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Abstract

The aim of this paper is to discover a method of finding semantically similar clusters

from a text dataset in an unsupervised manner. An existing semantic text similarity

benchmark will be used to substantiate the use of embeddings for this task. The

embeddings will represent the entire text input using state of the art sentence trans-

formers. These transformers will be combined with contrastive learning to further

enhance the embeddings using state of the art research. By using transfer learning

during this process this work can utilize the pre-trained models of previous research

and retain their performance. These techniques will be applied to dental patient

data. Resulting in visualizations that allow for exploration of the proposed clusters.



Zusammenfassung

Ziel dieser Arbeit ist es, eine Methode zu entwickeln, um semantisch ähnliche Clus-

ter aus einem Textdatensatz auf unüberwachte Weise zu finden. Ein bestehender

semantischer Textähnlichkeits-Benchmark wird verwendet, um die Verwendung von

Einbettungen für diese Aufgabe zu motivieren. Die Einbettungen repräsentieren

die gesamte Texteingabe unter Verwendung modernster Satztransformatoren. Diese

Transformatoren werden mit kontrastivem Lernen kombiniert, um die Einbettungen

auf der Grundlage des aktuellen Stands der Forschung weiter zu verbessern. Durch

den Einsatz von Transfer-Lernen während dieses Prozesses kann diese Arbeit die

vortrainierten Modelle aus früheren Forschungen nutzen und deren Leistung bei-

behalten. Diese Techniken werden auf zahnmedizinische Patientendaten angewandt.

Das Ergebnis sind Visualisierungen, die eine Erkundung der vorgeschlagenen Cluster

ermöglichen.
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1 Introduction

This chapter features the motivation for this research, along with the research ques-

tions it aims to answer. At the end of the chapter you’ll find the structure of this

paper detailed.

1.1 Motivation

Natural language processing has been an ever growing field of research in recent

years. This increase in attention has not been distributed equitably. In part this

is due to the nature of each discipline, the discipline of mathematics will inherently

have less text to analyze when comparing to a field such as history. In this case the

field that is being addressed is the dental field, specifically the domain of orofacial

pain. Which seemingly has been under served in research that explores natural

language processing. This research aims to use the opportunity of obtaining a text

dental dataset to research potential of NLP within the field and use state-of-the-art

techniques to achieve this.

The dental patient dataset includes patients own description of symptoms via free

text responses to questions. This research aims to explore whether patterns emerge

between patients using their responses as data. These patterns would ideally cor-

respond to the diseases that may be present in the patients. Which would lead to

better understanding of the symptoms and patient profiles, with ideally the ability

to detect new and previously unseen disease groups.
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Chapter 1. Introduction

1.2 Research Questions

This paper is structured around a couple research questions which guide the work

throughout. These questions will be answered to the extent that this work can

substantiate the results. The answers will be evaluated in the discussion. The

questions are ordered by the chronological order they were researched.

Which proposed metric is best to compare clustering results?

Due to the nature of the task being unsupervised it is important to research the

best way to evaluate the quality of the results. To answer this question multiple

metrics will be proposed to compare the clustering results. The metrics are fully

described in the background section 2.3. These will be used in the results chapter

to find the best performing method. The drawbacks of the metrics highlighted in

the discussion.

How well do Word2Vec embeddings perform in the clustering

task?

Word2Vec [Mikolov et al., 2013a,b] is a technique that was introduced in 2013. It

is a well known technique that has featured in a large number of research papers.

This paper will evaluate how well these word2vec embeddings capture the semantic

information contained in the responses.

How well do sentence embeddings perform in the clustering

task?

A proposal for capturing the semantic information in the text is to evaluate the

entire sentence from each respondent. The hypothesis is that capturing the entire

sentence will be better at capturing this information. To test this hypothesis state-

of-the-art techniques in the form of sentence embeddings using transformers will be

evaluated.

2



Chapter 1. Introduction

Which proposed method is best to explain the clustering results?

Due to the motivation of this thesis, it is important to address how explainable the

results are. Explainable artificial intelligence is an ongoing research area and is quite

expansive. Hence interpretability will be restricted to the visual communication of

the findings.

1.3 Thesis Structure

This document is structured in the following manner. Chapter 2 highlights and

explains relevant topics to the thesis work and brings in context by detailing state-

of-the-art research relating to this thesis. Chapter 3 describes the data used, mainly

the custom dataset obtained from the orofacial unit Zurich. Chapter 4 documents

the methods that produce the results. Chapter 5 details results found. Chapter

6 critically discusses the results in relation to the research questions. Chapter 7

proposes avenues for future research and concludes the paper.

3



2 Background

This section introduces the terminology and concepts used in this paper.

2.1 Natural Language Processing

Natural language processing concerns all research into understanding text and is a

massive field. Therefore this section covers only background knowledge relevant to

this paper.

Embeddings

Embeddings are latent space representations of the input. To obtain this represen-

tation from a sentence or word, it is passed through an encoder. The output of the

encoder is a vector which represents the sentence or word in that model. This will

be referred to as an embedding in this paper.

Detailed below is background information for the various techniques this paper will

feature to obtain embeddings for text.

Word2Vec

Word2Vec describes the model published in 2013 [Mikolov et al., 2013a]. It intro-

duced several concepts that allowed for more computationally efficient generation of

word embeddings. They further improved the model by subsampling the frequent

words during training and using a simplified variant of noise contrastive estimation

during training [Mikolov et al., 2013b].

Their main innovation was two architectures, namely continuous bag-of-words model

and continuous skip-gram model [Mikolov et al., 2013a]. Continuous bag-of-words

attempts to predict the current word based on the context that it is given (see Figure

1). Continuous skip-gram is similar, but it tries to predict the context based on the

4



Chapter 2. Background

word that it is given. The continous skip-gram architecture is used by part of this

paper and will be referred to as skip-gram for readability.

Figure 1: Skip-gram Architecture from [Mikolov et al., 2013b, 2]

Bidirectional Encoder Representations from Transformers (BERT)

Natural language processing found renewed interest after a paper came out about

transformers [Devlin et al., 2019]. In the following years research compounded on

that work, in this subsection this concept of a transformer will be explained.

Introduced by BERT, transformers use multi-head attention to process their inputs.

They are heavily researched due to the mechanics of the attention part. Where previ-

ous research relied largely on sequential inputs, the attention aspect of transformers

allowed the transformer itself to decide which parts of the input are important for

the results.

Sentence Transformers

Sentence BERT (SBERT) [Reimers and Gurevych, 2019] is an adaptation on the

BERT transformer which handles sentences. This step was taken because the BERT

transformer had no clear path to contextualizing entire sentences. Standard ap-

proaches were to take all the word embeddings of a sentence and average them.

This however resulted in suboptimal performance, hence Sentence BERT was pro-

posed and accepted as a solution.

