
Design and Prototypical
Implementation of a Verifiable
Remote Postal Voting System

Elexa Heggli
Zurich, Switzerland

Student ID: 18-926-741

Supervisors: Christian Killer, Jan von der Assen, Prof. Dr. Burkhard
Stiller

Date of Submission: July 18, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmḧlestrasse 14, CH-8050 Zr̈ich, Switzerland
URL: http://www.csg.uzh.ch/

Abstract

Abstimmungen und Wahlen haben einen hohen Stellenwert in unserer Gesellschaft; ob es
sich nun um eine Abstimmung im kleinen Rahmen oder um eine weltweite digitale Wahl
handelt, sie bietet die Möglichkeit, die Meinung der Beteilligten darzustellen. Dies ist unter
anderem für die demokratische Politik von entscheidender Bedeutung. Die Gewährleistung
des Schutzes der Privatsphäre der Wähler*innen und der Prüfbarkeit des Wahlergebnisses
ist der Schlüssel zur Aufrechterhaltung von Demokratien auf der ganzen Welt. Daher
untersuchen viele Expert*innen Mittel, um diese beiden und andere wichtige Aspekte in
den derzeitigen politischen Wahlsystemen zu gewährleisten. In der Schweiz geben 90%
der Wählerinnen und Wähler ihre Stimme über das System der Briefwahl ab. Dieses
System bietet einen hohen Schutz der Privatsphäre, lässt aber die Überprüfbarkeit des
Wahlergebnisses vermissen.

Eine Analyse des brieflichen Abstimmens in der Schweiz deckt dessen Gefahren auf und
gibt Einblick in Verbesserungsmöglichkeiten. In dieser Arbeit wird ein Prototyp vorge-
schlagen, der die Verifizierbarkeit des Wahlergebnisses erhöht und gleichzeitig die Privat-
sphäre der Wähler*innen und die Benutzerfreundlichkeit des Systems wahrt. Inspiriert
von verwandten Arbeiten, verfolgt der Prototyp die Wahl Umschläge durch UUIDs mit-
tels QR-Codes, die von Wahlbehörden und Wählerinnen und Wähler gescannt werden.
Ein Smart Contract auf der Ethereum-Blockchain verfolgt die UUIDs während der Wahl,
um die Grösse der nötigen Vertrauen in die Wahlbehörden zu minimieren. Der Prototyp
fügt dem aktuellen briefliche Abstimmen die Überprüfbarkeit hinzu und mildert einige
Bedrohungen, insbesondere die Fälschung von Wahlberechtigungsnachweisen oder Wahl-
umschlägen.

Voting holds an essential value in our society; whether it is a small-scale in-person vote or
a worldwide digital election, it provides the means to portray the voter’s opinions. Which,
amongst other areas, is vital in democratic politics. Ensuring the privacy of the voters
and the accuracy of the voting outcome is key to maintaining democracies all around the
world. Therefore, many experts investigate means to provide these two and other vital
aspects to current political voting systems. In Switzerland, 90% of voters cast their ballot
through the Remote Postal Voting Scheme. A scheme that provides high privacy but
lacks verifiability of the voting outcome.

An analysis of the SPVS uncovers its threats and gives insight into possibilities for im-
provement. This thesis introduces a prototype to increase voting verifiability while main-
taining the voter’s privacy and the system’s ease of use. Inspired by related work, the
prototype tracks the envelopes through UUIDs in QR codes to be scanned by voting of-
ficials and voters. A smart contract on the Ethereum blockchain keeps track of the ids

i

ii

throughout each voting instance to minimize the amount of trust placed in the voting au-
thorities. The prototype adds Eligibility Verifiability to the current SPVS and mitigates
some threats, especially forgery of voting credentials or the voting envelopes.

Contents

Abstract i

1 Introduction 1

1.1 Description of Work . 2

1.2 Thesis Outline . 3

2 Background 5

2.1 Foundations of Voting Systems . 5

2.1.1 Privacy . 5

2.1.2 Verification . 6

2.1.3 Software Independence and Accountability 6

2.2 Swiss Postal Voting System . 7

2.3 Blockchain . 9

2.3.1 Ethereum Smart contracts . 9

2.3.2 Technologies . 9

2.3.3 Ethereum Gas . 10

2.4 QR code . 10

3 Related Work 11

3.1 Attempts to Improve Voting Systems . 11

3.2 Poll site systems . 12

3.2.1 Prêt á Voter . 12

3.2.2 Tracker . 13

iii

iv CONTENTS

3.3 Remote electronic voting systems . 13

3.4 Remote hybrid solutions . 14

3.4.1 McMurtry . 14

3.4.2 Proverum . 15

4 Design 17

4.1 Requirements . 17

4.2 Design Process . 18

4.3 Design Overview . 19

5 Prototype Implementation 23

5.1 Preparation . 23

5.2 Smart Contract . 24

5.3 User Interface . 26

5.3.1 Setup Layer . 26

5.3.2 Voter’s device Layer . 27

5.3.3 Tallying Layer . 27

5.3.4 Results Layer . 28

6 Evaluation 31

6.1 Privacy . 31

6.2 Verifiability . 31

6.3 Software Independence and Accountability 32

6.4 Threat Analysis . 33

6.5 Requirement Analysis . 34

6.6 Additional Effort . 35

7 Discussion 37

7.1 Privacy Discussions . 37

7.2 Verifiability and Threat Discussions . 38

7.3 Limitations . 39

CONTENTS v

8 Summary and Conclusions 41

8.1 Summary . 41

8.2 Conclusions . 42

Abbreviations 47

List of Figures 47

List of Listings 49

A Installation Guidelines 53

vi CONTENTS

Chapter 1

Introduction

Voting is at the foundation of democracies worldwide, and it is vital to ensure the accuracy
and privacy of these voting processes to maintain the public’s trust. Fair voting is only
present if every citizen feels safe to vote according to their wishes and if the published
results accurately represent how the public voted. In a perfect world, voting only occurs
in person at a polling station; it is the most secure way to vote. However, house-bound
citizens and citizens living abroad must also be able to vote; this is where remote voting
originates. Regarding political voting in general, the privacy of the voters and the accuracy
of the outcome aren’t the only aspects that need to be considered. Amongst other factors,
the voting turnout can’t be overlooked. The increasing trend towards remote voting is a
definite step towards improving voter turnout by providing the comfort of voting anywhere
at any time. In the US 2020 elections, for example, 46% of the voters voted by absentee
or postal voting (the other option being in person) [6]. The global covid-19 pandemic has
only quickened this trend.

Remote voting can be categorized into two forms: postal vs. internet voting, with some
hybrid solutions. The remote voting trend began with postal voting, e.g., in Switzerland,
it was launched in the late 1970s and then anchored in the law in 1994 [31]. Before the
covid-19 outbreak, around a quarter of all countries worldwide had used postal voting for
their national elections, and almost all used a form of paper ballots. However, the different
countries’ views and approaches are very split in internet voting. While it is banned in
some countries, many have already done some trials in the past. Currently, four countries
allow voting via the internet: Armenia, Canada, Estonia, and Switzerland; however, in
some cases, this is restricted to a certain population (e.g., citizens living abroad) [34]. A
big concern with internet voting is the trust placed in these complex systems, which are
usually more difficult for an average voter to understand. In Norway, for example, has
had some trial runs for Internet voting systems. They were stopped due to a lack of trust
from the public and mainly from the politicians involved [2].

When introducing a new voting system, it is always a trade-off between different equally
important factors. For example, a significant advantage of remote postal voting is its easy
cast-as-intended verification, meaning it is given that the vote cast by the voter is the
vote she indented to cast (e.g., by marking an X in the corresponding field). This and
many other privacy and security aspects are important when evaluating voting systems.

1

2 CHAPTER 1. INTRODUCTION

These voting processes often represent a big power play in the political world, and the
threat of manipulation is omnipresent. Most of the beforementioned voting processes
have been heavily under attack. In many countries, there have been allegations of voting
fraud both in postal and internet voting systems [36, 37, 38]. Therefore, many parties are
interested in and are working on improving voting processes worldwide. There has been a
big movement toward digitalizing these voting processes to attempt to have more proof of
accuracy for the public and incentivize more citizens to vote. Often these improvements
come at a cost, though. The environments become more complex whenever technology is
added and more vulnerable to new attacks. Even if a perfect cryptographic verification
is put in place and a voting system is 100% accurate and private, there is always the
possibility that the voter’s device used to place a ballot electronically could be targeted.
On top of that, with the quickly evolving technological world, cryptographic systems that
are considered safe now and might not be so safe in the years to come. Therefore, this
paper focuses on improving the current postal voting systems to reap the many benefits
of postal voting and attempt to improve its accuracy. This will be done specifically on
the Swiss use case.

