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Abstract

In a real-world context, a classifier does not only encounter samples that belong to classes seen
during training but also samples whose associated classes are unknown to the model. The task
of such a classifier is then to correctly classify samples from known classes and to reject sam-
ples that are linked to unknown classes. A classifier that incorporates a mechanism to achieve
these two goals is known as an open set classifier/algorithm. For being successful in this task,
the dataset that the classifier is trained and evaluated on plays an important role. Ideally, such a
dataset is characterized by a variety of classes that are organized in a hierarchical fashion, thereby
mimicking a real-world environment. However, since most open set algorithms are developed
using small open set datasets with limited diversity, it is unclear how these techniques perform
on more challenging datasets. Furthermore, a comparison of the performance of these algorithms
is not possible since they are trained on different datasets, using different network topologies
and suboptimal evaluation metrics. In this thesis, I conduct a systematic comparison of four rel-
evant open set algorithms: Entropic Open Set Loss (EOS), OpenMax, Extreme Value Machine
(EVM), and Placeholders for Open Set Recognition (PROSER). For this comparison, I use three
recently developed open set protocols that are based on ImageNet. These ImageNet-based proto-
cols mimic three different open set contexts that systematically vary in their difficulty to perform
in. My work shows how these open set algorithms compare to each other in different open set
environments and points to the observed strengths and limitations of those approaches.





Zusammenfassung

Ein Bildklassifikationsmodell welches in einer realen Testsituation zur Anwendung gelangt ver-
arbeitet sowohl Bilder von bekannten Klassen, welche Bestandteil des Trainings waren, als auch
Bilder von gänzlich unbekannten Klassen. Die Aufgabe des Bildklassifikationsmodell besteht
darin, die Bilder von bekannten Klassen der jeweils korrekten Klasse zuzuordnen und die Bilder
von unbekannten Klassen zurückzuweisen. Ein Bildklassifikationsmodell welches über einen
Mechanismus verfügt der diese beiden Ziele verfolgt, ist auch als Open Set Bildklassifikation-
modell/Algorithmus bekannt. Der Datensatz auf welchem das Bildklassifikationsmodell ur-
sprünglich traininert und evaluiert wurde spielt bei der Erreichung dieser Ziele eine wichtige
Rolle. Idealerweise verfügt ein solcher Datensatz über eine Vielfalt von hierarchisch organisierten
Klassen. Auf diese Weise simuliert der Datensatz eine reale Testumgebung. Es zeigt sich jedoch,
dass bei der Entwicklung der meisten Open Set Algorithmen kleine Datensätze verwendet wer-
den, welche durch eine eingeschränkte Vielfalt an Klassen charakterisiert sind. Demnach ist es
unklar, ob diese Algorithmen auf umfangreicheren und komplexeren Datensätzen dieselbe Leis-
tung erbringen. Ein Vergleich der Leistungsfähigkeit solcher Algorithmen ist aus verschiedenen
Gründen nicht möglich. Einerseits wurden diese auf unterschiedlichen Datensätzen trainiert und
evaluiert. Andererseits verwenden diese Algorithmen unterschiedliche Netzwerkarchitekturen
und suboptimale Evaluationsmetriken. In dieser Arbeit vergleiche ich vier relevante Open Set
Algorithmen auf eine systematisch Weise. Bei den Algorithmen handelt es sich um Entropic
Open Set Loss (EOS), OpenMax, Extreme Value Machine (EVM), sowie Placeholders for Open
Set Recognition (PROSER). Zur Durchführung dieses Vergleichs verwende ich drei kürzlich en-
twickelte Open Set Protokolle, welche auf ImageNet Bildern beruhen. Diese Protokolle imitieren
drei verschiedene reale Testumgebungen, welche sich systematisch in ihrem Schwierigkeitsgrad
unterscheiden. Meine Arbeit zeigt auf, wie sich die ausgewählten Algorithmen in diesen Tes-
tumgebungen verhalten. Zudem beleuchtet sie die beobachteten Stärken und Grenzen dieser
Techniken.
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Chapter 1

Introduction

Extensive research in recent years has strongly contributed to the capabilities of deep neural net-
works (DNNs) in correctly predicting the class that an input image belongs to. This task is gen-
erally solvable as long as the network only encounters test samples that belong to categories that
have been present during training. However, if the network is required to classify an input image
from an unknown class, the task becomes much harder. This scenario is known as open set classi-
fication (Scheirer et al., 2013). The task of handling such unknown samples becomes even harder
if the classifier has been trained on a dataset that comprises samples from a small number of
classes. Therefore, a network can benefit from a dataset that provides a variety of training classes.
One such dataset is ImageNet (Deng et al., 2009). This chapter introduces open set classification
and points to its associated challenges. Furthermore, it describes the ImageNet database in more
detail and argues for its use in open set recognition. The chapter finishes with the problem that
this thesis addresses and provides an outline.

1.1 Open Set Classification
A typical Machine Learning-based, supervised classifier is trained on a set of training samples
that are associated with a finite set of target classes. Confronted with a test sample from one of
these classes, the trained classifier then typically assigns it to the class associated with the highest
probability score. Clearly, the task of the classifier is to assign the sample to the correct class. As-
suming that the target class of every possible test sample is a member of the set of classes present
during training, the model operates under the closed world assumption and is considered to be
complete (Rudd et al., 2018; Boult et al., 2019). The classification performance of models on this
task increased significantly over the past years (Krizhevsky et al., 2012; Simonyan and Zisserman,
2015; Szegedy et al., 2015; He et al., 2016a). However, when the classifier encounters a test sam-
ple from a class not present during training, the classification becomes more challenging. As a
closed set classifier has no prior knowledge of the novel class, it incorrectly assigns the sample
to the most similar class. Encountering novel classes is actually a realistic scenario for classifiers
operating in real-world settings. Because of the dynamic and unpredictable nature of real-world
contexts, recognition systems must be able to handle novel categories (Bendale and Boult, 2016;
Boult et al., 2019). This leads to the notion of designing classifiers that are capable of performing
open set recognition (OSR), which refers to the task of recognizing inputs under the (open set)
assumption that samples from both known and unknown classes occur during testing. Hence,
the knowledge of the model is always incomplete and its design must incorporate a mechanism
for recognizing and handling unseen classes (Scheirer et al., 2013; Boult et al., 2019; Geng et al.,
2021). According to the formalism of Scheirer et al. (2013), these unknown samples are part of the
open space. This open space is characterized by the property that it hosts samples from unknown
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(a) Closed set classification (b) Open set classification

Figure 1.1: CLOSED SET CLASSIFIER OPERATING IN CLOSED VS. OPEN SPACE. This figure illustrates
the issue of applying a closed set classifier in an open set context. In (a), the classifier operates in a closed
set context and correctly performs the recognition task. In (b), however, the decision boundaries of the same
closed set classifier extend into open space and incorrectly partition it. Source: (Boult et al., 2019)

classes. Additionally, the distance between these unknown samples and the known samples (that
reside in the closed space) is generally far.

When it comes to Machine Learning-based models, Boult et al. (2019) note that most of the sys-
tems implicitly operate under the closed world assumption as inputs are assigned to one of the
training classes. They further emphasize that this also holds for classifiers that estimate a prob-
ability distribution using Bayes’ theorem since Bayes’ theorem implicitly makes a closed world
assumption. Applying such a closed set classifier in an open world setting introduces issues,
which Boult et al. (2019) intuitively visualize in figure 1.1. In figure 1.1(a), the learned decision
boundaries of a Nearest Class Mean (NCM) model (Mensink et al., 2012) guarantee a decent clas-
sification performance in the closed world context. In figure 1.1(b), the closed world assumption
is relaxed in favor of an open world assumption, which means that the model may encounter
test samples from unknown classes in addition to the samples from the known classes. Now the
decision boundaries of the closed set classifier extend into open space and introduce decision re-
gions of unbounded support. As a consequence, samples from emerging unknown classes are
incorrectly classified as known classes (Rudd et al., 2018; Boult et al., 2019). If the classification
decision is based on the distance of the sample from the class boundaries, the misclassification
can be accompanied by a high confidence score (Rudd et al., 2018). Having this issue in mind,
Geng et al. (2021) present the idea of loosening the decision boundaries and reserving space for
potential unknown classes, as can be seen in figure 1.2. These examples illustrate the need for
designing Machine Learning models with a mechanism that allows to recognize and handle sam-
ples that are associated with unknown classes. In this sense, the research community identifies
two main goals of a classifier operating in an OSR context (Scheirer et al., 2013; Dhamija et al.,
2018; Geng et al., 2021):

1. Correctly classifying samples from known classes

2. Rejecting samples from unknown classes
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(a) Data distribution (b) Conventional decision
boundaries

(c) Loosened decision
boundaries

Figure 1.2: LOOSENING DECISION BOUNDARIES IN OSR. This figure illustrates the idea of a classifier
operating in an open set context. In (a), the original data distribution is shown, including the unknown
classes ?5 and ?6 that appear only during testing. The decision boundaries of a traditional classifier are illus-
trated in (b). Furthermore, (c) visualizes the adjusted decision boundaries, reserving space for the unknown
classes. Source: (Geng et al., 2021)

Referring to the open set context and the two associated problems a classifier needs to master,
different formalisms can be found in the literature (Scheirer et al., 2013; Dhamija et al., 2018; Geng
et al., 2021). In order to better structure the open set problem, Dhamija et al. (2018) define Y ⊂ N
to be the label space that contains all classes. They then divide this space into the subsets:

• C = {1, . . . , C} ⊂ Y : the known classes that the network needs to identify.

• U = Y \ C: the unknown classes that need to be rejected by the network. U is further divided
into:

◦ B ⊂ U : the known unknown classes as the set of classes that the network can use during
training. However, the network does not need to recognize any of these classes since
B ∩ C = ∅.

◦ A = U \ B = Y \ (C ∪ B): the unknown unknown classes whose samples are not available
during training, but during testing. An open set classifier is expected to reject those
samples.

The authors then continue to define the different datasets used in the context of OSR as:

• D′

b: set of training samples belonging to B

• Db: set of test samples belonging to B

• Da: set of test samples belonging to A

• D′

c: set of training samples belonging to C

• Dc: set of test samples belonging to C

• Du = Db ∪ Da: set of all unknown test samples

In this thesis, I adopt the aforementioned formalism by Dhamija et al. (2018). When referenc-
ing the training and test set as a whole (i.e., irrespective of their composition), I use Dtrain and
Dtest, respectively. Furthermore, similar to Geng et al. (2021), I utilize the following abbreviations:
KKCs for the set of known known classes, KUCs for the set of known unknown classes, and UUCs
for the set of unknown unknown classes.
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1.2 ImageNet Database
Depending on the context in which an open set classifier is applied, the demands on the dataset
the classifier is trained on vary. Ideally, a dataset that is used to train and evaluate the perfor-
mance of an open set classifier should be similar to a real-world open space. Recalling the two
main goals of an open set classifier from section 1.1, correctly classifying samples from known
classes and rejecting samples from unknown classes, such a dataset needs to satisfy two criteria.
Firstly, the known classes in the dataset should capture the entities a classifier is very likely to
encounter in its application domain in order to have an a priori knowledge of possible classes.
Secondly, the dataset should also contain unknown classes, which can be encountered in a real-
world context by the classifier with a certain likelihood. The state-of-the-art database in research
that provides such a required richness of classes and its associated data samples is ImageNet1

(Deng et al., 2009). ImageNet is a large2 compilation of images that have been collected with the
goal of establishing a benchmark dataset that can be used by researchers to train and evaluate in-
creasingly more sophisticated algorithms. The images are quality controlled and follow the struc-
ture of the WordNet hierarchy. WordNet (Miller, 1995; Fellbaum, 1998) represents a large lexical
database that consists of English nouns, verbs, adjectives, and adverbs. The words are organized
into groups of cognitive synonyms, called synsets. These synsets express distinct concepts and
are interlinked by semantic and lexical relations. The relations allow a hierarchical organization
of synsets. Deng et al. (2009) design ImageNet such that it utilizes the hierarchical structure of
the WordNet synsets and organizes more than 20’000 3 noun synsets in the form of a tree. In this
tree, a synset represents a concept and comes in the form of a node that is linked to hundreds or
even thousands of images. While the leaf nodes represent the most distinct concepts, the parent
nodes represent increasingly more abstract concepts. For an example, please refer to the paper
published by the authors. ImageNet is the data foundation of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC, Russakovsky et al., 2015) 2010-2017, a competition held among
researchers to compare the progress of algorithms in the field of computer vision. The ILSVRC
uses carefully selected subsets of the ImageNet database and partitions those subsets into a train-
ing, a validation, and a test set.

1.3 Problem Formulation
As indicated in sections 1.1 and 1.2, an open set classifier benefits from a training dataset that
mimics a real-world scenario. Because of its hierarchical richness, ImageNet forms a suitable
basis for designing open set datasets that reproduce real-world contexts. Such datasets can then
be used to train and evaluate open set algorithms and to achieve solid benchmarks. However, as
Geng et al. (2021) note, most open set algorithms in research are trained on small datasets such
as LETTER (Frey and Slate, 1991), MNIST (Lecun et al., 1998), notMNIST (Bulatov, 2011), NIST
(Grother and Kayee, 2016), SVHN (Netzer et al., 2011), or CIFAR-10/100 (Krizhevsky, 2009). Due
to their size and limited diversity, these datasets are not ideal for mimicking real-world contexts
and thus the expressiveness of the performance measures on them can not be readily generalized.
Furthermore, existing open set algorithms are not consistently trained on the same datasets and
network topologies, which impedes a comparison among them. Finally, the evaluation of these
algorithms on the test set is often based on an evaluation metric that does not ideally reflect how

1https://www.image-net.org/index.php
2by the time of writing this thesis, the database comprises 14,197,122 images
3by the time of writing this thesis, 21’841 noun synsets are indexed

https://www.image-net.org/index.php
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well an algorithm achieves the goals of OSR. In this thesis, I address these issues. Concretely, I
address the two following research questions:

1. How do relevant open set algorithms compare to each other when they are trained and evaluated on a
data basis that mimics an instance of a real-world open space?

2. How does the performance of such an open set algorithm develop if the algorithm is trained and
evaluated on datasets that represent instances of real-world open spaces which are associated with
different levels of difficulty of the open set task?

I address the first research question by conducting a comparison between a selection of open set
algorithms that are trained and evaluated on the same data basis, using a uniform network ar-
chitecture. The comparison is based on an evaluation metric introduced by Dhamija et al. (2018).
Concretely, I compare the open set algorithms Entropic Open Set Loss (Dhamija et al., 2018),
OpenMax (Bendale and Boult, 2016), EVM (Rudd et al., 2018), and PROSER (Zhou et al., 2021b).
These algorithms differ considerably in their approach how to address the OSR task. The data
basis comes in the form of three open set protocols that have recently been designed by Bhoumik
(2021). These ImageNet-based protocols mimic three different open set contexts that systemat-
ically vary in their difficulty to perform in. By comparing the relative (to the other algorithms)
performance of a selected algorithm across the three protocols, I address the second research ques-
tion.

With this comparison, I contribute to a better understanding of how these algorithms compare to
each other in a complex and difficult environment. Applying such an algorithm in a more chal-
lenging open set context strengthens the generalizability of the results. Furthermore, my work
points out the possible strengths and limitations of the evaluated algorithms when it comes to
applying them in increasingly more difficult open set contexts. By relying on the OSCR curve
(Dhamija et al., 2018) as an evaluation metric, I report performance measures that better capture
the nature of OSR than the evaluation metrics usually found in research papers. It is, to my best
knowledge, the first time that such a comparison has been performed.

The content of this thesis can be outlined as follows:

• Related Work (Chapter 2): This chapter introduces general techniques proposed by research
to address the task of OSR as well as the theoretical background of the algorithms I evaluate.
Furthermore, the work by Bhoumik (2021), providing the open set protocols, is introduced.

• Approach (Chapter 3): Here, I show why a direct comparison of the evaluated open set
algorithms based on the research papers is difficult. I present my solution proposal to over-
come these challenges as well as my contribution.

• Experimental Setup (Chapter 4): This chapter presents the framework of the comparison,
which includes the utilized hard- and software, the network architecture, as well as the
hyperparameters that need to be specified when running the algorithms. I furthermore
offer a justification for my taken decisions.

• Experiments (Chapter 5): Subject of this chapter is the execution of the algorithms, the
selection of the final model, and the presentation of the results.

• Discussion (Chapter 6): This chapter discusses and interprets the experimental results and
points to potential limitations of the work.

• Conclusion and Future Work (Chapter 7): The focus of this chapter is the summary of the
results and gained insights as well as a reflection on possible future research work.





Chapter 2

Related Work

Building on the understanding of the open set recognition problem and the ImageNet database as
introduced in chapter 1, this chapter presents important research results associated with the two
topics. Specifically, section 2.1 provides a general overview of various open set algorithms as well
as a detailed insight into the theoretical background of the algorithms I evaluate in this thesis.
Furthermore, the same section draws the line between OSR and related but distinct problems.
Section 2.2 then introduces the work of Bhoumik (2021), whose protocols I use for the experi-
ments. Finally, section 2.3 outlines ResNet (He et al., 2016a), a family of network architectures
that I utilize in my experiments.

2.1 Open Set Techniques
The origins of OSR date back to Scheirer et al. (2013), which initially provide a formalization of
the OSR problem as the minimization of the open set risk:

argmin
f∈H

{
RO(f) + λrRE(f(V̂ ∪ K̂))

}
(2.1)

Thereby, the authors define an open space risk function RO(f) that, given a recognition function
f(x), returns the fraction of positively classified samples x from the open space with respect to
the positively classified samples x from the entire space in consideration (i.e., including the closed
space). Hence, the more samples x ∈ O are erroneously classified as one of the KKCs, the higher
the open space risk becomes. Further, RE(f) denotes the empirical risk function that returns the
error measure on the training data with V̂ = D

′

c and K̂ = D
′

b. The regularization constant λr

balances the two risk terms. Therefore, the OSR problem is solved by finding a recognition func-
tion f ∈ H that minimizes the open set risk. Reflecting on this definition, it becomes clear how
two main goals of an open set classifier, as indicated by Geng et al. (2021), emerge. Namely, the
open space risk RO(f) represents the demand on the classifier f to correctly reject samples from
unknown classes while the empirical risk RE(f) illustrates the requirement for the classifier f to
correctly classify samples from known classes. Based on this formal definition of the OSR prob-
lem, Scheirer et al. (2013) propose a model, the 1-versus-Set machine, that includes a mechanism
to deal with emerging samples from the open space.

In the decade since the seminal work of Scheirer et al. (2013), the body of research regarding
OSR has grown steadily. Associated with it, different models and approaches to tackle the OSR
problem have emerged. Recently, Geng et al. (2021) published a comprehensive survey on the
research advances in open set recognition. Emanating from the point of view of modeling, the
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paper provides a categorization of existing models/approaches that all incorporate mechanisms
to deal with the OSR problem. This categorization originates from two different types of models
that both are divided into subcategories:

• Discriminative Models

◦ Traditional Machine Learning Models

◦ DNN Models

• Generative Models

◦ Instance Generation-based Models

◦ Non-Instance Generation-based Models

As Ng and Jordan (2001) explain, discriminative classifiers learn a function that, given a data
sample x, computes the probability for a class label c ∈ {1, . . . , C}, i.e., p(c|x). Generative mod-
els, in contrast, model the joint probability function p(x, c) that maps a data sample x and a class
label c to the associated probability. Based on the above categorization, Geng et al. (2021) give
an overview of the published works for every category. When it comes to approaches that be-
long to the family of discriminative models, they note that the vast majority of them rely on an
empirically-set classification threshold. The following paragraphs outline, for every category,
some of the approaches.

Traditional Machine Learning Models: As Geng et al. (2021) elucidate, traditional Machine
Learning models are generally characterized by the assumption of the training set Dtrain and
the test set Dtest being drawn from the same distribution. Since this assumption does not hold
anymore in an OSR context, an adaptation of such traditional machine learning models is neces-
sary. In this respect, various works modify a Support Vector Machine (SVM, Cortes and Vapnik,
1995) such that it is able to address the challenges associated with an open set context. Scheirer
et al. (2013) introduce the 1-versus-Set machine, an SVM that integrates an open space risk term.
The updated model leads to an additional hyperplane that is parallel to the separating hyper-
plane and introduces a slab in the feature space. Depending on whether a sample x ∈ Dtest is
located between the hyperplanes or on a particular side of the slab, the sample is classified as the
target class, the non-target class, or is rejected. In a similar manner, Cevikalp (2017) presents the
Best Fitting Hyperplane Classifier (BFHC) model that uses the same idea of generating a slab in
the feature space. Furthermore, the model is applicable to a non-linear case and is designed for
large-scale problems. Motivated by the goal of further reducing the open space risk, Scheirer et al.
(2014) propose a Weibull-calibrated SVM (W-SVM) model. This model applies statistical extreme
value theory (EVT, Fisher and Tippett, 1928) together with two SVM models. The authors intend
to provide a model that takes the distance between a test sample and the space occupied by train-
ing samples into account, when estimating the probability of class membership. Specifically, this
probability declines in a non-linear fashion when test samples migrate into open space. Another
algorithm that relies on EVT, the PI -SVM, is suggested by Jain et al. (2014). Concretely, for any
known training class, the authors apply the statistical EVT to positive training samples at the de-
cision boundary to avoid overfitting to the positive training data and to simplify the rejection of
samples from unknown classes. The concepts of the EVT are also utilized by Zhang and Patel
(2017), even though their proposed model is not based on an SVM. Specifically, with the sparse
representation-based open set recognition model (SROSR), the authors introduce a model that is
applicable in the field of computer vision. SROSR makes use of the EVT to model the tails of two
reconstruction error distributions. After computing the reconstruction errors for a test sample,
the fitted models can then be used to classify or reject the test sample. Motivated by the realiza-
tion that most OSR methods do not take advantage of distributional information that is present in
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the training data, Rudd et al. (2018) present the Extreme Value Machine (EVM). This algorithm,
which uses EVT as well, is explained in detail in subsection 2.1.4. Yet another approach that falls
in the category of traditional Machine Learning models focuses on the distance between a test
sample and the means of the known training classes. Specifically, Bendale and Boult (2015) de-
sign the Nearest Non-Outlier (NNO) algorithm. This algorithm is linked to the Nearest Class
Mean (NCM, Mensink et al., 2013; Ristin et al., 2014) classifier and evaluates a test sample on ev-
ery classifier that is linked to a training class. In case of all classifiers rejecting the test sample, it
is considered to belong to an unknown class. Furthermore, the authors formulate the algorithm
in a way such that it is capable of dynamically adding new classes when manually labeled data
is provided. A different approach is taken by Vareto et al. (2017) as they address the challenges
associated with open set face recognition. In doing so, they devise two algorithms, HPLS and
HFCN, that couple hashing functions with classification methods such as partial least squares
(Wold, 1985) and fully connected networks.

DNN Models: In contrast to the category of traditional Machine Learning models, the category
of DNN models comprises approaches that use a DNN. One such model is OpenMax (Bendale
and Boult, 2016). This model, which substitutes the SoftMax layer with an OpenMax layer, is dis-
cussed in detail in subsection 2.1.3. Similarly, the Entropic Open Set Loss (Dhamija et al., 2018), a
loss function that modifies the probability distribution at the Softmax layer, is examined in sub-
section 2.1.2. While OpenMax and Entropic Open Set Loss concentrate on image classification,
Shu et al. (2017) use a convolutional neural network and substitute the Softmax layer with a 1-vs-
rest layer consisting of sigmoid functions to classify text documents in an open set context. The
authors name their approach DOC and show via experiments its potential in open text classifica-
tion. In a similar manner, Kardan and Stanley (2017) present a neural network architecture that
incorporates a specialized output layer, called competitive overcomplete output layer (COOL).
As the authors explain, the idea of COOL is to associate a collection of competing output units
with each training class. This architecture should then prevent the network from overgeneraliz-
ing over open space regions.

Instance Generation-based Models: Turning to the family of generative models, the category of
instance generation-based models comprises models that are usually also based on a DNN. How-
ever, in contrast to models from the category of DNN models, these methods aim at synthesizing
samples that belong to KUCs, hoping that the distribution of the generated samples is as similar as
possible to the distribution of samples from UUCs. In general, methods that fall under this cate-
gory are inspired by the technique of adversarial learning, which has been devised by Goodfellow
et al. (2014a). Concretely, the authors design a framework that comprises a generative model and
a discriminative model. While the generative model synthesizes samples, the task of the discrim-
inative model is to recognize whether a sample has been generated by the generative model or
belongs to the training data. The authors term this architecture a generative adversarial network
(GAN). Applying these concepts, Neal et al. (2018) present a data augmentation technique that
makes use of GANs and is called counterfactual image generation. With this technique, the au-
thors generate unknown samples that resemble training samples from KKCs, but are actually not
associated with any of the KKCs. These generated samples are then used in the training proce-
dure, which allows a reformulation of the OSR task. Similarly, Yu et al. (2017) design a framework
for the OSR task. This framework is known as the adversarial sample generation (ASG) frame-
work and is able to synthesize samples from KKCs as well as samples from KUCs (i.e., negative
samples). As the authors point out, the generated negative samples are similar to the samples
from the training set and are used to train an open set classifier. Yet another approach has lately
been proposed by Zhou et al. (2021b) and introduces data placeholders as well as classifier place-
holders. This approach is examined in detail in subsection 2.1.5.
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Non-Instance Generation-based Models: With the collective decision-based OSR model (CD-
OSR), Geng and Chen (2022) present an approach that adapts hierarchical Dirichlet process (Teh
et al., 2006; Teh, 2010) to the OSR task. As Geng and Chen (2022) point out, this model is charac-
terized by appealing properties. First, CD-OSR is able to circumvent the selection of a decision
threshold, a procedure that usually incurs risks since it only takes the information from KKCs into
account. Furthermore, in contrast to many other existing OSR methods, their model incorporates
a mechanism for explicitly modeling samples from UUCs that appear during testing, which leads
to a new class discovery function.

