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Abstract

The main goal of this work is to analyze the Montreux Jazz Festival video archive which was made
accessible to the University of Zurich, Visualization and Multimedia Lab by ”Narratives from the long
tail: Transforming access to audiovisual archives” project partners. The project has been funded by
the Sinergia Grant of the Swiss National Foundation. Montreux Jazz Festival video archive dates back
to 1967, keeps recordings of live performances of Montreux Jazz Festival, and is listed as a Memory
of the World register by UNESCO.

The problem that this thesis focuses on is the need for an online tool that will help music enthusiasts
explore the archive and implement high-dimensional data analysis and visualization techniques to
present different aspects of the existing recordings. The main proposed work is a web application with
interactive visualizations to help the audience explore the Montreux Jazz Festival video archive. The
web application is implemented by extending VIAN, a film analysis and visualization web application.

To provide a high-dimensional data visualization tool, possible video and audio analysis methods
were explored and a requirement analysis was performed to determine the important features. The
selected features were extracted using neural networks, signal processing techniques, and audio analysis
tools.

A similarity metric was defined and implemented to compare different performance videos. Using
this measure it is possible to see the outstanding songs which are significantly different than the others
or to detect song clusters.

To present the extracted data, attractive interactive visualizations were designed and implemented
as a tool to analyze the visual and audio patterns of videos. Both an overview visualization and detailed
performance analysis views are provided. The overview visualization presents the data clusters and
similarities between different recordings and the detail view visualizes the extracted visual and audio
features of a video.

The final product is presented as multiple scripts to perform the feature extraction and the simi-
larity analyses and a web application that includes interactive visualizations to help music enthusiasts
explore the Montreux Jazz Festival archive.
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1 Introduction

Montreux Jazz Festival video archive was started as a visionary movement by Claude Nobs who foresaw
the significance of such a heritage back in 1967 and decided to keep recordings of live performances
of Montreux Jazz Festival. In 2013, UNESCO listed the archive as a Memory of the World register
[1]. The goal of this work is to analyze the Montreux Jazz Festival video archive which was made
accessible to the University of Zurich, Visualization and Multimedia Lab by ”Narratives from the long
tail: Transforming access to audiovisual archives” project partners. The project has been funded by
the Sinergia Grant of the Swiss National Foundation.

The Montreux Jazz Digital Project aims to use the archive both educationally and for scientific
research and also to present it to the public for entertainment purposes. The archive is being explored
by multiple research labs interdisciplinary across fields of audio processing, image and video processing,
virtual reality research, and social sciences such as heritage studies and culture. There is a need for an
online tool that will help explore the archive and present different aspects of the existing recordings
to provide a common ground for people coming from different backgrounds.

Music visualization uses Music Information Research (MIR) to extract meaningful features to
visualize, which is an ongoing field that still has important challenges to solve. Literature provides
multiple music visualization tools that use audio analysis. However, the existing tools lack using
video related features that would provide more information about the song and the mood. The
existing visualization tools focus on studio recorded songs and overlook the effects of a live performance
ambiance on the songs. No work analyzing live concert videos both in audio and video aspects and
providing an interactive visualization tool comes to our notice.

A literature review reveals multiple visualization tools that are designed to communicate similarity
based music clusters. In addition to that, multiple other tools visualize music based on waveform or
notes that are played. However, there were no examples of tools that both provide a similarity overview
of a clustering layout and provide a detailed analysis view for each song.

Previous music visualization studies used a limited amount of features to analyze the songs. Most
studies have relied on the notes and chords, some also analyzed musical features such as tempo, genre,
mood, etc. Nonetheless, the literature lacks a visualization tool that analyzes musical performance
videos in detail using an extensive amount of features, including both video and audio related features
to analyze musical instruments, frequency spectrum, or visual clutter.

To provide a high-dimensional data visualization tool, possible video and audio analysis methods
were explored and a primary list of extractable features was created. After performing a requirement
analysis with the help of an area expert, the important features that are needed for the analysis of live
jazz song performances were determined. The selected features were extracted using neural networks,
signal processing techniques, and audio analysis tools.

From the set of extracted features for live performance videos, a subset was selected as crucial
features to consider while comparing different songs. Using this subset, a similarity metric was defined
and implemented. The defined metric returns a distance scalar for each recording that measures how
different the relevant recording is compared to all other videos. Using this measure it is possible to
see the outstanding songs which are significantly different than the others or to detect song clusters.

To communicate the extracted data to the general audience in an engaging and attractive way, a
set of interactive visualizations was designed. The visual design was implemented as a tool that the
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users can interact with and analyze the visual and audio patterns of videos. The end product provides
a web application and interactive visualizations to help music enthusiasts explore the Montreux Jazz
Festival archive. Both an overview visualization and a detailed song analysis view are provided. The
overview visualization communicates clusters and similarities between different recordings. The detail
view presents extracted visual and audio features of a song.

This thesis comprises eight main chapters. Chapter 1 is to provide the reader with a motivating
introduction to the topic and a brief description of the work done.

In Chapter 2, an analysis of the existing related work is carried out. Research papers on similarity
based music collection visualization, music visualization, and video visualization are addressed. The
related work is put into perspective and the differences between this thesis and existing work is
highlighted.

Chapter 3 presents the problem statement, provides information on input data, and explains the
requirements of this thesis in detail.

In Chapter 4 the solution that this work provides is explained. Each step taken to approach the
problem has been presented.

In Chapter 5 the implementation details are explained. The technological decisions and the struc-
ture of the code are described.

Chapter 6 presents example use cases of the end product.
Chapter 7 presents the limitations of the implemented work to provide a complete overview.
Chapter 8 discusses the results of the implementation.
Finally, Chapter 9 concludes this thesis by presenting motivation for possible future work on the

provided visual analysis tool.
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2 Related Work

This chapter presents similar works to present one, as revealed by the literature review. To our
knowledge, the literature lacks examples of visualization tools designed for live musical performance
videos. Hence as related work, both music visualization tools and video visualization tools were
considered. The structure of this chapter is as follows:

• Section 2.1 summarizes music collection visualizations based on a similarity metric.

• Section 2.2 lists related works that focus on describing single songs based on feature extraction.

• Section 2.3 lists example works in the intersection of the Section 2.1 and Section 2.2. Works
summarized here are to provide both similarity based collection visualization and song detail
visualization.

• Section 2.4 lists related video visualization works.

The literature review revealed that there are no examples of live concert video visualizations that
target a general audience which provides both an overview to compare multiple videos and a detailed
view to present the video features.

2.1 Similarity Based Music Collection Visualization

Multiple works define and implement similarity metrics to compare songs and implement visualization
tools to describe the distance between songs. Related work to music collection visualization using a
similarity metric is listed here.

2.1.1 AudioRadar: A Metaphorical Visualization for the Navigation of
Large Music Collections

The work by O. Hilliges et al. proposes an exploratory interactive visualization tool for music collec-
tions. It uses radar as a metaphor [2]. As shown in Figure 2.1, the selected song is added to the center
point of a circular visualization and similar songs are placed around it. The comparison is based on
four main dimensions, whether the song is melodic or rhythmic, slow or fast, clean or rough, calm or
turbulent. The speed of the song refers to the beats per minute, cleanliness refers to the noisiness and
calmness refers to the change of noise levels throughout the song.

Audio is automatically analyzed and assigned scalar values for each dimension. Each song repre-
sents a point in a four-dimensional space. Later the four-dimensional space is projected into a two-
dimensional one to communicate the song’s similarities to the user. The projection is done by simply
ignoring two dimensions according to the user input. The distance between songs in two-dimensional
visualization space maps the song similarities.
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Figure 2.1: AudioRadar [2]

2.1.2 MuVis: An Application for Interactive Exploration of Large Music
Collections

MuVis is a visualization tool that utilizes treemaps for browsing and filtering songs to create playlists
[3]. There exists a feature extraction module. The extracted features are tags, track title, duration,
genre, song release date, and fluctuation patterns. The tool provides similarity based positioning
according to the properties of songs which helps users add similar songs to a playlist.

It is an interactive tool and users can filter the features and re-structure the treemap to explore
more. It is possible to write queries to navigate around the treemap easily.

The work does a user study and assigns users four tasks including searching a specific song, creating
a playlist, and filtering the playlist. The time required to achieve these tasks was compared to achieving
the same tasks on Windows Media Player. It was observed that with MuVis average time required
for each task is significantly smaller.

2.1.3 A Visual Exploration of Melodic Relationships within Traditional
Music Collections

The work by C.Walshaw proposes a visualization technique to explore relationships between folk and
traditional songs using an existing melodic similarity measure [4]. The main goal of this work is to
compare different music collections.

In this work datasets with multiple corpora are considered. For each pair of songs in the dataset,
the similarity metric between them is calculated. Then using these similarity scores, corpus graphs,
shown in Figure 2.2, were constructed using the node-link representation. Nodes represent songs, links
represent thresholded similarities and different corpora are color coded. With the help of color coding,
it is possible to compare multiple collections and explore similarities between them. Unlike previously
mentioned tools the implemented visualization is not interactive.
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Figure 2.2: Corpus similarity graphs [4]

2.1.4 Similarity Graph: Visual Exploration of Song Collections

This work proposes a new visualization that considers similarities that can occur between small parts
of songs [5]. It does not compare songs as a whole but also investigates similarities that can take place
in some sections.

The visualization is shown in Figure 2.3 and consists of an overview and detailed view named
global similarity graph and local similarity graph respectively. The local similarity graph is presented
in a circle in the figure. The local similarity graph uses Bézier curves to connect similar song segments.
The global similarity graph uses t-SNE to map the songs into two-dimensional space and connects
songs according to overall song similarities using Hermite curves. The visualization is interactive and
allows users to explore the collection freely. Color coding was used to highlight different artists’ covers
of the same songs.

Figure 2.3: Similarity Graph [5]

2.2 Music Visualization

This thesis proposes a visualization tool that can help compare multiple songs based on similarity and
also can present each song’s features in detail. The previously mentioned related work focuses more on
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visualizing song similarities than describing each song individually using its features. Related works
that focus on describing single songs based on feature extraction are listed here.

