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Abstract

Neural methods have shown great success in string transduction tasks such as
grapheme-to-phoneme conversion or morphological inflection. A particularly suc-
cessful class of models for these tasks are recurrent neural transducers that use an
encoder-decoder architecture to predict character-level edit actions. This work builds
on such a neural transducer. Despite its ongoing success, this particular approach
offers room for improvement: The model uses an outdated software framework, and
the implementation is tailored toward the use on a CPU. This leads to low training
efficiency preventing the application to large datasets. Moreover, the fully recurrent
structure of the model does not reflect recent technological developments, as the
non-recurrent transformer architectures have become dominant in many areas of
natural language processing.
This thesis addresses these shortcomings by reimplementing the model using the ma-
chine learning framework PyTorch, implementing GPU-supported mini-batch train-
ing and batched greedy decoding, as well as adding support for transformer-based
encoders. Experimental results on standard datasets confirm the successful reimple-
mentation. Top rankings in the SIGMORPHON 2022 Shared Task on Morpheme
Segmentation (featuring training sets of up to 750,000 samples) demonstrate the
model’s ability to scale: GPU training and greedy decoding are up to 250 times,
respectively, 10 times faster. While transformer-based encoders rarely outperformed
recurrent encoders, the initial experiments in this work lay the foundation for further
experimentation.



Zusammenfassung

Neuronale Methoden haben sich bei der Umwandlung (engl. transduction) von Zei-
chenketten (engl. strings), wie derjenigen von Graphemen in Phoneme oder der
morphologischen Flexion, als sehr erfolgreich erwiesen. Eine besonders erfolgreiche
Klasse von Modellen für diese Aufgaben sind rekurrente neuronale Transducer, die
eine Kodierer-Dekodierer-Architektur (engl. encoder-decoder architecture) zur Vor-
hersage von konkreten Änderungen (engl. edit actions) auf Zeichenebene verwenden.
Die vorliegende Arbeit baut auf einem solchen Transducer auf. Trotz seines anhalten-
den Erfolgs bietet dieser konkrete Ansatz Potential für Verbesserungen: Das Modell
verwendet ein veraltetes Software-Framework, und die Implementierung ist auf den
Einsatz auf einem CPU zugeschnitten. Dies führt zu einer geringen Trainingseffizi-
enz, was die Anwendung auf grosse Datensätze verhindert. Ausserdem spiegelt die
vollständig rekurrente Struktur des Modells nicht neuere technologische Entwick-
lungen wieder, da nicht-rekurrente Transformer-Architekturen in Natural Language
Processing für viele Aufgaben vorherrschend geworden sind.
Diese Arbeit befasst sich mit diesen Schwächen, indem das Modell in dem Machine-
Learning-Framework PyTorch reimplementiert wird, GPU-gestütztes Mini-Batch-
Training und Batched Greedy Decoding implementiert werden und das Modell um
Support für Transformer-basierte Kodierer (engl. encoders) erweitert wird. Experi-
mentelle Ergebnisse mit Standard-Datensätzen bestätigen die erfolgreiche Neuim-
plementierung. Spitzenplatzierungen im SIGMORPHON 2022 Shared Task on Mor-
pheme Segmentation (mit Trainingsdatensätzen von bis zu 750’000 Beispielen) de-
monstrieren die Skalierbarkeit des Modells: Training und Greedy Decoding auf einem
GPU sind bis zu 250 respektive 10 Mal schneller. Während Transformer-basierte Ko-
dierer nur in wenigen Fällen besser abschnitten als rekurrente Kodierer, bilden die
experimentellen Ergebnisse dieser Arbeit die Grundlage für weitere Experimente.
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1 Introduction

1.1 Morphological and Phonological String

Transduction Tasks

As in many areas of natural language processing (NLP), neural methods have also
been successfully applied to morphological and phonological string transduction
tasks. Loosely speaking, such tasks deal with transforming single words from or to
a specific morphological or phonological form. A typical phonological string trans-
duction task is grapheme-to-phoneme conversion (G2P). In this task, a sequence of
characters (input) is mapped to a sequence of transduction symbols (output), rep-
resenting the input’s pronunciation [Black et al., 1998; Jiampojamarn et al., 2007].
Table 1.1 shows an example of this task. The table also shows examples of morpho-
logical tasks: Morphological inflection and morpheme segmentation. The former is
the task of generating a target word form, given a source word form and the target
word form’s morpho-syntactic features, e.g., its part of speech (POS) or gender [Cot-
terell et al., 2016, 2017]. The latter is the task of converting a word into a sequence
of morphemes [Creutz and Lagus, 2002]. These tasks typically have applications in
other downstream NLP tasks. Morphological inflection, for instance, is used in neu-
ral machine translation (NMT) systems, and G2P is an important building block in
text-to-speech or speech-to-text systems [Rao et al., 2015; Aharoni and Goldberg,
2017].

Task Input Output
INFL sue V;PST sued
G2P abandonner a b Ã d O n e
MS hierarchyisms hierarch @@y @@ism @@s

Table 1.1: Examples for morphological inflection (INFL), grapheme-to-phoneme
conversion (G2P) and morpheme segmentation (MS).

1



Chapter 1. Introduction

1.2 Neural Transducers with Edit Actions

One class of models has been particularly successful in these tasks: The neural trans-
ducer, which models the output string as a sequence of edit actions based on the
input string. Freely speaking, these models transduce a sequence of input characters
into a sequence of output characters by traversing the input sequence stepwise. At
each step of the process, the model produces a single edit action based on the model’s
current state. The edit action of the previous step and an aligned character from the
input string describe this model state. What edit actions are possible depends on
the specific model. Typically, this includes insertions (adding a character), deletions
(removing a character from the input sequence), and substitutions (replacing a char-
acter from the input sequence). These edit actions serve two purposes: Firstly, they
transduce a character in the input sequence into a character in the output sequence.
Secondly, they decide on the alignment of the input character used in the modelling
of edit actions (altering the model state). Table 1.2 gives an illustrative example
of this process. It shows the G2P transduction of the French word abandonner. At
each step, the model produces an edit action. Depending on the action, the output
is extended (in the case of a COPY or INSERT action) and the alignment pointer
in the input sequence is moved (in the case of a DELETE or COPY action).1

Step Edit action Input alignment Output
1 COPY(a) a b a n d o n n e r a
2 COPY(b) a b a n d o n n e r a b
4 DELETE(a) a b a n d o n n e r a b Ã
3 INSERT(Ã) a b a n d o n n e r a b Ã
4 DELETE(n) a b a n d o n n e r a b Ã
5 COPY(d) a b a n d o n n e r a b Ã d
6 DELETE(o) a b a n d o n n e r a b Ã d
7 INSERT(O) a b a n d o n n e r a b Ã d O
8 COPY(n) a b a n d o n n e r a b Ã d O n
9 DELETE(n) a b a n d o n n e r a b Ã d O n
10 COPY(e) a b a n d o n n e r a b Ã d O n e
11 DELETE(r) a b a n d o n n e r a b Ã d O n e

Table 1.2: The G2P transduction process for the French word abandonner. Bold
and underlined letters mark the aligned input character of the current
transducer step.

Inductive bias The success of these transducers has many reasons. First of all,
the way of solving the problem is based on an inductive bias known to work well

1A more comprehensive and theoretical introduction is given in Chapter 2.
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Chapter 1. Introduction

for string transduction tasks: Transduction is modelled as a monotonic one-to-one
mapping between input and output characters [Makarov and Clematide, 2018a; Wu
and Cotterell, 2019; Rios et al., 2021]. Table 1.2 demonstrates this. At each step,
precisely one input character is aligned, and the characters are consumed strictly
from left to right (monotonic).

Data scope What is more, data requirements are comparatively low compared to
other NLP tasks such as NMT (hundreds versus millions of training samples). As
such, data scalability is typically not an essential requirement for string transduc-
tion tasks [Wu et al., 2021]. This is handy as these models typically do not allow for
the parallelization of computations needed to speed up training and inference time.
These models commonly use recurrent neural structures (such as RNNs or LSTMs),
which only allow for limited parallelization by their design. More importantly, effi-
cient training and inference procedures for transition-based systems such as neural
transducers may be unequally hard to parallelize [Ding and Koehn, 2019; Noji and
Oseki, 2021], effectively decreasing efforts to implement suitable solutions.

Interpretability Lastly, modelling explicit edit actions offers interpretability. The
model’s output, a sequence of edit actions, resembles a human’s problem-solving
strategy.

1.3 Motivation

Makarov and Clematide [2018a] present such an approach for a neural transducer.
Their recurrent neural-transition based model uses imitation learning to learn ex-
plicit edit actions (deletion, copy, and insertion) derived from an expert policy.
Variations of this approach have reached top rankings in various shared task sub-
missions. This includes the CoNLL-SIGMORPHON 2018 Shared Task on Universal
Morphological Reinflection [Makarov and Clematide, 2018c] as well as the SIGMOR-
PHON 2020 and 2021 Shared Tasks on Multilingual G2P [Makarov and Clematide,
2020; Clematide and Makarov, 2021]. Despite their recent and ongoing success, the
approach can be improved on various levels in terms of actuality.

Software actuality Firstly, the software uses DyNet [Neubig et al., 2017]. DyNet
is a software toolkit that can be used for building neural architectures. However,

3



Chapter 1. Introduction

the development has effectively stopped.2 An up-to-date and widely-used software
framework is a key requirement for sustainable and reliable software development.
Such a framework ensures that the developer community adequately addresses soft-
ware bugs and that new software architectures are timely implemented. With regard
to the ever-changing field of NLP, the latter is especially important.

Model actuality Secondly, the use of recurrent model architecture does not re-
flect more recent developments in the field of NLP, such as the use of transformers
[Vaswani et al., 2017]. Generally, transformers have shown great success in various
NLP areas such as language modelling [Devlin et al., 2019] or question answering
[Yang et al., 2019]. Wu et al. [2021] show that such architectures can also be applied
successfully to morphological tasks. It stands to reason that the here discussed ap-
proach may also benefit from such architecture.
Transformers also provide a good example for the previously discussed software
actuality. As of now, the DyNet framework does not offer any transformer-based
implementations according to its documentation3, and community-driven projects
seem inexistent. Other frameworks such as PyTorch [Paszke et al., 2019] fill this
gap: PyTorch provides own implementations4, and community-driven projects such
as Hugging Face5 make up-to-date and research-related models available as open
source.

Data scalability Thirdly, the discussed approach of Makarov and Clematide [2018a]
lacks data scalability for the same reasons as previously discussed (recurrent architec-
ture, complex implementation for training and inference procedure). While this may
not be a particularly critical issue in morphological tasks, the recent SIGMORPHON
2022 Shared Task on Morpheme Segmentation requires models with a capacity to
process higher data volumes [Batsuren et al., 2022]: Training data sets contain up
to 750,000 samples. This is in stark contrast to, for instance, the SIGMORPHON
2020 Shared Task on Multilingual G2P with 3,600 training samples per language
[Gorman et al., 2020]. Importantly, data scalability may also be a requirement for
the successful application of novel neural architectures (transformers), e.g., Wu et al.
[2021] state that the success of their transformer-based model largely depends on
the batch size.

2Evidence of this is the activity in their GitHub repository (https://github.com/clab/dynet).
Commits are rather rare and concentrate on documentation and deployment/installation issues.

3https://dynet.readthedocs.io/en/latest
4e.g. https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
5https://huggingface.co
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1.4 Research Questions

This thesis builds on the successful work on neural transducers by Makarov and
Clematide [2020] used for morphological and phonological tasks. The focus lies on
contributions to overcome the previously discussed challenges (software actuality,
architecture actuality, and data scalability) by further developing an existing neural
transducer model. The model used by Makarov and Clematide [2020] serves as a
starting point. This model was successfully used for the SIGMORPHON 2020 shared
task on multilingual G2P and served one year later as a baseline for the 2021 version
of the same shared task [Gorman et al., 2020; Ashby et al., 2021]. The model is a
variation of Makarov and Clematide [2018a] and is, therefore, an appropriate starting
point. Given this model and the identified challenges (Section 1.3), this thesis aims
to answer the following research questions.

1.4.1 Can the Model Be Ported from DyNet to PyTorch with

Feature Parity?

To tackle this question, the baseline model [Makarov and Clematide, 2020] is rewrit-
ten using PyTorch [Paszke et al., 2019]. The idea is to produce a conceptually
equivalent model (feature parity) that performs equally. The PyTorch-based reim-
plementation serves two purposes. It updates the existing model to use an up-to-date
framework and builds the basis for additional features developed using PyTorch (as
discussed in the next questions).

Choosing PyTorch is motivated by multiple reasons: Firstly, it is widely used in
academia. An analysis of Papers with Code shows that, as of the end of June 2022,
around 60% of papers with implementations use PyTorch.6 Secondly, the devel-
opment of the PyTorch framework is backed by a large community with regular
software updates.7 Thirdly, the framework offers a wide range of components for
data handling, model architecture, and training/inference optimization facilitating
the development and use of machine learning models.8

The reimplementation is evaluated using recent shared task datasets on G2P by
comparing results with the baseline model.

6https://paperswithcode.com/trends
7In the first half of 2022, the framework has received two minor updates (1.11 and 1.12) with a

wide range of new features and bug fixes (https://github.com/pytorch/pytorch/releases).
8Chapter 3 looks at some of these aspects in more detail.
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1.4.2 Can the Model Scale to Higher Data Volume (or Is It

Technically or Conceptually Bound to Lower Settings)?

Two aspects of the model are targeted to increase data scalability: Firstly, the ap-
proach’s training routine is adapted to enable mini-batch training, i.e., the simulta-
neous training of multiple samples (batches). Secondly, greedy decoding used during
inference is also leveraged to process batches. Importantly, mini-batch training and
batched greedy decoding should provide GPU support to make full use of paral-
lelization.

It is evaluated with respect to the baseline model examing whether the implemented
changes lead to performance changes. Additionally, the implementation is compet-
itively challenged as submissions to this year’s SIGMORPHON 2022 shared tasks
on morpheme segmentation and morphological inflection.

1.4.3 Can More Recent Software Architectures Improve

Performance? More Concretely, Can a Transformer Encoder

Beat an LSTM Encoder?

This question is addressed by enabling the architecture to use a transformer-based
encoder. The choice of transformer is inspired by the wide and successful application
of transformers in NLP and the more recent success in morphological tasks.

The implementation for the transformer encoder follows the original transformer
architecture of Vaswani et al. [2017], supported by the success of Wu et al. [2021].
Generally, different (transformer-based) encoders are possible, or decoders, for that
matter. However, a comprehensive analysis of encoder (and decoder) architectures is
out of the scope of this thesis. The work in this thesis aims to provide initial results
opening up the field for more experiments in the future. For this purpose, the im-
plementation’s software design aims to facilitate adding more encoder architectures.

The evaluation specifically compares the performance to the so far used LSTM-based
encoder on shared task datasets.

1.5 Thesis Structure

In the following, I provide a short overview of the following chapters and their
relations to each other.
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Chapter 2 This chapter serves two purposes: Firstly, it introduces the reader to
the related literature. Secondly, it familiarizes the reader with the theoretical back-
ground of the neural transducer model used in this thesis. More precisely, Section 2.1
discusses the various approaches used for string transduction tasks. Special attention
is given to recent neural approaches and how they relate. Section 2.2 is dedicated
to the neural transducer approach used in this thesis.

Chapter 3 Here, the design and implementation of the various adaptations to the
baseline model are discussed. The discussion is related to the previously established
research questions and is similarly structured. Section 3.1 highlights important as-
pects of the baseline model’s code base, and Section 3.2 covers the documentation
of the source code. Section 3.3 addresses the first research question and discusses
the reimplementation of the model in PyTorch. Based on the work discussed in
Section 3.3, Section 3.4 covers the work for implementing mini-batch training and
batched greedy decoding. The implementation of transformer encoders is addressed
in Section 3.5. Section 3.6 summarizes other noteworthy aspects of the implementa-
tion.

Chapter 4 This chapter evaluates the work as discussed in Chapter 3. Section 4.1
introduces the datasets used in the experiments (Section 4.2 lists the corresponding
metrics). The evaluation of the experiments is structured similarly to Chapter 3:
Section 4.3 focuses on the PyTorch reimplementation, Section 4.4 on the mini-batch
training implementation and Section 4.5 on evaluating transformer-based encoders.

Chapter 5 Finally, this chapter concludes the thesis. It discusses the main results
of this thesis and identifies future work.
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2 Related Work and Background

2.1 Related Work

Traditionally, weighted finite-state transducers (WFST) were used to solve string
transduction tasks such as inflection generation [Dreyer et al., 2008; Cotterell et al.,
2014]. In the context of language, such transducers model a mapping between an
input and output sequence of characters. They are weighted because each transition
carries a weight. These weights are derived from the data with statistical techniques
(or set manually) and allow to account for uncertainty in the data [Mohri, 2004].
WFSTs inherently model the alignment between characters in input and output as
monotonic. This is a fitting property as many morphological string-to-string tasks
mostly consist of monotonic transduction.

Following the general shift from non-neural to neural approaches in NLP, neural
approaches also started being applied to morphological tasks. Yao and Zweig [2015]
propose a sequence-to-sequence (seq2seq) encoder-decoder model for G2P. They
evaluate neural models without and with explicit character alignment. They find
that, while neural models without alignment come close to previous (non-neural)
best results, explicit character alignment between encoder and decoder is needed to
beat said results. In a similar attempt, Faruqui et al. [2016] experiment with seq2seq
models for morphological inflection generation. Kann and Schütze [2016b] go in a
similar direction. However, they use soft attention between their encoder and de-
coder, allowing the modelling of soft character alignment. As proposed by Bahdanau
et al. [2016], the soft attention mechanism models a weighted representation of all
input character embeddings at each decoding step. The decoder then uses this rep-
resentation to produce the output character. Importantly, these weights are learned
during training. The idea is that the model automatically learns alignment from the
training data. While this soft attention mechanism resembles alignment, it is not
the same conceptually: Alignment defines a vector of hidden variables, and attention
defines a learned parametric feature function. In any case, the work of Kann and
Schütze [2016b] has identified important gaps in previous work. In fact, their sub-
mission [Kann and Schütze, 2016a] ranked best in the SIGMORPHON 2016 Shared
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Task on Morphological Reinflection [Cotterell et al., 2016], indicating the impor-
tance of some alignment mechanism.
Aharoni and Goldberg [2017] emphasise (monotonic) alignment in their encoder-
decoder model, inspired by the inherent alignment between words and their in-
flected forms. Their approach models alignment as a pointer (to the input string).
While less explicit approaches such as Kann and Schütze [2016b] can reach high
performance, their seq2seq architecture is comparatively more data-intensive as the
model must learn the alignment (expressed by attention) on its own. This makes
the approach by Aharoni and Goldberg [2017] more data efficient and leads to com-
paratively higher performance in low data settings. However, their method relies on
gold action sequences computed by an external aligner. During training, the model
is then optimized based on these sequences. This setup promotes well-known issues
with this kind of training: On the one hand, the model is never exposed to its own
mistakes during training (exposure bias). On the other hand, the model is optimized
based on token-level loss, while it is evaluated on sequence-level loss (loss-evaluation
mismatch). Both phenomena can affect performance negatively [Wiseman and Rush,
2016].
Makarov and Clematide [2018b] build on the idea of Aharoni and Goldberg [2017].
They address the problem of the exposure bias and loss-evaluation mismatch with
exploration at training time. More specifically, the model can choose alternative ac-
tions (leading to the same, correct output). Additionally, they model the transducer
as a transition-based system over edit actions and add an additional copy edit. In
a further step, Makarov and Clematide [2018a] eliminate the need for a charac-
ter aligner. Instead, the approach uses an expert policy and imitation learning (IL),
leading to high performance on several benchmarks. Wu et al. [2018] examine the ef-
fect of hard (non-monotonic) attention in neural encoder-decoder models, modelling
alignment between input and output characters as a latent variable learned by the
model. The alignment is restricted such that an output character is only allowed
to attend to exactly one input character. They find that hard attention improves
performance compared to similar methods with soft attention (such as Kann and
Schütze [2016b]). In contrast to methods such as Aharoni and Goldberg [2017], their
approach differs in two ways: Firstly, the alignment is non-monotonic. Secondly, the
alignment is learned by the model itself and not produced by a separate aligner.
Wu and Cotterell [2019] build on the idea of Wu et al. [2018] and experiment with
hard monotonic attention. They find that enforcing monotonicity brings further im-
provements. In fact, they claim state-of-the-art (SOTA) performance for the task
of morphological inflection at the time. They argue that jointly training monotonic
alignment with the transduction model is advantageous to pipeline approaches such
as Aharoni and Goldberg [2017].

