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Abstract

Während das Internet der Dinge (Internet of Things, IoT) in Bezug auf die Anzahl

der Geräte und die Anwendungsfälle ein schnelles Wachstum verzeichnet, mangelt es in

diesem Bereich stark an Standardisierung. Mit heterogenen Edge-Geräten, sogenannten

Mikrocontrollern (MCUs), und einer Vielzahl von Betriebssystemen (OS) zur Auswahl,

leidet die Interoperabilität. Das Ziel dieser Arbeit ist es, den Kernel des Open-Source-

Betriebssystems Linux auf kleine MCUs zu portieren. Auf diese Weise wird die Hardware

von der Anwendungsschicht abstrahiert und somit die dringend benötigte Standardisie-

rung im IoT-Ökosystem geschaffen. Dies wurde erreicht, indem die richtige Toolchain

gefunden und der Linux- und µClinux-Kernel mit Hilfe von Tools wie Buildroot kompi-

liert wurde. Anschliessend wurden die kompilierten Distributionen mit QEMU getestet

und auf das STM32L476G-Eval Board bzw. ESP-EYE portiert. Darüber hinaus wurde

ein anderer Ansatz mit JuiceVM, einer virtuellen RISC-V-Maschine, auf der Linux läuft,

erprobt.

As the Internet-of-Things (IoT) see rapid growth, in device numbers and use cases, stan-

dardization is very much lacking in the field. With heterogeneous edge devices, or so-called

microcontrollers (MCUs), and a variety of operating systems (OS) to choose from, inter-

operability is suffering. The goal of this thesis is to port the kernel of the open-source

operating system Linux onto tiny MCUs. By doing so abstracting the hardware from

the application layer, and therefore providing much-needed standardization in the IoT

ecosystem. This was achieved by finding the correct toolchain, and compiling the Linux

and µClinux kernel with the help of tools such as Buildroot. Subsequently, the compiled

distributions were tested with QEMU and ported to STM32L476G-Eval board and ESP-

EYE respectively. Additionally, a different approach with JuiceVM, a RISC-V virtual

machine, running Linux was explored.
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Chapter 1

Introduction

1.1 Motivation

In the previous two decades, the development and use of sensing- and connectivity-

enabling electronic gadgets has steadily increased, in some areas substituting conven-

tional physical devices [50]. With a central focus on interconnectedness, the appropriately

named, Internet of-Things (IoT) refers to the billions physical gadgets connected to the

internet of throughout the world, all gathering, and more importantly, sharing massive

amounts of data. IoT has become an integral part of the lives of billions of people world-

wide, not only due to the sheer number of connected devices and potential use cases [21]

but also due to the diversity and variety of IoT solutions [33]. Many people believe that

IoT is the essential development of the twenty-first century, because it affects almost every

industry, from healthcare to transportation. However, as the world around us becomes

increasingly linked, protecting these resource-constrained devices has become critical.

Linux runs on some microcontrollers, such as the Raspberry Pi (RPI) family. For example,

RPI 3B is a small computer equipped with computing essentials, e.g., the Advanced

RISC Machines (ARM) Cortex central processing unit (CPU), Random Access Memory

(RAM), but not necessarily of the latest generation, having minor energy requirements.

As an example, instead of a hard drive, an RPI is equipped with a flash memory card,

on which an Operating System (OS) may be installed. It also offers Universal Serial Bus

(USB) connectors, a video output, and a Wireless Fidelity (Wi-Fi) adapter. As RPI is a

small computer, a regular general-purpose OS such as Linux-based Ubuntu for the ARM

architecture can also be supported. However, Raspberry Pi OS, previously known as

Raspbian, is a typical distribution of choice for the Raspberry Pi device family. Linux is

an excellent success on Raspberry Pi as it simplifies the development of microcontroller

3



4 CHAPTER 1. INTRODUCTION

applications, as a regular operation can be used with which users are already familiar.

Currently, a new generation of microcontrollers is being introduced into the market. For

example, the ESP32 device family is based on the dual-core Reduced Instruction Set

Computer (RISC)-based Tensilica LX6 processor with a maximum frequency of 240 MHz,

8 MB PSRAM, and 4 MB flash seems to be a great choice to run Linux on those devices

as well. Linux was first developed for the Complex Instruction Set Computer (CISC)-

based Intel 386 (i386) architecture in 1991. Back then, the typical CPU clock speed

of the i386 system was between 12 MHz to 40 MHz, while the typical computer was

equipped with several megabytes of RAM (e.g., 4 MB). As ESP32 already exceeds the

specification of early i386 systems, it seems to be that porting Linux for those devices

shall be possible. 8 megabyte (MB) pseudo-static RAM (PSRAM) on ESP32-WROVER-

IE shall be satisfactory to run the kernel, uclibc, and essential binaries.

The cheapest development board for ESP32-WROVER-IE costs around 10 CHF. However,

when one does not need a development board, an ESP32-WROVER-IE costs 3 CHF.

Regular RPI 0 devices, which already contain an ARMCortex CPU, cost 22-24 CHF, while

an RPI 3 costs around 38 CHF. The cost reduction from RPI 3 to Linux-capable ARM-

based RPI 0 is already 42%, and the further cost reduction from RPI (Zero development

board) to ESP32-WROVERIE would be another 54%. Running Linux on regular ESP32-

WROVER-IE (i.e., not with a development board) would mean a cost reduction of 92%

in comparison to an RPI 3 device. This is a massive incentive to port a Linux-based

distribution towards the new family of devices. The migration of Linux on ESP32 should

be possible as there is already a Linux kernel project supporting the kernel execution on

the Tensilica LX6 processor family.

RISC-V is another open standard instruction set architecture (ISA) that was first released

in 2010 and is based on RISC (Reduced Instruction Set Computer) principles. A layered

security method that employs a Trusted Execution Environment (TEE) provided in the

RISC-V architecture is a gamechanger in the IoT industry. Unlike most other ISA de-

signs, RISC-V is available under open-source that does not require license fees. RISC-V

hardware is available from several companies. Opensource operating systems with RISC-

V support are available, and many major software toolchains support the instruction set.

Furthermore, there is a Linux kernel available for the RISC-V processor family. As an

example, the Espressif ESP32-C3 is a single-core, 32-bit, RISC-V-based MCU with 400KB

of SRAM and a 160 MHz clock speed. It includes 2.4 GHz Wi-Fi and Bluetooth 5 (LE)

with built-in long-range capability.
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1.2 Description of Work

The focus of this thesis is to lay a foundation for porting the open source software (OSS)

Linux kernel to tiny microcontrollers and to provide a Linux distribution for future studies,

which people can use, and upon which they can build. As the first step, a market analysis

must be performed to find suitable MCU boards that can support Linux. Then correct

toolchains and libraries need to be found to successfully compile Linux targeted at these

tiny edge devices. Having compiled the Linux source code, correctness needs to be verified

using QEMU, and as the last step flashing the code onto the chosen device.

1.3 Thesis Outline

This thesis is segmented into seven chapters. Related Work in Section 2 provides a descrip-

tion of IoT architectures, security, operating systems, and the lack of standardization. In

Section 3 we establish what devices this thesis considers, perform a market analysis, and

introduce various tools and projects that were used within the thesis. Section 4 proposes

a way towards standardization, and outlines the goal. In Section 5 we set up an environ-

ment with the tools discussed in Section 3, and sample code, that helps us to evaluate, is

introduced and explained. Finally, in Section 6 we evaluate the tools and projects, with

a conclusion following in Section 7.
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Chapter 2

Related Work

2.1 The Internet-of-Things

There was already a market for microcontrollers at the time Intel introduced the 4004

as the first single-chip microprocessor. By the end of 1971, Texas Instruments began

marketing the TMS1802, a modern calculator designed for use in cash registers, watches,

and measurement devices. But the first MCUs that gained widespread use were Intel’s

next-generation 8-bit controllers, such as the Intel 8048 and Intel 8051 operating on the

MCS-51 Instruction Set Architecture (ISA), most notably used in desktop peripherals

such as keyboards. While these MCUs build the foundation of the Internet of Things

(IoT), the edge hardware, the first primitive IoT device, a toaster that can be turned on

and off remotely, was introduced in 1990 [48].