5



Chapter 2. Background

2.2 Contrastive Learning

With the original ideas of contrastive learning being from the 1980s, this technique

came back when it was found to be quite useful in self-supervised use cases. This

concept has several state-of-the-art models using it to great effect. Recently the

SimCLR [Chen et al., 2020] played a large role in inspiring new research into the

area. In the context of this paper, the implementation of SimCSE [Gao et al., 2021]

is relevant. For the unsupervised part of their research, they used a self-contrastive

measure combined with dropout to train a model. Their paper which produced

SOTA results is described further in related work (see 2.4).

2.3 Clustering

Clustering involves sorting data into groups dependant on maximizing or minimizing

certain criteria. This is highly relevant for this work as there aren’t labels provided

with the data. Since we don’t have the ground truth, external criteria aren’t appli-

cable to this work. Hence this paper relies on criteria that are known as internal

validation criteria. Below are the criteria that this paper relies on to determine the

quality of the clusters. Along with some additional concepts that pertain to this

paper.

KMeans

KMeans is an algorithm that clusters data into k groups, where k is passed to the

algorithm before running. The algorithm minimizes a critereon called inertia, which

represents the within-cluster-sum-of-squares. It is a fast algorithm and well known.

Gaussian Mixture Models

Gaussian mixture models are probabalistic models which assumes all points are

generated from a mixture of gaussian distributions. In this work just the gaussian

mixture is used, which implements the expectation-maximization algorithm. The

only hyperparameter that a gaussian mixture needs to fit the data is the number of

components, which will be represented as n components in this work. This paper

will refer to the gaussian mixture model as GMM.

6



Chapter 2. Background

Principal Component Analysis

Principal component analysis (PCA) was introduced in 1999 [Tipping and Bishop,

1999] and serves to reduce dimensionality while preserving as much variance as pos-

sible. This is important in a situation where you have computational constraints and

therefore have to reduce the dimensions of your data. It can also be used for visual

representations, where the data is reduced to 2 or 3 dimensions for visualization in

a graph.

T-distributed stochastic neighbor embedding (TSNE)

T-distributed stochastic neighbor embedding (TSNE) is a technique that aids with

visualizing high dimensional data. Its goal is to model points closer together that are

more similar based on a probability distribution calculated on the higher dimensional

data. [van der Maaten and Hinton, 2008]

Clustering Metrics

There are various methods to evaluate clustering performance. As the data doesn’t

provide ground truth, none of the metrics will require any knowledge of it. These

are known as internal clustering metrics, which will be used to determine the quality

of the clusters. Crucially the metrics will motivate the amount of clusters that are

deemed optimal. An important task which is further elaborated in section 4.4. Table

1 shows the metrics and their associated optimal values.

Metric Optimum approaches

Akaike Information Criterion −∞
Bayesian Information Criterion −∞
Calinski-Harabasz Index +∞
Davis-Bouldin Index 0

Silhouette Coefficient 1

Table 1: Optimal values for respective clustering metrics

7



Chapter 2. Background

Calinski-Harabasz Index

The Calinski-Harabasz Index (CH Index) was introduced in 1974 [Caliński and

Harabasz, 1974]. This index calculates dispersion, which is the sum of distances

squared, of elements within clusters and the dispersion between all clusters. A

higher CH Index value indicates better clustering.

Mathematical description

Given:

E as the set of data, nE as the size of the dataset, k as the amount of clusters, Cq

as the set of points in cluster q, cq as the center of cluster q, cE as the center of E,

nq as the number of points in cluster q, tr(X) as the trace of Xb.

Then the index is computed as follows:

Calculate the between group dispersion matrix:

Bk =
k∑

q=1

nq(cq − cE)(cq − cE)
T (2.1)

And the within-cluster dispersion matrix:

Wk =
k∑

q=1

∑
xϵCq

(x− cq)(x− cq)
T (2.2)

Then the Calinski-Harabasz Index equates to:

CH − index =
tr(Bk)

tr(Wk)
∗ nE − k

k − 1
(2.3)

Davis-Bouldin Index

This Davis-Bouldin Index (DB Index) was introduced in 1979 [Davies and Bouldin,

1979]. This index calculates the size of the clusters and their distances between

each other. It then averages this into a similarity value which is indicative of the

separation between the clusters. A DB index value of 0 indicates optimal clustering,

hence positive values closer to 0 imply better clustering.

8



Chapter 2. Background

Mathematical description

Given:

si as the average distance between the centroid of the cluster i and each point in

cluster i, dij as the distance between cluster centroids i and j.

Then the index is computed as follows:

Calculate the similarity measure:

Rij =
si + sj
dij

(2.4)

Then the Davis Bouldin Index equates to:

DB − Index =
1

k

k∑
i=1

max
i ̸=j

Rij (2.5)

Silhouette Coefficient

The Silhouette coefficient was introduced in 1987 [Rousseeuw, 1987]. It describes

how well the clusters are defined. A Silhouette coefficient has values between [−1, 1]

with values closer to 1 indicating better clustering.

Mathematical description

Given:

a as the average distance between a point and all other points in the same cluster, b as

the average distance between a point and all other points in the closest neighboring

cluster. Then the silhoutte coefficient (sil cof) equates to:

sil cof =
b− a

max(a, b)
(2.6)

Akaike Information Criterion

The Akaike Information Criterion (AIC) is an estimator of prediction error. A lower

AIC indicates that the model has a better fit to the data.

9



Chapter 2. Background

Mathematical description

Given:

L̂ as the maximum likelihood of the model, d as the number of parameters. Then

the AIC equates to:

AIC = −2 log(L̂) + 2d (2.7)

Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is similar to AIC, but it increases the

scale of the penalty based on the amount of parameters. A lower BIC indicates that

the model has a better fit to the data.

Mathematical description

Given:

L̂ as the maximum likelihood of the model, d as the number of parameters, N as

the number of samples. Then the BIC equates to:

BIC = −2 log(L̂) + log(N)d (2.8)

2.4 Related Work

This section aims to contextualize the current state of research into this area. It

features research this paper builds on and research that proposes different methods

to the current topic.

Competitions

In the NLP field there are countless competitions that offer their data sets to achieve

SOTA results. Mentioned are competitions similar and relevant to this work. Due

to the fact that most competitions have ground truths, it’s not a perfect comparison.

Some of the featured competitions offer avenues for future research.

10



Chapter 2. Background

Semeval-2022 Task 1 [Mickus et al., 2022]

Comparing dictionaries and word embeddings

This competition aims to research the creation of dictionaries and their mapping to

word embeddings. It is a possible extension by using dental dictionaries to further

verify whether the symptoms are caputed well.

MedSTS [Wang et al., 2020]

A resource for clinical semantic textual similarity

This paper introduces a semantic textual similarity dataset for the medical domain.

They are planning on releasing a task using their MedSTS ann corpus.

Unsupervised Deep Embedding

The ”Deep Embedding Clustering” method introduced in [Xie et al., 2016] resulted

in a significant SOTA improvement. This work was important in establishing using

learned representations within the context of a clustering objective.