2.2.1 Visualizing the Semantics of Music

SongVis is a visualization tool designed to present the semantic descriptors of music using icons [6].
First, the work conducts an online questionnaire to determine semantic descriptors of music. According
to the user input danceability, tempo, mood, genre, and dominant musical instrument were selected
as the semantic features to describe the song.

Songs are analyzed to extract the semantic features using music information retrieval techniques
and for each feature, icons were assigned according to the value. For example according to the speed of
the tempo whether a rabbit icon or a turtle icon is assigned to the song. An example song visualization
is shown in Figure 2.4.

To give more insight into the flow of the song depending on the time it uses colored bars where
the colors are based on the properties of the waveform. The resulting visualizations for songs are easy
to interpret even for the general audience, engaging thanks to the icons and attractive. However, it
does not provide an explicit way to compare multiple songs according to their similarities.

Figure 2.4: SongVis [6]

2.2.2 Misual: Music Visualization based on Acoustic Data

Misual is a music visualization tool that uses the waveform of audio as the main source of information
[7]. The wave strength over time is smoothed through a moving average function and visualized.
An example Misual of a song is shown in Figure 2.5. The visualization uses lighting and shading
techniques to make it appear 3D. Hence the volume of the shape encodes the power of the audio
signal. Repetitions through the song are detected using the mel-frequency analysis and they were
color coded. It is easy to identify the chorus via the coloring.

The main goal of the visualization is to help people categorize music. The design is intuitive and
easy to understand. However, the features considered are limited and the work does not help analyze
musical data.

Figure 2.5: Misual [7]
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2.2.3 Isochords: Visualizing structure in music

Isochords is an animated visualization that aims for music classification based on structure [8]. It uses
MIDI files to extract the musical events and visualizes them in a Tonnetz grid. An example Tonnetz
grid is shown in Figure 2.6. It encodes major and minor chords using the arrow orientation.

Isochords is designed as an animation to be used as an ear training aid. It allows users to see the
musical events while they are also listening to them happening. Also, the paper provides examples
that present how the visual representation of the music of different genres differs clearly.

Figure 2.6: Isochords [8]

2.2.4 ImproViz: Visual Explorations of Jazz Improvisations

ImproViz is an important related work to consider as the focus of it is Jazz music visualization.
ImproViz is a visual design to analyze jazz improvisations to explore the harmonic styles of different
musicians [9]. The visualization was implemented for the song ”All Blues”. Manual analysis is needed
to prepare the visualization. In this study, different musicians’ harmonic palettes were explored. Even
though just like this work the main focus is jazz music visualization, ImproViz only visualizes one
song and considers only the notes while doing so.

Figure 2.7: ImproViz [9]
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2.3 Music and Similarity Based Music Collection Visualiza-
tion

All tools mentioned above, either focus on music collection visualization, and it is impossible to
visualize single songs, or focus on single song visualization and ignore similarities between songs. This
section includes an example that relies on the intersection of the previous two sections.

2.3.1 Visualization of music collections based on structural content sim-
ilarity

The work of A. Soriano et al. provides both similarity based collection visualization and song detail
visualization. It constructs unique icons for each song depending on the MIDI file format because
MIDI files encode properties of individual notes played during the song [10]. The resulting icons are
vertical bars that are composed of multiple bars of different colors and sizes according to the underlying
structure of the song. An example icon created for a song is presented in Figure 2.8. It is possible to
see an overview of all songs on a scatter plot where they are placed according to similarity and also it
is possible to see the icons of each song closely to get more information about the song. The clustering
graph can be seen in Figure 2.9. However, even though using MIDI files is a great way to create a
similarity metric, the icons created based on them are not very intuitive or easy to understand for
inexperienced people.

Figure 2.8: An example icon created for a song [10]

Figure 2.9: Clustering graph [10]

2.4 Video Visualization

All of the considered related work so far was about music visualization rather than concert video visu-
alization which is this thesis’ focus. The conducted literature review did not reveal a work specifically
focusing on live performance video visualization. Hence, here, a list of video visualizations is provided
as the related work including a music video visualization tool.
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2.4.1 Affective Visualization and Retrieval for Music Video

i.MV is a music video visualization tool that is the closest work to this one in terms of the data
analyzed [11]. i.MV extracts both visual features like lighting, and saturation and also audio features
like tempo and beat strength. It applies affective analysis in which it classifies music videos according
to the feelings they arouse and color codes according to the evoked feelings. The visualization is shown
in Figure 2.10. It is a tool to classify and compare music videos but does not visualize the extracted
features and does not provide a detailed view of each music video.

Figure 2.10: i.MV [11]

2.4.2 Stained-Glass Visualization for Highly Condensed Video Summaries

This work proposes a technique for creating visual video summaries [12]. It analyzes the videos to
extract the sections where high activity and motion occur. These sections determine the keyframes.
Later from keyframes, the areas of interest and context are extracted. The irregular shapes of areas of
interest are glued together to create a visual summary having a stained-glass look as shown in Figure
2.11.

Figure 2.11: Stained-Glass Visualization [12]

Even though the visualization provides a great understanding of the theme of the video, the
keyframes are not being presented in chronological order and the temporal data is completely lost.

9



2.4.3 ColorsInMotion: Interactive Visualization and Exploration of Video
Spaces

ColorsInMotion is an interactive visualization of videos considering cultural aspects, color dominance,
and movement [13]. Motion aspects can be represented by average scene loops that blur the pixels
in which motion occurs. Colors can be shown using average color and dominant color loops. It is
possible to search videos according to the colors.

The work implements a video analyzer module and visualization module inputs processed videos
by the analyzer module.
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3 Problem Statement

This chapter presents the problem that this thesis solves, and introduces the assumptions on analyzed
data and the requirements for a possible solution.

The problem tackled in this work is the lack of high-dimensional data analysis and visualization
tools to explore live concert videos.

The data used is the Montreux Jazz Festival video archive of Claude Nobs Foundation. The videos
are in mp4 format and each video includes one song performed live by artists during Montreux Jazz
Festival. Since the videos were recorded during live performances the audio includes cheering crowds
or noise, unlike studio recorded songs. Videos date back to 1967, hence there are some recordings that
are lacking in video and audio quality relative to today’s technological standards.

The requirements for this thesis can be listed as follows.

Requirement 1: Feature extraction

Through a requirements analysis, essential features to consider during the analysis of performance
videos should be listed. These features can include visual components that depend on video frames
or might depend on audio components. After determining essential features in the context of live
recording analysis, possible implementation techniques should be searched. Finally, feature extraction
should be implemented in Python. A script that will obtain features from song performance videos in
mp4 format should be presented.

Requirement 2: Similarity Metric Definition and Implementation

A similarity metric to compare different video recordings should be defined. Essential features
to consider while comparing different videos should be selected. Then a distance function should be
constructed to characterize how far apart the features of two different videos are. The outcome is
the implementation of the defined metric in Python which returns a scalar, when presented with two
videos, stating how similar the videos are.

Requirement 3: Data Model Design

A data model should be designed. The metadata and the extracted features should have been
integrated into a data model. A PostgreSQL database structure should be prepared and an automatic
way to insert the extracted features into the database should be implemented.

Requirement 4: Visualization Interface Implementation

An attractive and engaging visualization should be designed to communicate the extracted features
to the general audience. The visualization should be presented as a web-based application implemented
using front-end technologies such as NodeJS, BokehJS, or Vue.js. On the backend, Python should run
to receive the extracted features from the PostgreSQL database.
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The visualization should allow users interactively analyze the video and features over time. It
should be simple and easy to understand as it targets a general audience but also provide insights
into the visual and audio components of the videos. Also, it should be possible to explore videos by
similarity and compare them.
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4 Technical Solution

This chapter introduces the solution this thesis proposes for the problem explained previously. The
outline of this chapter is as follows:

• Section 4.1 introduces the feature extraction stage and explains the selected features.

• Section 4.2 introduces the designed data model.

• Section 4.3 explains the proposed similarity metric and how it is calculated.

• Section 4.4 presents the prepared visual designs.

• Section 4.5 introduces the designed and implemented web application and its functionalities.

4.1 Feature Extraction

The main goal of this work is to explore the Montreux Jazz Video Archive and implement high-
dimensional data analysis and visualization techniques. The first step of this data analysis was to
determine the relevant features and search existing feature extraction methods. To gain more insight
into the videos and provide a comprehensive analysis, it was decided to extract both visual and audio
features. The overview of the extracted features is provided in Table 4.1.

This section introduces the extracted features in detail where Section 4.1.1 presents visual features
and Section 4.1.2 presents audio features.

4.1.1 Visual Features

The following is the list of visual features that were extracted from the live concert video frames using
image processing techniques.

• Camera Motion is explained in Section 4.1.1.1.

• Visual Clutter is introduced in Section 4.1.1.2.

• Musical Instrument detection is explained in Section 4.1.1.3.

4.1.1.1 Camera Motion

Using various camera motions to control the audience’s attention is a strong and widely used method
applied by directors. It is our point of interest to know how often the panning, tilting, and zooming
were used throughout the video and whether it reveals a pattern. This is a global feature which could
be applied to a variety of videos and is also interesting to explore in the context of a concert video.
For example, it could be possible to see a pattern where a musician is performing a solo, the camera
zooms in towards the artist or the musical instrument.

