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Task Assignment

The exercise aims to estimate the parameters of and fit the model proposed by Gabaix and Koijen

(2021) to bitcoin transaction data.

The research question is stated as:

Does the model of Gabaix and Koijen (2021) explain bitcoin price fluctuations ?
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Executive Summary

The thesis uses bitcoin data to estimate parameters, with which it is then tried to assess whether

the model proposed in Gabaix and Koijen (2021) can explain the mean and standard deviation of

bitcoin returns. The model uses the price elasticity of demand to generate observed prices and is

stated in perturbations around a baseline.

The results suggest that the model does not account for the full picture of return patterns observed.

The moments resulting from the simulation are far larger in absolute terms than the observed mo-

ments and the estimation results are hardly statistically significant. Albeit, a parameter of the

model, the speed of mean reversion of flows, has not been estimated, a back-of-the-envelope calcu-

lation implies a negative and very large value to counter the effects of the estimation results. A

sensible estimation of this parameter is beyond the scope of this thesis.

Bitcoin is well suited for price elasticity estimations because it is only marginally influenced by

supply shocks i.e., all the shocks can be ascribed to the demand side. Moreover, the full record of

transactions is in theory available to the public. A wide range of studies point to the effects trading

has on prices, yet only recently has literature emerged arguing for inelastic financial markets. The

model presented in Gabaix and Koijen (2021) uses flows to funds to drive asset prices away from their

fundamental values. This mechanism influences the stochastic discount rate in the model. For the

estimations, two datasets are used. One dubbed ‘daily data’ is provided by Stütz et al. (2020).1 This

dataset consists of bitcoin transaction data aggregated on a daily and an entity level, transactions

of bitcoin holders with only one address are omitted. The second called ‘block-level data’ has been

downloaded through the GraphSense API (Haslhofer et al., 2021). This dataset has been aggregated

on a block-level and contains all transactions.

Both datasets entail information about on-chain transactions. With this information, the estimations

are performed on the transformed data. The data used is stated in deviations from its rolling averages.

The rolling averages serve as a baseline. The results of the estimations suggest a positively inelastic

demand and contrarian investing agents. The simulations suggest that the model overpredicts the

volatility in bitcoin markets and overstates the premium paid by investors, in absolute terms.

1 A special thank to the authors of Stütz et al. (2020) and especially Rainer Stütz for rerunning their computations
and providing me with the data.
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Chapter 1
Introduction

In Summary: This chapter argues why the topic is chosen, introduces bitcoin, and the concept of

elasticity in financial markets.

Main Points:

� The model of Gabaix and Koijen (2021) uses price elasticity of demand and flows into assets

to generate asset prices.

� Bitcoin seems well suited to test this price mechanism in financial assets.

– Bitcoin is volatile and lacks a ‘fundamental value’ i.e., has no ‘non-monetary’ value.

– Bitcoin transactions are recorded and available publicly.

– Bitcoin has an inelastic supply, which is algorithmically determined and adapts to increases

in computing power. I.e., there are only minimal supply shocks.

– Bitcoin prices are mainly driven by demand-side effects.

� Demand is a known driver of volatility and influences the behavior of financial markets.
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Gabaix and Koijen (2021) introduces inelastic prices to financial market price generation and

discusses their effects on different aspects of finance. The authors propose a way to model financial

market fluctuations by incorporating the mechanism of inelastic prices. A consequence of an effect

of trading on prices would be that tastes play a role in price generation. I.e., someone buying bitcoin

(Nakamoto, 2008) because he likes the idea of decentralized finance would influence the exchange

rate of bitcoin. Even though, this decision might not be influenced by the fitness of bitcoin to archive

any of his ideas about decentralized finance.

That tastes play a role in the price generation of financial markets is exemplified by the Keynesian

beauty contest (Keynes, 1936). The story goes like this: market participants try to guess what others

will like and therefore try to buy cheap, what others want to buy at higher prices later. This stands

in sharp contrast to what Fama (1970) expects to be at the origin of price discovery. His efficient

market theory indicates that the only determinant for the price of a financial asset is its expected

return, which is independent of tastes but relies on the fundamentals of the asset in question.

The difference between the efficient view and the taste-driven view on price generation or discovery

is not if prices can be predicted or not. Fashions are unpredictable, too.

The views differ in the way how prices change. In an efficient setting, prices are set because of

foresight. Agents trade at a certain price because they know the future expected return. In a setting

with inelastic prices, fads and whims can drive prices substantially away from fundamentals. Bubbles

can build up and burst as everyone tries to sell what others want to sell and buy what others want

to buy just a step ahead of others.

Noise is many times said to be the culprit that prices differ from their fundamentals at times.

As Black (1986) puts it: ‘The price of a stock will be a noisy estimate of its value.’ (p. 534). Black

implies the existence of an inherent value with this statement. In the realms of stocks and bonds,

this makes sense because owning a stock means owning a fraction of a company, which in turn owns

real assets.

Because of this consensus assumption, that there exists a ‘ fundamental value’ of a company that

can be measured and fixed with enough information, it makes sense to talk about the fundamental

value of a stock. However, for bitcoin, this assumption seems not to hold up well. Hence, it is difficult

Diego Hager Bitcoin Inelasticity Hypothesis
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to distinguish noise from deviations driven by fundamentals.

Keynes used another metaphor in his book: the game ‘Old Maid’. In this card game, players try

to form pairs of cards and pass them on to their neighbor, without being left with the odd card.2

The similarity between the two metaphors is intended, yet the difference is that in the game ‘Old

Maid’ there is one losing player and in the beauty contest there is one winning player. The old maid

metaphor highlights the fact that in markets participants lose because they are too late to get rid of

the ‘odd queen’.

Similarly, ‘The Dollar Auction’ (Shubik, 1971), describes a situation where a dollar is sold to

bidders with the caveat that the two last bidders pay the price they bid. The dollar auction has

shown that prices can reach irrational highs, if players do not want to be the biggest loser on the

table, despite the costs being sunk at the time of the next bid.

Viewed in a pessimistic light, bitcoin seems to push both stories to their limits. One can get

stuck with an essentially worthless thing without obvious fundamental value. With production costs

that are sunk at the time of production (Dwyer, 2015), one can get captured in a cycle of overpaying

for not to be the biggest loser. These mechanisms would create a self-enforcing upward price spiral

for bitcoins.

Because the transaction data of bitcoin is publicly stored on the blockchain, it lends itself to an

investigation of the inner workings of price discovery or price generation in its markets.

Bitcoin is a relatively new cryptographic asset, widely believed to archive the objective of decent-

ralized proof of ownership. As adoption is unclear, the value of bitcoin will be heavily influenced by

believers in its technology and speculators, betting that they can sell it later for a higher price.

Even in stock markets, where prices can be anchored to fundamental values, much of the price

variation originates not in news and fundamentals (Cutler et al., 1988). How about bitcoin markets,

where the assumption of a measurable ‘value’ seems less straightforward? Nevertheless, it has been

shown that the existence of a fundamental value can reduce volatility (Hommes et al., 2005). Bitcoin

lacks this break on volatility and therefore is especially interesting to use as an object of study what

Gabaix and Koijen (2021) call: the origins of financial market fluctuations. A fundamental value of

2 https://bicyclecards.com/how-to-play/old-maid/.
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bitcoin would, among other things, need to depend on the wide adoption of bitcoin as a means of

payment, as a store of value, or something, similar, i.e. nothing measurable at the time of writing.

Or put differently by paraphrasing Blacks quote without the implicit assumption of an inherent

value: ‘The price of bitcoin will be noisy ’.

This property of ostensible distilled financial noise is why I believe bitcoin is a great possibility to

study the origins and effects of noise in financial markets. An interest in gaining an understanding

of how prices form in a market, beyond the level of metaphor, is what drove me to choose the paper

Gabaix and Koijen (2021) as the subject of my master’s thesis. In this thesis, I want to learn about

the role played by price elasticity or the price impact of trading in financial noise. To achieve this

goal, I use the model proposed by Gabaix and Koijen (2021) and combine it with the transaction

data of bitcoin.

This thesis continues in the following way: The remainder of this chapter first, introduces bitcoin

and thereafter financial market elasticity. Chapter 2 summarizes first the theory on which the price

generation in financial markets builds in general and later distinguishes between market macrostruc-

ture and microstructure in this sequence. The chapter 3 reviews more recent literature, first on

bitcoin and second on the price impact of trading. The subsequent chapter 4 introduces the model

of Gabaix and Koijen (2021) in a schematic way. Starting, as is done in the original paper, with

the two-period model and later expanding the scope to the infinite-horizon model. The data used is

detailed in chapter 5. This chapter starts with an overview of the data structure of the blockchain,

then dives deeper into the block-level data, and closes with the daily data provided by Stütz et al..

The estimations for the model are outlined in chapter 6. In this chapter, first, the implementation

and some of the adaptions necessary for bitcoin are discussed. Later the data transformations are

detailed and finally, the results of the estimations are discussed. In the chapter 7 the simulation is

outlined. The simulation is done with the model presented in Gabaix and Koijen (2021) and the

final chapter 8 concludes the thesis.

Diego Hager Bitcoin Inelasticity Hypothesis



1.1. BITCOIN 5

1.1 Bitcoin

In this section characteristics of bitcoin are outlined and eventually, some milestones in bitcoin history

are presented.

In this thesis, the term bitcoin is used for the digital asset. Fiat currency in circulation, such as

the Swiss franc and the dollar is referred to as cash. The terms ‘price’ and ‘exchange rate’ are used

interchangeably and refer to the bitcoin-dollar exchange rate i.e., the number of dollars needed to

buy one bitcoin.

Bitcoin has been referred to as a ‘synthetic commodity money’ by Selgin (2015). There are two

facets of this definition worth pointing out:

First, inelastic scarcity which makes bitcoin not subject to supply shocks i.e., bitcoin does only

negligibly react to advancements in computational technology (Selgin, 2015). Further, the supply

is known with near certainty, i.e there are no supply shocks, this feature distinguishes bitcoin from

commodities (Gronwald, 2019).

The feature of fixed and near-to-known supply is due to the changing difficulty of the creation

process (‘mining’). To create bitcoins a computational problem needs to be solved. The network

participant who first solves the problem gets the newly created coins as a reward. The process is

designed in such a way that a new block is mined, and newly created bitcoins are distributed roughly

every 10 minutes. The supply of bitcoins approaches a maximum of 21 million (Nakamoto, 2008). It

started with a reward of 50 bitcoin per block and halves approximately every 4 years. The current

block reward is 6.25 bitcoins per block and will reach zero around the year 2140.3

As the reward diminishes, the incentive for mining will slowly shift from block rewards to fees

paid by agents to the miners who include the transaction in the new block, therefore validating the

transactions. See Böhme et al. (2015), Dwyer (2015) or Antonopoulos (2017) for further information

on the inner workings of the bitcoin network and Dowd (2014) for a comparison to earlier digital

currency proposals.

Dwyer (2015) and Selgin (2015) note the similarity of the inelastic supply of bitcoin to the

3 At the time of writing in 2022. For an overview of the current block-reward see: https://bitcoinvisuals.com/

chain-block-reward.
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1.1. BITCOIN 6

‘computer controlled money’ proposed by Friedman (2005). The rule is reversed however, it is not

the case that the quantity created is set such that the nominal interest rate is zero. Contrary, the

supply is fixed such that if demand is positive, a rise in value compensates for a zero interest rate. The

deflationary pressure built in the foundations of bitcoin is intended as a reward for early adopters and

thus facilitates adoption (Huber and Sornette, 2022). The deflationary effect has the disadvantage,

that it makes bitcoin prone to hoarding, which impedes its use as a medium of exchange (Dowd,

2014). It has been shown that many users hold bitcoin as a speculative investment or store of value

(Glaser et al., 2014).

Second, the absence of nonmonetary value i.e., there is no additional value in holding bitcoin

than to use it as a medium of exchange, unit, or store of value (Selgin, 2015). The usefulness of

bitcoin for the first two use cases is disputed because of its high volatility. The second two by the

fact that it is not backed by an economy based on analog goods and that it lacks the possibility for

credit and lending (Yermack (2015) and Senner and Sornette (2019)).

The missing non-monetary value makes bitcoin sensitive to demand-side factors connected to

its usefulness as a medium of exchange, a trait often reported. Despite having extreme swings and

displaying bubbles in the price path, Gerlach et al. (2019) and Dyhrberg (2016) find similarities in the

behavior of the bitcoin return volatility to gold and cash. They, therefore, place bitcoin somewhere

between those assets in terms of volatility risk and attribute positive hedging properties to bitcoin.

Dyhrberg (2016) further indicates that the return of bitcoin holdings is affected by its usefulness as

a medium of exchange. More recent studies note that bitcoin volatility shows a negative correlation

when compared with U.S. stock market volatility and tends to be pro-cyclical (Conrad et al. (2018)

and Walther et al. (2019)).4

Hedging properties are discussed further in Bouri et al. (2017a), they find beneficial properties in

shorter and longer time horizons.5 In Bouri et al. (2017b) the hedging properties are reassessed, and

the authors qualify the hedging properties. They, however, note the beneficial properties of bitcoin

as a diversifying asset. Fang et al. (2019) note the changing nature of correlations between bitcoin,

4 A recent investigation of the statistical properties of different cryptographic currencies has been done by Phillip
et al. (2018)

5 Interestingly, Bouri et al. (2017a) describe that if the bitcoin market is bullish, it does not react to heightened
global uncertainty in the short term.
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1.1. BITCOIN 7

equities, and bonds.

Similarly, in-depth investigations of bitcoin price correlations with different variables measuring

supply and demand side market forces done by Ciaian et al. (2016a) and Ciaian et al. (2016b)

find that the variables indicating the attractiveness of bitcoin for investors and users are the most

germane and that the variables relevant for the short term differ from the ones relevant for the long

term. Likewise, Bouri et al. (2017b) find different hedging effects for weekly and daily data. A more

detailed literature review concerning bitcoin with a greater focus on the subject of the thesis can be

found in chapter 3.1.

An important distinction between cash and bitcoin is anonymity. Where a payment in cash

cannot be traced back, transactions in bitcoin can, see e.g., Ron and Shamir (2013), Ron and Shamir

(2014) and Meiklejohn et al. (2013) for examples of how this can be done. There is, however, the

possibility to remain pseudonymous on the blockchain. Yet, if a peer wants to exchange bitcoins in

cash i.e., leave the blockchain, regulations make it increasingly difficult to stay pseudonymous.6

1.1.1 Historical Aspects

In what follows, the history of bitcoin is outlined with some important events. It is done so, shortly

and by no means completely.7 I will not introduce technological changes triggered by bitcoin. For

an early review see Bedford Taylor (2013).

A widely known fact is that the initial block, the genesis block, contains a message which reads:

‘The Times 03/Jan/2009 Chancellor on brink of second bailout for banks. This quote refers to a

headline of an article in the magazine The Times. The first documented retail use case in the history

of bitcoin was an exchange of 10’000 bitcoins for two pizzas in the year 2010. Further in the year

2010, a vulnerability allowing for the creation of an arbitrary number of bitcoins was exploited. The

blockchain was forked below the transactions, such that these transactions do not appear in the valid

blockchain, and the bitcoin protocol was updated, such that the vulnerability no longer exists. This

deletion of the transactions and the subsequent update of the bitcoin protocol sparked a wide discus-

6 There are services to obscure the identity of transacting peers. See Möser and Böhme (2016) and the references
therein for more information.

7 For more detail see: https://en.wikipedia.org/wiki/History_of_bitcoin and the links therein.
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sion about the control of the bitcoin network. In 2013 the infamous trading platform Silkroad was

closed down by the FBI. Silkroad was selling illegal substances, services, and other things through a

darknet webpage using bitcoins as a medium of exchange. 2014 was the year where the crypto bourse

Mt. Gox was hacked and had to file bankruptcy protection in Japan (for a case study see Bolici and

Rosa (2016)). The Swiss Railway operator began selling bitcoins at their ticket machines in 2016.

Bitcoin cash was created as a hard fork from the bitcoin blockchain in the year 2017. The difference

between the two is the block size limit, which is 1MB in bitcoin and 8MB in bitcoin cash. The larger

storage capacity should allow for more transactions stored on the ledger. In 2021 bitcoin became an

allowed currency to pay taxes in the Swiss canton Zug and bitcoin became also legal tender in El

Salvador.

In short: Bitcoin supply is algorithmically determined and adapts to advances in computational

power. Hence, bitcoin prices are mainly influenced by demand-side factors. In contrast to cash,

all transactions are stored on the public ledger with a pseudonym. Some aspects of bitcoin price

behavior make it potentially useful for hedging, yet the results are mixed. In recent times, bitcoin

has been adopted as a means of payment by some governmental agencies.

1.2 Elasticity in Financial Markets

This section describes the evolution of research concerning the price elasticity of demand in financial

markets.

That market prices are influenced by non-fundamentally driven demand was presumed for a long

time. Early investigations concentrated on demand curves. Downward sloping demand curves would

imply finite elasticities. In contrast to efficient market models, with horizontal demand curves and

therefore infinite elasticities, downward sloping demand curves would entail some room for market

inefficiency.

Shleifer (1986) documented the possible presence of downward sloping demand curves and there-

fore the presence of finite elasticities in financial markets. He looked at S&P 500 index inclusions

and documented that an index inclusion is accompanied by an abnormal return. Shleifer attributed

Diego Hager Bitcoin Inelasticity Hypothesis



1.2. ELASTICITY IN FINANCIAL MARKETS 9

the abnormal return to the inflow of index fund demand for the included stock. His suggestion was

later confirmed (Lynch and Mendenhall, 1997).

The studies by Loderer et al. (1991) and Bagwell (1992) went a step further and indicate elasticity

effects in financial markets.

Loderer et al. (1991) looks at firm stock offerings from regulated firms and finds paltry evidence

that stock offerings transmit negative information to the market. The authors suggest that price

changes originate from price elasticities. This suggestion is later confirmed by Levin and Wright

(2002).

Bagwell (1992) investigates the effects of share repurchases via Dutch auctions and reports evid-

ence that the price increases at announcement days originate from market elasticities. Bagwell further

notes that the supply elasticity correlates with firm-level characteristics, notable is the increasing

effect of takeover activity i.e., if the firm is subject to a takeover, the supply elasticity of the firm in-

creases. There is also a reverse effect of elasticity on Dutch auctions i.e., firms expecting higher price

elasticity are those who chose the Dutch auction format to repurchase outstanding shares (Hodrick,

1999).

Despite criticism on the methods used in early studies of the matter (e.g. McWilliams and Siegel

(1997) and McWilliams et al. (1999)), a large strand of literature emerged with findings suggesting

that trades have price impact at the market microstructure level (e.g. Bouchaud et al. (2018) and

section 2.3) and on the market macrostructure level (section 2.2).

The effects of trades on prices have been used to predict volatility. E.g., Greenwood and Thesmar

(2011) construct a predictive measure for volatility based on the ownership structure of the stock.

The idea behind, what they call ‘fragility’, is that if stock owners face correlated liquidity shocks the

stock in question is more volatile.

Demand effects on prices by large institutions can explain some stylized facts in financial markets

e.g., momentum and reversal patterns (Vayanos and Woolley, 2013).

Furthermore, Lou et al. (2019) documents that demand patterns during overnight and intraday

periods differ, giving rise to different profitability of strategies during different periods. He attributes

this effect to differing demands between the traders active during the day v during the night.
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That heterogeneous demand exhibits influence on prices and risk assessments is a near fact today

and is incorporated in asset pricing models e.g., Koijen and Yogo (2019). Further theoretical papers

include price elasticities into asset pricing theories such as Gabaix and Koijen (2021) and Haddad

et al. (2021). The latter goes a step further, arguing that market elasticities emerge in a competitive

way where agents are rational optimizers, alike the findings of Tóth et al. (2012) on a microstructural

level. In summary, elasticities are dynamic and subject to the interplay between market participants.

To conclude this brief outline, there is a wide range of evidence for the effects of demand on price

generation in financial markets.
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Chapter 2
Theory

In Summary: This chapter first discusses the aspects of money and second, outlines shreds of the

evolution of the theory which led to the model proposed by Gabaix and Koijen (2021). It further

puts the model in relation to other approaches.

Main Points:

� Private provision of money can be efficient.