SimCSE

This research innovates on the sentence BERT research and is highly relevant to this

work. [Gao et al., 2021] builds on previous research into the nature of the embeddings

of BERT models. This previous research, such as [Li et al., 2020], formulates an

anisotropy problem concerning the learned embeddings of BERT models. To address

this problem they propose two methods, one for unsupervised and supervised tasks.

The unsupervised method is relevant for this research and its visual representation

is present in figure 2. As this work only refers to the unsupervised method of the

SimCSE paper, SimCSE will be synonymous with unsupervised SimCSE onwards.

11



Chapter 2. Background

Figure 2: SimCSE unsupervised process, from [Gao et al., 2021, 2]

The unsupervised method of SimCSE relies on using dropout, which is a well known

technique to prevent overfitting of neural networks [Srivastava et al., 2014]. Whereas

a supervised approach would take predetermined positives and negatives to train, an

unsupervised approach doesn’t have access to this ground truth. The innovation of

SimCSE is to make the sentence pointing to itself a positive pair while using dropout

as noise to ensure a different embedding. The negative pairs are other sentences in

the corpora. They found SOTA results using this technique and state that it ” acts

as minimal ”data augmentation” of hidden representations ” [Gao et al., 2021]

12



3 Data

This section elaborates on the considerations and decisions made regarding the data

used by this project. As the data led the research direction this section will provide

more context for the methods chosen.

3.1 Dataset selection

The selection of the dataset was done by obtaining the patient dental data. After

which the second dataset was selected based on similarity of the task at hand and

to the dental data.

Dental data

The dataset provided for the thesis corresponds to self-reports from the orofacial

pain unit of Zurich. These were collected via a web-based interdisciplinary symptom

evaluation (WISE) [Ettlin et al., 2016].

Data format

The data was presented in .csv format, a table with each column representing user

data and the row being the relevant patient. The part of the data that this work

focusses on has the structure seen in table 2.

Response ID Date submitted Q1 . . . Qn

1 2019-11 Ja . . . Kiefer

2 2020-04 Ja . . . Zahn/oberkiefer

. . . . . . . . . . . . . . .

2236 2020-07 Nein . . . Kopfschmerzen

Table 2: Example data for dental dataset (.csv)

13



Chapter 3. Data

Data types

Figure 3 shows the distribution of data types in the dental dataset. What is clear

from this figure is that text is the most informative of the data types. Which is part

of the reason this work focusses on the free text responses from patients.

Figure 3: Data types in the dental dataset

Languages

Table 3 shows the percentage of start languages. These ’start languages’ correspond

to the language of the web page when filling out the questionnaire. Noteworthy is

that these languages don’t fully align with the language of the responses.

Language Amount of rows Percentage

German 2035 95.6%

English 63 3%

Portuguese 29 1.35%

Thai 1 0.05%

Table 3: ’Start languages’ present in the dental dataset

Unique responses

It is clear why previous research on this dataset took only the first 3 columns, as

they have low nan value counts compared to the rest of the columns, as seen in

Figure 4.

14



Chapter 3. Data

However there are columns that are important to not filter out, as these may be

crucial for the clustering part.

Figure 4: Unique entries in the text subset of the dental dataset

Top 3 questions

As seen in Figure 4 there are a few columns of which most patients responded. These

3 questions which got the most responses:

1. ”Please describe your chief complaint for which you seek consulta-

tion:”

Responses: 2128

Example: ”Kieferschmerzen links, beim Kauen.”

2. ”What do you expect as the result of the examinations and treat-

ments in our clinic?”

Responses: 2127

Example: ”Ansatz für die Milderung der Schmerzen finden.”

3. ”Which factors aggravate your complaints? (e.g. chewing hard /

soft food, biting, drinking, mouth opening (e.g. yawning), talking,

physical / emotional stress, playing a musicial instrument, ... )”

Responses: 2032

Example: ”physical activity, stress”

These questions will be referred to later in this work as they hypothetically capture

the underlying semantic information the best.

15



Chapter 3. Data

SemEval STS-b

[Cer et al., 2017] is a dataset corresponding to SemEval which is a competition

that hopes to incentivize research into text processing. In this paper it will also

be referred to as sts. The dataset will be used to support the methods this paper

presents.

Data format

The dataset is available online for download as open access. The data itself is

contained in .csv files with the two sentences that are compared in similarity on

the same row. The similarity score is from 0 to 5, where 5 represents the sentences

being very similar. The general structure can be seen in table 4

Genre Filename Year Score Sentence1 Sentence2

main-captions MSRvid 2012 0.5 A woman is writing. A woman is swimming.

main-forum images 2014 1.6 Two horses . . . A group of horses . . .

. . . . . . . . . . . . . . . . . .

main-news headlines 2014 3 Prime Minister to . . . investments during . . .

Table 4: Example data for STS-b dataset (.csv)

3.2 Preprocessing

This section on preprocessing will predominately feature the private dental dataset,

as the sts-b dataset was already processed. Any steps that occur to both datasets

are detailed below.

Common preprocessing steps

These actions were performed to both datasets, mainly for the word2vec model. The

actions are also performed in the order presented.

Lower case

The text is all transformed to lower case to avoid cases where respondents miss-

capitalized words. Which would be counted as separate words, which this step fixes.

16



Chapter 3. Data

Tokenization

Tokenization describes taking a sentence and producing tokens which each contain

a word. This is a common technique and is done for faster processing later. For this

step the function word tokenize is used from the nltk library [Bird et al., 2009].

Punctuation removal

Since punctuation is present in almost all grammatically correct sentences it is im-

portant to remove before training the word2vec model.

Stopword removal

In addition to punctuation, stopwords are commonly used throughout language.

Hence removing them is important since not doing so could result in the model

presenting sentences as similar due to overlap in stopwords.

In this implemenation stopwords are sourced from nltk.stopwords [Bird et al., 2009].

Then just the english and german words are used for filtering. With a minor mod-

ification being removing ’man’ from the german stopwords, due to its relevance for

determining similarity in downstream tasks.

Dental Data

Removing newline characters

As some of the responses are very long, they naturally include the newline character

”\n”. To avoid the models missinterpretting this symbol it is removed from the

dental dataset.

Handling of nan-values

A lot of the response fields had nan values, which meant they were empty. Figure

5 depicts the amount of nan values percentage wise for the dentist dataset. Not all

questions pertain to each individual, hence not everyone felt the need to respond to

all questions. Therefore its important to state the method of handling these nan-

values. In some research nan-values are treated as a signal, however for the purposes

of this research they are not further used in the later stages. The preprocessing filters

them out to the best capacity.
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Figure 5: Valid values in the dental dataset

Privacy preservation

Due to the nature of the data privacy has been considered throughout the work.

In addition to the already anonymized dataset, some columns were removed during

preprocessing that may lead to reidentification of individuals. Patients in this work

will only be referred to using their IDs as no knowledge of their identity has been

given.

Response threshold

To maintain the quality for the downstream stages, only the columns with more than

16 unique responses were selected. The reason being that below this number there

were either too few responses to the question or the text responses were variants of

yes/no or similar likert scale answers.
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4 Methods

Given the provided background information, this section details the methods used to

answer the research questions. The sections are divided in a similar manner as in the

code, hence the implementation of each method can be found in the corresponding

folder at GitHub 0.

