint indexed _lotId , bool indexed _result , uint

indexed _timestamp);

2
3 function addLabResult(uint lotNumber , bool result) onlyLaboratory public

{

4 lots[lotNumber]. testResult = TestResult(result , block.timestamp);

5 emit LabResultAdded(lotNumber , result , block.timestamp);

6 }

Listing 4.14: Adding a Laboratory Result

4.3. IMPLEMENTATION 37

Tests

Writing automated tests when building SC is of the utmost importance since SCs are
immutable once deployed and cannot be easily updated. Deploying the SC costs money,
and often user’s money or information is at stake. SC upgradeability can nevertheless be
realized with the proxy pattern, which uses a proxy SC to forward function calls to the SC
containing the corresponding implementation [53]. The proxy does not change, while the
pointer to the implementation SC changes with every new version of the implementation
SC being deployed.

Tests for every functionality in the SC were written to ensure correctness. Typescript is
the programming language of choice, while Ethers.js is the library used to interact with
the SC. As a test runner Mocha is used in combination with the Chai assertion library,
which runs on Node.js [12]. Listing 4.15 shows the required imports to set up the testing
environment.

1 const { ethers } = require("hardhat");

2 const { expect } = require("chai");

Listing 4.15: Importing Required Packages

The tests are contained in a file called CheeseChain.test.js inside the test folder in
the root directory of the project. Listing 4.16 shows what the interface of the written test
suite looks like:

1 describe(' CheeseChain ' , function () {

2 // add a test hook

3 beforeEach(function () {

4 // ... some logic before each test is run

5 })

6 // test a functionality

7 it("Should revert addLot () when not called by admin or basic",

8 async function () {

9
10 // add an assertion

11 await expect(cheeseChain.connect(lab).addLot ())

12 .to.be.revertedWith(

13 "Msg.sender is not basic or admin"

14);

15 })

16 // ... some more tests

17 })

Listing 4.16: Test Suite Interface

Before each test is run, some Ethereum addresses are retrieved from the local BC and
stored inside variables. Then a new contract is deployed, and one participant for each
role is registered since the tests need to handle calling the functions from all roles.

Running npx hardhat test in the terminal spins up a local Ethereum network and exe-
cutes all the files in the test folder against the SC. As output, a list of all tests, including
information on how long they took to run and if they passed.

38 CHAPTER 4. DESIGN AND IMPLEMENTATION

1 // get accounts

2 [admin , lab , basic , viewOnly , dummy] = await ethers.getSigners ();

3
4 // admin is automatically registered

5 const CheeseChain = await ethers.getContractFactory(' CheeseChainV2 ' ,
admin)

6 cheeseChain = (await CheeseChain.deploy ()) as CheeseChainV2

7 await cheeseChain.deployed ()

8
9 await cheeseChain.addParticipant ({

10 name: ' Example Laboratory ' ,
11 role: Role.Laboratory ,

12 owner: lab.address ,

13 })

14
15 await cheeseChain.addParticipant ({

16 name: ' Example Basic ' ,
17 role: Role.Basic ,

18 owner: basic.address ,

19 })

20
21 await cheeseChain.addParticipant ({

22 name: ' Example ViewOnly ' ,
23 role: Role.ViewOnly ,

24 owner: viewOnly.address ,

25 })

26
27 await cheeseChain.addParticipant ({

28 name: ' Example Milk Producer ' ,
29 role: Role.MilkProducer ,

30 owner: milk.address ,

31 })s

Listing 4.17: Execution Before Each Test

4.3.2 Server

The server consists of the API layer and the smart contract connector. It acts as the
interface between the private and the public system, which is its only responsibility. It is
implemented in Node.js using TypeScript and leveraging Express.js as the backend frame-
work. Figure 4.4 depicts the server’s directory structure. The files and their associated
code will be explained in the next sections.

API Layer

The API Layer is a lightweight controller that routes incoming HTTP requests to the cor-
responding middleware functions implemented by the SCC. All actions that can be taken
on the SC are exposed as endpoints, served by Express.js and live within the server.ts
file.

4.3. IMPLEMENTATION 39

cheese-chain-server

abi

CheeseChain.json

src

providers.ts

requirements.ts

routes.ts

rpcErrors.ts

service.ts

types.ts

typechain

utils.ts

server.ts

.env

Figure 4.4: Server Directory Structure

1 const app: Express = express ();

2 const PORT = process.env.PORT || 3000;

3
4 app.listen(PORT , () => {

5 console.log(`Server is listening on port ${PORT}`);
6 });

7
8 app.get("/contract", requireContract , getContractAddressRoute);

Listing 4.18: Getting the Contract Address

Listing 4.18 shows a simple example of an endpoint implemented with Express.js. The
method called on app specifies the REST method for the endpoint, which is provided
as the first parameter. All later parameters are middleware functions that are called in
sequence, from left to right. The middleware functions are part of the SCC; therefore,
they are described in the next section.

1 const connectContract = [requireContract , attachContract]

2
3 // first steps

4 app.post("/deploy", deployContractRoute);

5
6 // general functions

7 app.get("/block", getBlockRoute);

8 app.get("/contract", requireContract , getContractAddressRoute);

9

40 CHAPTER 4. DESIGN AND IMPLEMENTATION

10 // contract variables

11 app.get("/total -lots", connectContract , getTotalLotsRoute);

12 app.get("/total -steps", connectContract , getTotalStepsRoute);

13 app.get(' /total -milk -batches ' , connectContract , getTotalMilkBatchesRoute

)

14 app.get("/admin", connectContract , getAdminRoute);

15
16 // mapping information

17 app.get("/lots/:id", connectContract , getLotRoute);

18 app.get("/steps/:id", connectContract , getStepRoute);

19 app.get(' /milk -batches /:id ' , connectContract , getMilkBatchRoute)

20 app.get("/participants /: address", connectContract , getParticipantRoute);

21
22 //core functions

23 app.post(' /add -milk -batch ' , requireContract , attachContract ,

addMilkBatchRoute)

24 app.post("/add -lot", connectContract , addLotRoute);

25 app.post("/add -step/:id", connectContract , addStepRoute);

26 app.post("/add -basic", connectContract , addBasicRoute);

27 app.post("/add -lab", connectContract , addLabRoute);

28 app.post("/remove -participant", connectContract , removeParticipantRoute)

;

29 app.put("/change -role", connectContract , changeRoleRoute);

30 app.post("/add -lab -result", connectContract , addLabResultRoute);

Listing 4.19: All REST Endpoints

Listing 4.19 shows a complete list of all endpoints implemented by the API layer, together
with the middleware functions the requests are routed to.

Smart Contract Connector

The SCC is the server’s largest and most important component, consisting of the entire
src directory in Figure 4.4. It allows the incoming requests to be transformed into trans-
actions, signs them, and forwards them to the BC. The two main Express middleware
functions are requireContract and attachContract which are concatenated into the
connectContract array, since they are always executed together and in the same order.

1 export const requireContract = (

2 req: Request ,

3 res: Response ,

4 next: NextFunction

5) => {

6 try {

7 const contractAddress = process.env.CONTRACT_ADDRESS;

8 if (contractAddress === undefined) {

9 throw new Error("No contract address defined");

10 }

11 } catch (error) {

12 let message;

13 if (error instanceof Error) message = error.message;

14 else message = String(error);

15 res.status (428).json({

16 error: message ,

4.3. IMPLEMENTATION 41

17 });

18 }

19 req.contractAddress = process.env.CONTRACT_ADDRESS;

20 next();

21 };

Listing 4.20: RequireContract Middleware

Listing 4.20 shows how requireContract ensures that a contract address is present in
the execution environment before executing middleware that requires the presence of a
SC. The next middleware executed is, should a SC address indeed be present, typically
attachContract. Otherwise, a 428 response precondition required is returned together
with an appropriate error message.