The preceding paragraphs gave an overview of a broad spectrum of models that all address
the OSR challenges. However, my thesis focuses on a particular selection of approaches. Namely,
the Entropic Open Set Loss (Dhamija et al., 2018), OpenMax (Bendale and Boult, 2016), the Ex-
treme Value Machine (Rudd et al., 2018), and PROSER (Zhou et al., 2021a). These approaches
build the basis for the experiments. In chapter 3, I give a justification for this particular selection.
Inspired by the above categorization of Geng et al. (2021), I apply the following typology to the
selected algorithms:

Figure 2.1: TYPOLOGY OF EVALUATED ALGORITHMS.

In the typology depicted in figure 2.1, Pixel Input refers to the fact that the input to the mod-
el/network comes in the form of an image. In contrast, Feature Input denotes the situation where
the algorithm builds the model based on deep feature representations of the input images. Fur-
thermore, KUCs in Training implies that samples from KUCs are used for training, i.e., the model
already gains some information on unknown classes. The leaf nodes of the tree refer to the eval-
uated algorithms. Note that EVM can be trained with and without KUCs. However, as explained
later in section 5.1, I train the EVM model without KUCs for my experiments. The theoretical
background of the selected algorithms is presented in subsections 2.1.1 - 2.1.5. Finally, in sub-
section 2.1.6, I differentiate OSR from related concepts to refine the understanding of the OSR
problem.
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2.1.1 Thresholding on Traditional Softmax
As noted by Bendale and Boult (2016), many DNNs (Krizhevsky et al., 2012; Chatfield et al., 2014;
Szegedy et al., 2015) pass the scores produced by the last fully-connected layer to the Softmax
function (Bridle, 1990) that then generates a probability distribution over the C classes present
during training. As Goodfellow et al. (2016) illustrate in more detail, the Softmax function takes
the network output in the form of real-valued logit values as input and computes the class-wise
probability scores. In a closed set context, the class associated with the highest probability score
is then considered as the prediction of the network. Formally, the Softmax probability yc for a
training class c ∈ C is computed using the logits zc′ as:

yc =
ezc

C∑
c′=1

ezc′
(2.2)

Although this definition particularly fits the requirements of a closed set context, it can and has
been used to reject samples from unknown classes via thresholding for many years (Matan et al.,
1990; De Stefano et al., 2000). In thresholding, first a rejection threshold θ ∈ [0, 1] is defined.
For a specific input sample in an open set classification context, the maximum Softmax output
y∗ = max yc is then compared against this threshold. If y∗ < θ, the input sample is rejected
and considered to be unknown. Although being an elegant solution, this approach has some
shortcomings. As Matan et al. (1990) and Boult et al. (2019) bring up, relatively small absolute
differences between the logit values can lead to much more pronounced differences between the
Softmax scores, thereby reflecting a bias toward a particular class. Another issue that can occur
in association with the thresholding approach is linked to the underlying model. Assuming a
classical deep convolutional neural network whose final layer outputs the logit scores over the
C known training classes, a test sample that belongs to the UUCs can lead to a high maximum
probability score. More concretely, an optimal network recognizes unknown classes, even when
these unknown classes share similarities with known training classes. As a consequence, such a
network could seek to equalize the logit values, which would then avoid a high maximum proba-
bility score. This in turn enables a lower rejection threshold. However, if this previous assumption
about the network is not satisfied, the network may produce a relatively high logit value for the
most similar class. This in turn increases the likelihood that the unknown samples are not re-
jected, since the required rejection threshold would not be appealing for operational use. Hence,
thresholding on Softmax scores would not be very effective.

As indicated above, the probability distribution over the C known training classes plays an
important role in the threshold-based rejection of unknown samples. Dhamija et al. (2018) present
an approach that aims at this probability distribution. This approach is the focus of the next
subsection.

2.1.2 Entropic Open Set Loss
With Entropic Open Set (EOS) loss and Objectosphere loss, Dhamija et al. (2018) introduce two
novel loss functions whose ultimate goal are to make the rejection of unknown samples x ∈ Du

based on a threshold more effective by modifying the probability distribution at the Softmax layer
(i.e., P (c|x) for c ∈ C). Concretely, the authors achieve this by formulating the loss functions such
that the entropy at the Softmax layer for unknown samples is maximized. Hence, when a test
sample x ∈ Du is evaluated, the Softmax scores across the KKCs should ideally be balanced out
and a rejection based on a threshold θ should therefore become easier. Assuming a DNN archi-
tecture in which a fully connected layer maps the convolutional output into a deep feature space
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Figure 2.2: NETWORK ARCHITECTURE WITH DEEP FEATURE LAYER. This figure illustrates an exem-
plary convolutional DNN. The fully connected layer FC1 maps the convolutional output into deep feature
space. Subsequently, the fully connected layer FC2 translates the deep features into logits, which are then
passed to the Softmax layer. Source: (Bhoumik, 2021)

(see figure 2.2), Dhamija et al. (2018) show that their proposed loss functions lead to deep features
that better discriminate between known samples and unknown samples.

When it comes to Entropic Open Set loss, Dhamija et al. (2018) decide to use the open space
information from known unknown samples x ∈ D′

b for training the network. However, they opt
against an additional background class for all unknown samples at the Softmax layer to avoid
the mapping of unknown samples into a dedicated region of the feature space. Such a dedicated
region can be problematic since it suggests a similarity to certain known classes that does not
necessarily reflect the actual similarity, thereby providing a suboptimal separation. The authors
visualize this situation in figure 2.3(a): while each colored dot represents a sample in 2-d deep fea-
ture space from one of the ten known classes, the black dots represent unknown samples x ∈ Da.
Besides a considerable overlap with the known samples, the unknown samples occupy a certain
region in the deep feature space, indicating some similarity with the green and pink samples that
might not necessarily be given. In addition to this problematic deep feature space partitioning
when using a background class, the authors observe a tendency of a smaller deep feature magni-
tude for unknown samples x ∈ Da compared to known samples x ∈ Dc when applying a network
that has been trained using plain Softmax over the C known training classes. Based on this lat-
ter observation, Dhamija et al. (2018) hypothesize that the magnitude of the deep feature vector
serves as an indicator of a sample being unknown. Consequently, they design the Entropic Open
Set loss function in such a way that the entropy of Softmax scores for unknown samples x ∈ D′

b

is maximized. Formally, the definition of the Entropic Open Set loss function JE(x) distinguishes
between a loss term for known samples and one for unknown samples:

JE(x) =

{ − log Sc(x) if x ∈ D′

c is from class c

− 1
C

C∑
c=1

log Sc(x) if x ∈ D′

b

(2.3)

Concretely, Dhamija et al. (2018) assign a known training sample x ∈ D′

c from class c ∈ C the
loss that results from taking the negative logarithm of the standard Softmax output Sc(x) =
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(a) Background Class (b) Objectosphere Loss

Figure 2.3: DEEP FEATURE REPRESENTATION OF KNOWNS AND UNKNOWNS. In (a), it is illustrated
where in 2-d feature space the known (= colored dots) and unknown (= black dots) test samples are mapped
to when a LeNet++ network is trained with a background class on MNIST (D

′
c) and NIST (D

′
b). The idea

of reducing the magnitude of the deep feature vector is represented in (b). Assuming a 2-d feature space
and a network trained using the Objectosphere loss, the unknown test samples should ideally be mapped to
locations close to the origin. Source: (Dhamija et al., 2018)

elc(x)∑
c′∈C elc′ (x) , with lc(x) denoting the logit value for class c. In contrast, the loss of an unknown

training sample x ∈ D′

b considers the logarithm of the standard Softmax output for all known
classes. As formally shown by the authors, the loss JE(x) for an unknown training sample x ∈ D′

b

is minimized if the class-wise Softmax scores are identical, i.e., ∀c ∈ C : Sc(x) =
1
C . Consequently,

assuming no bias term in the logit layer, identical Softmax scores imply that a deep feature vector
F (x) = 0⃗ represents a possible minimum of the associated loss term. This idea of a small mag-
nitude of the deep feature vector is illustrated by the authors in figure 2.3(b): it is recognizable
that unknown samples group around the origin in 2-d deep feature space, thereby separating the
known from the unknown classes in the feature space without implying a particular similarity to
one of the KKCs.

Having laid the theoretical foundation for their approach, Dhamija et al. (2018) then test the ca-
pabilities of their approach by conducting two experiments with various datasets. Using the
LeNet++ network (Wen et al., 2016), the first experiment relies on MNIST digits as D′

c and NIST
letters as D′

b in the training procedure. For testing, MNIST letters serve as Dc and the Devanagari
(Pant et al., 2012), CIFAR-10, and notMNIST datasets as Da. In the second experiment, which
uses the ResNet-18 network architecture (He et al., 2016a), CIFAR-10 builds the D′

c and a subset
of CIFAR-100 the D′

b. The test set comprises samples from CIFAR-10 as Dc and a subset of CIFAR-
100 as well as the SVHN dataset as Da. To assess the performance of the approach, the authors
present a novel evaluation metric, the OSCR curve. This metric is treated in detail in section 3.2.2.
The results show that Entropic Open Set loss outperforms the Softmax as well as the Background
class approach in experiment 1. The same holds true for experiment 2, if the subset of CIFAR-100
represents Da. Considering the results, the authors see some support for their theory of achieving
a more effective distinction between known and unknown samples by reducing the deep feature
magnitude of unknown samples. However, they also point to limitations of their approach such
as the importance of the selection of unknown training samples D′

b.

While the Entropic Open Set approach, as proposed by Dhamija et al. (2018), integrates un-
known samples from the open space into the training procedure, other approaches introduce a
new model layer. One such approach is presented in the next subsection.
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2.1.3 OpenMax

Instead of applying a threshold θ on the probability scores of a classifier to reject unknown sam-
ples, Bendale and Boult (2016) propose another strategy in the form of replacing the Softmax layer
with a novel OpenMax layer that additionally produces a probability score for an unknown class.
They especially opt against the conventional thresholding mechanism based on research find-
ings that indicate its vulnerability to "fooling" (Nguyen et al., 2015), "rubbish" (Goodfellow et al.,
2014b), or adversarial (Goodfellow et al., 2014b; Szegedy et al., 2014) images. As the authors note,
fooling and rubbish images are samples that are classified by a DNN as one of the training classes
with a high probability, despite being visually far away from the assigned class. In contrast, ad-
versarial images are samples that are visually almost identical to a known training sample but
that are particularly engineered to result in a high confidence score for a different training class.
Bendale and Boult (2016) therefore conclude that thresholding on Softmax scores does not repre-
sent the optimal strategy to recognize and reject unknown classes. As a possible solution to this
issue, they apply concepts from Meta-Recognition (Scheirer et al., 2011; Jammalamadaka et al.,
2012; Zhang et al., 2014) to gain similarity information and then pass this information to a newly
designed algorithm. The algorithm, which they term OpenMax, then generates a probability es-
timate for a sample being unknown. This probability score can then be used as an argument to
reject a test sample.

The approach, as proposed by Bendale and Boult (2016), can be broadly divided into three
components. Firstly, a deep convolutional neural network that has been trained in a closed set
fashion and that applies the conventional Softmax layer serves as a classifier. Additionally, this
network is used to map input samples from pixel space into a deep feature space. Secondly, a
multi-class meta-recognition algorithm that fits a probability distribution per training class based
on the deep feature representations of the associated training samples. Finally, the OpenMax
algorithm whose task is to adjust the probability scores that a test sample produces as well as
to estimate a probability score for an unknown class. To achieve this, the OpenMax algorithm
uses the probabilistic similarity information that is provided by applying the fitted probability
distributions. The key point of the approach by Bendale and Boult (2016) is the research-based
suggestion that for quantifying the open space risk, feature space and not pixel space should be
used (Scheirer et al., 2013, 2014; Bendale and Boult, 2015). Based on this insight, Bendale and
Boult (2016) treat the output of the last layer in the DNN, i.e., the logit values, as the deep fea-
ture space representation of the input image and term it Activation Vector (AV). Their underlying
assumption is that the associated deep feature space effectively separates known classes from
unknown classes and therefore builds a space for obtaining meaningful distance measures. Fol-
lowing this reasoning, the feature space representations of the correctly classified known training
samples x ∈ D′

c are then extracted and passed to the multi-class meta-recognition algorithm. The
algorithm, applying concepts from Extreme Value Theory (EVT, Fisher and Tippett, 1928), fits
a Weibull distribution for every training class in KKCs. Concretely, for every training class, the
mean of the AVs is computed (MAV). Subsequently, a Weibull distribution is fitted to the η largest
distances to the MAV on a class basis. These class-wise meta-recognition models can then be used
to evaluate the likelihood that a test sample x ∈ Dtest is a member of a training class. This is done
by first computing the distance between the AV of the test sample and the MAV for a particular
class and then passing this distance value to the associated meta-recognition model. Bendale and
Boult (2016) illustrate the idea of assessing similarity in deep feature space via AVs in figure 2.4(a).
Considering the activation patterns, a distinction between different classes and types of images
is possible. This observation represents the authors’ idea of choosing a deep feature space with
meaningful separation properties.
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(a) Feature space representation of images (b) Effectiveness of OpenMax

Figure 2.4: CHARACTERISTICS OF OPENMAX. In (a), the activation vectors (AV) for different types of
images are visualized. While the original AV consists of 1000 elements and 10 channels per element, the
graphic only shows the first 450 vector elements (horizontal pixels) and all the associated channels (vertical
pixels). The white headers denote the class, and the labels on the left the type of image. Here, MODEL refers
to the MAV of the respective class. At the bottom, selected category labels indicate the vector elements that
typically show high activation for a sample of the related classes. The pixel colors encode the level of acti-
vation of the vector elements/channels, thus revealing different activation patterns for distinct classes and
types of images. The robustness of OpenMax against fooling images is exemplified in (b). While SM refers
to the conventional Softmax probability, OM indicates the OpenMax probability. Applying the conventional
Softmax approach, the fooling images for the classes Baseball and Hammerhead get unambiguously mis-
classified. OpenMax, on the other hand, is capable of correctly classifying the fooling images as unknown.
Source: (Bendale and Boult, 2016)

The class-wise MAVs and meta-recognition models are the main ingredients of the OpenMax al-
gorithm. With this algorithm, Bendale and Boult (2016) introduce a mechanism that is capable
of revising the Softmax scores for the KKCs by considering the feature space characteristics of a
test sample. In detail, OpenMax revises the probability scores for the set of α classes with the
highest logit values. The extent to which a selected probability score is adjusted depends on the
distance in feature space between the AV of the test sample and the MAV of the class in question.
In other words, if the meta-recognition model of the respective class returns a low score for the
distance value, the test sample is likely not a member of the class and the high logit value might
be unjustified. Therefore, OpenMax reduces the logit value much more significantly than in the
case of the meta-recognition model returning a high value. After revising the logit values for
all α classes, OpenMax computes an additional pseudo-logit value that represents the unknown
class. The amount of this pseudo-logit depends on the total reduction over the α adjusted logit
values. In the end, OpenMax computes the Softmax scores over this new logit vector with C + 1
elements. As indicated by the authors, the decision to reject a test sample can then be based on
two criteria: the probability score for the unknown class being highest or the probability score for
the unknown class going below a decision threshold θ. Bendale and Boult (2016) then put their
system to the test. They use a pretrained AlexNet (Jia et al., 2014) as the network architecture and
the ILSVRC 2012 dataset with 1000 KKCs as the training dataset. The test dataset comprises the
ILSVRC 2012 validation set as Dc and 15K images from a subset of the ILSVRC 2010 dataset as
well as 15K fooling images (Nguyen et al., 2015) as Da. Using the F -measure, OpenMax is com-
pared to the conventional Softmax approach. For a threshold θ that has been optimized on the
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test dataset, OpenMax generates an F -score that is around 4.3% higher. Furthermore, the results
suggest the potential of OpenMax for recognizing fooling images. In figure 2.4(b), Bendale and
Boult (2016) argue that using deep feature space-based similarity information might be a viable
strategy to address the issues of fooling and adversarial images. However, despite providing
protection against traditional adversarial attacks, it has been shown that OpenMax systems are
nonetheless vulnerable to more sophisticated adversarial attacks (Rozsa et al., 2017).

As referred to above, OpenMax relies on a network that maps input samples into a meaningful
feature space. These feature space representations are then used to fit probabilistic models per
training class. Rudd et al. (2018) propose an approach that is based on similar premises. This
approach is subject of the next subsection.

2.1.4 Extreme Value Machine
Considering the OSR problem, Rudd et al. (2018) observe that algorithms based on DNNs do gen-
erally not take advantage of distributional information that is present in the training data. Similar
to OpenMax (Bendale and Boult, 2016), they use feature space representations of input samples as
the basis for building their models because of the indicated significance of feature space in OSR
(Scheirer et al., 2013, 2014; Bendale and Boult, 2015). Using the distributional information pro-
vided by the training data, Rudd et al. (2018) apply concepts from Extreme Value Theory (Fisher
and Tippett, 1928) to fit a set of probabilistic distributions for every known training class. This
set of distributions has the property that it can be used to arrive at an expressive probabilistic
representation of the class boundary. This in turn allows it to assess the likelihood of a test sam-
ple belonging to a training class and therefore to assign or reject it. Referring to the used EVT
concepts, the authors name their approach Extreme Value Machine (EVM).

In detail, Rudd et al. (2018) use feature representations of the training samples as the starting
point for the EVM. Using the concept of margin distributions (Garg and Roth, 2003; Reyzin and
Schapire, 2006; Pelckmans et al., 2007; Aiolli et al., 2008), the authors compute for every training
sample xi of a particular training class c ∈ C, i.e., xi ∈ D′

c : yi = c, the half-distances to the τ closest
training samples belonging to the negative training classes N = C \ {c}. The training sample xi

therefore builds the reference point for the distance computation and is termed Extreme Vector
(EV). Then, for every EV of the respective class, a Weibull distribution is fitted to this set of τ
computed half-distances. Using this distribution, Rudd et al. (2018) continue by inferring a radial
inclusion function that models the probability of sample inclusion (PSI or Ψ). This Ψ-function
can be used to assess the posterior probability that a test sample x ′ is included in the boundary
represented by the radial inclusion function or, equivalently, the likelihood that the test sample x ′

is associated with the training class that the underlying EV xi belongs to. Formally, the authors
define the Ψ-function as:

Ψ(xi, x
′;κi, λi) = exp

−
(

∥xi−x ′∥
λi

)κi

(2.4)

In this definition, ∥xi−x ′∥ refers to the distance between the test sample x ′ and the EV xi. More-
over, κi and λi denote the Weibull shape and scale parameters that are associated with the EV
xi according to the above-mentioned fitting method. Repeating this procedure for every training
class results in one Ψ-model for every training sample (aka EV) per class. Depending on the num-
ber of training samples per class, this can lead to a large number of Ψ-models per training class,
which in turn can result in a certain level of model redundancy. To address this point, the authors
propose a model reduction step that disposes of redundant EVs and their associated inclusion
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Figure 2.5: FINAL EVM MODELS. The figure shows the elements of the EVM. The training data con-
sists of four different classes (star, dot, diamond, and square). The colored rings represent the probability
isocontours of the associated PSI/Ψ-model. While red encodes a probability close to 1, blue references low
probabilities. The depicted Ψ-models are the result of the reduction step performed by a greedy approx-
imation algorithm. Every Ψ-model is linked to its respective Extreme Vector (EV, e.g., the vector denoted
by "A"). Using the final models, unknown samples "?" from the open space can be correctly rejected as the
models return low probability scores. Source: (Rudd et al., 2018)

functions on a class basis, i.e., (EV,Ψ)-tuples. The idea of this reduction step is to select a repre-
sentative subset of training samples per class. Concretely, EVs that lie within close proximity in
feature space are associated with Ψ-models that produce similar responses to a test sample and
therefore generate a certain level of redundancy. Assuming a probability threshold ς and a pair
of EVs (xi, xj) from the same training class, the tuple (xj ,Ψj) is considered to be redundant if
Ψi(xi, xj) ≥ ς . In contrast, the (xi,Ψi)-tuple is integrated into the final overall model. This reduc-
tion task, which mathematically represents a special case of Karp’s NP-hard Set Cover problem
(i.e., a minimization problem), is tackled using a greedy approximation that runs in polynomial
time (Slavík, 1996). After running this greedy algorithm, every training class c ∈ C is represented
by a set of (xi,Ψi)-tuples with xi being the EV. Rudd et al. (2018) depict an exemplary solution
in figure 2.5. The EVM algorithm is applied to training data from four different classes. The su-
perimposed Ψ-models at the top are the outcome of the model reduction step. Every Ψ-model is
associated with one selected EV and its coloration encodes the probability of sample inclusion. As
each Ψ-model is fitted individually to the data, the shape and scale parameters can vary consid-
erably. The "?" embody unknown samples from the open space. Using the final Ψ-models, these
unknown samples get correctly rejected as a consequence of not generating sufficiently high func-
tion responses.

By its structure, the EVM is able to perform the OSR task. Concretely, Rudd et al. (2018)
propose the following decision function:

y∗ =

{
argmaxc∈{1,...,C} max{i:yi=c} Ψi(xi, x

′) if max{i:yi=c} Ψi(xi, x
′) ≥ δ

”unknown” otherwise
(2.5)

This means that the predicted class y∗ of a test sample x ′ corresponds to the class c whose set of
associated Ψ-models hosts the model that returns the maximum probability among the Ψ-models
of all classes, given that this probability score reaches at least a probability threshold δ. Otherwise,
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the test sample x ′ is rejected and considered to belong to an unknown class.

Rudd et al. (2018) then test the capabilities of their proposed EVM algorithm in an OSR context.
Specifically, they follow the OLETTER protocol specified by Scheirer et al. (2014) and randomly
choose 15 letters from the LETTER dataset as KKCs. The EVM algorithm, including the reduction
step, is then run on the training samples belonging to those KKCs. During the test procedure, the
11 letters that have not been selected as known classes for the training procedure then build the
UUCs. Using the F -score as the evaluation metric, the authors find that the EVM performs sim-
ilarly or better than other state-of-the-art algorithms at the time. However, the EVM is the only
approach among the evaluated algorithms that can be used for incremental learning. Specifically,
the authors introduce a procedure that can be used to integrate new classes over time without
the need for a complete retraining of the collated model. The power of this incremental learning
ability is then tested in an Open World Recognition context, leading to a superior performance
over the NNO algorithm (Bendale and Boult, 2015). Open World Recognition is a problem that
differentiates itself from Open Set Recognition and is elaborated on in subsection 2.1.6.

The introduced approaches up to now all have in common that they fall into the category
of discriminative modeling. The algorithm presented in the next section, however, represents
a generative approach since it incorporates a mechanism that synthesizes new data instances,
thereby anticipating unseen data patterns.

2.1.5 Placeholders for Open Set Recognition
Not convinced by a thresholding approach, Zhou et al. (2021b) pursue the idea of addressing the
OSR problem by applying the principles of generative modeling. Inspired by generative mod-
els such as G-OpenMax (Ge et al., 2017) and C2AE (Oza and Patel, 2019), they propose a model
that is capable of generating unknown samples and then integrating them into the training pro-
cedure. The model design closely follows the notion of OSR as a calibration problem consisting
of two steps (Guo et al., 2017; Ye et al., 2021). As a first step, making use of known training
samples x ∈ D′

c, new data instances are created. These instances act as data placeholders for
unknown classes and are used in the training procedure to prepare the model for encounters
with unknown classes during testing/operation. The second step then consists of augmenting
the closed set classifier with a classifier placeholder for the unknown classes. This additional
classifier aims to enhance the separation between known and unknown samples. In the case of
the model introduced by Zhou et al. (2021b), the creation of the data placeholders comes with
limited computational cost. Referring to the calibration concept, they call the model Placeholders
for Open Set Recognition (PROSER).