Using the optical flow between consecutive frames it is possible to calculate the dominant flow
angle and magnitude. Knowing this vector and comparing it through the scenes makes it possible to
predict the camera motion.
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Visual Features

Feature Method Temporality Output Type

Camera Motion Optical Flow Time Dependent Motion name (if de-
tected)

Visual Clutter Feature Congestion Time Dependent Clutter Scalar

Musical Instrument De-
tection

Convolutional Neural
Network

Time Dependent Probability values per
each instrument

Audio Features

Feature Method Temporality Output Type

Tempo Audio Processing Not Time Depen-
dent

Beats Per Minute

Tempogram Onset Detection Time Dependent Onset Strength and
Time

Power Spectrogram Signal Processing Time Dependent Signal Strength Per Fre-
quency

Waveform Signal Processing Time Dependent Signal Amplitude Over
Time

Dominant Musical In-
strument and Instru-
ment Family

Neural Network Not Time Depen-
dent

Probability values per
each instrument and in-
strument family

Dominant Mood and
Genre

Neural Network Not Time Depen-
dent

Probability values per
each mood and genre

Table 4.1: Overview of extracted features.
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4.1.1.2 Visual Clutter

The cognitive load on an audience that watches a video is related to visual clutter in the frames of
the video. Clutter is again a context free feature that can reveal interesting patterns in different types
of movies. To measure visual clutter feature congestion method was used. According to the feature
congestion technique, the clutter on an image is correlated to the variance of luminance contrast,
color, and orientation of the image. Presuming that if these properties change significantly through
an image, the image is cluttered.

4.1.1.3 Musical Instrument Detection From Video

While analyzing a video, one of the most important tasks is to determine the remarkable points of
scenes. The simplest way to discover the focus of a scene is through applying object detection to the
frames to extract the visible objects. In the context of a live concert video recording, it is valuable
to extract the musical instruments on the scene. For this purpose, a pre-trained convolutional neural
network for musical instrument detection was used. The model was run on every frame of the concert
videos and for each frame, it returns 30 confidence values representing the probability of 30 instruments
being visible on the given frame. Then the confidence values are thresholded so that only the ones
with high confidence values are considered.

4.1.2 Audio Features

After analyzing the video frames, the audio was extracted and analyzed. The following audio features
were considered to be crucial while studying concert recordings and these features were calculated
using audio and signal processing techniques.

• Tempo is explained in Section 4.1.2.1.

• Tempogram is introduced in Section 4.1.2.2.

• Power Spectrogram is introduced in Section 4.1.2.3.

• Waveform is presented in Section 4.1.2.4.

• Dominant Musical Instruments and Instrument Families are introduced in Section 4.1.2.5.

• Dominant Mood and Genre detection is presented in Section 4.1.2.6.

4.1.2.1 Tempo

The tempo of a song is a powerful tool for composers to convey a feeling to the audience. In the
context of analysis knowing the tempo might help to understand the mood during the concert, audience
reaction, and even the genre of the song. Even though there is a possibility of tempo changing through
a live performance of one song, here one single averaged tempo was calculated in the unit of BPM.

4.1.2.2 Tempogram

The tempo of a song is an important metric to consider but it might not be enough to provide temporal
insight into beats. To have a better understanding, it would be useful and compelling to see whether
the song speeds up or slows down during a live performance. On studio recordings, it is very unlikely
to observe varying tempo in a jazz, rock, or pop song. However, in the case of live performances for
exploratory data analysis, it was decided to look more into tempo in a time-dependent manner. One
way to analyze this is to look at the initiation point of musical events. These are called onset and
they are directly related to the tempo of music at a given time.
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4.1.2.3 Power Spectrogram

Power Spectrogram shows various frequencies’ signal strengths over time. It provides a quick overview
of the audio signal and helps people grasp the dominant frequencies through the song. The spectrogram
is extensively used and is crucial for music analysis. Even though it is mostly used by area experts, it
is easy to understand for the general audience.

4.1.2.4 Waveform

Waveform describes the amplitude of the audio signals over time. It is the most basic form of audio
visualization and the general audience is usually familiar with it. Unlike tempogram and spectrogram,
in the waveform, the sound is visualized exactly as it is without preprocessing. This makes the visual
very intuitive for the general audience, the wave rises as the sound increases and it falls as the sound
decreases.

In this case, the wave has been separated into two main components harmonic and percussive
waves. Harmonic waves are created by the melodic sounds and percussive waves are created by the
beats like hits on drums. This separation helps users analyze which component is dominant over time.

4.1.2.5 Dominant Musical Instruments and Musical Instrument Families

While analyzing a song, one of the most important tasks is to automatically detect the musical
instruments of the song. Musical instrument detection in polyphonic songs is still an open challenge
for which no definitive solution exists in the literature. There exist neural networks that predict the
dominant musical instruments and instrument families. In this work, a pre-trained sound classification
model is used to extract this feature.

4.1.2.6 Dominant mood and genre

A common way to structure playlists is according to the mood and genre of the songs. Hence one can
say that the mood and genre can be considered to be crucial when analyzing songs. These properties
are usually related to tempo and musical instruments but are not completely determined by them.
Therefore it is important to explicitly extract and present them. This thesis uses a pre-trained neural
network to predict the dominant mood and genre.

4.2 Data Model

To store the metadata and the extracted features first a data model was designed based on the input
data and the web application, then a database was structured according to the designed model.

The input data of this work consists of performance videos recorded at Montreux Jazz Festival
and metadata about the concerts. For each concert, there are multiple videos, each of which contains
one song. The metadata of the concerts consists of the date of the concert, in which hall the concert
was performed, and the performing artists.

For the design of the data model, it was planned to keep concert information in one table. The
information about the date and the location of the concert is planned to be stored on the same table.
Then in a separate table, the information about the video recordings will be stored. Some data planned
to be stored in this table are the duration of the video, the title of the song performed on the video,
and to which concert the video belongs to. For each concert, there could be zero to multiple videos
but for each video, there exists only one concert it belongs to. Finally, the extracted features were
planned to store in a separate analysis table. The features are planned to be encoded and stored in
binary format. Hence important information such as the data type, or data shape to decode the data
from binary to original form must be stored.
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The implementation section provides more information on the table details, relationships between
the tables, columns, and data types.

4.3 Similarity Metric

To be able to compare different video inputs this work proposes a similarity metric. To define a
similarity metric a literature review was performed and various distance metrics were evaluated. One
of the first distance measures considered is the Minkowski distance and its specific case Euclidean
distance. The Euclidean distance is one of the most common measures, it is easy to implement and
interpret. One of the main disadvantages is the role played by the units. If one of the features has
greater values due to its units, it will dominate the metric. It is possible to apply normalization
beforehand to get unbiased outputs. It performs well when the data has highly separated clusters but
it does not consider correlation. Since extracted features are expected to have correlation it is better
to use a distance designed to consider the correlation.

Another popular similarity metric is cosine similarity. It neglects the vector lengths and calculates
similarity solely according to the angle between two vectors. For example, lets define two example
feature vectors u = [0.5, 0.5] and v = [0.98, 0.98] which represent the probability of guitar appearances
on first two frames of two different videos. These vectors lie in the same line. Hence according to the
cosine similarity, they are the same. However, they represent significantly different probabilities and
semantically the compared frames are apart.

Chebychev and Manhattan distances were other considered metrics but they suffer from the same
unit problem as the Euclidean distance. In the concert video feature space, not all features share the
same unit. Also, both of these distances neglect possible correlations in data.

Mahalanobis distance is a measure that computes the distance between a point and a data distri-
bution. It computes how far a point is from the mean of a distribution in terms of standard deviation
along the principal component axis. The formulation is as follows:

dmah(p,D) =
√
(p− µ)C−1(p− µ)T

where p is a data point, D is a distribution, µ is the mean value vector of D and C is the covariance
matrix of D.

Figure 4.1 compares Euclidean distance and Mahalanobis distance graphically. Both in (a) and
(b) 20 data points are shown. The circles in (a) are isolines where the Euclidean distance to the origin
along the circle is the same. For the given data the ellipses in (b) are again the isolines where the
Mahalanobis distance to the origin along the curve is the same [14].

Since Mahalanobis distance uses principal component analysis, it considers data correlations. It is
expected to see correlations between different features extracted from the videos. For example, musical
instruments detected from the frames and the audio would be correlated. In this regard, Mahalanobis
distance is one of the best options. Also, other important properties are that it is scale-invariant and
unitless. In our dataset, there is no consensus on the units of the feature outcomes. Most features
result in probability values, but, for example, visual clutter returns clutter scalars. Using Mahalanobis
distance there won’t be any need for a normalization step to make the measure unitless.

To be able to define a similarity metric some features were prioritized to compare and structured
as follows: For the musical instruments, the result is a matrix, M, of size (30 x Number of Frames in
the Video). t is a decision threshold function where

t(x) =

{
0 if x ≤ 0.5

x if x > 0.5
(4.1)

and pij represent the probability of instrument i appearing on frame j. Then we can express Mij =
t(pij).
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Figure 4.1: Euclidean and Mahalanobis distances comparison [14]

For the camera motions the outcome is a matrix, C, of size (3 x Number of Frames in the Video)
where Cij is 1 if motion i is detected on frame j, 0 otherwise.

The visual clutter feature is a vector of scalars with elements as many as the frames of the video.
The outputs of Dominant Musical Instruments and Dominant mood and genre features for all

videos are vectors of probabilities for each one of the instruments, mood, and genre classes. Overall
the lengths of these vectors are the same for each video.

To implement the similarity metric two possible options were considered. The first option is to
flatten all of the features and combine them into one long vector for each video. Then apply the
Mahalanobis distance formula to the vectors. The other option is to apply the Mahalanobis distance
formula to individual features and combine the resulting scalars into one distance value. With the
second option it is easier to interpret the role of each feature on the distance and also the result is
simpler to explain to the users. Hence the second option was chosen.

One of the most important points to consider is that for some features the vector or matrix sizes
are related to the length of the video. The formulation of the Mahalanobis distance assumes that the
vectors are of the same length. One easy fix for this issue is to use zero filling to make all the vectors
the same length as the longest video. Geometrically speaking this would include the given vectors in
a higher dimensional space in a standardized way.

The algorithm to calculate the distance is explained in Figure 4.2. After feature extraction, feature
vectors are formed. For musical instrument detection, visual clutter, and camera motion, since the
lengths of the vectors are related to the length of the video, zero filling is applied to make vectors of
the different videos the same length. For dominant musical instruments, mood and genre detection is
not needed. In Figure 4.2 pij represents the feature vectors where i is the index of the data point and
j is the index for the feature.