4.1 Overview

This section will present a short overview to help understand the roles of each

component better.

Figure 6: Overview of the process

The above figure Figure 6 gives a brief visual overview of the pipeline that is used.

Initially the datasets are passed through the preprocessing pipeline, which you’ll find

more information on in chapter 3, along with some additional information present in

section 4.2. Next, the cleaned dataset is passed to the embeddings stage, described

below in section 4.3. The embeddings that are generated are sent to their respec-

tive visualizations and importantly to the clustering stage. In the clustering stage,

which will be elaborated in section 4.4, the embeddings are clustered using various

techniques. Those results will then be sent to the visualization stage so they can

be further explored. The visualization stage aims to communicate the findings and

allow for exploration of the computed dataset, details of which are found in section

4.6

0github.com/TemporalData/UDC
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4.2 Preprocessing

This component takes in the datasets and processes them to the correct format for

the remaining components. The main actions are to extract specific features from

the dental dataset and to tokenize for the word2vec embedding generation. For a

more detailed description, please refer to section 3.2. All the preprocessing code is

in its own virtual environment managed by poetry. The execution is mainly done

thourgh jupyter notebooks.

4.3 Embeddings

Embeddings are generated in two ways, Word2vec and SimCSE. Both have their

respective python libraries and virtual environments, importantly for the SimCSE

part a GPU was used to train the model.

Word2Vec

This embedding component takes in a processed input (see 3.2) and generates an

embedding for each word in the dataset. Our implementation of word2vec uses

the skipgram model, which is further detailed in section 2.1. The hyperparame-

ters chosen for our word2vec models were the following. All word2vec models had

min count set to 1 which means it should include all words in the corpus. They also

had vector size set to 256 and epochs set to 20.

SimCSE

This embedding component takes in the raw sentences and generates a representa-

tion of the sentence. It is first trained on all the sentences in a manner described in

section 2.4. The hyperparameters chosen follow those in the SimCSE paper (found

in the appendix [Gao et al., 2021]). Namely, batch size was equal to 64 and the

learning rate was equal to 3e− 5. The sentence embeddings generated are a vector

of length 768.
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Similarities and differences

There are some important differences in the implementation of word2vec and simcse

that are relevant. Both models were fairly quick to train, but the word2vec model

was faster. The word2vec model is trained from the ground up while the simcse

model uses a pretrained BERT model. Taking SOTA performance as a starting

point will likely skew the simcse model towards performing better. The simcse

model also has a larger vector for the sentence embeddings, which may also favor

the simcse model.

4.4 Clustering

The clustering metrics are calculated using the python package scikit-learn [Pe-

dregosa et al., 2011].

K-means

K-means models are trained using the scikit-learn library. The amount of clusters k

is iterated over the range [2, 10] to find the best performing (see table 8 for details).

Gaussian Mixture Models

Gaussian mixture models (GMM) are trained using the scikit-learn library. The

amount of components of the gmm are iterated over the range [2, 10] and the best

performing is chosen according to the details below. For GMM the metrics AIC and

BIC are also considered.

Clustering Metrics

The clustering metrics described in 2.3 will be combined into new indicies. These

indicies represent the performance of the model and will be used to determine the

optimal k or n for a given model. The two main branches of clustering models

are kmeans and gaussian mixture models. Each branch has their respective index

which will both be set up so that the maximalization of the index indicates better

performance of the model. The metrics chosen have been widely used in research, the
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reasoning and drawbacks behind their combination are further discussed in section

6.1.

Scaling indicies

As the indicies presented have different ranges of potential values, they are all scaled

to [0, 1]. The sole exception to this is the sillhoutte coefficient, which has a range

of [−1, 1]. The other inidicies are scaled using the minmax scale function from the

sklearn library [Pedregosa et al., 2011].

The computation of the scaled indicies occurs as follows: First the index is computed

for models trained on differing k ϵ [2, 10]. Then the vector of length 9 is passed to

the minmax scale function. This function transforms the values to a range of [0, 1]

where 0 corresponds to the min of the recorded indicies, 1 refers to the max. They

are then stored, e.g. the DB index is scaled and stored as ”db scaled”. After which

the scaled values are used in the performance indicies described below.

KMeans performance index

The aim of the KMeans performance index (KM perf 4.1) is to represent the clus-

tering performance for a given k clusters. This is achieved by combining the scaled

indicies introduced in 2.3. For KMeans these indicies are the CH index, DB index,

and the Silhouette coefficient. The scaled version of the CH index is summed to-

gether with the Silhouette coefficient, and then the scaled DB index is subtracted

from the result (see 4.1). The reason that the DB index is subtracted is because this

index represents better performance the closer to 0 it gets. Hence db scaled with a

value of 1 represents the worst performing k in the sampled range. KM perf has

a range of [−2, 2] and maximizing this combined index indicates a better clustering

result. The validity and signficance of this KMeans performance index is discussed

in 6.1.

KM perf = ch scaled− db scaled+ sil cof (4.1)

GMM performance index

The aim of the GMM performance index (GMM perf 4.2) is to represent the clus-

tering performance for a given n components. The GMM performance index is

equivalent to the KMeans performance index in addition to GMM specific metrics
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AIC and BIC (see 2.3, 2.3). The AIC and BIC are scaled using minmax scale as

with the other indicies. Since the minimization of both AIC and BIC indicates

better clustering performance, they are subtracted from the summation (see 4.2).

GMM perf has a range of [−4, 2] and maximizing this combined index indicates

a better clustering result. The validity and signficance of this GMM performance

index is discussed in 6.1.

GMM perf = ch scaled− db scaled+ sil cof − aic scaled− bic scaled (4.2)

Example

In table 5 the process of selecting the best amount of clusters for a given question is

shown. The bold numbers are those that the indicies described above indicate they

are optimal.

k DB CH Silhouette db scaled ch scaled combined index

2 4.30 41.95 0.051 1.00 1.00 0.05

3 3.89 34.60 0.052 0.61 0.64 0.08

4 3.33 33.33 0.061 0.08 0.58 0.56

5 3.47 30.68 0.061 0.22 0.44 0.29

6 3.40 28.70 0.066 0.15 0.35 0.26

7 3.37 26.75 0.069 0.12 0.25 0.20

8 3.39 24.61 0.072 0.14 0.15 0.08

9 3.31 22.72 0.072 0.06 0.05 0.06

10 3.25 21.65 0.077 0.00 0.00 0.08

Table 5: KMeans clustering metrics of question 5 from dental dataset (k = [2,10])

KME perf(k = 4) = 0.58− 0.08 + 0.061 = 0.56 (4.3)

The equation 4.3 above shows how 4 was found to be the optimal amount of clusters.

It is simply equation 4.1 with the values substituted in.
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4.5 Aggregate Clusters

The aim of aggregate clusters is to combine the findings of the per question clustering

into an overall cluster assignment. In an ideal scenario these aggregate clusters

contain, per cluster, all patients that share an underlying ground truth. The method

of finding these aggregate clusters is detailed below.