9
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All of the previously discussed neural approaches use some form of recurrent archi-
tecture (such as LSTMs [Hochreiter and Schmidhuber, 1997]) in their encoder and
decoder. Such architectures have been popular not only for string transduction tasks
but also for other seq2seq NLP tasks. A prominent example is neural machine trans-
lation [Bahdanau et al., 2016]. It is this domain in which the transformer architecture
was firstly applied [Vaswani et al., 2017]. Ever since, transformer-based architectures
have been applied with great success to manifold tasks such as language modelling
[Devlin et al., 2019], question answering [Yang et al., 2019], part-of-speech tagging
[Heinzerling and Strube, 2019] or punctuation prediction [Michail et al., 2021]. Con-
sequently, these successes raise the question of whether transformers can similarly
benefit string transduction tasks. A quick glance at recent shared tasks results would
not necessarily suggest that: Although two out of the four winners of the SIGMO-
PRHON 2020 shared task on morphological inflection are transformer-based models,
other neural architectures perform similarly well [Vylomova et al., 2020]. A similar
outcome can be observed in the SIGMORPHON 2021 shared task on G2P [Gorman
et al., 2020]. The early tries of Yolchuyeva et al. [2019] point in a similar direction.
While they achieve competitive results, their transformer model does not deliver
exceeding performance.
Wu et al. [2021] make a similar observation and try to explain this phenomenon.
Firstly, models used for morphological tasks are usually trained on comparably small
data sets, especially with regard to neural machine translation (from where the trans-
former originated). Secondly, the benefits of non-recurrent architectures may not be
clear. They argue that benefits of the transformer architecture such as the modelling
of long-range dependency [Vaswani et al., 2017; Gehring et al., 2017], word disambi-
guity or training speed are not critical for the success of morphological-related neural
models. However, it is also Wu et al. [2021] that claim SOTA performance with their
transformer-based approach for morphological inflection, G2P, and transliteration.
They argue that a sufficiently large batch size is crucial in outperforming recurrent
models. This may lead to the conclusion that the correct choice of hyperparame-
ters is crucial for the success of transformers, and the literature evolving around
morphological problems has only started to elaborate on these settings. A hint to
the possibly large effects of different hyperparameter values for transformers is also
given by Popel and Bojar [2018], who evaluate a range of different parameters and
parameter values in the context of neural machine translation.
Other noteworthy contributions are made by and Rios et al. [2021] and Dong et al.
[2022]. Former experiment with a loss function that biases attention towards mono-
tonicity. They argue that this may bring slight improvements for some setups with
transformers. Latter, develop a pre-trained grapheme model, similarly to BERT, but
pre-trained on graphemes. They show that their approach can lead to substantial
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performance improvements for transformer-based models in G2P.

2.2 A Closer Look at the Neural Transducer

This section gives a closer look at the neural transducer model that serves as a
starting point for this master thesis to prepare the reader for the following chapters.
This model is equivalent to one of the baselines for the SIGMORPHON 2021 Shared
Task on Multilingual G2P [Ashby et al., 2021]. Conceptually, this model is very sim-
ilar to Makarov and Clematide [2018a] with adaptations to the G2P task [Makarov
and Clematide, 2020]. The following explanations are largely based on Makarov and
Clematide [2018a, 2020].

The model defines a neural seq2seq (encoder-decoder) system that transduces an
input string into an output string. The transducer performs single-character edits
(insertion, deletion, substitution, and copy). Given an input sequence of characters
x = x1 . . . x|x|, xi ∈ Σx and an edit action sequence a = a1 . . . a|a|, ai ∈ Σa, the
transducer models a conditional distribution over the possible edits:

pθ(a | x) =
|a|∏
j=1

pθ(aj | a<j,x) (2.1)

The characters of the output sequence y = y1 . . . x|y|, yi ∈ Σy are deterministically
computed from x and a.

The encoder consists of a bidirectional LSTM model [Graves and Schmidhuber,
2005]. The encoder produces a representation hi for every input character xi

hi = BiLSTM(E(xi), . . . , E(xn)), (2.2)

where E is a lookup matrix for the embedding of xi. The transitions (i.e., edit
actions) are scored based on the LSTM decoder output. The decoder output st of
decoder step t is defined as

st = LSTM(ct−1, [A(at−1;hi)]), (2.3)

where ct−1, A(at−1), and hi are the previous decoder state, the embedding of the
previous action state, and the embedding of the currently aligned input character,
respectively. Which input character xi is aligned in the current decoder step depends
on the previously executed actions. At the beginning of the transduction process, the
alignment pointer points to the first element of the input sequence xi. Consecutively,
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the alignment is increased by one (moved to the next input character) if a copy,
deletion, or substitution edit action is executed and remains unchanged in the case
of an insertion. This follows traditional definitions for edit actions (such as Cotterell
et al. [2014]). The transition probabilities at time step t are then calculated as:

P (at = k|a<t,x,Θ) = softmaxk(W ∗ st + b) (2.4)

W and b belong to the model parameters Θ (additionally to the embeddings and
LSTM parameters).

The model parameters are optimized using imitation learning (IL), i.e., the model
is trained to imitate an expert policy. IL is a training method used in NLP for
structured prediction problems [Daumé et al., 2009; Ross et al., 2011; Chang et al.,
2015]. Formally, structured prediction refers to problems with exponential output
solutions in the input size. IL emphasizes the importance of state space exploration
since it addresses the exposure bias, as discussed in more detail later on.
The training objective is twofold: The first objective is to minimize the sequence-
level loss, expressed as Levenshtein distance [Levenshtein, 1966] between the target
sequence and the predicted sequence y. The second ensures that the target sequence
is achieved most economically (with a minimum number of actions). The goal is
to maximize the likelihood of optimal actions. This is achieved by minimizing the
marginal negative log-likelihood of all optimal actions [Riezler et al., 2000]:

L(D,Θ) = −
N∑
l=1

m∑
t=1

log
∑
a∈At

P (a|a<t,x
(l),Θ), (2.5)

where T = {(x(l),y(l))}Nl=1 describes the training data and At the set of optimal
actions at step t.
The expert policy, i.e., the gold actions the model should learn to perform, is based on
the Stochastic Edit Distance (SED) model introduced by Ristad and Yianilos [1998].
Conceptually, it is a probabilistic version of the Levenshtein distance. Importantly,
the model parameters are learned from the training data itself (before the actual
training of the transducer). During training, the expert policy then uses the trained
SED model to query the next best actions, given the partial prediction y<t, input
remainder x≥i and target sequence. Note that multiple actions may be optimal at
some time step t. In this case, all these are optimized with respect to the model
parameters Θ, as seen in Equation 2.5. In any case, the actions derived from the
SED expert minimize the string distance cost and, thus, minimize the first training
objective. Moreover, the training procedure uses exploration at training time (roll-in
stage). At time step t, the model either executes the optimal action derived from
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the SED expert or, alternatively, samples from its own predictions. The idea is to
expose the model to its own mistakes during training and, consequently, enable it to
recover from them. This decreases the model’s exposure to the exposure bias, which
can influence model performance negatively [Wiseman and Rush, 2016]. Whether
the model samples from its own predictions or not is determined by the sampling
probability psampling (depending on the epoch number i), derived from the following
schedule:

psampling(i) = 1− 1

1 + exp(i)
(2.6)

Given the denominator of the second term in Equation 2.6, the second term ap-
proaches 0 after around 10 epochs. Thus, after a short time, the model samples
entirely from its own predictions.
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3 Design / Implementation

This chapter discusses the necessary conceptual and technical changes for the reim-
plementation of the baseline model in PyTorch (Section 3.3), mini-batch training
and batched greedy decoding (Section 3.4), as well as transformer encoders (Sec-
tion 3.5). Generally, I present important and challenging implementation details to
showcase my work. These sections are all similarly structured: The first part dis-
cusses the concept for the implementation, followed by the technical implementation
in the second part. To prepare the reader for this discussion, Section 3.1 highlights
relevant implementation details of the baseline transducer model. Section 3.2 docu-
ments the location and documentation style of the source code. Lastly, Section 3.6
summarizes other noteworthy aspects of the implementation.

3.1 The Code Base of the Baseline Model

The starting point for the reimplementation of the model is the code used for one of
the baselines for the SIGMORPHON 2021 shared task on multilingual G2P [Ashby
et al., 2021] 1. Conceptually, and as described in detail in Section 2.2, the model is
similar to Makarov and Clematide [2020].

The source code consists of multiple Python files that group conceptually close soft-
ware components. For instance, the code for training the model, the implementation
of the neural model itself, and the SED expert are all encapsulated in a different
file. However, much of the implementation work done in this thesis revolves around
conceptual and technical changes to a single method. The technical understanding of
this method is essential in understanding the presented work. The code description
in Subsection 3.1.1 is limited to this essential part in order to stay within the scope
of this thesis. The observations I make in Subsection 3.1.2 relate to this description.

1The code for the baseline model can be found here: https://github.com/peter-
makarov/il-reimplementation/tree/feature/sgm2021. In fact, Peter Makarov had al-
ready started implementing the model in PyTorch, and the code on the corre-
sponding branch was my actual starting point: https://github.com/peter-makarov/il-
reimplementation/commit/aea76439d63820b846452a9074550ddbfe547610.
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However, I have added other relevant observations based on analyzing other parts
of the code. Subsection 3.1.2 aims to sharpen the reader’s view for the necessity of
changes (in relation to the different implementations, as discussed in the following).

3.1.1 The transduce Method

The Transducer class2 implements all necessary methods used for training and
inference (greedy and beam search decoding). The most important method is the
transduce method. It is used during training and inference (i.e., when the output is
unknown). More concretely, it combines all aspects of the IL training approach, the
alignment modeling, and is used for greedy decoding.3 Figure 3.1 gives a conceptual
overview of the transduce method. Apart from beam_search_decode, this method
uses all other methods of the Transducer class. In the following, the different steps
shown in Figure 3.1 are referenced as Step x, and the reader is walked through the
implementation of transduce.

In the first step, the encoder is executed (Listing 3.1): The input embeddings are re-
trieved from the embeddings lookup matrix (line 196) and subsequently run through
the encoder network (line 197). This corresponds to Step 1.

196 input_emb = self.input_embedding(encoded_input , is_training)
197 bidirectional_emb = self.bidirectional_encoding(input_emb )[1:]

Listing 3.1: The input sequence is encoded.

In a second step, the transduce method initializes the transducer state, as shown in
Listing 3.2 (Step 2 ). The description of the transducer state follows the theoretical
description in Section 2.2: It is described by the alignment pointer used to select
the currently aligned input character (alignment) and the action history used to
access the previously executed action (action_history). Additionally, the output

list stores the transduced output, and the losses list stores the loss for each step.

202 alignment = 0
203 action_history: List[int] = [BEGIN_WORD]
204 output: List[str] = []
205 losses: List[dy.Expression] = []

Listing 3.2: The initialization of the transducer state.

2Implementation path: trans/transducer.py/Transducer (with respect to the repository)
3Beam search decoding is implemented by a separate method (beam_search_decode). Concep-

tually, it differs quite a lot from greedy decoding. As this decoding method is not the focus of
implementation in this thesis, the discussion is limited to greedy decoding.
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In a further step, the compute_valid_actions method computes all valid actions
for the current time step (Step 3 ). Copy, delete, and substitution actions are valid if
the alignment pointer does not (yet) point to the last element of the input sequence.
While this is not part of the theoretical description in Section 2.2, it is a logical
constraint: These actions would increase the alignment pointer. However, in the
case where the length of the input string is smaller then the alignment pointer, the
whole input is already consumed.

Then, based on the alignment variable and the encoder output, represented by
bidirectional_emb, the aligned input embedding is selected with Python list in-
dexing (Listing 3.3, Step 4 ).

213 input_char_embedding = bidirectional_emb[alignment]

Listing 3.3: Selecting (aligning) the input embedding.

Consecutively, the selected input embedding is concatenated with the action embed-
ding of the previous time step, which is retrieved from the lookup matrix act_lookup

(Listing 3.4, Step 5 ).

214 previous_action_embedding = self.act_lookup[action_history [-1]]
215 decoder_input = dy.concatenate(
216 [input_char_embedding , previous_action_embedding ])

Listing 3.4: Input concatenation before executing the decoder.

The concatenated embeddings decoder_input then serve as decoder input. Con-
secutively, a linear layer and a softmax classifier is used to obtain a probability
distribution over all actions (Listing 3.5, Step 6 ).

217 decoder = decoder.add_input(decoder_input)
218

219 # classify
220 decoder_output = decoder.output ()
221 logits = self.pW * decoder_output + self.pb
222 log_probs = dy.log_softmax(logits , valid_actions)

Listing 3.5: The decoder is executed and a probability distribution is obtained.

The next steps depend on whether the model is in training or in inference mode.
The code is displayed in Listing 3.6.

In the latter case, the most probable action is selected (lines 225-227, Step 7b).

During training, more steps are required as this part implements the IL learning
routine. Firstly, the expert is rolled out, i.e., the next best actions are calculated.
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This is achieved by calling the expert_rollout method, which, in turn, calls the
SED model and scores all actions. Note that this step requires accessing the current
transducer state (lines 231-233, Step 7a).

Based on the optimal actions, the model’s output and the valid actions, the loss is
calculated using the log_sum_softmax_loss method (lines 235-236, Step 8 ).

Then, a prediction respectively action is either sampled from the model’s own pre-
dictions (Step 9a) or as computed by the expert (Step 9b) (Lines 14-24).

225 if target is None:
226 # argmax decoding
227 action = np.argmax(log_probs_np)
228 else:
229 # training with dynamic oracle
230

231 # 1. ACTIONS TO MAXIMIZE
232 optim_actions = self.expert_rollout(
233 input_ , target , alignment , output)
234

235 loss = self.log_sum_softmax_loss(
236 optim_actions , logits , valid_actions)
237

238 # 2. ACTION SPACE EXPLORATION: NEXT ACTION
239 if np.random.rand() <= rollin:
240 # action is picked by sampling
241 action = self.sample(log_probs_np)
242 else:
243 # action is picked from optim_actions
244 # reinforce model beliefs by picking highest probability
245 # action that is consistent with oracle
246 action = optim_actions[
247 int(np.argmax ([ log_probs_np[a] for a in optim_actions ]))
248 ]

Listing 3.6: The method selects the most probable action during inference or per-
forms roll-in during training.

Then, the transducer state is updated, as shown in Listing 3.7. The update is per-
formed by extending the state variable lists action_history, output and losses

(only during training). The extension of output and the alignment pointer update
depend on the decoded action type. This procedure is implemented as a Python if-
elif-else statement (lines 253-270, Step 10 ). Note the break condition in line 268: This
defines the end of the transduction process, in which case the transduced sequence
(respectively the loss) is returned (Step 11 ). In all other cases, the transduction
process continues. With respect to the Figure 3.1, the process starts over at Step
3. This iterative process is implemented with a Python while loop. To be precise,
the while loop defines a second stop criterium: The constant MAX_ACTION_SEQ_LEN
determines the maximum allowed number of actions.
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249 losses.append(loss) # only during training
250

251 log_p += log_probs_np[action]
252 action_history.append(action)
253 # execute the action to update the transducer state
254 action = self.vocab.decode_action(action)
255

256 if isinstance(action , ConditionalCopy ):
257 char_ = input_[alignment]
258 alignment += 1
259 output.append(char_)
260 elif isinstance(action , ConditionalDel ):
261 alignment += 1
262 elif isinstance(action , ConditionalIns ):
263 output.append(action.new)
264 elif isinstance(action , ConditionalSub ):
265 alignment += 1
266 output.append(action.new)
267 elif isinstance(action , EndOfSequence ):
268 break
269 else:
270 raise ValueError(f"Unknown action: {action }.")

Listing 3.7: Updating the transducer state.
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Step 1
The encoder is executed.

Step 2
The transducer

state is initialized.

Step 3
Valid actions are computed.

Step 4
Based on alignment, the in-
put embeddings are selected.

Step 5
Aligned input and action em-
beddings are concatenated.

Step 6
The decoder is executed.

Step 7a
The expert is rolled-out.

Step 7b
The argmax is selected from

the model’s predictions.

Step 8
The loss is calculated.

roll-in

Step 9a
A model predic-
tion is sampled.

Step 9b
An action from

the expert
is picked.

Step 10
The transducer state is updated.

Step 11
The transduced sequence

(and loss) is returned.

Figure 3.1: The conceptual structure of the transduce method used during training
and inference.
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3.1.2 Observations

Single sample state The code is designed for the processing of one sample at a
time, as shown by the declaration of the transducer state (Listing 3.2). The state vari-
ables are either expressed as one-dimensional lists or as an integer. Both strucutres
are unsuited to hold structured information of multiple samples.

Python data structures The code relies heavily on pure Python data structures
(for instance, lists). Machine learning frameworks such as PyTorch typically provide
library-specific implementations for data structures. These structures maximize ef-
ficiency and offer a wide range of library methods. Additionally, GPU support typ-
ically requires the use of these specific data structures. Therefore, an effective and
efficient implementation based on such frameworks must carefully consider this.

Python control structures The code mixes DyNet code with Python control struc-
tures. The update of the transducer state uses an if-elif-else statement (Listing 3.7),
and the step-wise training procedure involves a while loop. In the context of GPU
training (in PyTorch), this mixture forces the training on multiple devices, as only
a CPU can execute the code for such control structures. This decreases the poten-
tial for GPU-induced efficiency gains. An efficient solution must consider efforts to
reduce code that only a CPU can execute.

Encoder and decoder components The encoder and decoder architecture is hard
coded. The parts of the encoder (embedding matrix, forward and backward LSMT)
are defined as properties of the Transducer object. Similar is true for the decoder.
Additionally, the execution of the encoder and decoder requires the access of multiple
methods respectively properties (Listings 3.1 and 3.5). What is more, these same
steps are also performed in the beam_search_decode method. Overall, this makes
the architecture less flexible. Changes to the encoder-decoder architecture likely
require changes to the three methods leading to increased maintenance and lower
readability.
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3.2 Preliminaries: Software

3.2.1 Code Repository

All source code that I produced as part of this thesis can be found in my public
GitHub repository4. Generally, I have used separate branches for different imple-
mentations. The concrete branch for each implementation (discussed in Sections
3.3, 3.4 and 3.5) is noted at the beginning of the corresponding section. In the fol-
lowing sections, references to specific code locations are formulated in footnotes as
Implementation path: path_to_location (with respect to the structure of the corre-
sponding branch).

3.2.2 Documentation

First of all, all functions, respectively, methods, and classes use Docstrings5 as doc-
umentation format. Apart from that, I commented difficult source code parts, for
example, whenever specific implementation details are crucial. Generally, the tech-
nically savvy reader should be able to understand the source code given these com-
ments.

The necessary software packages (and versions) are defined in the setup.py file in
the repository of each branch.

What is more, commits have meaningful messages summarizing the work done and
contain relatively minor changes. During development, I have consequently used the
Git branching model, i.e., features are developed on a dedicated branch (a feature
branch) and then merged via Pull Request into the development branch. The idea
was to make my development process transparent and understandable.

3.3 A One-to-One Reimplementation in PyTorch

This section addresses the reimplementation of the baseline model in PyTorch in
relation to the first research question (Subsection 1.4.1).