1 import { Contract } from "ethers";

2 import { connect } from ' ./ providers '
3 import { CheeseChain } from ' ./ typechain '
4
5 const [provider , wallet , contractAt] = connect ()

6
7 export const attachContract = async (

8 req: Request ,

9 res: Response ,

10 next: NextFunction ,

11) => {

12 const CheeseChain: Contract = contractAt(

13 ' CheeseChain ' ,
14 process.env.CONTRACT_ADDRESS ,

15)

16 const cc: CheeseChain = (await CheeseChain.connect(wallet)) as

CheeseChain

17 req.cc = cc

18 next()

19 }

Listing 4.21: AttachContract Middleware

AttachContract creates an Ethers.js contract instance and connects a wallet to it, which
is necessary to sign transactions that write to the contract but also facilitates reading the
contract. The Ethers SC instance, which is now connected to a deployed SC instance, is
attached to the Express request object within line 16 in Listing 4.21 to be accessible to
the following middleware functions. CheeseChain, which is imported in line 2 of Listing
4.21, is generated by a Hardhat plugin that generates TypeScript types from SCs and
allows static type checking when writing code.

Listing 4.22 shows how providers.ts exports the connect function, which returns an
array of constants that abstract some steps necessary to connect to a deployed SC instance.

1 import { ethers , providers , utils , Wallet } from ' ethers '
2 import { getContract } from ' ./utils '
3
4 const connect = (): [providers.Provider , Wallet , any] => {

5 const provider = process.env.CHAIN_ID

6 ? new providers.JsonRpcProvider(process.env.NODE_URL , process.env.

CHAIN_ID)

42 CHAPTER 4. DESIGN AND IMPLEMENTATION

7 : new providers.JsonRpcProvider(process.env.NODE_URL)

8
9 // use private key for wallet

10 const wallet = new ethers.Wallet(process.env.PRIVATE_KEY!, provider)

11
12 const contractAt = getContract(wallet)

13
14 return [provider , wallet , contractAt]

15 }

16
17 export { connect }

Listing 4.22: Providers.ts

In order to connect to a network, one must connect to a node of the corresponding network.
This is achieved by setting the NODE_URL environment variable to the node’s Unique
Resource Identifier (URI), which Ethers needs to instantiate a provider. This abstraction
enables talking to the BC. CHAIN_ID is an optional variable, which defaults to the chain
id returned by the connected node. Line 5 in Listing 4.23 shows how getContract, a
curried function inside utils.ts, finds the SC application binary interface (ABI) inside
the ABI directory and connects a wallet, as well as a contract address. This constructs an
object with methods on it for each SC function.

1 import { Wallet , ethers , utils , Contract } from ' ethers '
2
3 export const getContractJSON = (contractName: string): any => require

(`../abi/${contractName }.json `)
4
5 export const getContract = (wallet: Wallet) => (contractName: string ,

contractAddress: string): ethers.Contract => {

6 const contractJson = getContractJSON(contractName)

7 return new ethers.Contract(contractAddress , contractJson.abi , wallet

)

8 }

Listing 4.23: Utility Functions

Once a contract instance is successfully added to the Express request object, the next
middleware function can interact with the SC. As visible in Listing 4.19 all of the last
functions end with ’Route’, which signifies the route the request is routed to. All available
routes are implemented in routes.ts as shown on the example of the addLotRoute in
Listing 4.24.

1 import { Request , Response } from "express";

2 import { addLot } from "./ service";

3
4 const createRoute = (call: Function) => async (req: Request , res:

Response) => {

5 try {

6 const value = await call(req , res);

7 res.send(JSON.stringify(value));

8 } catch (error) {

9 console.log(error);

10 }

11 };

4.3. IMPLEMENTATION 43

12
13 export const addLotRoute = createRoute(addLot);

Listing 4.24: Create a Route

A route is created by passing in the function that interacts with the contract into the
createRoute function, which is responsible for calling the passed function and parsing
and returning the response in JavaScript Object Notation (JSON) representation. For
every route, a corresponding service function is implemented inside service.ts which
interacts with the SC via the instance attached to the Express request object. Line 5 in
Listing 4.25 checks if the function parameters passed are appropriate and returns a 400
status code otherwise.

1 export const addLot = async (

2 req: Request <{}, {}, AddLotBody >,

3 res: Response ,

4) => {

5 if (!req.body.milkBatchIds || typeof req.body.milkBatchIds !== ' object
') {

6 res.status (400).json({

7 error: ' Invalid body! Please Provide milk batches as an array of

string. ' ,
8 })

9 return

10 }

11 const { milkBatchIds } = req.body

12 try {

13 const tx = await req.cc!. addLot(milkBatchIds)

14 const receipt = await tx.wait()

15 return { lotId: receipt.events ![0]. args!. _lotId.toNumber () }

16 } catch (error) {

17 handleRpcErrors(

18 error ,

19 [rpcErrors.onlyBasic , rpcErrors.onlyValidMilkBatch],

20 res ,

21)

22 }

23 }

Listing 4.25: Add Lot Service

HandleRpcErrors in line 17 in Listing 4.25 handles custom errors thrown by the function
modifiers, as well as other remote procedure calls (RPC) errors that might appear when
calling a SC.

4.3.3 Frontend

The frontend is a single-page application built with TypeScript and React, a JavaScript UI
library. The reasoning behind the choice of the technological stack is due to the author’s
prior experience. By design, the frontend is not a required component of the system for
it to function. However, it enhances the user experience and allows the data stored inside
the SC to be accessible and writable by users with minimal experience within the BC

44 CHAPTER 4. DESIGN AND IMPLEMENTATION

ecosystem. As demonstrated in Section 4.3.2, all actions on the SC can be performed
via the server or directly through the SC. The main use case for the frontend is a simple
retrieval of the lot history by the end customer.

Connect or Deploy a Smart Contract

To interact with a SC, the SC must be identifiable by the frontend. This means that the
address on the BC and a specification of the methods the SC exposes must be introduced
into the codebase. The SC’s ABI is supplied and encoded in JSON representation [24].
Essentially, the ABI specifies how contract calls must be encoded for the EVM and, re-
versely, how to decode transaction data [34]. Regarding the contract address, the frontend
supports deploying a new contract or connecting to an existing one.

Figure 4.5: Connect or Deploy a Smart Contract

Connecting the frontend to an already deployed SC is done by adding the corresponding
contract address as an environment variable within the .env file in the root directory of
the frontend. As visible in the example in Listing 4.26 the environment variable must be
named REACT_APP_CONTRACT in order to work.

1 REACT_APP_CONTRACT =0 xe7f1725E7734CE288F8367e1Bb143E90bb3F0512

Listing 4.26: Add an Existing Contract Address as an Environment Variable

Wallet and Ethereum API

frontend that knows a SC’s address and its ABI is not everything needed to make trans-
actions or retrieve data in the browser. To retrieve data, an Ethereum Provider is needed,
which is an abstraction of a connection to the Ethereum network, providing a standard
interface to Ethereum node functionality [26]. Sending transactions further requires a
Signer. A Signer signs transactions with the user’s private key before broadcasting them
to the Ethereum network [63]. In the current implementation Alchemy is used as the node
provider, while Metamask [52] is used as the Signer. Ethers.js is the library used to con-
nect the frontend to the Ethereum node provided by Alchemy or Metamask. Users with
Metamask installed in their browser would connect to the node provided by Metamask,
while users lacking the browser extension connect to the Alchemy node.

4.3. IMPLEMENTATION 45

Smart Contract Connector

Similar to the server, the frontend also requires a SCC. Unlike the server implementation,
where a connection to the SC is established through middleware functions, the frontend
uses the React Context API and a service file implementing all interactions with the SC.

1 <ContractProvider >

2 <FunctionsProvider >

3 <ContractInteractions />

4 <LotHistory />

5 </FunctionsProvider >

6 </ContractProvider >

Listing 4.27: Frontend SCC Architecture

The architecture presented in Listing 4.27 consists of two React context providers (Con-
tractProvider and FunctionsProvider), which allow passing a value to all child components
without having to use props. The ContractProvider passes an Ethers contract instance
connected to a deployed SC. In contrast, the FunctionsProvider makes it easy to call
and await the methods exposed by the contract instance and react to responses or errors
accordingly.