In this work these overall clusters are generated based on a criteria which enforces

that the smallest cluster can’t be smaller than a certain size. The minimum cluster

sizes of 25 and 50 are used. Those will be referred to as ’Min group of 25’ and

’Min group of 50’. The procedure of finding the aggregate clusters given a minimum

amount is as follows:

Method to find aggregate clusters

1. Start with the question that has most responses.

2. Divide the data into groups based on the cluster assignment of this question.

3. Check if this division results in clusters with size lower than the minimum

amount.

4. If true, revert the division and finish the loop

5. Otherwise, continue with the question that has most responses and has not

been seen, then go to step 2 using subsets based on current groups.

This method uses the questions with the most responses first to maximize the chance

that people are placed into clusters based on their responses. Sometimes people did

not respond to a question that is used during this method, these individuals are

then placed to the closest found cluster assignment.

4.6 Visualization

All interactive visualization of this work use tensorboard [Abadi et al., 2016], specif-

ically the projector tool included in the library. This tool allows for exploration of

the embeddings as well as the clusters. It is also fit for use by both dentist and

patients, however some introductory material such as the background chapter (2)

may be required before they can use it effectively.
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Embeddings

The embeddings are parsed as .tsv files and uploaded in to the correct structure.

The projector then performs PCA or the chosen dimension reduction technique to

visualize the embeddings. With this visualization one can determine whether or not

similar concepts or words are close together. Since you reduce the dimensions the vi-

sualization isn’t fully generalizable, but this drawback is in line with the exploratory

purpose of this work.

Clustering

The clustering visualization is identical to the embedding visualization with added

labels. The labels of the clusters are added as metadata, and can therefore be

selected as the user wishes. One limitation is that there only exist up to 10 unique

colors for the visualization. Which users should be aware of when visualizing greater

than 10 classes as it could be misinterpreted. Further one can select the type of

cluster one wants to visualize between the following options:

Question specific

To allow further exploration, for each question the user can select to visualize the

optimal lusters found by KMeans and GMM. This corresponds to the KMeans model

with the best KM perf and the featured GMM model has the best GMM perf .

Aggregate cluster

The overall clusters detailed in section 4.5 can be selected with two options. ”Min

group of 25” shows the clusters found by grouping with at least 25 in a cluster,

identical with ”Min group of 50” aside from it being 50 people. These overall

clusters can be selected on all the visualization from the simcse model.
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Tensorboard projector

Figure 7: Tensorboard projector for dental dataset with ’Top 3 questions’ selected

The projector is a part of the tensorboard feature set, it is used to explore the

embeddings of encoder decoder architectures. Above is Figure 7 of the projector

with the dental dataset loaded. The main parts of the projector will be explained

below.

Points graph (center)

In the center of the projector is the important part of the tool. Here you can see

each higher dimensional vector represented in 2D or 3D depending on your setting

toggle in the bottom right. Each point represents a sentence in our case, with

the color being determined by the selected ’Color by’ labels. These labels are the

aggregate groups min 25 and min 50, which are further detailed in section 4.5.

Aside from those labels, for the per question visualizations you can also chose the

best performing KMeans and GMM clustering result. Clicking on a point will show

its characteristics as well as highlight its nearest neighbors on the graph.

Dataset selector (top left)

This selector controls which data is passed to the dimension reduction method. In

the case of the dental data, the options are as follows. First you have ’A. Top 3
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questions’, which combines the sentence embeddings of the top 3 most answered

question for each patient. Then you have ’B. All responses’ which shows all the

sentences from the dataset. The goal of this option is to explore the relation be-

tween sentences without siloing them by patient or question. Lastly you have each

question that can be selected. Selecting a question will show the embeddings of the

available responses, lower amount of points mean that fewer people responded to

that question.

’Label by’ selector (top left)

This selector determines what you see when you hover over the individual points. It

can be used to generate insights by varying over the options for a selected dataset.

’Color by’ selector (top left)

This selector can be used to alter the colors of the points in the points graph. The

important option is that you can select the aggregate clusters which can be used to

explore the dataset more efficiently.

Dimensionality reduction techniques (bottom left)

At the bottom left you’ll find the dimensionality reduction techniques that can be

applied to explore the dataset. The projector supports UMAP, TSNE, and PCA out

of the box. For this work the most relevant is PCA, however TSNE was also used.

For PCA, importantly, you can select whether you want a 3d visualization. This

option is preferable when exploring the dataset, however this paper was limited to

using the 2d visualizations for its figures. It also tells the user the explained variance.

Search function (top right)

With this field one can explore the dataset. The user can select the field it wishes

to search and when doing so the visualization will highlight the relevant points in

the center points graph.
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5 Results

This chapter covers the results from the embedding and clustering stage. Then it

documents the resulting visualizations.

5.1 Embeddings

In this section the results from the embeddings generated by the multiple variations

are presented.

Word2Vec

In this section the focus is on the word2vec models. For each model a word is

selected and then the top 5 most similar words are presented.

Dental word2vec model

In the table 6 below there are the top 5 most similar words to ”kopfschmerzen”.

These were found using a word2vec model trained on the dental dataset.

Word Similarity score

”kopfschmerzen”

”nackenschmerzen” 0.92

”migräne” 0.91

”kieferschmerzen” 0.89

”kopf-” 0.89

”rückenschmerzen” 0.88

Table 6: Top 5 words similar to ”kopfschmerzen”
using Dental word2vec model
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STS word2vec model

In the table 7 below there are the top 5 most similar words to ”water”. These were

found using a word2vec model trained on the STS dataset.

Word Similarity score

”water”

”animal” 0.990

”dock” 0.989

”swimming” 0.988

”backyard” 0.988

”pool” 0.987

Table 7: Top 5 words similar to ”water”
using STS word2vec model

Simcse

In this section there are results from the two simcse models on both datasets.

Spearman metric

As simcse uses the STS dataset during training by computing the Spearman metric,

reporting those gives an indication of performance. For reference, the spearman

reported by the simcse paper was 76.85 [Gao et al., 2021, 7].

Dental model

For the dental model the spearman metric was 0.605.

STS model

For the sts model the spearman metric was 0.755.

Similar sentences from dental model

Taking the simcse dental model and finding similar sentences is comprised of finding

the neareset neighbors of the embedded version of a sentence. For this task we

take all the sentences together, not dividing by question. Due to the absence of

supervised labels qualiatative analysis of similar sentences is presented.
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Simcse similarity example

Taking the sentence ”Penizilin ,” and finding the top 5 similar sentences determined

by cosine distance:

1. ”Penizillin”

2. ”Alkohol, Rauchen”

3. ”Entspannen, Botox-behandlung”

4. ”Pelicilin”

5. ”Penicln”

The model performs well in associating incorrect spellings together, however it has

also suggested two sentences that may be questionable. Suffice it to say that some

caution may be required when interpretting similar sentences from the ’all sentences’

data.