The Swiss postal voting system (SPVS) is a special case. Not only does Switzerland
have direct democracy with very frequent votes (around 4 per year), but its federalization
also hinders the generalizability of these voting processes. Killer and Stiller summarized
the SPVS into seven steps: Setup, Delivery, Casting, Storage, Tallying, Validation, and
Destruction. In those steps, they went on to classify all the possible threats to the voting
process into 14 threats shown in 6.1. There have been several cases in Switzerland where
the current SPVS has been misused, according to one of these threats identified by Killer
and Stiller. For example, in 2021 in Frauenfeld, there were reports of manipulation of
stored ballots; in 2019 in Geneva, there were allegations of destroying and forging stored
ballots; and in 2017 in Wallis, there have also been reports of the theft and forging of
ballots [3, 14]. While the SPVS can claim many of the privacy benefits of a postal voting
system, it lacks verifiability (accuracy of the voting outcome), i.e., a lot of trust is placed
on the many authorities who run the whole voting process. This paper aims to maintain
all the security standards of the current SPVS based on Stiller and Killer and attempt to
improve its verifiability. [23]

1.1 Description of Work

This thesis focuses on designing, implementing, and evaluating a smart contract and
interfaces to gain eligibility verifiability in the current SPVS. It is a proof of concept
showing how it is possible to improve verifiability while maintaining the current privacy
standards. The thesis is structured into 4 parts: research, system design, implementation,
and evaluation. The research provides an understanding of the voting field with an in-
depth look at the SVSP. An analysis of these different voting systems worldwide and their
evaluations concerning security and privacy follow. In the system design, various means
of improving verifiability are tested, and a few security stages are defined. A prototype is
designed to focus on eligibility verifiability (EV) and mitigating the SPVS’ threats. In the
implementation, the smart contract and its interfaces for the stakeholders are implemented

1.2. THESIS OUTLINE 3

in a test environment. And lastly, the newly designed voting process is evaluated and
compared with previous designs based on the foundations of voting processes.

1.2 Thesis Outline

Chapter 2 provides a foundation for relevant aspects of voting systems with an in-depth
description of the current SPVS and the basics of the technologies used in this paper.

Chapter 3 summarizes related work in the voting environment and compares some of the
previously proposed approaches to improve voting systems through different means.

Chapter 4 presents the requirements for designing the prototype and highlights the steps
in the design process.

Chapter 5 demonstrates how the prototype was implemented. It describes its setup,
provides insights on the smart contract, and then explains the different layers of the User
Interface.

Chapter 6 summarizes the results of the implemented prototype along with the criteria
from the design.

Chapter 7 discusses the beforementioned results and evaluates the prototype’s usability
in the Swiss postal voting system.

Chapter 8 concludes the thesis and provides a summary of the work and ideas for future
work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Foundations of Voting Systems

To ensure the privacy and accuracy of the voting systems, the following four foundations
of voting systems have been identified: privacy, verifiability, software independence, and
accountability. Over the past few years, different experts have incremented and built on
top of these foundations. The challenge when designing a voting system is the trade-off
between these foundations. As Chevallier-Mames et al. state, complete privacy can’t co-
occur with verifiability; hence it is always the aim to achieve standards as high as possible
in all four areas. [8]

2.1.1 Privacy

In the 19th century, most countries introduced laws making privacy in public voting
obligatory to stop bribery and coercion. [11] One of the first definitions is ’Ballot Privacy’,
when an election doesn’t leak any information about the voters except for the outcome of
the vote. I.e., there is no way to detect how any person voted except if the voting result is
unanimous for either side. A further step to combat any manipulation threats is to verify
that the voting process is ’Receipt-Free’, i.e., when a voter has no chance of proving how
they voted even if they go against the protocol in an attempt to create a proof. [5] This
privacy standard is a strong counter incentive for blackmailing a voter into voting in a
specific way. If voters can’t produce evidence of how they voted, that threat is averted.
Receipt-freeness assumes that the attacker isn’t in the room with you though. ’Coercion-
Resistance’ covers receipt-freeness and adds protection against forced abstention, forced
randomized voting (an example is introduced in the related work section), and forcing
voters to give up their voting credentials to cast a vote for them. With these increments,
it gets increasingly more challenging to maintain its requirements and protect the voter’s
integrity. There are many more definitions of privacy depending on the specific voting
systems; however, the three presented are the most popular. [22]

5

6 CHAPTER 2. BACKGROUND

2.1.2 Verification

Another equally important aspect of voting systems is ensuring that the election outcome
correctly portrays the public’s votes, confirming that every voter’s choice is accurately
tallied and represented in the published results. In voting systems, this is called ’Verifi-
ability’, and there are usually two different increments used in the related work. Either
it is measured by ’Individual Verifiability’ (IV) and ’Universal Verifiability’ (UV) or in
three steps as the ’End-to-end Verifiability’. Individual Verifiabibility implies that every
voter can check that their vote is tallied correctly in the final result. Universal verifiability
defines that anyone can verify that all the ballots were correctly tallied, and the voting
outcome corresponds to this tallying.

The second concept, ’End-to-End Verifiabilitiy’, consists of the following three definitions:
’Cast-as-Intended’ (CaI) covers the first part of the voting process. It enables voters to
independently check that their choice is correctly cast in the present voting system. E.g.,
in postal voting, this is automatically given since every voter can verify the correctness
of their own markings on the paper ballot. However, in Internet Voting, this definition
carries more significance since there might be a false layer on top of the actual voting site,
which leads to a wrong choice being recorded. The next step is called ’Collected-as-cast’ or
’Recorded-as-cast’ (RaC), when voters can check that their vote is received the way they
intended to cast it. The third and last step is defined as ’Counted-as-collected’ or ’Tallied-
as-recorded’ (TaR), which verifies that the final tally in the voting results corresponds to
how the tallying office received it [5].

These definitions of verifiability don’t cover a crucial part of voting systems: the eligibility
of the voters. Kremer et al. coined the term ’Eligibility Verifiability’ (EV), which ensures
that the public can verify that every voter is an eligible voter (whoever is classified as
eligible in the corresponding elections) and that each voter solely cast a single vote [24, 25].
To achieve this verifiability, some systems introduce an audit trail (this can be done
electronically, on paper, or as a combination of the two) to keep track of the voting
process from beginning to end. Different standards of verifiability apply depending on
who has access to this audit trail, whether it is only the authorities, each individual voter
of their ballot, or the public, and how secure it is. [11]

2.1.3 Software Independence and Accountability

The last two foundations are often neglected, even though they are equally important to
enable a ’fair’ voting system. Software independence ensures that if there is an undetected
error or change in the software used, it can’t cause an undiscovered error in the election
outcome. [5] Accountability incentivizes the voting authorities to uphold all the correct
voting practices, as they will be held accountable if they intentionally or unintentionally
misuse their power to tamper with the voting process. In most voting systems, a lot of
trust is placed in the people in these authority positions; the public can only guarantee this
trust if they are held accountable for their actions. [22] This includes having mechanisms
in place to handle situations where fraud is suspected and to be able to trace the missuses
to the attackers.

2.2. SWISS POSTAL VOTING SYSTEM 7

Figure 2.1: Representation of neccessary artifacts for SPVS depicted by Killer and Stiller
[23]

2.2 Swiss Postal Voting System

In the direct democracy of Switzerland, voting is part of everyday life for eligible voters.
National votes are held two to four times a year, and cantonal and municipal votes can
occur even more often. According to the Swiss Federal Chancellery, each voting iteration
costs about 7.5 million CHF [39]. 90% of voters use the remote postal voting (RPV)
system provided by the government, cantons, and municipalities. This system requires a
lot of trust in the authorities and its external suppliers (ES). A trust that most voters give
in Switzerland. Another factor that heavily influences the voting processes in Switzerland
is its federalism. While the national government has strict laws about voting, each canton
and municipality has some influence in creating their voting procedures. Therefore a
universal SPVS doesn’t exist and also isn’t documented anywhere. Fortunately, Stiller
and Killer have summarized the SPVS in a step-for-step Postal Voting Process Flow
(PVPF) based on some significant assumptions. Additionally, they analyzed the whole
process for its risks and threats. [23] Stiller and Killer’s paper will be used as a reference
for the SPVS throughout this thesis.

As a quick overview, this paragraph will summarize the current Swiss PVPF. As before-
mentioned, the PVPF is divided into seven steps:

• A. Setup This is a rather large phase, it includes retrieving the Electoral Register
(ER) and producing the different parts of the voting envelopes as shown in 2.1: the
Two-Way Voting Envelope (VE), Voting Signature Card (VSC), the Paper Ballot
Envelope (PBE) and the Paper Ballots (PB). This production is often outsourced
to an external supplier, who then prepares the envelopes for dispatch and delivers
them to the postal service.

• B. Delivery The Swiss Post (SP) is responsible for the secure delivery of the VEs.

• C. Casting Once the citizen has received their envelope, they have three different
means to cast their vote: I. by sending the envelope by post, II. by throwing the
envelope into their municipality’s letterbox, or III. by casting a vote in person at
the urn of their municipality.

• D. Storage In Switzerland, all votes are received until the official Voting Day. The
VEs from the letterbox and post are brought to a safe storage location; this impor-

8 CHAPTER 2. BACKGROUND

tant step is often not prioritized due to lack of funding, and many fraud allegations
have been made in this phase.