The phrase ”Internet of Things”, was initially coined by Kevin Ashton in 1999. Ashton

made the initial proposal for the IoT, which he defined as a network of Radio-Frequency

IDentification (RFID)-enabled, interoperable, linked items. IoT can include billions of

intelligent, communicative ”things”, enabling connections between people and these things

at any time, anywhere, with anything, and with anybody, preferably via any path/network

and any service. Thus envisions a system in which omnipresent and ubiquitous devices

will link the Internet to every physical object [52, 56].

The quantity and diversity of IoT devices and solutions have multiplied due to the market’s

quick development. According to IoT reports, there were between 6.1 billion and 8.4

billion IoT devices in use in 2017, in 2020 growing to 20.4 billion, and by 2025 it is

anticipated that there will be 75 billion IoT devices [38, 44]. Although others report fewer

devices [21], the same upwards trend is captured. This discrepancy is indicative of the

7
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diverse manufacturers, countless forms, and the enormous amount of devices, that make

it challenging to identify a precise quantity. Despite the lack of definitive numbers, it

clearly shows that IoT has become more relevant and omnipresent, with growth that isn’t

showing any signs of slowing.

Uses of IoT are numerous, including medical, industrial, and consumer. With Govern-

ments heavily investing in initiatives such as the UK’s Future Internet Initiatives, the

European Research Cluster on IoT, the National IoT Plan of China’s Ministry of Indus-

try and Information Technology, the Italian National Project of Netergit, and Japan’s

u-Strategy [52]. Concrete examples include food safety through tracking of production

and supply [39], warning systems for floods [36] and automatic irrigation systems for

farms [53].

2.2 IoT Architecture

While the edge devices are in the center of IoT, it can not be reduced to just them. A stable

infrastructure is required to, effectively collect and handle data, efficiently organize storage

and transportation, ensure connectivity and security, and above all provide a foundation to

process ever larger quantities of data [43]. This includes sensing, computing, networking,

and the cloud. As every thing becomes interconnected, as IoT envisions, this architecture

needs to be able to support the growing number of nodes. With 32-bit addressing, IPv4

is at its limits and can not support more than 4.5 billion devices, new solutions such as

IPv6 need to be implemented to identify each device. Although a multitude of models

describing such architectures have been proposed, there is no consensus regarding which

one will prevail as the standard. The most basic model is the three-layer architecture [51].

1. The Perception layer, is the bottom of the pyramid where sensors reside, gathering

environmental data and transmitting them to the next, or to other devices in the

same layer. Omnipresence and ubiquity, are keywords used in IoT, and it is in the

perception layer that these traits are gained. Devices figuratively located in this

layer are still required to perform basic computation, yet need to be power efficient,

low cost, and relatively small.

2. The Network layer is in charge of establishing secure connections with other intel-

ligent objects, network components, and servers. Its capabilities are also employed

for processing and transferring sensor data.
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3. The Application layer delivers application-specific services to the user. It has two

fundamental functions, state tracking, and remote control. The status of the sen-

sors and microcontroller can all be monitored via state tracking, and as the name

suggests, remote control is in charge of controlling the sensors or MCUs [57].

While this model is extremely basic, it captures the very essence of IoT, and shall suffice

for the topics in this thesis, where we mostly focus on devices, MCUs, from the perception

layer. Note that microcontrollers are by no means limited to the first layer, and could be

deployed in the network layer.

2.3 The lack of standardization

As a result of the rapid development of IoT, the industry has concentrated on creating

and delivering the appropriate kinds of hardware. In the current model, the majority

of IoT solution providers have been building all components of the stack individually,

from the hardware devices, development environments, and tools, to the relevant cloud

services [33]. Additionally, there are many various IoT protocols to choose from, including

Wi-Fi, Bluetooth, 6LoWPAN, Zigbee, etc. for communication networks; EPC, uCode,

IPv6, and URIs for identification; and MQTT, CoAP, AMQP, Websocket, and Node, etc.

for application data protocol. Since there is no established standard, an IoT developer

chooses protocols depending on his needs and domain knowledge and designs end-to-

end IoT solutions. In an open market, such systems become vendor-specific, which is

undesirable [42]. This inevitably has the effect that devices can not talk to each other. [30]

conclude that the lack of standardization negatively impacts the IoT industry. [42] lists

the advantages of standardization and the disadvantages with the absence thereof. [46]

even goes as far as stating that ”The Internet of Things Might Never Speak a Common

Language”.

As interoperability is ensured by standardization, it improves the effective integration

and information exchange between distributed systems. The requirement for a standard

model to carry out typical IoT backend functions, such as processing, storing, and firmware

upgrades, is growing in importance. Different IoT solutions are expected to cooperate with

shared backend services in this new architecture, which will provide levels of compatibility,

portability, and management that are almost unattainable with the current generation of

IoT systems [33].
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2.4 IoT Security Issues

The term IT-Security was defined as follows. Information integrity, availability and con-

fidentiality [55]. In a paper by Schiller et al. [50] security is defined as message confiden-

tiality. This is exclusively the case if, and only if, the sender and receiver are aware of

the existence of the message, and only they can verify its validity. First and foremost,

compromised IoT systems have the potential to damage consumers physically as well as

compromise their privacy when sensors, actuators, or other linked devices are utilized

maliciously. This is, even more, the case in applications in the medical field. Secondly,

an attack’s effects extend beyond a single device or network due to the strong intercon-

nectedness of IoT devices. The IoT network is only as secure as its weakest device, hence

the proverb ”A chain is only as strong as its weakest link” is entirely appropriate in this

context.

The security strategies and procedures suggested are mostly based on traditional network

security procedures. However, given the variety of the devices and protocols including

the number of nodes in the network, implementing security methods in an IoT system is

more difficult than with a typical network [40].

2.5 Operating Systems on IoT

[49] compile quantitative survey results of OS usage in IoT. Of which Linux takes up

more than 70% of IoT Devices, while the majority of other OSs are used less than 10%.

As established in Section 2.2, low-end devices don’t represent the entirety of IoT, but a

portion that resides at the lowest layer. Therefore, this overwhelming majority does not

reflect the status quo for perception layer devices, rather gateway devices on the network

layer. The low representation of other OSs can be explained by the various choices that

developers can make when choosing an OS, once again underlining the heterogeneous

nature of IoT.

[37] classify OSs into three different architectures, monolithic, layered, and modular mi-

crokernel. Furthermore, they specify advantages of these architectures, the monolithic

kernel having a smaller footprint on memory with improved module interaction, the mod-

ular kernel not requiring to restart of the system when a single module fails, and the

layered architecture sitting in between the two. Theoretically, the lower memory print for

monolithic kernels is true, in practice, this is hardly the case for the Linux kernel due to

its sheer size.
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[45] analyzed different OSs for IoT edge devices and provide some factors that are crucial

for choosing such an operating system. They go as far as stating that ”Linux will never

run on these chips”, by chips referring to ARM Cortex-M powered MCUs. This claim is

based on the premise that the onboard memory of such chips is too low to support the

OS. As seen in Table 2.1, they show key characteristics of the mentioned OSs and Linux

has by far the largest RAM and ROM footprint.
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Chapter 3

Overview of Hardware & Technologies

Due to the explorative nature and the width of this thesis, we have to introduce a variety

of different IoT ISAs, System-on-a-Chip manufacturers and their relevant products, and

open source projects with the aim to aid in the process of embedding, toolchains, and

technologies. This chapter serves as an introductory overview of the various devices and

tools that were discovered and may help further research aiming to achieve similar goals.

3.1 Micro Computing

Von Neumann’s Architecture states that a modern computer requires a couple of core

components to be able to run [31]. Figure 3.1 shows a visual representation.

� A Processor Unit, or a core processing unit (CPU) can further be divided into two

subcomponents, the Control Unit (CU) and the Arithmetic Logic Unit (ALU). This

component performs operations and instructions on the data stored in the main

memory unit and on the I/O devices.