4https://github.com/slvnwhrl/il-reimplementation
5https://peps.python.org/pep-0257
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3.3.1 Source Code

The source code for this implementation is accessible here:
https://github.com/slvnwhrl/il-reimplementation/tree/feature/port-to-torch

This tagged version documents the state of code at the end of this thesis:
https://github.com/slvnwhrl/il-reimplementation/releases/tag/1to1_reimp

3.3.2 Concept

Replacing DyNet components The reimplementation itself does not contain any
conceptual changes to the model, respectively, code. The reimplementation consists
of replacing DyNet’s library components with PyTorch’s library counterparts.

Data management Additionally, the implementation makes use of PyTorch com-
ponents for holding data samples (a dataset) as well as accessing these samples
during training (a data loader). Within the PyTorch framework, these components
facilitate working with data and offer easy-to-use features (for instance, shuffling
the training data). More importantly, these components implement methods for
handling batches. Using these components is, therefore, also a preparation for the
next phase of work in this thesis (mini-batch training and batched greedy decoding).

3.3.3 Implementation

Replacing DyNet components First of all, all DyNet components are replaced.
Luckily, DyNet’s and PyTorch’s library API are similar. This makes the reimple-
mentation rather straightforward. Some concrete code examples are given in the
following to illustrate this. For instance, Listing 3.8 shows the initialization of the
character embedding lookup matrix in DyNet and PyTorch. Both methods use very
similar parameters, and the usage only differs in the right method call. Similarly,
the implementation for concatenating embedding vectors only differs slightly, as
shown in Listing 3.9. The only difference (apart from the method names) is that the
PyTorch-based lookup operation requires a tensor as an input parameter (line 10),
while the same DyNet operation takes a simple Python list as input (line 4). List-
ing 3.10 shows the last example: losses is a two-dimensional list. The entries are
lists themselves and hold token-level losses. losses is then averaged to get the aver-
age token-loss per batch (line 2, line 7). The backward pass is performed identically
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by using the method backward on batch_loss (line 4 and 9).

1 # DYNET
2 self.char_lookup = model.add_lookup_parameters(
3 (self.number_characters , char_dim ))
4

5 # PYTORCH
6 self.char_lookup = torch.nn.Embedding(
7 num_embeddings=self.number_characters , embedding_dim=char_dim , ...)

Listing 3.8: DyNet and PyTorch: The initialization of the character embedding
lookup matrix.

1 # DYNET
2 decoder_input = dy.concatenate ([
3 bidirectional_emb[alignment],
4 self.act_lookup[action_history [-1]]
5 ])
6

7 # PYTORCH
8 decoder_input = torch.cat([
9 bidirectional_emb[alignment],

10 self.act_lookup[torch.tensor ([ action_history [-1]], device=self.device )]
11 ])

Listing 3.9: DyNet and PyTorch: Concatenating aligned character and action em-
bedding in the decoder.

1 # DYNET
2 batch_loss = -dy.average(losses)
3 train_loss += batch_loss.scalar_value ()
4 batch_loss.backward ()
5

6 # PYTORCH
7 batch_loss = -torch.mean(torch.stack(losses ))
8 train_loss += batch_loss.item()
9 batch_loss.backward ()

Listing 3.10: DyNet and PyTorch: Performing a backward pass on batch loss.

Data loading The implementation for the baseline model uses a simple Python
list to store data samples. Technically, a data sample is represented by a cus-
tom Python object Sample whose attributes represent the attributes of the data
(e.g., the input character sequence). During training, the data list is then traversed
and single entries of the list (i.e., a Sample) are then passed to the transduce

method. As previously discussed, this mechanism is replaced by PyTorch provides
library components: torch.utils.data.Dataset6 for storing data sampling and

6https://pytorch.org/docs/1.10/data.html#torch.utils.data.Dataset
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torch.utils.data.DataLoader7 for accessing data.8

A note on reproducibility According to the PyTorch documentation9, reproducibil-
ity of experiments is not guaranteed in any case and may depend on factors such as
the specific release, platform or used device (CPU or GPU). To approximate repro-
ducibility, the documentation recommends using torch.manual_seed to set a seed
for generating random numbers on all devices. Additionally, it provides code to make
the behaviour of the torch.utils.data.DataLoader deterministic. This is impor-
tant when data is shuffled (e.g., after each training epoch). This implementation
follows these recommendations.

3.4 Let’s Scale: Batching

This section is related to the second research question (Subsection 1.4.2) by ad-
dressing mini-batch training (Subsection 3.4.2) and batched greedy decoding (Sub-
section 3.4.3).

3.4.1 Source Code

The source code for this implementation can is accessible here:
https://github.com/slvnwhrl/il-reimplementation/tree/development

This tagged version documents the state of code at the end of this thesis:
https://github.com/slvnwhrl/il-reimplementation/releases/tag/mini_batch_imp

3.4.2 Mini-Batch Training (Teacher Forcing)

The basic idea of implementing mini-batch training is to increase training speed
by parallelizing as many computations as possible. Based on the discussion in Sub-
section 3.1, this implies two significant changes two the training regime described
in Subsection 3.1.1. Importantly, this implementation simplifies two aspects of the
training routine which are motivated and explained in the following.

7https://pytorch.org/docs/1.10/data.html#torch.utils.data.DataLoader
8The concrete changes are summarized in this commit: https://github.com/slvnwhrl/il-

reimplementation/commit/3f4271489463173ea1ee0e16648d42598f033342
9https://pytorch.org/docs/1.10/notes/randomness.html
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3.4.2.1 Conceptual Simplifications

With respect to the model of Makarov and Clematide [2020] (as discussed in detail
in Section 2.2), this implementation differs in two aspects of the training regime:

• Teacher forcing : The training routine does not incorporate exploration at
training time (roll-in), i.e., the model always executes the expert’s action
(and never samples from its own predictions). Concerning the theoretical back-
ground, this means that the sampling mechanism described by Equation 2.6
is not applied. Therefore, the training routine implements teacher forcing
[Williams and Zipser, 1989]. While this simplification possibly exposes the
model to the previously discussed exposure bias, it increases the potential for
training efficiency: Without exploration at training time, all training targets
can be computed prior to the training allowing the unrolling of decoder steps
(cf. Subsection 3.4.2.2).

• Optimization of a single target action: The loss function in the training routine
only considers at maximum one optimal target action. With respect to the
definition of the loss function (Equation 2.5), this means that the set of optimal
actions At is restricted to a single action. Optimizing multiple targets builds on
the idea that multiple edit sequences may lead to the same output. However,
these edit sequences may have different lengths, which is incompatible with
the idea of unrolling decoder steps (cf. Subsection 3.4.2.2).

3.4.2.2 Concept

Unrolling decoder steps The main challenge in achieving parallelization during
training comes from the conceptual design of the model: Given some action sequence
a(l), every training step t is dependent on at−1 as well as the alignment pointer.
However, this information is only discovered at training step t − 1 and requires
the roll-out of the expert. This makes the process unsuited for parallelization: The
implementation is forced to access unparallelizable methods (the roll-out of the
expert) in a step-wise manner (implemented with a Python while loop), as discussed
in Subsection 3.1. To achieve parallelization of the training process, the training of
each input sequence must be unrolled. More precisely, the information required for
every training step t must be known prior to the training such that the training of
multiple sequences can be performed simultaneously. Conceptually, this drastically
changes the training procedure described in Figure 3.1. Figure 3.2, describing the
training procedure for mini-batch training, displays this: In the first step, the expert
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is rolled out for every training sample such that the optimal action sequence is
known for each training sample. Concretely, rolling out the expert before performing
the training steps provides the following information: The action sequence that is
optimized during training, the number of decoding steps, the alignment and the
permissible actions at every decoding step. This information then allows to batch
the training data and consecutively perform mini-batch training.
To sum up, the main conceptual difference between the implementation for the
baseline model (Figure 3.1) and the mini-batch training implementation (Figure 3.2)
lies in the source of information. The former procedure provides it, while the latter
is provided with it.

repeat:
no. of
epochs

repeat:
no. of
batches

Action sequences and
alignments for all train-

ing samples are computed.

The training data is batched.

The encoder is executed.

Based on alignment, the in-
put embeddings are selected.

Aligned input and action em-
beddings are concatenated.

The decoder is executed.

The loss is calculated.

The model is updated.

The model’s perfor-
mance is validated.

Figure 3.2: The training procedure for mini-batch training.

Matrix operations As previously discussed, the implementation for the baseline
model primarily uses Python data structures (for example, lists). While it is possi-
ble to work with Python data structures and PyTorch (to some extent), PyTorch
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provides Tensors as a data structure.10 A Tensor is a multi-dimensional matrix and
contains only elements of a single type (e.g., integer or float). Using Tensors offers
many advantages: The PyTorch ecosystem is designed to use Tensors. Firstly, many
methods rely on Tensor-type input. Not using Tensors makes it harder to profit
from the plethora of help offered by the PyTorch library. Secondly, being a multi-
dimensional data structure, Tensors are well-suited for processing batches. Lastly,
many operations involving numbers can be represented as matrix operations, which
Tensors can efficiently perform. This is especially valuable in connection with a GPU:
It makes these operations parallelizable and allows performing more computations
on a single device.

To summarize, this concept defines a clear design guideline: Use Tensors whenever
possible.

3.4.2.3 Implementation

Pre-training expert roll-out As discussed in Subsection 3.4.2.2, the most impor-
tant building block for unrolling decoder steps is to precompute the relevant infor-
mation used for optimization during training. To achieve this, I have implemented a
dedicated function precompute_from_expert11. This function rolls out the expert
for the whole input string of a training sample. The method produced Tensors for
each training sample storing information about the optimal action sequence, the
alignment position, and valid actions with respect to every decoder step.

Batching Batches are represented as 3-dimensional padded Tensors combining sin-
gle training samples. PyTorch’s torch.utils.data.DataLoader is used to batch
single sequences.12 Generally, neural architecture components in PyTorch are able
to receive batched input and this implementation strictly follows PyTorch’s operat-
ing principle.13

Separating training from inference Given that the training and inference pro-
cedure are now quite different, training and inference are separated. Additionally,
the steps required to perform an encoder and decoder step are encapsulated into

10https://pytorch.org/docs/1.10/tensors.html
11Implementation path: trans/train.py/precompute_from_expert
12Implementation path: trans/utils.py (various classes/methods)
13See, for instance, the description of input parameters for an LSTM:

https://pytorch.org/docs/1.10/generated/torch.nn.LSTM.html
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separate methods. These methods are independent of whether the model is in train-
ing or inference mode and can be used similarly in both situations. This results in
three different methods (of the Transducer class): encoder_step for performing an
encoder step, decoder_step for performing a decoder step, and training_step for
performing a training step.14 Importantly, all methods work with PyTorch Tensor,
representing the input as batches. The declaration of encoder_step (Listing 3.11)
demonstrates this: The input parameter encoded_input, representing the encoded
input sequence, is of shape [batch_size x sequence_length]. The method then
performs a batched embedding lookup, exectutes the encoder and returns a Tensor
of shape [sequence_length x batch_size x embedding_dim].

346 def encoder_step(self , encoded_input: torch.tensor , is_training: bool = False)
347 -> torch.tensor:
348 """ Runs the encoder.
349 Args:
350 encoded_input: Encoded input character codes.
351 is_training: Bool indicating whether model is in training or not.
352 Returns:
353 Encoder output."""

Listing 3.11: Declaration of the encoder_step method.

An unrolled decoder step Basically, an unrolled decoder step is performed by
passing a batched Tensor to the PyTorch decoder component of the model (per-
formed in decoder_step). The most difficult part is thereby the preparation of
this input: In the first step, a batched selection of input embeddings (as defined by
the alignment) must be performed. My solution is presented in Listing 3.12. The
alignment input tensor is used to select the aligned embeddings from the encoder
output. The shape of alignment represents a vector. It is a flattened view of an align-
ment matrix : A matrix of shape [action_sequence_length x batch_size x 1]

storing the alignment position for every decoding step for all sequences in the
batch. Basically, the embeddings are selected with a 2-dimensional tensor of size
[action_sequence_length x batch_size] that is built from the alignment vec-
tor (lines 384-385 in Listing 3.12). The first dimension of this Tensor corresponds to
the position in the input sequence and the second dimension denotes the position in
the batch. Importantly, the position in the batch can be directly constructed from the
alignment vector (given the batch size). The selection process results in a matrix
of shape [(action_sequence_length x batch_size) x embedding_dimension]

(flattened view), which is then reshaped into three dimension. The reshaped Tensor

14Implementation paths: trans/transducer.py/Transducer.{encoder_step,decoder_step,
training_step}
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is then concatenated with the action embeddings of the previous decoder step and
used as input for the decoder.

384 input_char = encoder_output[alignment , torch.tensor ([i for i in range(batch_size)
385 for _ in range(len(alignment )// batch_size )], device=self.device )]. unsqueeze (...)
386 input_char = torch.reshape(input_char ,
387 (batch_size , len(alignment )// batch_size , -1)). transpose(0, 1)

Listing 3.12: Selecting the aligned input embeddings in the decoder_step method.
input_char is abbreviated for input_char_embedding.

Training step Performing a training step mainly consists of running encoder_step

and decoder_step. Additionally, the decoder output is run through a linear layer,
and the loss is subsequently calculated based on this output. This is, in principle,
similar to the implementation of the baseline model, as discussed in Subsection 3.1.
However, the loss calculation for batches is slightly different. The reason is that
sequences contain paddings: To calculate the per-sequence loss for each sequence in
the batch, the padded elements must be neglected when averaging token-level loss,
as shown in Listing 3.13.

461 # compute losses
462 # the loss for each seq in the batch is divided by the nr of non -padding elements
463 # --> loss per seq = avg. loss per token in seq
464 true_action_lengths = action_history.size (0) - (action_history == PAD).sum(dim =0)
465 losses = self.log_sum_softmax_loss(logits , optimal_actions_mask , valid_actions_mask)
466 losses = -losses.sum(dim =0) / true_action_lengths

Listing 3.13: Excluding padded elements when calculating the per-sequence loss in
training_step.

GPU support To enable GPU support, PyTorch provides a very simple interface:
Tensors must simply be moved to the GPU device during initialization. For flexibil-
ity, this implementation makes us of a CLI option (--device) that allows to define
the device on which computations are executed. Any Tensor is then accordingly
initialized.

3.4.3 Greedy Decoding

The idea of this implementation is to decrease the time needed for inference. In
the context of large data volumes, faster inference becomes increasingly valuable. It
helps to speed up training by decreasing the time needed for evaluation (after each
epoch).
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3.4.3.1 Concept

Simultaneous decoding While the implementation for mini-batch training re-
quires conceptual and technical changes, the implementation for batched greedy
decoding is rather technical. The inference process described in Figure 3.1 is hardly
changed. In principle, the idea of this implementation is to update the transduce

method such that the same (i.e., in terms of time) decoding steps of multiple se-
quences can be performed in parallel. This requires two fundamental changes to the
procedure: On the one hand, the transducer state must be able to describe the state
of multiple sequences. Temporally, the state for all sequences corresponds to the
same decoding step. On the other hand, all steps required to perform one decoder
step must be able to process multiple sequences simultaneously. Additionally, the
training-related steps in the transduce are removed as training and inference are
now separated.

Matrix operations Similarly to the concept for mini-batch training, the idea is to
perform as much as possible of the process within the PyTorch framework. This has
two design consequences for the implementation: Firstly, all numeric data structures
should be expressed with Tensors. And secondly, all computations should be either
expressed as matrix operations or, if not possible, rearranged to the beginning or
end of the decoding process.

3.4.3.2 Implementation

Transducer state initialization Compared to Listing 3.2, the transducer state
in the transduce15 method is now described by PyTorch Tensors (Listing 3.14).
alignment is a vector of size [batch_size x 1] representing the alignment position
for every sequence in the batch and for the current decoder step. action_history
representes a matrix of size [1 x batch_size x number_decoding_steps]. This
matrix holds the action history of all batch sequences up to the current decoder step.

487 alignment = torch.full((batch_size ,), 0, device=self.device)
488 action_history = torch.tensor ([[[ BEGIN_WORD ]] * batch_size],
489 device=self.device , dtype=torch.int)

Listing 3.14: The initialization of the transducer state for multiple sequences.

Importantly, the output state variable is removed from initialization. Conceptually,
the transduced string sequence is unnecessary for performing a decoder step. The

15Implementation path: trans/transducer.py/Transducer.transduce
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transduced sequence is produced by decoding the encoded actions (integers) and
executing the decoded action (e.g., copying the currently aligned input character).
The decoding process involves string data types (the output sequence) and can
therefore not be represented with Tensors. Consequently, the action decoding is
moved to the end of the inference process, reducing the amount of executed pure
Python code while performing a single decoder step. In the implementation of the
baseline model, action decoding is performed during the transducer state update
(Listing 3.7).

Stop criteria The transduction process is terminated if one of two criteria is
matched: Either a predefined maximum action sequence length is reached, or an
End-of-Sequence action is produced. In the implementation of the baseline model,
these criteria must always be full filled for a single sequence. The same is true for
a specific sequence in the context of batches. However, the point of time when the
stop criteria is met may differ for the different sequences within the batch. As a de-
coding step is always performed for multiple sequences, the termination process can
only be terminated once the stop criteria are met for all sequences. This restriction
is implemented by the function continue_decoding (Listing 3.15). The function
returns True if all action sequences in action_history contain the encoded integer
for the End-of-Sequence action, and False otherwise. Technically, this is achieved
by comparing the batch size with the number of sequences in the batch that contain
an End-of-Sequence token. continue_decoding is used in the while loop in line
509 in Listing 3.18. The condition of this loop also takes care of the second stop cri-
teria. Every loop iteration corresponds to one decoding step, and the loop is exited
as soon as one of both criteria is met.

504 # decoding is continued until all sequences
505 # in the batch have "found" an end word
506 def continue_decoding ():
507 return torch.any(action_history == END_WORD , dim =2). sum() < batch_size
508

509 while continue_decoding () and action_history.size (2) <= MAX_ACTION_SEQ_LEN:

Listing 3.15: A single decoding step in batched greedy decoding.

Updating alignment pointers The transducer update also includes the update
of the alignment pointer - this update depends on the type of action and is re-
quired in every decoder step. While this update cannot be rearranged, the simul-
taneous update of all alignment pointers can be represented as a matrix operation.
For this purpose, the Transducer object is initialized with an additional property
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alignment_update (Listing 3.16). It is a vector of shape [number_of_actions x 1].
The vector represents a mapping between encoded actions and how they affect the
alignment pointer. More precisely, a vector entry is 1 (if the corresponding action
moves the alignment to the next position) or 0 (if the alignment is not moved). The
update of the state vector alignment can then be represented as a matrix addition
(cf. line 526 in Listing 3.18).

137 # maps action index to alignment update
138 alignment_update = [0] * self.number_actions
139 for i, action in enumerate(self.vocab.actions.i2w):
140 if isinstance(action ,
141 (ConditionalCopy , ConditionalDel , ConditionalSub )):
142 alignment_update[i] = 1
143 self.alignment_update = torch.tensor(alignment_update , device=self.device)

Listing 3.16: Initializing the lookup vector used to perform batched alignment
pointer updates.

Valid actions lookup Which actions may be executable at the current time step
also depends on whether an action is valid (as discussed in Section 3.1). Similarly
to the alignment lookup vector (Listing 3.16), this operation is implemented as a
precomputed lookup table. The lookup table valid_actions_lookup is initialized
as a property of the Transducer object (Listing 3.17). During training, valid actions
can be retrieved efficiently for the whole batch at every decoder step.

145 # lookup for valid actions (given length of encoder suffix)
146 self.valid_actions_lookup = torch.stack(
147 [self.compute_valid_actions(i)
148 for i in range(MAX_INPUT_SEQ_LEN )],
149 dim =0). unsqueeze(dim=0)

Listing 3.17: Initializing the lookup matrix used for retrieving valid actions for a
whole batch.

Updating the transducer state The update of the transducer state is performed
by concatenating the matrix action_history with the actions vector obtained in
the previous step (line 3, Listing 3.18). The update of alignment vector is shown in
line 526 in Listing 3.18. The update is performed using simple matrix addition. The
first summand is the matrix itself. The second summand is a vector of equal shape.
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522 action_history = torch.cat(
523 (action_history , actions.unsqueeze(dim=2)),
524 dim=2
525 )
526 alignment = alignment + self.alignment_update[actions.squeeze(dim =0)]

Listing 3.18: Updating the transducer state for a batch.