After calculating feature vectors, for each feature, one matrix is formed by combining the vectors
for all the data points. Feature matrices are represented by Vj where j is the feature index. Each row
of Vj consists of a feature vector of one data point for the jth feature

In the next step, Mahalanobis distance matrices are calculated. The covariance matrix needed for
the calculation are defined individually for each feature. For example, for guitar detection, the guitar
detection feature matrix is used to calculate the covariance matrix. For the calculation of the point
to point distances the following definition was used

dmah(pik, pjk, C
−1
k ) =

√
(pik − pjk)C

−1
k ((pik − pjk)T
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Figure 4.2: A visual explanation of the distance metric calculation.

where pik and pjk are i and jth data points’ kth feature vectors. For each pair of data points i, j the
distance is calculated for every feature k and the results are combined into one distance matrix. ijth

element of the distance matrix Dk gives the distance between feature vectors pik and pjk.
Finally, a weighted sum of the distance matrices is performed to get the final distance value. The

default values for all the weights would be 1/36 to make the weighted sum into an averaging function.
However having this weighted sum in the algorithm, allows users to choose which vector and feature
have more influence on the result. According to the use case, some features might be more important
than others and their roles in the distance can be manipulated.

For visualization purposes, it was aimed to calculate the locations of the songs on the two-
dimensional space using the pairwise similarity values. For this purpose, multi-dimensional scaling is
used. Multi-dimensional scaling is an algorithm to map objects with known dissimilarities into a con-
figuration of points in a Euclidean space where original dissimilarities between objects and Euclidean
distances between points match as well as possible [15]. Hence with the help of multi-dimensional
scaling, after having pairwise similarity values, it is possible to project the performance videos into
two-dimensional Euclidean space.

After calculating the two-dimensional positions of the performance videos in the Euclidean space K-
means clustering algorithm is run to detect the clusters in the dataset. K-means clustering algorithm
determines k clusters where the total distance from data points to their nearest cluster center is
minimized [16]. K in the K-means clustering algorithm is a hyper-parameter and is chosen to be three
in this thesis.

The outcome of the similarity calculation phase is the locations of the performance videos in the
two-dimensional Euclidean space and the three clusters constructed using the K-means algorithm.

4.4 Visual Design

To visualize the Jazz concert videos a three-layered visualization scheme was designed. The first layer
is called similarity based overview plot. It aims to visualize all of the songs and compare them based
on the proposed similarity metric. This visualization follows the structures of a clustering graph and
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the individual features of the songs are not relevant.
The second layer is called the performance overview plot. It acts as an attractive summary of

to song and presents a selected subset of the features. Using this plot it is possible to compare the
features of a few songs. However, this view does not present all of the features and is not ideal for a
detailed analysis of individual songs.

The final layer is called the performance detail plot. All of the extracted features are presented in
detail, it is even possible to visualize the frames of the video over time. It provides insight into the
song and is designed for a detailed analysis of individual songs.

In this section, the visual design of all three layers is explained in detail.

• Section 4.4.1 introduces how the similarities between songs are being communicated to the users.

• Section 4.4.2 explains the overview plot designed for performances.

• Section 4.4.3 explains the detail view for performances.

4.4.1 Similarity Based Overview Plot

The aim of the Similarity Based Overview Plot is to present all the songs in a single visualization to
allow comparison. The design should be attractive, easy to understand and should present clusters in
the data. This thesis proposes a similarity metric and as explained in Section 4.3 after calculation of
pairwise song similarities, the songs were mapped into two-dimensional locations and clustered using
K-means clustering. To present the clusters, a scatter plot is designed as it is the simplest way to
visualize the song locations depending on the similarities.

Figure 4.3: An Example Similarity Based Overview Plot

Figure 4.3 presents the design. The locations of the circles of the scatter plot directly encode the
calculated locations using multidimensional scaling. Hence the visual distance between songs maps to
their similarity that is measured according to the proposed metric.

The clusters determined using the K-means clustering algorithm are presented to users via the
lines. The lines are drawn between the song-glyphs and the centroid of the cluster to which they
belong. The color of the lines encodes the clusters.
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Instead of using circles to represent the songs, musical instrument icons that encode the dominant
musical instrument throughout the song were planned to be used. However, the implementation
limitations which will be explained in Section 7.1.5 did not allow it. Hence circles are used to represent
songs and the dominant instrument family through the song is encoded to the circle colors. The
transparency of the circles was kept low to avoid over-plotting issues.

4.4.2 Performance Overview Plot

For the performance overview plot, an engaging and attractive design was needed. The features to
visualize in this visualization were camera motion, musical instruments detected from images, and
visual clutter. Since all of these features are time dependent, to propose an appealing and practical
design, timeline design space was investigated.

To search the timeline design space in a structured manner the outline that was proposed by the
work [17] was referenced. The paper proposes an outline that divides the design space for timelines
into several representation types. In this thesis, all representation types defined in the mentioned
paper were considered and the best option for the performance overview plot was chosen.

For this design, it is important to make the visualization more engaging and attractive. Hence
grid, spiral, or arbitrary representations were considered as they are more appealing [17]. Each one of
these representations has its advantages in different use cases. Grid and spiral layouts make periodic
patterns more visible and arbitrary representations increase memorability. However, this work’s scope
is to create a music representation that will appeal to the general audience. In this case, it is important
to use a simple and easily understandable layout. Grid, spiral, or arbitrary layouts might be visually
overwhelming and too analytic for this work’s target users and they might create difficulties in visually
measuring distances.

Radial timeline representations are great for presenting periodic features and are appealing to
the human eye. In the context of music visualization using a radial layout would align with the
periodicity of the music. Also, the appearance of the radial graph resembles a phonograph record
which is endearing for a music visualization aimed at a general audience.

In some cases, radial representations can be difficult to understand for the users. However, since
this layer only serves as an overview and will be guided with a detail view plot, it is not considered to
be a problem.

Figure 4.4 presents the performance overview visual design. Very simple glyphs (squares, circles,
and triangles) were used to differentiate between different features (camera motion, musical instru-
ments, and visual clutter). The location of the glyphs codes the time in which the feature occurs.
Since the visual clutter is calculated for all the frames, the triangles look continuous, appearing almost
like arrows. The size of the triangles encodes how cluttered the related frame is.

In radial layout, it is important to explain to users where the origin point of time is and in which
direction the time flows. To help with this issue white beginning and ending points were added. Icons
were used to express the features to make the overview graph more appealing.

The gap between the beginning and ending points encode the length of the song so that it is
possible to visually compare the duration of different songs.
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Figure 4.4: An Example Performance Overview Plot

4.4.3 Performance Detail Plot

To enable an individual analysis of all features in a comprehensive structure a performance detail
plot was designed. For this visualization linear layout was chosen since they are clear and easy to
understand.

The features to visualize in the performance detail plot consists of camera motion, musical instru-
ments detected from video frames, visual clutter, waveform, tempogram, and power spectrogram. The
performance detail visual design can be seen in Figure 4.5.

Figure 4.5: Performance Detail Plot
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It can be observed that the top section of the performance detail view resembles the straightened-
up version of the radial performance overview plot. Camera motion, musical instruments, and visual
clutter are also visualized in the performance overview plot. To link the performance overview and
detail plots, for these features the same glyph and color encoding is used. The x the position of the
glyphs encodes the time when the feature has occurred. Instead of using icons, the names of the
features were placed on the y axis to be more explanatory. The top row visualizes the frames over
time.

For color coding, each feature is mapped to a color. A portion of the feature-color map can be seen
in Figure 4.6. For the musical instruments, the instruments in the same family are represented by
similar colors. For example, percussive instruments such as drums and tambourine are both encoded
by shades of purple.

Figure 4.6: Color Map to Encode Features

For the waveplot and the tempogram the colors were selected to be bright and distinct to catch
attention on the dark background. Again the x-axis encodes the time. The legend and axis labels
were put to make the visualization understandable.

Figure 4.7: The visual design of the spectrogram

Power spectrogram visualization is commonly used in audio analysis. Therefore there exists a
widely used visual design where the x-axis encodes the time and the y-axis encodes the frequencies.
The strength of the frequencies is coded in color through time. The designed power spectrogram
is shown in Figure 4.7. For color coding, a perceptually uniform color map was chosen. Since the
application background is black, the lightest color was set to represent the highest number, because
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the light colors attract more attention on dark backgrounds. A color bar was placed on the right with
proper labeling to make the plot clear.

4.5 Web Application

This thesis proposes a high-dimensional data visualization tool in the form of a web application. The
web application implementation bases itself on VIAN a film analysis and visualization web application
[18]. In this work, VIAN was extended to analyze live performance videos and visualize them.

This section presents the final web application. The structure of this section is as follows:

• Section 4.5.1 explains the web application user flow.

• Section 4.5.2 introduces VIAN and presents its functionalities without this work’s contribution.

• Section 4.5.3 introduces this work’s contribution and explains how VIAN has been extended.

4.5.1 User Flow

In this thesis, VIAN is being extended. It had functionalities such as query, glossary lookup, corpus
management, and film analysis page which are being preserved. The main change done to the user
flow is highlighted in Figure 4.8.

Figure 4.8: User flow diagram

Users can navigate through the existing pages via the sidebar menu shown in Figure 4.9. The
”Projects” menu item was made expandable due to the addition of ”MJF Concerts” navigation which
leads users to the red path shown in Figure 4.8. Via the ”MJF Concerts” menu item users can access
the visualization tool that was implemented.
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Figure 4.9: Sidebar menu of the application

The menu items ”Film Research”, ”Query”,
”Glossary” and ”Corpus Manager” navigates
users to the basic functionalities of VIAN which
will be explained in Section 4.5.2. The menu
item ”MJF Concerts” redirects users to the page
where users can see all concerts in the database.
This page will be explained in Section 4.5.3.1.