� The Main Memory Unit, or simply memory, stores data and the operations that

need to be performed on this data.

� The Input/Output (I/O) Devices, can be anything that allows us to interact with

the computer, such as a mouse or keyboard, or simply just an LED light that gets

turned on.

We can apply the definition of Von Neumann’s Architecture to further categorize two IoT

edge devices:

13



14 CHAPTER 3. OVERVIEW OF HARDWARE & TECHNOLOGIES

Figure 3.1: Von Neumann Architecture [8]

� A Micro controller unit (MCU) is an integrated, fully capable, self-sufficient com-

puter on a single chip. It can run a ”bare metal interface”, meaning that it doesn’t

require running an OS. Without which, it can run a single thread, or a control loop,

forever. As the title of this thesis implies, MCUs are the main focus of this thesis.

� AMicro processor unit (MPU) requires support from surrounding chips that enable

various functionalities like memory, interfaces, and I/O and cannot act as a stand-

alone computer. The MPU, according to Von Neumann’s Architecture, is just the

processor unit.

While the above terms, MCU and MPU, are oftentimes used interchangeably, we want to

point out the differences between these two families. It is far easier to run an OS, such

as the Linux kernel [19], on MPU-enabled devices, such as the Raspberry Pi 4, because

it is not limited to the capabilities on the chip, and can easily be extended with, i.e.

more RAM [18]. An MCU is limited to the design and capabilities of the chip. Hence,

an MPU runs with far higher processing capability and much larger applications, while

MCUs are for lightweight computing where the OS if one decides to use one, is integrated

on-chip. But because some MCUs have straightforward software drivers for more complex

peripherals and more MPUs are available that have integrated peripherals on-chip, the

gap between MCUs and MPUs is becoming less evident [47, 54].

3.2 Processors

When compiling software for a target platform, one must be aware of the different instruc-

tion set architectures (ISA) of the target CPUs. Listed below are the most noteworthy

processor families that we came across.
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� ARM Cortex-M-Series, are 32-bit RISC processors, designed for low-cost, low-

power, and usually embedded in MCUs and other IoT devices [2].

� ARM Cortex-A-Series, are 32-bit or 64-bit RISC processors, in contrast to the

Cortex-M-Series, these processors have higher energy consumption that are built

for more complex tasks such as supporting an OS [1].

� Tensilica Xtensa, are 32-bit, energy-efficient, high-performance processors that build

on the modular RISC architecture [23]. These processors are found on MCUs.

As the description of the ARM Cortex-M and Tensilica Xtensa processors seems to fit

our premise perfectly, low-cost, power-efficient and embedded in MCUs, we will focus on

these types of CPUs.

3.3 Market Analysis

To find a suitable MCU that could support Linux, a market analysis had to be performed.

The most relevant criteria were the following. A cheap MCU, having sizable RAM prefer-

ably more than 1MB, more than 40MHz CPU clock rate, availability in the region, and a

large community. Having a sizable community can simplify development due to the avail-

ability of online resources. Furthermore with the heterogeneous nature of IoT, directing

this thesis towards a smaller target audience would inevitably decrease its value. In Ta-

ble 3.1 the results are shown. Due to the countless different boards and chips that are

available on the market, we grouped the chips into families defined by the manufacturers,

to capture a larger picture, the column ”Chip / Dev Board” reflects this. The chips were

categorized into the IoT families established in Section 3.1.

The Raspberry Pi modules were used as a reference, as running Linux on these boards is

possible and fairly streamlined, through their own Linux distribution Raspbian [19]. Yet,

with their more capable Cortex-A processors and much larger RAM, they did not fit the

criteria for this thesis.

With the exception of ESP-EYE, the insights of the market analysis, see table 3.1, and the

realization that the required MCU on-chip RAM might not suffice for running Linux, a

multitude of sales representatives of hardware manufacturers primarily of STM, were con-

tacted. Among others, Digi-Key Electronics, Anatec AG, Avnet Silica Rothrist, Mouser

Electronics, and STM personally. Questions concerning configurability and extensibility

of RAM were posed with the goal of gaining expert insight. They were also specifically
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Figure 3.2: STM32L476G-Eval development board [11]

asked about boards such as the STM32F and STM32G series. STM personally replied with

the suggestion that we should try using the STM32L4 series boards and was willing to

supply us with two boards visible in Figure 3.2. This board provided a flexible memory

controller (FMC) interface and would fit our proceedings.

The second device used in this thesis is the ESP-EYE seen in Figure 3.3. With its inbuilt

2MP camera and its goal to capture and process pictures as well as sound, in comparison

to the other boards, it was naturally equipped with a relatively large amount of RAM.

3.4 Toolchains, Cross-Compilation & Libraries

For compiled languages, the appropriately named toolchain combines multiple steps into

a single pipeline, to produce binary or machine code. Each step in the process is a piece

of software that fulfills its role or function, and hands work over to the next tool in the

chain. Interpreted languages such as Python do not require compilation or toolchains, the

interpreter executes, or interprets, the code directly. Since this thesis focuses on code that
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Figure 3.3: ESP-EYE

runs close to the hardware, interpreted languages are not considered. When compiling

code a multitude of factors needs to be considered when choosing a toolchain, because they

are specifically designed to work exclusively in the right circumstances. Most importantly,

whether the host platform is the same as the target platform. The host is the platform on

which the compilation takes place and the target on which the binaries will eventually end

up running on. If the host and target platform are not the same, then we speak of cross-

compilation. Another important aspect of cross-compilation is the fact that, especially

in our case, the target platform may lack computing power and memory, thus compiling

could be very time inefficient or simply be impossible. If compilation is mentioned, cross-

compilation is implied, since the goal of this thesis is not to evaluate binary code compiled

for the host system, but for the target system, the MCU edge devices. Broadly simplified

toolchains work as follows.

As mentioned, the first step in a toolchain is source code compilation. Depending on the

programming language the source code was written in, the compilers vary. For different

compiled languages such as C and C++ different compilers are required. In our case,

C is of primary concern because the Linux kernel is mostly (98.4%) written in C [25].

From each source file that was compiled in the first step result Assembly code. Assembly

code, marked with ending .s, is a set of simplified instructions and basic operations,

in other words, it is a human-readable abstraction of machine code, i.e. bits. Nowadays
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Assembler programming is only utilized in situations when extremely efficient management

of processor activities is required, but it is still an intermediate product in the compilation.

Assembly code needs to be assembled outputting object code. Finally, the object code files

need to be linked with required libraries to form an, either statically or dynamically linked,

executable, see section 3.4.1. After successful cross-compilation follows only execution on

target device, which might seem like the easiest step, this is further discussed in section

6.3.

For the goals of this thesis, we will be compiling, mostly, C code on the host platform

operating on x64 architecture for target platforms on Armv7E-M architecture. Hence cross-

compilation will take place with the gcc-arm-none-eabi toolchain [7].

3.4.1 Dynamically & Statically Linked Libraries

A Library is a collection of precompiled and reusable components that hold functionality

for common processes. The most common example for such a library is C’s stdio.h

which holds, among others, function fprintf, which simply prints characters to the con-

sole. As previously stated there are two main methods of linking such functions with the

executables, we distinguish between statically linked libraries (SLL) or static libraries,

and dynamically linked libraries (DLL) or shared libraries. SLL is the simplest form, as

when linking, the contents of the library, specifically the required functions, are included

in the executable file. On a small scale, this doesn’t pose any problems, yet with more

executables that are loaded into memory, each of these executables contain their own SLL.

This can lead to the RAM (or ROM) being occupied by the same function multiple times.

Especially when RAM is limited, as is in our case, the redundancy of the same function

is not desired. DLL, on the other hand, requires only one instance of the functionality, all

the executables that require this specific function can access the read-only segment of the

library, therefore it can be shared. The process of sharing libraries is aided by a hardware

solution, the MMU, see section 3.5.