1 export const ContractContext = createContext <Contract | undefined >(

undefined);

2 ContractContext.displayName = "ContractContext";

3
4 export const useContract = (): Contract => {

5 const contract = useContext(ContractContext);

6 if (! contract) {

7 throw new Error("contract missing");

8 }

9 return contract;

10 };

11
12 export const ContractProvider = ({ children }: { children: ReactNode })

=> {

13 const { library } = useWeb3React <Provider >();

14 const [signer , setSigner] = useState <Signer >();

15 const [contract , setContract] = useState <Contract | undefined >();

16
17 useEffect ((): void => {

18 if (! library) {

19 setSigner(undefined);

20 return;

21 }

22
23 setSigner(library.getSigner ());

24 }, [library]);

25
26 useEffect (() => {

27 const envContract = process.env.REACT_APP_CONTRACT;

28
29 const CheeseChain = new ethers.ContractFactory(

30 CheeseChainArtifact.abi ,

31 CheeseChainArtifact.bytecode ,

46 CHAPTER 4. DESIGN AND IMPLEMENTATION

32 signer

33);

34
35 if (! signer) return;

36 if (envContract === "" || envContract === undefined) return;

37
38 CheeseChain.attach(envContract).then((instance: Contract) =>

39 setContract(instance)

40);

41 }, [setContract , signer]);

42
43 return contract === undefined ? (

44 <RegisterContract setContract ={ setContract} />

45) : (

46 <ContractContext.Provider value ={ contract}>

47 {children}

48 </ContractContext.Provider >

49);

50 };

Listing 4.28: ContractProvider.tsx

Within the ContractProvider’s useEffect in line 26 of Listing 4.28, the SC address avail-
able in the environment variable is used to construct an Ethers contract instance together
with the corresponding byte code and API of the already deployed SC. This instance is
stored in the state variable contract in line 15 and is passed to the component tree to
make it accessible to all its children. This instance allows all SC functions to be called
using the corresponding methods, the same way as within the server’s SCC. Said architec-
ture assures the presence of a SC connected to the frontend and conditionally renders the
RegisterContract or the ContractContext.Provider on line 43. Should no instance be
present, the RegisterContract component shown in Figure 4.5 is rendered, prompting
the user to either connect an existing SC or deploy a new one. If a contract address
is defined in the environment variable and a signer is present, components allowing for
SC interaction are rendered. The same state change is triggered once a new contract is
deployed or an existing contract is registered. This causes a re-render and another call of
the aforementioned useEffect hook. The ContractProvider’s children gain access to the
contract instance via the useContract hook defined in line 4.

1 export const ContractFunctionsContext = createContext <

2 ContractFunctions | undefined

3 >(undefined);

4 ContractContext.displayName = "ContractContext";

5
6 export const useFunctions = (): ContractFunctions => {

7 const functions = useContext(ContractFunctionsContext);

8 if (! functions) {

9 throw new Error("no functions");

10 }

11 return functions;

12 };

13
14 const FunctionsProvider = ({ children }: { children: ReactNode }) => {

15 const contract = useContract ();

16 const [contractFunctions] = useState <ContractFunctions >({

4.3. IMPLEMENTATION 47

17 addLot: addLot(contract),

18 addStep: addStep(contract),

19 addParticipant: addParticipant(contract),

20 removeParticipant: removeParticipant(contract),

21 addResult: addResult(contract),

22 });

23
24 return (

25 <ContractFunctionsContext.Provider value={ contractFunctions}>

26 {children}

27 </ContractFunctionsContext.Provider >

28);

29 };

Listing 4.29: FunctionsProvider.tsx

The FunctionsProvider shown in Listing 4.29 is the second context provider inside the
frontend’s SCC and exposes all SC functions that are called within the frontend alongside
the appropriate response and error handling code. These functions are implemented in the
interactionService.ts file and are all curried functions that take a contract instance
as the first parameter. Listing 4.30 shows an example callable by child components with
addLot(milkBatchId), after having accessed it through the custom useFunctions hook.

1 export const addLot = (contract: CheeseChain) => async (

2 milkBatchId: number ,

3) => {

4 try {

5 const tx = await contract.addLot ([milkBatchId])

6 await tx.wait()

7 } catch (e) {

8 window.alert(serializeError(e).message)

9 }

10 }

Listing 4.30: AddLot Service Function Inside InteractionService.ts

Interacting with the Smart Contract

Interacting with the SC is straightforward via the frontend. The upper of the two visually
separated sections in Figure 4.6 represents all available write actions on the frontend.
In contrast the lower section facilitates the read operation by retrieving the production
history of a given lot. Only the actions the role is authorized to perform are shown
depending on which role is assigned to the connected Ethereum account. In the case
where no wallet is connected or no role is assigned to the address, the view only role
applies implicitly and only the read lower read section is rendered. Sending a transaction
and writing to the SC requires one more step: accepting the Metamask signature prompt
that pops up upon requesting to send a transaction. Figure 4.7 shows an example of a lot’s
history that includes all steps and their associated information, as well as the laboratory
test results performed by Agroscope.

48 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.6: Interacting With the Smart Contract

Figure 4.7: The Production History of a Cheese Lot

Chapter 5

Evaluation and Use Case

This chapter evaluates different aspects of the developed SCT system. First, a cost
analysis is conducted in Section 5.1, followed by a performance analysis in Section 5.2 and
a security analysis in Section 5.3. Finally, Section 5.5 concludes the chapter by discussing
the system’s usability in the previously evaluated areas. Both cost and performance
analyses were conducted on the Ethereum Ropsten Testnet, the Polygon Mumbai Testnet,
and on a local Hardhat network.

5.1 Cost Analysis

With the SC being the primary cost driver of operating the system, this section focuses
on the cost dimension of the SC to estimate the cost of a sample use case within the
CheeseChain project.

Each function implemented in the SC was called multiple times (n=10) from the frontend
on the three networks. Afterward, the corresponding transactions were inspected on
Etherscan.io, Polygonscan.com and the local Hardhat logs to determine the amount of gas
that was used. The gas used for a specific function appeared not to be deterministic and
sometimes varied by a small amount. Varying the input parameters for each function call
suggests that the variance in the gas used does not only depend on the input parameters.
To counteract this observation, the mean of all records for each function on each network
was used to determine the values in Table 5.1. Exceptions to this rule are Add Milk

Batch, Add Lot and Add Step, because adding the first milk batch or the first lot in the
SC, as well as adding the first step on a specific lot uses significantly more gas. Therefore,
these cases are shown separately from the rest and are not included in the mean. The
same case applies to Add Lab Result but is ignored since the laboratory test result will
only be registered once on every lot. Figure 5.1 visualizes this phenomenon of higher
execution costs for the first function call for the three functions mentioned above and
shows the cost relation between all functions on the SC.

Total fee = Gas units ∗Gas price per unit (5.1)

49

50 CHAPTER 5. EVALUATION AND USE CASE

Figure 5.1: Cost Relation of SC Functions

Table 5.1 shows the result of the analysis and describes the cost of the function executions
as well as SC deployment in terms of Gas (rounded to the closest integer), Ether (ETH),
MATIC, Polygon’s native token (rounded to 7 decimal figures, calculated according to
Equation 5.1) as well as CHF (rounded to two, respectively four decimal figures). For the
gas price the six month Ethereum (70 Gwei) [35] and Polygon (147 Gwei) [56] averages
were used. The token prices used to represent the current price of ETH (1,064.49 CHF
[13]) and MATIC (0.38 CHF [14]) at the time of writing (June 21, 2022).

Analyzing the cost of each function provides insight into how much executing an individual
function costs but provides no information on how much a CheeseChain scenario would
cost using the SC. For that reason, a representative scenario was constructed in Section
5.4 and evaluated by determining how much its operation would represent in costs on the
Ethereum BC and on the Polygon side chain. The results in Table 5.1 show that a SC
interaction on Polygon costs 0.075% of one performed on Ethereum. In other words, using
the Polygon side chain is currently 1334 times cheaper than using the Ethereum BC for
the same application.

5.2 Performance Analysis

When using an application in production, it is essential to know what performance char-
acteristics to expect. For this reason, this section presents the results of a performance
analysis regarding execution time.