� In efficient markets prices change without trade.

� Neither prices nor their volatility change only due to fundamentals

� Markets with costly information cannot be informational efficient.

� Information in prices is decreasing in the cost of information.

� Common knowledge about stochastic dividends does not induce agents to form homogeneous

beliefs.

� There is evidence of a tendency of market participants to align their beliefs.

� The impact of trades on prices has been found to increase as a function of the size of the order.

– The power is found to be smaller than one.

11
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2.1 Overview

This section presents an overview of some theoretical aspects later touched upon in the thesis. The

main topics are the aspects identified by abstract approaches to understanding money, and the

formation of prices in markets in general. A short introduction to the similarities of money and

memory, which will be used later in section 3.1, and a discussion of the feasibility of private money

provision is presented. Thereafter, the theory of market efficiency is discussed, and the theory of

dynamic market adaption. Then, some models for trading are presented and finally, the distinction

between micro- and macrostructure literature is drawn.

2.1.1 Money

Before turning to price formation, some aspects of money are noted, which make money different

from other goods.

Kocherlakota (1998) described the parallels between money and memory. In his seminal paper,

he showed in several models that money can enable distributional outcomes similar to that archived

if agents had access to the memory of past transactions. Marimon et al. (2012) showed in their

model that private provision of money is possible and efficient (except for the first period, i.e. the

introduction stage) if the private entity can commit to stable inflation and there is competition

for the provision of money. They argue further that with negative inflation the ‘Friedman Rule’

monetary equilibrium can be reached and is also efficient under competition. An interesting further

note is that currency is an experience good.

The first aspect is built into bitcoin, with its distributed ledger of transactions, and a commitment

for stable inflation is tried to be archived by the algorithmic commitment to a given supply. In their

model, however, a currency can be produced at nearly no cost. This holds not in bitcoin due to the

proof-of-work mechanism explained in section 5.1.1. A further caveat to transferring their model to

bitcoin is that there is no profit maximizer behind the issuance of bitcoin.

Senner and Sornette (2019) qualify the money-like properties of bitcoin by emphasizing that

bitcoin lacks the possibility of creating it dynamically i.e., as a response to an investment opportunity.

As the authors further argue this slows innovation and economic growth and prevents bitcoin from
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backing future production. Moreover, the idea of a fixed supply governing inflation is outdated

according to Senner and Sornette.

2.1.2 Market Efficiency

Market efficiency as defined by Fama (1970) implies that prices reflect all available information.

Combined with the assumptions that expected returns describe the market equilibrium in its entirety

and that the most recent information is used by market participants to form their return expectations

and with that the price, Fama (1970) shows that the price process must be a martingale.

Such an efficient price is perfectly elastic. The arrival of new information changes the price to its

efficient value, where it stays independent of demand. A price that reflects the fundamental value

would deter investors from trading, as several authors find (see 2.1.3). Every trade will be done at

an efficient price, nobody can gain by trading. In other words, prices change due to informational

changes and not due to trading (Bouchaud, 2021). Gabaix and Koijen (2021) test the elasticity of

classical economic models and show that the implied elasticities are high.

A qualification of the strong assumptions implied by the ‘Efficient Market Hypothesis’ is the

‘Adaptive Market Hypothesis’. In Lo (2004) and further Lo (2005), Lo develops what he calls

‘Adaptive Market Hypothesis’ to reconcile the deviations of market behavior from the predictions of

the efficient market hypothesis. He shows cyclical first-order autocorrelations of the S&P 500 index

as evidence that markets are not efficient all the time but are at times. The force that drives the

prices away from fundamentals is, in this view, learning effects. Changing market behavior was also

noted by Brogaard et al. (2021). The authors suggest market maturing as a reason for their finding

of overtime decreasing noise levels. They further note an increase of influence from firm-specific

information and attribute this raise to changes in regulation.

It has also been shown that efficiency differs between markets e.g., Urquhart (2017) finds in-

dications for inefficiencies, in a Fama (1970) sense, in precious metals markets, Choi (1999) reject

the random walk hypothesis for some currencies and weak efficiency, in a Fama (1970) sense, has

also been rejected in the art market (David et al., 2013). The authors of the latter study point to

different potential factors influencing the elasticity of the art market, of which some are also present
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in the bitcoin market i.e., inelastic supply and difficult financial valuation (see Frey and Eichenberger

(1995) for the complete list of factors).

2.1.3 Models of Trading

In Jaffe and Winkler (1976) investors’ ability to forecast changes in future value is what generates

profits from trading. In the light of the Keynesian Old Maid from chapter 1, one may think that the

value to be predicted is influenced in the same way by fads as it is by fundamentals.

Similarly, Rubinstein (1975) shows that in his model, informational efficiency leads to no trade

in the absence of new information. As shown by Milgrom and Stokey (1982) there is no trade if

the initial allocation is Pareto optimal. Furthermore, they note that price changes can drown out

the private information of traders. Grossman and Stiglitz (1976) show the importance of different

information levels of agents to the existence of markets in a model where information is costly, and

participants chose to be informed. Finally, Hakansson et al. (1982) derive necessary and sufficient

conditions for the social value of information for a variety of models.

Yet, investors seem to trade more than they ought to (Odean, 1999) and prices change not only

on new information (Cutler et al., 1988), neither does price volatility (Engle et al., 1988).

A possible path for the explanation of trading in efficient markets is when informed traders trade

with uninformed or noise traders. In models where informed traders trade with noise traders, noise

traders fulfill an important liquidity-providing function but also make prices noisy (Black, 1986).

The necessity for noise traders as liquidity providers creates dangers for financial market functioning

by the creation of liquidity crises (Brunnermeier and Pedersen (2009), Dall’Amico et al. (2019) and

others).

However, it is not clear what drives noise traders to trade, as they do not make profits on average.

Different models were established with the informed trader v noise trader set-up. Grossman and

Stiglitz (1980) show in their model that markets with costly information cannot be informationally

efficient i.e., that costless information is a necessary condition for informational efficiency. Verrecchia

(1982) extends the model of Grossman and Stiglitz to information aggregation through prices.

The models of Grossman and Stiglitz (1980) and Verrecchia (1982) show that the informativeness
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of the price is increasing with decreasing marginal utility of information in the number of informed

individuals. The number of informed individuals is increasing in the noise of the supply. Further, the

information contained in prices is decreasing as the price of information and the noise in the supply

of the asset increases.

A further step to a better understanding of price generation in markets are models, in which

agents incorporate their effects on prices and act accordingly. Kyle (1985) introduced a model where

a single informed trader takes the effect of his trades on prices into account. In his model increasing

the number of noise traders increases the profits of the informed trader, who has all the information.

This single informed trader can bring prices in line with his information.

Another interesting facet of the model presented in Kyle (1985), is that the price impact of

trading is endogenous and that the model makes predictions about market liquidity.

Later, Kyle (1989) expanded the model with traders who keep prices inefficient enough to profit

from their information.

The last two models mark a departure from the way price impact was hitherto perceived. Price

impact has become a strategic choice. Liquidity provision has to trade off gains from uninformed

traders and losses from informed traders. This leads informed traders to hide their intentions and

to adjust volume, as do liquidity providers. These considerations lead to a wide range of literature

known as ‘market microstructure’ literature.

Furthermore, having agents account for their price impact opens the scope for price manipulation

via trades i.e., traders who trade with the sole aim to push prices in a certain direction.

2.1.4 Price Generation

Allen and Gale (1992) describe in their paper a mechanism of price manipulation and show that

it is indeed possible to manipulate prices if the other agents think that there is a chance that the

manipulator is an informed trader. However, their example does not constitute what Kyle and

Viswanathan (2008) define as illegal trading. This is because the manipulator in the model of

Allen and Gale (1992) does not necessarily affect liquidity in a destabilizing manner. Hence, the

manipulator in Allen and Gale (1992) merely is more of a ‘successful’ speculator or a successful noise
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trader.

An empirical investigation of price manipulation, as defined by Taiwanese law, is done by Huang

and Cheng (2015). The authors describe how price manipulation affects the efficiency of prices and

depends on company fundamentals. They note that the effects of price manipulation depend on the

trustworthiness of the corporation’s government and reporting and that manipulated prices change

price efficiency.

This example shows, that simply driving prices away from fundamentals cannot constitute ma-

nipulation, even if other traders assume you might be better informed than they are. If they then

join the trades you are executing, the price might rise further and further constituting a financial

bubble.

Bubbles

Bubbles and crashes should only emerge sporadically in a rational market because agents incorporate

new information in their price expectations. Yet, as early as Keynes (1936), pundits acknowledged

the presence of bubbles and crashes in financial markets. Especially so after the experience of the

1930 market crash and the following recession.

Friedman and Aoki (1992) show how bubbles and crashes can occur in a rational setting. Their

mechanism works through an imbalance of information i.e., less informed agents move the price when

trading with better-informed agents. These price movements then induce other traders to incorporate

a false price signal into their expectation updates. However, their restrictive assumptions keep the

bubbles bounded and finally convergent to the true value. The mechanism of undervaluing private

information can be rationalized as Bikhchandani et al. (1992) show. They propose a model where

agents disregard private information completely and imitate the actions of the preceding agents.

This behavior creates a cascade of self-reinforcing false information propagation.

In experiments, Camerer and Weigelt (1991) show that the assumption of uninformed traders

in a market, can lead to irrational price rises because uninformed traders misinterpret price signals.

Interestingly in their experiments Camerer and Weigelt note that lasting bubbles predominantly

emerge in early periods in their experiments, indicating the learning effects of a market or a maturing
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of the market. Learning effects were also reported by Smith et al. (1988) and additionally, they show

that common knowledge of identical stochastic dividends does not induce agents to form identical

beliefs about returns. The latter finding suggests that even in settings where one part of the return

i.e., expected dividends, are known to all participants, uncertainty about the behavior of others

induces enough volatility to create seemingly profitable opportunities to deviate from the collective

believes.

More recently, Hommes et al. (2005) show in their experiments that agents tend to coordinate

their predictions, and in doing so, the agents form self-fulfilling prophecies. Moreover, Hommes et al.

(2005) show that the presence of traders who strictly trade on fundamentals dampens bubble-building

tendencies in markets.

The findings of the above experiments show that irrational forces play a role in market inter-

actions. A view popularized by Shiller et al. (1984). Later summarizing in Shiller (2014), he lays

out evidence that behavioral factors play a role in markets and following trends can be a rational

strategy. Indeed, Kozak et al. (2018) show that factor models constructed on rational factors may

only incorporate risk-premia created by investor behavior i.e., their beliefs and tastes. This find-

ing holds when the behavior is comprising enough to influence large parts of the market i.e., when

rational arbitrageurs react to demand from behavior-driven agents. The main assumption for this

effect to play a role is in absence of near arbitrage opportunities, which despite the possibility of

restraints on arbitrage (Shleifer and Vishny, 1997), seems plausible. Huang et al. (2019) show further

that trades initiated devoid of fundamentals lead to large-scale price effects in markets, underlining

the argument of Kozak et al. (2018).

The thinking of how markets work shifted from the representative two agents to one which

understands markets as complex systems. The behavior of such a system is driven by the interactions

of the thousands of participants interacting with the system and with each other.

Sornette (2004) looks at markets through the lens of such complex systems, where interactions

of expectations rationally fuel irrational behavior. In the same vein, Bouchaud (2013) presents

different models which exhibit ‘state transitions’ i.e., regimes where models are unstable, even with

smooth underlying behavior of agents. This view brings us again close to the Keynesian view, where
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market participants need to foresee the moves of their peers and sudden mood changes can have dire

consequences. Indeed, during crises the contribution of market-wide information to return variance

spikes but is low during normal times (Brogaard et al., 2021).

The modern theoretic literature concerning the price impact of trade flows can roughly be di-

vided into two literature strands. The market macrostructure literature, where Gabaix and Koijen

(2021) forms part of and the market microstructure literature on which Bouchaud (2021) base their

arguments.

According to Bouchaud (2021), the model and the results in Gabaix and Koijen (2021) can be

related naturally to the market microstructure literature.

The main difference between the two strands is how close they zoom in on trades i.e., the

market microstructure focuses on individual trades in general on intra-day timescales, orders, and

metaorders. A metaorder is an order which is split into several orders. The smaller orders are dis-

tributed over time and possibly space i.e., sent to different exchanges. The market macrostructure

looks at flows i.e., aggregated trades between funds or larger entities on timescales about a quarter

of a year.

Yet, both strains look at the same phenomenon, which is the price impact of trading. Fur-

thermore, what is called liquidity in the market microstructural approach refers to what is called

elasticity in the market macrostructure approach (Hasbrouck, 2007).

Despite having different approaches both strands generate similar results as Gabaix and Koijen

(2021) and Bouchaud (2021) point out. Both strands detected several instances, where markets

are led astray from efficient valuation because of trading e.g., Coval and Stafford (2007) find price

pressure on common holdings of funds with extreme capital in- and outflows. Furthermore, both

approaches combine the feature of funds and mandates e.g., Frazzini et al. (2018) note that trading

algorithms perform rebalancing trades and Gabaix and Koijen (2021) base their model on the man-

dates of funds. In other words, both approaches try to measure the same thing on different scales.

This makes it hard to exactly differentiate between the two strands. The better-informed reader may

pardon any eventual misclassification.
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Summarizing this section, it is noted first, that it can be possible and efficient for private agents

to offer money. Behavioral effects play a non-negligible role in price generation mechanisms. It

is, however, extremely difficult to distinguish between effects that are due to collective behavioral

tendencies or changes in some sort of fundamental value. That trade will not happen in an efficient

and rational setting has been shown in different models. Noise traders can explain, why trades happen

frequently in financial markets. More complex models try to incorporate the effects trades have on

prices and the information prices offer. Recent models include fragile mechanisms of expectations

leading to state transitions from stable states to unstable states.

2.2 Market Macrostructure

Focusing on large-scale phenomena, the market macrostructure literature is not as narrowly defined

as the microstructure literature. The market macrostructure approach mainly derives its conclusions

from market-wide effects, frequently from interactions of financial funds and markets. The focal point

of the market macrostructure approach is on large-scale trading, sometimes referred to as flows. The

effects are generally identified through exogenous factors and measured as the price impact of those

e.g., Li et al. (2021) exploit demand shocks on funds during Chinese IPOs to measure the price

impact of those shocks. Similarly, Da et al. (2018) investigate the effects a financial advisory firm

has on the stock market through recommendations on market timing made to its customers.

The view of the market macrostructure literature is driven by the idea of a supply and demand

setting for prices. As such, the price elasticity of demand is a natural assumption for the market in

general, yet arbitrage arguments have so far put doubt on its existence in financial markets. Recent

literature questions the idea of fully efficient markets and leans towards a more dynamic view (Lo,

2004).

In this more dynamic view, behavioral effects shape market reactions in addition to rationality.

The model of Gabaix and Koijen (2021) is an attempt to reconcile that all trades influence prices and

because demand effects can be driven by other sources than pure rationality e.g., irrational choices,

can influence markets. This line of research is relatively new, and identification of clear effects is

difficult because of the simultaneity of demand and supply (Levin and Wright, 2002). Early examples
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concentrate on the effects investors induced on funds by in- or disinvesting by using an instrumental

variable approach to extract the effects.

In what follows exemplary studies are described to give an impression of the evolution of the

literature. The reader is referred to section 3.2 for more examples.

Edelen (1999) studied the effects of flows of money on prices to develop a better understanding

of fund performance. Edelens argument is that, because funds are subject to demand shocks of

investors, they need to rebalance their positions. Such trading for the purpose of rebalancing is

equivalent to noise trading because at least some investors are facing idiosyncratic reasons for their

cash movement. Funds, therefore, provide liquidity services, which are costly to investors. Hence the

relative underperformance of funds.

This argument paved the way for investigations on how flows in and out of funds or other financial

entities affect prices. Coval and Stafford (2007) showed that asset fire sales of investors lead funds

to decrease their positions fast. This cascade reduces asset prices temporarily and can be profitably

exploited. This is evidence for the model presented by Brunnermeier and Pedersen (2005), which

outlines traders profiting from others’ distress by driving prices further down as the distressed is in

need to sell. Both models shine a light on the mechanisms with which the price influence of trading

can be exploited for profits.

Frazzini and Lamont (2008) interpret cash flows into and out of funds as sentiment, with this in-

terpretation the authors show that sentiment-driven rebalancing of funds destroys value for investors

in the long term. The investors in their sample are return chasing i.e., funds that have overperformed

in the past are the ones experiencing inflows. This behavior leads the funds with inflows to increase

their positions, further driving up prices. In the long term, prices reverse, and investors suffer losses

on their funds’ holdings. They can relate the flows during the observed period to trading strategies,

bringing forward the question of why individual investors shift their holdings in the first place.

Lou (2012) shows that, because flows to funds are predictable and flows into funds drive asset

prices, stock returns can be partially predicted. Especially strong is the connection between flows

from and to funds and stock momentum effects. His findings are later corroborated by Li (2021).

All these price effects also influence fund behavior as Edmans et al. (2012) show. Price effects
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can increase the possibility that a fund is acquired by another financial entity. This finding point to

reverse causality effects at play in price generation mechanisms.

More recently, Da et al. (2018) find effects of financial advice on the Chilean stock markets and

documented increases of volatility around dates on which a large advisory firm distributes their

suggestions to their customers via e-mail. The customers make use of a Chilean specialty in pension

fund management, allowing the holders of funds to switch between the providers and types of funds

easily.

The elasticity effect seems also to be present in IPO markets, as Li et al. (2021) document. The

authors note a substantial effect of exogenous demand shocks on the returns of the traded asset.

They exploit partial freezing of funds during IPOs.

The above examples, however, do not explain persistent movements. The very idea of a period

of stress implies that after some time markets are driven back to their equilibrium efficient prices.

In Gabaix and Koijen (2021) the authors mention the possibility of persistent flows, which can alter

the price of an asset over a sustained period. Persistent inflows to some funds have predictive power

on factor returns (Dong et al., 2022).

Continuing inflows can therefore lay at the heart of financial bubbles. If flows are fueled by high

enough returns i.e., in the form of price rises, a bubble can build into a self-perpetuating mechanism.

These studies reveal an intricate relation between a rational price generating mechanism, where

changes in fundamentals drive demand and therefore change prices in an informed manner, and other

mechanics, where prices are changed with no direct connection to fundamentals and hence are driven

away from their fundamental values.

An intriguing fact presented above is that some of these changes can be predicted to some extent

and have self-enforcing properties. In the microstructure literature, there is a differentiation between

statistical and fundamental efficiency. I will outline this and other aspects of the market microstruc-

ture literature in section 2.3.

The main takeaway of this section is that the effects of flows on prices are present on different

levels. Funds, which are driven by inflows and bounded by their mandate influence prices in man-
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ners, which can lead others to follow. The reasons for the movements of money in and out of the

financial entities cannot be answered. Yet, there is evidence that they are not completely driven by

fundamentals.

2.3 Market Microstructure

The market microstructure approach derives its results from the effects individual orders or metaorders

have on liquidity and prices (Bouchaud et al., 2018). As such it focuses on the market participant

activities and interplays. Despite the focus on the microscopic behavior and structures of markets,

the results apply to a wide range in time and scope e.g., the power law of market impact. The power

law of market impact states that, in a certain range of size of the order, price impact decays as a

power law with the power of roughly 1
2 . This effect is found to be present in different markets and

describes effects on different time scales (Almgren et al. (2005), Tóth et al. (2011), Tóth et al. (2016),

Donier and Bonart (2015) and others).

Bouchaud (2021) compares the results of Gabaix and Koijen (2021) to similar results from the

market microstructure literature. Bouchaud uses several studies to underline the argument, that

market volatility originates in large parts from trading. In doing so, Bouchaud aims to lay the

ground for the mechanism at the origin of the elasticity effect described by Gabaix and Koijen

(2021).