3.4.2 Buildroot

Buildroot is a tool that makes cross-compiling a complete Linux system for embedded

devices easier and more automated. It runs primarily on Linux systems. Through the

use of this facilitated toolchain, it creates a self-decompressing version of the Linux kernel

zImage, a root filesystem, a U-boot bootloader, a root file system, and an SD card image

file sdcard.img [3].
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3.4.3 Yocto Project & OpenWrt

Equivalently to Buildroot, the Yocto Project and OpenWrt are tools used for Linux cross-

compilation for embedded systems. OpenWrt has a focus on Networking, the Yocto

Project does not currently support MMU-less builds. [15, 29]. These tools are not used

in this thesis but fill a similar role as Buildroot and are mentioned for the sake of thor-

oughness.

3.5 Memory Management Unit

The Memory Management Unit (MMU) is hardware that is positioned between the pro-

cessor and physical memory. If present, memory references from the software, through

the processor, are passed through the MMU, which in turn maps these references to the

actual memory, where the data being called actually resides. In more technical terms,

the reference points to a virtual memory address that the MMU can translate into the

physical memory address. Hence, the program running on the CPU can doesn’t need to

know the physical memory address. This can simplify addressing in complicated systems.

Furthermore, the MMU facilitates DLL implementation. Linux’s memory management

system is very complicated and has grown over time, offering a growing number of fea-

tures, such as nommu which means MMU-less devices, often MCUs [13, 14]. While the

implementation of DLL, for devices that don’t contain an MMU device appears to be

possible, it once again is very complicated [20]. There exist Linux variations that are

tailored for MMU-less devices, see section 3.6.1.

3.6 The Linux Kernel

The Linux Kernel (Linux) was initially created, by Linus Torwalds, in 1991 for i368

based PCs. After its initial appearance, it quickly gained traction among developers and

was licensed under GNU General Public License (GPL) as free OSS [9]. At the current

time, Linux supports all kinds of different target architectures and dominates that IoT

market [49].
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3.6.1 µClinux

The open-source nature of Linux made it possible to fork the source code and modify it

according to one’s needs. One such project is the µClinux, which was specifically created

to target MMU-les microcontrollers. Its hardware-dependent, such as physical memory,

and independent, such as virtual memory, code is distinct. Using the given instructions,

the hardware-specific portion may be altered for a number of CPUs, hence the OS is

modifiable. The system supports both user space and kernel space, and switching between

the two may be done using system calls. It is possible to develop in a multi-threading

environment using POSIX thread libraries. Neither a virtual memory model nor a memory

protection unit exists, but functions can be used to dynamically allocate memory, hence

DLL is possible. It features a complete TCP/IP stack that may be swapped out for a

lighter stack like uIP or lwIP [35]. But, in comparison to other IoT edge device OSs, as seen

in Section 2.5, µClinux has a far larger footprint than other IoT OSes [37]. µClinux was

eventually discontinued as a standalone fork and was reintroduced into the mainline Linux

kernel. With the official emailing list gone quiet and its webpage only visible through web

archives, and the last official update published in May of 2016 [28]. Other entities appear

to have forked and maintained it further down the line, such as emcraft [4, 6], with the

last commits on December 2017, one year later. The last remaining verifiable remnants

appear to be pointing toward a ”small C library for developing embedded Linux systems”

called uclibc-ng [27], which could prove useful.

3.6.2 Device Trees

The device tree is a data structure that describes the hardware, that is locally available,

for the device we want to port Linux to. The device tree is the dynamic solution for the

problem that the CPU must know its environment.

3.7 U-Boot

”Das U-Boot” is an open-source boot loader used predominantly in embedded devices. Its

main focus is to load the OS kernel into the main memory. It supports a wide variety

of IoT development boards [24]. Yet again, as is common in the IoT ecosystem, there

is a multitude of U-Boot forks, the original and the one that appears to be maintained

and updated most frequently is made available by denx, while the previously mentioned
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emcraft has their own [5]. When not otherwise mentioned, when U-Boot is mentioned we

are referring to U-Boot maintained by denx [26].

3.8 QEMU

Primarily a general-purpose machine virtualizer and emulator, QEMU has a variety of

applications. In this thesis we will use it to emulate a system, thus creating a virtual

replica of an MCU, including the CPU, memory, and simulated peripherals, in order to

run a compiled version of Linux. The CPU may operate in this mode entirely emulated or

in conjunction with a hypervisor like Kernel-based Virtual Machine (KVM), Xen, Hax, or

Hypervisor. Equivalently to the cross-compilation process that was discussed in section

3.4, the ”user mode emulation,” allows QEMU to run programs that were built for the

target CPU, on our host CPU [16].

3.9 JuiceVM

JuiceVM is a found on GitHub, that started in 2020, with only three visible contribu-

tors [10]. Self-described, it is a small RISC-V Virtual Machine (VM), capable of running

on just a few hundred KB of RAM. Unter its demonstration projects it shows that it

can boot Linux, which is why this thesis found interest in the project. While it only

provides precompiled binaries, and the source code not being visible to the public, it can

still provide the required functionalities that we seek.

3.10 STM Tools

Specifically, two STM provided tools were used in this thesis, STM32CubeProgrammer

and STM32CubeIDE 1.9.0. The former provides functionality to connect to the STM

boards through the ST-LINK/V2 interface, enables easy flashing capabilities through

a GUI, and information on the state RAM and ROM. The latter is an IDE designed

for embedded programming that facilitates the creation of projects, the initialization of

various libraries, configuration of the chip’s I/O peripherals, compilation, and debugging.

Additionally, it is possible to flash a connected STM device directly through the IDE.
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3.11 Miscelanous Tools

Various different utilities and tools are required that help achieve certain goals, here the

most noteworthy are listed. PuTTY is an open-source software developed for Windows

OS that, among others, provides SSH and serial port connections. With this tool, a

connection to the devices can be established and consoles viewed. Docker is a platform

providing virtualization functionalities, it is used to build a Linux-based container, in

which the compilations will be executed. By providing great portability it allows future

researchers to use the built container. Disk Imager is a small windows utility that enables

the flashing of SD cards with .img files. esptool.exe is a command line utility tool that

will allow us to flash ESP32 chips with binaries, mainly the ESP-EYE.
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Chapter 4

Standarizing the IoT OSs with Linux

In this chapter, we propose a way toward standardizing the heterogeneous IoT edge device

ecosystem with Linux. While not an easy task and with many stepping stones on the way,

there certainly are a multitude of benefits that such a consensus would bring.

4.1 Proposal

As the layer between the user and the hardware, an OS provides an interface with which

the former can input data, perform calculations and view the output. OSs can be seen as

a standardized layer. An interface can be implemented such as a graphical user interface

(GUI), or a Command Line Interface (CLI). With GUI’s having much higher memory

requirements, a CLI should provide a lightweight fit for the IoT edge device ecosystem.

When it comes to OS choice in IoT, the traditional approach is to choose an real-time

operating system (RTOS). While these OSs introduced in Section 2.5, are technically cat-

egorized as operating systems, they should rather be seen as frameworks when compared

to Linux. Bare metal code can be written within these frameworks which in turn handles

low-level implementations, such as threads and message passing [41]. With increasing

computing capabilities, MCUs have surpassed the capabilities of the first PCs running

the first operating systems such as UNIX and Linux. To aid the standardization process

of IoT this thesis proposes the use of the Linux kernel as a primary OS on edge devices.

With projects such as uClinux and Buildroot, with their support for MMU-less devices,

this appears beneficial and feasible.

25
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Figure 4.1: Proposed architecture of MCU IoT devices

Illustrated in Figure 4.1, the userspace and the underlying device drivers and hardware

are clearly separated from one another. With this level of abstraction, a similar level of

user-friendliness, portability, and versatility can be achieved as in laptops and desktops.

Precedence for this is the RPI, which has gained widespread use in the IoT industry,

partially due to easily supporting Linux.