5.2 Clustering

The dental dataset that has been encoded using simcse was taken to be clustered.

The simcse was chosen due to its innovative approach and promising application to

the dataset.

Clustering example of Question 11

Clustering the responses of question 11 resulted in k = 3 being optimal for KMeans

and n = 4 being optimal for GMM. KMeans came out as the best variation based

on their metrics. This result can be seen visually at Figure 8. Below is a brief

description of each cluster:

1. (Blue) Characterized by various types of treatment (”behandlung”)

Most central sentence: Wurzelbehandlung

2. (Red) Characterized by various types of teeth procedures

Most central sentence: Nach Zahnspange

3. (Pink) Characterized by longer explanations of dental procedures

Most central sentence: Als ich zahnstein zweimal gemacht hatte ging es . . .
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Figure 8: Question 11 responses with 3 kmeans clusters colored

Best cluster model per question

The table 8 shows the results of finding the best cluster per question using the

techniques described in the methods chapter (4). The numbers in bold represent

the chosen amount of clusters for each question. It is clear from the table that

KMeans seems to be favored, hence for the cases where both models had equal

scores the KMeans variant was chosen. Of note is that having the same score is

indicative of having the same assignments, so this choice should not affect the end

results.

31



Chapter 5. Results

Question KMeans GMM

Number Shortened text best k best n Chosen model

1 Chief complaint 2 2 Both

2 Expected result 2 2 KMeans

3 Aggravating factors 4 3 KMeans

4 Stops you from 2 2 KMeans

5 Alleviates complaints 2 3 KMeans

6 Eating habits 4 5 KMeans

7 Diagnosis 2 2 KMeans

8 Personal diagnosis 2 2 KMeans

9 Complaint attacks triggered by 3 4 KMeans

10 Bothersome life events 2 2 KMeans

11 After which treatment 3 4 KMeans

12 Pain remarks about head or face 2 2 GMM

13 Allergies 2 3 KMeans

14 Pain remarks about body 2 2 KMeans

15 Other problems 2 2 Both

16 Tell us anything else 2 2 KMeans

17 How chief complaint started 2 2 KMeans

18 Other quality of chief complaint 2 2 KMeans

19 Which other treatment 3 2 KMeans

20 I suffer from 3 3 KMeans

21 Other mouth/jaw related habits 2 2 KMeans

22 After which accident 2 2 KMeans

23 Other quality at onset of illness 2 10 KMeans

24 After which illness 2 2 KMeans

25 After which emotional stress 2 10 KMeans

26 Pain remarks about torso 10 2 KMeans

27 Other performed treatments 7 3 KMeans

28 After which operation 5 3 KMeans

29 After which physical stress 2 2 KMeans

Table 8: Best clustering method per question for dental dataset(k = [2,10])
Questions orderd by amount of unique values
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Aggregate clusters

Using the cluster assignment from the results shown in table 8 the aggregate clusters

were generated according to the method described in section 4.5. After testing a

range of numbers, the numbers 25 and 50 were chosen for the minimum group

sizes. The main criteria for selection was interpretability and visual clarity on the

projector.

Min group 25

20 clusters were found after running the procedure to find aggregate clusters with

25 as the minimum cluster size.

Min group 50

9 clusters were found after running the procedure to find aggregate clusters with 50

as the minimum cluster size.
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5.3 Visualization

In this section visualizations are presented from the tensorboard projector. The

steps to recreate the visualization are also present to aid exploration of the tool and

verify results. All the code for the projector are available on the github, what is not

present on the GitHub is the dental dataset which is not publicly available.

Top 3 questions

To recreate the visualization (Figure 9) for the top 3 questions follow these steps:

1. Select ’A. Top 3 questions’ as the dataset

2. Select ’Min group by 50’ on the ’color by’ selector

3. Untick the third PCA component

Figure 9: Top 3 questions embedded and colored by ”Min group of 50” clusters

In Figure 9 there are 9 clusters present, each identified by a color. For each patient,

the sentences for the top 3 questions have been parsed to PCA and reduced to 2

dimensions.
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All sentences

To recreate the visualization (Figure 10) for all sentences follow these steps:

1. Select ’B. All Responses’ as the dataset

2. Set neighbors slider to 10

3. Search ”Chronische Kopfschmerzen”

Figure 10: All responses graph with 10 nearest neighbors selected

In Figure 10 the sentence ”Chronische Kophfschmerzen” has been selected in the

all responses graph. Shown are the 5 closest neighbors based on cosine distance.

All neighbors have similar semantic meaning present in their sentences, which the

model seems to capture well.
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Question based

To recreate the visualization (Figure 11) for question 2 follow these steps:

1. Select ’Q 2: Expected result’ as the dataset

2. Select ’k means’ on the ’color by’ selector

Figure 11: Question 2 with the 8 kmeans clusters shown colored

In Figure 11 the clusters resulting from running KMeans with k = 8 are shown.

This k was found to be optimal based on the clustering metrics. In the center there

seems to be some overlap of clusters, whereas there is more distinction the further

the point is from the center.
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5.4 Use cases

In this section there are two cases that are relevant to the end users of this research.

Those end users, aside from researchers, are dentists and patients. In showing the

process a user may go through, it is possible to analyze from the interpretability

perspective. This perspective is discussed in section 6.3.

Dentist

The goal of the dentist is to explore whether there is a pattern among patients

relating to gums (”Zahnfleisch”). Below is one way this dentist could use the tool

this work presents to search for such patterns.

Figure 12: For the question 1 the dentist searches ’Zahnfleisch’ and selects patient
(Question 1: Chief complaint)

As the first step, the dentist searches for complaints relating to gums. After search-

ing, the dentist has selected a patient which is seen in Figure 12. They note the

patient ID and the clusters the patient belongs to. Then they move to check the

aggravating factor of this patient in the question 3 dataset.

In Figure 13 the dentist has searched for the patient ID 21 and can read the aggra-

vating factors of the patient. It also shows the patients that have similar factors,

which the dentist notes. Finally, they want to see if the patient has been diagnosed

and what the diagnosis is. So they move to question 7, which asks for the diagnosis

of the patient.

Searching the question 7 dataset, the dentist finds that patient 21 did not submit
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Figure 13: Dentist searches patient 21 in question 3 responses
(Question 3: Aggravating factors)

Figure 14: Dentist searches similar patients diagnoses in question 7 reponses
(Question 7: Diagnosis)

any diagnosis. They decide to search for patients that have similar factors as patient

21, namely patient with id 1267. The result of the search is seen in Figure 14, the

dentist turns on the text display and reads the diagnosis of patients similar to 1267.

Since patient 1267 had similar factors as patient 21, the dentist can hypothesize that

patient 21 would likely have a similar diagnosis as those seen on Figure 14. They

have quickly found a pattern that they may use as they see fit.

There are of course considerations about this use case that are elaborated in section

6.3. The process detailed above can be replicated using the code on the GitHub and

the dental dataset, the process can naturally also be done for other search queries.