Bouchaud et al. (2018) note that if trades move prices without informational content, one needs

to differentiate between statistical and fundamental efficiency: If market participants try to profit

from the price impact of others, they induce martingale like properties on the price path, without

connection to a fundamental value. This leads to a distinction between fundamental efficiency i.e.,

prices are martingales because they reflect the fundamental value changing on new information, and

statistical efficiency, where prices are martingales because traders pick off all information from price

movements. After all, every predictable pattern is exploited by market participants, leaving the

martingale-like history of price movements. They suggest that the latter efficiency might be more

important in short periods and the former dominates in the long run.
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Bouchaud (2021) points out that the reason why prices change can be divided into an efficient

view and an order-driven view. In the former, prices change due to traders’ forecasts of future price

moves. Importantly in the former notion, is that prices would change in the absence of trades. In

the latter view, prices change because there is an imbalance in the order book. Hence, prices can

change in the absence of information.

As pointed out in section 2.1 before, the model presented in Kyle (1985) laid the ground for

investigations on how trading impacts prices. A large body of literature has emerged around the

topic of trade impact on prices on the microstructural level. See e.g., Bouchaud et al. (2018) and

the references therein.

In-depth studies of traders’ behavior features often in the market microstructure literature. Tóth

et al. (2012) observe in their sample of a pool of traders, that traders use heterogeneous trading

practices and that traders seem to react to other market participants’ orders and the price change

induced by them or by others.

A prominent result appearing in several studies is the aforementioned ‘power-law’ or ‘square-root-

law’ of market impact (Tóth et al., 2011). This law relates the price impact of a ‘metaorder’ i.e., an

order which is divided into several smaller ones, to the size of the metaorder, the market volatility,

and the traded volume. The power law of market impact has been detected in several markets.8 It

relates the price impact of an order to the square root, or more general to a power smaller than one,

of the ratio of the size of the trade and the market turnover times volatility.

It needs to be noted that such metaorders are executed within hours whereas Gabaix and Koijen

(2021) measures the impact of quarterly changes. Furthermore, the specific form of the ‘law’ holds

within ‘normal’ execution times, and volumes (Bouchaud et al., 2018).

In a model developed in Benzaquen and Bouchaud (2018), the permanent impact of trades is

computed, and it is found that the impact becomes linear in the limit. This finding is in line with the

result of Gabaix and Koijen (2021) and highlighted by Bouchaud (2021) as the point of convergence

of the microstructural and the macrostructural literature.

Gomes and Waelbroeck (2015) ask the question of whether the market impact is a feature of

8 The square root law has also been ascertained in bitcoin markets (Donier and Bonart, 2015)
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informed trades only. To answer this, the authors differentiate between metaorders done for rebal-

ancing purposes, necessary due to in- or outflows, which they call cash-flow metaorders. They find

that metaorders for rebalancing purposes have no permanent impact, while during execution the

effects are similar to the trades done because of changes in fundamentals. Underpinning the short

term findings of Frazzini and Lamont (2008) presented in section 2.2. However, the impact of trades

differs between traders (Bladon et al., 2012).

That microstructural effects influence the market’s macrostructure is not a novel idea. E.g., a

relatively simple model proposed by Gabaix et al. (2003) tries to explain the typical heavy-tailed

return distribution with trades of large market participants, this model has been developed further

in Gabaix et al. (2006). The model can replicate stylized facts of market returns, trading volume,

and price impact using observed trade-size distributions.

Subsuming this section, the effects of individual trades and interactions between traders on the

market are important factors to a better understanding of market behavior. Especially noteworthy

is the effect orders have on prices, which does not increase linearly with the size but is dampened by

a power law with a power smaller than one. An emerging strand of literature investigates the effects

of those interactions.
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Chapter 3
Literature

In Summary: This section outlines the current state of the literature regarding some of the key

elements of bitcoin and price elasticity. The main focus lies on recent literature and its connection

to chapter 2.

Main Points:

� Results for statistical properties of bitcoin prices are dependent on the period and the exchange

under investigation.

� There is evidence for feedback loops between social media and other information-providing

platforms to bitcoin prices.

� Evidence indicates that correlated flows lead to correlated price moves.
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3.1 Bitcoin

In this section, literature concerning the monetary properties, the price behavior of bitcoin, and how

the price correlates with different economic and technical variables are discussed. Noteworthy is the

evidence regarding the reactivity of bitcoin to media outlets and the arguments brought up against

the usefulness of bitcoin as a medium of exchange, store of value, and unit of account.

3.1.1 Money or Asset

First, the question needs to be answered whether bitcoin is perceived as a currency or a financial

asset. While some authors argue that bitcoin has asset-like properties (Yermack, 2015). Glaser et al.

(2014) find that especially new and inexperienced users treat bitcoin as a speculative asset. Ron and

Shamir (2013) find that a large portion of bitcoins in circulation is held in ‘dormant’ wallets i.e.,

wallets without transactions.

Luther and Olson (2013) points out that the data structure of bitcoin, see section 5.1.1, which

only stores the transaction and not balances has striking similarities to what Kocherlakota (1998)

called memory. Dowd (2014) notes that, due to its distributed ledger, bitcoin cannot be interpreted

as a credit system. I.e., each valid transaction in bitcoin is performed with available funds. Lack

of credit leads to the elimination of trust between the two transacting parties, as is the case with a

transaction in cash. The fact that bitcoins cannot be created in response to a need for funds, is why

Senner and Sornette (2019) argue that bitcoin and currencies with similar properties will not replace

fiat currencies.

Further drawbacks to the use of bitcoin as a medium of exchange have been brought up. An issue

raised by Yermack (2015), Dowd (2014) and Dwyer (2015) is the deflationary pressure of a fixed

supply. The scarcity is even aggravated by attrition (Dowd (2014) and Dwyer (2015)). Yermack

(2015) highlights the problem for consumers to read prices in bitcoin, given that bitcoin becomes

a widely used currency, due to the many leading zeros necessary for small purchases. Dowd (2014)

brings up the example of diminished trade on the Silkroad platform during times of fast appreciation

of the bitcoin against the dollar.
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3.1.2 Bitcoin Price

The market behavior of bitcoin prices is very dynamic. Several studies find differing results depending

on the period under investigation. It has been shown that, in its early years, bitcoin returns did not

display random walk behavior (Urquhart, 2016). However, Urquhart (2016) also shows that after

the bitcoin exchange rate rose to a substantial level i.e., after the first of August 2013, he could not

reject the hypothesis of a random walk anymore, tested with an AVR test (Choi, 1999). Furthermore,

Urquhart (2016) also fails to reject the hypothesis of no autocorrelation in his second sample period

using the Ljung-Box test (Ljung and Box, 1978). Urquhart concludes that bitcoin is inefficient, in a

Fama (1970) sense, yet shows signs that it is becoming efficient as the market matures. The efficiency

increase can in part be explained by liquidity and market capitalization effects (Brauneis and Mestel,

2018). A boost in market efficiency was detected after the launch of bitcoin futures on CBOE and

the CME (Köchling et al., 2019).

Likewise, Kristoufek (2015) notes the changing nature of the correlations between different ex-

planatory variables and bitcoin prices over time. In an involved investigation of bitcoin market

efficiency, Kristoufek (2018) shows that the efficiency of the bitcoin market is changing and more

efficient in periods after a fast price decrease. Furthermore, the methodology employed by Kristoufek

(2018) shows that the structure of inefficiency is changing over time. Changes in correlations and

other statistics are present in other relatively mature markets (Lo, 2004).

Comparing different cryptographic currencies, Gandal and Halaburda (2016) find changing cor-

relations between returns in different periods. They interpret this finding as evidence for shifting

network effects i.e., reinforcement (positively correlated returns) or substitution (negatively correl-

ated returns). The results are insignificant for the whole period and while controlling for Google trend

data. The authors interpret these results as evidence that sentiments affect different crypto-assets

in different ways. Gandal and Halaburda (2016) note, however, that the price of bitcoin increased in

value in each of the subperiods, putting some doubt on the reliability of the results.

Behavioral factors can also have large influences on mature markets (Shiller, 2014) and therefore

can be expected to play a role in crypto-asset markets. It has been shown that trends in keywords

searched on Google can predict stock market returns (Preis et al., 2013). Similar behavior has been
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found for bitcoin returns see e.g., Cheah and Fry (2015) or Kjærland et al. (2018). Posts on platforms

such as Twitter or dedicated blogs are also correlated with bitcoin returns (Mai et al., 2015). Even

though it is unclear in what direction Granger causality points between Twitter posts and bitcoin

returns (Kaminski, 2016).

Garcia et al. (2014) investigate the role of social interactions and point to feedback loops between

prices, the number of users, and information acquisition and distribution in the bitcoin universe. In

addition, Garcia et al. (2014) construct a lower bound for the fundamental value of bitcoin from the

estimated energy costs of the mining process. This lower bound is interesting because it marks a

boundary, below which mining becomes unprofitable.

Relatedly, Bouoiyour et al. (2014) finds different granger-causality structures at different time

horizons for a proxy of attractiveness and the ratio of exchange volume to on-chain volume, which

can be interpreted as further evidence for the feedback mechanisms presented in Garcia et al. (2014).

Indeed, Kristoufek (2015) also finds evidence underlining the feedback loops. Granger causality is

also present between different quantiles of volume and return distributions around median returns

(Balcilar et al., 2017).

More recent studies focused on the introduction of bitcoin futures (December 2017) and its implic-

ation for bitcoin price discovery. The results are mixed, depending on the time horizon investigated.

Kapar and Olmo (2019) find leading futures prices in daily data, whereas Baur and Dimpfl (2019)

find leading spot prices on 5 min frequency. Entrop et al. (2020) note that price discovery differs,

depending on liquidity, trading costs, and uncertainty based on intra-day trade and quote data. The

introduction of futures on established exchanges might have boosted market integration, measured

by a dynamic equi-correlation model (Bouri et al., 2021).

Given the models outlined in chapter 2.1, these findings are rather unsurprising. The fundamental

value of bitcoin is uncertain at best. Hence, information about bitcoin should have a larger impact

on the price as it would where the fundamental value is clear.

Bubbles

Cheah and Fry (2015) find evidence for price bubbles in the bitcoin market and Donier and Bouchaud
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(2015) investigates the predictability of the bubbles via market liquidity. Later, Wheatley et al.

(2019) puts forward a model which employs user activity to predict bubbles. Gerlach et al. (2019)

present an overview of the larger price bubbles detected. Huber and Sornette (2022) shines a light

on the benefits and the social aspects of bubbles. They argue that price bubbles are by design a part

of bitcoin and helped to establish bitcoin publicly.

There is evidence for ‘pump-and-dump’ schemes in bitcoin markets (Hamrick et al., 2018). In

line with the theoretic models outlined in chapter 2 and especially with the power law presented in

2.3 and shown to be present in bitcoin markets by Donier and Bonart (2015), Hamrick et al. (2018)

find larger price impact of pump-and-dump attacks when volatility is high. Furthermore, the most

important factor found in their study is market volume. This finding aligns with the power law

of price impact presented earlier. The authors also find differing effects between exchanges. That

there are different effects on prices at different exchanges is underlined by similar findings on price

discovery mechanisms between exchanges (Brandvold et al. (2015) and Ji et al. (2021)).

Alternative factors apart from ‘Irrational Exurberance’ (Greenspan, 1996) or ‘Social Dynamics’

(Shiller et al., 1984), which could contribute to the volatility of bitcoin exchange rates is the al-

gorithmic scarcity of bitcoin (Nakamoto, 2008). Bitcoin becomes especially scarce when demand is

large because supply cannot be ramped up as it could be with any other commodity (Antonopoulos,

2017). That scarcity can have a positive impact on valuation and thus on prices is widely regarded

as an economic and psychological fact (Lynn, 1991).

To wrap up this section it can be noted that even though bitcoin prices and information transmis-

sion is an active field of research many results are contradicting depending on the period investigated.

Noteworthy are the facts that the monetary usefulness of bitcoin is disputed, the power law of price

impact seems to be present and there is evidence for feedback loops between social-media platforms

and bitcoin prices. Bitcoin prices are bubble prone and are frequently subject to pump-and-dump

schemes.
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3.2 Price Impact of Trading and Market Elasticity

This section describes recent advances in the fields of the price impact of trading and market elasticity.

Many recent studies point to the effects of flows on price generation and volatility. The literature

has identified correlated ownership as a source of correlated flows.

As mentioned in chapter 2, the price impact of trading and price elasticity of demand essentially

mean the same thing.

A test of price impact on the microstructural level i.e., within-fund, was done by Frazzini et al.

(2018). They test a wide range of different models on an extensive dataset. The authors highlight

the importance of a concave trade impact function and further, the market environment the trades

are conducted in.

The macrostructure literature’s focus are flows between funds e.g., Ben-Rephael et al. (2011)

study flows to funds at the Tel Aviv stock exchange and find strong mean reversion effects of price

changes induced by flows. The effects of flows between funds are documented to be so pronounced,

that they amount to a separate risk factor. See e.g., Huang et al. (2019), which show the large effects

of noise traders exert on market prices, which they identify with flows to and from mutual funds.

They construct a risk factor from exposure to fund trading, which in turn is heavily influenced by

uninformed traders. Li (2021) documents the influence money flows have on the Fama-French (Fama

and French, 1992) ‘risk factors’. She notes that around 30% of the quarterly variance of these factors

can be explained by flows to and from funds.

More recently, ETFs have become a focal point of researchers. Ben-David et al. (2018) shows

that dependent on whether a stock is included in ETFs or not, the volatility in that stock increases

relative to other similar stocks which are not parts of ETFs. They attribute their finding to an

increase in trading in the stocks from the ETFs. Overall, they note that ETF inclusion might have

negative effects on price discovery and poses a non-diversifiable risk to investors in the respective

stocks.

Also looking at ETFs Brown et al. (2021) document that flows of ETFs themselves contain

information about demand which does not originate in fundamentals. They argue that the mispricing

brought by this demand has different effects over different time horizons.
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The studies above indicate that the ownership of assets is important to their behavior. Ben-

David et al. (2021a) study this possibility and find evidence that the ownership structure of equities

influences their statistical properties. They note that equities held by larger institutions face larger

volatilities and smaller returns during market drawdowns. They suggest that centralized risk man-

agement leads to these effects and notice the greater autocorrelation in returns in stocks that are

held by the same entities. This larger autocorrelation stands in contrast to equities held by smaller

institutions.

Another study looking at flow effects of funds is Ben-David et al. (2021b). The authors make use

of a change in the rating mechanism of Morningstar, from which they find strong evidence for price

impact caused by flows induced by Morningstar ’s ratings.

Different funds also seem to trade differently e.g., Parker et al. (2020) note that target date

funds (TDFs) are a large class of contrarian investors. Contrarian investing, they speculate, could

curb market volatility, and connect the returns on bond and stock markets but also might reduce

fundamental price efficiency. Overall, they add to evidence that flows of funds impact returns of

stocks and bonds.

As suggested by Gabaix and Koijen (2021), the frequencies of flows matter. Dong et al. (2022)

examine different frequencies of flows and note that low frequency (‘persistent’) flows have predictive

power for factor returns. They argue that the reason for this effect is due to choices by active fund

managers.

In conclusion, this section highlights the effects of flows to financial markets. Correlation within

these flows leads to correlated price changes and with that affects the risk inherent to certain financial

assets.
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Model from Gabaix and Koijen (2021)

In Summary: This section broadly describes the model introduced by Gabaix and Koijen (2021).

The simulation of the model presented below forms part of chapter 7.1. The main purpose of this

chapter is self-containment of the thesis and a reader already acquainted with the model can skip

the following two sections and jump to chapter 5.

Main Points:

� The model relies on irrational agents.

� Flows change prices independent of fundamentals.

� Share buybacks are a type of flow.

� The discount rate of the model is affected by the funds’ mandates. I.e., the discount rate

increases with decreasing equity share and sensitivity to the equity premium.
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An overview of the model described in Gabaix and Koijen (2021) with the notation therein is

presented in the sections below. First some general remarks on the notation: Lowercase letters

denote percentage changes in the two-period model and deviations from the baseline in the multi-

period model. ∆ denotes first differences, where the time index indicates the time index of the

positive variable i.e., ∆xt+1 = xt+1 − xt.

The model of Gabaix and Koijen (2021) explains the volatility puzzle described by Shiller (1980)

among others by the price impact of trading activity. In the model, a price change can be traced to

a change in quantity demanded. Hence, the model predicts a long-term effect of trading activity on

the price of an asset. While the effect is explained by trading, the model makes no statement about

the reasons for changing demand.

In the first section, the model as described by Gabaix and Koijen (2021) is outlined and com-

mented on. Two models are presented in the paper Gabaix and Koijen (2021), in effect. As in the

original article, the ’two-period’ model is presented first and thereafter follows the ’infinite horizon’

model.

4.1 Two-Period Model

The two-period model of Gabaix and Koijen (2021) consists of a fixed supply of Q shares and B

bonds, with price P . The price is endogenous to the model. The dividends paid by the shares are

denoted by D. The equity premium in Gabaix and Koijen (2021) is defined as π = De

P − 1 − rf ,

where De = E[D]: the expected dividend and rf the risk free rate. π̂ = π − π̄ denotes the difference

between the equity premium π and its average π̄.

There is one representative consumer, who invests in the two assets via I institutions. Wi

denotes institutions i’s wealth and the superscript E denotes the wealth held in equities. In general,

the subscript i describes variables assigned to institution i ∈ I. I.e., institutions i’s wealth invested

in equities can be described by W Ei = PQi
Wi

.

Gabaix and Koijen (2021) assume that each institution’s equity investments follow a mandate
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given by:

PQi
Wi

= θie
κiπ̂ . (4.1)

and the rest is invested in risk-free bonds. κi indicates how the institution reacts to changes in

expected returns, the larger κi the more risk-seeking is the institution. θi ≥ 0 is the institution’s

mandate i.e., the fraction of equity it is obliged to hold.

The index i = 0 denotes a special institution in Gabaix and Koijen (2021): the ‘pure bond

fund’ (θ0 = κ0 = 0). Gabaix and Koijen note that only because consumers are not fully rational in

their model, do the mandates of the institutions matter. Fully rational consumers would take the

mandates into account and undo the effects of the mandates in their optimization.

4.1.1 The Elasticity of Demand for Equity

In the ’two-period’ model of Gabaix and Koijen (2021) bars are used to denote values at time t = 0−

before any shock.9 I.e., W̄i and Q̄i denote institution i’s wealth and number of equities at time

t = 0− respectively. The equity premium at time t = 0− is given by π̄. δ = D̄e

P̄
denotes the

dividend-price-ratio, with D̄e = E[D̄].

The representative household invests ∆Fi dollars in each institution i ∈ I. ∆Fi represents the

number of dollars taken from the pure bond fund and placed into the mixed fund, all at time t = 0.

Gabaix and Koijen (2021) draw attention to the assumption that these extra dollars are taken from

the pure bond fund. Thus, the fractional flow is given by fi = ∆Fi
Wi

. fi > 0 corresponds to an inflow

and fi < 0 to an outflow.

qi, p and di denote the percentage deviations of demand for equity, price, and expected dividends

from the initial values at t = 0−:

qi =
Qi
Q̄i
− 1 , p =

P

P̄
− 1 , d =

De

D̄e
− 1 . (4.2)

The change in demand of institution i ∈ I given fi, d and p is denoted by qi. In Gabaix and

Koijen (2021) qi is computed in:

9 This definition will change in the ’infinite-horizon’ model where bars denote percentage deviations from a baseline.
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Proposition 1 (Gabaix and Koijen, 2021): Demand for aggregate equities in the two-period

model. The proof is repeated for completeness in appendix B.1.

qi = −ζip+ κiδd+ fi , (4.3)

where ζi is the elasticity of equity demand of institution i ∈ I and is given by:

ζi = 1− θi + κiδ . (4.4)

From the percentage change of demand, qi Gabaix and Koijen (2021) move one step ahead and

compute the aggregated demand. Gabaix and Koijen (2021) aggregate the elasticity of demand for

equity. They do that by defining the aggregate demand for stocks as:

Q =
∑
i∈I

Q̄i(1 + qi) . (4.5)

Gabaix and Koijen (2021) further compute an equity weight, Si, which labels the baseline share

of equity the institution holds given total equity:

W Ei = QiP = θiWie
κiπ̂ , (4.6)

Si =
W̄ Ei∑
j∈I W̄

E
j

=
Q̄i∑
j∈I Q̄j

. (4.7)

Comment: In Gabaix and Koijen (2021) (4.6) is given by W Ei = QiP = θiWi. Here eκiπ̂ is

introduced to make the definition consistent with equation (4.1).