As indicated above, PROSER consists of two types of placeholders. On the one hand, Zhou
et al. (2021b) assume a pretrained closed set classifier and augment its output layer with an addi-
tional dummy classifier. This is formalized as:

z = f̂(x) =
[
W⊤ϕ(x), ŵ⊤ϕ(x)

]
(2.6)

In this formulation, W ∈ Rd×C refers to the linear classifier of the pretrained model that maps
the deep feature representation ϕ(x) of an input sample x to the C logit values that each refers
to a known training class. Furthermore, ŵ ∈ Rd×1 denotes the linear dummy classifier. Hence,
f̂(x) is the augmented model that maps an input sample to C + 1 logits, i.e., z = [z1, . . . , zC+1],
which are then passed to the Softmax function to compute the probability scores. Importantly, the
PROSER design allows for defining multiple dummy classifiers Ŵ ∈ Rd×P with P denoting the
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(a) Classifier placeholders (b) Data placeholders

Figure 2.6: EFFECTS OF PROSER TRAINING. In (a), the consequences of training the classifier place-
holders are shown. Importantly, the dummy classifiers are positioned between the target class and the
non-target classes. Furthermore, (b) illustrates the impact of generating and using data placeholders on the
boundaries of known classes. Source: (Zhou et al., 2021b)

number of dummy classifiers/classifier placeholders. However, when an input sample x passes
through the network as indicated in equation 2.6, only the dummy classifier ŵ that returns the
highest score when applied to ϕ(x) is actually used. The weights of the dummy classifier ŵ are
learned during a fine-tuning training procedure. More precisely, Zhou et al. (2021b) introduce a
loss function that incentivizes the network to learn dummy classifier weights that are associated
with a certain outcome. Specifically, the dummy classifier should generate the highest among the
C + 1 logit values when applied to the feature representation of a generated unknown training
sample. This reflects the idea of correctly assigning an unknown sample to the "unknown" class.
In contrast, the dummy classifier is expected to map the feature representation ϕ(xi) of a known
training sample xi ∈ D′

c to the second highest logit score. Simultaneously, the linear classifier W
is responsible for correctly classifying the known training sample xi, thereby maintaining closed
set performance. To address the overconfidence phenomena (Bendale and Boult, 2016) that can
be observed in DNNs, Zhou et al. (2021b) introduce an additional calibration step that ensures
that the output logit of the dummy classifier is of the same magnitude as the output of the closed
set classifier. This is achieved by computing a bias term and adding it to the dummy logit. The
authors visualize this idea of introducing dummy classifiers in figure 2.6(a). During the fine-
tuning training procedure, the weights of the network are adjusted such that the feature vector
of a known training sample ϕ(xi) (e.g., the green diamond close to the class boundary) moves
towards its corresponding class cluster. Concurrently, the weights of the associated dummy clas-
sifier ŵ are adjusted such that the classifier placeholder is located between the target class and the
non-target classes. Conceptually, this refers to the idea of reserving classifiers for new classes.

The second placeholder type comes in the form of a data placeholder. As Zhou et al. (2021b)
note, generating and using new data instances in the fine-tuning training procedure turns a closed
set training into an open set training. They use a process that is capable of efficiently generat-
ing data instances whose distribution suggests an unseen class. This process is called manifold
mixup and has been presented by Verma et al. (2019). As the inventors illustrate, manifold mixup
assumes an embedding module ϕ(·) that can be decomposed as:

ϕ(x) = ϕpost(ϕpre(x)) (2.7)

Here, ϕpre(x) denotes a sequence of network layers that takes the input sample x from pixel
space into a hidden representation. Subsequently, ϕpost(·) represents the sequence of layers that
transfers the hidden representation into the feature representation ϕ(x). The creation of new data
instances happens at the level of hidden representations by fusing two known training samples
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from different classes, (xi, xj) ∈ D′

c : ci ̸= cj , in an interpolative fashion:

x̃pre = λ · ϕpre(xi) + (1− λ) · ϕpre(xj) (2.8)

Finally, Verma et al. (2019) apply the post-module to the created instance, i.e., ϕpost(x̃pre), and get
the feature representation of the newly created data instance. With respect to this data creation
process, Zhou et al. (2021b) select the first half of the training data in every batch for the creation of
new data instances. Assuming an ordered collection of selected training instances, the collection
is randomly shuffled to create the required pairs of data instances. By masking pairs whose mem-
bers are linked to the same class, it is ensured that the data creation process only considers pairs
from different classes. As indicated above, Zhou et al. (2021b) use these generated data instances
in the fine-tuning training procedure and treat them as representatives of an unknown open set
class. They intuitively picture the effects of using data placeholders in the training procedure
in figure 2.6(b). The feature representations of the generated instances, depicted as black dots,
emerge between the boundaries of the known classes. During training, the decision boundaries
of the known classes migrate away from the generated samples and get more compact.

To test the capabilities of the PROSER approach in an OSR context, Zhou et al. (2021b) per-
form a selection of experiments. For this purpose, they use the protocol designed by Perera et al.
(2020). This protocol stipulates that a model is trained on all training instances of a certain closed
set dataset. For testing, the test set is augmented by instances of another dataset. These added
samples serve as representatives of unknown classes. In the first experiment, Zhou et al. (2021b)
choose the ten numbers of the MNIST dataset as the known classes. The unknown classes used
during testing come in the form of Omniglot alphabet characters (Lake et al., 2015). Moreover,
noisy samples serve as instances of other unknown classes. Comparing the F-score achieved by
PROSER with the results as reported by Sun et al. (2020) shows that PROSER outperforms meth-
ods as traditional Softmax or OpenMax (Bendale and Boult, 2016) significantly on these datasets.
A similar picture emerges in a second experiment where the authors use the categories in CIFAR-
10 as known classes and categories from ImageNet and LSUN (Fisher et al., 2015) as unknown
classes. Considering their work, Zhou et al. (2021b) conclude that PROSER addresses two sig-
nificant problems in OSR. On the one hand, the generation and use of data placeholders in the
PROSER training procedure facilitates the anticipation of new data patterns. On the other hand,
introducing classifier placeholders addresses the issue of overconfident closed set classifiers as
these placeholders are systematically designed to recognize unknown classes in the future.

2.1.6 Delimitation to Related Concepts
As identified by various researchers (Scheirer et al., 2013; Dhamija et al., 2018; Geng et al., 2021)
and introduced in section 1.1, the Open Set Recognition problem consists of two different tasks.
Firstly, a classifier in an OSR context is expected to correctly classify samples from known classes.
Secondly, it should also be able to reject samples from unknown classes. Considering this defini-
tion, research knows related, but delimitable problems. Two of them are particularly notable.

Out-Of-Distribution Detection: Liang et al. (2018) characterize the problem of out-of-distribution
detection as the task of a classifier to recognize if an input image is from a data distribution that
has been used for training or from a data distribution that has not been part of the training proce-
dure. Concretely, they assume that a classifier is trained on an image dataset that has been drawn
from a data distribution that is associated with the KKCs. For testing, samples that are drawn from
another distribution that is linked to the UUCs (the out-distribution) are added to the test dataset
containing samples from KKCs. The classifier is then expected to recognize if a test sample is from
the out-distribution or not. Considering this definition, the binary nature of out-of-distribution
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detection emerges. Specifically, the task in out-of-distribution detection is to reject a sample from
an unknown class and to recognize if a sample is from a known class. The correct classification of
the known sample, however, is not part of the objective. Hence, there is a clear distinction to the
OSR problem.

Open World Recognition: Bendale and Boult (2015) present Open World Recognition (OWR)
as an extension to Open Set Recognition. As the authors describe, OWR additionally takes the
concept of incremental learning into account. Concretely, an OWR system is expected to master
four tasks. Firstly, the system should reliably detect samples from unknown classes. Then, a
model update process is started. This means that the system must select unknown samples that
seem to be suited to extend the existing model in a meaningful way. These samples must then be
labeled. Finally, the model is updated using the additional information. Assuming such a system,
the authors then sketch the different stages in OWR. In the beginning, the model is trained on a
dataset. This is followed by the model performing OSR. Having identified the unknown samples,
the model update process is started. The last two steps are then repeated. With this concept,
Bendale and Boult (2015) propose a solution to a scenario where an open set classifier encounters
an increasing number of unknown classes when put in operation. Looking at this definition, it
stands out that Open Set Recognition is not a synonym for Open World Recognition. In fact, OSR
is a subproblem of OWR. In the literature, OWR is also known as lifelong learning, a paradigm
that is characterized by accumulating and updating knowledge in order to solve problems in a
dynamic environment (Chen and Liu, 2018).

2.2 Protocols
As mentioned in section 1.2, most open set algorithms in research are trained and evaluated on
small-scale datasets such as LETTER, MNIST, SVHN, or CIFAR-10 (Geng et al., 2021). The size
and limited diversity of those datasets however affect the generalizability of the reported results.
This fact motivated Bhoumik (2021) to design three open set protocols in a way that they mimic
instances of a real-world open space and accurately represent the challenges associated with OSR.
Concretely, capitalizing on the hierarchical richness of ImageNet, Bhoumik (2021) uses different
subsets of the 1’000 classes that constitute the ILSVRC 2012 dataset to design the three protocols.
For every protocol, she selects the subset in a systematic manner by using the ImageNet-1k tree
structure (Bostock, 2018) as well as the robustness library (Engstrom et al., 2019) and partitions
this subset into KKCs, KUCs, and UUCs. The data samples that are associated with these clusters
of classes then form the open set partition. The allocation of classes is done in a systematic way
such that the resulting open set partition captures the difficulties a classifier can encounter in a
real-world context where unknown classes may unexpectedly appear. The differences between
the three protocols become apparent when considering the distinguishing criteria that Bhoumik
(2021) defines:

• Degree of similarity within KKCs: in general, it is expected that a higher similarity within
classes increases the difficulty of correctly classifying samples from KKCs.

• Degree of similarity between KKCs and KUCs: given that samples of KUCs are available
during training, a higher degree of similarity between KKCs and KUCs is associated with a
better differentiation capability of the model (Dhamija et al., 2018). Concretely, the trained
model should be able to better anticipate the distribution of samples belonging to UUCs and
thus to reject them.
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• Degree of similarity between KKCs and UUCs: intuitively, the higher the similarity, the
harder the rejection task becomes. A high similarity requires the classifier to recognize fine-
grained differences between classes.

As it is indicated in table 2.1, Bhoumik (2021) uses these criteria to specify the "hardness" of
the protocols regarding the OSR task. Concretely, in protocol 1, the degree of similarity within
KKCs is high as all known classes are a descendant of the superclass "dog". This makes a correct
classification of known classes harder. On the other hand, compared to the KKCs, the UUCs
represent entirely different concepts and the rejection task of a classifier is expected to become
easier. This is mainly due to the UUCs not sharing many features with the KKCs. Protocol 2
includes 31 descendants of the subclass "hunting dog" in the KKCs, which increases the difficulty
for a model to correctly classify samples. In contrast to protocol 1, the UUCs have certain features
in common with the KKCs. This increases the likelihood that a classifier mistakes an unknown
sample for a known sample and therefore the difficulty of the open set rejection task. This holds
especially if the KUCs, which share many features with the KKCs, are not used during training.
Protocol 3 is based on the pre-packaged dataset mixed_13, which is provided by the robustness
library and contains a mix of living objects/classes and non-living objects/classes. The KKCs
consist of some descendants of the superclass set mixed_13 and the UUCs of some descendants of
superclasses not contained in mixed_13. Concretely, the superclass set that builds the basis for the
UUCs contains the superclasses "reptile", "clothing", "ungulate", "vegetable", and "aircraft". Since
the UUCs do represent a mix of living and non-living objects as well, an unknown sample might
generate features that are similar to features of known samples from multiple KKCs. Therefore,
the rejection task for a classifier becomes harder. In contrast, the classification task on known
samples is expected to be not as hard as in the other protocols since the similarity within the
KKCs is relatively low. In sum, Bhoumik (2021) designs the protocols with certain patterns in
mind: the level of similarity in appearance between KKCs and UUCs as well as between KKCs and
KUCs varies across protocols. The same holds for the similarity within KKCs. Having specified
the open set partitions per protocol, Bhoumik (2021) then continues to assign the samples to a
training, validation, and test set. While the samples from KKCs and KUCs are distributed among
all three datasets, the samples from UUCs are solely allocated to the test set. Table 2.2 gives an
overview of the original protocol splits.

However, protocol 3 has been redesigned in the meantime and does not match the open set
partition as originally designed by Bhoumik (2021) and reported in tables 2.1 and 2.2 anymore.
Specifically, Palechor et al. (2023) revised protocol 3 in a way that increased the difficulty of the
open set task. They achieve this by additionally adding some descendants of the superclass set
mixed_13 to the set of existing UUCs as assigned in the original version of protocol 3. Due to the
reassignment of classes, the composition of the KKCs, KUCs, and UUCs changes in the revised
version. As a consequence, the revised protocol 3 represents the hardest open set task, followed
by protocol 2 and protocol 1. It is this revised version of protocol 3 which I use in my experiments.
While working with these protocols, I find that they contain an unaddressed source of random-
ness that subsequently leads to a reproducibility issue. In subsection 3.1.2, I discuss this issue in
detail and introduce a solution. The final composition of the protocols can be seen in table 3.1.

2.3 ResNet
Back in 2016, He et al. (2016a) proposed ResNet as a solution to their observation that appending
additional layers to a sufficiently deep, plain convolutional neural network increases the training
error. They visualize this unexpected phenomenon, which they term degradation problem, in
figure 2.7(a). It can be seen that increasing the depth of a network negatively affects the training
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Table 2.1: ORIGINAL OPEN SET IMAGENET PROTOCOLS. The table provides an overview of the three
protocols and their respective partition into KKCs, KUCs, and UUCs. Source: (Bhoumik, 2021)

error, a phenomenon that contradicts the authors’ expectation of overfitting. A possible explana-
tion for this behavior is vanishing gradients, a problem that has already been observed in deep
convolutional neural networks (Bengio et al., 1994; Glorot and Bengio, 2010).

Vanishing gradients in deep networks can be attributed to the application of the chain rule for
computing the gradients in the back-propagation method (Rumelhart et al., 1986a). Using the
chain rule implies that the gradients for early layers are the result of multiplying a series of deriva-
tives. As the derivatives of the sigmoid and tanh activation functions are small, a repeated multi-
plication leads to very small numbers that, in the end, cause very small gradients for early layers1.
This then impedes the network from learning early-layer features. He et al. (2016a) react to this
problem by proposing a residual learning framework that builds the basis for the ResNet architec-
ture. Concretely, they push a stack of non-linear layers to fit a residual mapping F(x) instead of
the underlying mapping H(x), with the residual mapping being formalized as F(x) = H(x)− x.
The original, underlying mapping is given by H(x) = F(x) + x and is implemented by an ar-
chitecture using shortcut connections (Bishop, 1995; Ripley, 1996). As He et al. (2016a) show in
figure 2.7(b), the ResNet architecture is based on building blocks that consist of stacked layers
and a shortcut connection. The parameterless shortcut connection represents an identity map-
ping, combining its output with the output of the stacked layers. Since these shortcut connections
circumvent a pass through the stacked layers, they provide a path that the gradients can flow
through during back-propagation. The authors introduce two types of building blocks: a basic
building block in which the shortcut connection skips two convolutional layers and a bottleneck
building block in which three convolutional layers are bypassed. Both types additionally apply
the ReLU activation function (Goodfellow et al., 2016) as well as batch normalization (Ioffe and
Szegedy, 2015). As can be seen in table 2.3, the basic building block is used in the 18- and 34-layer
variants of ResNet while the bottleneck building block is found in ResNet-50, ResNet-101, and
ResNet-152.

1https://www.kaggle.com/code/shrutikunapuli/activation-functions-for-neural-networks/
notebook

https://www.kaggle.com/code/shrutikunapuli/activation-functions-for-neural-networks/notebook
https://www.kaggle.com/code/shrutikunapuli/activation-functions-for-neural-networks/notebook
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Table 2.2: ORIGINAL PROTOCOL SPLITS. The table illustrates the protocol-wise split of samples into a
training, validation, and test set. Source: (Bhoumik, 2021)

(a) Degradation of training performance (b) Basic building block

Figure 2.7: DEGRADATION PROBLEM AND SOLUTION APPROACH. In (a), it is illustrated that the
training error on CIFAR-10 can increase when additional layers are added to a 20-layer "plain" network. The
basic building block is depicted in (b). Residual learning is enabled by a shortcut connection that applies an
identity mapping and that is depicted by a curved arc. Source: (He et al., 2016a)

Using this residual learning framework, He et al. (2016a) hypothesize that it should be easier for
the network to optimize the residual mapping F(x) than the original, unreferenced mapping.
Referring to the degradation problem, they subsequently argue that a deeper network should not
produce a higher training error since pushing the residual mapping F(x) to zero is easier than
letting a suite of non-linear layers learn an identity mapping. Due to its results, ResNet quickly
gained popularity and laid the foundation for further improvements and architectures (He et al.,
2016b; Huang et al., 2016, 2017; Xie et al., 2017).
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Table 2.3: RESNET ARCHITECTURES. The table illustrates the architectural structure of various variants
of ResNet. For every variant, the square brackets refer to the type of building block that is used. While
ResNet-18 and ResNet-34 use the basic building block, ResNet-50 and higher use the bottleneck building
block that consists of three convolutional layers. The multiplication factor that follows the square brackets
denotes the number of blocks that are used in the corresponding layer. Source: (He et al., 2016a)





Chapter 3

Approach

The objective of this master thesis lies in developing and comparing open set classification tech-
niques on ImageNet. In this chapter, I analyze the challenges and questions arising in recent
research and present the approach I choose for performing the comparison.

3.1 Comparison of Algorithms
This section points out why a comparison of performance results of various open set classification
algorithms as reported in research papers is difficult. Concretely, it presents the reasons why the
algorithms have been selected, what factors prevent a direct comparison and how these difficul-
ties are overcome.

3.1.1 Algorithm Selection
The goal of this thesis is the comparison of open set algorithms on the ImageNet protocols de-
signed by Bhoumik (2021). To arrive at a selection of algorithms, I define three criteria. Firstly,
I consider algorithms whose source code has been released in the form of a software package
by the authors of the respective paper. This ensures an integration of the original algorithm.
Secondly, only algorithms whose source code is written in the Python programming language
(Van Rossum and Drake, 2009) are taken into account. This choice is motivated by the fact that
the three ImageNet protocols (Bhoumik, 2021) are written in Python. By using the same program-
ming language, the integration of code is simplified. Thirdly, I select algorithms that focus on
image classification. This criterion is justified as I perform the experiments on image data and not
on other types of data, such as text data. With respect to the first criterion, I use the list of avail-
able software packages by Geng et al. (2021) as a starting point and extend this list by the PROSER
algorithm (Zhou et al., 2021b). Applying the second criterion, methods such as the 1-versus-Set
machine (Scheirer et al., 2013), the W-SVM (Scheirer et al., 2014), the PI -SVM (Jain et al., 2014), the
Best Fitting Hyperplane Classifier (Cevikalp, 2017), the SROSR model (Zhang and Patel, 2017),
and the NNO algorithm (Bendale and Boult, 2015) are excluded since they are written in other
programming languages. By applying the third criterion, the DOC model (Shu et al., 2017) is dis-
qualified since it performs text classification. Furthermore, I eliminate the HPLS and the HFCN
algorithms (Vareto et al., 2017). Since these algorithms aim at open set face recognition, they re-
quire a data basis that is in accordance with this task, a requirement that is not satisfied by the
data basis I use. Finally, I exclude the method of counterfactual image generation (Neal et al.,
2018) and the ASG framework (Yu et al., 2017). While these algorithms satisfy all criteria, they
have been ruled out due to time constraints regarding this thesis. Therefore, I use the remaining
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algorithms for my comparison: the Entropic Open Set Loss (Dhamija et al., 2018), OpenMax (Ben-
dale and Boult, 2016), the Extreme Value Machine (Rudd et al., 2018), and PROSER (Zhou et al.,
2021b). These algorithms build the basis for my experiments, which are introduced in chapters 4
and 5.

3.1.2 Data Basis
Section 1.2 names one challenge of existing OSR models in research: most of them are trained on
rather small datasets such as LETTER, MNIST or, CIFAR (Geng et al., 2021). A look at table 3.2
confirms this notion for the algorithms I evaluate in this thesis. Such datasets are associated with
a restricted diversity and structural richness, which limits their ability to simulate real-world con-
texts. As a consequence, it is not readily apparent if the reported performance measures of these
algorithms are generalizable to more diverse and challenging contexts. For example: does a classi-
fier, which has been trained and evaluated on an open set partition of the 10-class MNIST dataset,
show comparable capabilities in a more diverse context with dozens or hundreds of classes? An-
other difficulty is that the reported performances of these algorithms are hardly comparable when
the underlying data differs. These observations lead Bhoumik (2021) to propose three open set
protocols as presented in section 2.2. She designs these protocols in a systematic way, thereby
creating three open set partitions that differ in their level of difficulty. For my experiments, I use
these protocols as a data basis. This has several reasons. First, since the open set partitions system-
atically incorporate the structural variety and hierarchical richness of ImageNet, I consider them
to build a more appropriate data foundation than datasets such as LETTER, MNIST, or SVHN
with respect to the suitability as a proxy for a real-world open space. Furthermore, the open set
partitions place different demands on a classifier that tries to meet the OSR goals. In other words,
these protocols allow it to systematically vary the environment in which an algorithm operates
and thus to better assess possible strengths and weaknesses an algorithm may have. In addition,
by choosing the open set partitions as a uniform data basis for all algorithms, I lay the foundation
for a meaningful comparison of their performances.

At this point, it has to be noted that some of the examined approaches have also been eval-
uated based on specifically designed open set protocols and procedures. For example, as can be
seen in table 3.2, the evaluation of EVM (Rudd et al., 2018) and PROSER (Zhou et al., 2021b) is
based on protocols proposed by Scheirer et al. (2014) and Perera et al. (2020) respectively. How-
ever, the OLETTER protocol introduced by Scheirer et al. (2014) constitutes a single instance of
an open set environment. This implies that the environment in which the model operates stays
constant. The same also holds true for the open set partition used to assess OpenMax (Bendale
and Boult, 2016). In contrast, the work of Bhoumik (2021) enables a systematic variation of the
degree of similarity within KKCs, between KKCs and KUCs, and between KKCs and UUCs across
the three protocols. To a certain degree, the protocols established by Perera et al. (2020) do allow
a systematic variation of the level of similarity within KKCs and between KKCs and UUCs. Nev-
ertheless, in contrast to Bhoumik (2021), these open set partitions do not fully take advantage of
the hierarchical richness provided by ImageNet but are based on rather confined datasets. The
same applies to the open set partitions employed to assess Entropic Open Set Loss (Dhamija et al.,
2018). It is for these reasons that I prefer the protocols designed by Bhoumik (2021) over other
protocols and procedures used in research papers.

For the purpose of using the protocols devised by Bhoumik (2021), the University of Zurich,
Switzerland, grants me access to the original source code. While setting up the code basis for
generating the csv files that are required for instantiating the datasets, I observe a reproducibil-
ity issue. Concretely, executing the source code of the revised version of protocol 3 (Palechor
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et al., 2023, see section 2.2) in Protocol3_revised.py, the number of generated KKCs, KUCs,
and UUCs vary across different executions of the script. This consequently implies that the num-
ber of samples in the training, validation, and test set varies as well across different script ex-
ecutions. To guarantee the reproducibility of the datasets, I inspect the source code and find
that the reason for this behavior lies in the iteration process. Listing 3.1 shows an excerpt of
one relevant position from the source code of the revised version of protocol 3. Concretely,
in_hier.tree[c].descendants_all returns a set of identifiers for all descendants of the su-
perclass c (Engstrom et al., 2019). As a Python set object is an unordered collection of distinct
objects,1 the iterator that is generated by the for loop does not return the set objects in a deter-
mined order across various script executions. Therefore, I convert the returned set to an ordered
list by using Python’s built-in function sorted().2 Listing 3.2 illustrates an excerpt of the mod-
ified version of the source code. The same procedure is applied to another line of code in the
aforementioned source code of protocol 3, where the first for loop is defined over a list of manu-
ally selected superclass WordNet IDs.

# iterate through all subclasses of the selected WordNet IDs

for c in mixed13_superclass_wnid:

for cnt, wnid in enumerate(in_hier.tree[c].descendants_all):

# select WordNet IDs at even indices as known classes

if wnid in in_hier.in_wnids and cnt%2 == 0:

...

Listing 3.1: Applying a For Loop on an Unordered Set (Protocol 3)

# iterate through all subclasses of the selected WordNet IDs

for c in mixed13_superclass_wnid:

for cnt, wnid in enumerate(sorted(in_hier.tree[c].descendants_all)):

# select WordNet IDs at even indices as known classes

if wnid in in_hier.in_wnids and cnt%2 == 0:

...

Listing 3.2: Applying a For Loop on a Sorted List (Protocol 3)

I find very similar issues in the original source code of protocol 1 and protocol 2 (Bhoumik, 2021).
For protocol 2, listing 3.3 illustrates the iteration over the unordered set of all hunting_dog sub-
classes in the nested for loop. All subclasses that are covered by ImageNet are then added to a
dictionary. Finally, the first half of the dictionary entries are selected as known classes. Because of
the unordered nature of Python set objects, these known classes vary across different script exe-
cutions, which also affects the number of samples from KKCs. The solution is identical to the one
in the revised version of protocol 3, namely by converting the unordered set to a sorted list using
Python’s built-in function sorted(). This conversion procedure is applied to two other lines of
code in the original source code of protocol 2 as well as to three lines of code in the original source
code of protocol 1. However, in protocol 1, these modifications do not affect the outcome of run-
ning the script due to the source code logic. The modifications are only made for reasons of consis-
tency. After these minor code adaptations, running the scripts repeatedly returns identical results
across the executions. Consequently, the originally reported protocol splits (Bhoumik, 2021; see
also table 2.2) do slightly change regarding the number of samples and can be inspected in table
3.1. I consequently use these modified versions of the protocols for performing my experiments.