Due to the decentralized nature of the system and the intention to be deployed on a
public BC network, performance depends on one main factor, BC performance. Similar
to the cost analysis, this analysis was conducted from within the Hardhat framework with
the help of a custom script. The script records a timestamp immediately before sending

5.2. PERFORMANCE ANALYSIS 51

Table 5.1: Cost of SC Function Calls as of June 20, 2022

Function Gas Used Gas Cost
(ETH)

Gas Cost
(MATIC)

Cost on
Ethereum
(CHF)

Cost on
Polygon
(CHF)

Deploy Contract 1’750’851 0.1225596 0.2573751 130.46 0.0978
Add Milk Batch 121’970 0.0085379 0.0179296 9.09 0.0068

139’070* 0.0097349* 0.0204433* 10.36* 0.0078*
Add Lot 107’005 0.0074904 0.0157297 7.97 0.0060

124’105* 0.0086874* 0.0182434* 9.25* 0.0069*
Add Step 175’095 0.0122567 0.0257390 13.05 0.0098

189’395* 0.0132577* 0.0278411* 14.11* 0.0106*
Add Participant 73’846 0.0051692 0.0108554 5.50 0.0041
Remove Partici-
pant

27’611 0.0019328 0.0040588 2.06 0.0015

Change Role 34’696 0.00242872 0.0051003 2.59 0.0019
Add Positive Lab
Results

70’162 0.00491134 0.0103138 5.23 0.0039

Add Negative Lab
Results

50’250 0.0035175 0.0073868 3.74 0.0028

* First function call gas

a transaction to the Ethereum node provider or the local BC and records a timestamp
as soon as the transaction was mined. Since SCs are executed during block validation,
the execution time depends on the block time rather than the function execution time.
Therefore, all measured data points for all functions executed on the network (n=180)
are aggregated to calculate some statistics. In this analysis, the Hardhat’s “auto” feature
was used to determine the gas price and gas limit. This prevents the user from over- or
underpaying and estimates the transaction parameters reasonably.

Table 5.2 shows the minimum, maximum, mean and median time it took a transaction to
be included in a mined/validated block. The local Hardhat network is the fastest, using
its automine configuration that mines a block as soon as a transaction is received. On
both public test networks, Ethereum Ropsten and Polygon Mumbai, the transactions were
significantly slower, which resembles the execution on a public main network. Over the
last two years (June 25, 2020 - June 25, 2022), the Ethereum main network experienced an
average block time of 13.26 seconds and a median of 13.19 seconds. Polygon costs less to
build on (as shown above) and reports a much shorter block time averaging 2.19 seconds,
with a median of 2.16 seconds. Block times are good reference points for performance
during low congestion since transactions are included relatively quickly. During congested
times, the time it takes for a transaction to be included in a block can increase by a
multiple if the priority fees are not adjusted accordingly.

Predicting execution times of decentralized applications in an absolute manner is impos-
sible since it depends on many factors, such e.g., as block time, congestion, and priority
fees. Therefore the best thing one can do is to come up with estimations based on the

52 CHAPTER 5. EVALUATION AND USE CASE

Table 5.2: Recorded SC Performance n=180

Blockchain Min Max Mean Median

Ethereum Ropsten 9.5s 230.4s 22.8s 22.0s
Polygon Mumbai 6.0s 335.7s 16.9s 10.9s
Local Hardhat 0.024s 0.186s 0.038s 0.032s

current state of the BC. Choosing the BC that best suits the application is an important
decision to make and is one of the most significant decisions that can be taken regarding
the execution times of a SC-based application.

5.3 Security Analysis

Once deployed, SCs perform immutable business logic and can store large amounts of
tokens, which often have a monetary value. This makes them targets for attackers looking
to profit by exploiting vulnerabilities in SC and unexpected behavior of the BC. Patching
issues in a SC is usually impossible, which is also true for recovering the stolen tokens [16].
Well-performed security analysis and auditing of the SC by an experienced party helps
identify issues before deployment and prevent them in production. This chapter analyses
and evaluates the developed SC regarding security.

There are plenty of tools that help developers identify bugs in their SC. One example is
Slither, a static analysis framework written in Python. It runs a suite of vulnerability
detectors against a specific SC and prints out information about bugs or optimization
potential it has detected [28]. Running Slither against our SC did not identify any security
issues but only proposed to change some public functions to external.

Since the SC does not store or interact with any tokens, it does not expose itself to the
risk or the incentive of stealing tokens from it. Further, there is no general monetary
incentive around the functionality of the SC that could motivate people to exploit the
behavior of the BC in their favor, such as frontrunning.

The SC exposes an apparent vulnerability regarding the timestamps used throughout the
system. The first problem is caused when a supply chain entity calls a function of the
SC at the wrong point in time, injecting erroneous information into the SC. A second
problem arises because the miner can slightly manipulate the block time, which would
also lead to inaccurate information. The latter is not a big issue since the range within
which the miner can manipulate the timestamp is relatively tiny. A new block can not
be timestamped earlier than its parent and not too far into the future, as no miner would
build on that block [15].

The former can be fixed by establishing an incentive structure within the supply chain,
which motivates the entities to write the data to the BC at the right time.

Overall, the SC hardly exposes any incentive structure to perform malicious acts against
it, and modifying the state of the SC is sharply restricted only to trusted entities granted

5.4. USE CASE 53

Table 5.3: Stakeholders of the CheeseChain [41]

Category Description Stakeholder

Invested Funded the project and super-
vise the project’s development to-
wards its conclusion.

Innosuisse

Primary Their participation substantially
influences the success or failure of
the project.

Agroscope, interprofession Tête-
de-Moine, Fromarte, Fromages
Spielberger, Federal Food Safety
and Veterinary Office

Secondary Their acceptance and consent
have limited influence on the suc-
cess or failure of the project

Cheese dairies, retailers, cantonal
laboratories, Organisme Inter-
cantonal de Certification (OIC),
milk producers, regional office for
dairy consulting

Ternary Use the products or services pro-
vided by the project

Consumers

access by the administrator of the SC. Regarding the visibility of the data stored within the
SC, everything written to it is publicly visible, which matches the system’s requirements.
Therefore, the security risk of the CheeseChain SC solution is evaluated to be low.

5.4 Use Case

To this point, this thesis focused on presenting the developed system and its general use
case. This section goes a step further and applies it to fit the specific use case it was
created for in the first place, the CheeseChain.

First, the stakeholders of the CheeseChain are presented. Then, an evaluation is conducted
on a representative use case, including said stakeholders.

5.4.1 Stakeholders

The CheeseChain project is funded by Innosuisse, the Swiss Agency for advances in in-
novation, and is comprised of a consortium consisting of the following four organizational
entities: Agroscope, University of Zurich, Tête-de-Moine varietal organisation and Fro-
marte [17]. In addition to this consortium, additional stakeholders are defined for the
CheeseChain and categorised into four categories by [41].

Table 5.3 gives an overview of all identifiable stakeholders and sorts them into cate-
gories according to the significance of their involvement in the CheeseChain. The follow-
ing paragraphs introduce the primary stakeholders and explain their involvement in the
CheeseChain to understand their role and interplay in the project.

54 CHAPTER 5. EVALUATION AND USE CASE

Figure 5.2: A Simplified Cheese Supply-Chain [41]

Agroscope is the federal competence center for agricultural research in Switzerland. They
supply Tête-de-Moine dairies with bacterial cultures needed to achieve proof of origin of
the produced cheese. The provided bacterial cultures are compared to the effective cultures
in a sold cheese. This action is taken within a laboratory by conducting a PCR test and
helps determine a cheese’s authenticity [41].

The Interprofession Tête-de-Moine was founded as a supporting organization for the
registration of the Tête-de-Moine PDO. The association includes milk producers, cheese
dairies and affineurs, and aims to represent and market the Tête-de-Moine cheeses to
authorities and the public at home and abroad. Further, they pursue the fight against
counterfeits and provide the specifications for obtaining the PDO seal [44].

It is assumed that future audits of the cheese dairies can be carried out within the infras-
tructure of the CheeseChain, and thus digitalised certification will be possible. Therefore,
the CheeseChain heavily depends on its informatics infrastructure [41].

Fromarte is the umbrella organization of Swiss cheese artisans, committed to strength-
ening the commercial structures within milk processing. Fromarte unites 500 commercial
cheese dairies in Switzerland and offers them various services and training. In addi-
tion, they are involved in public relations and politics [39]. Their quality management
tool QS Fromarte Digital is highly relevant for the CheeseChain. The application sup-
ports recording information on fabrication controls, cleaning, maintenance schedules and
analysis results on compliance [41]. The CheeseChain bridges the data stored from the
application to the BC.

Fromages Spielhofer is a milk processing company that produces and refines Tête-de-
Moine PDO. They are also responsible for the trade of the cheese produced by themselves
and that produced by neighboring dairies. Further, the company records that 80% of the
cheese produced is sold abroad [38]. Within the CheeseChain, they aim to strengthen the

5.4. USE CASE 55

consumers’ trust abroad and are mainly responsible for handling product and export data
[41].