Action decoding After the batch decoding has stopped, and on the basis of the
action_history matrix, the transduced output strings are produced for all batch
sequences. This step applies two modifications to action_history (line 536, List-
ing 3.19): The first action can be negelected as it represents, in any case, the
Begin-of-Sequence action. Additionally, each sequence is right trimmed up to first
occurrence of an End-of-Sequence action. Then, decode_encoded_output is used
to transduce the output strings.

533 # trim action history
534 # --> first element is not considered (begin -of-sequence -token)
535 # --> and only token up to the first end -of -sequence -token (including it)
536 action_history = [seq [1:( seq.index(EndOfSequence ()) + 1 if EndOfSequence ()
537 in seq else -1)]
538 for seq in action_history.squeeze(dim =0). tolist ()]
539

540 return Output(action_history , self.decode_encoded_output(input_ , action_history),
541 log_p , None)

Listing 3.19: Adjusting history and returning the transduced output.

GPU support Similar to the discussion for the GPU support of mini-batch training
(Subsection 3.4.2), GPU support in this implementation is achieved by moving any
Tensors to the device specified via CLI.

3.5 Transformer Encoder

This section addresses third research question (Subsection 1.4.3) by implement-
ing transformer encoders. This implementation extends the work presented in Sec-
tion 3.4.

3.5.1 Source Code

The source code for this implementation can is accessible here:
https://github.com/slvnwhrl/il-reimplementation/tree/development
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This tagged version documents the state of code at the end of this thesis:
https://github.com/slvnwhrl/il-reimplementation/releases/tag/mini_batch_imp

3.5.2 Concept

Encapsulating encoders In the implementation of the baseline model, the initial-
ization of the encoder is hardcoded in the initialization of the Transducer object.
The encoder initialization arguments (for example, the number of encoder layers)
are passed as keyword arguments to Transducer.__init__. Given that the imple-
mentation has exclusively used LSTM encoders, this is a suitable approach. For any
model, the encoder is always initialized similarly. However, enabling the model to
use a different encoder architecture changes this. Different architectures may require
different initialization steps, respectively, parameters. Consequently, the initializa-
tion procedure of the Transducer object becomes more complex: On the one hand,
the Transducer.__init__ method must consider any possible parameter for any en-
coder type. On the other hand, the same method is also responsible for initializing
the correct type of encoder with the correct arguments.

Similar is true for the execution of the encoder. The encoder’s forward pass may
look very different for a different architecture. For instance, the transformers en-
coder, as opposed to an LSTM encoder, typically adds a positional encoding to the
character embedding before the actual forward pass. Additionally, the encoder is
accessed for different purposes represented by different methods (training, greedy
decoding, beam search decoding). With the logic of the existing implementation,
these differences must be taken care of at multiple execution points. This increases
the code’s complexity decreasing its understandability and making it more prone to
errors.

To ensure the code’s maintanability and understandability, any encoder architec-
ture is therefore encapsulated in a separate method such that the initialization of
the Transducer object is independent of the encoder type. Similarly, executing the
encoder should logically be independent of the encoder type, i.e., any encoder ar-
chitecture should require a single method call.

In a nutshell, encapsulation aims to represent encoders as standalone components
with an encoder-independent interface.

34

https://github.com/slvnwhrl/il-reimplementation/releases/tag/mini_batch_imp


Chapter 3. Design / Implementation

Configuring the encoder using the CLI The implementation of the baseline model
makes heavy use of the CLI. Any model parameter or hyperparameter can be con-
figured using the CLI. The same should be possible for the choice of encoder type
and any corresponding initialization parameter.

Optimizers and Learning rate schedulers Different encoders might require a
different training procedure. This includes optimizers and possibly learning rate
schedulers. For instance, the transformer was used initially with the Adam opti-
mizer [Kingma and Ba, 2015] and is a popular choice in successful implementations
[Vaswani et al., 2017; Wu et al., 2021]. However, the status quo exclusively uses the
Adadelta optimizer [Zeiler, 2012]. Therefore, the model is extended to use different
optimizers and learning rate schedulers. Specifically, the model should be able to use
the Adam optimizer and the inverse square root warmup scheduler as proposed by
[Vaswani et al., 2017]. The same criteria as discussed above apply for this part of the
implementation. Each optimizer and scheduler should be encapsulated into a sepa-
rate method, the handling in the code should be as independent as possible of the
type of optimizer or scheduler, and these components should be easily configurable
via CLI.

Extendability This thesis only aims to extend the model architecture with a trans-
former encoder. Future work might target different encoder architectures. Therefore,
the code should be easily extendable without restructuring large parts of the code.

3.5.3 Implementation

A separate file for components In the first step, all components for the en-
coders are separated in a dedicated Python file encoders.py.16 Similarly, the com-
ponents for optimizers and learning rate schedulers are grouped in a Python file
optimizers.py.17 The separation reflects the design as separate and interchangable
components of the Transducer class.

The encoder object Every encoder architecture is represented by a dedicated
Python class in encoders.py. Consequently, to initialize the transducer with a spe-
cific encoder, the corresponding class is instantiated (line 92, Listing 3.20). To fur-
ther abstract the initialization of an encoder, the Transducer.__init__ receives an

16Implementation path: trans/encoders.py
17Implementation path: trans/optimizers.py
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argparse.Namespace object instead of predefined keywords (line 65, Listing 3.20).18

This argument is passed down to the __init__ method of the encoder class, which
in turn, uses the argument’s attributes as initialization arguments (Listing 3.21).

63 class Transducer(torch.nn.Module ):
64 def __init__(self , vocab: vocabulary.Vocabularies ,
65 expert: optimal_expert.Expert , args: argparse.Namespace ):
66 ...
92 self.enc = ENCODER_MAPPING[args.enc_type ](args)

Listing 3.20: The initialization of Transducer and its encoder component.

10 @register_component(’lstm’, ’encoder ’)
11 class LSTMEncoder(torch.nn.LSTM):
12 """LSTM -based encoder."""
13 def __init__(self , args: argparse.Namespace ):
14 super (). __init__(
15 input_size=args.char_dim ,
16 hidden_size=args.enc_hidden_dim ,
17 num_layers=args.enc_layers ,
18 bidirectional=args.enc_bidirectional ,
19 dropout=args.enc_dropout ,
20 device=args.device
21 )
22 ...

Listing 3.21: The initialization of the LSTM encoder component.

The optimizer and scheduler object Similar to encoders, optimizers and learning
rate schedulers are each represented as a separate Python class in optimizers.py.19

Currently, the following optimizers are implemented: Adadelta (Adadelta class),
Adam (Adam class) and AdamW (AdamW class) [Loshchilov and Hutter, 2019]. With
respect to learning rate schedulers, two different options are available: Firstly, the
ReduceOnPlateau class, which represents a scheduler for reducing the learning rate
on a plateau (based on some evaluation metric). Secondly, the scheduler described by
Vaswani et al. [2017], is implemented in the WarmupInverseSquareRootSchedule

class.

Dynamically registering components Listings 3.20 and 3.21 also show another
feature of the implementation: Components can be dynamically added to the model
architecture with the decorator @register_component defined in __init__.py file.20

Basically, register_component can be used to add named components to the model

18Implementation path: trans/transducer.py/Transducer.__init__
19Implementation path: trans/optimizers.py
20Implementation path: trans/__init__.py/register_component
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architecture. The first argument of the function defines the name of the com-
ponent, the second argument the type (encoder, optimizer or lr_scheduler). De-
pending on the type, the component is stored in a dedicated lookup dictionary:
ENCODER_MAPPING for encoder components, OPTIMIZER_MAPPING for optimizer com-
ponents and SCHEDULER_MAPPING for learning rate scheduler components. In the
code, the component can then be accessed using the respective lookup and its name.

Dynamic configuration via CLI The encoder type and configuration are expressed
as CLI options. Former is derived by ENCODER_MAPPING. A registered encoder com-
ponent is made available via the CLI option --enc-type using its name as CLI
value. To add encoder-specific CLI options, the static method add_args is added to
the corresponding encoder class, as exemplified in Listing 3.22. The options defined
in this method are only added to the CLI options if the corresponding encoder is
chosen.

23 @staticmethod
24 def add_args(parser: argparse.ArgumentParser) -> None:
25 parser.add_argument("--enc -hidden -dim", type=int , default =200,
26 help="Encoder LSTM state dimension.")
27 parser.add_argument("--enc -layers", type=int , default=1,
28 help="Number of encoder LSTM layers.")
29 ...

Listing 3.22: The add_args method of the LSTMEncoder class.

The transformer encoder Generally, all implementations for encodesr, optimizers
and learning rate schedulers are based on PyTorch implementations. An exception
is the implementation for the transformer encoder: This implementation concep-
tually follows Vaswani et al. [2017] and is inspired by the implementation used
by Wu et al. [2021]21. More precisely, the implementation uses the PyTorch com-
ponents torch.nn.TransformerEncoderLayer22 (a single transformer layer) and
torch.nn.TransformerEncoder23 (a stack of a defined number of transformer lay-
ers), but relies on the implementation from Wu et al. [2021] for the positional en-
coding.24

21Wu et al. [2021] provide their open-source implementation here: https://github.com/shijie-
wu/neural-transducer/tree/master/src

22https://pytorch.org/docs/1.10/generated/torch.nn.TransformerEncoderLayer.html
23https://pytorch.org/docs/1.10/generated/torch.nn.TransformerEncoder.html
24Initially, I have also experimented with positional encodings used in PyTorch tutorials. However,

I have found that these implementations do not work well, which has caused me quite some
time to realize.
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3.6 Miscellaneous

3.6.1 Beam Search Decoding

The implementation for beam search decoding is not optimized to use batches.
While this would be an interesting effort, the implementation is unequally more
challenging than batched greedy decoding (Subsection 3.4.3). The reason is that in
beam search decoding, multiple states for a single sequence are explored (of which
the best performing is then selected), leading to more complex control flows than
in greedy decoding. Efforts to implement batched greedy decoding would go beyond
the scope of this thesis. Instead, the implementation is updated such that it is
compatible with any other code changes (e.g., by ensuring GPU support).25

3.6.2 Roll-in

As discussed in Subsection 3.4.2.1, the mini-batch training implementation does
not feature roll-in. My experiments (cf. Chapter 4) have led me to believe that,
in some cases, using roll-in could notably improve performance. This has caused
me to think about the possibilities of implementing roll-in in mini-batch training
without drastically sacrificing efficiency (in terms of training speed). Therefore, I
have drafted an implementation for roll-in. Given the scope of this thesis, I was,
unfortunately, unable to finish the implementation or systematically experiment
with it. The basic idea of the implementation would be to roll out the expert for
an increasing number of training samples during training (at the beginning of each
epoch). The model would then be increasingly exposed to its own predictions. The
roll-in feature is developed on a separate branch feature/roll-in26 and an open Pull
Request27 discusses some implementation details.

3.6.3 Additional Input Features

Specifically for the submission to the SIGMORPHON–UniMorph 2022 Shared Task
on Typologically Diverse and Acquisition-Inspired Morphological Inflection Gener-
ation (discussed in Subsection 4.1.4 and 4.4.4), Peter Makarov implemented the
possibility to add additional input features (e.g., morpho-syntactic features). Input

25Implementation path: trans/transducer.py/Transducer.beam_search_decode
26https://github.com/slvnwhrl/il-reimplementation/tree/feature/roll-in
27https://github.com/slvnwhrl/il-reimplementation/pull/12
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features are represented as embeddings. Before the execution of the decoder, these
feature embeddings are concatenated with the input characters embeddings serving
as decoder input.28

3.6.4 Grid Search

To facilitate experimenting, I have implemented a Python-based CLI for grid search.29

A JSON file can be used to specify (hyper)parameters and the program then auto-
matically trains the model for any parameter combinations. The README file in
my GitHub repository provides a short manual.30

28This commit gives an overview of the necessary changes: https://github.com/slvnwhrl/il-
reimplementation/commit/c21376a1cf373c8785ad450c9fa5f4b4
eb2da5fa

29Implementation path: trans/grid_search.py
30https://github.com/slvnwhrl/il-reimplementation#grid-search
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4 Experiments

This chapter is dedicated to the evaluation of the implementations described in
Chapter 3. The naming conventions defined in Table 4.1 are used to facilitate the
discussion throughout this chapter, referencing the different software implementa-
tions.

Name Description
baseline model The original DyNet-based implementation that served as a

starting point in this thesis (discussed in Section 2.2 and Sub-
section 3.1).

one-to-one reimplementation The reimplementation of the baseline model in PyTorch with
feature parity (discussed in Section 3.3).

mini-batch TF implementation The implementation with efficient mini-batch training using
teacher forcing. This implementation includes transformer-
based encoders (discussed in Sections 3.4 and 3.5).

Table 4.1: Naming conventions for the different software implementations discussed
in Chapter 4.

Section 4.1 gives an overview and a short description of all datasets used for the
experiments. Section 4.2 describes the quantitative metrics that are used for the
evaluation. Section 4.3 is dedicated to the analysis of the one-to-one reimplemen-
tation. Section 4.4 analyses the mini-batch TF implementation. Here, the analysis
focuses on LSTM-based encoders, comparing the baseline model and one-to-one
reimplementation. Lastly, Section 4.5 focuses on transformer-based encoders.

4.1 Datasets

The following subsections discuss the datasets on which the experiments are based.
The choice for the datasets from the SIGMORPHON 2020 and 2021 Shared Tasks
on Multilingual G2P (Subsections 4.1.1 and 4.1.2) is motivated by the fact that the
baseline model was first used in the 2020 shared task and then, due to its success,
served as a baseline in the 2021 shared task. Thus, the results of the baseline model
on these datasets present a competitive benchmark.
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The deadline for submissions to the SIGMOPRHON 2020 Shared Task on Mor-
pheme Segmentation (Subsection 4.1.3) fell within the time span of this thesis. It
matched my implementation schedule for the mini-batch TF implementation rather
well. The considerably large dataset of this shared task presented a suitable possi-
bility to challenge this implementation.
The SIGMORPHON–UniMorph 2022 Shared Task on Typologically Diverse and
Acquisition-Inspired Morphological Inflection Generation (Subsection 4.1.4) had a
similar deadline and presented the possibility of applying the mini-batch TF imple-
mentation in the context of a different morphological task and data scope.

4.1.1 SIGMORPHON 2020 Shared Task on Multilingual G2P

(SIGMORPHON2020-G2P)

The dataset used in the SIGMORPHON 2020 Shared Task on Multilingual G2P
(SIGMORPHON2020-G2P) features data for 15 different languages [Gorman et al.,
2020]. Table 4.1.1 shows the languages and a training example for each language.
The training dataset size is the same for all languages with 3, 600 examples per
language. The task is evaluated using the WER and PER, where WER serves as
the primary evaluation criterion.

Language Training data sample
grapheme phoneme

Adyghe анэл a: n a l
Armenian lowma l u m A
Bulgarian закон z @ k O n
Dutch reuze r ø: z @
French peinture p Ẽ t y K
Greek (Modern) λιμένος l i m e n o s
Hungarian hazánk h 6 z a: N k
Icelandic saltfiskur s a l

˚
t f I s k Y r

Japanese (Hiragana) がったい g a
¯

t^t a
¯

i
Korean 근무하다 k W: n m u H a

¯
d a

¯Lithuanian davusios d a: V U sj o s
Romanian absorbi a b s o r b i
Vietnamese ba P á a: Ă£Ă£

Table 4.2: Languages with a training data sample (grapheme: input, phoneme: out-
put) for the SIGMORPHON2020-G2P dataset. Note that Georgian and
Hindi are not shown.
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4.1.2 SIGMORPHON 2021 Shared Task on Multilingual G2P

(SIGMORPHON2021-G2P)

The dataset used in the SIGMORPHON 2021 Shared Task on Multilingual G2P
(SIMORPHONG2021-G2P) is the continuation of the same task in 2020 (Subsec-
tion 4.1.1) [Ashby et al., 2021]. While the 2021 iteration features similar languages
as the 2020 iteration, it emphasises resource availability. Three different data set-
tings are created with a different number of available training data samples: Low
(800 samples), medium (8,000 samples), and high (41,000 samples).1 Armenian
(Eastern), Bulgarian, Dutch, French, Georgian, Serbo-Croatian (Latin), Hungar-
ian, Japanese (Hiragana), Korean and Vietnamese (Hanoi) are available for the low
setting; Adyghe, Greek, Icelandic, Italian, Khmer, Latvian, Maltese (Latin), Roman,
Slovenian, Welsh (Southwest) for the medium setting; English for the high setting.2

The evaluation is performed based on the WER.

4.1.3 SIGMORPHON 2022 Shared Task on Morpheme

Segmentation (SIGMORPHON2022-MS)

The SIGMORPHON 2022 Shared Task on Morpheme Segmentation (SIGMOR-
PHON2022-MS, Batsuren et al. [2022]) consists of two parts: Part 1 is a word-level
problem (i.e., inputs are single words), Part 2 is modelled as a sentence-level prob-
lem (i.e., inputs are whole sentences). Table 4.3 shows the languages and examples
for both parts. Compared to the datasets for SIGMORPHON2020-G2P (Subsec-
tion 4.1.1) and SIGMORPHON2021-G2P (Subsection 4.1.2), the training dataset
sizes are larger by many orders of magnitude: For part 1, the training data for each
language contains on average around 43,300 samples (Mongolian with 15,171 sam-
ples being the smallest dataset and Hungarian with 742,239 samples the biggest
dataset). For part 2, both Mongolian and Czech contain 1000 sentences (13,237
respecitvely 15,157 tokens). The English dataset is with 11,005 sentences (169,117
tokens) considerably larger.

1I have restricted my experiments to the low and medium settings following the submission of
Clematide and Makarov [2021].

2The reader is referred to Table 4.1.1 for examples of the task.
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Language Training data sample
unsegmented segmented

part 1

Czech autor aut @@or
English enleaguing en @@league @@ing
French âneries âne @@erie @@s
Hungarian alakúig áll @@k @@ú @@ig
Spanish tesas teso @@ar @@as
Italian saltato saltare @@ato
Latin ı̄nferent̄ıs ı̄nfere @@nt @@ı̄s
Russian засасывав за @@соснуть @@ать @@ывать @@л @@в
Mongolian ёсолгоотой ёс @@лгоо @@той

part 2
Czech Černá bankovní středa Čern @@á bank @@ovn @@í střed @@a
English yeah , " things " ... yeah , " thing @@s " ...
Mongolian Түүнээс хойш өссөн . Түүнээс хойш өсөх @@сөн .

Table 4.3: Languages with a training data sample (unsegmented : input, segmented :
output) for the SIGMORPHON2022-MS dataset.

In both parts, a system must be able to split the input into morphemes. The dif-
ference between the parts lies in the necessity of context: Part 1 effectively models
a one-to-one mapping (each input word corresponds to exactly one segmentation).
In contrast, the segmentation of a word may vary depending on the context (e.g.,
for homonyms). An example for Mongolian is shown in Table 4.4: The word эмээ
is a homonym and either means grandmother (upper sentence) or medicine (lower
sentence) depending on the context. It is only segmentable in the latter case leading
to multiple theoretical possibilities.

Гэрт эмээ хоол хийв .
Гэр @@т эмээ хоол хийх @@в .
Grandmother cooked at home.

Би өдөр эмээ уусан .
Би өдөр эм @@ээ уух @@сан .
Today I took my medicine.

Table 4.4: An example in Mongolian demonstrating the segmentation ambiguity
found in part 2 of the SIGMORPHON2022-MS data.

For both parts, the primary evaluation metric is a per-language F1-score.3 Precision
and recall are calculated based on the number of morphemes, i.e., the measurement
considers partially correct predictions.