4.2 The benefits and drawbacks of Linux on MCUs

Benefits

Linux facilitates memory management, protection, and dynamic memory allocation, in

section 3.6.1 we established that this is possible without an MMU. RTOSs rely on static

memory allocation, which can quickly become a problem as applications grow. Prob-

lems such as memory leaks and memory fragmentation can force the system to restart,

diminishing its real-time aspect. Linux also provides a network stack that removes the
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requirement to program network applications, and thus ensures interoperability. Further-

more, Linux uses a standardized filesystem, that can be used to reliably manage and store

data. Broader language support is another benefit, enabling the use of the same program-

ming languages and libraries across all devices. Applications become much more portable

and provide the community with much flexibility. Very interesting use cases arise such

as the use of container technology, increasing portability even further. With a large open

source community at its back, that maintains and updates the source regularly for many

architectures, the adoption of MCU IoT devices into the arenal of Linux, should happen

sooner rather than later [41].

Drawbacks

One might argue that for a slightly higher price, development boards powered by a Cortex-

A MPUs, such as the RPI family, are available. These boards could fill the same purpose

and have higher computing power, with more RAM and ROM, at the cost of energy

efficiency, size, and price. When operating Linux on such small memory, compared to the

capabilities of RPI for example, the OS takes up a large proportion of the memory, thus

limiting the available space for the applications that need to run on the MCU. Another

aspect that needs to be overcome is the larger upfront investment when porting Linux to

specific IoT devices, yet with projects such as Buildroot, this is well on the way, if not

present already.
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Chapter 5

Implementation

In this section, the general setup of the environment is described. The final container is

made available at [12]

5.1 Work Environment - Docker container

To provide a portable environment where source code, different tools, and toolchains

can be placed, a docker container was created. The main advantages of containers are

portability and ease of replication. Tools such as Buildroot and QEMU are all available on

Linux. Furthermore, containers provide the additional capability to automate large parts

of the compilation processes through shell scripts, and potentially out sourcing expensive

compilation, in the absence of capable local hardware, to the cloud. By using a Linux

OS to run most of the tasks for this thesis, it enforces the claims made in section 4.1, by

demonstrating its functionalities and portability.

To build a Docker container, a Dockerfile serves as a template, which is then built into an

image and run. The official Ubuntu 20.04 Long Time Support (LTS) base image lays the

foundation. This provides a solid OS with many tools that facilitate acquiring packages

with the included packet manager apt-get.

To install dependencies the apt-get command is run, followed by the package that we

want to install. A set of basic tools are required for working on a CLI inside the container,

a collection of the most common and broadly used utilities are shown in Listing 5.1. We

use git and wget to acquire Git repositories and files from the internet, nano a CLI text

editor for .config files, and compressing and decompressing utility, all of which are seen

29
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Listing 5.1: Installing basic utility

1 apt=get i n s t a l l =y g i t \
2 wget \
3 bc \
4 nano \
5 cu r l \
6 cp io \
7 unzip \
8 rsync

in Listing 5.1. Any scripts that are displayed, unless specifically stated otherwise, are

executed in the bash shell.

To be able to cross-compile source code to architecture-specific binaries, we require further

packages, all of which are available on Ubuntu’s package manager apt-get. Among these

are dependencies that the codebases of Linux, Buildroot and µClinux require. These tools

are seen in Listing 5.2.

Lastly, we need to install qemu for ARM devices, this is seen in Listing 5.3. The printf

statement allows us to answer prompted questions that are posed upon installation. The

8 answers question concerning location, which maps to Europe, the 7 to the city, in our

case we chose Berlin.

Listing 5.3: Installing QEMU in the container

1 p r i n t f ’ y\n8\n7\n ’ | apt=get i n s t a l l =y qemu=system=arm

5.1.1 Downloading and setting up µClinux

Since the original µClinux is not maintained anymore, the task of finding an entity that has

maintained a µClinux fork was a daunting task. In section 3.6.1 we established our choice,

a distribution maintained by Emcraft. In Listing 5.4 all dependencies are downloaded for

it.

Both U-Boot and Buildroot were cloned using git, the commands are shown in Listing 5.5.
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Listing 5.2: Installing toolchains and dependencies

1 apt=get i n s t a l l =y gcc \
2 b i nu t i l s=arm=none=eab i \
3 make \
4 gcc=arm=none=eab i \
5 gcc=arm=l inux=gnueabihf \
6 gcc=arm=l inux=gnueabi \
7 l i bn cu r s e s=dev \
8 l i bncu r s e s 5=dev \
9 f l e x \
10 bison \
11 opens s l \
12 l i b s s l =dev \
13 dkms \
14 p e r l \
15 l i b e l f =dev \
16 l ibudev=dev \
17 l i b p c i=dev \
18 l i b i b e r t y=dev \
19 autoconf \
20 lzop

Listing 5.4: Downloading µClinux into the container and setting up its special toolchain

1 wget https : // source ry . mentor . com\
2 /GNUToolchain/package6503/ pub l i c /
3 arm=uc l i nuxeab i /\
4 arm=2010q1=189=arm=uc l inuxeab i=i686=pc=l inux=gnu . ta r . bz2
5 ta r =xf arm=2010q1=189=arm=uc l inuxeab i=i686=pc=l inux=gnu . ta r . bz2
6 rm =d arm=2010q1=189=arm=uc l inuxeab i=i686=pc=l inux=gnu . ta r . bz2
7 export PATH=/workdir /arm=2010q1/bin :$PATH
8
9 dpkg ==add=a r c h i t e c t u r e i386
10 apt=get update && apt=get upgrade =y
11 apt=get i n s t a l l l i b c 6 : i386
12
13 #download emcraf t uClinux
14 g i t c l one https : // github . com/EmcraftSystems/ l inux=emcraft . g i t
15 g i t c l one https : // github . com/EmcraftSystems/u=boot . g i t
16
17 #f i x i n g f i l ename so compi les work
18 cp /workdir / l inux=emcraft / in i t r amf s= l i s t =min . stub \
19 /workdir / l inux=emcraft / in i t r amf s= l i s t =min
20 cp /workdir / l inux=emcraft / arch /arm/ ke rne l /vmlinux . l d s . S . good \
21 /workdir / l inux=emcraft / arch /arm/ ke rne l /vmlinux . l d s . S
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Listing 5.5: Cloning Buildroot and U-Boot

1 g i t c l one https : // github . com/ bu i l d r oo t / bu i l d r oo t . g i t
2 g i t c l one https : // source . denx . de/u=boot/u=boot . g i t

Listing 5.6: notmain.c

1 void PUT32 ( unsigned int , unsigned in t ) ;
2 #def ine UART0BASE 0x4000C000
3 i n t notmain ( void )
4 {
5 unsigned in t rx ;
6 f o r ( rx=0; rx<8; rx++)
7 {
8 PUT32(UART0BASE+0x00 , 0 x30+(rx &7)) ;
9 }
10 return ( 0 ) ;
11 }

5.2 Sample Code

To establish a baseline with less complex code compared to the massive source code

repository of the Linux kernel, that can fully be understood, a collection of sample code

was found [17]. These three code snippets, in combination with QEMU as an emulator for

the target platform, will provide a controlled environment, in which it is easier to verify if

the compilation was successful and correct, and if the binaries work on the target platform,

or if it was correctly linked. Having such a fallback option saves time and power, and

provides a solid foundation for the complex processes that occur during cross-compilation.

notmain.c, as seen in Listing 5.6, written in the C programming language represents

the kernel, which contains the basic loop, with the task of printing the numbers 0 to 7

onto some Universal Asynchronous Receiver-Transmitter (UART). Listing 5.8 and 5.7,

are the corresponding linker and assembler file, respectively. Theoretically, the output,

after compilation should look something like this:

01234567

5.3 FreeRTOS on STM32L4

A baseline for the STM32L476G-EVAL MCU shown in 3.2 was also established. We

prepared sample code in the STM32QubeIDE mentioned in 3.10. With a few exceptions,
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Listing 5.7: flash.s

1 .thumb
2 .thumb func
3 . g l o b a l s t a r t
4 s t a r t :
5 s tacktop : .word 0x20001000
6 .word r e s e t
7 .word hang
8
9 .thumb func
10 r e s e t :
11 bl notmain
12 b hang
13
14 .thumb func
15 hang : b .
16
17 .thumb func
18 . g l o b l PUT32
19 PUT32 :
20 s t r r1 , [ r0 ]
21 bx l r

Listing 5.8: flash.ld

ENTRY( s t a r t )

MEMORY
{

rom : ORIGIN = 0x00000000 , LENGTH = 0x1000
ram : ORIGIN = 0x20000000 , LENGTH = 0x1000

}

SECTIONS
{

. t ex t : { * ( . t ex t *) } > rom

. rodata : { * ( . rodata *) } > rom

. bss : { * ( . bss *) } > ram
}
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a guide was followed to reach this state [34]. In our case, the Light-Emitting Diode (LED)

was connected to General-Purpose I/O (GPIO) pin B2. Seen in Listing 5.10 lines 8 and

27 had to be adapted to our specific board. The main goal of running this sample code

on STM32L476G-EVAL MCU is to evaluate that the hardware is in working conditions

and exclude any hardware-related problems.