One of the tasks performed by Federal Food Safety and Veterinary Office is food in-
spection along the supply chain, which tests for compliance with hygiene and ingredient
regulations and is conducted by random sampling. Farm managers must report a wide
range of data to the authorities. This data is fed into the federal government’s Agricul-
tural Policy Information System (AGIS). The CheeseChain could be linked to AGIS to
provide increased data exchange and food safety. Further, it is assumed that coordinated
interaction of fraud detection and food inspections will allow food counterfeiting to be
detected more efficiently with the help of statistical indicators [41].

5.4.2 Scenario

This subsection represents a scenario analysis of the CheeseChain. It discusses how the
developed system could be applied to the specific use-case of a cheese supply chain and
evaluates the costs of one cycle. [41] presents a simplified use case of the cheese supply-
chain in Figure 5.2.

Figure 5.2 shows a use case with seven entities. Notably lacking is a laboratory entity
conducting the proof-of-origin tests. The system at its current state neither supports
tracking of individual cows during milk production nor does it support access to customs
documents to facilitate customs clearance. Removing these two entities and adding the
laboratory, the scenario is shrunk to six entities:

• Milk Producer: The milk producer registers every new batch of milk in the SC. The
milk producer does not have to know in which dairy or lot the milk will eventually
end up.

• Cheese Dairy: The cheese dairy registers a new lot and specifies from which batches
of milk the cheese will be produced. Once the cheese is produced, the first step is
recorded to complete the production. As the Tête-de-Moine usually ripens for four
months, another step is recorded once the cheese is ready to be sold.

• Distributors: Distributors pick up the cheese in the dairy and deliver it to the
retailer who purchased it. It is important to know the location where the cheese
was picked up and where it was delivered, as well as the time delta between these
two locations. For this reason, the distributor records a step at pick-up.

• Retailers: The retailer then confirms the receipt of the goods by adding another
step.

• Laboratory: Representatives of the laboratory entity buy a random sample of cheese
from the shelves of the retailer and conduct proof-of-origin tests on it. The results
are added to the SC.

56 CHAPTER 5. EVALUATION AND USE CASE

Table 5.4: Transactions in the Sample Scenario

Transaction Count Description Total Cost in
CHF on Ethereum
(Polygon)

Add Milk Batch 1 In this scenario all the milk used stems
from one batch

10.36 (0.0078)

Add Lot 1 Registering a lot is necessary to ingest
information about the milk used and
add further steps.

7.97 (0.0060)

Add Step 4 Cheese dairy (2), Distributor (1), Re-
tailer (1)

53.25 (0.0399)

Add Lab Result 1 The Laboratory adds test results 5.23 (0.0039)
Total 7 76.82 (0.0576)

Table 5.5: One Time (Fixed) Costs

Transaction Count Description Total Cost in
CHF on Ethereum
(Polygon)

Contract De-
ployment

1 Deployment of the SC is necessary to
use its functions

130.46 (0.0978)

Add Partici-
pants

5 Registering each entity is necessary to
grant write permissions on the SC

66.30 (0.0497)

Add Milk Batch 1 The additional cost of the first milk
batch added to the SC

1.27 (0.0010)

Add Lot 1 The additional cost of the first lot
added to the SC

1.27 (0.0010)

Add Step 1 The additional cost of the first step
added to the SC

1.07 (0.0008)

Total 8 200.38 (0.1502)

• Customers: Once the customer holds the cheese, he can retrieve the cheese’s history
from the website with the frontend application by entering the lot identifier or
scanning a QR code. The customer only reads the SC; therefore, no transaction is
performed.

Table 5.4 summarizes all transactions performed on the SC to facilitate the described
scenario and the cost associated with each. The several one-time costs of operating the
CheeseChain SC are displayed separately in Table 5.5, including the higher gas cost for
first call of addMilkBatch and addLot, the registration of all participants and the contract
deployment. These costs do not belong to the variable costs of a normal scenario but can
be considered fixed costs of the system. It is assumed that most laboratory results will be
positive. A negative test result would decrease the costs by 1.48 CHF on Ethereum and
by 0.0011 CHF on Polygon.

5.5. DISCUSSION 57

5.5 Discussion

The performance and cost of operating a dApp depend on the system’s BC used as infras-
tructure. Therefore, selecting the best suitable BC has to be done with great diligence [62].
The EthereumMainnet and Ropsten Testnet operating on the PoW consensus mechanism,
are significantly more expensive and less performant than their Polygon alternatives which
run on a PoS consensus mechanism.

Analyzing the performance of public BCs has shown that the performance of a system
is highly influenced by block time. Further, other factors, e.g., network congestion and
priority fees influence the time needed for a transaction to be included in a block. While
influenced by several factors, the performance of dApp functionalities relying on the under-
lying BC is not deterministic. This is emphasized by the outliers recorded in a relatively
uncongested BC environment while performing tests with similar parameters.

The performance of the system does not need to be real-time. A rough time estimate
of each step in the supply chain is enough to construct a valuable and understandable
history of the cheese. Even if it were to be decided that exact production timestamps
have to be used, an additional property providing this information could be added to the
Step struct. Adding this property would reduce the importance of the performance, as
it would only be necessary that the steps are recorded in the correct order. The exact
time the transaction was included in a block would not provide any valuable additional
information.

The execution of a particular transaction on the EVM requires the same amount of gas,
independent of the BC used, assuming that the EVM version is the same. This is due to the
deterministic nature of the Ethereum EVM. Therefore, the resulting price for a transaction
is determined by the gas and the native token price of each BC. A total of 14 transactions,
respectively nine transactions when excluding the registration of participants, can add up
to a substantial monetary cost on the Ethereum network. This operational cost can be
reduced by 1334 times using Polygon alternatively to the Ethereum Mainnet.

Regarding SC security, the system has a shallow risk since the lack of monetary valuable
tokens in the contract as well as a lack of an obvious incentive to exploit potential vulner-
abilities in the SC. However, bad private key management and dishonest participants can
put the integrity of the SC at risk. If the administrator’s keys were to be leaked, anybody
knowing the key could make changes to the system e.g., changing the laboratory results
or adding new lots. Should any other participant leak their key, the risk of incorrect
information entering the system persists. However, the administrator could remove the
affected participant from the system and prevent other malicious behavior.

With the combined lower transaction cost and improved throughput offered by Polygon
BC, in tandem with the low-security risk of the SC, the author prefers the Polygon BC
for the system’s operation and thinks the cost and performance are acceptable for a real-
world use case. Since technology evolves and the requirements differ for each system, one
must evaluate each case separately and can not rely on a universally correct answer.

58 CHAPTER 5. EVALUATION AND USE CASE

Chapter 6

Summary, Conclusions, and Future Work

This chapter concludes the work with a summary and some conclusions, listing potential
areas of future work based on insights gained during development.

6.1 Summary

This thesis aimed to create a Smart Contract (SC) based system for tracking within a
Swiss cheese supply chain. The system comprises a SC, a frontend and a server, for
communication with the SC through a website or API calls. In order to achieve this, the
basics of BCs and SCs have been studied. Thereafter, existing solutions in the area of
supply chain tracking and anti-counterfeiting with the help of BC have been researched.
As such, the developed SC presents a novel append-only solution for the general supply
chain tracking use case.

This was achieved by abstracting a supply chain into a product batch and steps registered
on the batch during the production process. The product batch is implemented and
recorded as a custom data type, a struct, that stores information about the product and
keeps track of the last production step performed. Each step is a struct containing a
timestamp, coordinates, the BC address of the entity that added the step and a pointer
to the previous step in production, forming an immutable backward traceable linked list
of steps. Further, an access control mechanism was integrated into the SC and is managed
by the system administrator and allows only authorized and registered entities within the
supply chain to make changes to the SC. This is necessary since the SC is intended to be
deployed on a public permissionless BC, where, if not restricted, any user could write to
the SC.

Such a SC was evaluated in terms of cost, performance and security using the Ethereum
Ropsten Testnet, the Polygon Mumbai Testnet and a local Ethereum Network. Finally,
a representative use case scenario of the system within the Tête-de-Moine supply chain
was constructed, and the costs for its operation were presented.