3The task description [Batsuren et al., 2022] formulates additional evaluation metrics (precision,
recall, and an edit distance). Following Wehrli et al. [2022], the analysis in this thesis is restricted
to the primary metric.
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4.1.4 SIGMORPHON–UniMorph 2022 Shared Task on

Typologically Diverse and Acquisition-Inspired

Morphological Inflection Generation

(SIGMORPHON2022-INFL)

The SIGMORPHON–UniMorph 2022 Shared Task on Generalization and Typolog-
ically Diverse Morphological Inflection (SIGMORPHON2022-INFL) asks to predict
an inflected word form given its lemma and a set of morphosyntactic features spec-
ified according to the UniMorph standard [Kodner et al., 2022]. Part 1 consists of
32 languages with small training sets (mostly 700 items, but for 4 languages only
70 to 240 items) and 21 large training sets (exactly 7,000 items).4 Part 2 has an
ablation-style setup for Arabic, English, and German: Each language has a dataset
for each increment of 100, ranging from 100 to 600 (German) or 1,000 training sam-
ples (Arabic, English). Both tasks target the generalization capabilities of morphol-
ogy learning systems by separately examining their test set performance on unseen
lemmas and feature specifications. The evaluation is performed using accuracy.5

4.2 Metrics

4.2.1 Accuracy

Accuracy is a quantitative metric measuring the relative fraction of correctly pre-
dicted words for a given set of words [Géron, 2019]. It is expressed as a percentage.
A higher percentage equals higher performance.

4.2.2 Precision, Recall, and F1-Score

Precision, recall, and F1-score are defined as

Precision =
Tp

Tp + Fp

, (4.1)

Recall =
Tp

Tp + Fn

, (4.2)

4Given the large number of languages, the reader is referred to Kodner et al. [2022] for a detailed
overview. A single training sample consists of a lemma (input), the inflected word (target), and
the additional morphosyntactic features. To give an example (Englisch): learn learned V;PST.

5This description is taken from Wehrli et al. [2022].
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F1-score = 2 · Precision ·Recall

Precision+Recall
, (4.3)

where Tp describes the true positives, Fp the false positives an Fn the false negatives
[Géron, 2019]. The higher precision and recall (respectively F1-score), the better.

4.2.3 Word Error Rate (WER)

The word error rate (WER) is a quantitative measure and expresses the ratio of
words for which the model’s prediction does not match the gold reference [Gorman
et al., 2020]. It is expressed as a percentage. The lower the WER, the better.

4.2.4 Phone Error Rate (PER)

The phone error rate (PER) measures the normalized distance between a prediction
and the gold standard [Gorman et al., 2020]. The normalized distance is expressed
as the number of edits (insertions, deletions, and substitutions) needed to transform
the prediction into the gold standard. It is defined as:

PER := 100 ·
∑n

i edits(p, r)∑n
i |r|

, (4.4)

where p is the predicted sequence, r the gold sequence and edits(p, r) references
the Levenshtein distance between p and r. It is expressed in percentage. Similar to
the WER, a smaller PER is considered better. Unlike WER, PER operates on the
character-level allowing for partial correctness of predictions.

4.3 DyNet or Pytorch: Does It Make a Difference?

Goal This section compares the performance of the (DyNet-based) baseline model
with its (PyTorch-based) one-to-one reimplementation. The goal of these experi-
ments is to reproduce the results of the baseline model to validate feature parity
performance-wise.

Experimental setup The model parameters and hyperparameters are based on
the configuration of the baseline model used in SIGMORPHON2021-G2P [Ashby
et al., 2021] if not stated otherwise.6 All results are based on own training runs and

6A summary is given here: For all languages, input data is NFD-normalized. The SED expert is
trained for 10 epochs. All models are trained for a maximum of 60 epochs (with a patience of
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represent an average of 10 runs with fixed seeds. The presented results in this section
are produced using greedy decoding.

4.3.1 SIGMORPHON2020-G2P

Results Table 4.5 compares the development and test set results for the base-
line model (DyNet) with the one-to-one reimplementation (PyTorch). Per language,
the average absolute difference measured in WER is 0.61% and 0.62% on the de-
velopment, respectively, test set. For nine out of 15 languages, this difference is
smaller than absolute 0.5% on the test set. The one-to-one reimplementation per-
forms slightly better on both sets (absolute 0.47% and 0.56% lower WER). However,
this must be seen in the context of the small set sizes: Both, the development and
test set contain 450 samples. On average for the test set, the one-to-one reimplemen-
tation makes around 2.5 correct prediction more than the baseline model. Thus, the
WER performance difference may be attributed to random variations (that depend
on the choice of seeds), which may be less significant for bigger datasets.7

dev test
DyNet PyTorch DyNet PyTorch

Language WER SD PER WER SD PER |∆| WER SD PER WER SD PER |∆|
Adyghe 25.73 0.49 6.71 24.82 0.99 6.38 0.91 29.89 1.62 7.15 28.51 1.49 6.72 1.38
Armenian 16.53 0.86 3.42 15.82 0.58 3.22 0.71 15.53 1.57 3.41 14.84 0.99 3.34 0.69
Bulgarian 34.16 2.51 7.11 31.51 0.92 6.86 2.64 29.56 1.86 5.91 28.67 1.55 5.60 0.89
Dutch 21.04 0.57 4.19 20.33 0.50 3.99 0.71 20.24 0.64 3.76 20.13 0.97 3.63 0.11
French 16.47 0.82 2.95 15.73 0.85 2.87 0.74 18.33 1.29 3.28 18.09 1.25 3.18 0.25
Georgian 10.40 0.70 2.62 9.78 0.53 2.49 0.62 8.93 1.09 1.98 7.49 0.57 1.68 1.45
Greek (Modern) 27.33 1.64 4.90 25.98 1.32 4.78 1.36 29.29 1.68 4.99 28.76 2.02 4.97 0.53
Hindi 15.67 0.67 2.80 15.80 0.47 2.83 0.13 20.04 1.36 3.29 17.82 1.22 2.95 2.22
Hungarian 6.16 0.67 1.66 6.38 0.33 1.60 0.22 7.58 1.08 1.78 7.25 0.49 1.80 0.33
Icelandic 2.98 0.32 0.62 3.11 0.21 0.62 0.13 4.82 0.38 1.21 4.78 0.42 1.09 0.04
Japanese (Hiragana) 10.00 0.99 2.12 9.96 0.64 2.16 0.04 10.69 0.84 2.30 11.11 0.84 2.34 0.42
Korean 8.15 0.42 2.49 8.15 0.53 2.52 0.00 7.56 0.44 1.97 7.40 0.85 1.91 0.16
Lithuanian 20.82 0.85 3.74 20.58 1.08 3.66 0.24 28.09 1.41 4.92 27.71 1.41 4.80 0.38
Romanian 11.71 0.90 2.94 11.58 0.44 2.91 0.13 12.58 1.03 2.88 12.14 0.57 2.77 0.44
Vietnamese 1.51 0.23 0.32 2.00 0.23 0.49 0.49 1.54 0.13 0.46 1.58 0.20 0.52 0.04
AVG 15.24 0.84 3.24 14.77 0.64 3.16 0.61 16.31 1.09 3.29 15.75 0.99 3.15 0.62

Table 4.5: Results for the SIGMORPHON2020-G2P dataset comparing the base-
line model (DyNet) with the one-to-one reimplementation (PyTorch). SD
means standard deviation. |∆| measures the absolute WER difference be-
tween DyNet and PyTorch.

Error similarity To get a better understanding of how similar the performance of
the baseline model and one-to-one reimplementation is, Table 4.6 shows the five most

12 epochs) and are optimized using the Adadelta optimizer. Character and action embeddings
have a dimension of 100. Both encoder and decoder are 1-layer LSTMs with a hidden dimension
of 200. Gradient accumulation uses a batch size of five.

7Table A.1 reports results with beam search decoding.

46



Chapter 4. Experiments

frequent errors for the least and most similarly performing languages (Bulgarian and
Korean) in terms of the WER. For both languages, the set of errors is identical, and
the error frequencies are near-identical.

Bulgarian DyNet R/r/25 O/o/21 E/”/15 a/@/15 @/a/13
PyTorch R/r/23 O/o/19 @/a/17 a/@/15 E/”/14

Korean DyNet E/:/63 :/E/23 @:/2»/16 2»/@:/10 k
""
/g/6

PyTorch E/:/63 :/E/24 @:/2»/21 2»/@:/11 k
""
/g/6

Table 4.6: The five most common errors for Bulgarian and Korean for the baseline
model (DyNet) and one-to-one reimplementation (PyTorch) in the test
set of SIGMORPHON2020-G2P.

Conclusion The results strongly suggest that the PyTorch-based one-to-one reim-
plementation and DyNet-based baseline model perform very similarly: As measured
by WER and PER and in terms of error similarity.

4.3.2 SIGMORPHON2021-G2P

Experimental setups Table 4.7 shows results for two experimental setups: Firstly,
it compares results for the baseline model (DyNet) with the one-to-one reimple-
mentation (PyTorch) for the baseline setup (baseline) similar to the experiments on
the SIGMORPHON2020-G2P dataset (Subsection 4.3.1). Secondly, it shows exper-
iments with a stacked LSTM encoder (2-layers) and different dropout probabilites
(2-layer LSTM encoder (PyTorch)). These experiments test whether the additional
complexity (i.e., the additional LSTM-layer) could be a cheap effort to increase the
performance.

Results With respect to the baseline setup, the results for the SIGMORPHON21-
G2P dataset resemble those for the SIGMORPHON2020-G2P dataset: The one-to-
one reimplementation performs slightly better in both the low and medium data
setting. For the former, the differences of the averages over all languages amount
to absolute 0.94% and 0.45% on the development and test set. For the latter, the
differences are absolute 0.34% and 0.24%.8

Influence of the test set size Again, these results should be put into perspec-
tive by the size of these datasets. The low setting of the SIGMORPHON2021-G2P

8Table A.4 reports results with beam search decoding.

47



Chapter 4. Experiments

dataset features 100 samples for the development and test set. Thus, the absolute
differences between the two implementations are, on average, less than one predic-
tion for both datasets. Figure 4.1 gives a more holistic picture and compares the
average of absolute differences between both implementations in relation to devel-
opment and test dataset size: The higher the sample size, the lower the average
differences.

Figure 4.1: Average of absolute differences over all languages (|∆|) between the
baseline model and the one-to-one reimplementation for the SIG-
MORPHON2020-G2P (SIG20 ) and SIGMORPHON2021-G2P (SIG21 )
datasets.

Stacked LSTMs The additional model complexity (i.e., the additional model pa-
rameters of the second layer) does not improve performance in the low data setting.
On average, over all languages, all stacked LSTM setups perform worse. However,
with higher data settings additional model complexity seems to improve perfor-
mance. While, on average, the performance gains of stacking LSTM encoders are
small, one of the best models for eight out of 10 languages is a stacked LSTM-based
model. Thus, stacking LSTM layers may be a cheap way to boost performance for
specific languages. For instance, the performance improvement over the 1-layer Py-
Torch baseline model on the test set is absolute 0.80% for Bulgarian and absolute
0.92% for Serbo-Croatian.

Conclusion The results support the finding of the previous section: The baseline
model and one-to-one reimplementation behave very similarly. Possible performance
differences likely depend on the test set size. What is more, in larger datasets stacking
LSTM encoders can improve performance for some languages.
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4.4 LSTMs and Mini-Batch Training

Goal This section discusses experiments with the mini-batch TF implementation.

Subsections 4.4.1 and 4.4.2 present results for the SIGMORPHON2020-G2P and
SIGMORPHON2021-G2P dataset, respectively. Results are compared to those of
the one-to-one reimplementation (discussed in the previous section). Here, the idea
is to examine whether the conceptual simplifications of the training routine in the
mini-batch TF implementation lead to substantial performance changes.

Subsections 4.4.3 and 4.4.4 describe the submissions of Silvan Wehrli, Simon Cle-
matide and Peter Makarov to SIGMORPHON2022-MS and SIGMOPRHON2022-
INFL. In these subsections, submission details are summarized, and the submission
results are presented. The discussion is based on Wehrli et al. [2022], and I refer the
interested reader there for all details.9

Lastly, Subsection 4.4.5 gives an impression of the speed improvements for mini-
batch training and batched greedy decoding.

Experimental setup If not stated otherwise, model parameters and hyperparame-
ters follow the setup defined in Section 4.3. Note, however, that the mini-batch TF
implementation uses real batches of size five, while the one-to-one reimplementa-
tion uses gradient accumulation (with batches of size five). All results are based on
own training runs and represent an average of 10 runs with fixed seeds. Results are
produced using greedy decoding.

4.4.1 SIGMORPHON2020-G2P

Results Table 4.8 compares the SIGMORPHON2020-G2P dataset results for the
one-to-one reimplementation with the mini-batch TF implementation. Apart from
Japanese and Vietnamese, the performance seems rather similar. Not considering
these two languages, the WER average over all languages amounts to 16.26% and
16.34% on the development set and 17.48% and 17.80% for the one-to-one reim-
plementation, respectively, mini-batch TF implementation. However, when all lan-
guages are considered, the one-to-one reimplementation performs clearly better, both
in terms of WER and PER: The WER difference on the test set amounts to almost
absolute 5%, and the PER is around 50% smaller.

9The submission for SIGMORPHON2022-MS was largely based on my own work. Silvan Wehrli.
However, Simon Clematide and Peter Makarov provided essential help during experimentation
and writing. Simon Clematide largely shaped the submission for SIGMORPHON2022-INFL.
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dev test
1:1 TF 1:1 TF

Language WER SD PER WER SD PER |∆| WER SD PER WER SD PER |∆|
Adyghe 24.82 0.99 6.38 24.22 0.55 6.22 0.60 28.51 1.49 6.72 28.87 1.22 6.87 0.36
Armenian 15.82 0.58 3.22 17.33 6.34 3.49 1.51 14.84 0.99 3.34 17.07 7.01 3.74 2.22
Bulgarian 31.51 0.92 6.86 30.69 1.90 7.24 0.82 28.67 1.55 5.60 28.51 2.73 5.74 0.15
French 9.78 0.53 2.49 10.53 0.64 2.65 0.75 7.49 0.57 1.68 7.87 0.74 1.84 0.38
Georgian 25.98 1.32 4.78 24.09 0.85 4.86 1.89 28.76 2.02 4.97 26.20 1.70 4.98 2.56
Greek (Modern) 15.80 0.47 2.83 15.47 0.82 2.80 0.33 17.82 1.22 2.95 18.69 0.84 3.08 0.87
Hindi 6.38 0.33 1.60 7.16 0.63 1.76 0.78 7.25 0.49 1.80 8.09 1.09 1.92 0.84
Hungarian 3.11 0.21 0.62 4.25 1.65 0.90 1.14 4.78 0.42 1.09 5.91 1.92 1.38 1.13
Icelandic 9.96 0.64 2.16 9.67 0.54 2.06 0.29 11.11 0.84 2.34 11.74 0.78 2.55 0.62
Japanese (Hiragana) 8.15 0.53 2.52 21.91 18.75 8.02 13.76 7.40 0.85 1.91 21.16 18.57 10.65 13.76
Korean 20.58 1.08 3.66 20.58 0.67 3.62 0.00 27.71 1.41 4.80 27.49 0.86 4.79 0.22
Lithuanian 20.33 0.50 3.99 20.22 0.67 3.88 0.11 20.13 0.97 3.63 19.16 1.11 3.69 0.98
Romanian 11.58 0.44 2.91 11.55 0.57 2.88 0.02 12.14 0.57 2.77 12.18 1.42 2.81 0.04
Vietnamese 2.00 0.23 0.49 60.71 34.84 43.66 58.71 1.58 0.20 0.52 49.76 36.34 45.57 48.18
AVG 14.77 0.64 3.16 19.68 4.72 6.47 5.45 15.75 0.99 3.15 20.15 5.23 6.87 4.92

Table 4.8: Results for the SIGMORPHON2020-G2P dataset comparing the one-
to-one reimplementation (1:1 ) with the mini-batch TF implementation
(TF ). SD means standard deviation and is in relation to the WER score.
|∆| measures the absolute WER difference between 1:1 and TF.

Model variance To investigate the huge performance difference for Japanese and
Vietnamese, Figure 4.2 shows the model performance variance (measured in WER)
on the test set. The one-to-one reimplementation clearly shows very little variance.
While this is visually and analytically not the case for the mini-batch TF imple-
mentation, the visual analysis offers another insight: At least some of the models
perform on a similar level as the one-to-one reimplementation. The models’ training
logs suggest that this is not a learning problem, i.e., for all models (independent
of the WER performance), the training loss decreases steadily during training.10 I
suspect that this might be a consequence of the model not being exposed to its own
mistakes during training.11

Insertion errors Test set outputs suggest that these failing models do not rec-
ognize the correct end of the transduction and instead produce seemingly random
insertions. Table 4.9 shows such output for Japanese and Vietnamese with samples
from two low-performing models. The models fail to stop the transduction at the
right point and produce repeating characters.

Conclusion The mini-batch TF implementation performs similarly for many lan-
guages while, theoretically, allowing to scale efficiently. For some languages, however,

10Table A.2 in the appendix shows the complete training logs for the worst and best performing
models for Japanese and Vietnamese.

11Simon Clematide and Peter Makarov reported that they experienced similar behaviour in early
implementations of the baseline model without exploration at training time.
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specific models may behave unreliably (depending on the seed initialization). Not
using exploration at training time may explain this unreliability.

Figure 4.2: Model variance for Japanese and Vietnamese test set scores for the one-
to-one reimplementation (1:1 ) and mini-batch TF implementation (TF ).
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ff WB
ff WB

ff

Vietnamese
gold P áo m Ă£Ă£

samples P áo m Ă£Ă£ Ă£Ă£ Ă£Ă£ Ă£Ă£ Ă£Ă£ Ă£Ă£ Ă£Ă£ Ă£Ă£ Ă£Ă£ Ă£Ă£ Ă£Ă£
P áo m Ă£Ă£ P Ă£Ă£ P Ă£Ă£ P Ă£Ă£ P Ă£Ă£ P Ă£Ă£ P Ă£Ă£ P Ă£Ă£ P Ă£Ă£ P Ă£Ă£ P Ă£Ă£

Table 4.9: Samples for a typical test output of failing models for Japanese and Viet-
namese in the SIGMORPHON2020-G2P dataset.

4.4.2 SIGMORPHON2021-G2P

Results The results in Table 4.10 present a rather similar picture compared to the
results for the SIGMORPHON2020-G2P dataset (Table 4.8). For many languages,
the performance is similar - with a few extreme exceptions. The model variance
of Khmer (in the low setting), Japanese, and Vietnamese (in the medium setting)
is substantial. Some models suffer from the previously discussed problem of over-
insertion (Table 4.9).
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dev test
1:1 TF 1:1 TF

Language WER SD WER SD |∆| WER SD WER SD |∆|

low

Adyghe 26.40 0.02 25.50 1.27 0.90 26.70 0.03 28.80 2.78 2.10
Greek 6.80 0.01 7.10 1.45 0.30 24.00 0.02 25.60 2.80 1.60
Icelandic 16.20 0.02 19.30 1.16 3.10 15.60 0.01 16.50 1.84 0.90
Italian 20.30 0.01 20.40 2.01 0.10 23.50 0.02 26.30 3.20 2.80
Khmer 41.70 0.02 51.60 17.12 9.90 38.90 0.04 53.70 18.54 14.80
Latvian 42.20 0.02 44.90 1.73 2.70 57.10 0.03 52.30 4.24 4.80
Maltese (Latin) 16.70 0.01 19.90 2.38 3.20 19.90 0.03 17.10 1.97 2.80
Romanian 11.50 0.01 10.50 0.85 1.00 11.80 0.01 13.30 2.00 1.50
Slovenian 49.20 0.02 50.20 1.93 1.00 50.00 0.04 53.50 3.06 3.50
Welsh (Southwest) 17.70 0.01 19.30 1.49 1.60 14.10 0.02 14.30 1.70 0.20
AVG 24.87 0.02 26.87 3.14 2.38 28.16 0.02 30.14 4.21 3.50

medium

Armenian (Eastern) 5.13 0.00 5.44 0.31 0.31 7.08 0.01 6.75 0.65 0.33
Bulgarian 10.78 0.01 10.07 0.66 0.71 19.61 0.03 18.72 2.04 0.89
Dutch 12.93 0.01 13.49 1.53 0.56 17.32 0.01 17.86 1.61 0.54
French 8.65 0.00 8.94 0.57 0.29 9.08 0.01 9.39 0.56 0.31
Geogian 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Serbo-Croatian (Latin) 39.09 0.01 38.11 0.83 0.98 39.12 0.01 38.28 0.79 0.84
Hungarian 1.37 0.00 1.69 0.22 0.32 1.67 0.00 1.92 0.20 0.25
Japanese (Hiragana) 7.09 0.00 12.45 8.48 5.36 6.44 0.00 11.99 8.56 5.55
Korean 19.93 0.01 20.10 0.71 0.17 18.18 0.01 19.01 0.90 0.83
Vietnamese (Hanoi) 1.34 0.00 47.72 35.30 46.38 2.25 0.00 47.54 34.80 45.29
AVG 10.63 0.00 15.80 4.86 5.51 12.08 0.01 17.15 5.01 5.48

Table 4.10: Results for the SIGMORPHON2021-G2P dataset comparing the one-
to-one reimplementation (1:1 ) with the mini-batch TF implementation
(TF ). SD means standard deviation. |∆| measures the absolute WER
difference between 1:1 and TF.