With the definition of Si Gabaix and Koijen (2021) construct the equity-holdings weighted mean

for a given variable x = (x0, ..., xI) as:

xS =
∑
i∈I

Sixi . (4.8)

Gabaix and Koijen (2021) stress that there are two notions of equity share. The institution’s
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equity share and the market-wide equity share. The authors differentiate the two in the following

manner:

Wealth weighted equity share =
Total value of equities

Total value of assets
; (4.9)

θW =
W E

W E +WB
, (4.10)

=

∑
i∈IWiθie

κiπ̂∑
i∈IWi

. (4.11)

Equity-holdings weighted equity share =
Total value of equities weighted by fund variables

Total value of equity
;

(4.12)

θS =

∑
i∈IW

E
i θie

κiπ̂∑
i∈IW

E
i

, (4.13)

=

∑
i∈IWiθ

2
i e

2·κiπ̂∑
i∈IWiθieκiπ̂

. (4.14)

Comment: Only equations (4.9), (4.10) and (4.13) are presented in Gabaix and Koijen (2021).

Additionally, eκiπ̂ is appended in equation (4.13) for consistency.

The second definition of the equity-holdings weighted equity share is the one used in the model,

note Gabaix and Koijen (2021). Moreover, θS > θW with θS constant over time and θW non-constant

because the price changes will move the value of θW
10.

From the expressions (4.8), (4.5) and (4.7) Gabaix and Koijen compute the aggregate change of

demand:

q =
∆Q

Q
=

∑
i∈I Q̄iqi

Q
=
∑
i∈I

Siqi = qS . (4.15)

Furthermore, Gabaix and Koijen (2021) show the consistency between qi and qS in:

10 To see that use equation (4.1) to replace θie
κiπ̂ in equations (4.14) and (4.11). Note that because θ0 = 0 the

following transformation is not possible: Wi = PQi
θie

κiπ̂
for i = 0. Therefore, we end up with: θW = P

∑
i∈I Qi∑
i∈I Wi

and

θS =
∑
i∈I Qiθie

κiπ̂∑
i∈I Qi

. In the latter expression, the price P drops out, whereas in the former we cannot drop P .
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Proposition 2 (Gabaix and Koijen, 2021): Aggregate demand for aggregate equities in the

two-period model. A repetition of the proof can be found in appendix B.2.

qS = −ζSp+ κSδd+ fS , (4.16)

where ζS is the elasticity of aggregate equity demand and is given by:

ζS = 1− θS + κSδ . (4.17)

From the introduction, it is clear that flows play an important role in the model. After putting

special emphasis on the distinction between the weighting schemes of the institution holdings, Gabaix

and Koijen (2021) define the aggregate flow into equities in an equity-weighted manner as:

fs =

∑
i∈I θi∆Fi

W E
, (4.18)

=
∑
i∈I

W̄Ei
WE

∆Fi
W̄i

. (4.19)

The authors note that despite there always being a ‘seller for every buyer’, there is scope for a

nonzero aggregate flow.

Comment: In the paper only (4.18) is presented.

4.1.2 The Impact of Flows

Gabaix and Koijen (2021) analyze the impact of flows in the following way:

They first set the elasticity ζS > 0 and q = 0. The supply of equities is fixed in the ’two-period’

model and hence, the equilibrium is static. Having a positive value for ζS implies that equity is not

a Giffen good.

Using the above assumptions in equation (4.16), Gabaix and Koijen derive the following relation
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for the price change p:

qS = −ζSp+ κSδd+ fS , (4.20)

⇒

0 = −ζSp+ κSδd+ fS , (4.21)

⇔

p =
κSδ

ζS
d+

fS
ζS

. (4.22)

Gabaix and Koijen (2021) then further use a first-order Taylor approximation around fS to

simplify expression (4.22). Leading to:

p =
fS
ζS

. (4.23)

Gabaix and Koijen (2021) note that the approximation is exact if all κi = 0 and furthermore,

that if d 6= 0 in equation (4.22) there is an extra effect of a dividend change. Noting that κSδ
ζS

< 111

Gabaix and Koijen (2021) argue that without flows, prices underreact to the changes in fundamentals

in inelastic markets.

Gabaix and Koijen (2021) explain further that, share repurchases and issuances are a type of

flow. They propose the notation:

fC =
Net repurchases (in value)

Total equity value
= −Net issuances (in value)

Total equity value
. (4.24)

With that f can be decomposed in the following way:

f = fS + fC . (4.25)

This discussion opens the scope for supply elasticity of firms (ζC). With ζC the equilibrium changes

11 Indeed: κSδ
ζS

= κSδ
1−θS+κSδ

≤ 1 as θS ∈ [0, 1]. Arguably, θS ∈ (0, 1), thought theoretically possible a market with
either only ‘pure bond institutions’ or ‘pure equity institutions’ is unlikely at best.
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to:

fS − ζSp = −fC + ζCp , (4.26)

⇔

p =
fs + fC
ζS + ζC

. (4.27)

Yet, Gabaix and Koijen (2021) argue that the supply of shares is inelastic (ζC = 0).

4.2 Infinite-Horizon Model

The main difference between the two-period model and the infinite horizon model is that the latter

is dynamic, as emphasized by Gabaix and Koijen (2021). Gabaix and Koijen consider the case where

there is a representative pure bond institution and a mixed institution in their main text. They leave

a model with different funds in their appendix G.7.

In the infinite horizon model the mandate of the mixed institution is the following way:

PtQt
Wt

= θeκπ̂t+νt . (4.28)

where νt denotes additional demand shocks and t is the time index.

Gabaix and Koijen (2021) linearize the model economy around baseline values with a balanced

growth path with constant equity premium π̄: P̄t, D̄t, W̄t and Q̄t. Assuming that the baseline values

grow with a common cumulative growth factor Gt.

Gt+1

Gt follows an i.i.d. growth process with mean g, i.e. (P̄t, D̄t, W̄t) = Gt(P̄0, D̄0, W̄0). The

constant equity premium π̄ follows rf + π̄ − g = (1 + g)δ with P̄tQ̄t
W̄t

= θ and D̄t
P̄t

= δ.

Bond holdings of the mixed institution are given by the sum: B̄0 + F̄t, with B0 the initial

quantity of bonds held and Ft the cumulative dollar flow since t = 0. I.e. new bonds acquired by

the mixed institution originate from flows. Gabaix and Koijen (2021) note that, the bond holding of

the mixed institution should represent the fraction 1 − θeκπ̂t+νt12 of the institution’s wealth, i.e. is

12 eκπ̂t+νt added for consistency reasons, given equation (4.28). The original article does not have the expression
eκπ̂t+νt . The following derivations include the expression here, whereas in the original paper they are not included.
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influenced by the mandate. Hence, B̄0 + F̄t = 1−θeκπ̂t+νt
θeκπ̂t+νt

P̄tQ̄. This expression can be reformulated

to: F̄t = 1−θeκπ̂t+νt
θeκπ̂t+νt

(P̄t − P̄0)Q̄.13

The deviations from the baseline are denoted by pt = Pt
P̄t
− 1, wt = Wt

W̄t
− 1, dt = Dt

D̄t
− 1 and

qt = Qt
Q̄t
−1. The flow ft is defined by Gabaix and Koijen (2021) as scaled cumulative inflow in excess

of the baseline:

ft =
Ft − F̄t
W̄t

. (4.29)

With det = E[dt+1] Gabaix and Koijen denote the expected dividend deviation and with πt =

E[∆Pt+1+Dt+1]
Pt

− rf the expected excess return. Gabaix and Koijen (2021) use taylor expansion to

derive an expression for π̂t:

π̂t = δ(det − pt) + E[∆pt+1] . (4.30)

The derivation of this expression is repeated in appendix B.3.

Proposition 4 (Gabaix and Koijen, 2021): Demand for aggregate equities in the infinite-

horizon model. The demand change for equities is given by:

qt = −ζpt + ft + νt + κδdet + κE[∆pt+1] . (4.31)

with ζ = 1 − θ + κδ the aggregate elasticity of the demand for equities as in equation (4.16). The

proof is repeated in appendix B.4

Gabaix and Koijen (2021) assume that the amount of equities is constant and hence set qt = 0

in equilibrium. From those assumptions, they derive the equilibrium price of equities as:

Proposition 5 (Gabaix and Koijen, 2021): Equilibrium price in the infinite horizon model.

pt = Et

[ ∞∑
τ=t

1

(1 + ρ)τ−t+1

(
ρ
fτ + ντ

ζ
+ δdeτ

)]
. (4.32)

With:

ρ =
ζ

κ
= δ +

1− θ
κ

. (4.33)

13 This expression follows from the identity: B0 = 1−θeκπ̂t+νt
θeκπ̂t+νt

P̄0Q̄.
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denoting the ‘macro market effective discount rate’ and

π̂ =
(1− θ)pt − ft + νt

κ
. (4.34)

the deviation of the equity premium from the average. The proof is repeated in appendix B.5.

Gabaix and Koijen (2021) make interesting observations from the results above: First, they note

that the discount factor ρ is larger than the price-earnings ratio δ.14 Second, the discount rate is

affected by κ and θ i.e., by the aggregate mandate. Gabaix and Koijen (2021) emphasize: ‘[...] the

market is more myopic (higher ρ) when it is less sensitive to the equity premium (lower κ) and when

the mixed fund has a lower equity share (lower θ)’ (p. 18).

Gabaix and Koijen (2021) explain the intuition of the effects of the two variables as a bal-

ance between the weight for the fixed mandate θ and the weight κ for the expectation term π̂.

Third, Gabaix and Koijen (2021) highlight that this myopia creates momentum, as fundamental

news (modeled by dividends) are not directly incorporated into the price.

Comment: Because of the linearization used to derive equation 4.31 κ enters not as an exponent

but as a linear term. This leads to the possibility of a price explosion if the representative fund is

anti-cyclical (negative κ). Due to a discount factor ρ smaller than one, if κ < 0 and ζ > 0. Note that

ζ > 0 in the notation used here means that the good is a ’normal’ good i.e., falling demand given

rising prices. If further scenarios are taken into account a price explosion can occur whenever: κ > 0

and ζ < 0 i.e., the good in question has Giffen good properties, and the funds are risk-seeking.

4.2.1 The Impact of Flows

In what follows the effects of different types of flows identified by Gabaix and Koijen (2021) are

outlined. They differentiate between permanent and mean reverting flows.

14 Note the two possible definitions used, one with expectations and the other from the baseline. See appendix B.3.
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Permanent Flow

In the ’infinite horizon’ model of Gabaix and Koijen (2021), permanent flows into or out of equities

have permanent price impacts. This results directly from equation(4.32) setting E0[fτ ] = f0:

E0[pt] =
1

ζ
f0 . (4.35)

For a derivation see appendix B.6. A permanent flow is accompanied by a decrease in the premium:

E0[π̂t] = −δ f0

ζ
. (4.36)

Mean Reverting Flow

Gabaix and Koijen (2021) define a mean-reverting flow in such a way that the expected cumulative

flow is given by: E0[fτ ] = (1− φf )τft. From 4.32 we get pt = ft
ζ+κφf

and thus:

E0[pt] =
(1− φf )t

ζ + κφf
f0 . (4.37)

The derivation can be found in the appendix B.7. Gabaix and Koijen (2021) note that the size of the

price change is inversely related to the speed of mean-reversion and positively related to the change

in equity premium. The equity premium for mean-reverting flows is given by:

E0[π̂t] = −
δ + φf
ζ + κφf

(1− φf )tf0 . (4.38)
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Chapter 5
Data

In Summary: This section describes data stored on the blockchain and the data used for the

thesis. Because the data has to be transformed to estimate the parameters of the model of Gabaix

and Koijen (2021) statistics of the data are presented in chapter 6. The two datasets are presented.

The first, called ‘block-level dataset’, downloaded from the GraphSense python API (Haslhofer et al.,

2021) and the second, referred to as ‘daily dataset’ provided by Stütz et al..

Main Points:

� Data on the blockchain is stored in so-called blocks.

� Blocks include transaction data between pseudonyms.

� Two data sets are used in the thesis:

– Daily data: block-level data aggregated by day and by entity.

* Transactions are aggregated on a daily and entity basis.

– block-level data: The whole blockchain data.

* Transactions are aggregated on a block basis.
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The data is provided by GraphSense and accessed through their python API15 (Haslhofer et al.,

2021). The API provides a large set of different access points. Most important for the purposes

in this thesis is block-level information. Besides block-level, the API allows for address-level and

so-called entity-level data access. Entities are collections of addresses likely to be controlled by the

same actor in the bitcoin network, which are identified using the methodology from Meiklejohn et al.

(2013).

The publicly available bitcoin data consist of transactions stored on a public ledger. Another

feature of the data stored on the blockchain is that because the available space for storage for

transactions is limited, agents compete for the inclusion of their transactions into the public ledger

and thus public validation via fees added to the transactions. The size of the fees can give a natural

measure of congestion in the bitcoin network.

Those facts allow the test of several economic theories on transactions and their impact on

economic variables.

In the following sections, the data structure of the blockchain is described in general and afterward

follows the block-level data used for the main estimations. In a later section, the data provided by

Stütz et al. is described.

5.1 Data Structure of the Blockchain

The starting point builds an outline of the data stored on the blockchain and thereafter the structure

of the block-level data accessed is described.

5.1.1 General

The seminal white paper Nakamoto (2008) describes the mechanism of how a fully decentralized

medium of exchange can prevent double spending of the assets traded. The mechanism is called

proof-of-work and consists of the storage of transactions, which is shared between the participants

in the network and communally enlarged and maintained. This storage, the blockchain, is designed

similarly to a balance sheet or ledger. Hence, the name ‘Distributed Ledger’ for this technology.

15 The access to the API was provided by the Institute of Informatics at the University of Zürich
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As delineated in Antonopoulos (2017), the transaction data itself follows an architecture similar

to a balance sheet. Where the inputs form the asset side, and the outputs build the liability side.

Each transaction sends at the same time the value to be transferred to the counterparty and the

change sent back to the initializing party. Participants in a transaction are identified by an address.

An address is a between 26- and 35-character long identifier, generated by a bitcoin wallet using

the public identifier or public key. The addresses are stored on the ledger of the blockchain and can

be seen by the public, the address is known to the receiver in the respective transaction, such that

he can send bitcoin to the address. To access the bitcoin sent to an address the private key needs to

be known. The private key is generated simultaneously with the public key when a bitcoin wallet is

created. There are three types of addresses and several methods to generate these. No further detail

on the different addresses and their differences is provided here but note that a multitude of addresses

can be controlled by one actor in the network. The interested reader is referred to Antonopoulos

(2017) for further information on addresses, their generation, security, and their anonymity.

A block consists of at least one transaction (Nakamoto, 2008). The first transaction recorded on

the block is also known as the coinbase transaction. This transaction distributes newly generated

bitcoins (Antonopoulos, 2017). A block is generated by a so-called miner, identified by an address,

which solved the computational problem16 the first in the network.

Antonopoulos (2017) further notes that, the coinbase transaction generates new bitcoins. During

the propagation of the information stored on the block through the network other nodes control

whether the transaction fulfills the requirements given by the consensus rules of the network. A block

accepted by all participants is seen as valid. Additionally, the miner includes other transactions in

the block and by doing so the transactions included are validated.

Each valid block is then added to the chain of valid blocks. The link between the blocks is

warranted by including hashes of the previous blocks into the hash of the newly generated blocks

which forms part of the problem to be solved (Nakamoto, 2008). By including the hashes of previous

blocks, the problem of the current block and with it the solution is made dependent on the history

of preceding blocks. This mechanism leads to the property of near immutability of blocks below the

16 The problem which is to be solved, is to create a ‘hash’ below a numeric threshold. For further information see
Antonopoulos (2017)
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new ones, as changing a block requires altering all the previous blocks accordingly. The produced

chain of blocks is what gives blockchain its name.

5.1.2 Block-Level Data

The structure of the data stored on the blockchain is subdivided into blocks. Each block stores

the transactions which occurred during the new block was mined (roughly 10 minutes) and which

have been included by the miner. Included transactions in accepted blocks are validated through

proof-of-work (Nakamoto, 2008).

For every transaction, there are inputs and outputs. Inputs are the bitcoin address or addresses of

the sending entity and the number of bitcoins. Outputs are the receiving addresses and the number

of bitcoins. Total input and total output do not sum up in general. The difference is called a fee

and is added to the reward of the miner of the block. (Antonopoulos, 2017). Higher fees incentivize

miners to include the transaction in the current block, speeding up transaction validation for the

sender of bitcoin (Nakamoto, 2008).

Important to mention here is that the transaction inputs cannot be subdivided as Antonopoulos

(2017) notes. Hence, the output mostly includes an address of the sender of the bitcoins. For

the same reasons, transactions can include different sub-transactions performed from the same or

different addresses. The addresses involved in the provision of inputs can be used to assess which

addresses are likely controlled by the same entity but without certainty. There are caveats to this

procedure Antonopoulos (2017) cites several exceptions: Multiple entities can collaborate to form

one transaction and there are also addresses that can be controlled by more than one party. Finally,

one entity can potentially be in control of an infimum of addresses.

Through the GraphSense (Haslhofer et al., 2021) API the entries of each block can be accessed.

The appendix A.1 contains a detailed description of a sample API output.

5.1.3 Special Cases

Besides the above-described general case, there are other special entries in the ledger of the bitcoin

network, which are important to mention. There exists the possibility to include short texts in the
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hashes. Such a text inclusion appears as a transaction without an output.

Another important special case is the possibility of transactions not directly stored on the block-

chain. Such transactions include complicated contract architectures and can be performed with the

security of no double spending as on-chain transactions. A famous example of such transactions is

the lightning network (Poon and Dryja (2016) and Antonopoulos (2017)).

In summary, the lightning network functioning is like the central bank deposits for transactions of

financial market participants, where transactions in a currency are equivalent to movements of value

between the central bank deposit accounts of the financial market participants. In this comparison,

the blockchain plays the role of the central bank and the retail banks are the entities operating on

the blockchain, whereas the customers of retail banks operate on the lightning network. The main

benefit of this arrangement is that the parties can economize on the fees, which would be necessary

with on-chain transactions, and on transaction speed (Poon and Dryja, 2016).

From an economic perspective seeing the lightning network as the ‘retail‘ sector of the financial

network naturally leads to the question of how price changes affect the workings of the lightning

network. This might be a promising path for future research. It has been shown that tightening

effects in the interbank markets spill over to the wider financial markets (Nyborg and Östberg, 2014)

and thus could be expected to do also in the bitcoin second layer markets. Especially, given the

tendency of centralization found in the lightning network (Lin et al., 2020).

To conclude this section, it is noted that the blockchain consists of stored transactions. These

transactions are connected by the computational problem to be solved by miners and hence lower

blocks are made close to immutable. Because inclusion in the blockchain is costly and slow there

exist alternatives, which leverage the benefits of the blockchain to off-chain transactions. A widely

known example of this is the lightning network.
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5.2 Daily Data

The daily transaction data is provided by Stütz et al..17 They used this data for the final stake shift

computations in Stütz et al. (2020).

The data contains daily aggregated transactions of bitcoin entities i.e., combined addresses ex-

pected to be controlled by the same agent. The data covers the period from January 03, 2009, until

March 15, 2022, or from block 0 up to and including block 727370. Entities are defined as addresses

identified to have more than one bitcoin address by the algorithm GraphSense employs.

The dataset contains information on the entity and the number of bitcoins transferred. It rep-

resents therefore a subsample of the full block-level data.

The price data used with the daily data was downloaded from investing.com, which provides

daily price information in a close-open-high-low format and additionally the volume traded. For the

estimation outlined in 6, the daily closing prices were used.

The data on the difficulty was downloaded from blockchain.com. The difficulty data is not in

daily frequency but as roughly one observation every third day. To transform the data into a daily

format, it is interpolated using cubic splines.

To compute the difficulty per bitcoin, the difficulty series is divided by the number of bitcoins

mined during the period. The data on the mined bitcoins is provided by the Institute of Informatics

at the University of Zürich. The data contains the block’s timestamp and the number of coins mined

at the respective block. The timestamp can be matched with the timestamps of the transaction

data. To compute the created coins per day, the daily data is joined with the transaction data. This

leaves the dates present in the transaction data matched to the coin supply data. Then, the blocks

with no date are assigned to dates by imputing the last date matched up to the next block where

the date could be assigned with the previously matched date. By summing over the blocks with the

same date, the daily coins created are aggregated.