The aim was to present a potential flow for a dentist so that this can be discussed

by evaluating the advantages and drawbacks later in the discussion.
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Patient

The goal of the patient is to explore what similar patients may be experiencing.

Below is a potential sequence that such a patient may use, the patient with ID 2084

was selected.

Figure 15: Patient 2084 finds similar complaints of other patients
(Question 1: Chief complaint)

The patient starts with finding themselves in the question 1 dataset, this can be

seen in Figure 15. They can see there are others that have similar complaints, they

also note the clusters they belong to. They then continue to question 4 to find out

what it stops others from doing.

Figure 16: Patient 2084 finds similar responses to question 4
(Question 4: Stops you from)
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In Figure 16 the patient has searched their ID and observes what the others in the

dataset are experiencing. Finally the patient is curious whether there may be any

triggers that they may not know about yet, so they move to question 9.

Figure 17: Patient 2084 finds similar patients for question 9
(Question 9: Complaint attacks triggered by)

In searching the question 9 dataset the patient notes what triggers attacks in others

so they can reflect on whether those may also be the case for themselves.

This use case has considerations that are detailed in section 6.3. The use case was

an example of what a patient may learn from exploring the dental dataset using

the tool featured in this paper. This process was not exhaustive and many more

comparisons could be made by the patient, but additional visuals would be similar

to those presented. They also suffice for highlighting the advantages and drawbacks

which are described in the discussion.
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6 Discussion

This chapter will discuss the results detailed above in the context of the research

questions we posed earlier (see 1.2).

6.1 Research Questions

Which proposed metric is best to compare clustering results?

The proposed metrics KM perf (4.1) and GMM perf (4.2) are the best metrics

to compare clustering results. They do have considerable limitations which are

discussed below.

Limits of KM perf and GMM perf

Due to the fact that the clusters had to be combined, this work decided to restrict the

per question clustering to a max of 10 clusters. Various experiments also showed

the weakness of using KM perf and GMM perf as indicators for performance.

When k was tested for values to 200, the following was observed. The DB index was

negatively correlated with k, as was the CH index, while the silhoutte coefficient

was weakly negatively corerlated as it had minimal variance over the range. For the

GMM models the AIB and BIC were both positively correlated with n.

All these observations point to the counter acting forces between a CH index that

always favors a lower k while the DB index always favors a higher k. In the end

KM perf ended up recommending 2 quite often due to this imbalance, as the CH

index was always highest. Immediately followed by a number at the end of the

range, when testing with k > 50. This issue may be resolved by reimplementing a

better performance indicator, but it may also be more fundamental.

There are other metrics that perform well that could have been considered, such as

S Dbw from [Liu et al., 2010]. Yet [Arbelaitz et al., 2013, 254] recommends the three
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metrics chosen as the best among those they tested. They however state that there

is no significant difference between the performance of those three, which invites the

reconsideration of using the combination of metrics as a decider for best clustering

performance. As [van Craenendonck and Blockeel, 2015] found that none of the

measures they proposed could be used to compare the metrics. They importantly

highlight the concerns, ”All measures exhibit some undesired properties: sensitivity

to points identified as noise, a preference for highly imbalanced solutions, or a bias

towards spherical clusterings.” [van Craenendonck and Blockeel, 2015, 7]

How well do Word2Vec embeddings perform in the clustering

task?

One of the areas of the word2vec method that has received attention is how to

effectively transition from word embeddings to sentence embeddings. Research such

as [Arora et al., 2017] proposes a method for this. As the simcse method in this

work use more recent research and more promising techniques, generating sentences

from the word2vec models wasn’t further developed.

For the task of similarity, [Marcinczuk et al., 2021] found that word2vec can compete

with BERT models as a measure of similarity. Hence both methods are featured in

this paper.

How well do sentence embeddings perform in the clustering

task?

SimCSE

Based on all the examples in this paper it is clear that simcse performs well in

generating quality embeddings. This is further confirmed by [Wang and Isola, 2020],

who found that contrastive learning methods optimize for alignment and uniformity.

Aggregate clusters

The performance of aggregate clusters are hard to judge. They fulfil the task of

finding clusters that span all the questions, but the methodology has room for

improvement. One potential direction is to change order which the questions are

selected for division. Instead of most responses, the distance between clusters in a
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question could be used to pick the questions which feature well defined clusters first.

Overall, further research in the best way to combine all the clusters found for each

question could be beneficial.

Which proposed method is best to explain the clustering results?

Of the various visualization presented by this work, the best is the visualizations

based on each question individually. All of the methods are evaluated below, they

are ordered by quality with the last being the best.

All responses

The advantage of having all sentences is that one can explore patterns that may

exist irrespective of which question the sentence answered. However removing this

information is also a massive drawback as there are 16315 sentences in the all re-

sponses dataset. This makes traversing the graph fascinating but not very clear,

which is why this visualization was not chosen.

Top 3 questions

The main advantage of the top 3 questions visualization is that it summarizes the

most information dense questions. The reason this wasn’t the best visualization

because after the dimensional reduction only 13.4% of the variance is explained. It

is lower than the other visualizations due to the fact that the embeddings of three

questions were combined. Since interpretability is an important aspect of the work,

this low explained variance could lead to incorrect conclusions so it wasn’t chosen.

Question based

The ability to explore every question and its responses solidifies this visualization

as the best of those presented in this work. Being able to select the optimal clusters

that were identified also allows for further insight.
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6.2 Dataset analysis

In this section the datasets used for this paper will be evaluated to give the reader

a better understanding as to the limitations of this research.

Dental dataset

The dataset is unique and is being researched to its fullest extent [Schneider et al.].

There were some considerations regarding the dataset that are discussed below.

Purely textual data

Taking just the free text from the dataset is a choice that was made to focus the work

into a more innovative direction. The clear drawback is that there may have been

informative columns that were ignored by this decision. However the non-textual

data had a mix of data collected by the dentist added to it. Which meant that some

of the columns weren’t really the patient answers, just the dentist measurements that

the patient filled in. Along with various calculations, this made these additional

columns less interesting to include in the entire pipeline. Therefore taking only

textual data was a preferred route.

Response threshold

After extracting the textual data from the dental dataset the next consideration

was taking only the columns which had more than 16 unique responses. The main

reason this measure was taken was due to the amount of yes/no columns, along

with the likert scale responses. Having a yes/no response in the pipeline would not

add more information unless the question was additionally encoded somehow. Since

this research did not attempt to also encode the question into the embedding the

aforementioned measure was taken.

Language

The decision not to split the data for training or inference based on language, comes

from the fact that the column ’Start language’ in the dental dataset wasn’t reli-

able. The distribution of these languages can be seen in table 3. There were some

occurrences of german text being present in the responses of the ’en’ tag and vice
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versa with the german tag ’de’ having english responses. Further encouraged by re-

cent research in multi-language transformers this paper did not differentiate between

languages during training and inference.