The influence of batch size Additionally, I experimented with different batch
sizes. Figure 4.3 summarizes these experimental results. It shows a clear picture:
The performance is inversely proportional to the batch size.12

Figure 4.3: The influence of batch size on the SIGMORPHON2021-G2P dataset.
Results represent the average over all languages.

12Detailed results are given in Table A.3 in the appendix.
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Conclusion The experimental results for the SIGMORPHON2021-G2P dataset
confirm the findings from the SIGMOPRHON2020-G2P dataset (Subsection 4.4.2):
Generally, the mini-batch TF implementation performs similarly to the one-to-one
reimplementation (which uses roll-in) but shows a high model performance variance
for some languages.

4.4.3 SIGMORPHON2022-MS

4.4.3.1 Submission Details

Data preprocessing Besides NFD normalization as a preprocessing step, we sub-
stitute the multi-character morpheme delimiter (“ @@”) by a single character unseen
in the data to decrease the length of the output.

Sentence-level segmentation We simplify part 2 of the shared task by reducing
it to a word-level problem. Concretely, we split the input sentences into single word
tokens and train the model on these word tokens, similarly to part 1. The single
word predictions are then simply concatenated to form the original sentence. Since
this completely neglects the context of the words, we have also experimented with
POS tags as additional input features. We use TreeTagger [Schmid, 1999] to obtain
the features.13

Model parameters We use a 2-layer stacked LSTM as the encoder and exper-
imented with encoder dropout. We found the Adam optimizer [Kingma and Ba,
2015] to work well, as well as the scheduler that reduces the learning rate whenever
a development set metric plateaus. We settled on a batch size of 32 for all models,
which offers a good trade-off between model performance and training speed. Other
hyperparameters (e.g. various embedding dimensions) are similar to the previous
work [Makarov and Clematide, 2020].

Ensembling All our submissions are majority-vote ensembles. For part 1, we sub-
mit a 5-strong ensemble, CLUZH, composed of three models without encoder
dropout and two models with encoder dropout of 0.1.14

13The parameter files are available at https://www.cis.uni-
muenchen.de/˜schmid/tools/TreeTagger/.

14Due to a mistake, the predictions by the models with dropout 0.1 were included twice, and a
prepared model with dropout 0.25 was not used at all. However, the F1 macro-average over all
the languages for the intended ensemble on the development set is only 0.08 points higher.
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For part 2, we submit three ensembles. All individual models have an encoder
dropout probability of 0.25 and vary only in their use of features: CLUZH-1 with
three models without POS features, CLUZH-2 with three models with POS tag fea-
tures, and CLUZH-3 with combines all the models from CLUZH-1 and CLUZH-
2.

4.4.3.2 Results and Discussion

Table 4.11 and Table 4.12 show our results for parts 1 and 2, respectively. Based
on the macro-average F1-score over all languages, our submission for part 1 ranks
third out of 7 full submissions. For part 2, our submission CLUZH-3 was declared
the winner out of 10 full submissions.15

dropout = 0.0
(avg. of 3 models)

dropout = 0.1
(1 model)

dropout = 0.25
(1 model)

ensemble
(5 models)

best
other

Language dev test dev test dev test dev test test
Czech 92.96 93.31 93.35 93.60 93.32 93.49 94.07 93.81 93.88
English 90.33 90.33 91.01 90.86 90.91 90.68 92.65 92.70 93.63
French 93.22 93.02 93.95 93.85 93.72 93.48 94.94 94.80 95.73
Hungarian 99.40 98.28 99.15 98.09 99.63 98.57 99.61 98.54 98.72
Spanish 97.79 97.78 98.57 98.61 98.53 98.56 98.71 98.74 99.04
Italian 95.54 95.54 96.15 96.19 96.02 96.11 96.93 96.93 97.47
Latin 99.20 99.20 99.30 99.26 99.30 99.23 99.40 99.37 99.38
Russian 97.52 97.54 96.38 96.43 96.65 96.54 98.58 98.62 99.35
Mongolian 98.21 97.73 98.47 97.80 98.47 97.90 98.53 98.12 98.51
AVG 96.02 95.86 96.26 96.08 96.28 96.06 97.05 96.85 97.30

Table 4.11: F1-scores for SIGMORPHON2022-MS part 1.

without features with POS tags combined
average

(3 models)
ensemble

(3 models)
average

(3 models)
ensemble

(3 models)
ensemble

(6 models)
best
other

Language dev test dev test dev test dev test dev test test
Czech 94.06 90.90 94.54 91.35 94.15 91.15 94.45 91.76 94.72 91.99 91.76
English 98.12 89.27 98.31 89.47 98.18 89.29 98.38 89.47 98.41 89.54 96.31
Mongolian 85.95 81.57 87.06 82.22 86.24 81.84 87.26 82.55 87.62 82.88 82.59
AVG 92.71 87.25 93.30 87.68 92.86 87.43 93.36 87.93 93.58 88.14 90.22

Table 4.12: F1-scores for SIGMORPHON2022-MS part 2. All models are trained
with a dropout probability of 0.25.

Dropout The results for part 1 suggest that encoder dropout can help improve
model performance. For some languages, the performance can improve by as much

15Our submission performed the best on two out of three languages (Czech and Mongolian). As
it was beaten by another submission based on the macro F1 average, two submissions were
declared winners.
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as 1% F1-score absolute.

Ensembling Ensembling brings a clear improvement over single-best results. On
average, the improvement is +0.55% on the development set and +0.53% on the
test set (compared to the best single model result).

Gains from POS tags The results for part 2 suggest that treating a sentence-
level problem as word-level may be a simple yet powerful strategy for morpheme
segmentation. The success of this strategy depends on the language and the data.
The more segmentation ambiguity a language has, the more important the context
is. Mongolian has the highest segmentation ambiguity (Table 4.13). Around 1/5 of
the tokens in the training data have at least two possible segmentations, whereas
Czech and English exhibit little to no ambiguity. This may partially explain why the
performance on the Mongolian data is the lowest. This also explains why using POS
tags as additional features bring the biggest improvement for Mongolian: +0.29%
and +0.27% on the development and test sets, based on the average of individual
models. Using POS tags improves the prediction of ambiguous segmentation by an
absolute 1.1% and 0.6% on the development and test sets for Mongolian (Table 4.14).
When looking at the whole dataset, using POS features increases the relative number
of correct predictions by 0.11% (development set) and 0.06% (test set) compared
to not using the features. Using POS tags brings slight improvements and helps
mitigate the loss of context.

train dev
Language 1 ≥2 1 ≥2
Czech 100% 0% 100% 0%
English 99.58% 0.42% 99.75% 0.25%
Mongolian 77.91% 22.09% 90.00% 10.00%

Table 4.13: Segmentation ambiguity in SIGMORPHON2022-MS part 2: Relative
frequency of unambiguous (1) vs ambiguous (≥ 2) word tokens.

dev test
ambiguous all ambiguous all
NF POS ∆ NF POS ∆

63.0% 64.1% +0.11% 59.5% 60.1% +0.06%

Table 4.14: Impact of POS features on Mongolian, SIGMORPHON2022-MS part 2.
ambiguous shows the average percentage of correctly predicted ambigu-
ous segmentations for Mongolian. NF denotes models without features,
POS denotes models using POS tags. all shows the absolute improve-
ment for POS compared to NF, in relation to the whole dataset.
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Token–type ratio Another reason for the lower performance of Mongolian might
lie in the high variance in the data: The Mongolian training dataset contains around
40% unique tokens (Table 4.15). This is around four times more than in the English
dataset. This makes the learning problem much harder, which is further exacerbated
by the relatively small size of the data (compared to English).

train dev
Language total unique total unique
Czech 15,157 5,126 7,545 3,217
English 169,117 17,249 21,444 4,849
Mongolian 13,237 5,293 6,632 3,216

Table 4.15: Word counts in SIGMORPHON2022-MS part 2: The total number of
word forms and the number of unique words.

Conclusion Our competitive submission to this shared task demonstrates the ap-
proach’s ability, i.e., the effectiveness of the mini-batch training implementation, to
scale successfully to large datasets. Given the low ambiguity of the dataset in part 2
(apart from Mongolian), reducing sentence-level morpheme segmentation to a word-
level problem presents a viable strategy. Conditioning on POS tags brings further
improvements. We leave it to future work to explore more powerful representations
of context.

4.4.4 SIGMORPHON2022-INFL

4.4.4.1 Submission Details

Data preprocessing For both parts, we apply NFD normalization to the input
and split the UniMorph features at “;” by default. For languages that showed lower
performance compared to the neural or non-neural baseline on the development
set in part 1, we also computed models without NFD normalization and chose the
best based on their development set performance. For Korean, we observed some
Latin transliteration noise in the train/development set targets, which we removed
before training. For Lamaholot (slp), we observed a very low accuracy (5%) on the
development set compared to the neural baseline’s 20% performance. By splitting
UniMorph features at “+” as well as “;”,16 we achieved better generalization for this
low-resource language (only 240 training examples available).

16For instance, V;ARGAC2P+ARGNO2P;SBJV would be split into 4 separate features.
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Hyperparameters For small datasets in both parts: batch size one, a patience
of 30 epochs, one-layer encoder and decoder with hidden size 200, character and
action embeddings of size 100, feature embeddings of size 50, the AdamW optimizer
Loshchilov and Hutter [2019] with a learning rate of 0.0005 (half of the default value),
the reduce-learning-rate-on-plateau scheduler with factor 0.75, and beam decoding
with beam width four. For a few languages whose development set performance was
lower than that of the baselines, we computed models without NFD normalization
and used those in case of improved accuracy.17

For large datasets in part 1, we made the following changes from the above: batch
size 32, a patience of 20 epochs, action embeddings of size 200, a two-layer encoder
with a hidden size of 1,000, a one-layer decoder with a hidden size of 2,000. In case of
the development set performance was below that of any of the official baselines, we
used some alternative hyperparameters:18 no NFD normalization, batch size 16, a
one-layer encoder with a hidden size of 2,000, a one-layer decoder with a hidden size
of 4,000, and the Adadelta optimizer [Zeiler, 2012] with the default learning rate.
Hyperparameters were not chosen using a systematic grid search or experimentation.

Convergence For the small datasets in part 1 with default hyperparameters and
NFD normalization, we observe large differences in the number of epochs to con-
vergence (mean 27.3, SD 22.8). For some languages, e.g. Chukchi (ckt), Ket (ket),
and Ludian (lud), we see the best results on the first epoch, which typically means
the model has just learned to copy the input to the output. For other languages,
much larger or highly varying numbers of epochs to convergence are observed: Slovak
(15-93), Karelian (13-88), Mongolian, Khalkha (19-61), and Korean (12-143).

For the large datasets in part 1 (7,000 training examples) with default hyperparam-
eters and NFD normalization, we observe a mean of 17.3 epochs to convergence (SD
16.0). For Ludian, even in the large setting, the first epoch with copying gave the
best results. In contrast, Georgian could generally profit from more epochs (mean
36.8, SD 17.9).

Ensembling Our submission for part 1 is a 5-strong majority-voting ensemble,
and it is a 10-strong ensemble for part 2.

17Arabic, Gothic, Hungarian, and Old Norse.
18Arabic, Assamese, Evenki, Hungarian, Kazakh, Mongolian, Khalkha, and Old Norse.
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4.4.4.2 Results and Discussion

The part 1 test set results are shown in Table 4.16. Given the large number of
languages, we discuss the average accuracy on small and large training sets. An
important goal for this shared task was to assess a system’s performance on test
data subsets defined by whether both the lemma and the feature specification were
seen in the training data (+L +F in the Table), whether only the lemma (+L, -F),
or only the feature specification (-L, +F) were seen, or whether neither of them (-L
-F) appeared in the training data.

seen status (± Lemma/Features)
System Overall +L +F +L –F -L +F -L –F

Small dataset setting
CLUZH 56.87 77.31 31.27 77.97 43.26
Best 74.76 81.64 72.91 77.97 70.87
∆ -17.89 -4.33 -41.64 0.00 -27.62

Large dataset setting
CLUZH 67.85 90.99 41.43 87.17 60.30
Best 62.39 89.57 42.17 85.31 55.56
∆ 5.46 1.43 -0.74 1.86 4.74

Table 4.16: Test results (accuracy macro-averaged over languages) for INFL part 1
split by training dataset size: large (7,000 training examples) vs small
(up to 700 examples). ∆ shows the difference between our submission
and the best competitor covering the full set of languages.

Small datasets On the small datasets, our system only excels on the -L +F subset,
meaning it is strong in modeling the behaviour of features. In the small dataset
setting, the best competitor system, UBC, has an extremely strong performance
in case the lemma is known (+L). It would be interesting to know what kind of
information or data augmentation UBC uses: The neural baseline, which utilizes
data augmentation, has a much lower performance (24.9%) than our submission.
Overall, our submission with a 5-strong ensemble achieves the second-best result of
the submissions covering all languages.

Large datasets In the large dataset setting, our submission shows the best per-
formance overall. On the subset with seen lemmas and unseen features (+L -F),
the neural baseline is the only system with slightly better results. This indicates
that our system’s modeling of lemmas is not yet optimal. The information flow in
our architecture maybe dominated by the features (they are fed into the decoder at
every action prediction step) and the aligned input character, and it may not have
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the best representation of the input lemma as a whole.

Trajectories The test set results for part 2 are shown in Figure 4.4. Our 10-strong
ensemble was the clear overall winner in this low-resource track. It beats the best
competing approaches by a substantial margin on the per-language average: Arabic
59.6% accuracy (best competitor OSU 57.5%), German 76.7% (non-neural baseline
74.8%), English 85.7% (OSU 81.5%).

Individual model performance varies, and the majority-vote ensembling improved
the scores by 1.4% absolute on average on the test set. Interestingly, the difference
between the average model performance and the ensemble performance does not get
smaller with larger training sets.

The correlation between the increasing number of training examples and the improv-
ing test set performance is almost perfect for the average performance. Ensembles
are slightly less stable.

Figure 4.4: Test accuracy results for SIGMORPHON22-INFL part 2. avg=average,
ens=10-strong ensemble.

Conclusion The submission presents strong results across data regimes. We note
problems with capturing unseen lemmas, which may define future work.

4.4.5 Training and Inference Time

As part of the system description paper of the submission to the SIGMORPHON
2022 Shared Task on Morpheme Segmentation [Wehrli et al., 2022], I have evaluated
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the speed improvement of the mini-batch training TF implementation compared
to the baseline model.19 The results, shown in Table 4.17, report a clear speed
improvement: For a batch size of 32, training is around three times faster on a CPU
and close to 100 times faster on a GPU. For a batch size of 512, training is faster
by a factor of over 250 on a GPU.
Table 4.17 also reports speed improvements for greedy decoding when using a GPU
(compared to a CPU). Depending on the batch size, GPU-supported speeds up the
inference process by a factor of over 10.20

training greedy decoding
BL TF TF

Batch size GA CPU GPU CPU GPU
1 27.49 18.96 5.02 6.49 10.00
32 23.58 7.48 0.25 2.92 0.73
64 23.89 7.46 0.16 2.84 0.47
128 24.69 7.88 0.13 2.88 0.33
256 27.14 8.21 0.12 3.01 0.26
512 31.11 8.51 0.12 3.26 0.23

Table 4.17: Mini-batch training and greedy decoding speed for the mini-batch TF
implementation (TF ) vs the baseline model (BL) . The BL models are
trained on CPU using gradient accumulation (GA). All numbers are
given in seconds and per 1,000 samples.

4.5 Transformer Encoder

Goal This section presents experiments with transformer-based encoders. Subsec-
tion 4.1.1 looks at experiments on the SIGMORPHON2020-G2P dataset and Sub-
section 4.5.2 at experiments on part 1 of the SIGMORPHON2022-MS dataset. The
goal of these experiments is to evaluate whether transformer-based encoders can
improve performance compared to LSTM-based encoders.

Experimental setup I have conducted many experiments with transformer-based
encoders to examine the effects of different model parameters. These parameters

19For this purpose, I have trained models for the Armenian dataset of SIGMORPHON2020-G2P
with different batch sizes. The training times represent averages of 20 epochs on the training set.
The greedy decoding times are averages of 20 runs on the development set using a well-trained
model. Model hyperparameters are identical to those of Makarov and Clematide [2020].

20Note that the precomputation of gold action sequences for the training data takes around 12
seconds per 1000 samples. However, this procedure is only required once per dataset as the pre-
computed output can be reused for any training run. In any case, the gains shown in Table 4.17
easily offset the additionally required time.
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include the number of encoder layers, the number of heads, or hyperparameters
such as the optimizer, learning rate scheduler, or batch size. However, the results for
transformer-based encoders in this section all use the same setup (apart from the
batch size). My experiments indicate that this setup works relatively well (compared
to other parameter configurations), and I present these results in the following.21 It is,
in fact, similar to what Wu et al. [2021] suggest: Encoders consist of four layers with
four heads, and models are optimized using the Adam optimizer (with a learning rate
of 0.001). The feed-forward layer uses a hidden size of 1024. Additionally, the model
uses an inverse square root scheduler with 4000 warmup steps (warmup scheduler,
[Vaswani et al., 2017]). However, for some experiments, I use a scheduler that reduces
the learning rate on a plateau (plateau scheduler)22. The models use a character
embedding dimension of 256. The training is continued for a sufficiently large number
of epochs such that models can fully converge.23 If not stated otherwise, results follow
these parameter configurations. All other model parameters follow the configuration
of the baseline system for SIGMORPHON2020-G2P [Ashby et al., 2021], similar
to Section 4.3. Results represent an average of five runs with fixed seeds and are
produced using greedy decoding.

4.5.1 SIGMORPHON2021-G2P

Results With respect to the results in Table 4.18, transformer-based encoders per-
form clearly worse than the LSTM baseline24. In the low setting, no LSTM-based
model is outperformed. In the medium setting, solely French performs better on the
development and test set. Overall, the performance gap is smaller in the medium set-
ting. Previously discussed results for LSTM-based encoders with mini-batch training
have shown that performance variance may be large for some languages. This can
also be observed here (e.g., for Italian, Maltese, and Vietnamese).

Dropout The results suggest that, as the dataset size decreases, a higher dropout
value is more beneficial. Wu et al. [2021] report similar for their morphological
reinflection results. However, my experiments indicate that this behaviour might

21Important additional experimental results are given in Appendix A.2.
22If not stated otherwise, the learning rate is reduced after 10 epochs by a factor of 0.5 of no

improvement on the development set.
23My impression is that models with a transformer encoder need noticeably more time to converge

compared to LSTM-only models. During experiments, I have chosen a high number of epochs
(up to a few hundred) with a patience for early stopping of up to 100 epochs to rule out lower
performance as an insufficient convergence.