1https://docs.python.org/3/library/stdtypes.html#set
2https://docs.python.org/3/library/functions.html#sorted

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#sorted
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Protocol Open Set Partition Training
Size

Validation
Size

Test
Size

Protocol 1

Known Known (116 classes) 116’212 29’061 5’800

Known Unknown (67 classes) 69’680 17’420 3’350

Unknown Unknown (166 classes) - - 8’300

Protocol 2

Known Known (31 classes) 31’793 7’950 1’550

Known Unknown (30 classes) 28’891 7’228 1’500

Unknown Unknown (55 classes) - - 2’750

Protocol 3

Known Known (155 classes) 157’744 39’446 7’750

Known Unknown (91 classes) 93’394 23’349 4’550

Unknown Unknown (166 classes) - - 8’300

Table 3.1: MODIFIED PROTOCOL SPLITS. The table presents the protocol splits, including the number of
classes, after modifying the source code in favor of reproducibility.

for cnt, (wnid, ndesc_in, ndesc_total) in enumerate(in_hier.wnid_sorted):

# check if WordNet ID = WordNet ID for Hunting Dog

if wnid == hunting_dog:

# iterate through all hunting dog subclasses

for cnt, wnid in enumerate(in_hier.tree[hunting_dog].descendants_all):

# check if subclass is a ImageNet Class

...

Listing 3.3: Applying a For Loop on an Unordered Set (Protocol 2)
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Algorithm Archi-
tecture

KUCs in
Dtrain

Dataset Feature
Input

Evaluation
Metric

Entropic OSL
(Dhamija
et al., 2018)

LeNet++/
ResNet18 Yes

Experiment 1:
• MNIST (D′

c , Dc)
• NIST (D′

b , Db)
• Devanagari (Pant et al., 2012)/

notMNIST/CIFAR-10 (Da)

Experiment 2:
• CIFAR-10 (D′

c , Dc)
• subset of CIFAR-100 (D′

b , Db)
• SVHN/CIFAR-100 (Da)

No OSCR

OpenMax
(Bendale and
Boult, 2016)

AlexNet No
• ILSVRC 2012 dataset (D′

c , Dc )
• 15 K images of ILSVRC 2010/

15 K fooling images (Da)
Yes F -score

EVM
(Rudd et al.,
2018)

AlexNet No

OLETTER protocol by
Scheirer et al. (2014):
• 15 random labels from

LETTER (D′

c , Dc)
• remaining 11 labels from

LETTER (Da)

Yes F -score

PROSER
(Zhou et al.,
2021b)

Wide
ResNet No

Protocol by Perera et al. (2020)
Experiment 1:
• MNIST (D′

c , Dc)
• Omniglot (Lake et al., 2015)/

MNIST-noise/noise (Da)

Experiment 2:
• CIFAR-10 (D′

c , Dc)
• ImageNet/
LSUN (Fisher et al., 2015) (Da)

Ablation study:
• 15 randomly selected classes

from CIFAR-100 (D′

c , Dc)
• other CIFAR-100 classes (Da)

No F -score

Table 3.2: CHARACTERISTICS OF EVALUATED ALGORITHMS. The table gives an overview of the key
characteristics of the examined approaches as originally presented by the authors. While the second column
names the relevant architecture for the model, the third column denotes whether the respective approach
uses training samples with labels in KUCs. The fourth column indicates which datasets have been used
for evaluating the corresponding algorithms. Note that for EVM, the dataset used for performing the open
world recognition task is not listed as this task is conceptually distinct from the OSR task. The column
labeled Feature Input states whether the input to the model is given in feature space (=Yes) or in pixel space
(=No).
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3.1.3 Network Topology

When comparing the performances of the different algorithms, another limiting factor comes in
the form of different network architectures. Table 3.2 shows the different network topologies that
are used in the original papers. It has to be noted that both the OpenMax as well as the EVM
model are EVT models and do not directly consist of a DNN. However, both models use a well-
trained DNN in the form of AlexNet as a feature extractor since the input to the models is given in
feature space and not in pixel space. Using heterogeneous network architectures across the algo-
rithms impedes the comparability of reported results. In line with Perera et al. (2020), I therefore
propose to use the same network architecture for all the evaluated algorithms when performing
the comparison.

The question then arises which network topology to use? When it comes to open set classifica-
tion, research suggests a correlation between the performance of a classifier in the OSR task and
its pure classification performance (Yoshihashi et al., 2019; Perera et al., 2020). In the domain of
image classification, deep convolutional neural networks are known for their powerful classifica-
tion abilities (Krizhevsky et al., 2012; Sermanet et al., 2014; Zeiler and Fergus, 2014). Furthermore,
the depth of these networks (i.e., the number of stacked convolutional layers) has a significant
impact on the performance, a fact that is reflected in the network architectures of many high-
performing models in the ILSVRC (Ioffe and Szegedy, 2015; Russakovsky et al., 2015; Simonyan
and Zisserman, 2015; Szegedy et al., 2015). The positive effect of deeper networks is even visible
in open set classification (Roady et al., 2020). However, due to their vulnerability to the problem of
vanishing/exploding gradients (Bengio et al., 1994; Glorot and Bengio, 2010), deep convolutional
neural networks apply techniques such as normalization initialization (LeCun et al., 1998; Glorot
and Bengio, 2010; He et al., 2015) or batch normalization (Ioffe and Szegedy, 2015) to enable the
convergence of stochastic gradient descent during training (LeCun et al., 1989). While enabling
convergence, these techniques do not prevent the degradation problem, the phenomenon that
adding layers to a deep model can lead to a higher training error (He and Sun, 2015; He et al.,
2016a). He et al. (2016a) proposed a solution to this problem by introducing an identity shortcut
connection that is combined with layers into a residual building block. The authors then propose
a network architecture that is based on these building blocks, called ResNet, and show that this
architecture alleviates the problem of vanishing gradients and effectively addresses the degrada-
tion problem. After its introduction, ResNet quickly gained popularity among practitioners and
researchers, an observation which is reflected in a number of proposed network modifications
(He et al., 2016b; Huang et al., 2016) and variants of ResNet such as ResNeXt (Xie et al., 2017) or
DenseNet (Huang et al., 2017).

For running the experiments, I choose ResNet-50 as the network architecture for all evaluated
algorithms. In my experiments, I train these networks from scratch and do not make use of the
pretrained version provided by PyTorch.3 By using a homogeneous architecture, I ensure better
comparability of results. The choice is justified by the advantages of ResNet as described above.
Furthermore, ResNet-based networks show a good classification performance on ImageNet,4 an
important observation as the used protocols are based on ImageNet.

3https://pytorch.org/vision/stable/models.html
4https://pytorch.org/vision/stable/models.html#classification

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html#classification
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3.2 Evaluation Metrics
In section 1.1, the two main goals of an open set classifier are introduced: firstly, a correct classifi-
cation of samples that are associated with a known class c ∈ KKCs seen during training. Secondly,
the classifier should reject samples whose class is a member of KUCs ∪ UUCs (Geng et al., 2021).
A correct rejection in this light means not to assign such a sample to one of the classes in KKCs,
but to recognize the "unknownness" of the sample. Depending on the approach, recognizing the
"unknownness" can mean, for example, assigning the sample to a dedicated background class as
done in PROSER (Zhou et al., 2021b) or rejecting the sample because of the maximum Softmax
score being below a defined probability threshold as in Entropic Open Set Loss (Dhamija et al.,
2018). Having this in mind, an appropriate evaluation metric should accurately reflect these two
goals such that the performance of classifiers can be assessed and compared. However, in contrast
to the closed set context, the additional task of handling the unknown classes poses an additional
challenge to the evaluation metric. This challenge is usually met by adapting established multi-
class evaluation metrics (Dhamija et al., 2018; Geng et al., 2021). However, a closer look reveals
that many metrics used in research papers have notable drawbacks.

3.2.1 Common Metrics and Their Drawbacks
In their survey on the advances in OSR, Geng et al. (2021) list some frequently used evaluation
metrics in the OSR context:

• Accuracy for Open Set Recognition: Rooted in the closed set multi-class version, accuracy
is defined as

AO =

∑C
i=1(TPi + TNi) + TU∑C

i=1(TPi + TNi + FPi + FNi) + (TU + FU)
(3.1)

Here, TPi, TNi, FPi, and FNi refer to the true positive, true negative, false positive, and
false negative for the ith known known class, with the class index i ∈ {1, 2, . . . , C} and C
denoting the size of KKCs. Moreover, the number of samples whose class label is in KUCs
∪ UUCs and that are correctly rejected is represented by TU . Similarly, FU refers to the
number of samples whose class label is in KKCs and that are incorrectly rejected.

• F-Measure for Open Set Recognition: Taking the precision P as well as the recall R into
account, the F -measure is defined as

F = 2× P ×R

P +R
(3.2)

Following a One-vs-Rest (OvR) approach based on a confusion matrix, the F score in closed
set multi-class classification is computed for every class. Afterward, the set of class-wise
F scores is subject to an averaging technique, leading to a single F score.5 Extended to
the open set context, this leads to all samples with labels ∈ KUCs ∪ UUCs being treated as
members of one additional class. This class then leads to another row entry in the confusion
matrix (Geng et al., 2021).

5https://towardsdatascience.com/micro-macro-weighted-averages-of-f1-score-clearly-explained-b603420b292f
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Although these evaluation metrics account for the unknown classes, they insufficiently mirror the
ability of an open set classifier to meet the OSR goals mentioned above. For example, Geng et al.
(2021) point out that in the F -score, the correctly rejected unknown samples count as TP , which
is misleading since TP now refers to samples that have not been seen during training. This short-
coming is addressed by Júnior et al. (2017), which provide a modified F -score that only considers
Precision and Recall for classes in KKCs. Concretely, equation 3.2 uses the following versions of
Precision and Recall for computing the macro-F -score and the micro-F -score, respectively:

Pmacro =
1

C

C∑
i=1

TPi

TPi + FPi
, Rmacro =

1

C

C∑
i=1

TPi

TPi + FNi
(3.3)

Pmicro =

∑C
i=1 TPi∑C

i=1(TPi + FPi)
, Rmicro =

∑C
i=1 TPi∑C

i=1(TPi + FNi)
(3.4)

However, there are other reasons why neither the accuracy as in equation 3.1 nor the various
forms of the F -score as described above are suitable evaluation metrics for OSR. On the one
hand, the accuracy metric as given in equation 3.1 is sensitive to imbalanced datasets. For exam-
ple, assuming a testing dataset that consists predominantly of unknown samples that are correctly
rejected, a high accuracy may be achieved even if the classifier itself shows a very poor classifi-
cation performance on known samples (Geng et al., 2021). While a weighted accuracy metric
as proposed by Júnior et al. (2017) deals with this difficulty, there is a more serious limitation.
Namely, the single value that results from applying either the accuracy or the F metric does not
allow for a differentiated assessment of the performance of an open set classifier regarding the
two OSR goals. Concretely, an isolated statement on either the classification performance or the
rejection performance of a classifier is not possible since both key figures are unified in the re-
turned single value. In short, these metrics do not adequately measure what they are supposed
to measure in the OSR context.

Besides accuracy and the F -score, other metrics are frequently used in research papers to evaluate
the performance of open set models. Dhamija et al. (2018) especially highlight the following
metrics:

• Accuracy/Precision vs. Confidence Curve: This plot, applied by Lakshminarayanan et al.
(2017), shows the performance of an open set classifier at various Softmax thresholds. The
threshold, plotted on the horizontal axis, thereby takes on the role of a rejection threshold θ
that determines when a sample is rejected due to the maximum Softmax score being < θ.

• Area Under the Curve (AUC) of a Precision Recall Curve: The basis of this metric is a plot-
ted curve that represents various Precision-Recall combinations at a given rejection thresh-
old. Such a Precision-Recall combination can be interpreted as an operating point when
selecting the associated rejection threshold. Depending on the application domain, the cho-
sen rejection threshold naturally leads to either a high precision or a high recall. The metric
itself then computes the area under this curve.

In their analysis, Dhamija et al. (2018) then point out the disadvantages of these metrics when
used to evaluate the performance of a classifier in an open set context. Assuming a One-vs-Rest
approach (as described above), the Accuracy vs. Confidence Curve suffers from high sensitivity
to an imbalanced dataset. Furthermore, the curve is not suited for comparing algorithms since
threshold values are not relatable in a meaningful way across different algorithms. Also, the au-
thors illustrate in figure 3.1(a) that the Accuracy vs. Confidence Curve is vulnerable to scaling errors.
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(a) Precision vs. Confidence Curve (b) AUC of PR (c) Open Set Classification Rate
Curve

Figure 3.1: EVALUATION METRICS IN OSR. This figure illustrates different evaluation metrics that are
used in research papers to assess the performance of an open set algorithm. For detailed information on the
algorithms and the data sources associated with the figures, see Dhamija et al. (2018). While (a) plots the
precision against an increasing confidence threshold for a collection of algorithms, (b) shows the Precision-
Recall curves with their associated AUC values. Finally, (c) illustrates the OSCR curves for the same algo-
rithms as used in (a). Source: (Dhamija et al., 2018)

According to the figure, it seems that the curve with the label Squared MLP with Ensemble seems
to be superior to the one labeled MLP with Ensemble, despite being the same curve with squared
Softmax scores. This contradicts the idea that monotonically re-normalizing the Softmax scores
should not affect an evaluation metric. Regarding the AUC, Dhamija et al. (2018) note that the
score itself does not allow to draw conclusions on the possible operating points. They exem-
plify this observation in 3.1(b): choosing an operating point at the precision of 0.8, algorithm I13
outperforms algorithm I5 with respect to recall, despite I5 having the highest AUC score. This
implies that an algorithm with the highest AUC score does not necessarily provide the best oper-
ating points for a specific application domain. The authors conclude that, despite being a widely
used measure in research papers, the AUC of a PR curve is not a reliable metric for selecting the
best-performing algorithm.

Besides the criticism offered by Dhamija et al. (2018), similar points as for the above-mentioned
OSR-versions of Accuracy and the F -score can be made for the Precision vs. Confidence curve
as well as the AUC score: the very definition of these metrics does not allow for a differentiated
assessment of the performance of an open set classifier regarding the two OSR goals. Hence,
they do not adequately measure what they are supposed to measure. This realization motivated
Dhamija et al. (2018) to design a new evaluation metric: the Open Set Classification Rate (OSCR)
curve.

3.2.2 Open Set Classification Rate Curve
To address the issues mentioned in subsection 3.2.1, Dhamija et al. (2018) introduce the OSCR
curve, which is created by plotting the Correct Classification Rate (CCR) against the False Positive
Rate (FPR) at different probability score thresholds θ:

CCR(θ) =

∣∣{x |x ∈ Dc ∧ argmaxc P (c |x) = ĉ ∧ P (ĉ |x) > θ}
∣∣∣∣Dc

∣∣ ,

FPR(θ) =

∣∣{x |x ∈ Du ∧maxc P (c |x) ≥ θ}
∣∣∣∣Du

∣∣
(3.5)



36 Chapter 3. Approach

According to the authors’ definition, the CCR represents the fraction of known samples in Dc

where the actual class ĉ is assigned the highest probability score by the model and where this
probability score exceeds the threshold θ. The FPR on the other hand refers to the fraction of un-
known samples in Du where the highest probability score over all known classes in C as assigned
by the model is greater than or equal to the threshold θ. In figure 3.1(c), Dhamija et al. (2018)
provide an example of the OSCR metric being applied to evaluate the performance of various
algorithms.

Reflecting on the definition of the OSCR metric, some advantages over the metrics elucidated
in subsection 3.2.1 become apparent. First, the metric allows a performance comparison as the
FPR has the same meaning across different algorithms. Furthermore, the OSCR metric represents
the two OSR goals much better than the aforementioned metrics. Concretely, the CCR mirrors the
ability of a classifier to correctly classify samples from known classes, while the FPR reflects the
ability to correctly reject unknown samples. Importantly, the OSCR metric does not merge these
two key figures in one single value, therefore allowing a differentiated assessment of the OSR
goals at various threshold levels.

3.2.3 Evaluation Metric Used in Experiments
To compare the performance of the algorithms that I examine in this thesis, an evaluation metric
is necessary. Looking at table 3.2, it becomes clear that all approaches but Entropic Open Set Loss
use the F -score to measure and compare the performance. For the reasons set out in the subsec-
tions 3.2.1 and 3.2.2, I consider the OSCR metric (Dhamija et al., 2018) to be the best currently
available fit for the experiments. I therefore use this metric to evaluate the performance of the
algorithms on the test set. Subsequently, plotting the OSCR curves for the respective algorithms
allows a consistent performance comparison.
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Experimental Setup

A carefully thought-out experimental setup facilitates the comparison of the algorithms. This
chapter introduces the utilized hard- as well as the software. This is followed by a description
of the data preprocessing and the network architecture that builds the basis of the comparison.
Finally, the chapter presents the configuration decisions as well as the hyperparameter specifica-
tions that are required when working with the algorithms.

4.1 General Setup
To conduct the comparison between the open set algorithms Entropic Open Set (Dhamija et al.,
2018), OpenMax (Bendale and Boult, 2016), EVM (Rudd et al., 2018), and PROSER (Zhou et al.,
2021b), I use the Python programming language (Van Rossum and Drake, 2009) and the open
source machine learning framework PyTorch (Paszke et al., 2019). The Artificial Intelligence and
Machine Learning (AIML) Group in the Department of Informatics at the University of Zurich,
Switzerland, provides me access to a server that is equipped with eight GeForce RTX™ 2080 Ti
Turbo 11G GPUs. Since my experiments are computationally expensive, I make use of this server.

For reasons of manageability, I create two Python packages that structure my code. On the
one hand, the package imageNet_protocols contains all the functionality that is needed to ac-
cess the data associated with the three ImageNet protocols (see section 3.1.2). The functionality
of this package is discussed in more detail in the next section. On the other hand, the package
eosa (Evaluation of Open Set Algorithms) organizes the code that is required to evaluate the al-
gorithms. Hereafter, the crucial modules of this package are briefly explained.

approaches: This module maintains a separate Python class for every approach, including the
baseline approach in the form of thresholding on traditional Softmax (see subsection 2.1.1). These
classes consist of attributes and methods that allow the training, validation, and testing of the ap-
proaches. This includes the evaluation of the trained models on the validation set, the storage of
the best training model, as well as the computation and storage of the OSCR metric. Importantly,
these classes directly access or integrate the source code of the algorithms. This source code is
open source and hosted on GitHub (Dhamija, 2021; Zhou et al., 2021a). In case of Entropic Open
Set Loss, OpenMax, and EVM, the source code is provided in a Python package termed VAST

(Dhamija, 2021).

architectures: Since I use a specific version of the ResNet-50 architecture for my experiments
(see section 4.3), the PyTorch-based implementation requires a slight adaptation. This module
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provides classes that implement this adjustment for a series of ResNet variants (i.e., ResNet-
18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152). These classes directly inherit from the
ResNet class that is provided by PyTorch1 and therefore take the correct architecture into account.
An instance of a class of this module has the property that it returns the logit values as well as
the deep feature representation when called on a data sample. Having access to the deep features
is necessary since some of the evaluated approaches operate on deep feature representations of
data samples.

data_prep: As pointed out in chapter 2, OpenMax and EVM rely on deep feature representations
of the data samples in order to build, evaluate, and test their models. Since the datasets consist
of samples in pixel space, a mapping into feature space is required. This module contains two
classes, EVMExtractor and OpenMaxExtractor, that perform this task. While both classes inherit
from the same parent class, OpenMaxExtractor additionally incorporates functionality which en-
sures that only the correctly classified known training samples x ∈ D′

c are considered for feature
extraction (see section 2.1.3). Concretely, a fully trained DNN can be passed as an argument to
the constructor of such a class. After instantiation, a PyTorch DataLoader2 object managing the
data samples of a specific dataset is handed over to certain class methods. The DNN is then used
to map the data samples to their feature representations. The class finally returns the feature
representations and, optionally, the logit values of the data samples. More specifically, the class
provides these features and logit values in the data structure that is requested by the open source
algorithms (Dhamija, 2021).

tools: As discussed in detail in section 4.4, the evaluated algorithms rely on various hyperparam-
eters and can be configured in various ways. This increases the importance of having a mecha-
nism that allows conducting the experiments in a structured and guided way. This module hosts
a function that instantiates and configures a Python argument parser3 object and performs the
necessary checks on the passed arguments. The basic idea of this function is to provide a mech-
anism that allows to run the experiments from a command line interface/interpreter (CLI) in a
guided way. Specifically, for a selected algorithm, this function ensures that all relevant hyperpa-
rameters are specified and that the algorithm can only be configured in a valid way. Importantly,
the argument parser object systematically guides the CLI user towards a correct configuration by
pointing to the optional and required arguments.

4.2 Dataset
As clarified in section 3.1.2, I use the modified versions of the three ImageNet protocols devel-
oped by Bhoumik (2021) as the data basis for the comparison of the selected algorithms. This
is possible as the University of Zurich, Switzerland, grants me full access to the source code as-
sociated with these protocols. To work with these protocols, I set up a Python package, named
imageNet_protocols, that hosts all functionality that is needed to generate the PyTorch Dataset4

objects that manage the data associated with the protocols. This functionality can be broadly di-
vided into two categories.

1https://pytorch.org/vision/stable/_modules/torchvision/models/resnet.html
2https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
3https://docs.python.org/3/library/argparse.html
4https://pytorch.org/docs/stable/data.html#map-style-datasets

https://pytorch.org/vision/stable/_modules/torchvision/models/resnet.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
https://docs.python.org/3/library/argparse.html
https://pytorch.org/docs/stable/data.html#map-style-datasets
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Generation of Access Files: The original source code (Bhoumik, 2021) generates, for every proto-
col, CSV files that hold the file names of the needed images from the ILSVRC 2012 dataset as well
as the assigned class targets. Every protocol script generates separate CSV files for the training,
the validation, and the test dataset (for details, see Bhoumik (2021)). This information can then
be used by the custom Dataset class to load the images. It is assumed that access to the ILSVRC
2012 dataset is given. The imageNet_protocols package provides a function that can be used to
(re)generate these access files for the desired protocol(s).

Generation of Datasets: The imageNet_protocols package offers a function that returns Dataset
objects for a specified protocol. Concretely, the function takes the file system paths to a selection
of the generated CSV access files as arguments. Using these arguments, it then instantiates an
object of a custom Dataset class (Bhoumik, 2021) for every CSV file. Relying on the information
stored in the CSV file, this custom Dataset class loads the images and prepares the associated
integer labels. Importantly, the class allows to apply certain transformations5 to the images. Re-
garding the protocols, Bhoumik (2021) makes use of various transformations. First, the images
are resized6 to a uniform size of 300× 300 to account for the different shapes and sizes of images
that are part of the ImageNet database. This is followed by cropping7 the images at the center,
using an output size of 224 × 224. Then, the images are converted to PyTorch tensors8 and sub-
sequently normalized,9 using channel-wise means of [0.485, 0.456, 0.406] and standard deviations
of [0.229, 0.224, 0.225]. These aforementioned transformations are applied to the training, valida-
tion, and test images. Only to the training images, additional data augmentation techniques in
the form of a random horizontal flip10 with a default probability of 0.5 as well as a random rota-
tion11 of ±10 degrees are applied after the cropping operation. Data augmentation techniques are
known measures against overfitting on image data (Simard et al., 2003; Cireşan et al., 2011, 2012).
For my work, I adopt all these transformations, which are defined in the source code, without
modifications.

To conduct my experiments, I make use of the above-described functionality provided by
the imageNet_protocols package. Specifically, for a chosen protocol, I generate the required
training, validation, and test Dataset objects and pass them individually to the constructor of
PyTorch’s DataLoader class. Additionally, I define a default batch size of 64 and ensure that the
DataLoader instance for the training data applies random shuffling.