• E. Tallying The municipality and the local election office (EO) handle the process
of tallying. The SPVS works with a two-way envelope system; the outer envelope
contains the voter’s identification (address, name, and signature) and the anonymous
paper ballot envelope, which is opened separately to avoid any ties between a ballot
and the voter. Most municipalities hire helpers to assist with the manual counting,
although a few also use high-precision scales or e-Counting systems to tally the
votes. It is important to note that the EO assumes that every envelope received at
the tallying office hasn’t been tampered with and has been sent by an eligible voter

• F. Validation Once tallying is finished, the cantonal government gathers the results,
transfers them to the Federal Chancellery (FC), and publishes them to the Cantonal
Gazette (often software provided by ESs is used to transfer the results). When no
valid appeals concerning the results are in process at the Swiss Federal Court, the
official results are published in the Federal Gazette.

• G. Destruction With that, the process is sealed, and the ballots that have been
stored until now are destroyed.

In each voting process, there are trade-offs between privacy and verifiability. Either the
design attempts to make the votes as private as possible, or there is a heavier focus on
providing proof of correctness. Deciding which direction to take also depends on the
circumstances involved in the voting process. When analyzing the SPVS, it becomes
apparent that its focus lies more on privacy than verifiability, as with most paper-based
postal voting systems. The SPVS provides ballot privacy based on a few assumptions,
including the trust placed in the swiss postal service and the authorities involved in the
voting process. The government doesn’t publish any information concerning the elections
except for the outcome and some voting statistics. Whether receipt-freeness is given in a
postal voting system is a bit disputed, however, since the only way to produce proof is to
take a video, it is often counted as receipt-free [20]. The SPVS isn’t coercion-resistant; an
approach that other countries make to improve coercion-resistance is to allow voters to
vote multiple times (therefore, if an attacker coerces a voter into voting a certain way, the
voter can easily cast another vote later on) and then only counting the last ballot casted
on time.

On the other hand, only one small part of verifiability is given in the SPVS, namely
’Cast-as-Intended Verification’, which is an automatic byproduct of voting in paper-based
systems. The SPVS doesn’t provide further proof of whether the ballot cast is received
or tallied correctly. There isn’t a lot of research into software independence and account-
ability in the SPVS; however, there is a lot of problematic software involved which (based
on the summarized SPVS flow [23]) has many security threats, e.g., the software used to
prove the citizen registry. Therefore it can be assumed that software independence isn’t
given.

2.3. BLOCKCHAIN 9

2.3 Blockchain

Blockchain technology was Satoshi Nakamoto’s solution to the problem of establishing
trust in a distributed system. Unlike a centralized system, it does not rely on a single
party who owns and controls all processes. The anonymous author introduced a dis-
tributed storage of time-stamped artifacts signed with digital signatures, which cannot
be manipulated without being detected. The blockchain is a possible solution to many
current problems, such as integrity, authentication, validation, and more. It is a public
database; several parties update and distribute the artifacts, such that multiple sources
demonstrate that no data has succumbed to manipulation. A ’block’ resembles the data
stored, e.g., the transaction data of sending someone Ether is added as a block. The
’chain’ represents the linked blocks, where each block is connected to its parent. Tamper-
ing can’t remain undetected since a single block cannot be manipulated without changing
all following blocks [43].

2.3.1 Ethereum Smart contracts

The Ethereum blockchain uses a mechanism called proof-of-work. Every entity that wants
to add a block must solve a complex puzzle (in a process called ’mining’) using much com-
putational power. In order to execute a transaction, a block is added to the blockchain
once it has been mined. The new block is verified, and the blockchain is updated to a new
state for the entire network. In Ethereum, the state everyone agrees on is the Ethereum
Virtual Machine (EVM); everyone involved records a copy of its state. Ethereum’s na-
tive cryptocurrency is Ether (ETH), which regulates the computations market. Smart
Contracts are programs uploaded to and run by the network to make computations on
the EVM. These programs run with specific parameters only when certain conditions are
met. For example, a Smart Contract could create a digital asset whenever ETH is sent
to a specific user. Anyone can develop Smart contracts and publish them on the network.
The data is stored in the blockchain, and the published must pay the computation fees
needed. Anyone can then call these smart contracts (within the right conditions) and pay
a fee to have them executed [43].

2.3.2 Technologies

In this paragraph, the technologies used for this paper are shortly introduced. A popular
development framework for the Ethereum blockchain is called Truffle. It provides fixed
scripts to deploy smart contracts and for testing them. The SCs in the truffle framework
are coded in the Ethereum programming language called ’Solidity’. A possible option
to deploy Smart Contracts is Infura, a Blockchain Development Suite [19]. The web3
javascript library is installed to have a front-end web app interact with the blockchain.
A new instance of web3 is initialized; using the eth library in web3, one can then call
a contracts function to create a local copy of the solidity smart contract to use in the
front-end. To achieve this, the contract address of the deployed smart contract is needed
and an application binary interface (ABI). The ABI is a JSON representation of all the

10 CHAPTER 2. BACKGROUND

inputs, functions, and methods of the deployed Smart Contract, and it acts like a passport
between the Ethereum Blockchain and the front-end javascript. It lets the front-end know
which interactions are available on the smart contract before it tries to call them [43].

2.3.3 Ethereum Gas

Running a transaction on the Ethereum Blockchain is not free; the blockchain uses ’gas’
to regulate the cost of transactions. Ethereum gas is to smart contracts, what fuel is for
a car. It powers the code to run computations on the Ethereum network. In order to
calculate how expensive a transaction on the blockchain is, different information needs to
be accessible. Firstly, each action on the blockchain has a fixed gas price; for example, a
financial transaction costs 21’000 gas. This figure is then multiplied by the current cost
of gas. Gas is paid in ether, but the unit used is gwei, a denomination of ether. Gwei
stands for Giga Wei which represents 0.000000001 ETH (10-9 ETH). Often default gas
prices are used; however, the more one pays for the gas, the quicker the blockchain runs
the transaction. Now, multiplying the fixed gas price with the cost of gas in gwei, one
receives the amount of ether needed to power this transaction. The last step is to convert
the amount of ether to the current price of ether in the preferred currency (e.g., USD or
CHF) [42].

When deploying a smart contract, it is possible to set a gas limit to have an upper bound
for the cost one pays for a particular transaction. Since gas prices also heavily depend on
the time of day, the day of the week, and otherworldly influences, it is often complicated
to estimate the cost of transactions. Hardhat is a development tool used for any Ethereum
blockchain; it serves as an alternative to Truffle. One of Hardhat’s advantages is its gas
reporter plugin, which estimates the gas price of the functions in the deployed Smart
Contract.

2.4 QR code

A widely used means for encoding, sharing, and decoding data are QR codes. I.e., ”Quick
Response” codes, a two-dimensional matrix code that provides many advantages such as
high data storage capacity, omnidirectional readability, error correction, etc. Different
versions can be chosen depending on the needed size, 21x21 up to 144x144, and the
required error correction, 7% up to 30% of approximate error correction. The data is
stored in a regular square array consisting of function patterns and an encoding region,
surrounded by a quiet zone border. The encoding area contains the version information,
format information, and the data and error correction codewords. Although QR codes
have many advantages, we must also consider the disadvantages, especially in the context
of postal voting. First, all the users need to have a QR scanning tool, which might limit
the audience. Most important, however, are the security issues. When scanning a QR
code, one can never be entirely sure where this code is going to lead them. [40]

Chapter 3

Related Work

3.1 Attempts to Improve Voting Systems

Trying to achieve high standards in the four foundations of voting processes is the apparent
move to improve voting schemes worldwide. An essential aspect of ensuring these four
principles is prioritizing securing the systems against all kinds of attackers. However,
many additional attributes contribute to a well-functioning voting system. For one, it
should be easy to vote for all eligible citizens and maintain the public’s trust to encourage
a high voter turnout. All other stakeholders involved, such as the government authorities
and third parties managing it, should also have a straightforward process to work with
to avoid intentional or unintentional manipulations/fraud. Evaluating the cost and time
efficiency of different voting processes is always beneficial to keep voting systems within
a reasonable cost and time frame.

Researchers have suggested different approaches to improve voting systems throughout
the past few decades. The attempts are split into in-person systems and remote voting
systems. Both methods can be paper-based, electronic, or a hybrid of the two. The
following related work section will provide a short insight into the different options, with
a focus on the second path related to the work done in this paper. This paper will
assess each voting process according to the four foundations of voting systems and the
additional features mentioned above. As a side note, not all voting systems are designed
for governmental use. Many areas in societies include voting, places where there are
different and often fewer security and privacy concerns.