For this thesis, the data is transformed as outlined in the section 6.2.

17 Special thanks to Rainer Stütz for recomputing the analysis done in their paper.
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Chapter 6
Estimation

In Summary: This chapter describes the procedure for computing the estimations. In the first

step, it is argued why on-chain data is used, besides the benefit of availability. Thereafter, the

implementation is explained and justified. Then, the formal definitions of the transformations are

laid out and finally, the results are displayed.

Main Points:

� On-chain data is used to perform the estimations.

� Rolling averages represent the baseline.

� Algorithmic supply allows for direct estimation of demand shocks.

� Both datasets contain large numbers of outliers.

� The coefficients suggest positive slopes of the price elasticity of demand.

� The results differ between the datasets.
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In this chapter first, it is argued why on-chain data is a reasonable choice to perform the analyses.

Second, the implementation of the model from Gabaix and Koijen (2021) is discussed. Following, the

exact transformations performed on the data to estimate the parameters of the model are described.

Finally, the results are presented for the daily data and the block-level data.

For the purpose of this thesis, on-chain data is used i.e., the data stored on the blockchain.

Despite this data having drawbacks in terms of trading activity i.e., trading happens partially on

exchanges without any connection to the blockchain, it is a reasonable choice. Since, bitcoin has no

direct link to the USD, except for its production cost (Garcia et al., 2014), one could argue that

using on-chain data only is equivalent to looking at chain activity and not on the impact of trading.

The choice of using on-chain transactions can be motivated by:

(i) The impact attractiveness and usability have on the bitcoin price, see section 3.1. Having many

transactions on the blockchain increases the viability of the specific blockchain, in turn increasing

expectations that it can be a long-lived store of value (Wheatley et al., 2019). Hence, on-chain

activity is correlated with trading activity on exchanges (Ante, 2020).

(ii) The fact that transactions in bitcoin only ’truly’ happen if they are done on-chain, this

because after being verified on the ledger transactions become close to immutable, see 5.1.1 and

Antonopoulos (2017).

(iii) Because of this immutability of on-chain transactions, transactions settled in bitcoin need to

be done on-chain and therefore transactions between exchanges and other larger entities are made

through the bitcoin network. Even lightning network payments will eventually materialize on-chain.

This means, sooner or later every transaction will be recorded on the public ledger.

(iv) At least some of the manipulative trading happens off-chain (Gandal et al., 2018). The

on-chain transactions are less volatile because they take longer to be settled than trading via an

exchange, due to the 10-minute delay for validation. A longer settlement increases the volatility risk

incurred during a pump-and-dump scheme. Therefore, on-chain transactions appear less attractive

for speculative trading.

(v) Furthermore, on-chain transactions are costly to implement because of the fee on the one side

and the additional setup of a wallet to interact with the network on the other side. This introduces
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additional costs for speculators who are in search of fast profits, increasing the reliability of on-chain

data.

(vi) On-chain transactions are independent of intermediaries and the risk connected to using

mediator services (Moore and Christin (2013) and Gandal et al. (2018)), making them more attractive

for larger payments.

(vii) By looking at on-chain transactions only, there is no locality i.e., no overweighting of certain

geographical regions. The existence of different exchanges with differing prices denominated in

different currencies (Brandvold et al., 2015) might introduce bias to the estimation because some

transactions might not be recorded. It makes therefore sense to circumvent the problem of selecting

exchanges and inevitably omitting regions trades happen.

Employing on-chain transaction data also has its shortcomings. There are surely transactions

done by agents which are never registered on-chain. Those transactions will be missed while looking

at on-chain transactions only. Similarly, transactions done on the network might be different from

those outside the network. I.e., less technically affine investors might only hold bitcoin in an account

at an exchange and never perform on-chain transactions. It is indisputable that the price of bitcoin

is formed on exchanges, as the blockchain per se does not have any link to the ‘real’ world. In an

extreme scenario, where bitcoin is only used by a minority as a medium of exchange and by the

majority only in accounts at exchanges, the on-chain transactions have little to no effect on the price

of bitcoin in USD.

However, such a scenario is unlikely. Miners, at least, need to pay their electricity bills and

merchants, accepting payments in bitcoin, will at some point need to pay their suppliers and other

stakeholders. With the assumption that there is still some link to analog means of payments, at

some point, on-chain transactions will need to translate into an exchange rate.

In summary, despite some detriments, using on-chain data is expected to give a realistic view

of the price elasticity of demand of the bitcoin economy, as on-chain transactions are correlated to

real-world transactions. It could, however, underestimate the true effects of transactions on prices.

Because the correlation might be fogged by transactions made on exchanges only. Exchange-only

transactions have an impact on bitcoin prices but do not manifest on-chain.
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6.1 Implementation

This section reviews the notation and adaptations made for the implementation of the model of

Gabaix and Koijen (2021) for bitcoin data.

As discussed in 4, the model of Gabaix and Koijen (2021) employs deviations from the in-

equilibrium baseline. Bitcoin is still in its infancy and as a nascent technology, it has probably not

reached an equilibrium state. To have a gauge for a probable baseline, here rolling averages are

used. Rolling averages are chosen because of their simplicity and because they are model free. More

involved methods, such as Kalman-filters or Loess have beside their complexity the drawback that

they also imply a model as a prior.

Using rolling averages means that, the model estimated is close to what Campbell and Shiller

(1988) estimated. They used a 30-year rolling average of real earnings in a data set ranging from

1891 until 1987 i.e., using roughly a third of the data to compute the mean. In recent times, some

doubt has been put on the use of such ratios e.g., Campbell and Shiller (2001) and the references

therein.

Gabaix and Koijen (2021) define the following variables: Qi denoting the number of stocks an

institution holds; P is the price of the commercial paper and Wi is the total wealth of the institution.

For this thesis, concerned with bitcoins, the number of bitcoins an entity holds is referred to by

Qi and the price of bitcoin by P .18 A complication is that entities total wealth Wi is not observable

on the blockchain. Therefore, the wealth Wi is approximated by what Gabaix and Koijen call the

equity holdings of institution i: W Ei . W Ei is represented naturally by the number of bitcoins held by

entity i.

This approximations is feasible, as shown in equation (4.9) and following.

Relying on Garcia et al. (2014), the difficulty19 of the verification mechanism is used as proxy

for the dividend D. The difficulty is measured as an approximate number of hashes to be performed

to validate the next block. As Garcia et al. (2014) note, the difficulty is closely related to the

amount of energy needed to verify transactions on the blockchain. It is, therefore, related to a lower

18 For simplicity, the time subscript is omitted. Hence, Pt = P or Qi,t = Qi
19 https://www.coinwarz.com/mining/bitcoin/difficulty-chart
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bound under which bitcoins can only be produced at a loss. Because the difficulty is determined

algorithmically bi-weekly, in the estimation the expectation is omitted. Implying the assumption that

agents participating in bitcoin transactions or mining are aware of the difficulty and the expectations

are fairly accurate. In this thesis, the D is computed as the number of approximated hashes per new

bitcoin.

The deviations from the in-equilibrium baseline are defined in equation (4.2), where the in-

equilibrium baseline is represented by the rolling averages of the quantities employed.

For the expectation of the mean price deviation difference E[∆pt+1], several possible implementa-

tions are used. First, is linear extrapolation, here the expectation is approximated by linear regression

of the last several days. Second, the technical trader expectation, which replaces the expectation by

the difference of two rolling averages of different lengths, and finally, the martingale model, where

the expectation is replaced by the deviation at the current time t.

These expectations are employed because it seems unreasonable that an agent knows the future

price path exactly. For the sake of completeness, regressions using the one step ahead difference are

also performed.

A special case is made for the flows fs. The flows are directly computed via equation (4.19),

where θi is set to one by assumption. The assumption is needed as the fraction of wealth invested in

bitcoin θi is not observable in the data. Presumably, the value is quite low, however, setting it to one

is the least influential assumption because any other assumption would influence the computation

by reducing the sum and with it fs. There are several ways to think of the size of θi in the model.

One is that most investors venturing into the bitcoin economy hold a small fraction of their wealth

in bitcoins i.e., θi close to zero. However, at least some of the agents holding bitcoin will have high

fractions, probably close to total wealth invested in bitcoins e.g., large exchanges, young investors,

or firm believers in the technology. As those entities are potentially also those interacting more

on-chain, it can be argued that the assumption of θi = 1 might not be far of. A clear drawback

is that it might be the entities performing the largest transactions which hold the smallest amount

of wealth in bitcoins. If this is the case, an overly inflated measure for fi would result. Contrary,

setting θi to a value close to zero might result in deflated estimates for fi.
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The definitions outlined above allow for the direct estimation of equation (4.31) repeated here:

qt = −ζpt + ft + νt + κδdt + κE[∆pt+1] where ζ = 1− θ + κδ . (6.1)

The estimation of this equation allows for the identification of κ, δ, and θ. The identified θ is the

aggregated θ and not the institution dependent θi, which remains unobservable in the data at hand.

κ can directly be read off the coefficient on the price change expectation. Having κ allows for the

identification of δ by dividing the coefficient of the dividend proxy by κ and lastly, having both, κ

and δ allows for the identification of θ through the equation: ζ = 1− θ + κδ.

A clear benefit of bitcoin, as opposed to other commodities or cash, is that the supply shocks are

negligible (Gronwald, 2019).

This section outlined the reasoning and the implementation of the model for bitcoin transaction

data. It argues that rolling averages are a sensible choice for the baseline and the assumption of

θi = 1 is imperfect but the least influential. It is pointed out that due to the algorithmic supply,

supply shocks are negligible.

6.2 Transformations

This section presents the formal computation of the variables used for the parameter estimations.

To compute the rolling averages the observations up to and excluding the present observation are

used, to make sure that the information available at day t was available to all agents. This means,

for a variable X and a timespan v the rolling average is computed as:

RAt−v,t(X) =
1

v

t−1∑
i=t−v−1

Xi . (6.2)

Each deviation from the baseline for a variable X takes the form:

xt =
Xt

RAt−v,t(X)
− 1 . (6.3)
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Note, that the notation in Gabaix and Koijen (2021) the deviation from the baseline is denoted by

lowercase letters. The same notation is used for the deviations from the rolling average in the model

presented here.

The variables qi,t, dt and pt follow the above pattern. For the time series of dt, first, the difficulty

is divided by the number of new bitcoins of that day and then the above transformations are applied.

ft was treated specially, because of the complication of unobserved variables outlined in section

6.1 i.e., θi.

In the model presented here fi,t is computed according to:

fi,t =
Fi,t −

∑t−1
τ−v−1 Fi,τ

RAt−v,t(W Ei )
. (6.4)

To arrive at the market aggregate qt, the model follows closely Gabaix and Koijen (2021) and sums

over the weighted entities within each period, given by equations (4.7) and (4.8). The weighting is

given by:

Si =
RAt−v,t(Qi)∑
i∈It RAt−v,t(Qi)

. (6.5)

The expression in the divisor denotes the sum over all the institutions with bitcoins at the current

point in time. With that weight, the aggregated qt is computed as a weighted sum divided by the

exponential of the logarithm of the growth rate of bitcoin generation (gBTCt ) during period t:

qt =

∑
i∈It Siqi,t

exp(gBTCt )
. (6.6)

Dividing through the growth rate accounts for large initial holdings, when bitcoin was not widely

known, let alone used.

The procedure is similar for ft. The difference is mainly that the fi,t constructed as described in

equation (6.4) is already bitcoin weighted (equity weighted in Gabaix and Koijen (2021)). Hence, it

is only needed to sum the within period flow deviation (fi,t) up,

ft =
∑
i∈It

fi,t . (6.7)
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This section presented the computations for the variables used in the estimation procedure in a

formal way.

6.3 Estimation Results

In this section, the estimation results will be shown and outlined. First, the results from the smaller

dataset i.e., the one from Stütz et al. are discussed, and thereafter the larger dataset i.e., the

block-level data set.

For both datasets, the period starts in January 2012 because of the very noisy series encountered

before this date.

6.3.1 Baseline Selection - Daily Data

The first task is the decision of a period length for the rolling mean. The question answered here is

what constitutes a reasonable baseline.

In this thesis, the baseline period is chosen such that the resulting series is arguably trend

stationary and has no unit root. These conditions are necessary for a state in which disturbances let

the model gravitate around an equilibrium state. They further result in more reliable estimates and

are advantageous for the simulation, because the simulation will work around a steady state.

To examine which time series, fulfill the conditions the series are tested with the ADF-GLS test

for unit root (Elliott et al., 1996) and the KPSS test of weak stationarity (Kwiatkowski et al., 1992),

both tests are implemented routines in the arch library for python (Sheppard et al., 2022).

Because of the distortions introduced by the moving averages, the validity of the test should be

taken with a grain of salt (Franses (1991) and Olekalns (1996)).

Before starting the tests, the possible sizes are restricted. The trade-off between having a long

period over which the average is computed, and a shorter period is that the longer period takes up

less noise but smooths over possibly informative variance. A shorter period takes up much more

possibly informative variance but in doing so, it also takes up noise. It is argued in the scope of

the thesis that, because bitcoin is very volatile very short periods i.e., weekly will take up too much
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Figure 6.1 – Timeline of q, p, f , d and dp for the daily data set.

Notes: All features are in percent deviations from their five-monthly rolling mean.

All values have been scaled to unit variance and zero mean.

noise, and very long periods i.e., several years, will smooth out too much information. The periods

tested initially here are a month, half a year, and a year. From those results, it became apparent that

the optimal lag length lies between a month and half a year. Hence, periods in between are tested

in monthly brackets. Finally, five monthly rolling averages are taken as the baseline. The summary

statistics for the KPSS and the ADF-GLS tests are shown in table 6.1 and in the appendix A.3. In

the results, a pattern can be seen. Where for shorter periods for the averages, the variable q seems to

have a unit root according to the KPSS test, in longer periods the null of trend stationarity cannot

be rejected anymore. Similarly, for dp the ADF-GLS test cannot reject the null hypotheses of a unit
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root in short periods. In longer periods, however, the null is rejected in favor of trend stationarity.

The same holds for the p series.

By eyeballing figure 6.1, it seems reasonable to assume that the series is stationary, yet highly

persistent. An additional argument for stationarity is the construction of the series. By dividing

through the rolling average, the series will, by construction, hover around zero.

Table 6.1 – Summary Statistics the ADF-GLS and the KPSS test.

q p f d dp

KPSS 0.078 0.147 0.039 0.368 0.013
(p-value) (0.285) (0.052) (0.739) (0.000) (0.996)

DFGLS −5.583 −4.771 −11.371 −1.746 −3.355
(p-value) (0.000) (0.000) (0.000) (0.437) (0.012)

Notes: The statistic is presented with the p-value in brackets. All features are in

percent deviations from their five monthly rolling mean. All values have been scaled

to unit variance and zero mean before conducting the tests. The results have not been

influenced by the scaling.

The results of the ADF-GLS show that the null of weak stationarity is rejected at the 1% level for

all time series except d and dp. It cannot be rejected at any sensible level for d and can be rejected

at the 5% level for dp. The KPSS test does not reject the null of weak stationarity for all series at

the 5% level, except the series d. Despite not being able to reject non-stationarity in the series d, the

regression analyses are performed using the series d as is. The main reason is to keep interpretation

close to the original model.

A further complication is posed by the fact that for ft the aggregation is the sum over the inflows.

Hence, a long period makes the values extremely large, some are in the order of 1015 and larger.

This drawback could be due to the assumption that θi is equal to one, see 6.1. To omit numerical

problems arising from an estimation combining such large values and small values, all the values are

scaled to have unit variance and mean zero.

Summary statistics for the scaled five monthly data are shown in table 6.2. Summary statistics

for the data sets with monthly, semi-annual, and annual periods can be found in the appendix A.2.

From the summary table, it becomes apparent that many of the values from the f series are
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Table 6.2 – Summary Statistics for five monthly data.

q p f d dp

count 3270 3270 3270 3270 3270
min -42.459 -1.796 -15.516 -2.810 -22.316
25% -0.199 -0.544 -0.008 -0.611 -0.160
50% -0.038 -0.231 -0.008 -0.138 0.003
75% 0.173 0.245 -0.008 0.442 0.189
max 11.819 10.163 14.232 7.863 16.170

Notes: All features are in percent deviations from their five

monthly rolling mean. All values are scaled to unit variance

and zero mean.

scaled to the same value close to zero, leaving only some outliers. The problem is not alleviated by

taking natural logarithms of the prices when computing the sum. Considering shorter periods could

arguably change the magnitude of the f series. However, this would introduce more noise in the

other observations and leave some series hardly stationary. Therefore, this problem has to be seen

as an additional caveat to the data used.

Additionally, it can be inferred that the data is heavy-tailed. This could be a problem for

OLS regression because OLS is sensitive to outliers. To have a robustness check for this issue, the

regressions are repeated with quantile regressions around the median (Koenker and Bassett, 1978),

referred to as median regressions in the following.

Furthermore, a regression using ‘fenced’ outliers is performed (Tukey, 1977). Fencing uses the

interquartile range to determine the outliers and sets them equal to a maximal value, mostly the

decision boundary of outlier v non-outlier. In the original description all values smaller than Q25%−

k(Q75% −Q25%) are set to the value of the lower bound and all values larger than Q75% + k(Q75% −

Q25%) are set to the value of the upper bound (Qx denotes the x-quantile). k is a parameter

recommended to be 1.5 or 3 for ‘far off’ values.

To be conservative, the value k is set to 5 and the quantiles used are the 20% and the 80%

quantiles for the smaller and larger quantiles respectively in the fenced regressions. After the fencing,

the dataset is scaled to unit variance and zero mean because of the wide range chosen between the

upper and lower limit for the fencing values.
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6.3.2 Regression Analysis - Daily Data

Both, OLS, and quantile regressions are conducted with the statsmodels library available for python

(Seabold and Perktold, 2010). The OLS standard errors are autocorrelation and heteroskedasticity

adjusted standard errors (Newey and West, 1987). The lag length for the standard errors has been

chosen to be 0.75 ·N
1
3 where N = 3270 is the number of observations rounded up to the next integer

(Stock and Watson, 2014). This computation results in a lag length of 12 periods.

For the technical model, the periods for the rolling means are chosen to be 7 and 23 days. For the

linear model, two weeks are selected to calculate the predictions i.e., the linear regression is fitted on

the last 14 entries and then the prediction is calculated using the last available observation. ‘Realized’

denotes the regression with the shifted values for dp i.e., what an agent with perfect foresight would

expect. Note that the ‘realized’ time series is one observation shorter than the others. Because the

last observation cannot be foreseen, it is omitted. The results for the median regression and the

half-yearly regression can be found in the appendix A.4.

Table 6.3 – OLS regression results.

Linear Technical Martingale Realised Without

Const. −0.0076 −0.0076 −0.0076 −0.0076 −0.0075
(0.018) (0.018) (0.018) (0.018) (0.019)

p 0.0255 0.0245 0.0269 0.0220 0.0243
(0.024) (0.021) (0.022) (0.022) (0.022)

d −0.0041 0.0051 0.0043 0.0053 0.0045
(0.049) (0.048) (0.048) (0.048) (0.048)

f −0.0028 −0.0030 −0.0035 −0.0029 −0.0030
(0.006) (0.006) (0.006) (0.005) (0.006)

dp −0.0144 −0.0709 −0.0296 −0.0236 −
(0.054) (0.035)∗∗ (0.011)∗∗∗ (0.014)∗ −

Notes: The coefficients are presented with the standard errors in brackets. All

features are in percent deviations from their five monthly rolling mean. All values

have been scaled to unit variance and zero mean. The asterisks (*, **, ***) indicate

significance at the 10%, 5%, and 1% level.

The regression results displayed in table A.9 show that the results for the elasticity are positive

and stay roughly the same for the different models. The difference between the models is relatively

Diego Hager Bitcoin Inelasticity Hypothesis



6.3. ESTIMATION RESULTS 61

small except for the coefficients of dp. From these results, the other parameters for the model can

be calculated and are presented in table 6.4.