4.3 Network Architecture
For the reasons stated in section 3.1.3, I use the ResNet-50 architecture for my experiments. As
listed in table 2.3, ResNet-50 consists of 16 bottleneck building blocks. Its depth provides a rea-
sonable trade-off between performance12 and the number of trainable parameters and thus the
required training time (He et al., 2016a). Using a deeper architecture does not improve the per-
formance substantially but does lead to longer training times (He et al., 2016a; Bianco et al., 2018;
Leong et al., 2020). However, instead of directly loading the ResNet-50 implementation from Py-

5https://pytorch.org/vision/stable/transforms.html
6https://pytorch.org/vision/main/generated/torchvision.transforms.Resize.html
7http://pytorch.org/vision/main/generated/torchvision.transforms.functional.crop.html
8https://pytorch.org/vision/main/generated/torchvision.transforms.ToTensor.html
9http://pytorch.org/vision/main/generated/torchvision.transforms.Normalize.html

10http://pytorch.org/vision/master/generated/torchvision.transforms.
RandomHorizontalFlip.html

11http://pytorch.org/vision/main/generated/torchvision.transforms.RandomRotation.html
12https://pytorch.org/vision/stable/models.html#classification

https://pytorch.org/vision/stable/transforms.html
https://pytorch.org/vision/main/generated/torchvision.transforms.Resize.html
http://pytorch.org/vision/main/generated/torchvision.transforms.functional.crop.html
https://pytorch.org/vision/main/generated/torchvision.transforms.ToTensor.html
http://pytorch.org/vision/main/generated/torchvision.transforms.Normalize.html
http://pytorch.org/vision/master/generated/torchvision.transforms.RandomHorizontalFlip.html
http://pytorch.org/vision/master/generated/torchvision.transforms.RandomHorizontalFlip.html
http://pytorch.org/vision/main/generated/torchvision.transforms.RandomRotation.html
https://pytorch.org/vision/stable/models.html#classification
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Torch, I use a slightly altered version of the network. Concretely, I add a fully connected layer13

that maps the pooled and flattened output of the last convolutional layer into the deep feature
space. From there, another fully connected layer maps the deep feature representation to the logit
values. This adaptation is motivated by work in the domain of face verification. In this context,
Ranjan et al. (2017) present the architecture of a typical deep convolutional neural network for
face verification, where a fully connected layer maps the output of the last convolutional layer to
its feature representation. Then, another fully connected layer is applied to these features, result-
ing in the logit values. Hence, the penultimate layer of such a network generates deep features.
As the authors argue, the idea of such a penultimate layer is to produce distinctive features. More
precisely, features from multiple samples of the same class should be located in close proximity
to each other in the deep feature space. Moreover, this cluster of features should ideally be distin-
guishable from feature clusters that are associated with other classes. Having features that satisfy
these requirements encourages their use in other tasks. However, it has to be noted that such a
deep feature layer by itself does not guarantee that the generated features are actually distinctive.
In fact, Ranjan et al. (2017) point to the link between a powerful deep feature layer and the used
loss function. Since OpenMax (Bendale and Boult, 2016) and the EVM (Rudd et al., 2018) operate
on deep features that are assumed to be distinctive, I integrate this deep feature layer into the
ResNet-50 architecture. The modified architectures are provided by the architectures module
that has been introduced in section 4.1.

4.4 Algorithm Configuration and Hyperparameters
As indicated in the relevant research papers, the performance of the evaluated algorithms de-
pends on various hyperparameters (Bendale and Boult, 2016; Rudd et al., 2018; Dhamija et al.,
2018; Zhou et al., 2021b). In addition, using these algorithms may require some further configu-
rations. The following subsections discuss these hyperparameters and configurations for every
algorithm. Furthermore, I present the configurations and hyperparameters that build the basis
for the experiments (which are described in the next chapter) and justify these decisions.

4.4.1 Thresholding on Traditional Softmax
As introduced in subsection 2.1.1, this approach defines a probability threshold θ that is used to
decide if an input sample x is classified as a known class or if it is considered to be a member
of an unknown class and therefore rejected. In sum, the sample x is passed as an input to the
trained network, resulting in a logit score for every of the C training classes. These logit values
are subsequently passed to the Softmax function and the maximum resulting probability score is
then compared against the threshold θ. This brief description points to the essential elements of
the algorithm, which are outlined below. Since this approach represents the most basic way to
address the task of OSR, I use its performance results as the baseline.

Network Architecture & Loss Function: As justified in section 4.3, I opt for the ResNet-50 net-
work architecture. Associated with this choice, the question of the deep feature dimensionality
arises. According to Donahue et al. (2014), powerful deep features incorporate semantic knowl-
edge that allows assigning the associated input images to categories with a semantic meaning.
In other words, grouping similar deep feature representations should lead to a situation where
the associated input samples build a semantically meaningful category. More importantly, this
emerging category should not be obvious when only looking at the pixel space representation

13https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
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of these samples. However, as Donahue et al. (2014) further note, a very high dimensional deep
feature space might fail to achieve this goal. Intuitively, the dimensionality of this feature space
should not be too small in order to not be overly restrictive regarding the possible semantic clus-
ters. Taking these findings and considerations into account, I configure the ResNet-50 network
with a 512-dimensional feature space. The same dimensionality has also been used by Donahue
et al. (2014) and can be observed in the ResNet-18 architecture (He et al., 2016a). Furthermore,
I optimize the cross entropy loss function14 since it is associated with a fast training time and a
robust generalization (Bishop, 2006).

Optimizer: The training of a DNN such as ResNet-50 in Pytorch requires an optimizer.15 In this
regard, Stochastic Gradient Descent (SGD) with momentum is a common choice. Introduced by
Rumelhart et al. (1986b), the main idea of this method is to speed up the learning process by taking
the gradients of the previous update steps into account when computing the parameter weights
of the current step. However, there exist alternative optimizers such as Adam. This optimizer re-
lies on the Adam optimization algorithm that has been presented by Kingma and Ba (2015). With
Adam, the authors design an optimization algorithm that integrates the benefits of two other opti-
mization methods: AdaGrad (adaptive gradient algorithm, Duchi et al., 2011) and RMSProp (root
mean square propagation, Hinton et al., 2012). As Kingma and Ba (2015) demonstrate, Adam
adapts the learning rate per parameter, is able to deal with sparse and noisy gradients, is efficient
in terms of computation and memory requirements, and focuses especially on machine learning
problems that include large datasets or networks with a large number of parameters.

To find a solid baseline model, I try the SGD as well as the Adam optimizer in the training proce-
dure. Both optimizers require some arguments. In case of SGD,16 the most important parameters
are the learning rate α and the momentum term β. While the learning rate α specifies the update
step (Goodfellow et al., 2016), the momentum term β determines the number of gradients from
preceding update steps that are taken into account for computing the weights at the current up-
date step (Rumelhart et al., 1986b). Adam,17 on the other hand, uses the learning rate α and two
beta coefficients β1, β2. While the role of the learning rate and the β1 coefficient is the same as in
SGD, the β2 coefficient plays a role in adapting the learning rate on the basis of an average of mag-
nitudes of recent gradients (Hinton et al., 2012). For more details, refer to Kingma and Ba (2015).
Regarding the training procedure, these parameters become hyperparameters since optimal opti-
mization parameters such as the learning rate can generally not be determined analytically (Reed
and Marksll, 1999). Therefore, for both optimizers, I specify a selection of hyperparameter com-
binations that are used to train various models. I then select the model that performs best on
the validation set as the baseline model. While the specific details of the training procedure are
presented in subsection 5.1.1, at this point, I introduce the used hyperparameter combinations:

• Adam (α,β1, β2): [(0.001, 0.9, 0.999), (0.01, 0.9, 0.999), (0.0001, 0.9, 0.999), (0.00001, 0.9,
0.999), (0.001, 0.8, 0.999), (0.001, 0.7, 0.999), (0.001, 0.6, 0.999), (0.001, 0.7, 0.9)]

• SGD (α,β): [(0.1, 0.9), (0.01, 0.9), (0.001, 0.9), (0.0001, 0.9), (0.01, 0.6)]

Regarding Adam, I use the default settings (0.001, 0.9, 0.999) as suggested by Kingma and Ba
(2015) as the starting point and then vary the learning rate as well as, to a certain degree, the
beta coefficients. In case of SGD, I proceed similarly. Focusing primarily on the learning rate
α is motivated by the importance of this parameter in gradient-based techniques (Bengio, 2012;
Goodfellow et al., 2016).

14https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
15https://pytorch.org/docs/stable/optim.html
16https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
17https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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4.4.2 Entropic Open Set Loss
Since Entropic Open Set Loss (Dhamija et al., 2018) trains a DNN, similar configuration decisions
as in the Softmax approach need to be taken.

Network Architecture & Loss Function: As argued in subsection 3.1.3, I use the same network
architecture for all the evaluated algorithms to guarantee comparability. Therefore, ResNet-50
with a 512-dimensional deep feature space is the subject of the training procedure. The loss func-
tion comes in the form of the Entropic Open Set Loss as presented in subsection 2.1.2. Concretely,
I load its original open source implementation as provided by Dhamija (2021).

Optimizer: For the same comparability reasons, I take the identical optimizers as in the Softmax
approach into account. Namely, SGD and Adam. However, instead of experimentally determin-
ing the optimal hyperparameter combination as done for the Softmax approach, I adopt the op-
timizer and the associated hyperparameters that lead to the selected baseline model as explained
in subsection 5.1.1. In other words, the basic idea is to first find the baseline model and then use
its associated optimizer and hyperparameters to train the Entropic Open Set model from scratch.
This procedure is explained in detail in subsection 5.1.2.

4.4.3 OpenMax
The fact that Bendale and Boult (2016) integrate Extreme Value Theory (Fisher and Tippett, 1928)
into the OpenMax design has some implications for the configuration of the algorithm.

Network Architecture: The OpenMax algorithm relies on a DNN that generates and returns deep
feature representations of the input samples as well as the samples’ logit values (Bendale and
Boult, 2016). For reasons of comparability (see subsection 3.1.3), I use the baseline model that has
been selected for a specific protocol (see subsection 5.1.1) as the extracting network.

Tail Size: Since Bendale and Boult (2016) fit a Weibull distribution for every training class, a tail
size must be specified. Concretely, the source code (Dhamija, 2021) provides a training function
that accepts the relevant hyperparameters (i.e., the tail size and the distance multiplier) in the
form of lists. Applying a grid search method, the function then computes a model for every
possible combination of the hyperparameters. I therefore pass the following list of tail sizes to
this function:

• Tail Size: [10, 100, 250, 500, 750, 1000]

The selection traces back to a preliminary experiment that I conduct. This trial run suggests better
validation results for larger tail sizes. To highlight this point, I keep a relatively low tail size of 10
in the list. The fact that the OpenMax source code (Dhamija, 2021) uses the number of training
samples per class as the default tail size supports my choice of evaluating large tail sizes.

Distance Multiplier: Besides the tail size, the aforementioned training function (Dhamija, 2021)
treats the distance multiplier as its second hyperparameter. The distance multiplier, a float value,
is applied to the η largest feature space distances from training samples of a particular train-
ing class (i.e., the positive samples) to the Mean Activation Vector (MAV) of the same class.
Subsequently, a Weibull distribution is fitted on these modified distances. Hence, the distance
multiplier acts as a scaling factor. To understand the implications of this distance multiplier, re-
call that OpenMax learns the class-specific (probabilistic) decision boundary in the feature space
based on distance information from the positive training samples. However, if these positive data
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points are not a representative sample of the class’ data distribution, there might be a consider-
able amount of test samples from the same class that show a higher distance to the MAV. These
samples would subsequently not be associated with the class at all. To account for this scenario,
the distance multiplier is set to values ≥ 1.0. At this point, it has to be mentioned that the origi-
nal version of OpenMax, as presented by the authors and described in subsection 2.1.3, does not
make use of the concept of a distance multiplier. In fact, this hyperparameter has been introduced
in the source code (Dhamija, 2021). Therefore, keep in mind that, unless applying a distance mul-
tiplier of 1.0, a slightly modified version of OpenMax is used. Making use of the mentioned grid
search capabilities, I pass the following list to the OpenMax training function:

• Distance Multiplier = [1.5, 1.7, 2.0, 2.3]

This choice is based on the preliminary experiment mentioned in the previous paragraph on the
tail size. Concretely, the trial run suggests better models for distance scaling factors between 1.3
and 2.3.

Distance Metric: Since Bendale and Boult (2016) compute distances between feature space rep-
resentations of data samples and MAVs in the training as well as in the testing phase, a distance
metric is required. Specifically, the source code accepts the Euclidean as well as the cosine dis-
tance metric (Dhamija, 2021). For the experiments, I use the cosine distance metric. This choice
is motivated by previous research results which suggest that Euclidean distance is not an ideal
metric to measure the distances between deep feature representations of samples (Aggarwal et al.,
2001; Rudd et al., 2018). Moreover, Rudd et al. (2018) achieve their results in a similar task using
the cosine metric.

Alpha Value: With this value, Bendale and Boult (2016) specify the number of classes whose
probability score is revised by the OpenMax algorithm. More precisely, OpenMax revises the α
highest logit values of a test sample by taking its feature space representation and the fitted prob-
ability models into account. However, the research paper does not go into great detail regarding
the choice of this hyperparameter but refers to a grid search procedure Bendale and Boult (2016).
Therefore, I use the following values in the training procedure:

• Alpha = [2, 3, 5, 10]

4.4.4 Extreme Value Machine
Similar to the OpenMax algorithm (Bendale and Boult, 2016), the Extreme Value Machine (EVM,
Rudd et al., 2018) depends to a large degree on EVT concepts (Fisher and Tippett, 1928). Since
the EVM fits its distribution models on distance measures in deep feature space, similar design
decisions and hyperparameters as in case of OpenMax emerge. Concretely, these EVM hyperpa-
rameters come in the form of the tail size, the distance multiplier, and the cover threshold.

Network Architecture: As indicated before and similar to OpenMax, Rudd et al. (2018) start the
training and testing procedure by extracting deep feature representations of data samples. To
perform this task, I yet again apply the baseline model that has been selected for a specific proto-
col (see subsection 5.1.1) as the extracting network. This decision is yet again based on the same
reasons as explained in subsection 3.1.3.

Tail Size: As described in detail in subsection 2.1.4, Rudd et al. (2018) compute for every training
sample of a particular class the half-distances to the τ closest negative training samples and sub-
sequently fit a Weibull distribution on this collection of distances. In this case, τ refers to the tail
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size of the distribution. As stated by the authors, EVT does not provide detailed instructions on
how to find the optimal tail size τ . Therefore, they fall back on cross-class validation to find the
optimal parameter. Since the source code of the EVM training function (Dhamija, 2021) provides,
identical to the OpenMax training function, a grid search functionality, I define a list of tail sizes.
The function then computes the probability distributions for every possible hyperparameter com-
bination.

• Tail Size = [10, 25, 50, 75, 100, 150, 200, 300, 500, 1000]

The selection of tail size values is motivated by a preliminary experiment that I conduct. This trial
run allows me to specify meaningful stepsizes. A tail size of 75 served as a starting point since
this value corresponds to the optimal tail size identified by Rudd et al. (2018) on a 15 K training
set. Regarding the higher values, I refer to the notion of a positive correlation between the feature
space dimensionality and the number of "boundary points" (Rudd et al., 2018).

Distance Multiplier: This hyperparameter comes in the form of a float value and is applied to the
distances from a specific EV to its τ closest negative training samples (see subsection 2.1.4) before
fitting the distribution. To understand the implications of this hyperparameter, note that EVM
learns the (probabilistic) decision boundary for a specific EV in the feature space based on distance
information from negative training samples. If the known training classes are well separated
in feature space, i.e., there is a considerable space between different clusters of class samples,
inaccurate boundaries with respect to unknown classes can be the consequence. As an example,
assume such a distinctive feature space as outlined above and a (probabilistic) decision boundary
that is associated with an EV. An unknown test sample x ∈ UUCs that is located between the EV
and its closest negative training samples is then likely but erroneously associated with the known
class of the EV. To avoid this scenario, a distance multiplier with a value ≤ 1.0 can be applied to
adjust the boundary of the EV. Taking these considerations into account, I scale the distances by
the following factors for my experiments:

• Distance Multiplier = [0.10, 0.20, 0.30, 0.40, 0.50, 0.70, 0.90, 1.00]

The selection of relatively low values is based on the preliminary experiment mentioned above.
This trial run encourages the investigation of low values.

Cover Threshold: This hyperparameter traces back to the model reduction step that has been
introduced by Rudd et al. (2018) to remove redundant EVs and their associated Ψ-models. Fur-
thermore, this step reduces computational demands during testing/operation. However, since
the hardware I am operating on provides plenty of computational resources, I do choose a cover
threshold of 1.0. This basically means that all samples of a particular training class provide a us-
able Ψ-model.

Distance Metric: Following the rationale of the previous subsection on the OpenMax distance
metric, as well as the recommendation by Rudd et al. (2018), I use the cosine distance.

4.4.5 PROSER
Taking the viewpoint of OSR being a calibration problem, PROSER synthesizes and subsequently
uses unseen data samples and augments the closed set classifier with additional classifiers (Zhou
et al., 2021b). The algorithmic structure of PROSER entails different hyperparameter specifica-
tions as well as design decisions.
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Network Architecture: Zhou et al. (2021b) perform their experiments using a Wide ResNet archi-
tecture. Following the line of reasoning in the preceding subsections regarding comparability, I
make use of a ResNet-50 architecture that maps input samples into a 512-dimensional deep fea-
ture space. Concretely, for a specific protocol, I use the baseline model that has been selected
according to subsection 5.1.1. This choice is in line with the notion of extending a pretrained
closed set classifier by dummy classifiers (Zhou et al., 2021b). As indicated in subsection 2.1.5,
the authors generate new data instances using hidden representations of known training samples
from different classes. As the official source code (Zhou et al., 2021a) reveals, this creation process
is performed after the second (of three) group of blocks. However, the ResNet-50 architecture
consists of four groups of blocks. To stay as consistent as possible with the logic applied in the
Wide ResNet, I use the output of the third (i.e., the penultimate) group of blocks as the hidden
representations. Therefore, I extend the original source code with customized code that imple-
ments this described logic.

Optimizer: Since the original source code that implements the PROSER training logic relies on
the SGD optimizer and does not allow for specifying an alternative (Zhou et al., 2021a), the net-
work is trained using the SGD optimizer.

Coefficients α, λ1, and λ2: According to the original source code (Zhou et al., 2021a), the training
procedure needs various coefficients. On the one hand, α is used to initialize the Beta distribution.
Furthermore, λ1 and λ2 act as weighting factors in the composite loss function. Since neither the
research paper (Zhou et al., 2021b) nor the original source code elaborates on the handling and
choice of these coefficients, I use the default values as defined in the original source code. These
values are α = 1.0 and λ1 = λ2 = 1.0.

Number of Dummy Classifiers: As illustrated in subsection 2.1.5, the fine-tuning procedure
places the dummy classifiers between the target class and non-target classes, which reflects the
idea of introducing classifiers for emerging unknown classes (Zhou et al., 2021b). The question
therefore is by how many dummy classifiers should the model be augmented? In their paper,
Zhou et al. (2021b) report results of their conducted experiments that suggest that a higher num-
ber of dummy classifiers can improve performance. However, the highest number of reported
dummy classifiers is 3. Therefore, I augment the baseline model with the following number of
dummy classifiers over the course of the training procedure:

• No. Dummy Classifiers = [1, 2, 3, 4, 5, 7, 9, 10, 15, 20, 30]

More precisely, for every element of this list, I train a model and evaluate it on the validation set.
The best-performing model is then compared against the other algorithms on the test set. Details
on the training procedure are presented in the next chapter.





Chapter 5

Experiments

Given a thoroughly designed experimental setup, the experiments can eventually be performed.
This chapter highlights the important steps in executing the algorithms on all three protocols. For
each algorithm, it illustrates which evaluation metric is used to measure the performance of the
model on the validation set and how to arrive at a final model in the presence of hyperparameters.
The chapter closes with a presentation and analysis of the experimental results.

5.1 Execution of Algorithms
In general, a certain pattern is common to the evaluation of all algorithms. Concretely, the pro-
tocol is specified and the algorithm of interest is selected and configured. Then, the required
training and validation datasets are prepared and loaded. This is followed by instantiating the
class associated with the algorithm and starting the training procedure. As presented in section
4.1, the mentioned class is loaded from the module approaches. The training procedure covers
the training of the model as well as the evaluation of the trained model on the validation set. The
model that performs best on the validation set is selected as the optimal model and subsequently
exposed to the testing procedure, which measures the performance of the model on the loaded
test set in terms of the OSCR metric (Dhamija et al., 2018). Generally, the classes loaded from the
module approaches access or integrate the original source code of the algorithms (Dhamija, 2021;
Zhou et al., 2021a). Deviations from this principle are explicitly mentioned and justified. More-
over, the basic idea is to find the best configurations and hyperparameters for a model on protocol
2 and then transfer these settings to protocols 1 and 3. Performing the optimization on protocol
2 is based on the understanding that this protocol represents an open set context of medium
difficulty when compared to protocol 1 (easy) and protocol 3 (hard). The following subsections
describe the training and testing procedure for every algorithm in detail. Additionally, the most
important characteristics of the algorithm experiments are summarized in table 5.1. Note that the
algorithm-specific configurations and hyperparameters, as introduced in section 4.4, are integral
parts of these experiments.

5.1.1 Thresholding on Traditional Softmax
As explained in subsection 4.4.1, the utilized ResNet-50 network is optimized via the cross en-
tropy loss function and represents a closed set classifier. This implies that the training and the
validation dataset consist of samples from the KKCs. Starting with protocol 2, I train the model for
100 epochs, using one specific optimizer configuration as defined in subsection 4.4.1. After every
epoch, I validate the current model on the validation dataset, using accuracy as the performance
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Softmax
(Baseline)

Entropic
Open Set Loss OpenMax EVM PROSER

Composition of
Training Set KKCs KKCs,

KUCs KKCs KKCs KKCs

Composition of
Validation Set KKCs KKCs,

KUCs
KKCs,
KUCs

KKCs,
KUCs

KKCs,
KUCs

Composition of
Test Set

KKCs,
UUCs

KKCs,
UUCs

KKCs,
UUCs

KKCs,
UUCs

KKCs,
UUCs

Input Space Pixel Pixel Feature Feature Pixel

Optimizer Adam Adam - - SGD

evaluation metric Accuracy
Weighted
Average

Confidence
CCR@FPR CCR@FPR ROC AUC

Table 5.1: KEY POINTS OF EXPERIMENTS. The table gives an overview of important characteristics of the
conducted experiments. The first three rows refer to the classes that can be found in the respective datasets.
The row Input Space denotes whether the input to the model is given in pixel space or in feature space.

metric. Accuracy is defined as the number of correct classifications, i.e., Acc = TP+TN
TP+FN+FP+TN ,

and is a frequently used metric for assessing the performance of classifiers (Branco et al., 2016).
Having a balanced dataset further justifies its use (Batista et al., 2004). The model setup that leads
to the best validation performance over all the defined epochs is then stored in memory for later
retrieval. This procedure is then repeated for every of the remaining optimizer configurations.
Then, the same is done for 200 and 300 epochs. Concretely, the model is trained from scratch
for 200 and 300 epochs, respectively, for every defined optimizer configuration. This means that,
in the end, there is one model for every optimizer-associated hyperparameter combination for
100, 200, and 300 epochs. More specifically, table A.1 provides an overview of all the resulting
models and their associated validation performances on protocol 2. Hence, this approach pro-
vides me with a set of possible baseline models. Considering the accuracy measures, I opt for
the model that has been trained over 200 epochs, using an Adam optimizer (Kingma and Ba,
2015) with hyperparameters α = 0.001, β1 = 0.7, β2 = 0.999 as the baseline model. I prefer
this model to the best-performing overall model (Adam-(0.001, 0.6, 0.999) over 300 epochs) since
the latter comes with little performance increase for a considerable amount of additional training
time. Referring to the general procedure as set out in the introduction to this chapter, I transfer
this optimizer configuration to protocol 1 and protocol 3. This means that, for every protocol, the
baseline model is trained over 200 epochs, using an Adam optimizer with parameters α = 0.001,
β1 = 0.7, β2 = 0.999.

Having found the baseline model for a specific protocol, it can be passed to the testing pro-
cedure. As argued in chapter 3 and mentioned above, I rely on the OSCR curve to compare the
algorithms. Therefore, the testing procedure loads the baseline model and computes the CCR
as well as the FPR value for every possible threshold θ, using functionality provided by the VAST
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package1 (Dhamija, 2021). These performance scores serve as the baseline against which the other
algorithms are compared.