24Results for the one-to-one reimplementation in Table 4.7 serve as baseline.
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dev test
Transformer Transformer

Language LSTM
baseline dp = 0.1 dp = 0.3 SD |∆| LSTM

baseline dp = 0.1 dp = 0.3 SD |∆|

low

Adyghe 26.40 31.40 29.00 1.58 2.60 26.70 36.00 32.20 2.39 5.50
Greek 6.80 14.60 12.00 1.22 5.20 24.00 33.60 30.80 1.79 6.80
Icelandic 16.20 26.60 26.00 2.74 9.80 15.60 32.20 31.80 2.05 16.20
Italian 20.30 40.40 46.80 7.26 26.50 23.50 42.20 47.00 6.48 23.50
Khmer 41.70 45.80 43.00 1.22 1.30 38.90 51.00 47.00 2.24 8.10
Latvian 42.20 48.80 48.00 1.87 5.80 57.10 60.40 54.60 4.77 2.50
Maltese (Latin) 16.70 27.20 27.00 3.32 10.30 19.90 33.80 33.60 3.51 13.70
Romanian 11.50 13.60 12.40 1.14 0.90 11.80 23.60 21.80 2.77 10.00
Slovenian 49.20 55.60 55.00 2.12 5.80 50.00 66.00 65.80 6.30 15.80
Welsh (Southwest) 17.70 26.60 26.60 1.52 8.90 14.10 31.20 28.00 4.69 13.90
AVG 24.87 33.06 32.58 2.40 7.71 28.16 41.00 39.26 3.70 11.60

medium

Armenian (Eastern) 5.13 5.16 5.64 0.15 0.03 7.08 7.40 8.16 0.23 0.32
Bulgarian 10.78 11.86 13.82 0.67 1.08 19.61 23.24 24.36 4.40 3.63
Dutch 12.93 12.88 12.74 0.78 0.05 17.32 18.84 18.72 0.47 1.52
French 8.65 8.74 8.68 0.27 0.09 9.08 8.92 8.78 0.53 0.16
Geogian 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.18 0.04 0.10
Serbo-Croatian (Latin) 39.09 39.88 40.08 0.72 0.79 39.12 41.08 42.16 0.71 1.96
Hungarian 1.37 1.70 1.72 0.13 0.33 1.67 2.08 2.08 0.22 0.41
Japanese (Hiragana) 7.09 7.40 10.30 6.55 0.31 6.44 7.88 10.46 6.12 1.44
Korean 19.93 19.62 18.76 0.13 0.31 18.18 19.04 18.64 0.81 0.86
Vietnamese (Hanoi) 1.34 45.02 48.52 29.27 43.68 2.25 43.90 48.50 28.79 41.65
AVG 10.63 15.23 16.03 3.87 4.67 12.08 17.25 18.20 4.23 5.21

Table 4.18: WER results for the SIGMORPHON2021-G2P dataset comparing
transformer-based encoders with an LSTM baseline. dp means dropout
probability. SD means standard deviation and is in relation to results
with a dropout probability of 0.3 for low and 0.1 for medium. All models
use a batch size of 128.

depend on specific hyperparameters: I do not observe this behaviour for a different
number of heads and encoder layers (Table A.7). When using a different learning
rate scheduler, results show ambiguity in the development and test set (Table A.8).

Batch size The results in Table 4.18 are based on a batch size of 128. The choice
of this batch size is motivated by my experiments. Generally, a too low batch size
seems to deteriorate performance (Table A.5). This is in stark contrast to what
can be observed with LSTM-based encoders (Figure 4.3). However, my experiments
also suggest that the benefit of a larger batch size might depend on the training
dataset size. Table A.7 reports a clearly lower WER for the overall average in the
low setting for a batch size of 32 (30.60% and 37.17% for the development and test
set with a dropout probability of 0.3). The same table shows worse results for the
medium setting (15.39% and 17.68% for the development and test set with a dropout
probability of 0.1). However, compared to a batch size of 32, increasing the batch
size to 64 results in a similar performance on the development set (15.35%) and test
set (17.69%), as reported in Table A.9.
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Optimizer and scheduler Generally, the choice of the optimizer and learning rate
scheduler seems to affect the model performance substantially. My experiments sug-
gest that the combination of Adam with a warmup scheduler works well (Tables A.6
and A.9).

Conclusion Overall, LSTM-based encoders seem superior in performance. For
some languages, transformer-based encoders can outperform a high-performance
LSTM baseline. What is more, the hyperparameter choice seems to have a significant
impact on transformer performance.

4.5.2 SIGMORPHON2022-MS

Results Overall, the results in Table 4.19 show a clear performance advantage of
the LSTM baseline25 over the transformer-based model. While transformer-based
models perform slightly better for some languages (Czech, Latin, and Mongolian
on the development set and Latin on the test set), the LSTM baseline offsets this
by much higher performance on all the other languages. Partial results for models
with a dropout probability of 0.1 suggest that a lower dropout value might improve
generalizability.26

dev test
Transformer Transformer

Language LSTM
baseline dp = 0.1 dp = 0.3 SD LSTM

baseline dp = 0.1 dp = 0.3 SD

Czech 92.96 93.14 93.00 0.25 93.31 93.26 92.96 0.32
English 90.33 85.11 79.08 14.59 90.33 85.04 79.12 14.54
French 93.22 - 86.45 4.30 93.02 - 86.30 4.25
Hungarian 99.40 - 91.93 11.18 98.28 - 91.23 10.70
Spanish 97.79 - 93.49 6.60 97.78 - 93.50 6.63
Italian 95.54 - 90.54 4.11 95.54 - 90.61 4.10
Latin 99.20 - 99.31 0.02 99.20 - 99.28 0.01
Russian 97.52 - 92.27 5.16 97.54 - 92.22 5.23
Mongolian 98.21 98.39 98.35 0.03 97.73 97.56 97.54 0.15
AVG 96.02 - 91.60 5.14 95.86 - 91.42 5.10

Table 4.19: F1-score results for part 1 of SIGMORPHON2022-MS comparing
transformer-based models with an LSTM baseline. dp means dropout
probability. SD means standard deviation and is in relation to results
with a dropout probability of 0.3. All models use a batch size of 256.

25Results for a dropout probability of 0.0 from Table 4.11 serve as baseline.
26Due to the size of the dataset, and given the scope of my thesis, I was unfortunately unable to

perform large-scale experiments for all languages.
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Model variance The high model performance variance for most languages is espe-
cially conspicuous. For instance, the standard variance for the English models with a
dropout probability is around 15%. Low-performing models (in terms of WER) show
similar behaviour to some LSTM models observed on the SIGMORPHON2020-G2P
dataset (Subsection 4.4.1): The training loss decreases somewhat steadily, but the
evaluation metric does not improve respectively decreases. Interestingly, I cannot
report similar behaviour for LSTM encoders in the context of this data (Subsec-
tion 4.4.3).

Hyperparameters I have conducted a small hyperparameter study for Czech to
better understand the influence of the optimizer and batch size. Table 4.20 com-
pares two transformer-based encoder setups. One uses Adadelta and no scheduler
(Adadelta), and one uses the Adam optimizer with the plateau scheduler (Adam
w/ plateau).27 In this context, I can report similar observations as for the SIG-
MORPHON2021-G2P dataset (Susbection 4.5.1). The choice of hyperparameters
seems to influence the model performance significantly, and the benefit of single
hyperparameters (e.g., larger batch size) seems to depend on other hyperparameter
configurations (e.g., optimizer).

Adadelta Adam
w/ plateau

64 256 512 64 256
92.25 91.78 91.05 88.17 92.31

Table 4.20: F1-score results for Czech on the SIGMORPHON22-MS development
dataset (part 1) for a transformer-based encoder comparing the F1-score
for different batch sizes for two different optimizer setups. Averages rep-
resent results of three models.

Conclusion The results tie in with the findings of the previous section (Subsec-
tion 4.5.1). However, transformer-based models show a much larger model variance
than fully LSTM-based models. This leaves the question of whether transformer-
based models might be more prone to the exposure bias.

27The learning rate is reduced after 10 epochs by a factor of 0.1 of no improvement on the devel-
opment set.
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5 Conclusion

Section 5.1 summarizes the motivation of this work. Section 5.2 emphasises the main
results in relation to the research questions (Section 1.4). Finally, Section 5.3 outlines
future work.

5.1 Thesis Overview

Neural transducers that use an encoder-decoder architecture to predict character-
level edit actions have shown great success in many string transduction tasks. The
model of Makarov and Clematide [2018a] presents such a model. It uses imita-
tion learning to learn explicit edit actions derived from an expert policy. Varia-
tions of this approach have led to various successful shared task submissions: to the
CoNLL-SIGMORPHON 2018 Shared Task on Universal Morphological Reinflection
[Makarov and Clematide, 2018c], the SIGMORPHON 2020 Shared Task on Mul-
tilingual G2P [Makarov and Clematide, 2020] as well as the SIGMORPHON 2021
Shared Task on Multilingual G2P [Clematide and Makarov, 2021].
Despite the ongoing success, the approach may be improved on different levels:
Firstly, the model uses the machine learning framework DyNet [Neubig et al., 2017].
DyNet’s development has de facto stopped, and highly community-driven frame-
works such as PyTorch [Paszke et al., 2019] have surpassed DyNet. Secondly, the
model exclusively uses recurrent neural structures. The rise of the non-recurrent
transformer architectures [Vaswani et al., 2017] and the recent success of such archi-
tectures in string transduction tasks [Wu et al., 2021] beg the question of whether
such architecture can improve the general approach of [Makarov and Clematide,
2018a]. Lastly, the model’s architecture is tailored for CPU training, limiting its ap-
plication to data settings with at most a couple of thousand training samples. While
datasets for string transduction tasks typically do not go beyond this scope (e.g.,
[Ashby et al., 2021]), the recent SIGMORPHON 2022 Shared Task on Morpheme
Segmentation required models to train on hundreds of thousands of training samples
[Batsuren et al., 2022]. Motivation for large-scale training also comes from recent
research: Wu et al. [2021] report that a large batch size is critical for the successful
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application of transformers in string transduction tasks.

This thesis addresses these shortcomings by improving the concrete neural trans-
ducer implementation of Makarov and Clematide [2020]. It does so by reimplement-
ing the model in PyTorch (Research Question 1, Subsection 1.4.1), implementing
GPU-supported mini-batch training and batched greedy decoding (Research Ques-
tion 2, Subsection 1.4.2), as well as implementing transformer-based encoders (Re-
search Question 3, Subsection 1.4.3). I have performed and evaluated experiments
on different shared task datasets for string transduction tasks to examine the success
of these implementations.

5.2 Main Results

Can the Model Be Ported from DyNet to PyTorch with Feature

Parity?

The reimplementation of the baseline model [Makarov and Clematide, 2020] in Py-
Torch has proven successful. Yes, the model can be ported from DyNet to PyTorch
with feature parity to answer the first research question (Subsection 1.4.1). The ex-
periments on the dataset for the SIGMORPHON 2020 Shared Task on Multilingual
G2P (Subsection 4.3.1) suggest very similar results, effectively replicating DyNet-
based results of the model by Makarov and Clematide [2020]. While the Pytorch
reimplementation shows a slight performance advantage overall, I attribute these
differences to the small test set size. The evaluation of experiments on the dataset
for the SIGMORPHON 2021 Shared Task On Multilingual G2P (Susbection 4.3.1)
shows that with increasing test set size, the performance differences become smaller.
These experiments also show that stacking LSTMs can be a simple way to improve
performance. This improvement, however, seems to depend on the amount of train-
ing data (improved performance in the larger data setting).

Can the Model Scale to Higher Data Volume?

Based on the successful reimplementation in PyTorch, I have implemented GPU-
supported mini-batch training and batched greedy decoding in PyTorch. To optimize
efficiency in mini-batch training, the implementation uses teacher forcing [Williams
and Zipser, 1989]. In this respect, the implementation diverges from the baseline
model of Makarov and Clematide [2020] which uses exploration at training time (roll-
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in). Not introducing the model to its own mistakes during training (i.e., through
roll-in), theoretically exposes the model to the exposure bias, which can influence
performance negatively [Wiseman and Rush, 2016]. The proposed implementation
for mini-batch training might therefore present a tradeoff between speed and gener-
alizability. In fact, experiments on the datasets of the SIGMORPHON 2020 and 2021
Shared Task On Multilingual G2P (Subsections 4.4.1 and 4.4.2) show that for a few
languages model performance variance can be vast, suggesting, that in these cases,
training speed comes at the cost of generalizability. Depending on the initialization,
some of the models for these languages produce outputs with repeating characters
(insertion errors). This is likely a consequence of not implementing exploration at
training time. For any other languages, the performance is comparable to the Py-
Torch reimplementation with feature parity. Interestingly, we have not observed this
behaviour in our competitive submission to the SIGMORPHON–UniMorph 2022
Shared Task on Typologically Diverse and Acquisition-Inspired Morphological Inflec-
tion Generation, which offers training datasets of comparable sizes (Subsection 4.4.4,
Wehrli et al. [2022]). To fully leverage and evaluate the benefit of mini-batch train-
ing and batched greedy decoding, I have participated in the SIGMORPHON 2022
Shared Task on Morpheme Segmentation. The submission has turned out to be
highly competitive. In part 1 of the shared task, the submission ranked second out
of all teams and was declared winner in part 2 (Subsection 4.4.3, Wehrli et al. [2022]).
Again, and in the context of this submission, I cannot report noticeably high model
variance (insertion errors). What is more, an evaluation in the context of this sub-
mission shows that training is up to 250 times faster on a GPU depending on the
batch size (compared to the baseline model of Makarov and Clematide [2020]). I
can also report substantial speed improvements for greedy decoding used during
inference (by a factor of over 10, depending on the batch size).
To come back to the second research question (Subsection 1.4.2): Yes, the model,
as originally defined by Makarov and Clematide [2020], can be successfully scaled
to higher data volumes. In a few cases, however, the proposed implementation for
mini-batch training might lead to inconsistent model behaviour, which cannot be
observed for the PyTorch reimplementation with feature parity.

Can a Transformer Encoder Beat an LSTM Encoder?

To answer the third research question right away (Subsection 1.4.3): No, given my
experiments, transformer-based encoders cannot beat LSTM-based encoders. How-
ever, I think it is important to qualify this result and not consider it a final judg-
ment. The experiments on the datasets for the SIGMORPHON 2021 Shared Task
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on Multilingual G2P (Subsection 4.5.1) and SIGMORPHON 2022 Shared Task on
Morpheme Segmentation (Subsection 4.5.2) show that, generally, LSTM-based mod-
els perform better. For some languages, however, I can report better performance for
transformer-based encoders. Nevertheless, these experiments also show that perfor-
mance can vary significantly depending on the choices of (hyper)parameters. In this
thesis, I have investigated the effect of some of these parameters (e.g., batch size,
optimizer, or the type of learning rate scheduler), showing that parameters should be
carefully set when working with transformers. For instance, batched training seems
to be favourable and an important hyperparameter when working with transformer
architectures (as reported by Wu et al. [2021]). As the scope of this thesis is lim-
ited, more investigation should be put into different parameters. As I have largely
focused on hyperparameters, the effect of model parameters (such as the decoder)
remains unexamined. Therefore, more experimentation is needed to better judge the
potential benefits of transformer encoders.

5.3 Outlook

Overall, this thesis has provided several improvements for the model of Makarov
and Clematide [2020]. I identify two interesting research areas for future work based
on my results.

Performance variance As previously discussed, the proposed mini-batch training
routine leads to high model performance variance in some cases. Future work should
put effort into investigating this behaviour. Should the assumption be sustained
that exploration at training time could decrease performance variance, effort should
be directed towards implementing this feature in the context of efficient mini-batch
training. My implementation draft for roll-in, as discussed in Section 3.6.2, offers a
starting point.

Experiments with transformers Future work should continue to explore the appli-
cation of transformer-based architectures in neural transducers. The experimental
results for this thesis’ transformer-based encoders serve as a baseline. More con-
cretely, future experiments should investigate the influence of model parameters
such as the character embedding dimension as well as the general structure of the
LSTM decoder (number of layers, dropout, and the size of hidden layers). Further-
more, it is an open question whether an LSTM decoder and a transformer encoder
are a fitting combination. Future experiments could address this question by ex-
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perimenting with different decoder architectures in combination with a transformer
encoder. Lastly, Dong et al. [2022] experiment with encoder pretraining, inspired by
BERT [Devlin et al., 2019] and adapted to the G2P. Their results are promising and
offer motivation to try similar pretraining methods.
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A Results

A.1 Experiments with LSTM Encoders

A.1.1 SIGMORPHON2020-G2P

dev test
DyNet PyTorch DyNet PyTorch

Language WER SD PER WER SD PER |∆| WER SD PER WER SD PER |∆|
Adyghe 25.53 0.57 6.56 25.18 1.13 6.37 0.36 29.56 1.36 7.03 28.16 1.63 6.57 1.40
Armenian 16.73 1.05 3.42 15.62 0.59 3.17 1.11 15.49 1.63 3.39 14.71 0.92 3.29 0.78
Bulgarian 34.13 2.59 7.08 31.42 0.91 6.83 2.71 29.49 1.95 5.88 28.42 1.50 5.55 1.07
Dutch 21.02 0.52 4.14 20.22 0.50 3.95 0.80 20.18 0.70 3.73 20.02 0.86 3.60 0.16
French 16.38 0.88 2.91 15.85 0.94 2.87 0.53 18.13 1.16 3.21 17.67 1.09 3.09 0.47
Georgian 10.40 0.53 2.61 9.87 0.61 2.50 0.53 8.93 1.13 1.96 7.56 0.58 1.70 1.38
Greek (Modern) 27.33 1.64 4.90 25.98 1.34 4.80 1.36 29.29 1.68 4.99 28.58 2.05 4.98 0.71
Hindi 15.78 0.85 2.80 15.71 0.44 2.82 0.07 20.02 1.23 3.29 17.76 1.15 2.92 2.26
Hungarian 6.13 0.70 1.64 6.29 0.42 1.57 0.15 7.31 0.95 1.70 7.09 0.35 1.76 0.22
Icelandic 3.05 0.36 0.61 3.22 0.22 0.65 0.18 4.87 0.37 1.19 4.78 0.42 1.06 0.09
Japanese (Hiragana) 10.11 1.06 2.12 9.96 0.68 2.14 0.15 10.56 0.83 2.25 11.15 0.88 2.31 0.60
Korean 7.89 0.45 2.39 7.67 0.57 2.34 0.22 7.07 0.63 1.87 11.58 0.44 2.91 4.51
Lithuanian 20.96 0.89 3.74 20.44 1.00 3.59 0.51 28.09 1.46 4.86 27.40 1.46 4.70 0.69
Romanian 11.71 0.93 2.94 11.58 0.46 2.92 0.13 12.49 1.05 2.88 12.07 0.59 2.75 0.42
Vietnamese 1.42 0.30 0.29 2.00 0.18 0.48 0.58 1.47 0.19 0.42 1.51 0.14 0.45 0.04
AVG 15.24 0.89 3.21 14.73 0.67 3.13 0.63 16.20 1.09 3.24 15.90 0.94 3.18 0.99

Table A.1: Results for the SIGMORPHON2020-G2P dataset comparing the base-
line model (DyNet) with the one-to-one PyTorch reimplementation (Py-
Torch). WER results represent an average of 10 runs and are produced us-
ing beam search decoding with a beam width of four. SD means standard
deviation. |∆| measures the absolute WER difference between DyNet and
PyTorch.
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Japanese Vietnamese
train loss train acc. dev acc. train loss train acc. dev acc.