The main.c function shown in Listing 5.9, initializes the configuration, peripherals and

the kernel, starts the system clock, creates and adds two threads to the Blink0*Handles

which in turn are added to the scheduler. The OS, or middleware, used in this example

is FreeRTOS.

The main idea with these functions is that they compete for CPU time, both trying to

toggle the LED located at GPIO pin B2. With different back-off times, it should give

an interesting lighting pattern, with which we can confirm that both threads are working

concurrently.
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Listing 5.9: main.c, the main function

1 i n t main ( void )
2 {
3 /* MCU Conf igurat ion=================*/
4
5 HAL Init ( ) ;
6
7 /* Configure the system c l o c k */
8 SystemClock Config ( ) ;
9
10 /* Configure the p e r i p h e r a l s common c l o c k s */
11 PeriphCommonClock Config ( ) ;
12
13 /* I n i t i a l i z e a l l con f i gured p e r i p h e r a l s */
14 MX GPIO Init ( ) ;
15 MX ADC1 Init ( ) ;
16 MX CAN1 Init ( ) ;
17 MX COMP2 Init ( ) ;
18 MX DAC1 Init ( ) ;
19 MX FMC Init ( ) ;
20 MX I2C1 Init ( ) ;
21 MX LPUART1 UART Init ( ) ;
22 MX USART1 UART Init ( ) ;
23 MX USART3 SMARTCARD Init ( ) ;
24 MX OPAMP1 Init ( ) ;
25 MX SAI1 Init ( ) ;
26 MX SDMMC1 SD Init ( ) ;
27 MX SPI2 Init ( ) ;
28 /* I n i t s chedu l e r */
29 o sK e r n e l I n i t i a l i z e ( ) ;
30
31 /* Create the thread ( s ) */
32 /* c r ea t i on o f Bl ink01 */
33 Blink01Handle = osThreadNew ( StartBl ink01 , NULL, &B l i nk01 a t t r i bu t e s ) ;
34
35 /* c r ea t i on o f Bl ink02 */
36 Blink02Handle = osThreadNew ( StartBl ink02 , NULL, &B l i nk02 a t t r i bu t e s ) ;
37
38 /* S ta r t s chedu l e r */
39 osKerne lStar t ( ) ;
40
41 /* We shou ld never g e t here as con t r o l i s now taken by the s chedu l e r */
42 /* I n f i n i t e loop */
43 while (1 )
44 {
45
46 }
47 }
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Listing 5.10: main.c two blinking functions

1 void Star tBl ink01 ( void *argument )
2 {
3 /* i n i t code f o r USB HOST */
4 MX USB HOST Init ( ) ;
5 /* I n f i n i t e loop */
6 f o r ( ; ; )
7 {
8 HAL GPIO TogglePin (GPIOB, GPIO PIN 2 ) ;
9 osDelay ( 5 0 0 ) ;
10 }
11 osThreadTerminate (NULL) ;
12 }
13
14 /* USER CODE BEGIN Header Star tB l ink02 */
15 /**
16 * @br ie f Function implementing the Bl ink02 thread .
17 * @param argument : Not used
18 * @retva l None
19 */
20 /* USER CODE END Header Star tB l ink02 */
21 void Star tBl ink02 ( void *argument )
22 {
23 /* I n f i n i t e loop */
24 f o r ( ; ; )
25 {
26 HAL GPIO TogglePin (GPIOB, GPIO PIN 2 ) ;
27 osDelay ( 6 0 0 ) ;
28 }
29 osThreadTerminate (NULL) ;
30 }



Chapter 6

Evaluation

With the setup explained in Section 5, we will now compile, evaluate with QEMU, and

flash the binaries onto our boards.

6.1 Compilation

6.1.1 Sample Code

Figure 6.1: Sample code directory after compilation

To compile this sample code for the target platform the commands shown in Listing 6.1 are

issued through the command line shell bash. Initially starting with three files flash.s,

notmain.c and flash.ld, we are now presented with five additional files. flash.o, not-

main.o, notmain.elf, notmain.list and most importantly notmain.bin, the ”sample

kernel”, as seen in Figure 6.1. From Listing 6.1 we can also see the flag -mcpu=cortex-m4,

symbolizing that we are compiling for target platform ARM Cortex-M4.

37
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Listing 6.1: Compiling sample code with gcc-arm-none-eabi toolchain

1 arm=none=eabi=as =warn =f a t a l=warnings \
2 =mcpu=cortex=m4 f l a s h . s =o f l a s h . o
3 arm=none=eabi=gcc =Wall =O2 = f f r e e s t a nd i n g \
4 =mcpu=cortex=m4 =mthumb =c notmain . c =o notmain . o
5 arm=none=eabi=ld =no s td l i b =n o s t a r t f i l e s =T f l a s h . ld f l a s h . o notmain . o \
6 =o notmain . e l f
7 arm=none=eabi=objdump =D notmain . e l f > notmain . l i s t
8 arm=none=eabi=objcopy =O binary notmain . e l f notmain . bin

6.1.2 U-Boot

Figure 6.2: Executing Listing 6.2 with output files

As a first step, we will compile U-Boot for QEMU, so that we can continue evaluating,

without needing to flash onto an MCU every time. If not previously done so, we need

to navigate inside the folder. Using our previously established toolchain, gcc-arm-none-

eabi, we call the commands, shown in Listing 6.2 inside of the current folder. At line 2 of

Listing 6.2, qemu_arm_defconfig, is mentioned after having declared the toolchain. This

config is simply a pre-set configuration file that is provided by U-Boot, for specific targets.

After compilation is completed, taking about 30 seconds, u-boot.bin is the main output

of our compilation, as seen in Figure 6.2.

Listing 6.2: Compiling U-Boot for QEMU

1 make mrproper

2 make ARCH=arm CROSS COMPILE=arm=none=eabi= qemu arm defconf ig

3 make ARCH=arm CROSS COMPILE=arm=none=eabi=

6.1.3 Mainline Linux kernel

A similar approach is taken within the directory of the Linux kernel source code. Firstly

we make sure that previous configurations and compilations are deleted, this is achieved
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with line 1 in Listing 6.3 make mrproper. On line 2 we set the stm32_defconfig as our

config since we are trying to compile Linux for STM32 systems.

Listing 6.3: Compiling the Linux kernel

1 make ARCH=arm CROSS COMPILE=arm=none=eabi= mrproper

2 make ARCH=arm stm32 de f con f i g

3 make ARCH=arm CROSS COMPILE=arm=none=eabi= xipImage

4 make ARCH=arm CROSS COMPILE=arm=none=eabi= dtbs

Figure 6.3: Directory after Linux compilation of Listing 6.3

After line 3 of Listing 6.3 we succesfully compiled xipImage which is located in ./arch/ar-

m/boot.

Figure 6.4: Output after running line 4 of Listing 6.3

In Figure 6.4 we can see all the device trees that are created upon the conclusion of line

4 of Listing 6.3. Unfortunately, our board, seen in Figure 3.2, is not present.



40 CHAPTER 6. EVALUATION

Figure 6.5: Error: using zImage as output instead of xipImage in Listing 6.3

In the error shown in Figure 6.5, we can see that if choosing the wrong output for our

compilation, or a different output than the one defined in our .config file, we get an

error.