5.1.2 Entropic Open Set Loss
As has been introduced in subsection 2.1.2, this approach uses samples from KKCs as well as
from KUCs to train the model. The training procedure therefore starts by loading the relevant
training and validation datasets as well as the Entropic Open Set Loss function (Dhamija, 2021)
and passing them to the training function. Taking on the optimizer configuration of the baseline
model (i.e., Adam optimizer with α = 0.001, β1 = 0.7, β2 = 0.999, see previous subsection), the
loss function is minimized over 200 epochs. After every epoch, the current model is validated
on the validation dataset, and the best-performing model over all epochs is stored in memory.
Concretely, the model performance is measured in terms of the average confidence. This evalu-
ation metric has been introduced by Schnyder (2021) and measures the confidence of a model in
correctly classifying samples from known classes and rejecting samples from unknown classes.
Let D′′

c be the set of validation samples belonging to C and D′′

b be the set of validation samples
belonging to B. Further, assume a probability distribution over the C known training classes.
Then, the confidence associated with a single sample x is formally defined as:

Conf(x) =

{
yt if x ∈ {D′

c,D
′′

c ,Dc}

1−maxc yc +
1
C if x ∈ {D′

b,D
′′

b ,Du}
(5.1)

In words, the confidence of a sample that belongs to a known class is given by the Softmax score
of its target class t. For an unknown sample, the confidence is computed by subtracting the high-
est Softmax score maxc yc over all known training classes C from 1 and then adding an offset of
1
C . This offset, which is also applied by Dhamija et al. (2018) in the loss function, accounts for
the fact that the model does not know a separate class for the unknown samples but has only the
possibility to compute probability scores that are linked to known classes. In the end, the average
confidence is computed by first summing up the confidence scores of all samples from the valida-
tion set and then dividing this sum by the number of samples in the validation set. However, the
average confidence is generally vulnerable to class imbalance. For this reason, I use the weighted
average confidence as the evaluation metric. This is achieved by computing the sum of confi-
dences for the known samples and the unknown samples of the validation set separately. Based
on these two sums, the average confidence of the known samples and the unknown samples can
be calculated. Finally, I average these two averaged scores to get the weighted average confi-
dence. Assuming x+ ∈ D′′

c , x− ∈ D′′

b , |D′′

c | = M , and |D′′

b | = N , this can formally be expressed
as:

Confw_avg =
1

2
×
( ∑M

i=1 Conf(x+
i )

M
+

∑N
j=1 Conf(x−

j )

N

)
(5.2)

Following this procedure, I train a model on every protocol. Importantly, for every protocol, I
adopt the optimizer setup from the respective baseline model. The best-performing model on
protocol 2 achieves an average weighted confidence of 0.6782. Similarly, protocols 1 and 3 result
in average weighted confidences of 0.7670 and 0.7056, respectively. After finishing the protocol-
specific training, the testing procedure begins with loading the test dataset as well as the best
training model. Then, analogously to the Softmax approach, the CCR as well as the FPR values
are computed. Finally, these scores are plotted to compare them against the baseline model.

1https://github.com/Vastlab/vast/blob/2ad7fa23cb8f0f1acb71d6b6d9aced6a70562e0c/vast/
eval/eval.py#L71

https://github.com/Vastlab/vast/blob/2ad7fa23cb8f0f1acb71d6b6d9aced6a70562e0c/vast/eval/eval.py#L71
https://github.com/Vastlab/vast/blob/2ad7fa23cb8f0f1acb71d6b6d9aced6a70562e0c/vast/eval/eval.py#L71
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5.1.3 OpenMax
Since the OpenMax approach works with deep feature representations of the data samples, I
start the training procedure by extracting the features as well as the logit values from the re-
quired datasets, using the protocol-specific baseline model (see subsection 5.1.1) together with
the OpenMaxExtractor class from the data_prep module (see section 4.1). Then, the OpenMax
training function2 is loaded from the VAST package (Dhamija, 2021) and subsequently executed.
For a specific hyperparameter combination (i.e., tail size and distance multiplier), the function
computes the parameters of a Weibull distribution for every training class. Since this process ap-
plies to every possible hyperparameter combination, a collated model for every hyperparameter
combination can be stored in memory. Such a collated model consists of the distributional param-
eters and the MAV of every training class. More specifically, the distributional parameters are the
result of a fitting process that considers the hyperparameters associated with the collated model.
Having a set of collated models, the task is now to find the one that leads to the best validation
performance on the validation set (consisting of the above-mentioned features and logit values).
Concretely, a dedicated inference function3 computes for every data sample of the validation set
the probabilities of being associated with any of the known training classes. These probability
scores are then used together with the logit values and a specific α value to revise the Softmax
scores as described in detail in subsection 2.1.3. However, instead of using the original revision
function,4 I use a slightly customized version that returns the revised Softmax scores of only the
known classes, but not the "pseudo" class. The reason for this decision will soon become apparent.
Hence, considering the additional hyperparameter α, there is a need to evaluate the performance
of the models associated with every possible tail size-distance multiplier-alpha hyperparameter com-
bination. Specifically, referring to subsection 4.4.3 on the OpenMax hyperparameters, a total of
6 × 4 × 4 models need to be evaluated on the validation set. This course of action is in line with
the one applied by Bendale and Boult (2016), which perform a grid search to find the optimal
hyperparameter combination.

At this point, the question of the evaluation metric arises. Here, I turn to the procedure chosen
by Dhamija et al. (2018). They compute the CCR and FPR values and then define a series of FPR
thresholds. For each of these thresholds, the associated CCR is then identified and reported. Basi-
cally, this procedure reports the performance in terms of the CCR at some predefined FPR values.
While Dhamija et al. (2018) set these threshold values in their experiments at 0.0001, 0.001, 0.01,
and 0.1, I choose values of 0.001, 0.01, 0.1, 0.15, and 0.2. Discarding the value of 0.0001 can be
traced back to my observations that an FPR of 0.0001 is not a meaningful threshold in the con-
text of these experiments. Furthermore, referring to the customized revision function mentioned
above, I only use the revised Softmax scores of the known classes for the computation of the CCR
and FPR values. The reason for this can be found in the definition of the OSCR metric (see equa-
tion 3.5). Namely, the CCR as well as the FPR are only defined for a probability distribution over
the C known training classes. Table A.2 illustrates the outcome of the validation procedure on
the validation set of protocol 2. For every evaluated model configuration, the CCR value at every
defined FPR threshold is presented. In the optimal case, there would be one single model that
performs best (i.e., reaches the highest CCR value) at every FPR. However, this situation does
not occur in the present case, which makes the selection of a final model more challenging. Ulti-
mately, I decide in favor of the model that is trained with a tail size of 1000, a distance multiplier

2https://github.com/Vastlab/vast/blob/2ad7fa23cb8f0f1acb71d6b6d9aced6a70562e0c/vast/
opensetAlgos/openmax.py#L69

3https://github.com/Vastlab/vast/blob/2ad7fa23cb8f0f1acb71d6b6d9aced6a70562e0c/vast/
opensetAlgos/openmax.py#L105

4https://github.com/Vastlab/vast/blob/2ad7fa23cb8f0f1acb71d6b6d9aced6a70562e0c/vast/
opensetAlgos/heuristic.py#L5
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value of 2.0 and an alpha value of 5. As done in table A.2, I abbreviate this model as (1000_2.0_5).
Despite not scoring the highest at any FPR threshold, the selected model exhibits CCR values that
are among the highest at any FPR threshold. In fact, it is associated with the highest sum of avail-
able CCR values over the specified FPR thresholds among all evaluated models. Following the
general procedure, I then use this protocol-2-based optimal hyperparameter combination to train
the model on protocol 1 and protocol 3. To avoid an inferior model due to non-transferable hy-
perparameters, I train various models and compare their performance metrics on the validation
set. As can be seen in tables A.3 and A.4, the model (1000_2.0_5) still reaches competitive CCR
values in both protocols and is therefore selected as the final model for the respective protocol. In
sum, the final model on all three protocols is trained using a tail size of 1000, a distance multiplier
value of 2.0 and an alpha value of 5.

Having determined the final model associated with a specific protocol, the testing procedure,
which is very similar to the validation procedure, is started. This means that the test dataset in
the form of the features and the logit values is prepared and the final model is loaded. Then, the
aforementioned inference function computes the probability scores, which are subsequently used
to establish the revised Softmax scores of the known classes. Ultimately, these revised probability
scores build the basis for calculating the CCR and FPR values that represent the OSCR curve. The
testing procedure finishes by storing these CCR and FPR values.

5.1.4 Extreme Value Machine
As in the case of OpenMax, the Extreme Value Machine (EVM) fits probabilistic distributions
based on distances measured in feature space. Therefore, the training procedure begins with the
sample-wise extraction of deep feature representations from the training and validation datasets.
This is achieved by using the protocol-specific baseline model (see subsection 5.1.1) together with
the EVMExtractor class from the data_prep module (see section 4.1). Subsequently, the EVM
training function,5 which is loaded from the VAST package (Dhamija et al., 2018), comes into play.
For a specific hyperparameter combination (consisting of a tail size, a distance multiplier, and a
cover threshold), this function fits various Weibull distributions for every training class. As illus-
trated in detail in subsection 2.1.4, every distribution is associated with an EV that belongs to the
respective class. This fitting procedure is then repeated for every of the remaining hyperparam-
eter combinations. Analogously to OpenMax, the training procedure continues by compiling a
collated model for every hyperparameter combination. The collated model includes the EVs of
every training class, as well as the distributional parameters that are associated with these EVs.
Once again, the task is to find the collated model that performs best when evaluated on the valida-
tion dataset. The validation procedure therefore computes for every data sample of the validation
set the probabilities of being associated with any of the known training classes. This computa-
tion is performed by the VAST-provided EVM inference function.6 Then, the same method as
described in the previous subsection on OpenMax is applied. This means that the selection of
the final model is based on the comparison of CCR values at predefined FPR thresholds. Here, I
use the same FPR threshold values, namely 0.001, 0.01, 0.1, 0.15, and 0.2. Therefore, the above-
mentioned probability scores serve as the basis for computing the required CCR and FPR values.
Table A.5 summarizes the evaluation of the 10 × 8 × 1 models on the validation set of protocol
2. Since no model performs best at every FPR threshold, the selection becomes a trade-off. Ap-
plying the same selection strategy as for OpenMax, I opt for the model that is trained with a tail

5https://github.com/Vastlab/vast/blob/2ad7fa23cb8f0f1acb71d6b6d9aced6a70562e0c/vast/
opensetAlgos/EVM.py#L130

6https://github.com/Vastlab/vast/blob/2ad7fa23cb8f0f1acb71d6b6d9aced6a70562e0c/vast/
opensetAlgos/EVM.py#L311
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size of 75, a distance multiplier value of 0.20, and a cover threshold value of 1.0. Concretely, this
model shows the highest sum of available CCR values over the specified FPR thresholds among
all evaluated models. As done in table A.5, I abbreviate the model as (75_0.20_1.00). Having the
general procedure in mind, I then try to apply the hyperparameter combination that is linked
to the final model to protocol 1 and protocol 3. However, I observe that this transfer does not
work in the case of EVM since these hyperparameters lead to inferior models on both protocols.
Conducting a thorough analysis, I find that the distance multiplier is mainly responsible for this
result. Furthermore, the gradation of the tail size values seems to be too fine-grained. Based on
these insights, I specify slightly altered lists of hyperparameters and repeat the entire training
procedure on protocols 1 and 3. The results of the model validation on both protocols are shown
in tables A.6 and A.7. Applying the same selection strategy as on protocol 2, I select the model
(1000_0.50_1.00) as the final one on protocol 1. On protocol 3, I choose the model (150_0.40_1.00).
A possible explanation for the higher distance multipliers in protocols 1 and 3 can be found in
the considerations presented in subsection 4.4.4. Recalling the number of known classes linked
to the three protocols (see table 3.1), it is possible that the feature space associated with protocol
2 is more distinctive since there is a comparably low number of known training classes present.
As a consequence, the distance values need to be downscaled more pronouncedly compared to
protocols 1 and 3.

As the last step, the final model associated with a specific protocol is passed to the testing
procedure. Then, the aforementioned inference function calculates the probability scores for every
sample of the prepared test set. Finally, these scores serve as the basis for computing the OSCR-
associated CCR and FPR values.

5.1.5 PROSER
As in the case of the other approaches, I integrate the released open source code (Zhou et al.,
2021a) into the training and testing procedure. However, I additionally make use of some im-
provements that have recently been implemented in the context of a project by Elsaadany (2022).
This project has been carried out with the Artificial Intelligence and Machine Learning (AIML)
Group in the Department of Informatics at the University of Zurich, Switzerland. Most impor-
tantly, the project implements functionality that is not provided in the released source code but
has been mentioned in the paper (Zhou et al., 2021b). Concretely, apart from some small bug
fixes, two important features are introduced. On the one hand, the modified code ensures that
only hidden representations from two samples that belong to different classes are mixed in the
course of the instance creation. On the other hand, an additional function implements the com-
putation of the bias term (see subsection 2.1.5). Thus, in order to run the algorithm with all the
features proposed in the paper (Zhou et al., 2021b), I rely on the mentioned project code base
(Elsaadany, 2022) to which the University of Zurich, Switzerland, grants me access to.

The training procedure starts by loading the necessary datasets as well as the baseline model,
which is subsequently augmented by the specified number of dummy classifiers. The model
is then fine-tuned for 10 epochs, which is the number that is defined in the original source code
(Zhou et al., 2021a). Since the source code does not parameterize this variable,7 I inherit this value.
During this process, new data instances are generated and used together with original training
samples to learn the weights of the dummy classifiers. After each training epoch, the bias term is
computed and the current model is evaluated on the validation set. During validation, the cur-
rent model is used to predict the C + 1 logit values for every sample of the validation set. The

7https://github.com/zhoudw-zdw/CVPR21-Proser/blob/f5b53b90509e6460a783a0baa72bda52364810fd/
proser_unknown_detection.py#L190
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bias term is then added to the logit representing the unknown class. Based on these logit values,
the performance of the model is measured in terms of the ROC AUC (Area Under the Receiver
Operating Characteristic Curve, Hanley and McNeil, 1982), which is the evaluation metric that
is used by Zhou et al. (2021b).8 The best-performing model over all epochs is stored in memory.
Considering that the number of dummy classifiers represents a hyperparameter, I end up with
eleven different models that integrate the bias term into their model. Table A.8 shows the perfor-
mances of these models on the validation set of protocol 2. As can be seen, the best-performing
model that makes use of the bias computation incorporates three dummy classifiers. For pro-
tocol 2, I therefore choose this model as the final one. However, when I transfer this optimal
hyperparameter to protocols 1 and 3, I end up with uncompetitive models. Comparing the num-
ber of (known known) training classes across the three protocols, I observe that protocol 2 trains
on 31 classes, while protocols 1 and 3 train on 116 and 155 classes, respectively (see table 3.1).
As a consequence, I alter the hyperparameter list of trainable dummy classifiers and repeat the
training procedure on protocols 1 and 3. Tables A.9 and A.10 illustrate the associated validation
results. For protocol 1, these results lead me to choose the model with five dummy classifiers as
the final one. When it comes to protocol 3, the final model incorporates twenty dummy classifiers.

Following the general procedure, the final model for a specific protocol is then assessed using
the test set. The testing procedure therefore loads the final model and computes the logit values of
every test sample in the same way as in the training procedure. The logit values are subsequently
passed to the Softmax function, which computes the probability scores. The probability scores of
only the known training classes are then used to compute the CCR and FPR values. The reason
for ignoring the probability score linked to the dummy classifier is the same as mentioned in
subsection 5.1.3. Namely, the OSCR metric is only defined for a probability distribution over the
C known training classes.

5.2 Results
Conducting the experiments according to the procedures described in the previous section leads
to a collection of CCR and FPR values for every algorithm. These values actually represent the
OSCR curve (Dhamija et al., 2018) and are plotted to compare the performances of the algorithms
on the test datasets against each other. Referring to table 5.1, the test datasets of all protocols
comprise samples from KKCs as well as from UUCs. The resulting plots are depicted in figures
5.1, 5.2, and 5.3. Referring back to subsection 3.2.2, note that every plotted point represents a pair
that consists of one CCR value and one FPR value. Each such pair is associated with a rejection
threshold θ, which itself is not derivable from the plot. Hence, such a pair can be considered as
an operating point when the associated rejection threshold is applied. Depending on the domain
requirements, i.e., a focus on a high CCR, a low FPR, or a trade-off, a suitable operating point can
be chosen. An FPR of 100 = 1.0 assesses the closed set performance of an algorithm. Assuming
a probability-based system, such an FPR value can always be achieved by setting the threshold
θ to 0. Based on these considerations, an algorithm completely outperforms another algorithm
if it achieves higher CCR values at any FPR value. Regarding the OSCR plots, tables A.11, A.12,
and A.13 simplify their numerical interpretation. These tables give an overview of the achieved
CCR values at various FPR values for all algorithms. In the following, I present the experimental
results on all protocols.

8https://github.com/zhoudw-zdw/CVPR21-Proser/blob/f5b53b90509e6460a783a0baa72bda52364810fd/
proser_unknown_detection.py#L82
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Protocol 1: Considering figure 5.1 as well as table A.11, it can be seen that the Entropic Open Set
Loss (EOS, Dhamija et al., 2018) outperforms all other algorithms at FPR values in the range of
around 0.001 to 1.0. However, the curve levels off as it approaches the FPR value of 1.0. Sim-
ilarly, the OpenMax model (Bendale and Boult, 2016) beats the Extreme Value Machine (EVM,
Rudd et al., 2018), the PROSER algorithm (Zhou et al., 2021b), and the baseline model at FPR val-
ues between around 0.003 and 0.9. In fact, the baseline model shows a fractionally higher closed
set performance than OpenMax. Moreover, the PROSER algorithm performs consistently worse
than the baseline model at all FPR values where the latter is operational. In contrast, the EVM sur-
passes the baseline model in an FPR-value range of around 0.08 to 0.6. Regarding the closed set
performance of the algorithms, the baseline model beats all other algorithms but Entropic Open
Set Loss. With respect to the left tails of the curves, PROSER is able to perform at lower FPR
values, although the associated CCR values are at a low level.

Protocol 2: Figure 5.2 and table A.12 reflect the performances on protocol 2. At FPR values in the
range of around 0.006 to 0.4, OpenMax outperforms all other algorithms. However, this situation
changes as the FPR value is raised above the threshold of 0.4. Furthermore, EOS surpasses the
baseline model in the FPR-value range of around 0.02 to 0.4. Then, similarly to protocol 1, the
curve flattens as the FPR approaches the value of 1.0. In contrast to protocol 1, EVM performs
better than the baseline model over a considerable range of FPR values. Concretely, EVM tops the
baseline model in the range of around 0.03 to 0.9. A similar observation can be made for PROSER.
While beaten by the baseline model on protocol 1, PROSER achieves higher CCR values than the
baseline model at FPR values between around 0.02 and 0.05 as well as around 0.06 to 0.4. When
it comes to the closed set performance of the algorithms, the baseline model reaches the highest
CCR value, followed by EVM. On the other hand, EOS demonstrates the lowest closed set perfor-
mance among all algorithms. Regarding the left tails of the curves, EVM and PROSER are able to
produce the lowest FPR values among all evaluated algorithms.

Protocol 3: As can be seen from figure 5.3 and table A.13, OpenMax achieves the highest CCR
values among all compared algorithms at FPR values between around 0.02 and 0.7. However,
it performs almost on a par with the baseline model, and a statistical significance test would be
necessary to demonstrate OpenMax’s superiority. Furthermore, at FPR values in the range of
around 0.03 to 1.0, EOS, EVM, and PROSER perform worse than the baseline model. Approach-
ing the FPR value of 1.0, their curves begin to level off. Assessing the closed set performance of
the algorithms, the baseline model sets the benchmark. OpenMax, coming closest to this bench-
mark, outperforms PROSER, EVM, and EOS. Taking a look at the left tails of the curves, a familiar
picture emerges. Specifically, PROSER is able to operate at lower FPR values than the other algo-
rithms.

In sum, EOS sets the benchmark on protocol 1. However, with the increasing difficulty of the
open set task, it loses its advantage over the other algorithms. In fact, on protocol 3, EOS is not
competitive anymore with the baseline model. OpenMax, on the other hand, is able to keep up
its performance. Specifically, it performs better than the baseline model at FPR values between
around 0.02 to 0.6 over all three protocols. However, it can be observed that its advantage over
the next best algorithm diminishes with increasing difficulty of the open set task. When it comes
to EVM and PROSER, a mixed picture emerges. On the one hand, on protocols 1 and 3, PROSER
shows lower CCR values than the baseline model at all FPR values at which the latter model is
operational. However, this observation does not apply anymore to protocol 2, where PROSER
outperforms the baseline model at FPR values in the range of around 0.02 and 0.05 as well as
around 0.06 to 0.4. On the other hand, EVM loses out to the baseline model on protocol 3 at all
FPR values that are achievable by the baseline model. On protocol 2, however, EVM yields higher
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Figure 5.1: OSCR CURVES FOR PROTOCOL 1. This figure depicts the OSCR curves that result when the
examined algorithms are evaluated on the test dataset of protocol 1.

CCR values for FPR values in the range of around 0.03 to 0.9. On protocol 1, EVM surpasses the
baseline model within an interval consisting of FPR values between around 0.08 to 0.6. Regarding
the closed set performances of the algorithms across the three protocols, the results show that only
the baseline model consistently ranks top. In fact, the baseline model reaches the second highest
CCR value on protocol 1, and the highest CCR value on the remaining protocols at an FPR value
of 1.0. In contrast, compared to the other algorithms, PROSER is able to operate at lower FPR
values across all three protocols. In the next chapter, I discuss these findings.
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Figure 5.2: OSCR CURVES FOR PROTOCOL 2. This figure depicts the OSCR curves that result when the
examined algorithms are evaluated on the test dataset of protocol 2.
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Figure 5.3: OSCR CURVES FOR PROTOCOL 3. This figure depicts the OSCR curves that result when the
examined algorithms are evaluated on the test dataset of protocol 3.



Chapter 6

Discussion

The realization of a systematic comparison among the open set algorithms Entropic Open Set
Loss (EOS, Dhamija et al., 2018), OpenMax (Bendale and Boult, 2016), EVM (Rudd et al., 2018),
and PROSER (Zhou et al., 2021b) on three ImageNet protocols (Bhoumik, 2021) provides me with
various results. In this chapter, I draw insights from these results, discuss their implications and
point to potential limitations of my work.

6.1 Interpretation of Results
Considering the OSCR plots (Dhamija et al., 2018) depicted in section 5.2 as well as tables A.11,
A.12, A.13, it can be seen that EOS loses its relative advantage over the other algorithms as the
difficulty of the open set task increases. Concretely, EOS outperforms all remaining algorithms on
protocol 1, which is associated with a comparably easy open set task (see section 2.2 and Bhoumik,
2021). On protocol 2, EOS still beats the baseline model over a considerable range of FPR values
but clearly loses out to OpenMax. On protocol 3, which is associated with the most difficult open
set task among the three protocols, EOS can not keep up with the baseline model anymore. These
results indicate that the performance of EOS does not generalize well to more complex open set
contexts. This observation is also supported by considering the findings by Dhamija et al. (2018).
Figure 6.1 illustrates the results of their experiment in which the performance of various algo-
rithms on an open set dataset is assessed. This dataset consists of MNIST (=Dc) and notMNIST
(= Da) samples. The MNIST dataset as well as the notMNIST dataset comprises 10 classes (Le-
Cun et al., 1989; Bulatov, 2011). Hence, compared to the protocols used in the experiments, this
dataset comes with limited diversity and hierarchical richness and can be considered an easier
open set context. Looking at figure 6.1, it can be seen that the achieved CCR values are much
higher at various FPR values in comparison to the values achieved in my experiments. Although
one must be careful when comparing those values as the underlying network architecture differs,
the differences hint at the difficulty that EOS experiences when performing in more challenging
open set contexts. According to my results, these difficulties occur despite the fact that EOS is
the only tested algorithm that takes advantage of additional knowledge in the form of samples
from KUCs. However, for protocol 2 and protocol 3, it is possible that the selected KUCs are not
sufficiently suited to prepare the model for the successful recognition of UUCs. This assumption
is supported by Dhamija et al. (2018), which stress that the choice of KUCs is important when it
comes to the open set performance of EOS.



58 Chapter 6. Discussion

Figure 6.1: PERFORMANCE COMPARISON ON OPEN SET DATASET. This figure contrasts the OSCR
curves of various algorithms, which have been evaluated on a test dataset consisting of MNIST (=Dc) and
notMNIST (= Da) samples. The used network is based on a LeNet++ architecture and has been trained using
MNIST digits as D

′
c and NIST letters as D

′
b. Source: (Dhamija et al., 2018)

In contrast to EOS, my results suggest that OpenMax is more robust against a changing open
set dataset. While OpenMax establishes itself as the second best algorithm over a large range
of FPR values, it achieves the highest CCR values over a considerable range of FPR values on
protocols 2 and 3. On protocol 3, however, it only beats the baseline model by a small margin. This
observation is valorized by the fact that OpenMax uses the same hyperparameters on all three
protocols. As tables A.3 and A.4 indicate, the optimal hyperparameters on protocol 2 seem, to a
certain degree, to be robust against a changing open set context. Avoiding the need to recalibrate
the model on every new data basis increases the usability of this algorithm.