In comparison with results from the data using the semi-annual averages, the coefficients of the

variables p and f are similar in size. The coefficients for d change the sign but stay insignificant. For

dp the coefficients are similar, except for the linear model and the estimation without the expectation.

The comparison between the models reveals that the estimation of the coefficients for the d variable

is unstable.

Regarding the median regression, the coefficients are largely different. The sign on the coefficients

for p and f do not change but they do for the other variables. The different sizes of the effects are a

sign of the large influence of the outliers.

The fenced results are not fundamentally different from the baseline results. This could be due

to the very conservative fences chosen or contrary to the assessments from the median regression,

outliers are not so influential.

Table 6.4 – Parameters for the 5 monthly rolling-averages on the daily dataset.

Linear Technical Martingale Realised

−ζ 0.0255 0.0245 0.0269 0.0220
θ 1.0214 1.0194 1.0312 1.0167
κ −0.0144 −0.0709 −0.0296 −0.0236
δ 0.2847 −0.0719 −0.1453 −0.2246

Notes: Parameters computed from the regression results of the

five monthly dataset.

The computed parameters describe the mandate of the funds and the elasticity of the market.

For simplicity, the term ‘fund’ is replaced by ‘agent’ in the following, as it makes more sense to talk

about the agents in the bitcoin economy than funds.

The elasticity parameter ζ implies a positive price elasticity of demand. Note the prefixed minus

in front of the ζ due to the notation in Gabaix and Koijen (2021). A positive elasticity means that

increasing price increases demand. A finding in line with the findings of Frazzini and Lamont (2008)

and Ben-David et al. (2021b), who note that investors are return chasing.

A θ bigger than one implies that the agents are leveraged i.e., they invest more than their total

Diego Hager Bitcoin Inelasticity Hypothesis



6.3. ESTIMATION RESULTS 62

wealth in bitcoin. In the table above, taking the linear model as an example the agents are leveraged

by 2.14%. Whether this finding is influenced by the assumption made for the computation of fi

has to be seen. There the θi was set to one, but the link between the assumption and the indirect

computation leading to the estimate for θ here is not straightforward and thus is left for future work.

κ smaller than zero indicates that agents are investing according to a contrarian strategy i.e., the

agent invests more in bitcoin when it has a negative expected return.

The baseline dividend-price ratio δ is negative in some models. As the price is never negative,

this would imply negative dividend flows from bitcoin.

6.3.3 Regression Analysis - block-level Data

The block-level data is constructed in the same way as the daily data is. The rolling mean is

computed over 144 blocks. 144 blocks correspond to roughly one day, as the goal of block creation

in the bitcoin blockchain is a new block every 10 minutes (Antonopoulos, 2017).

There are limitations to how many blocks can be included in the computation for the variables.

The two main dimensions of the constraints are time and memory. The longer the period to compute

the rolling averages the longer the computation takes, and the more memory will be used. Hence,

the decision to use 144 blocks. The large number of observations did not allow for an in-depth

investigation of the best possible period of the rolling mean for the baseline, as it was done for the

daily dataset.

For the handling of the data pyspark is used. Pyspark allows for modifications on larger than

memory datasets. The full size of the blockchain data in CSV format is 471.3 GB.

Like in the section 6.3.2 the dataset is scaled for the estimation. The regressions are done on

a fenced and scaled dataset and on one which is only scaled. The standard errors used for the

significances are heteroskedasticity and autocorrelation robust standard errors. The lag length is

computed in the same way done for the daily data, which led to a lag length of 62 periods.

The dataset is as before truncated at the beginning. The starting block is block nr. 160029.

The block with the number 160030 was minted on the first of January 2012 at 00:00, according to
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blockchain.com. 20

Table A.4 in the appendix A.2 shows summary statistics for the scaled block-level dataset. The

same problems entail the block-level dataset as are present in the summary statistics for the daily

dataset. Many to most of the values are scaled to the same or close to the same values. This poses

a numerical problem for the regression because values are close to identical to each other which in

reality are not.

The summary statistics for the fenced dataset, presented in table 6.5, look more appropriate.

Since a large value for k is chosen in the fencing, the values still encompass a wide range of values.

Yet, the range is far smaller than for the non-fenced dataset. This highlight one big caveat of the

data. Large outliers are frequent. This fact weakens the validity of the regression estimates. The

regression results for the scaled block-level dataset can be found in the appendix A.4 in table A.10.

The resulting coefficients for the scaled dataset are nearly all very close to zero. The same holds for

the median regression displayed in appendix A.4 in table A.11. Both methods, OLS, and the more

robust median regression led to values close to zero indicating a severe influence of the outliers in

the dataset.

A caveat of the fenced data is that, despite taking a conservative range, the impact of the fencing

is large. The effect of the fencing can be deduced from the summary statistics table A.4 and 6.5.

The maxima and minima differ by up to a factor of 400. This seems in part to be a cause of one

very large outlier present in the data. Figure 6.2 shows a comparison between the variable p in the

scaled and fenced datasets where the large outlier is visible. The effect of scaling is however very

extreme in other time series. The effect can be seen by comparing plots of the fenced variables with

the scaled ones, e.g. variable q depicted in appendix A.5, figure A.1.

The regression results for the fenced dataset are displayed in table 6.6. The results are stable

over the different models. Except for the coefficient on dp. This difference is rather unsurprising

because the dp series is the one changed in the different models. Interestingly also with the block-

level dataset, the coefficients on the price are all positive, as was the case for the results with the

daily dataset. Further comparison with the results from the daily dataset reveals other differences.

First, smaller coefficients in the results from the block-level data for the elasticity estimates. Second,

20 https://www.blockchain.com/btc/block/160030
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Table 6.5 – Summary Statistics for the fenced block-level data set.

q p f d dp

count 559’353 559’353 559’353 559’353 559’353
mean 0.000 0.000 0.000 0.000 0.000
std 1.000 1.000 1.000 1.000 1.000
min -3.860 -4.253 -3.354 -42.415 -4.953
25% -0.214 -0.261 -0.459 -0.134 -0.277
50% 0.133 0.057 -0.422 -0.109 -0.023
75% 0.278 0.249 -0.122 -0.038 0.353
max 3.830 4.208 2.968 51.657 5.044

Notes: All features are in percent deviations from the rolling

mean using 144 blocks. All values are scaled to unit variance

and zero mean. The values have been fenced before the scaling.

I.e., the values have been truncated, where they exceed the 80%

quantile by more than five times the distance between the 80%

and the 20% quantile and where the values are less than the 20%

quantile minus five times the distance between the 80% and 20%

quantiles.

larger coefficients on the variable d in absolute terms from the block-level data estimations. Third,

smaller coefficients in absolute terms for the f variable, and finally smaller effects for the variable dp

in the block-level dataset.

The signs are similar. They are the same for all except d which on the block-level data is negative

for all models on the block-level dataset and positive for all but the linear model on the daily dataset.

Appendix A.4 contains in table A.12 the results from the median regression on the fenced dataset.

A comparison of the results of the two different regression methods shows the same signs of the

coefficients from variables p, d, and dp. Interestingly, the coefficients for the price are roughly half

the size in the median regression and the coefficient for d are roughly double the size in the median

regression. The effects estimated from dp decrease in size going from the linear model to the realized

model (from left to right in table 6.6) in the OLS regressions. The effects decrease going through

the same sequence of comparison in the median results.

The results from the series f differ the most. This can be attributed to the fact that this series

is the one most prone to outliers. Hence, the less robust method, OLS, will be more influenced by

the outliers and thus the differing coefficients.
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Figure 6.2 – Timeline of p for the scaled and the fenced block-level dataset.

(a) Timeline of p from the scaled block-level dataset.

(b) Timeline of p from the fenced block-level dataset.

Notes: The figures above (a) show the scaled variable p from the block-level dataset.

For the whole dataset on the left and up to block 1’894’092 on the right. The figures

below (b) show the fenced variable p from the block-level dataset. For the whole

dataset on the left and up to block 279’676 on the right. All values have been scaled

to unit variance and zero mean.

Overall, the similarities between the coefficients of the median and the OLS regressions are a

promising sign for the validity of the estimates.

With the results shown in table 6.6, the model parameters are computed in the same way as was

done for the daily dataset. Table 6.7 shows the results.

The parameters from the block-level dataset differ from the ones computed from the estimations

on the daily dataset. First, the values for δ are far larger than the same values from the block-level

dataset. The values found for θ are all smaller than one and are similar to the original value of 0.875.

The values for κ and ζ are far smaller, in absolute terms than the ones from the daily dataset.

Similarities are primarily to be found in the signs of the values for the price elasticity of demand

(positive) and the kappa values (negative).

Two interesting facets of the parameters from the block-level data are that the values for θ are

smaller than one and that the values for δ are huge in comparison to the other values. Values smaller
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Table 6.6 – Fenced OLS regression results.

Linear Technical Martingale Realised Without

Constant 0.0004 0.0004 0.0004 0.0004 0.0004
(0.003) (0.003) (0.003) (0.003) (0.003)

p 0.0084 0.0084 0.0087 0.0090 0.0096
(0.004)∗ (0.005)∗ (0.005)∗ (0.005)∗∗ (0.005)∗∗

d −0.1514 −0.1520 −0.1502 −0.1495 −0.1486
(0.237) (0.236) (0.237) (0.237) (0.237)

f −0.0003 −0.0002 −0.0003 −0.0003 −0.0003
(0.001) (0.001) (0.001) (0.001) (0.001)

dp −0.0042 −0.0131 −0.0013 −0.0008 −
(0.003) (0.003) (0.005) (0.005) −

Notes: The coefficients are presented with the standard errors in brackets. All features

are in percent deviations from their rolling mean using 144 blocks. All values have

been scaled to unit variance and zero mean. The values have been truncated, where

they exceed the 80% quantile by more than five times the distance between the 80%

and the 20% quantile and where the values are less than the 20% quantile minus five

times the distance between the 80% and 20% quantiles. The asterisks (*, **, ***)

indicate significance at the 10%, 5%, and 1% level.

Table 6.7 – Parameters for the fenced block-level dataset.

Linear Technical Martingale Realised

−ζ 0.0084 0.0084 0.0087 0.0090
θ 0.8570 0.8564 0.8567 0.8595
κ −0.0042 −0.0131 −0.0013 −0.0008
δ 36.0476 11.6031 115.5385 186.8750

Notes: Parameters computed from the regression results of the

fenced block-level dataset. Due to a division through zero, the

value for d in the martingale model cannot be determined within

the precision used here.

than one for θ indicate that the agents do not leverage their bitcoin investments. The opposite was

the case for the daily dataset.

The extremely large values for δ, which denotes the average dividend-price ratio could indicate

that the return of bitcoin entails more than the simple price return. What the cause could be for

the large implied baseline dividend-price ratio will need further investigation.
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To sum up the results, it can be said that they differ greatly between the two datasets. This

observation comes unsurprisingly given the different ways the datasets are constructed. Within the

datasets, the results for the daily data does not differ that much between the fenced and the scaled

dataset. The median regressions, however, differ to a greater extent. Indicating the large influence

outliers have on the estimations.

For the block-level dataset, the coefficients from the regressions on the fenced data seem prom-

ising. The results from the scaled block-level dataset are disappointing. With all coefficients ex-

tremely close to zero, they put doubt on the usefulness of the model as it is constructed and es-

timated in this thesis. Comparing both regressions to their median regression counterpart, it seems

that outliers are roughly in line with the relations found in the rest of the data, indicated by the

similarities of the signs.

In both datasets the coefficients for the price elasticity of demand are positive. This is true for all

estimated regressions except for the regressions performed on the scaled block-level dataset, where

the coefficients are so close to zero, that they fall below the precision reported herein. The results

of positive price elasticity of demand pair well with the findings of Frazzini and Lamont (2008) and

Ben-David et al. (2021b). They report that investors are return chasing. For bitcoin, this means

that inflows beget inflows. Further underlining the findings of Hamrick et al. (2018), that bitcoin

and other cryptocurrencies are prone to pump and dump schemes. I.e., increasing prices are creating

more demand for bitcoin.

According to the model of Gabaix and Koijen (2021), it seems likely that the typical investor in

bitcoin invest with a contrarian strategy and that bitcoin investors predominantly found in the daily

dataset are slightly leveraged, whereas bitcoin investors dominating the block-level dataset seem to

have only a fraction of their savings in bitcoin. However, the results for the fraction invested are to

be doubted.
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Chapter 7
Simulation

In Summary: The simulations have been performed with the model of Gabaix and Koijen (2021).

First, the simulations using the original model are shown. Thereafter, the estimated parameters

from chapter 6 are used for the simulations. At first with the results from the daily dataset and later

with the results from the block-level data.

Main Points:

� The simulations overestimate the observed moments for the bitcoin prices.

� Block-level simulations seem to be closer to the observed moments.

� Two simulations imply a negative bitcoin premium.
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7.1 Gabaix and Koijen (2021) Simulation

This section presents an overview of the model proposed by Gabaix and Koijen (2021) in the main

part of their paper. This section follows closely the implementation in Gabaix and Koijen (2021) and

a later step uses the estimated parameters from section 6.3 to investigate what the model predicts for

the bitcoin market. The moments resulting from the simulations are then compared to the realized

moments from the bitcoin market.

The model in Gabaix and Koijen (2021) is stated as endowment economy. The endowment follows

a log-normal growth rate, which is split into a log-normally growing dividend stream and a residual.

The investment universe consists of two funds. One is a pure bond fund, investing only in bonds,

and the other is a mixed fund, which is invested in bonds and stocks according to a mandate.

Importantly, the agent in the model is not fully rational. A fully rational agent would not adhere

to the imposed mandate but would see through the mandates and invest as there would be no

mandates and just bonds and stocks to hold.

To omit the fully rational behavior the investor is split between a consumption-choosing rational

part and an equity-choosing irrational part. The equity-choosing part is influenced by an exogenous

factor denoted by bt in Gabaix and Koijen (2021). This factor influences the flows of the equity-

choosing part, additionally to narrow framing (Barberis et al., 2006). Thus, influencing prices non-

rationally. bt is modeled as AR(1) process. Gabaix and Koijen stress that this assumption is a

simplification and the model could be calibrated with more involved behavioral assumptions for the

flows.

Gabaix and Koijen solve their model analytically and calibrate it to annualized parameters of

the US market. The parameters have been estimated by Gabaix and Koijen with the GIV estimator

(Gabaix and Koijen, 2020). They note that the peculiarities of the model are mainly the inelasticity

of the market, that flows influence prices, and with the prices the risks.

For the repetition of the simulation with the estimated parameters from bitcoin, the same US

variables are used for simplicity, and only the estimated variables as presented in tables 6.4, and 6.7

are changed.
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7.1.1 Replication of the Calibration (Gabaix and Koijen (2021))

This section follows closely the steps described in Gabaix and Koijen (2021) for the calibration. The

inputs used are displayed in table 7.1.

Table 7.1 – Input parameters for calibration of the Simulation in Gabiax and Koijen (2021).

γ g σy rf σD σf φb ζM κ θ

2.000 0.020 0.008 0.010 0.050 0.028 0.040 0.200 1.000 0.875

Notes: The parameters used as inputs for the calibration described in Gabaix and Koijen (2021) p.

109-111

From the input parameters the expected price dividend ratio and the variance of the price dividend

ratio can be directly computed and result in:

Expected price-dividend ratio: 33.1330

Variance of the expected price-dividend ratio: 0.2500 .

The other parameters are calculated as described in Gabaix and Koijen (2021). The moments of

interest are simulated with 1′000 repetitions. The simulation results are given by:

Mean equity premium: 0.0438

Standard deviation of excess stock returns: 0.1419

Mean price-dividend ratio: 32.5914

Standard deviation log. price dividend ratio: 0.4501 .

A constant risk-free rate of 1% is assumed throughout the simulations. The correlation between

flow shocks and dividend shocks is assumed to be zero. The model is simulated with twelve months

over 72 years i.e., a time increment of 1
12 .

Diego Hager Bitcoin Inelasticity Hypothesis



7.1. GABAIX AND KOIJEN (2021) SIMULATION 71

7.1.2 Simulation with Bitcoin Parameters

For the simulation using the bitcoin parameters, the parameters γ, g, σy, σD, rf , σf and φb are

unchanged. Hence, the assumptions for risk-aversion, endowment growth, endowment volatility,

dividend volatility, risk-free rate, volatility of flows, and the mean-reversion speed of flows are the

same as in the original model. The first five make sense to leave unchanged as one could assume that

the agents acting in the respective economies i.e., bitcoin and stocks and bonds, are the same and

also face the same shocks and risk-free rate. The flow parameters, however, could differ between the

market for bonds and stocks, and that for bitcoins. Though, a sensible estimation of the parameters

is beyond the scope of the thesis and left for future work. For simplicity, it is hereafter assumed that

the flows are similar enough to justify the same parameters.

Five-Monthly Data

Table 7.2 repeats the inputs used for the simulation. Parameters γ, g, σy, σD, rf , σf and φb are

unchanged and therefore omitted. In contrast to the original calibration, in the bitcoin data, δ is

implied by the estimates from the data and not computed from the other inputs. Hence, it is added

to the table. Because many of the parameters are negative, the computations involving logarithms

result in NaNs in some models. As they involve dividends, which bitcoin does not pay, they are of

questionable value anyway.

Table 7.2 – Parameters for calibration of the Simulation in Gabaix and Koijen (2021).

ζM κ θ δ

Linear −0.0026 −0.0006 1.0032 0.2847
Technical −0.0028 −0.0021 1.0022 −0.0709
Martingale −0.0024 −0.0008 1.0018 −0.1453
Realized −0.0247 −0.0082 1.0188 −0.2246

Notes: The parameters are estimated from the daily bitcoin

data using five-monthly averages. The parameters are used

as inputs for the calibrated simulation described in Gabaix

and Koijen (2021) p. 109-111

All moments of interest are simulated with 1′000 repetitions, as it was done in Gabaix and Koijen
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(2021). The predictive regressions have not been repeated as they too include the dividends, which

cannot be determined from the bitcoin market. A further difference is that in the bitcoin models,

only ten years are simulated with a time increment of 1
365 to adjust the simulation to the difference

in the period of the estimated variables.

A näıve computation of the prices used for the estimation gives the following values for the

observed values:

Observed Values: Values for the moment of interest computed from the prices used for the

estimation of the parameters in the daily dataset:

Mean bitcoin premium: − 0.0059

Standard deviation of excess bitcoin returns: 0.0748

A constant risk-free rate of 1% is assumed for the computation. The results of the simulations are

displayed in table 7.3.

Table 7.3 – Simulation results for the daily dataset using five-monthly averages.

Linear Technical Martingale Realised

Mean bitcoin premium: 231.7749 200.0217 272.2914 2.5860
St. d. of excess bitcoin returns: 10.4677 9.7201 11.3402 1.1018

Notes: The regression results from the simulation proposed in Gabaix and Koijen (2021) with

the parameters estimated from the respective model.

All simulated results heavily overestimated the average of the bitcoin premium and its standard

deviation.

Reasons for this behavior can be found in the computation of the ‘slope of log price deviation to

flow ’ (Gabaix and Koijen (2021) p. 19). This factor is computed as:

bpf =
1

ζ + κφf
. (7.1)
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Hence, small values for ζ and κ given φb is kept the same lead to very large numbers for bpf .

This value lays at the heart of the model and influences not only the variance of the stock or bitcoin

market but also the bitcoin premium computations.

To omit this problem, the ‘mean reversion rate of cumulative flow and log D/P ’ would need to

increase proportionally, to offset the effect of the small values in ζ and κ. However, because κ is

negative the mean reversion rate should also be negative, and it should be very large. A back-of-the-

envelope calculation posits a mean reversion rate for the linear model at around 236.67%, to get a

value for bpf equal to five as is in the paper Gabaix and Koijen (2021).

Whether this value for bpf would be sensible for the bitcoin data is beyond the scope of this thesis.

block-level Data

The results for the block-level data are less extreme, but still overstate the true moments greatly.

Table 7.4 displays the parameters used for the simulations. The time increment used is 1
52′560 , this

because it corresponds to the estimations (144 · 365 = 52′560). The simulation is then computed

over ten years.

The results for the block-level data are less extreme but still overstate the true moments greatly.