59

60 CHAPTER 6. SUMMARY, CONCLUSIONS, AND FUTURE WORK

6.2 Conclusions

This work has presented a new approach to supply chain tracking, leveraging BC tech-
nology and SCs for the EVM. When designing a dApp, choosing the best suitable BC is
important and will impact a project’s performance, cost and success. The cost of operat-
ing the system is volatile and dependent on technological advances of the chosen BC, as
well as on the current native token and gas price. Performance is another variable factor
of the system, which is influenced by multiple factors e.g., network congestion, block time
and priority fees.

The developed SC is tailored to the use case of tracking the Tête-de-Moine supply chain
and helps to enhance transparency and trust along the entire production and supply
chain. Due to the lower transaction costs on the Polygon Network, deploying the system
on Polygon is much more cost-efficient than deploying it on the Ethereum Mainnet. In
order to fulfill its purpose, it is vital that every step within the supply chain is recorded,
or the history of an item would not be complete. Hence, the developed system is agnostic
to the choice of BC as long as it executes SCs on the EVM. The SC architecture proposed
is flexible by design and allows for adaption and extension to fit any SCT use case.

6.3 Future Work

The system is usable for traceability along a cheese supply chain, especially the Tête-
de-Moine supply chain. It demonstrates a novel approach to BC-based supply chain
traceability, which allows customers to validate their products on-chain. However, there
is still great potential for improvements and future work, which is outside this thesis’s
scope.

As of now, a step allows participants to record a specific set of data points, which is
equal for all production steps. Considering that most steps in production are different
from one another, as well as not equally important and regulated, the most insightful and
relevant information can vary. An improved version of the SC could consider extending
the Step struct to store more information or even create a custom data type for each step
that produces extra valuable information, i.e., the temperature at which the cheese was
transported. Further, steps could be added more frequently and with greater granularity
producing a greater insight into the supply chain.

There is further room for improvement regarding steps, as the current implementation
assumes that at any point within the supply chain, only one step is performed and that
the output from that step is being used for the next step. This might be accurate for
cheese production; in more complex supply chains, it is common that two or more raw
materials or intermediary products are built simultaneously and then used together in the
following step. In order to allow the system to handle more complex cases, the SC should
support one step to follow two parallel steps and two parallel steps to follow one single
step.

6.3. FUTURE WORK 61

As it is crucial that entities along the supply chain record their performed steps, it is
important to make interaction with the SC as easy as possible. A mobile or web applica-
tion could facilitate that process, allowing participants to scan a QR code or Near-Field
Communication (NFC) tag available on the product. The use of sensors allows for record-
ing more detailed data and makes the system less prone to human error or injection of
faulty information. Instead of relying on the separate supply chain entities to provide
the coordinates where a step was performed, adding a GPS tracker could provide more
complete and insightful information.

Since more information means higher storage costs when using BCs, data could be stored
on an off-chain DB or on IPFS to either decrease the storage costs of the current im-
plementation or decrease the storage costs of an adapted implementation that uses more
data. This solution requires the hash of the data stored off-chain to be stored inside the
SC, which makes the system more cost-efficient while still assuring data immutability.

Lastly, a tighter designed access control mechanism would increase the security of the
SC and allow for operation in lower trust supply chain environments. Currently, the
CheeseChain relies on a degree of trust, which allows every Basic participant to deploy
a lot and add any step to any given lot at any time. A possible solution is to allow the
system administrator to assign participants to a set of lots they are allowed to manipulate
together with more specific roles.

62 CHAPTER 6. SUMMARY, CONCLUSIONS, AND FUTURE WORK

Bibliography

[1] American Institute of CPAs and Chartered Professional Accountants of Canada
(AICPA and CPA Canada). Blockchain Technology and Its Potential Impact on
the Audit and Assurance Profession, 2017. https://bit.ly/3IzTxFg, Last visit
March 21, 2022.

[2] Andreas M Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
O’Reilly Media, Inc., 2014.

[3] Andreas M Antonopoulos and Gavin Wood. Mastering ethereum: building smart
contracts and dapps. O’reilly Media, 2018.

[4] Imran Bashir. Mastering Blockchain. Packt Publishing Ltd., Birmingham, UK, 2017.

[5] B. M. A. L. Basnayake and C. Rajapakse. A Blockchain-based decentralized system to
ensure the transparency of organic food supply chain. In 2019 International Research
Conference on Smart Computing and Systems Engineering (SCSE), pages 103–107,
Colombo, Sri Lanka, March 2019.

[6] Kamanashis Biswas, Vallipuram Muthukkumarasamy, and Wee Lum Tan. Blockchain
based wine supply chain traceability system. In Future Technologies Conference
(FTC) 2017, pages 56–62, Vancouver, Canada, November 2017. The Science and
Information Organization.

[7] Marshall Blair. How are transactions validated?, 2018. https://medium.com/

@blairlmarshall/how-do-miners-validate-transactions-c01b05f36231, Last
visit April 22, 2022.

[8] Thomas Bocek, Bruno Rodrigues, Tim Strasser, and Burkhard Stiller. Blockchains
Everywhere - a Use-Case of Blockchains in the Pharma Supply-Chain. In IFIP/IEEE
Symposium on Integrated Network and Service Management (IM 2017), pages 772–
777, Lisbon, Portugal, May 2017.

[9] Dimitar Bogdanov. Proof of Authority Explained, 2021. https://limechain.tech/
blog/proof-of-authority-explained/.

[10] Bolsey Catherine. Switzerland Combats Counterfeit Cheese With
DNA Fingerprints, 2014. https://www.swissinfo.ch/eng/bloomberg/

switzerland-combats-counterfeit-cheese-with-dna-fingerprints/

40574480, Last visit March 15, 2022.

63

64 BIBLIOGRAPHY

[11] Etherscan Information Center. What is an Ethereum Address?, 2021. https://

info.etherscan.com/what-is-an-ethereum-address/, Last visit April 18, 2022.

[12] Glad Chinda. Mocha.js, the JavaScript test frame-
work: A tutorial, 2020. https://blog.logrocket.com/

a-quick-and-complete-guide-to-mocha-testing-d0e0ea09f09d/, Last visit
June 7, 2022.

[13] CoinMarketCap. Ether Price, 2022. https://coinmarketcap.com/currencies/

ethereum/, Last visit June 20, 2022.

[14] CoinMarketCap. Matic Price, 2022. https://coinmarketcap.com/currencies/

polygon/, Last visit June 20, 2022.

[15] Jeff Coleman. Can a contract safely rely on block.timestamp?,
2016. https://ethereum.stackexchange.com/questions/413/

can-a-contract-safely-rely-on-block-timestamp, Last visit June 25, 2022.

[16] Ethereum Commnity. Smart Contract Security, 2022. https://ethereum.org/en/
developers/docs/smart-contracts/security/, Last visit June 25, 2022.

[17] Communication Systems Group (CSG). Application of Blockchain Technology in the
Swiss Cheese Supply Chain (CheeseChain), 2022. https://www.csg.uzh.ch/csg/

en/research/CheeseChain.html, Last visit March 8, 2022.

[18] Ethereum Community. Set up Web3.js to use the Ethereum Blockchain
in Javascript, 2020. https://ethereum.org/en/developers/tutorials/

set-up-web3js-to-use-ethereum-in-javascript/#main-content, Last visit
March 26, 2022.

[19] Ethereum Community. Ethereum Accounts, 2022. https://ethereum.org/en/

developers/docs/accounts/.

[20] Ethereum Community. Gas and Fees, 2022. https://ethereum.org/en/

developers/docs/gas/.

[21] Ethereum Community. Introduction to dapps, 2022. https://ethereum.org/en/

developers/docs/dapps/, Last visit March 26, 2022.

[22] Ethereum Community. Proof-of-Stake (POS), 2022. https://ethereum.org/en/

developers/docs/consensus-mechanisms/pos/.

[23] Ethereum Community. PROOF-OF-WORK (POW), 2022. https://ethereum.org/
en/developers/docs/consensus-mechanisms/pow/, Last visit April 22, 2022.

[24] Ethereum Solidity Community. Contract ABI Specification, 2022. https://docs.

soliditylang.org/en/v0.8.12/abi-spec.html,, Last visit June 13, 2022.

[25] Ethereum Solidity Community. Introduction to Smart Contracts, 2022. https://

docs.soliditylang.org/en/v0.8.13/introduction-to-smart-contracts.html,
Last visit April 22, 2022.