Often there are complex cryptographic proofs involved to ensure the privacy and veri-
fiability standards in voting systems. While these proofs might convince experts of the
system’s safety, these complex mathematical mechanisms often do not help increase public
trust. Therefore, some related work introduced alternatives to give voters proof that their
votes are private and represented authentically. These mechanisms include verification
with short strings, continuous auditing (used in Prêt á Voter), and cast-or-audit systems.
In the Markpledge system, voters make their choice electronically, and the machine then
prints the ballot containing all encryptions along with a commitment to the encrypted
ballot choice. A voter can insert the provided short string to verify that the machine

11

12 CHAPTER 3. RELATED WORK

saved the correct answer [30]. Similar to continuous auditing explained in the Prêt á
Voter paragraph below, cast-and-audit systems enable voters to choose whether to cast
their prepared vote or to have it decrypted. These alternatives give voters more security,
and the more voters who test the voting systems in this way, the more securer the system
itself becomes [21].

3.2 Poll site systems

Poll site voting systems often have specific public locations which voters need to visit to
record and cast their ballots. In-person voting is where voting has its origins, it started
as simply marking your choice on a paper ballot and dropping it into the ballot urn, and
nowadays, there are many digital poll site systems in use. It also has many advantages
over remote voting; for example, voter authentication and accountability are often more
straightforward in the in-person setting [5]. However, privacy and verifiability concerns
remain even in in-person voting systems. Therefore many proposals have been made to
combine poll site voting with cryptographic schemes to ensure higher security standards,
many of them applicable for remote voting [27].

3.2.1 Prêt á Voter

Prêt á Voter is an E2E poll site voting system that uses a system of ballots listing candi-
dates in pseudo-random encrypted orders. The paper lists all candidates on the left side
and leaves space to vote on the right side. When a voter marks a candidate, it serves
as the encryption of the vote. The encryption of the candidate ordering on the ballot
together with the position of the voter’s mark is used to tally the correct vote. Ryan et al.
make use of continuous auditing to prove to the users who aren’t cryptographic experts
that their vote is private. A voter can purposely spoil a ballot by handing in a blank ballot
and letting it be decrypted to verify that the order and, therefore, their vote is encrypted.
They can then choose another ballot and cast their vote. The voter marks the spaces
on the right-hand side of the paper and tears it in half. They shred the left-hand side
containing the candidate ordering to ensure ballot privacy, place the right half of the form
into the voting device, and receive an encrypted receipt after the elections. Voters can
check the WBB and confirm their votes with the receipt which ensure E2E verifiability,
and public auditors can perform verifiability checks [27, 33, 21]. Various papers have built
upon Prêt á Voter to improve some of its issues, and it has also been used as a basis for
Internet voting platforms, such as vVote, which was used in trials in Victoria, Australia
in 2014 [29]. The Prêt á Voter is receipt-free (since the receipt is encrypted) but not coer-
cion resistant; it is an example of a system susceptible to forced randomization. Since the
candidates are listed pseudo-randomly on the ballot, the coercer can force multiple voters
to mark the top candidate, which the receipt can prove. All of these votes will balance
each other out due to their randomness; this can significantly impact the outcome of the
vote if a particular group of voters is forced to vote this way.

3.3. REMOTE ELECTRONIC VOTING SYSTEMS 13

3.2.2 Tracker

Gjøsteen et al. take it a step back and regard in-person paper-based voting systems as
non-trivial security-critical logistics problems. In this regard, they tested cryptographic
solutions from supply chain management and proposed two theoretical ideas to increase
the system’s resilience against fraud. The first simpler scheme is based on digital sig-
natures, and the second suggests using a Tracker to monitor the supply chains. Both
methods focus on creating a secure audit trail for the ballots cast at voting precincts.
They rely on all involved election officials verifying the ballot’s path and tracking each
ballot along every step. For example, the steps include receiving the ballot at the precinct,
moving it to storage, taking it out of the storage, and so on.

Digital Signatures schemes comprise three algorithms to verify the authenticity of a mes-
sage’s sender and the authenticity of the message itself (i.e., that it hasn’t been altered
since the sender signed it). The Key Generation Algorithm creates two random keys: a se-
cret key and a verifying key. The Signature Algorithm takes a message and the secret key
from before and outputs the message and a signature. Lastly, the Verification algorithm
has the message, the signature, and the verification key as input and outputs whether the
signature is valid. Implementing this onto paper-based voting systems prevents voting
officials from validating, casting, or counting forged ballots. However, the ballot storage
size on each ballot increases with each election official who verifies the ballots’ path and
therefore also adds their signature - leading to a high computational cost of verification.

Their second idea is based upon the Tracker system, created in the logistics field to trace
materials through supply chains and verify their paths’ validity. Trackers use cheap RFID
tags (like stickers) to place on the paper ballots; these tags aren’t linked to an identifiable
voter to maintain voter privacy. The key to these tags is given to every authority along
the supply chain to verify the ballot’s path. Using this key, the voting officials can verify
the signature on the ballot with the signature expected according to the correct path.
RFID uses a polynomial evaluation mechanism, ensuring that the signatures don’t grow
like the digital signatures; therefore, this design is more efficient.

Both theories aim to detect and not prevent voting fraud by building on top of paper-based
voting designs. However, there was no further investigation on a physical application of
the proposed theories on any RPV system. Making it difficult to provide an analysis of
the privacy and verifiability standards of the two theories [26].

3.3 Remote electronic voting systems

Remote voting systems are separated into paper-based (such as the current SPVS), fully
electronic systems, and a hybrid of the two. Proposals to improve remote electronic voting
systems have been appearing for over 30 years, based on varying aspects of cryptography to
provide security and privacy while protecting against election manipulation. For example,
voting systems have relied on blind signatures, a method used to sign a vote without
revealing its content [17]. Mixnets schemes, which shuffle a ballot with several other
ballots to ensure privacy, have been used in projects like Scantegrity [7] and Helios [1].

14 CHAPTER 3. RELATED WORK

Some rely on homomorphic encryption (combining votes before decryption); a famous
example is El Gamal [21, 33, 27]. Since these systems often require complex cryptographic
theory, some voting systems include ballot auditing processes to show voters that their
votes are private and verified. Processes like verification using short strings, continuous
auditing (used in Prêt á Voter), and cast-or-audit enforce more trust in the cryptographic
systems [21].

Helios is one of the only voting systems used in practice; [4], it is an open-source, web-
based voting scheme designed by Adida for elections with a small risk of coercion [1]. As
mentioned above, Helios is based on a mixnet scheme combined with a simplified version
of the Benaloh challenge. To cast their vote, voters mark their choice in the provided
space. The voter can then choose to audit or cast the encrypted ballot the system has
prepared. Once they wish to cast their ballot, the voter must authenticate themselves.
The encrypted vote is sent to the public bulletin board for individual verifiability (IV).
Using mixnet, the ballots are mixed and decrypted and posted on the bulletin board
together with all supporting proofs. The original Helios has been updated and improved
for different elections, such as in Belgium University’s presidential elections [21]. Based on
the informal analysis, Helios is deemed verifiable, i.e., it fulfills individual and universal
verifiability. Eligibility Verifiability varies from election to election as some additional
properties need to be met, such as a list of the eligible voters. However, the Helios
version analyzed here doesn’t fully provide ballot privacy, as some proofs are lacking, and
attackers could successfully infiltrate the voting system [4].

3.4 Remote hybrid solutions

Both remote electronic voting and remote postal voting have their advantages and disad-
vantages. In an effort to reap the benefits of both, some proposals have surfaced trying
to combine the two. The aspect of having a paper-based audit trail for privacy and an
electronic addition for further verifiability seems to be a good match.

3.4.1 McMurtry

McMurtry et al.’s proposal is based on paper voting similar to the SPVS and combines
paper-based assurance with cryptographic verification. It significantly improves verifia-
bility in paper-based voting schemes. When casting their vote, voters mark their choice
electronically, which is then encrypted by the ElGamal encryption scheme. They cast
their encrypted ballot by sending the encrypted vote electronically, printing it out, and
sending it by post. The electronic vote is posted on a web bulletin board (WBB) used for
universal verification to verify the paper ballot and the tallying process. This scheme uses
easy CaI verification, resistance to cryptographic failure, and a low level of trust needed
for the paper ballot. However, it manages to defend the ballot from a cheating postal
service or electoral authority by having a digital verification of the ballot. It adds honest-
but-remembering receipt freeness, RaC verifiability to the paper-based voting scheme and
protects its integrity against entirely corrupt authorities.

3.4. REMOTE HYBRID SOLUTIONS 15

Figure 3.1: Foundations of Voting Systems Analysis

3.4.2 Proverum

Another option to improve verifiability in remote postal voting is introducing a Citizen
Management System. Proverum, for example, is an approach that combines immutable
audit trails (in a private environment) with multiple permissioned distributed ledgers
(DLs) using decentralized identity management. It is proposed for the Swiss postal voting
system to establish Hybrid Public Verifiability. The main goal is to allow the public to
verify the voting processes while preserving a private verifiable audit trail. Decentralizing
these processes establishes more trust and transparency in the voting system.

16 CHAPTER 3. RELATED WORK

Chapter 4

Design

4.1 Requirements

As established in the chapters above, this thesis will build on the postal voting system
to reap all of its benefits and attempt to lessen the amount of trust needed by giving the
voters more proof of verifiability. To narrow down the aim of this thesis, requirements
were derived to achieve the overarching goal: to improve the current SPVS. By setting
the requirements and analyzing the current threats of the SPVS, a design can be made.