This does however result in practical issues due to the fact that there were far more

german responses than any other language. Visually this can be seen on the TSNE

plot shown at figure Figure 18. On the right of this figure two dense clustering of

points can be identified (both colored red). These clustering of points all include

sentences from english and portuguese respectively. The results on the TSNE plot

can’t be generalized due to the randomness of TSNE. However it can be stated that

these sentences clearly fall closer together in the embedding space than sentences of

german language based on the objective of TSNE.

Figure 18: TSNE visualization with hyperparameters:
perplexity: 50, learning rate: 1, supervision: 20

Various solutions exist to this problem, yet fundamentally its constrained by the

imbalance of the dataset. As other research has done, to correct this imbalance one

could use third party translating services to create datasets in a specific language by

translating all responses to the desired language. This strategy is however reliant on

the quality of those third party translation services. It may also introduce artifacts

that can’t be reproduced and hence fell out of the scope of this research. In an ideal

case the BERT model used as a starting point for simcse could have been trained

on multiple languages. This is a more recent innovation in the field and hence not
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much research has been done in performing a technique similar to simcse on these

models.

STS-b dataset

The STS dataset was used for training a word2vec model and during training by the

simcse model. It is a well researched dataset that has stood the test of time. For

further research, [Faruqui et al., 2016] highlights some issues with word similarity

tasks that factor into this paper.

6.3 Discussion of Use Cases

The use cases presented gave insight into how the tool may be used by the end users.

Yet the shortcomings of the visualization should be understood in these contexts so

that they can be used appropriately.

Dentist use case

Overall the process resulted in success for the dentist, however there are some short-

comings that should be highlighted.

Long sentence responses

For all the visualizations (Figure 12, Figure 13, Figure 14) there are long sentence

responses present. These longer sentences could affect the embedding in two clear

ways.

First there is the fact that there may be parts of the embedding that signal longer

sentences. Then you would be merely finding sentences that are longer to be similar,

not actually properly considering the semantic meaning. Then there is the question

of how the model handles multiple concepts within one sentence. An average of

three concepts would not adequately represent the concepts. Further research is

needed to explore how the models encode these longer sentences, in this context this

implies caution before generalizing from such longer sentence groups.

Variations in spelling

In the visualizations ((Figure 12, Figure 13) there are cases of neighbors being almost

identical sentences aside from spelling. The fact that these show up as neighbors is
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an encouraging sign. What should be approached carefully is increasing the neighbor

count until you see different sentences. Doing so may be beneficial when a lot of

similar spelled sentences exist in a dataset, however it is very difficult to generalize

from the distances of neighbors as shown in Figure 13 on the right middle side.

Even with these concerns, these variations in spelling do not present a hurdle for

exploratory purposes, yet should be noted for future work.

Patient use case

The case of the patient is different from the dentist as there is no inherent searching

for a pattern. The patient may use the tool to cope with and better understand

their predicament. Even for these goals the visualizations have some shortcomings

that should be addressed.

Lack of other responses

Perhaps a patient was one of the few who responded to a certain question. In the

presented visualizations question 29 has the lowest response count, with only 62

responses. Searching these low response count questions will likely result in not

so similar sentences being shown as close neighbors. This could result in confu-

sion or stress if these neighbors contain responses from patients with more serious

conditions. As long as the patients are informed before then this problem can be

alleviated somewhat but the core problem remains. The potential solutions would

be to remove the lower response count questions or feed more data into the model.

Misinterpreting distance

In the visualizations (Figure 15, Figure 16, Figure 17) the higher dimensional data

is reduced to two dimensions. The risk with this reduction is that patients fail

to understand that not all the variance is captured by the visualization. Such as

with Figure 16, where ”klar denken” is closer than ”Den Mund ganz öffenen.”. The

patients should rely on the distances shown on the far right of the visualization, as

seen in the dental use case Figure 13. Yet the chance for misinterpretation still exist

due to the strong visual signal present in the graph itself.
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7 Conclusion

In this section this paper explores future avenues for research and concludes the

paper.

7.1 Future work

Proposed in this section are various research directions that the author sees as

natural extensions to the current work.

Data

As highlighted in the chapter 6, the data was from a highly pre-selected group of

individuals hence it is a candidate for future research. Expanding the dataset or

testing the methods with another dataset will be a worthwhile endeavour. One

potential direction is for the methods presented in this paper to be used on larger

datasets. By increasing the dataset one can determine better if the results found in

this paper are generalizable. Also, there is the potential that the methods may suit

larger datasets even better, however researching this aspect fell outside the scope of

the current thesis.

Embeddings

Crucial to the success of this work was the embeddings extracted from the text.

Naturally this part of the work could be expanded to include different approaches

to the embedding techniques. One proposal is to use all the layers of the BERT

transformer to compute the embeddings. Another proposal may be to use a larger

multi-language BERT model or a specific BERT model trained on the german lan-

guage such as [Scheible et al., 2020]. A specific model may perform better since a

lot of the multi-language models use third party translation services to create their

translations.
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Graph Neural Network

Graph neural networks (GNN) are an active research field [Zhou et al., 2020]. A

future direction for this research is to explore applying a graph neural network on

the sentence embeddings. Create a graph by adding edges that represent the patient

between the sentences, creating a chain of sentences. Then potentially infer better

clusters by using a GNN to interpret the high dimensional space filled with chains

of sentences. The scalability of GNNs are not a direct benefit due to the size of

the current dataset, yet this technique may be a consideration if the dataset size

increases significantly.

Generation from clusters

Once the clusters have been obtained, a next step could be to generate likely sen-

tences from that cluster. [Jiang et al., 2017] proposes a method to generate these

sentences. The generation of sentences may help all parties to better understand

the nature of the proposed clusters. The interpretability would be of concern, but

in an idealistic case these sentences could then be used by further models as train-

ing data to create even more detailed models. However text data augmentation of

unsupervised data for supervised models is complex and remains a question without

a clear answer.

In a more realistic scenario, patients could use these generated sentences to cope

with their diseases. Recent advancements AI chatbots could spawn a field of ther-

apeutic conversations for patients. Feeding these chatbots generated sentences may

offer an alternative to feeding actual patient responses. This would bridge the un-

comfortable gap between an AI being fed your medical data, where the solution

would be generalized data from a sample. It is left open for future research whether

these generated sentences offer viable solutions.
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7.2 Conclusion

This paper sought to explore the best approach of clustering based on an unknown

semantic meaning. In researching this approach the word2vec model was used to

find similar concepts in the data based on words in the sentence. Then the entire

sentence was considered by using the SimCSE model. This model was trained in an

unsupervised manner on the dental dataset.

The SimCSE model was then used to create multiple visualizations of the embed-

dings. These visualizations can be used by dentists, patients, and researchers to

further explore the dataset. The pipeline presented could also be used on similar

datasets for exploratory purposes.

The visualizations also include cluster assignments. These cluster assignments were

found by running KMeans and GMM on the dataset, then using custom metrics

the best clusters were found. The interpretability of these cluster assignments was

analyzed along with evaluating the methods that generated them. These tools and

the insights provided by them can be a building block for future research.
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