BIBLIOGRAPHY 65

[26] EthersJs Community. Providers, 2022. https://docs.ethers.io/v5/api/

providers/, Last visit June 13, 2022.

[27] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, Vignesh Kalyanaraman, et al.
Blockchain technology: Beyond bitcoin. Applied Innovation, 2(6-10):71, 2016.

[28] Crytic. Slither, the Solidity source analyzer, 2022. https://github.com/crytic/

slither, Last visit June 25, 2022.

[29] Jean Cvllr. Solidity Tutorial: all about modifiers, 2021. https://medium.com/

coinmonks/solidity-tutorial-all-about-modifiers-a86cf81c14cb, Last visit
June 7, 2022.

[30] Burkhard Stiller Danijel Dordevic, Sina Rafati. Application of Blockchain Technology
in the Swiss Food Value Chain (Foodchains), 2019. Research and Industrial Project,
Communication Systems Group, Department of Informatics, Universität Zürich.

[31] Chris Dannen. Introducing Ethereum and solidity, volume 1. Springer, 2017.

[32] Ruma Das. Proof of Authority, 2020. https://medium.com/coinmonks/

proof-of-authority-ac34f1b3a2c2.

[33] Stefano De Angelis, Leonardo Aniello, Federico Lombardi, Andrea Margheri, and
V. Sassone. PBFT vs proof-of-authority: applying the CAP theorem to permissioned
blockchain. 01 2017.

[34] Ethereum.Stackexchange - user ’q9f. What is an ABI and why is it needed to interact
with contracts?, 2016. https://ethereum.stackexchange.com/questions/234,
Last visit June 13, 2022.

[35] Etherscan. Ethereum Average Gas Price Chart, 2022. https://etherscan.io/

chart/gasprice, Last visit June 20, 2022.

[36] Tiago M. Fernández-Caramès and Paula Fraga-Lamas. Towards Post-Quantum
Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Com-
puting Attacks. IEEE Access, 8:21091–21116, 2020.

[37] Nomic Foundation. Hardhat Documentation, 2022. https://hardhat.org/

getting-started, Last visit June 6, 2022.

[38] Fromages Spielhofer. Kompetenzen, 2022. https://www.fromagesspielhofer.ch/
uber-uns/kompetenzen/, Last visit July 1, 2022.

[39] Fromarte. über fromarte, 2022. https://www.fromarte.ch/de/ueber-uns/

fromarte, Last visit July 1, 2022.

[40] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritz-
dorf, and Srdjan Capkun. On the Security and Performance of Proof of Work
Blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS 16, pages 3–16, Vienna, Austria, October 2016.
Association for Computing Machinery.

66 BIBLIOGRAPHY

[41] Luca Girardi. Applikation der Blockchain-Technologie zur Authentifizierung von
TTête de Moine AOP, December 2021. Bachelor Thesis, College of Agricultural,
Forest and Food Sciences HAFL.

[42] Dominique Guegan. Public blockchain versus private blockhain. 2017.

[43] Parikshit Hooda. Proof of Work (PoW) Consensus, 2019. https://www.

geeksforgeeks.org/proof-of-work-pow-consensus/, Last visit April 22, 2022.

[44] Interprofession Tête-de-Moine. Die organisation hinder dem Tête-de-Moine AOP,
2022. https://www.tetedemoine.ch/de/infos/verwertungskette, Last visit July
1, 2022.

[45] Gwyneth Iredale. Public Vs Private Blockchain: How Do They Differ?, 2021.
https://101blockchains.com/public-vs-private-blockchain/, Last visit April
12, 2022.

[46] Hussam Juma, Khaled Shaalan, and Ibrahim Kamel. A Survey on Using Blockchain
in Trade Supply Chain Solutions. IEEE Access, 7:184115–184132, 2019.

[47] Zachary C Kennedy, David E Stephenson, Josef F Christ, Timothy R Pope, Bruce W
Arey, Christopher A Barrett, and Marvin G Warner. Enhanced anti-counterfeiting
measures for additive manufacturing: coupling lanthanide nanomaterial chemical sig-
natures with blockchain technology. Journal of Materials Chemistry C, 5(37):9570–
9578, 2017.

[48] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual interna-
tional cryptology conference, pages 357–388, California, USA, August 2017. Springer.

[49] Manlu Liu, Kean Wu, and Jennifer Jie Xu. How will blockchain technology impact
auditing and accounting: Permissionless versus permissioned blockchain. Current
Issues in auditing, 13(2):A19–A29, 2019.

[50] Petra Lüdin, Ueli von Ah, Deborah Rollier, Alexandra Roetschi, and Elisabeth Eu-
gster. Lactic Acid Bacteria as Markers for the Authenticitation of Swiss Cheeses.
CHIMIA International Journal for Chemistry, 70(5):349–353, 2016.

[51] Juri Mattila. The blockchain phenomenon. Berkeley Roundtable of the International
Economy, 16, 2016.

[52] MetaMask. A crypto wallet & gateway to blockchain apps, 2022. https://metamask.
io, Last visit June 13, 2022.

[53] Elena Nadolinski and Facu Spagnuolo. Proxy Patterns, 2018. https://blog.

openzeppelin.com/proxy-patterns/, Last visit June 7, 2022.

[54] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008. https:

//bitcoin.org/bitcoin.pdf.

[55] Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck. Blockchain. Business
& Information Systems Engineering, 59(3):183–187, 2017.

BIBLIOGRAPHY 67

[56] Polygonscan.com. Polygon PoS Chain Average Gas Price Chart, 2022. https://

polygonscan.com/chart/gasprice, Last visit June 20, 2022.

[57] Shaan Ray. The Difference Between Traditional and Del-
egated Proof of Stake, 2018. https://hackernoon.com/

the-difference-between-traditional-and-delegated-proof-of-stake-36a3e3f25f7d.

[58] D Sathya, S Nithyaroopa, D Jagadeesan, and I Jeena Jacob. Block-chain technol-
ogy for food supply chains. In 2021 Third International Conference on Intelligent
Communication Technologies and Virtual Mobile Networks (ICICV).

[59] Eder J. Scheid, Daniel Lakic, Bruno B. Rodrigues, and Burkhard Stiller. PleBeuS:
a Policy-based Blockchain Selection Framework. In NOMS 2020 - 2020 IEEE/IFIP
Network Operations and Management Symposium, pages 1–8, Budapest, Hungary,
April 2020.

[60] Eder J. Scheid, Bruno Rodrigues, Christian Killer, Muriel Franco, Sina Rafati, and
Burkhard Stiller. Blockchains and Distributed Ledgers Uncovered: Clarifications,
Achievements, and Open Issues. In Advancing Research in Information and Commu-
nication Technology, IFIP AICT Festschrifts, pages 1–29. Springer, Cham, Switzer-
land, August 2021.

[61] Eder J. Scheid, Bruno Rodrigues, and Burkhard Stiller. Toward a Policy-based
Blockchain Agnostic Framework. In IFIP/IEEE Symposium on Integrated Network
and Service Management (IM 2019), pages 609–613, Washington D.C., USA, April
2019.

[62] Eder J. Scheid, Bruno Rodrigues, and Burkhard Stiller. Policy-based Blockchain
Selection. IEEE Communications Magazine, 59(10):48–54, 2021.

[63] Jason Shah. How to Send Ethereum Transactions Us-
ing Web3, 2021. https://betterprogramming.pub/

how-to-send-ethereum-transactions-using-web3-d05e0c95f820, Last visit
June 13, 2022.

[64] Affaf Shahid, Ahmad Almogren, Nadeem Javaid, Fahad Ahmad Al-Zahrani, Mansour
Zuair, and Masoom Alam. Blockchain-Based Agri-Food Supply Chain: A Complete
Solution. IEEE Access, 8:69230–69243, 2020.

[65] Moralis Web3 Technology. Web3.js vs Ethers.js - Guide
to ETH JavaScript Libraries, 2022. https://moralis.io/

web3-js-vs-ethers-js-guide-to-eth-javascript-libraries/, Last visit
March 26, 2022.

[66] Lee Ting Ting. Comparison of The Top 10 Smart Contract Pro-
gramming Languages in 2021, 2021. https://pontem.network/posts/

comparison-of-the-top-10-smart-contract-programming-languages-in-2021,
Last visit March 26, 2022.