• Maintain the current privacy and verifiability standards
When designing voting processes, trade-offs between those two standards must be
made. However, this paper servers as a proof of concept to verify whether the SPVS
can uphold additional standards without losing any current privacy or verifiability.
With that, an effort should be made to maintain the current software independence
and accountability.

• Improve either privacy or the verifiability standards or both

• Prevent as many current threats as possible
The aim is to mitigate as many threats analyzed by Killer and Stiller in the current
SPVS as possible in the simplest way possible [23]. As well as trying to avoid
creating any new threats.

• Ease of use for all stakeholders involved
The design shouldn’t introduce new burdens for both the voting authorities and
the voters, and it shouldn’t lessen the trust placed in the system by the voters by
introducing a lot of new, complex technology. It is crucial that voters of all ages
and backgrounds still feel comfortable and safe to vote to ensure voter turn-out isn’t
decreased.

Taking a closer look at the threats analyzed by Killer and Stiller in their paper on the
SPVS, it becomes apparent that most threats happen before the tallying phase, i.e., from

17

18 CHAPTER 4. DESIGN

A. Setup to the D. Storage phase, eleven out of the fourteen threats are present. An even
more alarming analysis shows that all threats except the first one (TE1) are caused by
tampering with or forging the Voting Envelope (VE) or citizen data. Therefore introducing
some audit trail with a voter id management system seems to be the simplest solution to
preventing as many threats as possible. This idea significantly overlaps with the Kremer
et al. definition of ’Eligibility Verifiability’ (EV). Consequently, this paper aims to enforce
EV while maintaining the abovementioned requirements.

4.2 Design Process

In trying to introduce EV to the current SPVS, different security stages, each with its ben-
efits and disadvantages, were created and evaluated. The idea of each stage is presented
in the following list, starting with the smallest change.

• Stage 1 QR codes for all eligible voters on the VSC
The idea of this stage was to print a QR code with the voters’ credentials on the VSC,
which the tallying office can then scan. However, the tallying office usually doesn’t
have access to the citizen records, so no cross-checking of the received envelopes can
occur, which annuls the whole purpose.

• Stage 2 QR codes posted on private Smart Contract
A secure way to enable the tallying office access to verify the eligibility of the
received envelopes is to introduce a smart contract containing the voting records.
When scanning the QR code, the envelope is automatically cross-checked with the
smart contract data to verify the reliability of the EV. This stage prevents many
security threats; however, it isn’t enough for eligibility verifiability since there is no
proof for the public. It does mitigate some threats analyzed by Killer and Stiller
[23] .

• Stage 3 QR codes posted on a public Smart Contract
In addition to stage 2, the voters get access to the Smart Contract to track their
envelope. Voters can scan the QR code with an app, and then on tallying day, they
can verify if the envelope has been received at the tallying office. On a results page,
the publlic can see all UUIDs used to vote for Elegibility Verifiability.

• Stage 4 QR code on the VSC and a QR on the VE for postal tracking
To mitigate more aspects of the threats: TE6, TE7, TE8, TE9, TE10, an additional
QR code is added to the outer layer of the voting envelope to be tracked by the
Swiss Post. The first QR on the VSC tracks the envelope at three stages: when
printing, optionally when casting by the voter, and when tallying. With the second
QR code, the steps in between are covered better.

• Stage 5 A decentralized Identity Management Software
Introducing identity management, e.g., Proverum would also cover eligibility verifia-
bility and additional security standards; however, a lot more complexity is involved.
[24]

4.3. DESIGN OVERVIEW 19

This paper focuses on the third stage since it is the simplest method to fulfill the above-
mentioned requirements.

A Smart Contract is just one possible means to convey the ER to the tallying office. The
municipality could also send it in the same way as in the A. Setup, where the municipality
sends the ER snapshot by e-mail (which happens in many municipalities) [23]. However,
this option has a few significant downsides. First, it is a big privacy concern since sending
confidential information like the name and addresses of all eligible voters by e-mail is a
significant security breach. Secondly, it would introduce new threats to the threat events
because it would be pretty easy to tamper with or add non-eligible or fake voters to
this list to commit voting fraud. Another downside is the amount of added trust which
has to be placed in the voting authorities. Total control is again given to the employees
sending, receiving, and using this ER snapshot in the tallying office. A step further into
digitalization would be to host a server online to add this ER snapshot, rather than just
sending it by e-mail. This step adds a layer of security; however, this solution still requires
the same trust placed on the authorities since the valuable information is still controlled
from a centralized point. It would also still easily be possible to manipulate the snapshot.

Therefore using smart contracts on the blockchain is the optimal solution to reap the
benefits of the added security of the decentralized database. It significantly reduces the
possibilities of manipulation since the audit trail on the blockchain is immutable; no
authority can go in and change the information without it being detected [12].

4.3 Design Overview

The design adds to the following five phases of the SPVS, abstractly summarized in Figure
4.1.

• A. Setup A randomized integer is created for every voter, which on the one hand is
posted to the initialized blockchain and, on the other hand, added to the snapshot
of the ER so the external supplier can turn this randomized integer into a QR code
and print it on the VSC.

• C. CastingWhen casting their ballot, a voter has an additional choice of scanning the
QR from the VSC with an app on their phone, which then verifies the authenticity
of the voting envelope.

• E. Tallying At the tallying office, an additional step is performed when opening the
outer envelope (VE): the QR code is scanned, and the randomized integer is then
verified on the smart contract to 1. verify that the integer exists and 2. to verify
that this integer hasn’t already been used to cast a vote before. If those checks
go through, the ballot is verified and tallied as usual. If it isn’t, the appropriate
authorities will be called to analyze this use case. Additionally, the voter can go
on the same app to check whether or not the tallying office received their ballot.
Also, the authorities can be notified if the ballot isn’t received if a voter tracks their
ballot with the app provided.

20 CHAPTER 4. DESIGN

• Results After the Verification phase the public gets access to all the random integers
used in the voting process, along with the voting results.

• G. Destruction Along with destroying the paper ballots, the randomized integers
on the smart contract are also destroyed once the Results phase is complete.

4.3. DESIGN OVERVIEW 21

Figure 4.1: Stakeholder Callgraph Design Overview

22 CHAPTER 4. DESIGN

Chapter 5

Prototype Implementation

5.1 Preparation

A voting cycle begins in the Setup phase, and different authorities must complete specific
tasks before instantiating a new voting instance on the Smart Contract. Before sending
a snapshot of the ER to the external supplier (ES), the municipality authorities need to
create as many unique random integers as there are eligible voters. The integer isn’t linked
to the voters in any way (it doesn’t contain the voter’s id or any other credentials); it is
solely there to represent an eligible voter. UUID v4 generators generate random integers.
While the previous UUID versions (1-3) depend on some metadata of the device used, the
4th version is almost entirely random (6 of the 128 bits are used to indicate the UUID’s
version). The advantages of the fourth id version are its anonymity and randomness,
leading to an unpredictable set of integers that is impossible for an attacker to guess.
However, there are disputes about its security since there is a slight chance of generating
duplicate ids. Some sources don’t recommend using UUIDs v4 as ’security capabilities’,
i.e., when the only requirement to receive access to a system is to possess the correct
id [9, 10]. Since no other access is given to the owner of any UUIDs, there aren’t any
concerns about using these ids as random integers. A second security check is in place
when registering all ids into the smart contract since the SC doesn’t allow the registration
of the same id twice. So a secure Smart Contract can mitigate this security hazard.

Once the UUIDs are generated, they are added to the Smart Contract in the steps below
and sent to the external suppliers (ES) and the ER. It is important to note that the
integers aren’t matched to any voter yet; the two documents (list of integers and the ER
are sent separately). When receiving the documents, the external supplier generates QR
codes for each UUID and then randomly prints them on the VSC. It is required of the ES
not to record which id was matched to which voter in any way.

23

24 CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.2 Smart Contract

The implementation of the prototype is split into two parts: the smart contract (SC) and
the user interface (UI). The smart contract is built in the Solidity programming language
on the Ethereum Blockchain using Truffle and Infura to deploy a demo version of the
contract and MetaMask as the wallet. It is a small, concise smart contract made up of a
few essential pillars:

• the metadata (name and date) of the voting instance

• an eligible voter datatype containing the UUIDs and a boolean whether it’s already
been used to vote

• the eligible voters’ registry mapping: consists of all the UUIDs as keys that point
to the corresponding eligible voter datatype

• the SC voting phases, which can only be entered in the predefined order (the phases
differ slightly from the voting phases introduced by Killer and Stiller and are dis-
cussed in the paragraph below[23])

• the functions which allow interaction with the abovementioned variables

There are two types of functions in the smart contract: reading data from the SC and
writing data onto the SC. Three modifiers ensure the security of the SC; two ensure that
each function can only be called in a specific phase, and the third restricts which addresses
may call which functions. Two of these modifiers are shown in the listing 5.2. For instance,
some functions can only be called by the address which instantiated the new voting cycle.
Therefore, each function is maximally restricted by who has permission to call it and in
which voting phase the function is allowed to be called. For example, registering eligible
voters for a new voting instance can only be done in the Setup phase; the function isn’t
callable in any other phase, and the corresponding authorities can only call it.