6.1.4 µClinux

A similar approach is taken for µClinux. Unter arch/arm/configs, we find the different

configurations, the closest to our current board are stm32f2_defconfig, stmp378x_defconfig

and stmp37xx_defconfig. The ones labled with stmp are refering to boards with MPUs,

as described in section 3.1.

Listing 6.4: Compiling µClinux

1 make s tm32 f 2 de f c on f i g

2 make CROSS COMPILE=arm=uc l inuxeab i= vmlinux

To prove that the toolchains and the setup work we can start compilation with commands

shown in Listing 6.4. During the compilation process warning’s are shown, this could be

due to the age of this µClinux distribution, yet it completes successfully. The output is a

vmlinux file.

6.1.5 Buildroot

We have to navigate to the Buildroot directory. In the documentation of Buildroot,

under 2.1. ”Mandatory packages”, a list of required dependencies for the compilation

process are shown, we have installed some of these packages in Section 5.1, and others

come with the Ubuntu 20.04 LTS distribution. Equivalently to the previous steps, the

configs directory holds all the pre-set configuration files that can be used to compile

Linux, by navigating to the directory we see all the configs that can be used, and later

on modified. Unfortunately STM32L476G-Eval is not included, but other configurations

for STM are available, such as stm32f429_disco_sd_defconfig for the STM32F429-

Discovery development board. make stm32f469_disco_sd_defconfig will copy the code
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from the specified configuration into the .config file, which is not visible in the thee unless

command ls -a is issued.

Listing 6.5: buildroot

1 make s tm32 f 469 d i s c o sd de f c on f i g

2 make

Figure 6.6: Buildroot make menuconfig / Toolchain

To get further insight into what the Buildroot configuration has specified we can type

command make menuconfig inside the directory, we are loaded into the visual configura-

tion menu displayed in the console that can help us visually navigate through the .config

file and configure our build further. Note that for this visual editor the libncurses5-dev

package is required and was installed in section 5.1. This is shown in Figure 6.6. An

interesting variation is to be observed, the library mentioned in section 3.6.1, uClibc-ng,

is used.

With make, the compilation process starts. Depending on the local machine that is per-

forming the process, this process can be very time and resource-intensive. Once complete,

the outputs will appear in a new folder inside the Buildroot directory under output, the

contents are shown in Figure 6.7. u-boot.bin and rootfs.ext2 were created automati-

cally, sdcard.img can be flashed directly onto out SD-card. The usual zImage and device

tree stm32f469-disco.dtb are also present. While compilation here required much more

time than any of the previous compilations, Buildroot shows much promise because we

are not required to configure and compile any other tools.
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Figure 6.7: The output/images directory after Buildroot compilation

Listing 6.6: Compiling commands used in Buildroot directory

1 make s tm32 f 469 d i s c o sd de f c on f i g

2 make

Figure 6.8: The output/images directory for QEMU

Equivalently to Listing 06.6, we can use make qemu_arm_versatile_defconfig instead

of line 1 to compile a linux distribution specifically for QEMU. With this defconfig the

output is shown in Figure 6.8. Most notably the start-qemu.sh script.

6.2 Emulating with QEMU

After having compiled the various source code in Section 6.1, the next step is to emulate

using QEMU. To leave QEMU press CTRL+A and X.

6.2.1 Sample Code

Figure 6.9: Executing Listing 6.7

Although in QEMUs documentation [22] it is stated that netduinoplus2, netduino2

and stm32vldiscovery are supported and are the closest to our board, only netduino2

is actually available. If we run qemu with this machine, flagged as the -M netduino2, we

do not get an output. When using commands from Listing 6.7 we get the desired output

seen in Figure 6.9.
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Listing 6.7: Running sample code with QEMU

1 qemu=system=arm =M lm3s811evb =cpu cortex=m4 \
2 =m 8K =nographic =ke rne l notmain . bin

6.2.2 U-Boot

Figure 6.10: Running U-boot with QEMU

By running the command seen in Listing 6.8, we successfully loaded the bootloader with

QEMU, as shown in Figure 6.10. We are presented with the CLI of U-boot.

Listing 6.8: Running U-Boot with QEMU

1 qemu=system=arm =machine v i r t =nographic =b io s u=boot . bin
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6.2.3 Buildroot

Figure 6.11: Starting Buildroot Linux with QEMU

Seen in Figure 6.11, by activating the start-qemu.sh script previously compiled in Sec-

tion 6.1.5 a prompt ask us to provide login credentials, upon entering root, the system

grants us access and we are loaded in Linux’s typical sh shell. This exhausts the require-

ments of this thesis, as it provides a Linux distribution running on MCUs, emulated with

QEMU.

Figure 6.12: Error: Starting Buildroot stm32f469_disco_sd_defconfig configuration

Alternatively trying to start the distribution compiled with the stm32f469_disco_sd_defconfig

configuration, compiled in Section 6.1.5, when running the command seen in Listing 6.9

in the Buildroot directory, the kernel could not be loaded. The results are shown in

Figure 6.12. Because we do not have the exact board.

Listing 6.9: Running Buildroot Linux with QEMU

1 qemu=system=arm =M netduino2 \
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2 =ke rne l output/ images /zImage \
3 =dtb output/ images / stm32f469=d i s c o . dtb \
4 =dr ive f i l e=output/ images / r o o t f s . ext2 , i f=s c s i \
5 =append ”root=/dev/ sda conso l e=ttyAMA0,115200 ” \
6 =nographic

6.3 Flashing binaries

In this Section, we are flashing compiled binaries onto our devices and SD card, namely

STM32L476G-Eval 3.2 and ESP-EYE DevKit 3.3.

6.3.1 FreeRTOS on STM32L4

Figure 6.13: Blinking LD1

Since STM32CubeIDE was used, which includes the required toolchains and libraries, the

compilation process is facilitated and was not worth mentioning in the previous chapter.

By running the compiled binaries as an ”STM32 Cortex-M C/C++ Application” we can

observe that the system behaves correctly, and the LD1 flashes in a periodic manner

described best by the sin() function. As the two threads compete to toggle the LD, with

different osDelays, 600 and 500, respectively. In Figure 6.13, we can see that the light is

on, as blinking is hard to capture in a picture.
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6.3.2 JuiceVM

Listing 6.10: Flashing JuiceVM to ESP-EYE

1 .\ e sp t oo l . exe =chip esp32 =port COM7 e r a s e f l a s h

2 .\ e sp t oo l . exe =chip esp32 =port COM7 ˆ

3 =baud 460800 w r i t e f l a s h =z 0x1000 ˆ

4 .\ juicevm=r i s c=v vm=for=esp32 wrover=l inux demo . bin

To flash the binaries provided by JuiceVM, namely the juicevm-risc-v_vm-for-esp32_wrover-

linux_demo.bin, onto the ESP-EYE DevKit, we require the previously mentioned es-

ptool.exe. By executing commands seen in Listing 6.10 inside the directory where the

binary file is located. Note that this command was executed on the host OS, which in

this case was Windows 10.

Figure 6.14: PuTTY configuration to connect to display JuiceVMs console

After flashing has been completed a connection to the console through the serial console

using PuTTY is possible. It was not possible to connect to the serial port beforehand

because it was occupied with flashing the files. To achieve this baud rate is set to 115200,

data bits to 8, stop bits to 1, party to none, and flow control to XON/XOFF, this is

shown in Figure 6.14. If a wrong baud rate is chosen, for example, the one specified in

Listing 6.10, an output is visible but not coherent.
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Figure 6.15: PuTTY: JuiceVM console after more than 10 hours

JuiceVM commences by initializing CPU RAM, up to about 99% this process is completed

very rapidly, after which it slows down significantly. Upon completion, decompression is

next, which after nearly 10 hours, only reached 92%. Figure 6.15, shows CPU RAM

initialization, decompression, and a loaded JuiceVM.