From the ”Concerts List” page users might
choose to go to the similarity based overview plot
where all existing songs are compared or they can
directly go to the concert overview page where
they can see the songs performed during a spe-
cific concert. Selecting either way, users will be
investigating a list of songs from different aspects.
From that point on they might move on to the
performance detail page to analyze the one se-

lected song in detail and visualize the extracted features.

4.5.2 VIAN Basic Functionalities

This section introduces the pre-implemented functionalities of VIAN before this work’s contribution.

• Section 4.5.2.1 introduces the login page.

• Section 4.5.2.2 explains the main functionality of VIAN which is film research visualizations.

• Section 4.5.2.3 introduces the search and filtering abilities of VIAN.

• Section 4.5.2.4 introduces glossary lookup page.

• Section 4.5.2.5 explains how to create corpora and manage them in VIAN.

4.5.2.1 Login

VIAN provides a standard login page that requires email and password inputs. Since the application
is not accessible to public use, it is not possible to sign up automatically, only the administrator can
create accounts. Keeping track of the users allows keeping track of private corpora, users might build
their private corpora and manage them without sharing them publicly.

4.5.2.2 Film Research

The Film Research menu item on the sidebar navigates users to a page where all the movies in the
database are listed. On the list, it is possible to see the title of the movie, the production year, and
the origin country.

Clicking a movie from the list redirects users to the movie detail page. Here it is possible to see the
metadata known about movies such as the genre, name of the director, or color consultant. The detail
page also presents the segments of the movie along with their annotations and keywords. Finally,
color visualizations are presented to perform analysis. It is possible to visualize chroma values along
time throughout the movie, or it is possible to see color palette extraction from the movie. For the
visualization, the color palette can be projected into the AB plane of CIELAB color space, or it can
be projected into the LC plane of CIE LCh color space. It is also possible to create a color palette
histogram. In summary, this page presents more information regarding the movie, the segments of it,
and various color analysis visualizations [18].
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4.5.2.3 Query

The query page allows users to search and filter the movies according to the tags, year of production,
or corpus. In the case of filtering by year and corpus, it is possible to see the list of movies that fit the
query, all their segments, screenshots, and their color visualizations combined into one. In the case of
filtering by tags, the segments that are tagged with given keywords, the movies they belong and their
screenshots are returned. Again it is possible to see their color visualizations combined altogether.

4.5.2.4 Glossary

Users can manually and automatically tag video segments using keywords. These keywords might
refer to technical terms such as camera direction techniques, color palettes, lighting schemes, etc. To
ease the use of the application for non-experienced users there exists a glossary. Users can search for
a concept, read the description, and even see example segments that are tagged using a given concept.

4.5.2.5 Corpus Manager

VIAN allows users to create new corpora to analyze a group of movies in detail. When creating a
corpus users can choose to make it publicly available or private. It is possible to add the movies that
exist in the application database to the created corpus. Adding a new movie to the application is only
possible using a script but not via the user interface.

4.5.3 VIAN Extended Functionalities

Montreux Jazz Festival analysis functionalities that are implemented as the main contribution of this
thesis are explained in this section.

• Section 4.5.3.1 introduces the main page to list all the concerts.

• Section 4.5.3.2 introduces the similarity based comparison visualization for performance videos.

• Section 4.5.3.3 explains the overview page which presents songs from one selected concert.

• Section 4.5.3.4 introduces the detail page to present features extracted from performance videos.

4.5.3.1 Concerts List

After login, users can navigate to MJF Concerts using the sidebar menu to see a list of concerts in the
database. As the Figure 4.10 shows, the list is presented using a grid-like structure. For each concert,
an information card is created stating the concert date and concert hall. Using the search bar on top
it is possible to search concerts according to the concert hall.

This page aims to present all of the data in the database and the first way of doing this is by
listing all the concerts. By clicking the icons on the top left it is possible to change the view. The first
icon refers to the concert cards and when selected the concerts list view is shown. The second icon
refers to the similarity based overview plot. When selected the view changes to present all songs using
a clustering plot as will be explained in Section 4.5.3.2. Overall this page presents all data either by
listing all concerts or visualizing all songs in a clustering plot.

Another path a user can take from this view, instead of going to a similarity based overview, is by
clicking the concert card. The concert cards navigate users to the concert overview pages which will
be explained in Section 4.5.3.3.
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Figure 4.10: List of Concerts

4.5.3.2 Similarity Based Overview Page

Similarity based overview page aims to visually compare and cluster the songs and also individually
visualize the features of them. It allows users to compare song videos with each other through a
clustering visualization.

Figure 4.11: Similarity Based Overview Page

After pairwise song similarities are calculated multidimensional scaling is used to project the songs
into two-dimensional space. K-means clustering is applied to form 3 clusters on the data. As shown in
Figure 4.11 the songs were presented using a scatter plot. The color of the circles encodes the dominant
musical instrument family detected from the audio. To visualize the clusters, lines between the circles
and cluster centroids were drawn. The line colors encode the clusters. The scatter plot allows users
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to select individual songs. When clicked on a circle, the overview plot for the song is shown on the
right-hand side. Selected and unselected songs are distinguished using different transparency.

4.5.3.3 Concert Overview

The concert overview page is designed to compare the videos of the songs performed during a concert.
For each song, a card is created and all the cards are visualized in a grid structure as shown in Figure
4.12. The song titles and the radial performance overview visualizations are presented for all songs.
Since the number of songs performed during a concert is not too high it is possible to visually compare
the features of the songs. The number of musical instruments played can be examined and compared.
The songs’ durations are also comparable via the gap between the ending and beginning points of the
visualization.

Figure 4.12: Concert Overview

From this page clicking a song’s card would redirect users to the performance detail page for further
investigation of the song.

4.5.3.4 Performance Detail Page

The performance detail page visualizes all the features and is designed to perform a detailed analysis
of the recordings. As the Figure 4.13 shows the metadata regarding the songs is presented at the top
along with the video frame.

The radial performance overview plot and the frequency power spectrogram are located in the
next row. The power spectrogram provides deep insights into the audio structure and the performance
overview plot presents visual features. Hence these two visualizations serve as a condensed analysis of
the performance video as they communicate a significant amount of information even within a quick
look. Then at the bottom, the performance detail plot in linear layout can be seen. The frames over
time are visualized along with the visual features. Then the audio features, the waveform, and the
tempogram are visualized.
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Using the vertical slider next to the radial performance overview plot, a range of the video can be
chosen to be visualized. Then the selected range will be emphasized using colors in the radial overview
plot, and the linear detail view will visualize only the selected range. Hence the linear detail view will
act as a zoomed-in visualization of a specific time range along the song. The video frame next to the
metadata block is synchronized to visualize the first frame of the selected time range.

To analyze further, it is possible to select a subset of features to visualize in the linear performance
detail view. Clicking glyphs on the radial overview plot will make the clicked feature disappear from
the linear detail plot if it is visible, or it will make it appear if it is not visible. Using this intuitive
clicking interaction users can choose which features to visualize in the detail view.
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Figure 4.13: Performance Detail Page
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5 Implementation

This chapter introduces all aspects related to the development of the solution explained previously.
The outline of this chapter is as follows:

• Section 5.1 explains the implementation of the feature extraction phase.

• Section 5.2 presents the selected database and database management tool and explains the
database structure in detail.

• Section 5.3 explains how the similarity metric is implemented.

• Section 5.4 introduces the libraries used during the implementation of the backend of the web
application and explains the structure.

• Section 5.5 introduces the tools used for the frontend of the web application and explains the
structure.

5.1 Feature Extraction

This section explains how the feature extraction phase was implemented. First, the libraries used were
introduced, then the code structure was explained.

5.1.1 Feature Extraction Technological Decisions

This work focuses on exploring and using existing video analysis methodologies rather than discovering
new ones. The implementation of the feature extraction step was done using Python on the Jupyter
notebook. The following sections introduce the libraries or tools used for the feature extraction phase.

• Section 5.1.1.1 introduces OpenCV, a computer vision library both used for camera motion
detection and musical instrument detection.

• Section 5.1.1.2 introduces a GitHub repository used for camera motion detection.

• Section 5.1.1.3 introduces a Python library for detecting visual clutter on images.

• Section 5.1.1.4 explains the neural network used for musical instrument detection from images.

• Section 5.1.1.5 introduces an extensive audio and music analysis library.

• Section 5.1.1.6 introduces an audio classification and analysis library.

• Section 5.1.1.7 introduces a Python-database adapter called Psycopg.
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5.1.1.1 A Computer Vision Library: OpenCV

OpenCV is a computer vision library that is written using C but also has wrappers to be used with
Python [19]. In this thesis, it was used for video processing. OpenCV can read mp4 files, extract
frames from videos, and process images. Screenshots that are used in visualizations were taken using
OpenCV. It was also used for camera motion and musical instrument detection.

5.1.1.2 Camera Motion Detection Repository

For camera motion extraction, the pre-implemented functions on a camera motion detection repository
on GitHub [20] were used. These functions use OpenCV to extract optical flow from two consecutive
frames of the video. Then it calculates the dominant flow angle and magnitude to finally decide
whether the camera is moved or how it is moved.

5.1.1.3 Visual Clutter Library

To measure clutter a Python library was used [21]. This library defines visual clutter as a user interface
metric and implements the feature congestion algorithm. It is possible to individually calculate color
clutter, luminance contrast clutter, orientation clutter, or an overall clutter scalar considering all.

5.1.1.4 Convolutional Neural Network for Musical Instrument Detection

For the musical instrument detection from images, a Kaggle competition was referred [22]. The winner
model of the competition that was trained to detect 30 different instruments was used. The model
follows an EfficientNet convolutional neural network architecture. It was trained on 4793 images to
identify 30 different musical instruments [22].

5.1.1.5 Music analysis library: Librosa

Librosa is an audio and music analysis library implemented for Python [23]. It provides various
functions such as loading audio, extracting waveform, or for beat detection. Also provides a few audio
visualization examples.

For the features related to audio processing like tempo, tempogram, spectrogram, and waveform
detection librosa was used.