1 modifier onlyOfficial (){

2 require(msg.sender == ballotOfficialAddress);

3 _;

4 }

5
6 modifier inPhase(Phase _phase){

7 require(phase == _phase);

8 _;

9 }

Listing 5.1: Smart Contract Modifiers

Another aspect of ensuring the security of the variables is the privacy quantifier by Solidity
itself. Variables defined with this quantifier are only visible inside the Smart Contract
and can’t be called by any external source [41]. By making all the vulnerable variables
(e.g., the list of all UUIDs) private, the only way to access its information is through
getter functions. These getter functions can be restricted with modifiers to, for example,

5.2. SMART CONTRACT 25

only allow access to the citizen registry after the Tallying phase is complete. In 5.2 the
allIntegers variable is set to private, and its information can only be accessed through
the fetchUUIDbyIndex function in the Results phase.

1 string [] private allIntegers;

2
3 // Results: Fetch all IDs one by one

4 function fetchUUIDbyIndex(uint index)

5 public

6 inPhase(Phase.RESULTS)

7 view

8 returns (string memory)

9 {

10 return allIntegers[index];

11 }

Listing 5.2: Smart Contract Visibility Quantifier

There is only one voting instance running at a time. Each voting instance must go through
all SC phases in the following order: Uninitialized, Setup, Voting, Tallying, Results, and
Destruction. Some phases directly align with the Swiss Postal Voting Phases, and some
serve different purposes. The phases ensure the encapsulation of different functionalities
to certain time frames. Each phase is further explained below.

• Uninitialized In this phase, there is no current voting cycle, no data exists on the
blockchain, and it is ready to be initialized for a new voting instance.

• Setup The Smart Contract Setup phase directly corresponds to the SPVS’ Setup
phase. Voting Officials can initialize a new voting cycle by giving it a name and a
voting date, the address that initializes the instance is the official ballot address.
The second part of the Setup phase is posting all UUIDs on the blockchain, which
the voting officials can only perform in this phase. Once all ids are entered, a button
click can push the voting cycle into the next phase.

• Voting This phase corresponds to three SPVS phases delivery, casting, and storage
phase. During this time, no new ids can be added, no id data can be queried, and
no ids can be verified as received yet. It is an in-between phase to restrict the
beforementioned functionalities to specific time frames in a voting cycle.

• Tallying On the official tallying day, the voting officials can move the voting cycle
into the Tallying phase, which corresponds to the Tallying and Verification phase of
the SPVS. In this phase, ids can be verified and marked as received. Once tallying
is finished and the Verification phase has passed, the smart contract can be pushed
into the next phase.

• Results This is an added phase after SPVS Verification is complete, where all the
election data is available for online review. Here the results and all the ids are posted
to ensure Eligibility Verifiability.

• Destruction Once a certain time has passed, and the latest before the next election
begins, the Destruction phase begins. All voting cycle data is erased in this phase,
and the smart contract is back to the Uninitialized.

26 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.1: Register Eligible Voters UI Layer

5.3 User Interface

The technologies used for the UI are javascript with the Next.js framework for building
react applications, which connects to the smart contract via web3. It includes a QR
code scanner library called html5-qrscanner[28]. The UI consists of four layers for the
three major stakeholders, each corresponding to one or multiple voting phases. Every
layer interacts with the smart contract, each in its own way. Similar to the smart contract
functions, the functionalities of the different layers are only accessible if the voting instance
is in the correct phase. The following list further explains each UI layer in the same order
as a voting instance would take place.

5.3.1 Setup Layer

The first layer is solely used by the municipality authorities, and the voting phase begins
as Uninitialized. On the Web-app the authorities must first connect to the blockchain
via the MetaMask wallet, the address used to instantiate the voting instance is the only
address that will have access to all the ’authority-only’ functions. Once connected, the
setup layer enables the corresponding authorities to instantiate a new voting instance by
initializing it with a name and a date. Once the SC confirms this request, the second SC
phase, the Setup, begins. At this point, the authorities add all random integers to the
eligible voters’ list in the smart contract as seen in Figure 5.1. Once complete, the voting
instance is placed into the ’Voting’ phase by a button click.

5.3. USER INTERFACE 27

Figure 5.2: Voter’s Device UI Layer

5.3.2 Voter’s device Layer

This layer is a progressive web app (PWA) built for the voters to load onto their smart-
phones. In practice, each voter could download the app and scan the QR code on their
VSC, this prototype however is web-based. During the Voting Phase, the app scans the
QR code and retrieves the UUID stored on the user’s phone. They will not receive confir-
mation that the UUID scanned is on the blockchain’s list of UUIDs. During the Tallying
phase, the voter can return to the app and verify that the tallying office successfully
received their VE, as shown in Figure 5.2. The voter’s device layer doesn’t need to be
connected to the blockchain via a wallet since the functionalities only include reading
data. It is sufficient to access the deployed SC on Infura via the application binary inter-
face (ABI), achieved by a simple button click. The voter neither has access to any other
data except the information of their specific random integer nor do they have access to
any post functions to manipulate the SC.

5.3.3 Tallying Layer

The third layer is a PWA, which is used in the tallying office on the tallying day. Firstly,
once tallying has begun, the corresponding authorities change the SC Voting Phase to
’Tallying’. Next, they scan each envelope’s QR code with the app, as demonstrated in
Figure 5.3, which triggers two smart contract actions. Firstly, a read action verifies that
the received envelope corresponds to an eligible voter who hasn’t placed their vote yet,
by checking whether the random integer exists in the eligible voters’ list and whether a
ballot with that random integer has already been received. And secondly, a write action
is executed to change the ’voted’ status of that random integer to ’received’ to ensure that
each random integer can only be used once to place a ballot. Once the tallying phase is
finished, the authorities push the voting instance into the Results Phase. Once the final
results are published, and the paper ballots are destroyed, the authorities can end the
voting instance with a button click. This action temporarily puts the voting instance into
the ’Destruction’ phase, triggering the erasure of the entire list of eligible voters. Once
this is finished, it is automatically put into the Uninitialized phase, and a new voting
instance can begin.

28 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.3: Tallying Office UI Layer

5.3.4 Results Layer

Once the SPVS Tallying and Verification phases are complete, it is time to publish the
results. On top of all the regular voting proceedings, the public now has access to further
information on the Results UI. While the Smart Contract remains in the Results phase,
it displays all the UUIDs used in the voting instance to achieve Eligibility Verifiability.
An example with some fictional results is shown in Figure 5.4. Once a specific period is
over, all the data is destructed, and the Results page is empty until the next voting cycle
begins.

5.3. USER INTERFACE 29

Figure 5.4: Result UI Layer

30 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Chapter 6

Evaluation

6.1 Privacy

As established above, the current SPVS ensures Ballot Privacy and Receipt-freeness
(based on a few assumptions). Adding the verification prototype to the SPVS doesn’t
diminish these privacy standards in a significant way, but it doesn’t improve them either.
The newly introduced system remains equally receipt-free as the current SPVS; there is
no method for any voter to produce proof of how they voted. Whether that person follows
the voting protocol or not. Even if an attacker knows the voter’s UUID to check whether
it’s contained in the published list of ids after the vote, it is still no proof of how the
person voted. Therefore there is no incentive for an attacker to blackmail a voter into
voting a certain way or into voting at all since voting envelopes can also be sent empty.
Ballot Privacy, on the other hand, is up for discussion. Fact is, there is a possibility that
an attacker can figure out the UUID of a particular voter and then check whether that
person cast their vote or not. However, the attacker cannot determine how any voter casts
their vote since the actual ballot is always completely separated from the random id and
the smart contract. An attacker has two means of discovering the id of a specific voter:
either they manipulate the ES in the Setup phase while printing the QR codes on the
VSCs, or they intercept and open an envelope undetectably during the Delivery-Storage
phase.

6.2 Verifiability

The sole verifiability standard the Swiss postal-voting system demonstrates is the Cast-as-
Intended (CaI) Verifiability due to its paper-based nature. The newly designed prototype
perfectly maintains this standard since it remains a paper ballot. Further steps in the
End-to-End Verifiability, namely Recorded-as-Cast (RaC) and Tallied-as-Recorded (TaR),
aren’t achieved because of their difference from Eligibility Verifiability. RaC ensures that
the tallying authorities record the ballot cast by the voter correctly. To achieve RaC, the
actual ballot choice needs to be verified (e.g., whether the voter voted ’yes’ or ’no’ for an

31

32 CHAPTER 6. EVALUATION

initiative). McMurtry, for example, achieves this by sending the ballot decision digitally
and analogically by a paper ballot. The tallying office can then cross-check the vote on
paper with the electronic vote to verify that the decision hasn’t been manipulated [27].
However, the prototype introduced in this thesis only marks whether the VE is received
and not whether the ballot decision is then recorded correctly. The tallying authority
scans the QR code on the VSC, and once verified, the VSC and the voter’s identity are
separated from the ballot choice. If a voting envelope is intercepted in the Casting or
Storage phase and the decision is somehow changed, this prototype system wouldn’t be
able to detect that attack. It only verifies that the ballots received at the tallying offices
are legit envelopes corresponding to an eligible voter who hasn’t voted yet. In order for a
system to achieve RaC, this ballot manipulation would need to be detectable.