Table 7.4 displays the parameters used for the simulations. The time increment used is 1
52′560 , this

because it corresponds to the estimations (144 · 365 = 52′560). The simulation is then computed

over ten years.

Table 7.4 – Parameters for calibration of the Simulation in Gabaix and Koijen (2021).

ζM κ θ δ

Linear −0.0084 −0.0042 0.8570 36.0476
Technical −0.0084 −0.0131 0.8564 11.6031
Martingale −0.0087 −0.0013 0.8567 115.5385
Realized −0.0090 −0.0008 0.8595 186.8750

Notes: The parameters are estimated from the block-level bit-

coin data using averages over 144 blocks. The parameters

are used as inputs for the calibrated simulation described in

Gabaix and Koijen (2021) p. 109-111
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Table 7.5 – Simulation results for the fenced block-level dataset using rolling averages over 144 blocks.

Linear Technical Martingale Realised

Mean bitcoin premium: 14.2942 19.6677 −3.8101 −18.9868
St. d. of excess bitcoin returns: 3.3255 3.3255 3.2109 3.1038

Notes: The regression results from the simulation proposed in Gabaix and Koijen (2021) with

the parameters estimated from the respective model.

Table 7.5 shows the results of the simulations for the fenced block-level data. A striking fact is

that the large values for δ lead to negative premiums. I.e., it appears to be the case that bitcoin

investors are willing to pay for the risk they take by buying bitcoin. All the simulated standard

deviations are similar. These similarities originate in the similar values for ζ.

The negative premium on bitcoin seems in to be in line with the observed value, which is also

negative. As previous studies note, in further work, it might be interesting to investigate results for

different periods.

Concluding the simulation results: Because the estimated parameters in the daily dataset are

very close to zero the generated moments are far off what is observed in the data. The results are

closer to the observed moments in the simulations using the results from the block-level data. They

are still far off. Interesting is the fact that large values for the mean dividend-price ratio lead the

bitcoin premium to become negative. The negative premium could imply that investors are willing

to pay for the risk taken up when buying bitcoin. That the daily data does not feature a negative

premium might hint at differences between the observed cohorts.

It can be argued that the assumption of the same mean reversion coefficients for the flows into

bitcoin as into equities is the main reason for the failure of the model to generate moments close to

the observed moments.
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Chapter 8
Conclusion

In Summary: This chapter summarizes the results of the thesis, criticizes it, and shows where

future work could lead.

Main Points:

� The results from the estimations and the simulations put doubt on the explaining power of the

model as it is implemented in the thesis.

� Handling the large amount of data posed the main obstacle for the estimations.

� A large corpus of literature had to be read to gain a grasp of the problem.

� Numerically solving an adapted model was not possible within the time constraints for the

thesis.
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8.1 Results

Does the model of Gabaix and Koijen (2021) explain bitcoin price fluctuations ?

The research question is answered negatively with the methods and the implementation used in

this thesis. The answer consists of two parts. The first part concerns the estimations and the second

part the simulation study. Both results put doubt on whether the model tells the full story of the

origins of bitcoin price fluctuations.

Starting with the estimations: The low values and significances put doubt on the veracity of the

model. Although it can be questioned whether the impact of taking rolling averages as the baseline

is the culprit for the meager results or if the data employed understates the effects on prices, given

that it is on-chain data. Nevertheless, the results underline the hypothesis that the bitcoin market

may be inelastic, and further indicate that bitcoin investors are return-chasing.

The regressions indicate that, given the validity of the model and its implementation, agents

in the bitcoin economy invest contrarian and some might be leveraged. The bitcoin market has a

positive price elasticity of demand close to zero i.e., positively inelastic. These findings indicate that

bitcoin investors stabilize the bitcoin exchange rate. They buy bitcoin if it deteriorates in price and

sell bitcoin if the price rises. Yet, because some might be leveraged, it may be the case that large

downward movements impede the possibilities of agents to buy and therefore stabilize the price path.

Such a scenario would lead to heavy downturns in the bitcoin market. As the stabilizing effects of

the contrarian investment strategy and the positive elasticity break down. In any case, the results

for the fraction invested in bitcoin are dependent on the cohort observed and the assumptions for

the data transformations and need qualification.

In short, the findings from the regressions indicate that bitcoin is stabilized steadily for as long

as contrarian agents are able to buy it on downward movements.

The simulations put further doubt on the explaining power of the model. The resulting moments

are not close to the observed moments.

The simulations show that because the values estimated from the data are very close to zero,

model internal variables controlling the resulting moments become very large. Leading to overly
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large moments in the simulations.

A general reference to the simulation results is that the mean reversion coefficient of bitcoin flows

has not been estimated and that the results might depend on the employed period length of the

averages.

In summary, the results indicate that the model might not be able to explain the return volatility

of bitcoin prices. The regression results indicate that the transformed data is still extremely noisy

and the estimations uncertain. The simulations performed on the grounds of the estimates led to

results that do not strengthen the case for the simulation. Doubts on this conclusion persist because

a model parameter governing the simulation results was not estimated.

8.1.1 Encountered Difficulties

A big problem was posed by long computing times on the two large datasets. A simple error in the

code easily puts you back up to three days. Furthermore, it was challenging to plot the data. Hence,

one is flying blind most of the time when working with the datasets. The long computing times

and the troubles in having an overview had the consequence, that most estimations are first shots

at difficult problems. Besides that, installing and setting up pyspark was a hurdle on its own.

The differences between the daily and the block-level dataset were surprising at first. For example,

the differences between the fenced and the unfenced regressions are very prominent in the block-level

dataset and small in the daily dataset. Likely, the differences would also be stark when the logarithms

of the transactions would have been taken. This was not done because, in the daily dataset the series

became less stationary, which was interpreted as a strong caveat and a sign that the benefits of doing

so in the block-level dataset are small.

To gain an understanding of the theories and assumptions involved, a large body of literature had

to be read. The question of price elasticity and price impact covers several dimensions as outlined

in the first three chapters of the thesis. The width of the existing literature made it difficult to keep

the overview and not drift too deeply into specific strains of literature and keep the topic close to

the original paper Gabaix and Koijen (2021).
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The setup of the model to solve the problem numerically posed severe obstacles. Starting with

the belief that, as it was solved analytically with some simplifications, it should not be much of a

hassle to solve it numerically, it had to be scrapped in the end.

The main reason might be that because of the rolling averages selected for the baseline, the

model became very dependent on the past values of prices and quantities and with that to the

initial conditions given. Furthermore, because of the deterministic nature of the price process in the

model, bitcoin became essentially a risk-free asset for a representative agent. Because if there is one

sole agent, he knows the in- and outflows exactly. In the model of Gabaix and Koijen (2021), this

problem is circumnavigated with the introduction of the behavioral disturbance and the separation

of the agent into a rational and an irrational part. Essentially making the model one of cooperating

heterogeneous agents.

Due to the sensibility of the model to the baseline values i.e., the derivatives were dependent on

the ratios of past average bitcoin holdings and prices. Not even a simpler model with one asset was

solvable.

It was further unclear at the beginning that the behavioral disturbance is helping to solve the

model. The initial take was that an easier version omitting as much noise as possible would be the

easiest to solve.

The main problems posed in the thesis were size related. The size of the dataset and the size of

the literature concerned with price generation. Further, numerically solving a simplified model was

not possible.

8.2 Critique

A large question mark can be put on the validity of the rolling averages as the baseline. Using this

baseline makes the data mean reverting, thus this transformation could be the main driver of the

results interpreted in 8.1. I.e., given that computing all values in percentage deviations from its

rolling averages, how surprising can the finding of mean-reversion be?
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Yet, this problem possibly has deeper roots. Given that the model proposed is completely con-

strued around deviations from a baseline, the question of what this baseline constitutes is natural. In

Gabaix and Koijen (2021) this problem is solved, by making assumptions on the processes generating

endowments and flows. With these assumptions on the processes rational means can be computed,

which serve as the baseline. Given the author’s inability to solve a simple adaption of the model

numerically without these assumptions, it remains to be seen whether it could have been solved with

other methods.

Another point of critique is the use of on-chain data. As explained in the chapter 2 and 3, price

driving mechanisms are at play in the interaction between exchanges, which display the prices, and

the agents interacting with the exchanges. In the bitcoin economy, this distinction between ‘over-the-

counter’ or on-chain transactions with only an indirect link to the exchange rate and the transactions

performed in parts off-chain on the exchanges whit a direct link to the exchange rate is especially

severe.

As it is argued in the thesis (6), there is reason to believe that on-chain transactions are connected

to the bitcoin exchange rate. However, as more people use bitcoin as an asset off-chain and not

as a medium of exchange on-chain, these connections could become weaker. The shift towards

more centralization of the bitcoin network could indicate a loosening of the relation. Moreover, the

introduction of bitcoin futures, which are traded entirely off-chain and are settled financially without

the involvement of bitcoin itself (CME Group Inc., 2020), can enhance the dissolvement of the link

between on-chain transactions and the exchange rate of bitcoin.

That the estimations are made based on the model might obscure possible other effects. E.g.,

that the demand series is computed as prescribed by the model is heavily altering the original data.

These modifications make sense in the scope of this thesis, which aims to test the validity of the

model. It could be beneficial to perform estimations without modifications. In the same vein, it is

not fully clear whether a large number of outliers originates from the data or the transformations.

Especially the divisions are prone to producing extremely large values if the denominator is small.

Given the market microstructure literature presented in 2.3 it would make sense to adjust the

transaction with a power law. The effects on the transformed data and the estimations could be
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large and further distort the results. Therefore, this would need to be done in conjunction with a

model-free estimation, to assess the impact of these transformations.

Too little attention has been put to the transition from ‘macro’ to ‘micro’ implied by the shift

from the daily to the block-level dataset. A less model-based approach, in the sense of ?, to the

estimations done on the block-level dataset could have produced better results. To bring together

the macrostructural and the microstructural view is, however, clearly beyond the scope of this thesis.

A further point of critique is the handling of the outliers, fencing seems like a viable solution,

however, it severely alters the data used.

To decision to handle the full sample as one observation and imply the same data generating

process might be an invalid assumption. Given the differing results for different periods detailed in

the first three chapters, it might be possible that the data generating process has changed. E.g., after

the introduction of bitcoin futures, price generation could be expected to be distorted from what it

was previously.

The determining values for the periods used in the rolling means for the technical model and the

period used to compute the estimations in the linear model are arbitrary. Other values could lead

to different estimates of κ and therefore alter the results of the simulations.

8.3 Outlook

The data used is very rich in information and large in scope. Furthermore, the algorithmic supply

makes bitcoin or similar currencies perfectly suited for the estimation of demand impact on prices.

In future work, it would be interesting to see if less model-driven approaches i.e., without the

rolling averages, differ from the results shown in this thesis. As was pointed out in the section 8.2, it

might be beneficial to pair the data with volume data from exchanges and other sources, to diminish

the effects of the on-chain data-only approach.

An in-depth investigation of the origins of the large values for δ might be interesting too. Possibly,

a behavioral effect lays at the origin of this. To evaluate this hypothesis a further look into similarly

build models as the one from Gabaix and Koijen (2021) is needed.
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The estimation of the missing parameter could be tackled by first identifying a suitable model

for the process of the flows. Several models could be potential candidates e.g., AR(n), ARCH,

GARCH, or other more involved models. The decision of which model to take would best be done

via cross-validation with a suitable error measure.

For the numerical computation of the model, there would be the need to circumvent the depend-

ence on past values. A possibility is to replace the rolling averages with their theoretical counterparts

i.e., variance, mean, and covariance. This approach has the obvious drawback of bringing back the

assumptions it was meant to omit. Another viable way could be the implementation of a two-step

process in agent’s optimizations as proposed in Haddad et al. (2021). However, an in-depth look at

the model would be needed first.

The synopsis of the outlook is that the data is plentiful, and the topic is interesting and an active

field of research. It would be appealing to continue working in this direction.

8.4 Closing Words

Given the results presented in this thesis, does it makes sense to say that the ones who buy early in

order to try to sell to others later at higher prices? The idea which led to the uptake of the question

for the thesis.

It seems not. Contrarian investing agents are the opposite of what would have been expected in

the light of the Keynesian Beauty contest or the dollar auction. The opposite seems to be the case,

agents act against the movements instead of enhancing them. The roots of this behavior remain in

the dark, however.

As was expected, the noise surrounding the estimates is large. The reasons for this are manifold

and some are outlined in chapter 2. Others surely are covered in noise.

A fascinating aspect is that a good without clear fundamental value has contrarian investing

agents.
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Appendix A
Output

A.1 Sample API- Output

Below a sample block output from the graphsense API (Haslhofer et al., 2021) is shown.

The first entry ‘coinbase’ indicates whether the transaction is a Coinbase transaction. ‘height’

denotes the block number, or the position of the block relative to the genesis block (Antonopoulos,

2017).

The keyword ‘inputs’ is followed by a list of information about the transaction inputs. The first

‘input’ list is empty because it is a coinbase transaction, which is the first in every block and does

not originate from a specific address (Nakamoto, 2008).

The ‘output’ keyword contains also a list of transaction information. This list, as is the list

containing the input information, is divided in the ‘address’, the ‘fiat value’, denoted in euro and us

dollar and the ‘value’ denoted in bitcoin.

Each transaction is followed by a summary of the total value transferred. The fee paid to the

miner can be calculated from the difference between the total input and the total output (Nakamoto,

2008).

Additionally, the timestamp indicating the approximate time the block was mined and the fiat

values at the time are given by the API. The timestamp is given by the machine of the miner and is

only approximately correct (Antonopoulos, 2017).
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Each transaction ends with the transaction hash (‘tx hash’) and the type of the transaction type

(‘tx type’).

[{'coinbase': True,

'height': 71000,

'inputs': [],

'outputs': [{'address': ['19ozhWSeWPgcPrAPvXmZvxfiFFgPCmGs8r'],

'value': {'fiat values': [{'code': 'eur', 'value': 0.0},

{'code': 'usd', 'value': 0.0}],

'value': 5000000000}}],

'timestamp': 1280419020,

'total input': {'fiat values': [{'code': 'eur', 'value': 0.0},

{'code': 'usd', 'value': 0.0}],

'value': 0},

'total output': {'fiat values': [{'code': 'eur', 'value': 0.0},

{'code': 'usd', 'value': 0.0}],

'value': 5000000000},

'tx hash': '3ce6ba71b976dec9f4d22a57575bf7de51048bb218b4f6dd691310088cde1ab0',

'tx type': 'utxo'}, {'coinbase': False,

'height': 71000,

'inputs': [{'address': ['1MChrKgpmeDFRkkZzXstozzC2b8NLaedKU'],

'value': {'fiat values': [{'code': 'eur', 'value': 0.0},

{'code': 'usd', 'value': 0.0}],

'value': 3000000000}}],

'outputs': [{'address': ['1LtXTCCqSMHquWsLZSL8xd11hdBUxckVGG'],

'value': {'fiat values': [{'code': 'eur', 'value': 0.0},

{'code': 'usd', 'value': 0.0}],

'value': 3000000000}}],

'timestamp': 1280419020,

'total input': {'fiat values': [{'code': 'eur', 'value': 0.0},

{'code': 'usd', 'value': 0.0}],

'value': 3000000000},

'total output': {'fiat values': [{'code': 'eur', 'value': 0.0},

{'code': 'usd', 'value': 0.0}],

'value': 3000000000},
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'tx hash': '1c474d87ab4ddd47c2e5393286e2bb0decf36bb8badd016f9c822a98f799a2a4',

'tx type': 'utxo'}]

A.2 Summary Statistics

Table A.1 – Summary Statistics for monthly data.

q p f d dp

count 3270 3270 3270 3270 3270
min -21.800 -4.672 -12.148 -2.407 -15.872
25% -0.269 -0.483 -0.017 -0.604 -0.275
50% -0.086 -0.152 -0.017 -0.167 0.014
75% 0.217 0.336 -0.017 0.377 0.314
max 11.897 9.230 33.758 6.738 14.740

Notes: All features are in percent deviations from their

monthly rolling mean. All values are scaled to unit vari-

ance and zero mean.

Table A.2 – Summary Statistics for semi annual data.

q p f d dp

count 3270 3270 3270 3270 3270
min -43.063 -1.609 -15.516 -1.276 -22.843
25% -0.191 -0.574 -0.008 -0.594 -0.148
50% -0.033 -0.228 -0.008 -0.293 0.003
75% 0.175 0.223 -0.008 0.139 0.173
max 11.867 10.243 14.232 7.570 15.479

Notes: All features are in percent deviations from their semi

annual rolling mean. All values are scaled to unit variance

and zero mean.

Diego Hager Bitcoin Inelasticity Hypothesis



A.3. STATIONARITY TESTS 86

Table A.3 – Summary Statistics for annual data.

q p f d dp

count 3270 3270 3270 3270 3270
min -41.792 -1.096 -15.516 -0.950 -23.251
25% -0.185 -0.630 -0.008 -0.592 -0.108
50% -0.029 -0.222 -0.008 -0.315 0.001
75% 0.187 0.207 -0.008 0.056 0.120
max 12.571 9.599 14.232 7.118 15.189

Notes: All features are in percent deviations from their an-

nual rolling mean. All values are scaled to unit variance

and zero mean.

Table A.4 – Summary Statistics for the scaled block-level data set.

q p f d dp

count 559’354 559’354 559’354 559’354 559’354
mean 0.000 0.000 0.000 0.000 0.000
std 1.000 1.000 1.000 1.000 1.000
min -1.170 -0.024 -124.0131 -42.415 -527.237
25% -0.002 -0.002 -0.001 -0.134 -0.000
50% -0.001 -0.001 -0.001 -0.109 0.000
75% -0.001 -0.001 -0.001 -0.038 0.000
max 747.887 747.213 735.913 51.657 529.576

Notes: All features are in percent deviations from the rolling mean

using 144 blocks. All values are scaled to unit variance and zero

mean.

A.3 Stationarity Tests
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Table A.5 – Summary Statistics: DFGLS and the KPSS test (Monthly to Quarterly).

Monthly Bi-Monthly Quarterly

KPSS DFGLS KPSS DFGLS KPSS DFGLS

q
0.349 −3.911 0.199 −4.372 0.134 −4.662

(0.001) (0.002) (0.015) (0.000) (0.070) (0.000)

p
0.087 −4.134 0.104 −4.418 0.122 −5.065

(0.227) (0.001) (0.145) (0.000) (0.093) (0.000)

f
0.048 −13.234 0.036 −55.908 0.049 −57.097

(0.599) (0.000) (0.787) (0.000) (0.588) (0.000)

d
0.227 −7.425 0.286 −4.270 0.325 −2.861

(0.008) (0.000) (0.002) (0.000) (0.001) (0.050)

dp
0.0105 −2.384 0.007 −2.290 0.008 −2.345

(0.998) (0.149) (0.998) (0.180) (0.997) (0.161)

Notes: The statistic is presented with the p-value in brackets. All features are in percent deviations from their five

monthly rolling mean. All values have been scaled to unit variance and zero mean before conducting the tests. The

results have not been influenced by the scaling.

Table A.6 – Summary Statistics: DFGLS and the KPSS test (Trimesterly to Annually).

Trimesterly Semi-Annually Annually

KPSS DFGLS KPSS DFGLS KPSS DFGLS

q
0.101 −5.072 0.058 −5.890 0.018 −5.928

(0.159) (0.000) (0.471) (0.000) (0.985) (0.000)

p
0.136 −5.283 0.160 −4.181 0.216 −3.644

(0.067) (0.000) (0.038) (0.001) (0.010) (0.005)

f
0.039 −11.371 0.039 −11.371 0.039 −11.371

(0.739) (0.000) (0.739) (0.000) (0.739) (0.000)

d
0.346 −2.017 0.387 −1.617 0.434 −1.402

(0.001) (0.293) (0.000) (0.513) (0.000) (0.638)

dp
0.010 −2.627 0.015 −4.438 0.018 −5.843

(0.997) (0.088) (0.995) (0.000) (0.987) (0.000)

Notes: The statistic is presented with the p-value in brackets. All features are in percent deviations from their five

monthly rolling mean. All values have been scaled to unit variance and zero mean before conducting the tests. The

results have not been influenced by the scaling.
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A.4 Regression Results

Table A.7 – Median regression results.