5.1.1.6 Audio description library: Essentia

Essentia is an open-source audio analysis and description library. It is implemented using C++ but
also can run on Python and JavaScript [24]. It can classify sounds or audio features and provides a
deep learning interface.

For dominant musical instruments, instrument family, mood, and genre detection Essentia was
used.

5.1.1.7 Database Adapter: Psycopg

Psycopg is a popular PostgreSQL database adapter for Python [25]. It allows running queries on
a database using Python. It is reliable, efficient and can run multiple concurrent inserts or update
operations.

Psycopg is used in the feature extraction script to insert the extracted features into the database.
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5.1.2 Feature Extraction Code Structure

The outcome of the feature extraction phase is a Python script that accepts a video path to an mp4
file as the input. The script directly inserts the extracted features into the database.

The script starts with camera motion detection, as pre-implemented functions from a GitHub
repository is being used, there is not much freedom of choice on how to detect camera motions [20].

Next, the video is iterated from the beginning until the end. At each frame, the clutter scalar is
calculated using the visual clutter library. Then the frame is fed to the convolutional neural network
to detect the musical instruments. Hence one loop over the video results in both visual clutter and
musical instruments features.

At this stage, all of the visual features are detected. Hence data is thresholded to eliminate noise
and structured to be inserted into the database.

Afterward, the video is fed to the Librosa music analysis library and the audio is extracted from
it. With the help of Librosa, tempo, onset information for tempogram, and power spectrogram is
extracted from the audio. Finally, the audio is fed to the Essentia library and the mood, genre, and
musical instrument detection function is run.

Having all the features extracted, the data is structured into dictionaries. A JSON string from
the dictionary is formed and the string is encoded into binary format. Using the Psycopg library the
binary data is inserted into the database.

5.2 Database

This section explains the tools used for the database implementation and describes the final structure.

5.2.1 Database Technological Decisions

To implement the database PostgreSQL relational database was used and the database server was
monitored using the pgAdmin management tool.

• Section 5.2.1.1 introduces the PostgreSQL Database.

• Section 5.2.1.2 introduces the database management tool used for the implementation.

5.2.1.1 PostgreSQL Relational Database

PostgreSQL is an open-source relational database system [26]. The database is extensible, robust, and
reliable. It uses SQL language and implements traditional database features and furthermore extends
them. It runs on all major operating systems and is easy to manage using the pgAdmin management
tool developed for PostgreSQL.

5.2.1.2 pgAdmin Database Management Tool

pgAdmin is a popular open-source management and development platform for the PostgreSQL database
[27]. It helps organize and monitor multiple databases and provides a query editor with an auto-
completion feature. It eases writing, running queries and viewing the results. In this thesis, pgAdmin
was used to create and structure a PostgreSQL database.

5.2.2 Database Structure

For the data model and the database structure, it was intended to keep everything as simple as possible
with minimal additions to the VIAN database.
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Figure 5.1 shows the previous structure of the VIAN application database. For each project there
exists a video that is stored in the db movies table and movies might have segments, screenshots, and
related analyses. It was intended to preserve the automated segmentation and segment, screenshot
analyses that are implemented in the VIAN application. To achieve that live performance videos were
uploaded into the db movies database and all the relations between recordings and the other tables
were preserved.

Figure 5.1: VIAN database modeling

Figure 5.2 presents the related tables in the final database implemented for the application. Two
tables were added called db concerts and db mjf analyses. For each concert, there might be zero
to multiple videos where videos are stored in db movies. Yet each video must belong to one single
concert. Then for each video, again, there can be zero to multiple analyses performed on the video,
and each analysis is strictly related to one video.

Figure 5.2: Database structure

The data model, as presented, makes minimal changes to the existing VIAN database and stores
everything efficiently for the application.

The following sections introduce each of the tables in detail, explaining the columns and data
types.
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db concerts

The concert table has a unique id and uuid columns to store the date and the location of the
concert. Also, there exists a foreign key referring to the user table called user id to keep track of the
user who uploaded the concert data. The id column is set automatically when new records are being
inserted using an incremental sequence.

The id and user id columns’ data type is an integer, while location and uuid accept characters and
concert date accepts DateTime data type.

db movies

The movie table is mostly preserved so as not to disturb any process related to segmentation and
analyses on application. However, one column was added called concert id to connect the videos to
the concert. For Montreux Jazz Festival videos this column contains a valid concert id, but for movies
that are not related to this thesis, this column contains null values.

The duration, corpus id, manifestation id, copy id, and year columns’ data type is integer while
imdb id and source accept characters. All of these columns refer to the movie metadata which is not
of the concern of this thesis. Columns related to this thesis are id, an integer automatically set using
a sequence, name which consists of characters, and concert id.

db mjf analyses

A table called db mjf analyses was needed to store the extracted features. This table contains
a unique id, uuid, and a foreign key to be connected to the movies table. The columns classifica-
tion object and analysis class name help identify the analysis type applied to the video and consists
of characters. Data is stored in binary format. Hence dtype and shape columns are required to decode
back from binary format to numerical format.

5.3 Similarity Metric

This section explains how the similarity metric calculation was implemented. First, in Section 5.3.1
the libraries used were introduced, then in Section 5.3.2 the code structure was explained.

5.3.1 Similarity Metric Technological Decisions

The implementation of the similarity metric was done using Python on the Jupyter notebook. The
following sections introduce the libraries or tools used for the feature extraction phase.

• Section 5.3.1.1 introduces the NumPy library.

• Section 5.3.1.2 introduces the Scikit-learn library.

5.3.1.1 NumPy

Pandas is a strong and open-source scientific computing library for Python. It was developed to handle
multidimensional arrays and can run on GPUs for fast computing. It implements a comprehensive list
of mathematical functions, including linear algebraic functions and random number generators.

During similarity metric implementation, it is used to handle the data, compute the inverse of the
covariance matrix and handle matrix-vector multiplications. NumPy provides efficient functions to
achieve the intended goals.
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5.3.1.2 Scikit-learn

Pandas is an open-source Python predictive data analysis library. It provides various functionalities
such as classification, regression, dimensionality reduction, and clustering. It is easy to use, efficient,
has high performance and integrates well with other Python libraries.

After similarity metric calculation, it is used to calculate multidimensional scaling to project the
data points into two-dimensional space and for K-means clustering. Scikit-learn implements both
functions with high performance.

5.3.2 Similarity Metric Code Structure

The similarity metric phase is implemented as a Python script that reads data from the database.
The script calculates the pairwise similarities between performance videos, applies multidimensional
scaling and clustering, then inserts the calculated results back into the database.

First, the script uses Psycopg to collect all of the extracted features of the performance videos
from the database. Next, the dominant musical instrument, instrument family, mood and genre
classification data is separated. These feature vectors are the same size for all the performance videos.
For each feature data matrices are formed where ith row is the feature vector of the ith performance
video. Then using NumPy functions, covariance matrices of the feature data matrices are formed and
the inverse of them are calculated. For the inverse calculation pseudo inverse function of the NumPy
is used to avoid any possible errors caused by singular matrices. Finally, for each pair of videos,
the difference between their feature vectors was calculated and they are multiplied with the inverse
covariance matrix from the left, and their transpose is multiplied from the right. Taking the square
root of the resulting number gives the pairwise similarities and allows forming a distance matrix where
ijth element is the similarity between i and jth video.

Next, the visual clutter, musical instrument detection from video and camera motion detection
features are considered. These feature vectors’ size depends on the performance video length. Hence
for each feature, first the size of the longest vector is determined and all other feature vectors are zero-
padded to make them all the same length. Then for each feature, the previously explained methodology
is repeated by first forming the feature data matrix, then calculating the inverse covariance matrix
and finally calculating the distance matrix.

Having all the distance matrices for all of the features, they are combined into one final distance
matrix by applying a weighted sum. Later, Scikit-learn’s multidimensional scaling function is applied
to the final distance matrix to position the performance videos in the two-dimensional Euclidean
space. Finally, Scikit-learn’s K-means clustering algorithm is run on the two-dimensional positions.
The resulting positions and clusters are formed into one dictionary and inserted into the database as
a JSON.

5.4 Web Application Backend

This section introduces the backend of the application. First, it explains libraries and their purposes
in the backend, then introduces the structure.

5.4.1 Backend Technological Decisions

The most important libraries used for the backend of the application are being introduced in this
section. Here is a list of the libraries which will be explained in detail.

• Section 5.4.1.1 introduces Flask web framework.

• Section 5.4.1.2 introduces SQLAlchemy which is an SQL toolkit for Python.
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• Section 5.4.1.3 explains the Pandas library that is used for data manipulation.

5.4.1.1 Flask Framework

Flask is a Python web application framework, it can build scalable applications in a simple and
readable way. It is lightweight and gives users flexibility thanks to extensions that can add different
functionalities to the application.

This thesis uses Flask to build a backend API (Application Programming Interface). The API
stands as a barrier between the frontend and the database. It reads required information from the
database, applies data manipulation if needed, and redirects the outcome to frontend. For the data
transmission to occur the frontend sends requests and the backend responds.

5.4.1.2 SQLAlchemy

SQLAlchemy is an open-source SQL toolkit written in Python. It allows provides users with all
functionalities SQL has. It makes it possible to run queries on the database using Python.

It has an object-relational mapper which maps the tables of a database into Python classes. It
maps columns of the tables into properties of Python objects and even keeps track of relationships
between objects via foreign keys. With the help of it, it is possible to develop using an object-oriented
model and have a clean, decoupled structure.

In this thesis, SQLAlchemy was used to connect the database to the backend and read information
from the database when needed.

5.4.1.3 Pandas

Pandas is a strong, open-source Python data analysis library. It can handle multidimensional data
fast, it is possible to apply data normalization and cleaning.

In this work, it is used to handle the data read from the database, and apply simple data manip-
ulations to shape it for the visualization. Pandas provides efficient functions to achieve the intended
goals.

5.4.2 Backend Code Structure

The data analysis is done during the feature extraction phase and the analyzed data is stored in the
database. Hence the backend mainly serves as a connection between the frontend and the database
structure and there is not much data analysis done here.