When considering the other measurement of verifiability, Individual and Universal Ver-
ifiability, the same explanation as above applies. The prototype adds neither of those
definitions to the current SPVS. The only things being tracked are the VSCs, not the
ballot choice itself. Individual verifiability isn’t given through the User layer or the pub-
lic blockchain since the voter can only verify whether their ballot was received and not
whether their choice was recorded/tallied correctly. Similarly, with Universal Verifiability,
the public blockchain in this prototype isn’t enough to prove voter choices’ accuracy.

This prototype introduces an additional layer of verifiability: Eligibility Verifiability (EV).
Thanks to the blockchain, the public can verify that an eligible voter has cast each vote.
As Bernhard and Warinschi [4] state, to ensure EV in an election, eligibility information
(e.g., a list of all eligible voters) must be published to verify that an eligible voter has
cast every voting envelope. When the random integers, each corresponding to an eligible
voter, are added to the blockchain in the setup phase, the addition is timestamped. Once
the voting results have been published, these random ids are published along with that
timestamp. This information provides the public with proof that only envelopes with an
authentic id have been tallied.

Eligibility Verifiability would also be given with fewer steps. Assuming a voter couldn’t
scan any QR code and therefore wouldn’t know which random id belonged to them and
all the other steps remained the same. EV would still be given through the publication
of the timestamped integers on the blockchain. Inspired by the alternative approaches
used in related work, such as the continuous auditing in the Prêt ’a Voter, this additional
step serves as further proof for an individual voter. Adding this layer doesn’t improve the
verifiability standards themselves, however, as discussed in the paragraphs below, it does
help mitigate some threats.

6.3 Software Independence and Accountability

This prototype adds an additional piece of software and doesn’t change any of the existing
software in use; hence software independence still isn’t given. However, the prototype
itself is software-independent, i.e., if the current SPVS were software-independent, it
would remain that way if this prototype were added on top. The prototype doesn’t have
any direct contact with the actual ballots cast and the final tally; hence if there is an

6.4. THREAT ANALYSIS 33

undetected error or change in the system, it doesn’t influence the outcome of the final
result. Accountability is maintained, and its relevancy is slightly reduced due to the
prototype’s decentralized nature since less trust has to be placed on the authorities.

6.4 Threat Analysis

Based on the threat analysis made by Killer and Stiller, each threat is reiterated to
evaluate how the prototype influences the threat [23]. A summary of the evaluation is
shown in Figure 6.1.

• TE1: This threat is unchanged.

• TE2: No changes since this happens before the prototype is set into place.

• TE3: This step is slightly securer since the number of eligible voters must match
the number of UUIDs sent to the ES. Any addition or removal of entries in either
the snapshot or the UUID list will be detected. However, the snapshot of the ER is
still susceptible to tampering if solely the voter data is changed (e.g., change name
and address of eligible voters to non-eligible voters) or if both lists are tampered
with equally.

• TE4: Adding the prototype completely mitigates this threat assuming the attacker
doesn’t have access to the list of UUIDs of the current voting instance. Since every
envelope is scanned for validity when tallying, any forged envelopes with QR codes
of UUIDs that aren’t in the smart contract will be detected.

• TE5: The prototype doesn’t mitigate physical theft, it still relies on the voters to
notify a missing envelope.

• TE6 and TE7: The prototype doesn’t mitigate any threats in the delivery process.
As long as one envelope per valid UUID arrives at the tallying office, no re-routing
or theft of envelopes that the voters haven’t received is recognized.

• TE8: Since voters have the option to track their VSC to verify whether the tallying
office received their sent envelope, the prototype can slightly alleviate this threat
concerning the destruction of envelopes. However, it depends on how many voters
actively track their envelope and notify the authorities if the tallying office never
receives their sent envelope. This threat is not detected if an attacker opens and
modifies the envelopes.

• TE9: Similarly to TE8, this threat is slightly mitigated concerning the destruction
of the VEs.

• TE10: Forged VEs will be detected every time (assuming the attackers don’t have
access to the UUIDs). Concerning the destruction of VEs, as above, it depends on
the number of voters that track their ballots and then notify authorities when they
don’t get the ’received’ verification on their app.

34 CHAPTER 6. EVALUATION

• TE11: The destruction in Storage is also undetected unless voters track and notify
their missing ballots via the prototype app. However, modification of the ballots
isn’t detected at all.

• TE12, TE13 TE14: After scanning the QR code and separating the VSC from the
ballots, the process is the same as in the SPVS. The prototype doesn’t mitigate any
threats after this step, so the manipulation of tallying, the final tally, or premature
destruction are all still present.

In some mitigations above, it is assumed that the attackers do not have access to the list
of UUIDs, but what happens if the attackers intercept the list in the SETUP phase? This
event doesn’t add any additional threats to the current SPVS; however, it can weaken the
threat mitigations of the prototype. In this case, the attackers can forge envelopes (which
requires a lot of knowledge [23]) and add the UUIDs onto the VSC. It makes forging
the envelopes even harder since there is the added step of intercepting them in the setup
phase, however, it still can be done. There are only two ways in which attackers can gain
access to the UUIDs of a particular voting instance: they intercept the UUID list when
it is being sent to the ES in the setup phase, or they steal envelopes in the Delivery -
Storage phase. Since the voter device app doesn’t confirm the validity of the scanned
UUID, trying to query the blockchain with random UUIDs doesn’t work either. The
authorities in the tallying office scan these forged envelopes, and the fraud is detected if
any eligible voters corresponding to the stolen UUIDs also cast their ballot. Once a UUID
is encountered twice, the authorities are alerted. So the chance of detection depends on
how many envelopes they forged and what percentage of voters cast their vote. As a
small side note to detecting forged envelopes, if an eligible voter scans the QR code on
the app but doesn’t cast their ballot, the voter can notify the authorities if the app shows
a ’received’ confirmation. In the SPVS without the prototype, forging isn’t mitigated at
all, so no new threats are introduced this way.

6.5 Requirement Analysis

In order to evaluate the prototype, the following section recapitulates the requirements
set in the design process and analyze how well each one is fulfilled.

• Maintain the current privacy and verifiability standards
The current privacy standards (fulfilled Ballot Privacy and the lack Coercion-Resistance)
are maintained since no further data about the voters is leaked by adding the pro-
totype (based on a few assumptions).

• Improve either privacy or the verifiability standards or both
This requirement is met concerning verifiability; the prototype adds Eligibility Ver-
ifiability (EV). With the additional eligibility checks added by the prototype, which
each voter has the option to verify with their ballot envelope, each voter can assume
every other ballot cast is eligible. The privacy standards aren’t improved with the
prototype.

6.6. ADDITIONAL EFFORT 35

Figure 6.1: Threat Event Evaluation [23]

• Prevent as many current threats as possible
The prototype mitigates quite a few of the threat events analyzed by Killer and
Stiller. Most of the mitigation is focused on preventing the forging of envelopes,
and once the ballot has been cast, the detection of the destruction of envelopes is
also increased. The prototype is also successful in not adding any additional threat
events.

• Ease of use for all stakeholders involved.
For the voters, the SPVS with the prototype is as simple as it is without it since
any steps for the voters are optional. And even the optional step is easy to use and,
therefore, easy to be trusted for an average voter since it includes technologies that
are already very omnipresent in our society (downloading an app and scanning a
QR code). Also, the additional steps are straightforward for the municipalities, any
other involved authorities, and external suppliers.

6.6 Additional Effort

Since this prototype is an added layer to the current SPVS, it will make the voting process
a bit more complicated and expensive. In order to manipulate the Ethereum blockchain
by interacting with the smart contract, a gas fee must be paid. This SC requires gas for
registering each UUID onto the blockchain, changing the phase of the voting instance,
marking each UUID used to vote, and then deleting all the UUIDs. Therefore there is a
write action for every eligible voter in Switzerland (on average around 5.5 million people),
a negligible 6 write actions for the voting phases. The average voter turnout in Switzerland
in 2019 was around 45%; therefore, approximately 2.25 million UUID markings for each

36 CHAPTER 6. EVALUATION

vote cast, and another 5.5 million deletion actions [18]. The gas prices are estimated when
running the Hardhad gas reporter plugin on each of these functions.