Figure 6.16: PuTTY: JuiceVM console after 32 hours

After close to 32 hours, seen in Figure 6.16, it was decided to quit the proceedings due

to the unusably long boot process. At this point the printk() function took 12 seconds

to print a character to the console. Interestingly we can see the line Freeing unused

kernel memory: 100K, which was making space in the main memory for other objects.

The reason for such a long boot process is not known, and requires further investigation.
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6.3.3 Buildroot

Figure 6.17: Flashing SD card with sdcard.img

The files used in this Section resulted from the compilation process seen in Section 6.1.5

with the stm32f469_disco_sd_defconfig configuration. While this is not the board

we are working with the CPU architecture is the same. Firstly, we need to flash our

sdcard.img onto the 4GB SD card provided with the STM32L476G-Eval board, shown

in 6.17.

Figure 6.18: Flashing SD card with sdcard.img using Disk Imager

To achieve this the Disk Imager tool is used, as shown in Figure 6.18. The process takes

less than 3 seconds and is completed successfully. The contents of the SD card are shown

in Figure 6.19.
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Figure 6.19: Contents of SD card after flashing

Inside the extlinux folder a single file is found, the extlinux.conf file. These files are

created automatically and are a result of flashing the SD card.

Figure 6.20: Flashing U-Boot onto internal ROM of STM32L476G-Eval

Shown in Figure 6.20, using the STM32CubeProgrammer tool, we flash u-boot.bin di-

rectly to the MCU. We can observe that the file has a size of 246.29 KB and the starting

physical address where it was flashed, namely 0x08000000. In the bottom right, under

”Target Information”, our board is identified as the one specified earlier.
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Figure 6.21: Laptop connected to STM32L476G-Eval through USB Type-B

In Figure 6.21 the connection to the board is visible. The ST-Link/V2-1 interface is

connected to the PC through a USB Type-B cable, acting as a power source and date

exchange simultaneously. While flashing is in progress, the red light in the top right corner

flashed rapidly.

Figure 6.22: Flashing U-Boot: Warning the core is locked up

Upon completion, we get a warning dialog box, seen in Figure 6.22. The cause of such an

error can have various origins, and further investigation is required.

Figure 6.23: No console output in PuTTY

Lastly, when connecting to the serial port COM4 using PuTTY, for which we used the

same configuration as shown in Figure 6.14, we can see no output as seen in Figure 6.23.
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A similar output as seen in Figure 6.11, was hoped for. Although this was to be expected

since the compilation was performed for STM32F469 and not STM32L476, while both

employ a Cortex-M4 CPU, this common ground was not enough.
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Chapter 7

Summary, Conclusions & Future Work

In this thesis, different Linux distributions for IoT edge devices were compiled, with a

proposed standardized architecture in the foreground. To achieve this a market analysis of

IoT hardware was performed, a variety of tools and open source projects such as Buildroot

and JuiceVM were explored and introduced, and Linux and U-Boot binaries were emulated

on QEMU. Furthermore, it was attempted to flash Linux binaries onto an STM32L476G-

Eval development board which was not successful due to lacking community support

for the board, and running a RISC-V emulation on ESP-EYE, which was technically

successful but unusable in practice.

The diverse IoT ecosystem and the lack of standardization paired with a manufacturer-

driven industry, are the primary justifications for this thesis. The variety of IoT network

protocols and OSs, in this these referred to as frameworks rather than OSs, only amplify

this heterogeneity. We propose standardization of the OS layer for IoT edge devices, such

that an abstraction of the diverse hardware is possible. This would have the effect that

board-specific implementations, such as bare metal code, are not required, but that the

user can choose from diverse solutions that all work upon the OS layer, therefore the

application layer would gain portability.

The process of this thesis was to evaluate possible MCU candidates, that displayed promis-

ing qualities, such as sufficient RAM, a CPU with more than 40MHz clock speed while

considering energy efficiency and cost. STM in particular showed desired qualities such

as a healthy community and the relevant ARM Cortex-M architectures. At this point,

contact with STM employees was established and they generously supplied us with two

STM32L476G-Eval development boards. Only then did we explore the means to find the

right implementation for the desired goal, Linux on MCUs. This thesis concludes that

this bottom-up approach is fundamentally flawed, it is not necessarily the hardware that

53
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enables the use of Linux, but the community that adapts the kernel to the physical layer.

By searching for compatible hardware first, work previously done by the open source com-

munity is omitted. The best possible approach to solve a given use case is to compile a list

of MCUs that are supported by Linux and tools such as Buildroot, not to choose a board

and realize that it is not supported. In such a case, the upfront investment, of porting

Linux to a specific board is not worth it. Yet, the explorative nature of this thesis brought

forward a different perspective, and different tools such as Buildroot were discovered and

evaluated.

Buildroot proved to be an invaluable tool for embedded Linux, as it contains all necessary

components such as libraries like the uClibc and U-Boot. Supporting multiple architec-

tures and subsequently multiple boards, even more so than the mainline Linux kernel. It

should further be evaluated with the right boards available. As we performed tests on the

STM32L476G-Eval development board, which did not have a dedicated configuration for

compilation, we had to adapt configurations of similar boards, which ultimately did not

work because the contrast was too large, as is common in IoT.

While the success of this thesis was evaluated on QEMU in section 6.2.3, it does not

support all the different boards that are available on the market, understandably so. As

STM boards were not present but recommendations that similar boards could be emulated

instead and that the architecture is similar, yet it did not work as intended. Another

aspect that QEMU can not achieve is to verify performance on the target architecture

since the underlying hardware is much more capable.

JuiceVM was successfully run, but in practice, it is not a viable or usable solution due to

its long boot times. Yet it is a very interesting implementation, and potentially opens up

the door to further studies of virtualization on tiny edge devices. Applying such concepts,

such as container technology, to tiny IoT devices, if further enhances the portability and

versatility of such devices.

Lastly, we provide a modular toolchain container, containing all tools required for embed-

ded Linux, that can be used to cross-compile Linux or µClinux kernel, and evaluate their

correctness with QEMU.
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Abbreviations

IoT Internet-of-Thingsi

RPI Raspberry Pi

ARM Advanced RISC Machines

CPU Core Processing Unit

RAM Random Access Memory

OS Operating System

USB Universal Serial Bus

Wi-Fi Wireless-Fidelity

RISC Reduced Instruction Set Computer

CISC Complex Instruction Set Computer

ISA Instruction Set Architecture

TEE Trusted Execution Environment

RFID Network of Radio-Frequency Identification

I/O Input/Output

SoC System on a Chip

SoM System on a Module

PCB Print-Circuit Board

RAM Random Access Memory

ULP Ultra Low Power

OSS Open Source Software

CPU Core Processing Unit

CU Controll Unit

ALU Arithmetic Logic Unit

MCU Microcontroller Unit

MPU Micro-processing Unit

DLL Dynamically Linked Libraries

SLL Statically Linked Libraries

FMC Flexible Memory Controller

VM Virtual Maschine

61



62 ABBREVIATONS

KVM Kernel-based Virtual Machine

GUI Graphical User Interface

CLI Command Line Interface

RTOS Real-Time Operating System

UART Universal Asynchronous Receiver-Transmitter

LTS Long Time Support

LED Light-Emitting Diode

GPIO General-Purpose I/O



Glossary

Edge Devices An edge device refers to perception layer devices, oftentimes powered by

an MCU. They are the sensors that reside at the bottom of the chain of IoT, thus

called the ”edge” device.

Board A board refers to a PCB upon which an MCU and peripherals are mounted.
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Appendix A

Installation Guidelines

Since a Docker container was used in the thesis, the installation of the toolchains container

is very simple.

1. Download and install Docker.

2. Download and install Git.

3. Clone the repository provided here [12].

4. Inside the directory run command: docker build -t mcu-toolchain:latest .

5. Then run docker run -it mcu-toolchain:latest.

You have successfully installed the container, and are currently inside it.
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Appendix B

Contents of the CD

� STM32CubeIDE project containing source code based on FreeRTOS toggling the

LED.

� Docker container

� Installation files for all utilities used.

� Thesis with latex files and the graphics.

� Final presentation

� JuiceVM folder
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