Linear Technical Martingale Realised Without

Const. −0.0277 −0.0277 −0.0294 −0.0294 −0.0285
(0.005) (0.005) (0.005) (0.005) (0.005)

p 0.0087 0.0087 0.0061 0.0061 0.0058
(0.005) (0.005) (0.005) (0.005) (0.005)

d 0.0417 0.0417 0.0419 0.0419 0.0427
(0.005)∗∗∗ (0.005)∗∗∗ (0.005)∗∗∗ (0.005)∗∗∗ (0.005)∗∗∗

f −0.0011 −0.0011 −0.0010 −0.0010 −0.0011
(0.005) (0.005) (0.005) (0.005) (0.005)

dp 0.0043 0.0043 −0.0103 −0.0103 −
(0.005) (0.005) (0.005)∗∗ (0.005)∗∗ −

Notes: The coefficients are presented with the standard errors in brackets. All

features are in percent deviations from their five monthly rolling mean. All values

have been scaled to unit variance and zero mean. The standard errors are not

adjusted and should not be trusted.
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Table A.8 – OLS regression results for the semi-annual data.

Linear Technical Martingale Realised Without

Const. −0.0072 −0.0072 −0.0072 −0.0073 −0.0072
(0.018) (0.018) (0.018) (0.018) (0.018)

p 0.0238 0.0236 0.0257 0.0215 0.0232
(0.022) (0.020) (0.021) (0.021) (0.021)

d 0.0033 0.0041 0.0032 0.0042 0.0035
(0.049) (0.048) (0.048) (0.049) (0.048)

f −0.0023 −0.0024 −0.0028 −0.0023 −0.0023
(0.005) (0.006) (0.005) (0.005) (0.005)

dp −0.0074 −0.0797 −0.0289 −0.0172 −
(0.051) (0.033)∗∗ (0.011)∗∗ (0.013) −

Notes: The coefficients are presented with the standard errors in brackets. All

features are in percent deviations from their five monthly rolling mean. All values

have been scaled to unit variance and zero mean. The asterisks (*, **, ***) indicate

significance at the 10%, 5% and 1% level. Standard errors are compted using

autocorrelation robust standard errors. The d time series is differenced because of

non-stationarity
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Table A.9 – Fenced OLS regression results.

Linear Technical Martingale Realised Without

Const. 0.0000 0.0000 0.0000 −0.0000 −0.0000
(0.019) (0.019) (0.019) (0.019) (0.019)

p 0.0261 0.0252 0.0276 0.0226 0.0250
(0.024) (0.022) (0.023) (0.023) (0.023)

d 0.0042 0.0052 0.0044 0.0055 0.0046
(0.050) (0.049) (0.049) (0.050) (0.049)

f −0.0029 −0.0031 −0.0036 −0.0030 −0.0030
(0.006) (0.006) (0.006) (0.006) (0.006)

dp −0.0050 −0.0233 −0.0304 −0.0242 −
(0.019) (0.011)∗∗ (0.012)∗∗∗ (0.014)∗ −

Notes: The coefficients are presented with the standard errors in brackets. All

features are in percent deviations from their five monthly rolling mean. All values

have been scaled to unit variance and zero mean. The values have been truncated,

where they exceed the 80% quantile by more than five times the distance between

the 80% and the 20% quantile and also where the values are less than the 20%

quantile minus five times the distance between the 80% and 20% quantiles. The

asterisks (*, **, ***) indicate significance at the 10%, 5% and 1% level.

Table A.10 – OLS regression results for the scaled block-level data.

Linear Technical Martingale Realised Without

Constant 0.0000 0.0000 0.0000 0.0000 0.0000
(0.001) (0.001) (0.001) (0.001) (0.001)

p 0.0000 −0.0000 0.0000 −0.0000 −0.0000
(0.000) (0.000) (0.000) (0.000) (0.000)

d −0.0144 −0.0144 −0.0144 −0.0144 −0.0144
(0.014) (0.014) (0.014) (0.014) (0.014)

f −0.0000 −0.0000 0.0000 −0.0000 −0.0000
(0.000) (0.000) (0.000) (0.000) (0.000)

dp −0.0000 −0.0000 0.0000 −0.0000 −
(0.000) (0.000) (0.000) (0.000) −

Notes: The coefficients are presented with the standard errors in brackets. All features

are in percent deviations from their rolling mean using 144 blocks. All values have been

scaled to unit variance and zero mean. The asterisks (*, **, ***) indicate significance

at the 10%, 5%, and 1% level.
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Table A.11 – Median regression results for the scaled block-level data.

Linear Technical Martingale Realised Without

Constant −0.0012 −0.0012 −0.0012 −0.0012 −0.0012
(0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗

p −0.0000 −0.0000 0.0000 0.0000 0.0000
(0.000) (0.000) (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗

d −0.0003 −0.0003 −0.0003 −0.0003 −0.0003
(0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗

f −0.0000 −0.0000 −0.0000 −0.0000 −0.0000
(0.000)∗ (0.000)∗ (0.000)∗ (0.000)∗ (0.000)∗

dp 0.0000 0.0000 −0.0000 0.0000 −
(0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ −

Notes: The coefficients are presented with the standard errors in brackets. All features

are in percent deviations from their rolling mean using 144 blocks. All values have been

scaled to unit variance and zero mean. The asterisks (*, **, ***) indicate significance

at the 10%, 5%, and 1% level.

Table A.12 – Fenced median regression results.

Linear Technical Martingale Realised Without

Constant 0.1323 0.1323 0.1324 0.1323 0.1323
(0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗

p 0.0046 0.0046 0.0020 0.0018 0.0055
(0.001)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.000)∗∗∗

d −0.2765 −0.2765 −0.2725 −0.2727 −0.2722
(0.020)∗∗∗ (0.020)∗∗∗ (0.020)∗∗∗ (0.020)∗∗∗ (0.020)∗∗∗

f 0.0043 0.0043 0.0044 0.0044 0.0043
(0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗ (0.000)∗∗∗

dp −0.0027 −0.0027 −0.0045 −0.0047 −
(0.001)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ (0.001)∗∗∗ −

Notes: The coefficients are presented with the standard errors in brackets. All features

are in percent deviations from their rolling mean using 144 blocks. All values have

been scaled to unit variance and zero mean. The values have been truncated, where

they exceed the 80% quantile by more than five times the distance between the 80%

and the 20% quantile and also where the values are less than the 20% quantile minus

five times the distance between the 80% and 20% quantiles. The asterisks (*, **, ***)

indicate significance at the 10%, 5%, and 1% level.
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A.5 Figures

Figure A.1 – Timeline of q for the scaled and the fenced block-level dataset.

Notes: The figure above shows the scaled variable q from the block-level dataset.

The figure below shows the variable q from the fenced dataset. All values have been

scaled to unit variance and zero mean.
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Appendix B
Proofs from Gabaix and Koijen (2021)

B.1 Proof of Proposition 1 (Gabaix and Koijen (2021))

Institutions i’s wealth at time t = 0− is given by: W̄i = P̄ Q̄i + B̄. The holdings can be rewritten

according to equation (4.1):

P̄ Q̄i = θiW̄i, B̄i = (1− θi)W̄i. (B.1)

Because at t = 0− we have π = π̄ the term eκiπ̂ drops out.

At time t = 0 after a flow ∆Fi and a corresponding price change to the equilibrium price P , the

wealth of a particular institution Wi = PQ̄i + B̄i + ∆Fi. Under the assumption that the prices of

bonds are fix, Gabaix and Koijen (2021) write ∆Wi = Wi− W̄i = Q̄i∆P + ∆Fi. Following from that

notation the value of assets held by the institution changes by a fraction of:

wi =
∆Wi

W̄i
(B.2)

=
Q̄i∆P

W̄i
+

∆Fi
W̄i

(B.3)

=
Q̄iP̄

W̄i
· ∆P

P̄
+

∆Fi
W̄i

(B.4)

= θi · p+ fi (B.5)

From (B.2) to (B.3) the definition was used and from (B.3) to (B.4) the first fraction is multiplied
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by P̄
P̄

and separated thereafter. From (B.3) to (B.4) definitions are used.

Using the definition in equation (4.1) Gabaix and Koijen make the following transformations:

Qi =
θie

κiπ̂Wi

P
(B.6)

=
θie

κiπ̂W̄i(1 + wi)

P̄ (1 + p)
(B.7)

= Q̄ie
κiπ̂

1 + wi
1 + p

(B.8)

Using this expression and inserting it in the definition of qi Gabaix and Koijen derive while keeping

κi = 0:

qi =
Qi
Q̄i
− 1 (B.9)

= eκiπ̂
1 + wi
1 + p

− 1 (B.10)

=
eκiπ̂(1 + wi)− 1− p

1 + p
(B.11)

=
eκiπ̂ − 1 + eκiπ̂wi − p

1 + p
(B.12)

=
eκiπ̂ − 1 + eκiπ̂(θip+ fi)− p

1 + p
(B.13)

=
eκiπ̂ − 1 + p(θie

κiπ̂ − 1) + fie
κiπ̂

1 + p
(B.14)

=
eκiπ̂ − 1− ζip+ fie

κiπ̂

1 + p
(B.15)

κi=0⇒ fi − ζip
1 + p

(B.16)

With ζi = 1− θieκiπ̂ or, equivalent for κi = 0, ζi = 1− θi.

To derive the equation in 4.1.1 first Gabaix and Koijen (2021) transform the dividend-price ratios

and then take the natural logarithm in equation (4.1): Starting by taking logs and differences from

the baseline in the dividend price ratio Gabaix and Koijen derive the following relation:

∆ln
(De

P

)
= ∆ln(De)−∆ln(P ) ≈ d− p . (B.17)
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By definition δ = De

P = 1 + rf + π Gabaix and Koijen (2021) derive further:

∆ln
(De

P

)
= ln

(De

P

)
− ln

(D̄e

P̄

)
(B.18)

= ln(1 + rf + π)− ln(1 + rf + π̄) = ln
(1 + rf + π

1 + rf + π̄

)
(B.19)

= ln
(1 + rf + π + π̄ − π̄

1 + rf + π̄

)
(B.20)

= ln
(

1 +
π − π̄

1 + rf + π̄

)
= ln

(
1 +

∆π

1 + rf + π̄

)
(B.21)

≈ ∆π

1 + rf + π̄
=
π̂

δ
(B.22)

By combining the results from (B.17) and (B.22) Gabaix and Koijen get a final expression for the

equity premium:

π̂ ≈ δ(d− p) . (B.23)

This equation brings the difference of the equity premium directly in to a relation with the change

in prices and dividends.

PQi
Wi

= θie
κiπ̂ ⇔ Qi =

θie
κiπ̂Wi

P
(B.24)

ln(Qi) = ln(Wi) + ln(θ) + κiπ̂ − ln(P ) (B.25)

From equation (B.25) Gabaix and Koijen take the difference from the baseline and arrive at:

∆ln(Qi) = ∆ln(Wi) + ∆ln(θ) + κiπ̂ −∆ln(P ) (B.26)

Via first order taylor expansion Gabaix and Koijen (2021) resulting in ∆ln(Qi) ≈ qi, ∆ln(Wi) ≈ wi,

∆ln(P ) ≈ p and the relation in (B.23) they arrive at:

qi ≈ − (1− θiκi + δ)︸ ︷︷ ︸
ζi

p+ fi + κiδd (B.27)

�
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B.2 Proof of Proposition 2 (Gabaix and Koijen (2021))

Proposition 2 follows directly from proposition 1 by taking the equity-holdings weighted mean over

both sides:

qi ≈ − (1− θi + κiδ)︸ ︷︷ ︸
ζi

p+ fi + κiδd⇒ (B.28)

∑
i∈I

Siqi ≈
∑
i∈I

Si
(
− (1− θi + κiδ)︸ ︷︷ ︸

ζi

p+ fi + κiδd
)

(B.29)

qS ≈ −
∑
i∈I

Si(1− θi + κiδ)︸ ︷︷ ︸∑
i∈I Siζi

p+
∑
i∈I

Sifi +
∑
i∈I

Siκiδd (B.30)

qS ≈ − (1− θS + κSδ)︸ ︷︷ ︸
ζS

p+ fS + κSδd (B.31)

�

B.3 Derivation of π̂ in the Infinite Horizon Model

The derivation starts with the identity π̂ = π − π̄:

1 + rf + π̄ + π̂t = 1 + rf + πt (B.32)

=
Et[Pt+1 +Dt+1]

Pt
(B.33)

=
Et[P̄t+1(1 + pt+1) + D̄t+1(1 + dt+1)]

P̄t(1 + pt)
(B.34)

= Et
[ P̄t+1

P̄t

(1 + pt+1)

1 + pt
+
D̄t+1

D̄t

D̄t

P̄t

(1 + dt+1)

1 + pt

]
(B.35)

≈ Et
[ P̄t+1

P̄t
(1 + pt+1 − pt) +

D̄t+1

D̄t

D̄t

P̄t
(1 + dt+1 − pt)

]
(B.36)

= Et
[
(1 + g)(1 + pt+1 − pt) + (1 + g)δ?(1 + dt+1 − pt)

]
(B.37)

= (1 + g)(1 + δ?) + (1 + g)Et
[
(pt+1 − pt) + δ?(dt+1 − pt)

]
(B.38)

= (1 + g)(1 + δ?) + (1 + g)Et
[
δ?(dt+1 − pt) + ∆pt+1

]
(B.39)
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From that, by collecting the terms Gabaix and Koijen (2021) denote:

1 + rf + π̄︸ ︷︷ ︸
Zero Order

+ π̂t︸︷︷︸
First Order

= (1 + g)(1 + δ?)︸ ︷︷ ︸
Zero Order

+ (1 + g)Et
[
δ?(dt+1 − pt) + ∆pt+1

]︸ ︷︷ ︸
First Order

(B.40)

Gabaix and Koijen (2021) note that the zero order terms correspond to the Gordon growth formula

rf + π̄ − g = (1 + g)δ? = Et[Dt+1]
Pt

. To arrive at the expression in (4.30) we need to rewrite the first

order term of equation (B.40).

π̂t = (1 + g)Et
[
δ?(dt+1 − pt) + ∆pt+1

]
(B.41)

= (1 + g)δ?Et[dt+1 − pt] + (1 + g)Et[∆pt+1] (B.42)

In the next step Gabaix and Koijen (2021) define δ = Et[Dt+1]
Pt

and therefore that (1 + g)δ? = δ

= δ
(
Et[dt+1]− pt

)
+ (1 + g)Et[∆pt+1] (B.43)

Where from g = 0 follows finally that:

= δ(det − pt) + Et[∆pt+1] (B.44)

�

B.4 Proof of Proposition 4 (Gabaix and Koijen (2021))

Gabaix and Koijen (2021) start the proof by noting that, after dividend and coupon payments:

Wt = PtQ + Ft and similarly for the baseline W̄t = P̄tQ + F̄t. By defining F̃t = Ft − F̄t and

computing Wt − W̄t = (Pt − P̄t)Q+ F̃t = P̄tQpt + F̃t = W̄twt. By dividing through W̄t and defining

ft = F̃t
W̄t

arrive at an expression for wt:

wt = θpt + ft (B.45)
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Using the definition in equation (4.28) and the counterpart for the baselline economy (Q̄tP̄t = W̄tθ)

Gabaix and Koijen (2021) compute:

QtPt
Q̄tP̄t

=
Wt

W̄t
eκπ̂t+νt (B.46)

⇔

(1 + qt)(1 + pt) = (1 + wt)e
κπ̂t+νt (B.47)

⇒

qt + pt = wt + κπ̂tνt (B.48)

⇔

qt = −(1− θ)pt + κπ̂t + ft + νt (B.49)

Where from equation (B.47) to (B.48) the equation was linearized. Moving on with the result from

equation (4.30) Gabaix and Koijen (2021) arrive at the desired result:

qt = −(1− θ + κδ)pt + κδdet + κEt[∆pt+1] + ft + νt (B.50)

�

B.5 Proof of Proposition 5 (Gabaix and Koijen (2021))

The proof of proposition 5 starts by rewriting the expression of proposition 4 (4.31):

qt = −ζpt + ft + νt + κδdet + κE[∆pt+1] (B.51)

= κ(Et[∆pt+1]− ζ
κpt + δdet ) + ft + νt (B.52)

= κ(Et[∆pt+1]− ρpt + δdet ) + ft + νt (B.53)

(B.54)
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Setting qt = 0 and dividing through κ: 21

0 = κ(Et[∆pt+1]− ρpt + δdet ) + ft + νt (B.55)

= Et[∆pt+1]− ρpt + δdet +
ft + νt
κ

(B.56)

(B.57)

Rearranging:

pt =
( 1

1 + ρ

)(
Et[pt+1] + δdet +

ft + νt
κ

)
(B.58)

=
( 1

1 + ρ

)(
Et[( 1

1+ρ)(Et+1[pt+2] + δdet+1 + ft+1+νt+1

κ )] + δdet +
ft + νt
κ

)
(B.59)

= Et

[
Et+1

[(
1

1+ρ

)2
pt+2 +

(
1

1+ρ

)
δdet +

(
1

1+ρ

)2
δdet+1 +

(
1

1+ρ

)ft+νt
κ +

(
1

1+ρ

)2 ft+1+νt+1

κ )
]]

(B.60)

(B.61)

Solving forward leads to:

pt = Et

[ ∞∑
τ=t

δdeτ + fτ+ντ
κ

(1 + ρ)τ−t+1

]
+ lim
τ→∞

Eτ

[
pτ+1

(1 + ρ)τ+1

]
︸ ︷︷ ︸

→0

(B.62)

= Et

[ ∞∑
τ=t

δdeτ + fτ+ντ
κ

(1 + ρ)τ−t+1

]
(B.63)

For the equity premium set qt = 0 in equation (B.49):

qt = −(1− θ)pt + κπ̂t + ft + νt (B.64)

⇔

0 = −(1− θ)pt + κπ̂t + ft + νt (B.65)

⇔

π̂ =
(1− θ)pt − ft − νt

)
κ

(B.66)

21 Comment: By dividing through κ while qt the equation is loosing solutions
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�

B.6 Derivation of the Impact of Permanent Flow

In equilibrium the expected dividend deviation from the baseline is zero. Hence, Et[deτ ] = 0 and

ντ = 0 ∀τ . Then from equation (4.32) follows:

E0[pt] = E0

[
Et
[ ∞∑
τ=t

1

(1 + ρ)τ−t+1 ρ
fτ
ζ

]]
(B.67)

=
∞∑
τ=0

1

(1 + ρ)τ+1 ρ
E0[fτ ]

ζ
(B.68)

= ρ
f0

ζ

∞∑
τ=0

1

(1 + ρ)τ+1 (B.69)

=
f0

ζ

ρ

1 + ρ

∞∑
τ=0

1

(1 + ρ)τ
(B.70)

=
f0

ζ

ρ

1 + ρ

(
1

1− 1
1+ρ

)
(B.71)

=
f0

ζ

ρ

1 + ρ

(1 + ρ

ρ

)
(B.72)

E0[pt] =
1

ζ
f0 (B.73)

�

B.7 Derivation of the Impact of a Mean-Reverting Flow

In equilibrium the expected deviation of fundamentals from the price is zero. Hence, Et[deτ ] = 0 and

ντ = 0 ∀τ . Then from equation (B.63)follows:

E0[pt] = E0

[
Et
[ ∞∑
τ=t

1

(1 + ρ)τ−t+1

fτ
κ

]]
(B.74)

= E0

[ ∞∑
τ=t

1

(1 + ρ)τ−t+1

(1− φf )τ+tEt[fτ ]

κ

]
(B.75)

= E0

[ ∞∑
τ=t

1

(1 + ρ)τ−t+1

(1− φf )τ+tEt[fτ ]

κ

]
(B.76)
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= E0

[
1

κ

(1− φf )t

1 + ρ

∞∑
τ=0

(1− φf
1 + ρ

)τ
Et[fτ ]

]
(B.77)

=
f0

κ

(1− φf )t

1 + ρ

(
1

1− 1−φf
1+ρ

)
(B.78)

=
f0

κ

(1− φf )t

1 + ρ

( 1 + ρ

ρ+ φf

)
(B.79)

=
f0

κ

((1− φf )t

ρ+ φf

)
(B.80)

E0[pt] =
(1− φf )t

ζ + κφf
f0 (B.81)

�
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