When it comes to EVM and PROSER, the results are equivocal. On the one hand, EVM can not
keep up with the baseline model on protocol 1 at low FPR values where the latter model is op-
erational. This changes on protocol 2, where EVM achieves higher CCR values than the baseline
model at low FPR values. On protocol 3, EVM is not competitive against the baseline model at all
FPR values that are achievable by the latter. When considering these findings, one has to keep in
mind that the EVM model uses distances that are measured in deep feature space. This basically
suggests that the success of this model partly depends on distinctive features. The importance
of having salient features has been pointed out by Donahue et al. (2014) and Ranjan et al. (2017).
According to them, features from data samples that belong to the same class should ideally be
located in close proximity to each other in deep feature space, thereby building a cluster. Further-
more, this cluster should be delimitable from clusters that represent other classes. Coming back
to EVM, if the baseline model used for feature extraction does not produce meaningful features,
the quality of the EVM model could suffer. This in turn could be one explanation for the observed
results. However, one could point to OpenMax, whose model operates on features as well. But
while EVM computes the distances to the τ closest samples from negative training classes, Open-
Max only considers positive training samples for the distance computation. This might lead to a
lower susceptibility to an imperfect feature space. On the other hand, PROSER does not achieve
the benchmark set by the baseline model on protocols 1 and 3 at all FPR values at which the base-
line model is operational. However, this changes on protocol 2. A possible explanation of this
behavior could lie in the hyperparameters. As pointed out in subsection 4.4.5, I use the default
settings for the coefficients α, λ1, and λ2. I do this since neither the research paper (Zhou et al.,
2021a) nor the source code provides information on the handling and choice of these coefficients.
However, it is possible that there exist other coefficients that lead to a more competitive PROSER
model. Furthermore, the PROSER fine-tuning procedure runs over 10 epochs. Since the source
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code (Zhou et al., 2021a) does not parameterize this variable,1 I inherit this value. Hence, increas-
ing the number of fine-tuning epochs might result in a more powerful model. In fact, my results
encourage the modification of the numbers of epochs. As can be seen in tables A.8, A.9, and
A.10, the optimal model on all three protocols is associated with a high fine-tuning epoch, which
suggests that the network training might not be completed. Also, it is possible that the evalua-
tion metric that is chosen by Zhou et al. (2021b) might not be the optimal one. According to the
aforementioned tables, the two alternative evaluation metrics suggest selecting other models. In
particular, the two alternative evaluation metrics show the lowest score for the selected model
on protocol 1 (see table A.9). Importantly, these observations do not show that the AUC metric
is inappropriate, but they encourage further investigation in the future. Another point that has
to be mentioned with respect to EVM and PROSER is the transferability of hyperparameters. As
described in subsections 5.1.4 and 5.1.5, I repeat the entire training procedure on protocols 1 and
3 since the transfer of the optimal hyperparameters on protocol 2 to these two protocols leads
to substantially inferior models. Hence, in contrast to OpenMax, applying EVM and PROSER
to new open set contexts requires finding a new set of hyperparameters via a complete training
procedure. This makes the configuration of these models more expensive and might affect their
applicability.

When it comes to the left side of the curves, PROSER is able to operate at lower FPR values
than most of the other algorithms. In fact, only EVM provides such low FPR values on protocol
2. These values point to an interesting characteristic of the other algorithms. Considering, for ex-
ample, OpenMax on protocol 3, its lowest achievable FPR value is around 0.02. Reflecting upon
the OSCR definition in equation 3.5, this indicates that the FPR can not be lowered anymore by
raising the threshold θ. Such a situation can occur if a certain number of samples that belong to
the UUCs (in this case, around 2% of them) show a probability score of 1.0 for one of the C known
training classes. Therefore, one can conclude that OpenMax produces more such samples than
PROSER on protocol 3. This observation can be applied to the other protocols as well.

Finally, taking a look at the closed set performance, my results reflect the nature of the proto-
cols as well as the models. Specifically, the baseline model achieves a high closed set performance
across all three protocols. Since the baseline model is selected on the basis of its closed set per-
formance, these results are of no surprise. Furthermore, considering figures A.1, A.2, A.3, A.4,
and A.5, as well as tables A.11, A.12, and A.13, all algorithms achieve a higher closed set perfor-
mance on protocol 3 than on protocol 2 or protocol 1. This finding mirrors the composition of
these protocols. While protocols 1 and 2 are associated with a relatively difficult closed set task,
protocol 3 is linked to a comparably easier closed set task (Bhoumik, 2021). Additionally, two
interesting findings are associated with EOS. Firstly, EOS shows a higher closed set performance
on protocol 1 than the baseline model. This result is remarkable since open set classifiers are con-
sidered to achieve a trade-off between the performance on the open set task and the performance
on the closed set task (see equation 2.1 by Scheirer et al., 2013). However, in my experiments,
EOS improves the performance on the closed set task as well as on the open set task when com-
pared to a closed set classifier as the baseline model. Secondly, my results demonstrate that EOS
shows the lowest closed set performance among all evaluated algorithms on protocol 2. A recent
study by Palechor et al. (2023) serves as a possible explanation for this finding. Specifically, the
authors apply the same three protocols in their experiments as I do. By making use of their newly
introduced evaluation metric, they show that EOS focuses more on rejecting samples from KUCs
during training than on correctly classifying samples from KKCs.

1https://github.com/zhoudw-zdw/CVPR21-Proser/blob/f5b53b90509e6460a783a0baa72bda52364810fd/
proser_unknown_detection.py#L190

https://github.com/zhoudw-zdw/CVPR21-Proser/blob/f5b53b90509e6460a783a0baa72bda52364810fd/proser_unknown_detection.py#L190
https://github.com/zhoudw-zdw/CVPR21-Proser/blob/f5b53b90509e6460a783a0baa72bda52364810fd/proser_unknown_detection.py#L190


60 Chapter 6. Discussion

6.2 Limitations
While my work addresses existing issues in open set research, some limitations need to be men-
tioned. The first limitation relates to the preprocessing of the images, as mentioned in section 4.2.
Concretely, I first resize the input samples to a uniform size of 300 × 300. Subsequently, a patch
of size 224 × 224 is cropped out at the center. However, Krizhevsky et al. (2012) recommend an-
other procedure. They first scale the shorter side of the image down to a size of 256. Then, the
resulting image is cropped out at the center, using a crop size of 256 × 256. In this way, in con-
trast to my procedure, they respect the aspect ratio. Furthermore, after the center crop, I apply a
data augmentation technique in the form of a random rotation to the training samples. However,
PyTorch (Paszke et al., 2019) recommends2 a RandomResizedCrop,3 which crops a random part
of the image and resizes it. This procedure aims at counteracting possible overfitting to the train-
ing data. Another possible improvement is associated with the network architecture. Concretely,
my experiments are only based on the ResNet-50 architecture. While ResNet-50 is considered to
provide a good trade-off between performance and the number of trainable parameters (He et al.,
2016a), it is feasible that other network architectures have their own strengths when it comes to
dealing with unknown samples (Roady et al., 2020). This is of special importance when consid-
ering the importance of the deep feature representations when they are used in subsequent tasks
(Donahue et al., 2014; Ranjan et al., 2017). Therefore, there might be other network architectures
that yield more meaningful deep features and results. When it comes to PROSER, as justified
in subsections 4.4.5 and 5.1.5, I work with the provided default hyperparameters. However, as
indicated in section 6.1, there might be other hyperparameter combinations that lead to a more
competitive PROSER model. Finally, I perform my comparison on three instances of an open set
environment. While these instances are designed in a systematic way, varying the difficulty of the
open set as well as the closed set task (Bhoumik, 2021), they are by no means an exhaustive set
of possible open set contexts. Hence, other protocols might further expand the knowledge about
the strengths and weaknesses of open set algorithms.

2https://github.com/pytorch/examples/blob/7ed7ac7b01add7ca29d45f25700e73a4b517ccea/
imagenet/main.py#L217

3http://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.
html#randomresizedcrop

https://github.com/pytorch/examples/blob/7ed7ac7b01add7ca29d45f25700e73a4b517ccea/imagenet/main.py#L217
https://github.com/pytorch/examples/blob/7ed7ac7b01add7ca29d45f25700e73a4b517ccea/imagenet/main.py#L217
http://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html#randomresizedcrop
http://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html#randomresizedcrop


Chapter 7

Conclusion and Future Work

In this thesis, I address the issue of unsatisfactory comparability of prominent open set algo-
rithms due to the use of heterogeneous data foundations and network characteristics, as well
as suboptimal evaluation metrics. Furthermore, since such algorithms are usually evaluated on
small datasets (Geng et al., 2021) that are associated with limited diversity and hierarchical rich-
ness, it is not clear how their performances develop when the difficulty of the closed set task is
increased. By conducting a systematic comparison of four algorithms, Entropic Open Set Loss
(EOS, Dhamija et al., 2018), OpenMax (Bendale and Boult, 2016), EVM (Rudd et al., 2018), and
PROSER (Zhou et al., 2021a), on recently developed ImageNet protocols (Bhoumik, 2021), I en-
able a direct contrast of these methods and contribute to a better understanding of their behavior
in different open set contexts. Referring to the research questions stated in section 1.3, my work
shows that OpenMax outperforms EVM as well as PROSER on all three protocols over a consid-
erable range of FPR values. Furthermore, OpenMax is defeated by EOS only on protocol 1. In
fact, EOS loses its advantage over the other algorithms as the difficulty of the open set task in-
creases. Apart from that, EVM and PROSER have difficulties keeping up with the baseline model
on protocols 1 and 3. The results further point to the robustness of OpenMax when it comes to
the transferability of hyperparameters to other open set environments. However, with increasing
difficulty of the open set task, the difference between the OpenMax performance and the perfor-
mance of the competing algorithms diminishes. In contrast, EVM and PROSER require a new
hyperparameter configuration on every protocol. This restricted transferability of hyperparame-
ters to other open set contexts might make them less appealing.

The findings from my experiments open up many possible directions for further investiga-
tions. First, since OpenMax and EVM operate on feature representations of data samples, alterna-
tive network architectures could be considered for feature extraction. In fact, trying out networks
that are associated with other mappings into feature space is encouraged by findings from Don-
ahue et al. (2014) and Ranjan et al. (2017) that stress the importance of deep feature representa-
tions when used in subsequent tasks. As a possible approach, the trained EOS network could be
used for feature extraction instead of the used baseline model. Due to time constraints, I could
not test this option. Similarly, the dimensionality of the feature space could be varied to inspect
possible effects on the results. This is encouraged by Donahue et al. (2014), who point out the
role of the feature space dimensionality. Moreover, the focus could be laid on the used training
data. Specifically, EVM has the possibility to utilize samples from KUCs in the training proce-
dure (Dhamija, 2021). On the one hand, EVM could consider known unknown samples x ∈ D′

b

for the computation of the pairwise distances, which might in turn have an effect on the distri-
bution fitting procedure for the known classes. On the other hand, EVM could treat all known
unknown samples x ∈ D′

b as a single class and then estimate models for this class. Either way, it
would be interesting to investigate the impact of this additional knowledge on the EVM perfor-
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mance. In a similar vein, new open set partitions that alter the level of similarity between KKCs
and KUCs could be composed. This would be of interest as the success of EOS is affected by the
choice of KUCs (Dhamija et al., 2018). When it comes to PROSER, performing a grid search over
the hyperparameters could unlock potential that has not been exposed in my experiments. Also,
to get a more complete picture, the comparison could be expanded to other open set algorithms
such as those mentioned in subsection 3.1.1. Finally, it would be interesting to include "fooling"
(Nguyen et al., 2015), "rubbish" (Goodfellow et al., 2014b), and adversarial (Goodfellow et al.,
2014b; Szegedy et al., 2014) images into the protocols and then perform the comparison, as DNNs
are generally vulnerable to those types of images (Goodfellow et al., 2014b; Nguyen et al., 2015;
Rozsa et al., 2017).

In sum, my work gives an idea of how four relevant open set algorithms compare to each other
in different open set environments. It further points to the observed strengths and limitations of
those approaches. These insights can be used for further investigations or possible improvements
of the algorithms. The task of Open Set Recognition is a difficult one, as my experiments show.
However, expressed in a different way:

"For any scientist the real challenge is not to stay within the secure garden of the known but to
venture out into the wilds of the unknown." (Du Sautoy, 2017)



Appendix A

Attachments

Optimizer Hyperparameters
Training Epochs

100 200 300

Adam

(0.01, 0.9, 0.999) 0.54969 (98) 0.58340 (187) 0.59660 (244)

(0.001, 0.9, 0.999) 0.60491 (91) 0.61358 (169) 0.60415 (287)

(0.0001, 0.9, 0.999) 0.54767 (86) 0.57233 (195) 0.57333 (262)

(0.00001, 0.9, 0.999) 0.42541 (76) 0.42075 (197) 0.42403 (297)

(0.001, 0.8, 0.999) 0.63862 (96) 0.63635 (153) 0.61157 (274)

(0.001, 0.7, 0.999) 0.61082 (98) 0.64000 (192) 0.63962 (258)

(0.001, 0.6, 0.999) 0.61157 (63) 0.62779 (100) 0.64264 (233)

(0.001, 0.7, 0.9) 0.60855 (56) 0.59862 (175) 0.60491 (228)

SGD

(0.1, 0.9) 0.42403 (87) 0.42013 (199) 0.50780 (292)

(0.01, 0.9) 0.59270 (68) 0.61472 (162) 0.63711 (230)

(0.001, 0.9) 0.50000 (99) 0.52579 (195) 0.52679 (263)

(0.0001, 0.9) 0.30679 (98) 0.42465 (192) 0.46252 (269)

(0.01, 0.6) 0.56704 (98) 0.57019 (167) 0.57484 (289)

Table A.1: VALIDATION OF SOFTMAX MODEL ON PROTOCOL 2. The table lists the hyperparame-
ter combinations used to train the Softmax model on protocol 2 as well as the corresponding performance
measures on the validation dataset. The column Training Epochs reflects the maximum accuracy and, in
parentheses, the associated training epoch where this performance has been achieved. Moreover, the col-
umn Hyperparameters contains the arguments that are passed to the optimizer. In case of Adam, these ar-
guments refer to the learning rate and the two beta coefficients. On the other hand, the Stochastic Gradient
Descent (SGD) optimizer requires the learning rate as well as the momentum term. For both optimizers,
the maximum accuracy value for a specific number of training epochs is marked in red. Furthermore, the
hyperparameter combination that is associated with the selected model is marked in italics.
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Table A.2 illustrates the outcome of the OpenMax model validation on protocol 2 for different
hyperparameter combinations. Concretely, the training procedure fits a model for every hyper-
parameter combination consisting of the tail size (TS), the distance multiplier (DM) as well as
the number of revisable classes (Alpha). Every model is then evaluated on the validation set,
resulting in the computation of the CCR value for a selection of FPRs (0.001, 0.01, 0.1, 0.15, and
0.2). Hence, the cells list the CCR values for the FPR indicated by the respective column. The
maximum CCR value for a specific FPR value over all models is marked in red. Furthermore, the
hyperparameter combination that is associated with the selected model is marked in italics. Cells
that contain a " - " refer to the situation where the FPR value is not achievable by the associated
model. For example, the model associated with the hyperparameter combination (10_1.5_2) gen-
erates a minimum FPR value that is higher than 0.01. Therefore, there is no CCR value available.

Hyperparameters
(TS_DM_Alpha)

CCR@FPR

0.001 0.01 0.1 0.15 0.2

(10_1.5_2) - - 0.27862 0.34226 0.39019

(10_1.5_3) - - 0.27799 0.34138 0.38918

(10_1.5_5) - - 0.27610 0.34025 0.38503

(10_1.5_10) - - 0.28352 0.34201 0.38843

(10_1.7_2) - - 0.27862 0.34164 0.39019

(10_1.7_3) - - 0.27862 0.34176 0.38943

(10_1.7_5) - - 0.27748 0.34138 0.38893

(10_1.7_10) - - 0.27786 0.34063 0.38843

(10_2.0_2) - - 0.27862 0.34164 0.39019

(10_2.0_3) - - 0.27874 0.34176 0.38969

(10_2.0_5) - - 0.27887 0.34189 0.38956

(10_2.0_10) - - 0.27912 0.34189 0.38969

(10_2.3_2) - - 0.27862 0.34164 0.39019

(10_2.3_3) - - 0.27862 0.34164 0.39019

(10_2.3_5) - - 0.27874 0.34164 0.38994

(10_2.3_10) - - 0.27875 0.34164 0.38969

(100_1.5_2) - - 0.28352 0.34767 0.39811

(100_1.5_3) - - 0.28352 0.34830 0.39170

(100_1.5_5) - - 0.28365 0.34579 0.39484

(100_1.5_10) - 0.09270 0.30742 0.36516 0.40503
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Hyperparameters (Cont.)
(TS_DM_Alpha)

CCR@FPR (Cont.)

0.001 0.01 0.1 0.15 0.2

(100_1.7_2) - - 0.28164 0.34478 0.39421

(100_1.7_3) - - 0.28264 0.34377 0.39195

(100_1.7_5) - - 0.28189 0.34113 0.38579

(100_1.7_10) - 0.09748 0.30591 0.36642 0.40969

(100_2.0_2) - - 0.28000 0.34440 0.39308

(100_2.0_3) - - 0.28063 0.34365 0.39019

(100_2.0_5) - - 0.27925 0.33962 0.38679

(100_2.0_10) - - 0.28541 0.34327 0.39119

(100_2.3_2) - - 0.27912 0.34327 0.39258

(100_2.3_3) - - 0.27975 0.34377 0.39145

(100_2.3_5) - - 0.27862 0.34151 0.38956

(100_2.3_10) - - 0.27761 0.34025 0.38654

(250_1.5_2) - - 0.29195 0.35409 0.40189

(250_1.5_3) - - 0.29585 0.35862 0.40516

(250_1.5_5) - - 0.30277 0.37170 0.41686

(250_1.5_10) - 0.07484 0.29044 0.36151 0.39711

(250_1.7_2) - - 0.28692 0.35019 0.39899

(250_1.7_3) - - 0.29107 0.35346 0.39811

(250_1.7_5) - - 0.29396 0.35472 0.40491

(250_1.7_10) - 0.08956 0.31006 0.36628 0.41208

(250_2.0_2) - - 0.28340 0.34692 0.39723

(250_2.0_3) - - 0.28616 0.34767 0.39358

(250_2.0_5) - - 0.28692 0.34730 0.39057

(250_2.0_10) - 0.09698 0.31585 0.37308 0.41723

(250_2.3_2) - - 0.28176 0.34516 0.39358

(250_2.3_3) - - 0.28428 0.34415 0.39308

(250_2.3_5) - - 0.28264 0.34352 0.38855

(250_2.3_10) - - 0.29484 0.35736 0.40038
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Hyperparameters (Cont.)
(TS_DM_Alpha)

CCR@FPR (Cont.)

0.001 0.01 0.1 0.15 0.2

(500_1.5_2) - - 0.29874 0.35811 0.40075

(500_1.5_3) - - 0.30830 0.36767 0.41069

(500_1.5_5) - - 0.32075 0.38579 0.42616

(500_1.5_10) 0.01472 0.05786 0.28050 0.34038 0.38692

(500_1.7_2) - - 0.29673 0.35585 0.40201

(500_1.7_3) - - 0.30164 0.36239 0.40818

(500_1.7_5) - - 0.31283 0.37472 0.42088

(500_1.7_10) 0.01786 0.06994 0.29371 0.35610 0.39937

(500_2.0_2) - - 0.29132 0.35031 0.39887

(500_2.0_3) - - 0.29585 0.35761 0.40201

(500_2.0_5) - - 0.30013 0.36075 0.41082

(500_2.0_10) - 0.08654 0.31296 0.37195 0.41547

(500_2.3_2) - - 0.28767 0.34893 0.39585

(500_2.3_3) - - 0.29132 0.35396 0.39761

(500_2.3_5) - - 0.29434 0.35535 0.39975

(500_2.3_10) - 0.10226 0.31799 0.37623 0.42214

(750_1.5_2) - - 0.29774 0.35698 0.38906

(750_1.5_3) - - 0.30981 0.37283 0.41711

(750_1.5_5) - 0.09069 0.32239 0.38201 0.42780

(750_1.5_10) 0.01321 0.05333 0.26138 0.31698 0.35358

(750_1.7_2) - - 0.29774 0.35585 0.39660

(750_1.7_3) - - 0.30755 0.36642 0.41233

(750_1.7_5) - 0.09774 0.31786 0.38440 0.42667

(750_1.7_10) 0.01270 0.05484 0.27522 0.33170 0.37685

(750_2.0_2) - - 0.29585 0.35421 0.39912

(750_2.0_3) - - 0.30541 0.36277 0.40654

(750_2.0_5) - - 0.31069 0.37509 0.42063

(750_2.0_10) 0.01799 0.07069 0.29560 0.35371 0.39786
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Hyperparameters (Cont.)
(TS_DM_Alpha)

CCR@FPR (Cont.)

0.001 0.01 0.1 0.15 0.2

(750_2.3_2) - - 0.29371 0.35069 0.39824

(750_2.3_3) - - 0.30000 0.35799 0.40302

(750_2.3_5) - - 0.30667 0.36377 0.41094

(750_2.3_10) - 0.08906 0.31220 0.37094 0.41610

(1000_1.5_2) - - 0.29233 0.34126 0.37346

(1000_1.5_3) - - 0.31547 0.37962 0.41660

(1000_1.5_5) - 0.08541 0.31434 0.37472 0.41585

(1000_1.5_10) 0.01421 0.05484 0.23774 0.28176 0.31899

(1000_1.7_2) - - 0.29597 0.35157 0.38566

(1000_1.7_3) - - 0.30830 0.37258 0.41484

(1000_1.7_5) - 0.08830 0.31950 0.38101 0.42365

(1000_1.7_10) 0.01170 0.05535 0.25648 0.30528 0.33987

(1000_2.0_2) - - 0.29597 0.35346 0.39308

(1000_2.0_3) - - 0.30767 0.36742 0.41119

(1000_2.0_5) - 0.10000 0.31836 0.38566 0.42440

(1000_2.0_10) 0.01383 0.06516 0.273834 0.32906 0.36780

(1000_2.3_2) - - 0.29484 0.35094 0.39686

(1000_2.3_3) - - 0.30516 0.36226 0.40503

(1000_2.3_5) - - 0.31522 0.37736 0.42038

(1000_2.3_10) 0.01799 0.07082 0.29509 0.35107 0.39208

Table A.2: Validation of OpenMax Model on Protocol 2
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Hyperparameters
(TS_DM_Alpha)

CCR@FPR

0.001 0.01 0.1 0.15 0.2

(1000_1.5_2) - 0.18964 0.34293 0.37108 0.39176

(1000_1.5_3) - 0.20364 0.39245 0.41681 0.43811

(1000_1.5_5) 0.10729 0.22649 0.44789 0.47180 0.48605

(1000_1.5_10) 0.086851 0.20161 0.35770 0.38856 0.41062

(1000_1.7_2) - 0.18306 0.36320 0.39352 0.41471

(1000_1.7_3) - 0.19249 0.39703 0.42820 0.45057

(1000_1.7_5) - 0.20760 0.42917 0.47775 0.50308

(1000_1.7_10) 0.11242 0.22542 0.40456 0.43691 0.45866

(1000_2.0_2) - 0.17907 0.37469 0.40756 0.43068

(1000_2.0_3) - 0.18365 0.38949 0.42645 0.45353

(1000_2.0_5) - 0.18988 0.39252 0.43746 0.46846

(1000_2.0_10) 0.10306 0.23323 0.43312 0.46516 0.48715

(1000_2.3_2) - 0.17484 0.37081 0.40959 0.43601

(1000_2.3_3) - 0.18062 0.37824 0.41785 0.44544

(1000_2.3_5) - 0.18241 0.37886 0.41743 0.44809

(1000_2.3_10) - 0.21014 0.42225 0.46753 0.49812

Table A.3: VALIDATION OF OPENMAX MODEL ON PROTOCOL 1. The table illustrates the outcome of
the OpenMax model validation on protocol 1 for different hyperparameter combinations. For a description
of the meaning of the columns, see table A.2

.
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Hyperparameters
(TS_DM_Alpha)

CCR@FPR

0.001 0.01 0.1 0.15 0.2

(1000_1.5_2) - - 0.38769 0.44481 0.47845

(1000_1.5_3) - - 0.38904 0.45434 0.49866

(1000_1.5_5) - - 0.35732 0.42205 0.46367

(1000_1.5_10) 0.00537 0.03179 0.18876 0.25174 0.30553

(1000_1.7_2) - - 0.39010 0.45264 0.49498

(1000_1.7_3) - - 0.38932 0.45541 0.50294

(1000_1.7_5) - - 0.37340 0.43832 0.48375

(1000_1.7_10) - 0.03871 0.20157 0.26614 0.31874

(1000_2.0_2) - - 0.39031 0.45335 0.50048

(1000_2.0_3) - - 0.38825 0.45490 0.50279

(1000_2.0_5) - - 0.38278 0.44826 0.49673

(1000_2.0_10) - - 0.27468 0.33671 0.37755

(1000_2.3_2) - - 0.39056 0.45269 0.49975

(1000_2.3_3) - - 0.38916 0.45310 0.50127

(1000_2.3_5) - - 0.38491 0.44996 0.49817

(1000_2.3_10) - - 0.34049 0.40564 0.45074

Table A.4: VALIDATION OF OPENMAX MODEL ON PROTOCOL 3. The table illustrates the outcome of
the OpenMax model validation on protocol 3 for different hyperparameter combinations. For a description
of the meaning of the columns, see table A.2.
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Table A.5 illustrates the outcome of the EVM model validation on protocol 2 for different hyper-
parameter combinations. Concretely, the training procedure fits a model for every hyperparame-
ter combination consisting of the tail size (TS), the distance multiplier (DM) as well as the cover
threshold (CT). Every model is then evaluated on the validation set, resulting in the computa-
tion of the CCR value for a selection of FPRs (0.001, 0.01, 0.1, 0.15, and 0.2). Hence, the cells list
the CCR values for the FPR indicated by the respective column. The maximum CCR value for
a specific FPR value over all models is marked in red. Furthermore, the hyperparameter com-
bination that is associated with the selected model is marked in italics. Cells that contain a " - "
refer to the situation that the FPR value is not achievable by the associated model. For example,
the models associated with the hyperparameter combinations (10_0.70_1.00), (10_0.90_1.00), and
(10_1.00_1.00) all generate a minimum FPR value that is higher than 0.2. Therefore, there is no
CCR value available.