Epoch B W B W B W B W B W B W
1 0.6457 0.6361 0.6556 0.0000 0.6622 0.0000 0.5978 0.5817 0.7389 0.1056 0.7733 0.1044
2 0.0778 0.0697 0.9389 0.0000 0.9178 0.0022 0.0835 0.0860 0.8556 0.1056 0.8489 0.0644
3 0.0370 0.0301 0.9556 0.0000 0.9489 0.0022 0.0526 0.0548 0.8944 0.1389 0.9089 0.0778
4 0.0246 0.0186 0.9778 0.0000 0.9533 0.0022 0.0387 0.0416 0.8833 0.4056 0.8489 0.4067
5 0.0181 0.0126 0.9722 0.0000 0.9533 0.0022 0.0298 0.0324 0.9056 0.0556 0.9022 0.0222
6 0.0149 0.0093 0.9778 0.0000 0.9644 0.0022 0.0247 0.0258 0.8944 0.1611 0.8667 0.1067
7 0.0121 0.0071 0.9833 0.0000 0.9733 0.0022 0.0201 0.0212 0.9333 0.3222 0.9067 0.2800
8 0.0100 0.0058 0.9833 0.0000 0.9689 0.0022 0.0164 0.0182 0.9389 0.1111 0.8756 0.0400
9 0.0090 0.0047 0.9833 0.0000 0.9689 0.0022 0.0137 0.0150 0.9500 0.0889 0.9133 0.0267
10 0.0075 0.0039 0.9944 0.0000 0.9733 0.0022 0.0120 0.0129 0.9556 0.2444 0.9111 0.1844
11 0.0064 0.0034 0.9944 0.0111 0.9711 0.0022 0.0106 0.0113 0.9833 0.1611 0.9067 0.1111
12 0.0056 0.0028 0.9944 0.0111 0.9711 0.0022 0.0088 0.0095 0.9222 0.0333 0.8333 0.0022
13 0.0052 0.0024 0.9833 0.0111 0.9733 0.0022 0.0078 0.0081 0.9722 0.1278 0.9022 0.0756
14 0.0047 0.0021 0.9944 0.0111 0.9756 0.0022 0.0063 0.0066 0.9778 0.0833 0.8933 0.0200
15 0.0039 - 0.9944 - 0.9778 - 0.0054 0.0056 0.9833 0.0667 0.9178 0.0089
16 0.0031 - 0.9944 - 0.9756 - 0.0049 0.0050 0.9889 0.0722 0.9067 0.0067
17 0.0028 - 0.9944 - 0.9756 - 0.0043 - 0.9944 - 0.8911 -
18 0.0025 - 0.9944 - 0.9778 - 0.0032 - 0.9722 - 0.8867 -
19 0.0022 - 0.9944 - 0.9778 - 0.0026 - 0.9889 - 0.9044 -
21 0.0018 - 0.9944 - 0.9756 - 0.0021 - 0.9889 - 0.8956 -
22 0.0017 - 0.9944 - 0.9733 - 0.0016 - 0.9556 - 0.8867 -
23 0.0013 - 0.9944 - 0.9778 - 0.0014 - 0.9833 - 0.9022 -
24 0.0016 - 0.9944 - 0.9756 - 0.0012 - 0.9833 - 0.8978 -
25 0.0011 - 1.0000 - 0.9756 - 0.0011 - 0.9778 - 0.8933 -
26 0.0008 - 1.0000 - 0.9778 - 0.0012 - 0.9667 - 0.8911 -
27 0.0006 - 1.0000 - 0.9778 - 0.0007 - 0.9833 - 0.8956 -
28 0.0006 - 1.0000 - 0.9778 - 0.0006 - 0.9833 - 0.8933 -

Table A.2: The training logs for the best (B) and worst (W ) performing models for
Japanese and Vietnamese on the SIGMOPRHON2020-G2P dataset.
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A.1.2 SIGMORPHON2021-G2P

dev test
5 32 64 128 5 32 64 128

Language WER SD WER WER WER WER SD WER WER WER
Adyghe 25.50 1.27 25.70 26.70 - 28.80 2.78 31.00 31.20 -
Greek 7.10 1.45 9.00 9.70 - 25.60 2.80 28.00 30.20 -
Icelandic 19.30 1.16 22.60 26.10 - 16.50 1.84 20.80 22.60 -
Italian 20.40 2.01 25.90 32.60 - 26.30 3.20 31.80 33.50 -
Khmer 51.60 17.12 53.90 55.00 - 53.70 18.54 56.30 56.90 -
Latvian 44.90 1.73 48.40 50.60 - 52.30 4.24 56.70 59.50 -
Maltese (Latin) 19.90 2.38 22.90 26.80 - 17.10 1.97 22.80 30.50 -
Romanian 10.50 0.85 10.10 9.80 - 13.30 2.00 14.60 13.60 -
Slovenian 50.20 1.93 55.50 59.80 - 53.50 3.06 57.90 63.30 -
Welsh (Southwest) 19.30 1.49 21.40 22.70 - 14.30 1.70 19.40 20.10 -
AVG 26.87 3.14 29.54 31.98 - 30.14 4.21 33.93 36.14 -

Armenian (Eastern) 5.44 0.31 5.82 5.79 6.60 6.75 0.65 7.46 7.63 8.84
Bulgarian 10.07 0.66 12.46 13.74 16.78 18.72 2.04 20.18 21.51 24.26
Dutch 13.49 1.53 13.57 14.83 15.63 17.86 1.61 18.87 21.01 21.96
French 8.94 0.57 9.24 9.63 10.47 9.39 0.56 9.60 9.92 10.43
Geogian 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.03 0.06
Serbo-Croatian (Latin) 38.11 0.83 40.79 43.19 46.07 38.28 0.79 42.04 44.31 47.53
Hungarian 1.69 0.22 2.15 2.49 2.57 1.92 0.20 2.24 2.74 2.83
Japanese (Hiragana) 12.45 8.48 21.10 21.60 22.08 11.99 8.56 20.70 21.69 22.65
Korean 20.10 0.71 20.29 20.50 21.01 19.01 0.90 18.95 18.53 18.93
Vietnamese (Hanoi) 47.72 35.30 61.74 62.05 64.70 47.54 34.80 61.15 61.16 64.23
AVG 15.80 4.86 18.72 19.38 20.59 17.15 5.01 20.12 20.85 22.17

Table A.3: Results for the SIGMORPHON2021-G2P dataset comparing different
batch sizes for the mini-batch TF implementation (TF ). WER results
represent an average of 10 runs and are produced using greedy decoding.
SD reports the standard deviation for a batch size of five.
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APPENDIX A. RESULTS

A.2 Experiments with Transformer Encoders

A.2.1 SIGMORPHON2021-G2P

dev test
Language 16 32 64 128 256 512 16 32 64 128 256 512
Armenian (Eastern) 5.4 5.2 5.1 5.6 5.6 5.8 8 7.1 6.7 7.3 8 8.3
Bulgarian 18 16 13 11.8 10.7 12.2 29.5 26 24.3 27.9 24.2 25.6
Serbo-Croatian (Latin) 49.6 43.2 38.1 40.5 38.9 42.3 50.9 43.8 41.1 41 40.1 43.7

Table A.5: WER results for the SIGMOPRHON2021-G2P dataset for Armenian,
Bulgarian and Serbo-Croatian. Results are based on a single model (fixed
seed) and show results for different batch sizes. All models are optimized
using Adam and the warmup scheduler.

dev test

Language Adadelta Adam
(plateau)

Adam
(warmup) Adadelta Adam

(plateau)
Adam

(warmup)
Armenian (Eastern) 7.10 5 5.6 8.30 6.50 7.30
Bulgarian 16.00 11.8 11.8 31.20 23.9 27.9
Serbo-Croatian (Latin) 45.70 41.9 40.5 45.30 41.4 41

Table A.6: WER results for the SIGMOPRHON2021-G2P dataset for Armenian,
Bulgarian and Serbo-Croatian. Results are based on a single model (fixed
seed) and show results for different optimizers and learning rate sched-
ulers. All models use a batch size of 128.

dev test
4 heads,
4 layers

8 heads,
2 layers

4 heads,
4 layers

8 heads,
2 layers

Language dp = 0.1 dp = 0.3 SD dp = 0.1 dp = 0.3 SD dp = 0.1 dp = 0.3 SD dp = 0.1 dp = 0.3 SD

low

Adyghe 29.67 30.00 1.00 30.67 30.00 1.00 35.67 30.00 2.65 33.33 32.33 0.58
Greek 14.67 11.67 1.53 11.33 13.00 2.65 34.67 30.33 3.79 33.67 35.33 3.21
Icelandic 24.33 24.00 1.00 25.00 27.33 1.15 30.33 30.67 3.06 29.67 36.00 4.36
Italian 38.00 34.67 2.89 33.67 34.67 1.15 42.00 43.33 0.58 43.67 45.67 2.08
Khmer 45.33 43.67 0.58 45.33 44.00 1.00 53.00 46.00 3.61 47.00 47.67 0.58
Latvian 48.00 46.33 0.58 49.00 49.67 1.15 59.00 55.67 5.86 58.67 55.67 0.58
Maltese (Latin) 23.67 24.67 0.58 26.33 28.00 1.00 32.33 29.67 2.08 35.33 34.67 1.15
Romanian 13.33 12.67 0.58 12.67 13.67 0.58 21.33 20.33 3.06 16.33 18.00 2.65
Slovenian 52.67 53.67 2.08 54.33 53.33 1.53 64.67 59.33 4.16 63.67 65.33 3.21
Welsh (Southwest) 24.33 24.67 1.53 26.00 27.67 3.21 29.33 26.00 1.00 31.00 27.00 2.65
AVG 31.40 30.60 1.23 31.43 32.13 1.44 40.23 37.13 2.98 39.23 39.77 2.10

medium

Armenian (Eastern) 5.57 5.33 0.15 5.27 5.83 0.15 8.17 7.17 0.40 7.70 7.30 0.26
Bulgarian 12.87 13.23 1.21 13.17 13.27 0.49 23.60 24.23 1.19 25.87 25.03 1.80
Dutch 13.00 11.80 0.36 12.33 13.73 0.96 18.57 17.87 1.01 18.07 19.73 0.76
French 9.17 8.40 0.46 8.60 9.27 0.12 9.90 8.13 0.67 8.77 9.53 0.76
Geogian 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.23 0.06 0.03 0.10 0.17
Serbo-Croatian (Latin) 39.43 39.23 1.07 41.13 45.70 1.93 41.87 42.90 0.20 41.83 47.77 1.80
Hungarian 1.70 1.83 0.25 1.60 2.03 0.06 2.33 2.10 0.20 1.93 2.43 0.15
Japanese (Hiragana) 8.67 17.20 14.98 15.57 8.13 0.68 8.90 17.97 16.22 14.87 7.97 0.47
Korean 19.47 18.63 0.49 19.23 19.20 0.36 19.00 18.30 1.18 19.63 19.00 0.30
Vietnamese (Hanoi) 44.03 52.93 17.92 38.90 39.87 34.74 44.37 53.27 19.12 39.83 42.77 31.89
AVG 15.39 16.86 3.69 15.58 15.70 3.95 17.68 19.22 4.03 17.85 18.16 3.84

Table A.7: WER results for the SIGMORPHON2021-G2P dataset for two different
transformer configurations. All results represent an average of three mod-
els. All models use a batch size of 32 and are optimized using Adam and
the warmup scheduler. dp means dropout probability. SD means stan-
dard deviation and is related to the results with a dropout probability
of 0.3.
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dev test
Language dp = 0.1 dp = 0.3 SD dp = 0.1 dp = 0.3 SD

low

Adyghe 31.20 30.60 1.14 34.80 33.60 3.13
Greek 18.20 20.20 1.30 36.80 38.60 0.55
Icelandic 33.20 33.00 2.24 35.20 35.40 2.19
Italian 47.60 50.60 0.89 48.40 49.20 2.17
Khmer 47.80 48.40 2.07 53.00 49.40 1.52
Latvian 51.60 51.40 2.51 57.80 58.20 2.28
Maltese (Latin) 29.80 29.00 1.58 38.20 37.20 3.03
Romanian 21.00 20.40 1.52 28.80 24.40 2.07
Slovenian 59.20 59.40 1.82 67.00 64.00 5.29
Welsh (Southwest) 31.80 33.20 2.59 34.00 32.00 1.87
AVG 37.14 37.62 1.77 43.40 42.20 2.41

medium

Armenian (Eastern) 5.30 5.92 0.44 6.86 7.68 0.58
Bulgarian 15.98 17.18 1.13 27.46 28.88 2.23
Dutch 13.24 14.80 0.58 18.46 20.58 0.73
French 8.82 10.12 0.28 8.64 9.74 0.33
Geogian 0.00 0.00 0.00 0.00 0.00 0.00
Serbo-Croatian (Latin) 47.10 50.76 1.07 47.40 52.18 1.32
Hungarian 1.74 2.34 0.09 2.02 2.44 0.60
Japanese (Hiragana) 7.58 8.08 0.97 7.94 7.94 0.56
Korean 18.98 18.88 0.53 18.46 18.58 0.59
Vietnamese (Hanoi) 60.52 66.78 24.59 60.18 66.76 23.81
AVG 17.93 19.49 2.97 19.74 21.48 3.07

Table A.8: WER results for the SIGMORPHON2021-G2P dataset for models with
a transformer-based encoder. All results represent an average of three
models. dp means dropout probability. SD means standard deviation
and is related to the results with a dropout probability of 0.3. Models
are optimized using Adam and the plateau scheduler. All models use a
batch size of 128.

dev test
warmup plateau warmup plateau

Language dp = 0.1 dp = 0.3 SD dp = 0.1 dp = 0.3 SD dp = 0.1 dp = 0.3 SD dp = 0.1 dp = 0.3 SD
Armenian (Eastern) 5.28 5.76 0.21 5.30 5.92 0.44 7.72 7.86 0.58 6.86 7.68 0.58
Bulgarian 14.68 15.24 1.11 15.98 17.18 1.13 26.52 26.62 2.38 27.46 28.88 2.23
Dutch 13.62 13.96 2.84 13.24 14.80 0.58 18.40 20.42 4.34 18.46 20.58 0.73
French 8.56 8.64 0.18 8.82 10.12 0.28 8.92 8.92 0.54 8.64 9.74 0.33
Geogian 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.12 0.13 0.00 0.00 0.00
Serbo-Croatian (Latin) 39.52 41.70 0.89 47.10 50.76 1.07 42.14 43.80 0.65 47.40 52.18 1.32
Hungarian 1.60 2.08 0.19 1.74 2.34 0.09 2.06 2.38 0.33 2.02 2.44 0.60
Japanese (Hiragana) 7.60 7.68 0.41 7.58 8.08 0.97 7.36 7.86 0.29 7.94 7.94 0.56
Korean 19.32 19.38 0.40 18.98 18.88 0.53 20.20 19.04 0.80 18.46 18.58 0.59
Vietnamese (Hanoi) 43.34 51.56 29.68 60.52 66.78 24.59 43.48 51.46 28.05 60.18 66.76 23.81
AVG 15.35 16.60 3.59 17.93 19.49 2.97 17.69 18.85 3.81 19.74 21.48 3.07

Table A.9: WER results for the medium setting of the SIGMORPHON2021-G2P
dataset for models with a transformer-based encoder. All results repre-
sent an average of 3 models. dp means dropout probability. SD means
standard deviation and is related to the results with a dropout prob-
ability of 0.3. Models are optimized using Adam and use the plateau
scheduler (plateau) or the warmup scheduler (warmup). All models use
a batch size of 64.
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Encoder parameters dev test

layers heads dimension
feedforward dropout arm_e bul hbs_latn arm_e bul hbs_latn

2 2 256 0.1 6.50 17.90 47.70 8.10 23.00 49.90
2 2 512 0.1 5.80 16.90 47.50 7.40 25.00 46.90
2 2 1024 0.1 6.60 18.30 45.70 7.70 27.10 48.40
2 2 256 0.3 6.60 18.30 50.30 7.90 28.30 51.20
2 2 512 0.3 5.50 20.90 51.80 7.90 28.20 53.00
2 2 1024 0.3 6.50 20.50 50.50 7.30 25.60 50.80
2 4 256 0.1 7.20 18.90 44.60 9.80 27.80 47.50
2 4 512 0.1 6.40 18.60 45.50 8.10 20.30 46.20
2 4 1024 0.1 6.70 15.50 44.30 8.30 27.70 45.40
2 4 256 0.3 7.20 17.70 49.10 8.40 27.00 51.20
2 4 512 0.3 6.80 21.50 49.40 8.10 25.30 50.60
2 4 1024 0.3 6.80 20.50 47.70 8.20 29.10 49.90
2 8 256 0.1 6.90 17.60 44.10 9.40 25.20 46.10
2 8 512 0.1 6.70 17.00 44.40 8.50 25.80 45.30
2 8 1024 0.1 7.00 19.70 45.70 8.30 28.20 47.00
2 8 256 0.3 8.30 21.80 50.10 10.10 30.50 51.40
2 8 512 0.3 8.20 19.10 48.40 9.80 25.90 51.70
2 8 1024 0.3 7.90 21.60 48.30 8.00 31.70 47.60
4 2 256 0.1 5.80 16.60 46.80 7.30 24.80 49.40
4 2 512 0.1 6.50 15.50 46.70 7.70 21.60 47.10
4 2 1024 0.1 6.50 14.60 47.40 7.70 22.40 48.10
4 2 256 0.3 6.70 24.20 50.10 8.20 31.60 51.40
4 2 512 0.3 6.00 21.40 49.00 7.90 30.40 51.30
4 2 1024 0.3 6.20 16.10 51.30 7.90 27.30 55.00
4 4 256 0.1 6.90 16.40 45.70 7.70 26.80 46.70
4 4 512 0.1 6.50 15.80 44.50 8.40 22.80 47.30
4 4 1024 0.1 7.10 16.00 45.70 8.30 31.20 45.30
4 4 256 0.3 7.90 23.90 48.90 8.80 32.30 50.70
4 4 512 0.3 7.10 26.20 50.00 8.90 33.80 50.20
4 4 1024 0.3 6.70 22.30 48.50 7.40 31.10 51.20
4 8 256 0.1 7.10 16.00 45.70 8.30 31.20 45.30
4 8 512 0.1 7.80 17.20 44.30 8.40 27.20 47.30
4 8 1024 0.1 7.40 19.20 45.00 9.40 30.10 45.50
4 8 256 0.3 8.60 20.60 50.60 9.80 29.80 50.00
4 8 512 0.3 8.30 22.50 48.00 10.70 33.70 49.40
4 8 1024 0.3 9.40 20.80 48.40 11.20 30.50 50.60
8 2 256 0.1 6.50 19.80 45.30 8.50 28.10 43.80
8 2 512 0.1 5.80 19.00 45.40 8.40 29.30 46.10
8 2 1024 0.1 6.10 16.80 45.90 8.20 25.60 46.70
8 2 256 0.3 7.10 20.70 49.40 7.90 31.40 50.40
8 2 512 0.3 6.20 24.20 49.80 8.00 29.80 49.60
8 2 1024 0.3 6.60 25.40 51.50 8.10 34.50 51.40
8 4 256 0.1 6.10 16.40 44.50 8.00 26.10 46.90
8 4 512 0.1 7.80 17.20 45.10 9.20 28.20 45.90
8 4 1024 0.1 6.80 16.60 46.20 8.70 26.10 48.80
8 4 256 0.3 8.50 21.80 49.40 8.70 33.90 49.80
8 4 512 0.3 7.50 19.70 49.90 9.50 25.70 51.30
8 4 1024 0.3 7.40 23.30 49.50 8.90 34.20 52.80
8 8 256 0.1 7.10 13.10 47.20 8.30 27.40 45.60
8 8 512 0.1 8.30 17.40 46.00 9.00 28.10 47.70
8 8 1024 0.1 7.90 21.00 47.60 9.20 31.00 49.50
8 8 256 0.3 9.40 22.40 48.80 11.60 30.40 51.20
8 8 512 0.3 9.00 22.10 48.50 10.60 28.50 50.20
8 8 1024 0.3 9.30 27.10 49.90 9.90 31.10 49.70

Table A.10: WER results for the SIGMOPRHON2021-G2P dataset for Armenian
(arm_e), Bulgarian (bul) and Serbo-Croatian (hbs_latn). The results
are based on a single model (fixed seed) and show different transformer
encoder configurations. All models are optimized using Adadelta.
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