The database connection is explained in Section 5.4.2.1 and the API functionalities are explained
in Section 5.4.2.2.

5.4.2.1 Database Connection

With the help of SQLAlchemy, the tables of a database were mapped into Python classes. database.py
code file contains all mappings and transfers the data model implemented in the Postgres database into
the Python environment. All the foreign and primary keys, the columns, and relationships between
tables are mirrored in Python. Hence on the backend, concerts, videos, and users can be constructed
as Python objects and their attributes can be accessed easily.

However, this setup does not carry all the data into the backend. It only creates the structure.
Whenever the actual data values for the columns are needed, a query is run on the database. The
mapping between the database tables and Python objects simplifies the syntax of the queries and
makes it easier to track them compared to SQL queries.
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A database session is maintained and a fixed connection URL is provided in the configuration file
of the backend. The connection URL contains the name of the database server, port, administrator
user name, and the password. If another database is needed to be used the connection URL could be
simply changed and the application would not suffer any unwanted effects.

5.4.2.2 API

The application programming interface consists of 2 main files query and visualization.

Query API

The query file contains API functions that search and filter data from the database to construct
the data model. For example, there exists a function returning a list of all concerts, or a function
returning a list of songs belonging to a concert. Requests the data and metadata to fill in the Python
objects created using SQLAlchemy are done in the query API.

Visualization API

The second API file is the visualization and as the name suggests the requests for the sake of
visualizations are done here. To visualize the frames a function to provide the paths of existing frames
is required and it can be found in the visualization API, or similarly, the paths of the icons can be
requested here too. The request to get the extracted features from the database is located here and
the also data is structured properly here to be directed to the frontend to be visualized.

5.5 Web Application Frontend

This section introduces the frontend of the application. It starts by explaining the libraries and
continues by introducing the structure.

5.5.1 Frontend Technological Decisions

Here the libraries used for the frontend of the application are being introduced. The following is a list
of the tools which will be explained in detail.

• Section 5.5.1.1 introduces NodeJS runtime environment.

• Section 5.5.1.2 introduces the Vue.js framework.

• Section 5.5.1.3 introduces the visualization library BokehJS.

5.5.1.1 NodeJS Runtime Environment

NodeJS is an open-source JavaScript runtime environment that can generate dynamic web pages. It
uses an event-driven model to be lightweight and efficient. This means when an input-output operation
is being performed, instead of blocking the thread and waiting for the response, NodeJS releases the
CPU and resume the operations when the response comes back. It provides various libraries to simplify
web application development. It allows running JavaScript both on the server-side in addition to the
client-side.

In this thesis, NodeJS is used to implement and execute code locally.
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5.5.1.2 Vue.js

Vue.js is a JavaScript framework for building user interfaces. It is based on standard HTML, CSS, and
JavaScript, and eases component-based user interface development. It follows the model–view–viewmodel
structure and is efficient, flexible, and adaptable. With Vue.js it is possible to extend existing HTML
attributes called directives.

In this thesis, it was used to implement attractive user interfaces efficiently.

5.5.1.3 BokehJS

BokehJS is a library for creating interactive visualizations. It helps users build complex plots quickly
and via simple commands. It is possible to embed Bokeh visualizations into web application frame-
works. BokehJS allows implementing client-side interactions and in this thesis, it was used to imple-
ment all visualizations.

5.5.2 Frontend Code Structure

This application follows the model–view–viewmodel where the model is the backend, the view is the
graphical user interface and the viewmodel is responsible for data manipulation and transportation
between them. Each page has one view file in .vue file format, written mainly using HTML and Vue
extensions. The views are completely independent of the model and any specific platform. For this
application the model refers to the API explained in the previous section. For each view there exists
a viewmodel, they make API calls and get the data returned by the model. Then they execute the
plotting code written using BokehJS based on the data. Finally, they embed the created plot into
view files HTML elements.

The implementation details of the plotting and interactions are explained in the following sections.

• Section 5.5.2.1 explains how the concerts list page presented in Figure 4.10 is implemented.

• Section 5.5.2.2 describes the implementation details of the similarity based overview page.

• Section 5.5.2.3 describes the implementation details of the concert overview page shown in Figure
4.12.

• Section 5.5.2.4 describes how the performance detail page in Figure 4.13 implemented.

5.5.2.1 Concerts List

This page presents a list of all concerts stored in the database in a grid structure as previously explained
in Section 4.5.3.1. For the implementation, new Vue components called ConcertList and ConcertCard
were created. ConcertList has a variable named mode and the mode can be controlled via two buttons
placed on the top of the screen. If the mode is cards then ConcertList page presents ConcertCard. If
not ConcertList presents the similarity based overview page. To implement the switch between the
modes, the existing watch function of Vue.js is used.

ConcertCard extends v-card, the card component of Vue.js. As the title, the location of the concert
is set and the subtitle is chosen to be the concert date. The grid was structured to contain at most
four columns and is responsive to the page size. With the help of a viewmodel, a call to the backend
was made to load the list of concerts.

A Search bar is implemented using a text input field combined with the watch function of Vue.js.
When user enters a text into the input field the concerts with matching names are filtered according
to the input and only related ConcertCards are shown.

39



5.5.2.2 Similarity Based Overview Page

As introduced in Section 4.5.3.2, similarity based overview page visualizes the song similarities and
clusters in the Montreux Jazz dataset along with the individual performance video overviews.

The implementation of this page is integrated into the ConcertList Vue component that is explained
in Section 5.5.2.1. If the button on top of the ConcertList page is clicked to show the similarity based
scatter plot then the screen gets divided into two columns. For the scatter plot which will be placed in
the left column, an API call is made to load the list of all songs, similarity, and clustering information.
For the right column, a Vue component called SongCard was created extending the existing card
component of Vue.js. SongCard presents the title of the song and an overview plot for it. Then
BokehJS code is called to create the scatter plot and the radial performance overview plot. TapTool
of BokehJS is used to give the ability to select data items from the scatter plot. When clicked on a
circle a JavaScript callback function is fired to update the information displayed on the SongCard.

For the scatter plot, the line and the circle glyphs of BokehJS are used. The color of the circles
represents the dominant musical instrument families for the given song. The SongCard implementation
will be further explained in Section 5.5.2.3.

5.5.2.3 Concert Overview

The concert overview page, as explained in Section 4.5.3.3, presents the songs performed during one
concert side by side to allow users to compare them. For the implementation, a Vue component called
SongCard was used that extends the existing card component of Vue.js. An API call to the backend
is being made to gather a list of all songs performed during the concert. After that, for each song, a
SongCard is constructed and put together in a grid with at most four columns.

The title of the SongCard is the title of each song and for the description, a song overview plot is
presented.

The song overview plot was implemented using BokehJS. The radial layout was achieved by map-
ping the time when the features occurred into polar coordinates using the sine and cosine functions
in JavaScript’s built-in Math module. The visualization was implemented using the basic glyph im-
plementations of BokehJS and there are no interactions.

Icons to introduce the features are placed using imageUrl component of BokehJS and the size of
the icons adjust according to the available space.

5.5.2.4 Performance Detail Page

The performance detail page provides a visual analysis tool for live-performed song videos as introduced
in Section 4.5.3.4. For the implementation, two Vue components were created called SongDetailView
and SongMetadata. SongMetadata is designed to present the concert and song related metadata and
is contained inside of SongDetailView. It is placed on the top left corner of the page and presents
the song title, concert date, location, etc. Right next to the SongMetadata section, the frames of the
video are shown.

API calls are made to the backend to get the feature data vectors. Then the radial performance
overview diagram is plotted using standard BokehJS glyphs. The overview diagram implementation
is the same as in Section 5.5.2.3. Frequency power spectrogram visualization is placed next to the
performance overview diagram. It is implemented using Librosa’s display functions instead of BokehJS,
hence it does not support any interactions.

Next linear performance detail view is implemented and placed under the overview plot and the
spectrogram. For the implementation, the basic glyph implementations of BokehJS are used. The
color encodings of the detail plot are the same as the overview plot. The video frames are also being
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visualized using ImageUrl function of BokehJS on the top row. The waveplot and the onset plot follow
the standard line plot implementation of BokehJS.

A vertical slider is placed between the radial overview plot and the power spectrogram. It is
possible to select a time range from the video to visualize the features on the linear timeline plots.
The slider triggers a JavaScript callback function. When the slider is used, the selected range is
accentuated in the radial overview plot using the difference in background colors, and in the linear
detail plots only the selected range is visualized. Also, the first frame of the selected range is shown
in the upper right corner next to the metadata section.

As an additional interaction, users can choose which features to visualize in the linear detail plot.
BokehJS TapTool is used to implement this functionality. When clicked on a glyph on the radial
overview plot, the clicked feature disappears from the linear performance detail plot. Then again, if a
hidden feature is clicked on the radial overview plot, it re-appears. This implementation is done using
a JavaScript callback function for the TapTool.

41



6 Use Cases

In this section, some example use cases are described.

6.1 Dominant Instrument and Similarity

This use case would be to explore the effect of the dominant musical instrument on the similarity of
songs. A user might want to see how similar the songs sharing the same dominant musical instrument
families are. Another question the users might ask would be the effect of the dominant musical
instrument on the data clusters. To find the answers to these questions, the similarity based overview
page can be used. Users can see the colors of the song glyphs representing the dominant musical
instrument families and compare the similarities between different songs via visual distance between
glyphs.

6.2 Variations in Length and Musical Instruments

In this scenario, the users might want to compare the song lengths and musical instruments played
during different songs in a concert. Users can question whether the musical instruments played vary
during one concert. For this purpose, it is possible to use the concert overview page. On this page,
all songs of a concert are listed with their performance overview plots. It is possible to compare the
length of the songs and the instruments played during a concert.