Hyperparameters
(TS_DM_CT)

CCR@FPR

0.001 0.01 0.1 0.15 0.2

(10_0.10_1.00) 0.00453 0.05912 0.28805 0.34264 0.39622

(10_0.20_1.00) - 0.05220 0.30226 0.36893 0.41308

(10_0.30_1.00) - - 0.31082 0.37660 0.41786

(10_0.40_1.00) - - 0.31157 0.37786 0.42025

(10_0.50_1.00) - - 0.29132 0.36516 0.41673

(10_{0.70, 0.90, 1.00}_1.00) - - - - -

(25_0.10_1.00) 0.00453 0.05421 0.29824 0.36340 0.40679

(25_0.20_1.00) - 0.05182 0.31258 0.37560 0.41862

(25_0.30_1.00) - - 0.31371 0.37849 0.42189

(25_0.40_1.00) - - 0.30805 0.37396 0.42126

(25_0.50_1.00) - - 0.29459 0.36591 0.41635

(25_{0.70, 0.90, 1.00}_1.00) - - - - -

(50_0.10_1.00) 0.00453 0.05811 0.30642 0.36717 0.41082

(50_0.20_1.00) - 0.05245 0.32000 0.37635 0.42403

(50_0.30_1.00) - - 0.31472 0.37773 0.42390

(50_0.40_1.00) - - 0.30981 0.37296 0.41937

(50_0.50_1.00) - - 0.29623 0.36642 0.41572

(50_{0.70, 0.90, 1.00}_1.00) - - - - -
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Hyperparameters (Cont.)
(TS_DM_CT)

CCR@FPR (Cont.)

0.001 0.01 0.1 0.15 0.2

(75_0.10_1.00) 0.00440 0.05572 0.31195 0.36969 0.41522

(75_0.20_1.00) - 0.05270 0.32025 0.37899 0.42289

(75_0.30_1.00) - - 0.31459 0.37610 0.42264

(75_0.40_1.00) - - 0.30969 0.37346 0.41911

(75_0.50_1.00) - - 0.29811 0.36742 0.41522

(75_{0.70, 0.90, 1.00}_1.00) - - - - -

(100_0.10_1.00) 0.00440 0.05409 0.31208 0.37006 0.41748

(100_0.20_1.00) - 0.05258 0.31987 0.38012 0.42088

(100_0.30_1.00) - - 0.31421 0.37711 0.42327

(100_0.40_1.00) - - 0.30955 0.37434 0.41937

(100_0.50_1.00) - - 0.29886 0.36730 0.41522

(100_{0.70, 0.90, 1.00}_1.00) - - - - -

(150_0.10_1.00) 0.00428 0.05535 0.31044 0.37057 0.41748

(150_0.20_1.00) - 0.05233 0.31748 0.37799 0.42201

(150_0.30_1.00) - - 0.31371 0.37597 0.42252

(150_0.40_1.00) - - 0.30994 0.37472 0.41899

(150_0.50_1.00) - - 0.29950 0.36792 0.41572

(150_{0.70, 0.90, 1.00}_1.00) - - - - -

(200_0.10_1.00) 0.00428 0.05560 0.31031 0.37107 0.41774

(200_0.20_1.00) - 0.05182 0.31849 0.37710 0.42126

(200_0.30_1.00) - - 0.31270 0.37660 0.42239

(200_0.40_1.00) - - 0.30893 0.37472 0.41849

(200_0.50_1.00) - - 0.29962 0.36730 0.41572

(200_{0.70, 0.90, 1.00}_1.00) - - - - -

(300_0.10_1.00) 0.00415 0.05623 0.30943 0.37044 0.41711

(300_0.20_1.00) - 0.05132 0.31937 0.37887 0.42151

(300_0.30_1.00) - - 0.31308 0.37761 0.42238

(300_0.40_1.00) - - 0.30842 0.37434 0.41811

(300_0.50_1.00) - - 0.29597 0.36692 0.41497

(300_{0.70, 0.90, 1.00}_1.00) - - - - -
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Hyperparameters (Cont.)
(TS_DM_CT)

CCR@FPR (Cont.)

0.001 0.01 0.1 0.15 0.2

(500_0.10_1.00) 0.00428 0.05308 0.30730 0.37019 0.41673

(500_0.20_1.00) - 0.05170 0.31572 0.37937 0.42252

(500_0.30_1.00) - - 0.31409 0.37748 0.42440

(500_0.40_1.00) - - 0.30818 0.37409 0.41874

(500_0.50_1.00) - - - 0.36088 0.41447

(500_{0.70, 0.90, 1.00}_1.00) - - - - -

(1000_0.10_1.00) 0.00553 0.05447 0.30780 0.36843 0.41371

(1000_0.20_1.00) - 0.05320 0.31472 0.37849 0.42352

(1000_0.30_1.00) - - 0.31522 0.37786 0.42377

(1000_0.40_1.00) - - 0.30264 0.37082 0.41811

(1000_0.50_1.00) - - - 0.35886 0.40893

(1000_{0.70, 0.90, 1.00}_1.00) - - - - -

Table A.5: Validation of EVM Model on Protocol 2
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Table A.6 illustrates the outcome of the EVM model validation on protocol 1 for different hyper-
parameter combinations. For a description of the meaning of the columns, see table A.5.

Hyperparameters
(TS_DM_CT)

CCR@FPR

0.001 0.01 0.1 0.15 0.2

(10_0.50_1.00) 0.03414 0.12119 0.28843 0.31286 0.33151

(10_0.60_1.00) - 0.14074 0.34410 0.36843 0.38478

(10_0.70_1.00) - 0.15801 0.38753 0.41860 0.43622

(10_0.80_1.00) - - 0.39702 0.43777 0.46365

(10_0.90_1.00) - - 0.37948 0.42449 0.45287

(10_1.00_1.00) - - - - -

(50_0.50_1.00) 0.03180 0.12629 0.37032 0.40264 0.42242

(50_0.60_1.00) - 0.14397 0.39273 0.43168 0.45625

(50_0.70_1.00) - 0.16021 0.40030 0.44124 0.46839

(50_0.80_1.00) - - 0.39830 0.44011 0.46695

(50_0.90_1.00) - - 0.38092 0.42583 0.45398

(50_1.00_1.00) - - - - -

(75_0.50_1.00) 0.03197 0.12790 0.38251 0.41898 0.44145

(75_0.60_1.00) - 0.14370 0.39630 0.43921 0.46457

(75_0.70_1.00) - 0.15736 0.40129 0.44252 0.46974

(75_0.80_1.00) - - 0.39868 0.44093 0.46767

(75_0.90_1.00) - - 0.37848 0.42538 0.45305

(75_0.1.00_1.00) - - - - -

(100_0.50_1.00) 0.03228 0.12787 0.38849 0.42769 0.45133

(100_0.60_1.00) - 0.14270 0.39782 0.44272 0.46657

(100_0.70_1.00) - 0.15502 0.40219 0.44351 0.47056

(100_0.80_1.00) - - 0.39830 0.44107 0.46771

(100_0.90_1.00) - - - 0.42387 0.45284

(100_1.00_1.00) - - - - -
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Hyperparameters (Cont.)
(TS_DM_CT)

CCR@FPR (Cont.)

0.001 0.01 0.1 0.15 0.2

(150_0.50_1.00) 0.03152 0.12993 0.39500 0.43749 0.46351

(150_0.60_1.00) - 0.14177 0.40064 0.44599 0.47063

(150_0.70_1.00) - 0.15178 0.40236 0.44434 0.47287

(150_0.80_1.00) - - 0.39830 0.44096 0.46781

(150_0.90_1.00) - - - 0.42077 0.45047

(150_1.00_1.00) - - - - -

(300_0.50_1.00) - 0.13200 0.40133 0.44500 0.47311

(300_0.60_1.00) - 0.13922 0.40363 0.44771 0.47476

(300_0.70_1.00) - - 0.40356 0.44682 0.47445

(300_0.80_1.00) - - 0.39655 0.44004 0.4678

(300_0.90_1.00) - - - 0.41458 0.44444

(300_1.00_1.00) - - - - -

(500_0.50_1.00) - 0.13224 0.40467 0.44902 0.47528

(500_0.60_1.00) - 0.13699 0.40563 0.44881 0.47744

(500_0.70_1.00) - - 0.40370 0.44761 0.47545

(500_0.80_1.00) - - 0.39255 0.43794 0.46640

(500_0.90_1.00) - - - - 0.43763

(500_1.00_1.00) - - - - -

(1000_0.50_1.00) - 0.13186 0.40914 0.45367 0.48047

(1000_0.60_1.00) - 0.12887 0.40852 0.45143 0.47985

(1000_0.70_1.00) - - 0.40284 0.44737 0.47621

(1000_0.80_1.00) - - 0.38750 0.43453 0.46323

(1000_0.90_1.00) - - - - -

(1000_1.00_1.00) - - - - -

Table A.6: Validation of EVM Model on Protocol 1
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Table A.7 illustrates the outcome of the EVM model validation on protocol 3 for different hyper-
parameter combinations. For a description of the meaning of the columns, see table A.5.

Hyperparameters
(TS_DM_CT)

CCR@FPR

0.001 0.01 0.1 0.15 0.2

(10_0.40_1.00) - 0.10599 0.29960 0.33463 0.35968

(10_0.50_1.00) - - 0.34465 0.38404 0.41206

(10_0.60_1.00) - - 0.37081 0.42400 0.45903

(10_0.70_1.00) - - 0.37489 0.43733 0.48010

(10_0.80_1.00) - - - 0.43297 0.47967

(10_{0.90, 1.00}_1.00) - - - - -

(50_0.40_1.00) - 0.10696 0.34647 0.40136 0.43621

(50_0.50_1.00) - - 0.36219 0.41981 0.46017

(50_0.60_1.00) - - 0.37076 0.43003 0.47282

(50_0.70_1.00) - - 0.37540 0.43690 0.48002

(50_0.80_1.00) - - - 0.43698 0.48025

(50_{0.90, 1.00}_1.00) - - - - -

(75_0.40_1.00) - 0.10739 0.34952 0.40668 0.44588

(75_0.50_1.00) - - 0.36244 0.42014 0.46175

(75_0.60_1.00) - - 0.37111 0.42983 0.47320

(75_0.70_1.00) - - 0.37494 0.43672 0.47980

(75_0.80_1.00) - - - 0.43794 0.48058

(75_{0.90, 1.00}_1.00) - - - - -

(100_0.40_1.00) - 0.10713 0.35005 0.40876 0.44940

(100_0.50_1.00) - - 0.36297 0.42184 0.46256

(100_0.60_1.00) - - 0.37129 0.42975 0.47343

(100_0.70_1.00) - - 0.37532 0.43721 0.47964

(100_0.80_1.00) - - - 0.43964 0.48073

(100_{0.90, 1.00}_1.00) - - - - -
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Hyperparameters (Cont.)
(TS_DM_CT)

CCR@FPR (Cont.)

0.001 0.01 0.1 0.15 0.2

(150_0.40_1.00) - 0.106855 0.34997 0.40970 0.45226

(150_0.50_1.00) - - 0.36260 0.42202 0.46261

(150_0.60_1.00) - - 0.37106 0.43016 0.47308

(150_0.70_1.00) - - 0.37631 0.43665 0.47974

(150_0.80_1.00) - - - - 0.48111

(150_{0.90, 1.00}_1.00) - - - - -

(300_0.40_1.00) - 0.10658 0.34896 0.40932 0.45389

(300_0.50_1.00) - - 0.36224 0.42118 0.46423

(300_0.60_1.00) - - 0.37122 0.43028 0.47338

(300_0.70_1.00) - - 0.37710 0.43644 0.47990

(300_0.80_1.00) - - - - 0.48063

(300_{0.90, 1.00}_1.00) - - - - -

(500_0.40_1.00) - 0.10625 0.34865 0.40828 0.45485

(500_0.50_1.00) - - 0.36156 0.42103 0.46433

(500_0.60_1.00) - - 0.37142 0.43039 0.47348

(500_0.70_1.00) - - 0.37763 0.43586 0.47967

(500_{0.80, 0.90, 1.00}_1.00) - - - - -

(1000_0.40_1.00) - 0.10521 0.34810 0.40638 0.45353

(1000_0.50_1.00) - - 0.36141 0.42078 0.46405

(1000_0.60_1.00) - - 0.37243 0.43026 0.47341

(1000_0.70_1.00) - - - 0.43655 0.47919

(1000_{0.80, 0.90, 1.00}_1.00) - - - - -

Table A.7: Validation of EVM Model on Protocol 3
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Number of
Dummy Clfs.

No Bias Computation Bias Computation

AUC Avg. Conf.
(VAST)

Avg. Conf.
(Dummy) AUC Avg. Conf.

(VAST)
Avg. Conf.
(Dummy)

1 0.6994 (8) 0.5761 (8) 0.5519 (8) 0.6953 (10) 0.5427 (10) 0.4543 (10)

2 0.6989 (8) 0.5728 (8) 0.5477 (8) 0.6956 (10) 0.5418 (10) 0.4475 (10)

3 0.6974 (7) 0.5694 (9) 0.5378 (10) 0.6970 (10) 0.5425 (10) 0.4517 (10)

4 0.6931 (7) 0.5682 (9) 0.5364 (10) 0.6935 (10) 0.5408 (10) 0.4457 (10)

5 0.7010 (10) 0.5717 (9) 0.5433 (10) 0.6945 (10) 0.5411 (10) 0.4466 (10)

7 0.7013 (7) 0.5739 (6) 0.5478 (10) 0.6950 (10) 0.5409 (10) 0.4470 (10)

9 0.6968 (7) 0.5700 (9) 0.5399 (10) 0.6913 (10) 0.5379 (10) 0.4380 (10)

10 0.6948 (7) 0.5614 (6) 0.5257 (10) 0.6940 (10) 0.5413 (10) 0.4472 (10)

15 0.6993 (7) 0.5720 (9) 0.5448 (10) 0.6952 (10) 0.5417 (10) 0.4486 (10)

20 0.6977 (7) 0.5694 (9) 0.5376 (10) 0.6925 (10) 0.5378 (10) 0.4393 (10)

30 0.6932 (7) 0.5678 (9) 0.5351 (10) 0.6946 (10) 0.5400 (10) 0.4452 (10)

Table A.8: VALIDATION OF PROSER MODEL ON PROTOCOL 2. The table lists the number of dummy
classifiers used to train the PROSER model on protocol 2, as well as the corresponding performance mea-
sures on the validation dataset. For the purpose of comparison, the model is trained in two different ways:
with and without computing the bias term. However, the selection of the best training model is only based
on models that include bias computation as it is introduced in the paper by Zhou et al. (2021b). The val-
idation procedure computes three different metrics: the AUC, as suggested by the authors, as well as two
different variations of the average confidence (Schnyder, 2021, see equation 5.1). Concretely, the Avg. Conf.
(VAST) refers to a function in the VAST package (Dhamija, 2021) that covers the confidence computation for
unknown samples in the case of having a probability distribution over C + 1 classes. While the computa-
tion for known samples remains identical to equation 5.1, the confidence for unknown samples is given as
1 − maxc:c∈{1,...,C} yc. In other words, the confidence is computed by subtracting the highest probability
among all known classes C from 1. On the other hand, the version Avg. Conf. (Dummy) is applied by El-
saadany (2022) and simply considers the probability score of the unknown class, yC+1, as the confidence of
an unknown sample. Again, the confidence definition for known samples is identical to the one in the equa-
tion 5.1. Moreover, the computation of the average follows the same steps as described in subsection 5.1.2.
While these two confidence measures only serve as alternatives, the selection of the best training model is
based on the AUC score as done by Zhou et al. (2021b). In addition to the maximum performance score, a
cell contains the associated epoch (in parentheses). For every evaluation metric, the highest score among all
validated models is marked in red. Furthermore, the number of dummy classifiers that are associated with
the selected model is marked in italics.
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Number of
Dummy Clfs.

Bias Computation

AUC Avg. Conf.
(VAST)

Avg. Conf.
(Dummy)

1 0.7525 (8) 0.5632 (10) 0.3935 (8)

3 0.7579 (8) 0.5633 (10) 0.4051 (10)

5 0.7618 (8) 0.5576 (8) 0.3885 (10)

10 0.7573 (8) 0.5636 (10) 0.4017 (8)

20 0.7588 (8) 0.5657 (10) 0.4001 (8)

30 0.7534 (8) 0.5632 (10) 0.3887 (8)

50 0.7557 (8) 0.5653(10) 0.3969 (8)

75 0.7558 (8) 0.5634 (10) 0.3985 (8)

100 0.7569 (8) 0.5642 (10) 0.4046 (8)

Table A.9: VALIDATION OF PROSER MODEL ON PROTOCOL 1. The table lists the number of dummy
classifiers used to train the PROSER model on protocol 1 as well as the corresponding performance measures
on the validation dataset. The validation procedure computes three different metrics: the AUC as suggested
by the authors, as well as two different variations of the average confidence (Schnyder, 2021, see equation
5.1). For a description of these confidence metrics, see table A.8. The selection of the best training model is
based on the AUC score as done by Zhou et al. (2021b). In addition to the maximum performance score, a
cell contains the associated epoch (in parentheses). For every evaluation metric, the highest score among all
validated models is marked in red. Furthermore, the number of dummy classifiers that is associated with
the selected model is marked in italics.
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Number of
Dummy Clfs.

Bias Computation

AUC Avg. Conf.
(VAST)

Avg. Conf.
(Dummy)

1 0.7040 (9) 0.5694 (10) 0.4294 (9)

3 0.6994 (5) 0.5663 (6) 0.4116 (8)

5 0.7042 (9) 0.5686 (10) 0.4371 (9)

10 0.7048 (9) 0.5691 (10) 0.4331 (9)

20 0.7049 (9) 0.5690 (10) 0.4446 (9)

30 0.7022 (8) 0.5674 (10) 0.4225 (8)

50 0.7000 (9) 0.5626 (4) 0.4147 (9)

75 0.7027 (8) 0.5673 (7) 0.4235 (8)

100 0.7026 (9) 0.5675 (10) 0.4356 (9)

Table A.10: VALIDATION OF PROSER MODEL ON PROTOCOL 3. The table lists the number of dummy
classifiers used to train the PROSER model on protocol 3 as well as the corresponding performance measures
on the validation dataset. For a description of the meaning of the columns and metrics, see table A.8.
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FPR Softmax EOS OpenMax EVM PROSER

0.0010 - 0.2710 - - 0.0552

0.0030 0.1634 0.3795 0.2469 - 0.1091

0.0060 0.2276 0.4347 0.3160 0.1029 0.1660

0.0090 0.2514 0.4681 0.3731 0.1631 0.1971

0.0100 0.2598 0.4757 0.3855 0.1678 0.2060

0.0200 0.3172 0.5357 0.4512 0.2336 0.2600

0.0300 0.3514 0.5602 0.4848 0.2981 0.2936

0.0400 0.3850 0.5745 0.5145 0.3359 0.3272

0.0500 0.4071 0.5890 0.5329 0.3800 0.3519

0.0600 0.4226 0.6017 0.5474 0.4071 0.3672

0.0700 0.4359 0.6093 0.5590 0.4288 0.3814

0.0800 0.4459 0.6178 0.5724 0.4491 0.3978

0.0900 0.4572 0.6243 0.5822 0.4678 0.4071

0.1000 0.4660 0.6300 0.5940 0.4795 0.4205

0.2000 0.5317 0.6484 0.6319 0.5683 0.4953

0.3000 0.5641 0.6503 0.6379 0.5952 0.5297

0.4000 0.5878 0.6519 0.6397 0.6109 0.5498

0.5000 0.6060 0.6524 0.6407 0.6179 0.5648

0.6000 0.6188 0.6526 0.6414 0.6236 0.5764

0.7000 0.6321 0.6526 0.6421 0.6272 0.5847

0.8000 0.6398 0.6526 0.6421 0.6295 0.5897

0.9000 0.6421 0.6526 0.6422 0.6305 0.5934

1.0000 0.6429 0.6526 0.6422 0.6319 0.5967

Table A.11: TEST PERFORMANCE ON PROTOCOL 1. This table illustrates the performances of the
evaluated algorithms on the test dataset of protocol 1 at selected FPR values. The columns Softmax, EOS,
OpenMax, EVM, and PROSER contain the performance measures in the form of CCR values. In contrast, the
column FPR contains a selection of FPR thresholds at which the performance can be compared. Cells that
comprise a " - " refer to the fact that the algorithm could not achieve the associated FPR value at any rejection
threshold θ. The maximum CCR value at every FPR threshold is marked in red.
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FPR Softmax EOS OpenMax EVM PROSER

0.0010 - - - 0.0200 0.0187

0.0030 - - - 0.0426 0.0600

0.0060 - - 0.1226 0.0826 0.0981

0.0090 - - 0.1561 0.0923 0.1252

0.0100 - - 0.1645 0.1097 0.1368

0.0200 0.1839 0.2097 0.2213 0.1839 0.1884

0.0300 0.2181 0.2587 0.2935 0.2387 0.2355

0.0400 0.2606 0.2890 0.3174 0.2774 0.2735

0.0500 0.2923 0.3148 0.3529 0.3071 0.2994

0.0600 0.3058 0.3445 0.3935 0.3413 0.3245

0.0700 0.3245 0.3742 0.4155 0.3735 0.3400

0.0800 0.3355 0.3923 0.4271 0.3923 0.3626

0.0900 0.3548 0.4129 0.4387 0.4103 0.3723

0.1000 0.3658 0.4303 0.4587 0.4239 0.3845

0.2000 0.4748 0.5206 0.5652 0.5342 0.5013

0.3000 0.5400 0.5703 0.6039 0.5832 0.5619

0.4000 0.5768 0.5903 0.6245 0.6168 0.5884

0.5000 0.6103 0.6000 0.6400 0.6426 0.6077

0.6000 0.6413 0.6090 0.6510 0.6626 0.6277

0.7000 0.6613 0.6187 0.6587 0.6768 0.6471

0.8000 0.6755 0.6213 0.6652 0.6819 0.6574

0.9000 0.6884 0.6232 0.6729 0.6890 0.6684

1.0000 0.6968 0.6239 0.6774 0.6929 0.6774

Table A.12: TEST PERFORMANCE ON PROTOCOL 2. This table illustrates the performances of the eval-
uated algorithms on the test dataset of protocol 2 at selected FPR values. For a description of the columns,
see table A.11.



82 Appendix A. Attachments

FPR Softmax EOS OpenMax EVM PROSER

0.0010 - - - - 0.0539

0.0030 - - - - 0.1186

0.0060 - - - 0.1373 0.1769

0.0090 - 0.2550 - 0.1938 0.2289

0.0100 - 0.2630 - 0.2050 0.2392

0.0200 - 0.3352 0.3430 0.2774 0.3177

0.0300 0.3866 0.3719 0.3983 0.3361 0.3639

0.0400 0.4239 0.4013 0.4298 0.3701 0.3929

0.0500 0.4479 0.4293 0.4552 0.4012 0.4240

0.0600 0.4686 0.4526 0.4786 0.4257 0.4439

0.0700 0.4877 0.4686 0.4961 0.4461 0.4644

0.0800 0.5034 0.4815 0.5101 0.4599 0.4812

0.0900 0.5185 0.4986 0.5230 0.4706 0.4963

0.1000 0.5335 0.5103 0.5381 0.4854 0.5108

0.2000 0.6083 0.5859 0.6170 0.5778 0.5818

0.3000 0.6511 0.6231 0.6573 0.6249 0.6258

0.4000 0.6792 0.6457 0.6905 0.6539 0.6538

0.5000 0.6995 0.6626 0.7126 0.6739 0.6739

0.6000 0.7187 0.6755 0.7265 0.6861 0.6848

0.7000 0.7306 0.6839 0.7332 0.6942 0.6945

0.8000 0.7444 0.6905 0.7361 0.7000 0.7023

0.9000 0.7532 0.6952 0.7395 0.7034 0.7066

1.0000 0.7565 0.6964 0.7439 0.7059 0.7115

Table A.13: TEST PERFORMANCE ON PROTOCOL 3. This table illustrates the performances of the eval-
uated algorithms on the test dataset of protocol 3 at selected FPR values. For a description of the columns,
see table A.11.
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Figure A.1: OSCR CURVES FOR SOFTMAX. This figure depicts, for all three protocols, the OSCR curves
associated with the baseline model.
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Figure A.2: OSCR CURVES FOR EOS. This figure depicts, for all three protocols, the OSCR curves asso-
ciated with EOS.
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Figure A.3: OSCR CURVES FOR OPENMAX. This figure depicts, for all three protocols, the OSCR curves
associated with OpenMax.
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Figure A.4: OSCR CURVES FOR EVM. This figure depicts, for all three protocols, the OSCR curves
associated with EVM.
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Figure A.5: OSCR CURVES FOR PROSER. This figure depicts, for all three protocols, the OSCR curves
associated with PROSER.
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