68 BIBLIOGRAPHY

[67] Karl Wust and Arthus Gervais. Do you Need a Blockchain? In 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), pages 45–54, Los Alamitos, CA,
USA, jun 2018. IEEE Computer Society.

[68] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scrfone. Blockchain Technology
Overview. arXiv preprint arXiv:1906.11078, 2019.

[69] Jesse Yli-Huumo, Deokyoon Ko, Sujin Choi, Sooyong Park, and Kari Smolander.
Where is current research on blockchain technology? A systematic review. PloS one,
11(10):e0163477, 2016.

[70] Changqiang Zhang, Cangshuai Wu, and Xinyi Wang. Overview of Blockchain Con-
sensus Mechanism. In Proceedings of the 2020 2nd International Conference on Big
Data Engineering, pages 7–12, Shanghai, China, May 2020. Association for Comput-
ing Machinery.

[71] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.
Blockchain challenges and opportunities: A survey. International Journal of Web
and Grid Services, 14(4):352–375, 2018.

[72] Peng Zhu, Jian Hu, Yue Zhang, and Xiaotong Li. A Blockchain Based Solution for
Medication Anti-Counterfeiting and Traceability. IEEE Access, 8:184256–184272,
2020.

[73] Maarten Zuidhoorn. The Magic of Digital Signa-
tures on Ethereum, 2020. https://medium.com/mycrypto/

the-magic-of-digital-signatures-on-ethereum-98fe184dc9c7, Last visit
April 18, 2022.

Abbreviations

ABI Application Binary Interface
ACM Access Control Mechanism
API Application Programming Interface
BC Blockchain
CM Consensus Mechanism
dApp Decentralized Application
DB Database
DPoS Delegated Proof of Stake
EOA Externally Owned Accounts
ETH Ether
EVM Ethereum Virtual Machine
HTTP Hypertext Transfer Protocol
IoT Internet of Things
IPFS Interplanetary File System
JSON JavaScript Object Notation
PCR Polymerase Chain Reaction
PDO Protected Designation of Origin
PoA Proof of Authority
PoS Proof of Stake
PoW Proof of Work
PUC Public CheeseChain Solution
QR Quick Response
SC Smart Contract
SCC Smart Contract Connector
SCL Smart Contract Language
SCT Supply Chain Tracking
UI User Interface
Uint Unsigned Integer
URI Unique Resource Identifier
UX User Xperience

69

70 ABBREVIATONS

List of Figures

2.1 Chain of Blocks [68] . 4

2.2 Block Structure [70] . 4

2.3 A Scenario of BC Branches [71] . 7

2.4 Illustration of the CheeseChain Network [41] 13

3.1 Modum.io BC Architecture [8] . 16

3.2 BC-Based End-to-End Solution for Agricultural and food supply chain [64] 18

3.3 Data Flow Between Entities [6] . 18

4.1 Specific Use Case . 24

4.2 Proposed SCT System Architecture . 25

4.3 Tracing Back Production Steps in a SC . 27

4.4 Server Directory Structure . 39

4.5 Connect or Deploy a Smart Contract . 44

4.6 Interacting With the Smart Contract . 48

4.7 The Production History of a Cheese Lot 48

5.1 Cost Relation of SC Functions . 50

5.2 A Simplified Cheese Supply-Chain [41] . 54

71

72 LIST OF FIGURES

List of Tables

2.1 SCLs Overview [66] . 9

3.1 An Overview of Related Work . 20

4.1 ACM Roles and Their Functions . 28

5.1 Cost of SC Function Calls as of June 20, 2022 51

5.2 Recorded SC Performance n=180 . 52

5.3 Stakeholders of the CheeseChain [41] . 53

5.4 Transactions in the Sample Scenario . 56

5.5 One Time (Fixed) Costs . 56

73

74 LIST OF TABLES

Appendix A

Installation Guidelines

The CheeseChain is a project developed by Matteo Gamba within the scope of his Bachelor
thesis and introduces supply chain tracking to the Swiss cheese industry.

A.1 Overview

The project consists of three main parts:

• Chain
• Frontend
• Server

Each of the parts has to be spun up, respectively deployed separately and configured
in order to work properly. The following sections explain how to get each part up and
running.

A.1.1 Chain

Requirements: NodeJs installed

The chain consists of all Smart Contract specific source code (i.e. Smart Contracts, tests,
hardhat development environment).

1. Install Node modules: yarn install

2. Create .env file: Follow instructions in .env.example file.
3. Compile Smart Contracts: This will compile your contracts and copy the artifacts

into the frontend folder, where it is necessary in order to deploy the Smart Contract
and communicate with it npx hardhat compile

4. Start a local Hardhat network: npx hardhat node

75

76 APPENDIX A. INSTALLATION GUIDELINES

Congratulations, you have a local Ethereum network running, ready to develop and deploy
your Smart Contracts on.

If you want to connect a frontend or server to the smart contract run the following
commands to generate TypeScript types from the contract ABI and copy them to the
frontend/server directory:

1. Generate types: npx hardhat typechain

2. Copy types to frontend & server: yarn copy:types

The server additinally needs to know the contract’s ABI. For that run yarn copy:abi.

Deploy the contract via the Hardhat framework:

1. Add the network: In the hardhat.config.ts file add the network configurations
of the netowork you wish to deploy to. Here1 is a guide.

2. (Optional) Create .env file: Add sensitive information needed in step 1 by to a .env
file, otherwise leave it inside the hardhat.config.ts.

3. (Optional) Add Etherscan information in hardhat.config.ts: If you want to
verify the Smart Contract via Hardhat, uncomment the Etherscan section and add
your information or follow the instructions2.

4. Deploy the Smart Contract: npx hardhat deploy -network <your-network>.
The network names must be equal to those specified in the hardhat.config.ts

file.
5. (Optional) Verify the Smart Contract: npx hardhat verify -network <your-

network> DEPLOYED_CONTRACT_ADDRESS. Find the instructions here3.

To run the test suite:

1. (Optional) Add GasReporter: If you want to get a gas report on all Smart Con-
tract functions uncomment gasReporter inside the hardhat.config.ts and add you
information or follow the guide4.

2. Run the Tests: npx hardhat test

Note: All the environment variables inside the chain directory are optional and depend
on the configuration of the hardhat.config.ts file

A.1.2 Frontend

Requirements: NodeJs and Metamask browser extension installed

1. Install Node modules: yarn install

1<https://hardhat.org/hardhat-runner/docs/config>
2<https://hardhat.org/hardhat-runner/plugins/nomiclabs-hardhat-etherscan>
3<https://hardhat.org/hardhat-runner/plugins/nomiclabs-hardhat-etherscan>
4<https://www.npmjs.com/package/hardhat-gas-reporter>

A.1. OVERVIEW 77

2. Create .env file: Follow instructions in .env.example file.
3. Serve the App locally: yarn start

You now have a website running locally that is ready to be connected to the Ethereum net-
work. Note that there are two routes implemented: The base route BASE-URL/ only allows
to retrieve the lot history via the frontend and is designed for the end customer. In order to
connect a Metamask wallet to the frontend and interact with the smart contract the BASE-
URL/connect url exists which allows all registered participants to call the smart contract
functions they were authorized to by the system administrator If you want to connect to
the local Hardhat network and interact with it, you must add the network to Metamask
first. A guide of how to do this can be found at https://support.chainstack.com/hc/en-
us/articles/4408642503449-Using-MetaMask-with-a-Hardhat-node.

A.1.3 Server

Requirements: NodeJs installed

The system does not require the server to be running in order to function. The server
exposes a REST API interface and serves as a middleman to communicate with the
Blockchain via HTTP requests.

1. Install Node modules: yarn install

2. Create .env file: Follow instructions in .env.example file.
3. Run the server locally: yarn start

78 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

The thesis was submitted as a .zip-file instead of a physical CD as agreed with the super-
visor. The content of the ZIP includes:

• thesis.zip containing the Latex source code.

• BA_Matteo_Gamba_Cheese_Chain_Final.pdf, the final version of the thesis in PDF
format.

• code.zip containing the source code of the SC, the frontend and the server as well
as the figures created in draw.io in their .drawio format.

• presentations.zip containing the slides for the midterm presentation held on May
19, 2022 and the slides for the final presentation held on August 30, 2022.

79