6.3 Temporal Variations

A possible use case is when a user wants to explore temporal variation during a song such as tempo
changes or solos. For this use case, it is possible to analyze the song using the performance detail
page. The timeline visualization helps to see which musical instruments are playing at which parts of
the song. The tempo changes are visible via the onset plot. The waveplot and the spectrogram help
further analyze the audio. To investigate a time of focus, for example a range when a solo is suspected
to be happening, the time range slider can be used. Via the slider, only a specific time range can be
visualized which helps to see the details. Finally, the visualized video frames can also be used during
the investigation.
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7 Limitations and Challenges

To present a complete overview of the thesis in this chapter limitations of the end product and the
challenges that are encountered during the work are introduced.

7.1 Caveats and limitations

This section presents the caveats and the limitations of the end product. The outline is as follows:

• Section 7.1.1 introduces the caveats of the musical instrument detection method from video
frames.

• Section 7.1.2 discusses the feature extraction analysis processing time.

• Section 7.1.3 explains the limitations of customizability of the similarity metric.

• Section 7.1.4 discusses how the distance matrix can be updated on the new data.

• Section 7.1.5 explains why icons were not used on the similarity based scatter plot.

7.1.1 Musical Instrument Detection From Video Frames

Musical instrument detection from the video frames is achieved using an existing convolutional neural
network that is trained to detect 30 different instruments. In machine learning, the generalizability of
the models is an ongoing research problem. Generalization is the ability of a machine learning model
to perform well on data that is not used for the training [28]. In this work, the model is being used
on a completely different dataset. The used model was trained on individual images of the musical
instruments [22]. Meanwhile, the musical instruments on the video frames are in a concert setting
being played by musicians on a scene. The lighting of the scene and the camera angles add to the
problem. The model’s accuracy is expected to be significantly lower on video frames than it was on
the reported test data.

In this thesis to eliminate the effect of this limitation, instead of detecting musical instruments
only from the video frames, dominant musical instrument detection from audio is used as well. All the
analyses are being presented together to the users so that the users can interact with the visualization
and infer.

7.1.2 Analysis Processing Time

For feature extractions existing analysis libraries are being used, which limits the efficiency of the
analysis phase. For example, for camera motion detection the used library iterates over all the video
frames of the video and returns the detected motions. If custom implementation was done it would
be possible to calculate the visual clutter and detect musical instruments over the same frames in
parallel as the camera motions were being detected. However in the current implementation, since
each outsourced method goes through the frames once multiple iterations over the video are required.
This increases the analysis processing time and rules out the possibility of the analysis being made in

43



real-time. Since performance is not a priority for this thesis, the feature extraction phase is provided
as a script to be run prior use of the web application.

7.1.3 Similarity Metric Weight Adjustability

The similarity metric calculation contains a weighted sum function over all the distance matrices
calculated for each feature. The main reason behind using a weighted addition was to make it more
interpretable and adjustable for different scenarios. According to the use case, some features might be
more important than others and their roles in the distance were intended to be manipulated. However,
the similarity metric is not openly adjustable for the users. It can only be adjusted inside the script by
the web application administrator and after adjustments, it should be run again. This is a limitation
to be considered for the users and can be improved in future work.

7.1.4 Distance Matrix Update on New Data

The Mahalanobis metric calculation which is the base of the proposed similarity metric depends on
the data distribution and the covariance matrix. Hence when new performance videos are added to
the dataset, it is not enough to only calculate pairwise similarities between the new video and the
existing ones. All of the similarities between the existing videos should be re-calculated including the
covariance values for the new video. This, overall, decreases the efficiency of the similarity metric.
However, in this thesis’ context, the Montreux Jazz Video Archive is selected to be analyzed and it is
safe to assume that new videos will not be added frequently.

7.1.5 Icon Usage on Scatter Plot

On the similarity based overview visualization, it was intended to use musical instrument icons to
represent the performance videos that encode the dominant musical instrument through the performed
song. In this plot, TapTool of BokehJS is being used to implement selection by click and to visualize
the performance overview plot of the selected song. For the icon implementation, ImageURL was
planned to be used since it is the only image visualization construct of the BokehJS. However, it
was realized that ImageURL glyphs can not be selected using TapTool. The implementation of the
interaction was prioritized over the usage of icons and instead colored circles were used to represent
the performance videos. The colors of the circles encode the dominant musical instrument family
throughout the song.

7.2 Open Problems and Challenges

This section presents the challenges encountered during the work and still open problems. The outline
is as follows:

• Section 7.2.1 discusses the lack of ground truth for features.

• Section 7.2.2 introduces the challenges related to the loading time of the visualization.

• Section 7.2.3 discusses the interactivity response time.

7.2.1 Lack of Ground Truth

For the feature extraction, state-of-the-art libraries and techniques were used. However, there is no
quantitative way to measure the accuracy of the techniques on Montreux Jazz Festival data as there
is no ground truth. The performance of the extracted features can not be measured.
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7.2.2 Visualization Loading Time

For each visualization one or more API calls are done to the backend and data is fetched from the
database. Afterward, BokehJS renders visualizations with the fetched data. The loading time of the
visualization includes both the API calls and the rendering time. For each visualization, loading time
varies between five to fifteen seconds depending on the number of visualization elements. In pages
where multiple visualizations are placed side by side, for example in the concert overview page Figure
4.12, the overview plots appear one by one with five to fifteen seconds in between. In a real-case
scenario, this limitation would affect users’ reactions to the application severely.

7.2.3 Interactivity Response Time

The implemented visualization tool is interactive and allows users to select the time range or which
features to visualize. For the implementation, the standard TapTool or the slider constructs of the
BokehJS are used. To achieve the interaction after the user input a JavaScript callback function is
triggered. The interactivity response time takes one to five seconds after the user clicks because of
BokehJS rendering process. This response time is noticeable to the users and limits the smoothness
of the interactions.
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8 Conclusion

The main goal of this work is to explore the Montreux Jazz archive and explore and implement high-
dimensional data analysis and visualization techniques. The end product provides a feature extraction
script to analyze MP4 videos and extract visual and audio features, a similarity calculation script that
implements a newly proposed similarity metric and calculates pairwise distances between all the videos,
and a web application with interactive visualizations to help music enthusiasts explore the Montreux
Jazz Festival video archive. Each video of the archive includes one song performed live by artists
during the festival.

The web application is based on VIAN, a film analysis and visualization web application since
it already provides various color and segmentation analyses. Using VIAN as a base eased the im-
plementation process since building an app from scratch was unnecessary. The existing architecture
was adopted and the functionalities of VIAN are preserved. However, it also increased the learning
time since initially the code structure of VIAN needed to be learned. The existing database structure
and the code were studied and multiple questions and answers sessions were needed with the VIAN
developers.

The literature review conducted failed to find other examples of live concert video visualizations
and the found existing tools mostly focus on either similarity based comparison or detailed song
visualizations. Unlike the existing music visualization tools, this thesis provides both an overview to
compare multiple videos and a detailed view to analyze the audio and video features. Nevertheless,
this thesis also presents the existing limitations of the implemented solution and provides possible
future work ideas.

The feature extraction phase of this thesis is limited by the currently implemented video and audio
analysis technologies in Python. Custom analysis algorithms and machine learning models are not
designed or implemented. Also, existing methods’ accuracies on Montreux Jazz Festival data are not
quantitatively measured. Hence as the research evolves, this work can always be improved using more
current video analysis algorithms.

The work is implemented as multiple scripts and a web application. Due to the analysis time of the
videos, it was not possible to integrate the feature extraction or similarity metric calculation phases
into the web application. The analysis was not run on the complete dataset because of the time and
computation power constraints. Instead, a small sample set of 20 videos was selected to be analyzed
and visualized using the web application.

This master thesis provides the following contributions to the research field:

• Essential features that depend on video frames and audio to consider during the analysis of
performance videos are listed. Existing feature extraction technologies are searched and the
best options are implemented.

• A similarity metric to compare different performance videos is defined and implemented in
Python. A script to calculate pairwise distances between all videos in the dataset is presented.

• Appealing, easy to understand, and engaging interactive visualizations are designed to present
the extracted features to the general audience.
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• A visual analysis tool has been developed that uses state-of-the-art technology. The tool allows
the exploration of the videos by similarity and analysis of them in depth.

• Limitations of the implemented visual analysis tool and overview of known challenges are studied
and further research opportunities are identified.
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9 Future Work

Here is a list provided presenting possible improvements for the suggested solution or where further
research is required.

• For the problem presented in Section 7.1.1, to improve the accuracy, transfer learning can be
applied to the existing convolutional neural network. Example video frames from the Montreux
Jazz video archive can be annotated and used for fine-tuning the pre-trained network to make
it perform better on the determined video archive.

• To overcome the limitation explained in Section 7.2.1, a subset of the dataset can be manually
annotated, for example to measure the accuracy of the musical instrument detection.

• For the limitation described in Section 7.1.2 instead of using the existing libraries, the features
can be implemented from scratch. The code can be written using C instead of Python for faster
execution and is designed to be run on GPUs. It can be integrated with the backend of the web
application and then the backend can be deployed in a server with high processing power. This
would significantly reduce the analysis time and even could make the analysis real-time.

• Regarding the limitation introduced in Section 7.1.3, the role of each feature on the similarity
calculation can be presented to the users and a selection tool can be added to the frontend so
that the users can choose which features should have greater weight in the final calculation.

• About the limitations described in Section 7.2.2 and 7.2.3, some research proposed that deploying
the web application to a server and including BokehJS files as a static source to the server would
help decrease the loading time. Also using a server with high processing power would decrease
the API latency and help with this limitation as well.

• To decrease the information load on the users, the songs can be divided into pieces using audio
features such as the tempogram or the spectrogram. Another possibility is using the auto
segmentation functionality of VIAN. Created segments can be annotated automatically according
to the musical instruments. Finally, visualizations can be adjusted to present the segmentation.

• Instead of presenting the video frames on the performance overview page (the top right corner
on Figure 4.13) a video player can be placed so that also the audio can be played.

• It was intended to run the color analysis of the VIAN application. However, within the specified
time frame it was not feasible. For future work, the addition of color visualizations to the
performance visualizations can be considered.
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