Each write action has a specific gas price already converted to the current price of Swiss
Franks CHF. The one-time costs independent from the number of UUIDs added for each
voting instance are the instantiation which averages at 1.44 CHF, and each phase change
costs around .60 CHF. This is a negligible cost of 3.35 CHF for each voting instance. This
test suite adds 132 UUIDs; therefore, the price for adding one id is around 3.2 CHF. For
5.5 million eligible voters, this averages to approximately 17.6 million CHF. Marking the
ids used for voting in the tallying phase costs around 1.44 per citizen who voted, usually
around 2.25 million people, and therefore sums up to 3.24 million CHF. The last step is
the destruction of all the UUIDs on the blockchain, which is approximately 0.63 CHF per
eligible voter, which sums up to 3.465 million CHF. In total, each voting instance would
cost around 24.3 CHF million additionally.

Chapter 7

Discussion

Voting is the key to accessing politics as an eligible citizen in Switzerland; as a direct
democracy, sovereignty lies with the people. The public carries a lot of political power
[13]. The current Swiss postal voting system heavily relies on the trust of the public places
since there is little to no verifiability of the voting outcomes given to the public. While the
system achieves a moderately high standard of privacy, the many threats analyzed and
the lack of verifiability opens the system up to many attackers. According to Jonker et al.,
there seems to be a trend in the voting field, where system designers first lay their focus on
privacy and then later on verifiability. This is evident as well in Switzerland; the SVPS
has a heavy emphasis on privacy. However, there is a significant lack of verifiability.
Therefore, much of the current research on the Swiss voting field attempts to improve
its verifiability standards. This paper serves as a proof of concept in achieving higher
verifiability in the SVPS while maintaining the current privacy standards.

7.1 Privacy Discussions

While it is clear that the proposed SPVS with the prototype remains as receipt-free as
the current SPVS, it does not introduce coercion-resistance. The newly introduced threat
must be discussed to deduce whether the new system upholds its ballot privacy standards.
As mentioned in the evaluation, the only additional information an attacker could access
is whether or not a particular voter casts their vote. I.e., not how this person cast their
vote, solely if the tallying office received their ballot. By the definition of ballot privacy,
it reveals more of the voters than exclusively their vote if the outcome is unanimous.
While their voting choice will remain equally private as before, one can argue that the
information on whether someone casts their vote or not might be valuable for the public
image of the voter. For example, a politician might be seen as a lesser candidate if it
comes to light that they never cast their vote. This notion might weaken the trust the
public places in a voting system. On the other hand, several arguments demonstrate that
this possibility is negligible. This attack on the integrity of voters solely depends on the
attacker getting access to the UUIDs of the corresponding voter, which is theoretically
possible, as explained in the evaluation and further discussed in the next paragraph.

37

38 CHAPTER 7. DISCUSSION

Since the ES preparing the EVs must assign and print the QR code ids randomly, and
they are prohibited from keeping track of the matches, it should be impossible for anyone
to gather the knowledge in this step. The chance of an attacker unnoticeably intercepting
VEs in the Delivery-Storage phase is higher, and this attack is highly unscalable. Suppose
an attacker is targeting a specific person. In that case, the only real possibility of finding
the right envelope is once it is placed in the voter’s mailbox before the voter empties it.
The chance of intercepting a single specific VE in the postal office or the storage phase
is improbable. Observing the letterbox of a victim 24/7 to intercept the VE without
being detected is possible but not scalable. The current SPVS ballot privacy is based
on a few assumptions, which are a much higher threat to the integrity of its voters. For
example, if an attacker manages to access the VEs in the Storage phase, they can open
all envelopes and publish which eligible voters voted and how they voted. Based on the
assumption that the two beforementioned possibilities are negligible, the newly introduced
SPVS maintains its ballot privacy.

7.2 Verifiability and Threat Discussions

Even though Eligibility Verifiability is often neglected in related work, it is a crucial part
of voting systems. It ensures the integrity of the voting results in two ways; it only allows
eligible voters to cast their vote and assures each eligible voter only casts their vote once.
The introduced prototype manages to introduce EV to the current SPVS. Since many of
the threats in the SPVS identified by Killer and Stiller are mitigated when introducing EV,
adding this prototype significantly improves the security standards of the SPVS [23]. Some
threat events carry multiple aspects. Often, they include manipulation, forgery, and/or
the destruction of the VEs. This prototype manages to completely mitigate forgery in
every phase of the voting process since the tallying office verifies the QR code of each
VE before tallying. If an attacker completely forges the random ids, it is detected. If
they get access to some ids from eligible voters and use them in forged envelopes, it is
also very likely to be discovered. Especially if this attack is scaled up, which is the only
way to influence the voting outcome. As explained in the evaluation, manipulating the
ballot choice of VEs in any phase between Casting and Tallying has an equal chance of
remaining undetected as in the current SPVS without the prototype. The Destruction of
the VEs, however, is a mixed case. If VEs are destructed after Casting, there is a chance
that it is detected if many people use the app to track their VEs and then report any
instances of fraud. While this is an added step to mitigate this threat in the SPVS, it
isn’t as strong as the mitigation of forgery.

Unlike other related work, like McMurtry et al., this prototype remains a two-way paper-
ballot system and automatically maintains CaI Verifiability. This is a crucial part of
the system’s simplicity and the trust placed on the system by the public. However, this
prototype doesn’t manage to achieve the verifiability standards McMurtry et al. introduce
in their paper on the SPVS. The key difference is the information that is being tracked.
Like Gjoesteen et al., this prototype doesn’t track the actual ballot choice, only the outer
envelope. It is difficult to argue which proposal is ’better’ since a voting system has to be
judged on many pillars. However, when solely focusing on verifiability, this prototype is
outshined by many other proposals in related work [27, 26].

7.3. LIMITATIONS 39

Under the new verifiability standards, the the impact of the blockchain of the protype
must be discussed. While RPV has many benefits, adding a blockchain to voting systems
does have its advantages. The key difference to previous suggestions proves to be the
decentralized nature of the blockchain. This aspect alleviates a lot of the trust placed
in authorities by installing a tamper-proof audit trail. An approach to keeping complex
technology simple and trustworthy in the eyes of the public is introducing alternative
methods for the voters. As related work has been done with short strings, continuous
auditing, and so on, this prototype provides an additional layer for the voters. Enabling
each voter to scan their QR code with a provided app on their smartphone and then
allowing them to track that envelope places some power back into the voters’ hands.
They don’t solely have to rely on complex technologies, and they can see some proof for
themselves if they choose to.

7.3 Limitations

This prototype is a proof of concept that increasing the verifiability standards is possible
while maintaining privacy in the SPVS. It does have many limitations though. On the
one hand, it is a single prototype that hasn’t been scaled to the 5.5 million users it would
hold. If it were introduced to Switzerland, every of the 2148 municipalities would need
to create their own voting iterations. Such scaling could bring forth some unforeseeable
problems. While the cost estimation for 5.5 million users is too high for the prototype
ever to be used in its current state, the estimate itself is very vague. Since it heavily
depends on the time of day, day of the week, and many other factors concerning the
Ether and gas prices. Adding a cost of 24.3 million CHF to each voting cycle which costs
7.5 million Swiss Franks, isn’t worth the improvement. On top of that 24.3 million CHF,
a lot of administrational tasks would need to be fulfilled. Election officials would need to
be schooled on using the prototype, a task force must inform the citizens to retain their
trust in voting systems, and computer scientists would need to be hired to maintain the
prototype. As this paper’s main focus was to provide a proof-of-concept to retain and
increase its voting standards, investing time into making it a cost-efficient prototype is a
task for future work.

Proving that remote postal voting systems can be improved in their verifiability while
remaining privacy shows that RPVS are a strong contender in the voting field. RPVS has
many benefits: the remote aspect increases voter turnout and enables home-bound citizens
to vote, it retains the public’s trust since it is a straightforward, easily-understandable
system, and a paper audit trail is difficult to infiltrate with high-scale attacks. While there
are some excellent internet voting proposals in related work, political voting remains a
high-coercion environment where internet voting is more vulnerable to high-scale attacks.
While there is a worldwide trend of transferring tasks to the internet, political voting is a
special case. The difference between other important internet transactions, for example,
significant financial payments through online banking, is the lack of verifiability for the
users. When anyone makes a financial transaction through the internet, all parties involved
can easily verify that their transaction was executed exactly how they intended it to be.
However, in voting systems, there mustn’t be any connection between the voter’s identity

40 CHAPTER 7. DISCUSSION

and the vote cast due to the requirement of the voter’s privacy [32]. While this prototype
introduces EV, it still lacks any other type of verifiability besides Cast-as-Intended. The
prototype does not verify whether the ballot decision cast by the voter is accurately
portrayed in the voting results.

Chapter 8

Summary and Conclusions

8.1 Summary

This paper comprises an analysis of existing voting schemes, varying from in-person poll
site systems to electronic voting trials. These systems are evaluated according to the
foundations of voting security: verifiability, privacy, software independence, and account-
ability. The focus lies on the use case of the Swiss remote postal voting scheme. Its weak
points are analyzed, and a prototype is designed to improve the current SPVS as simply
as possible.

The different security layers of privacy and verifiability in voting schemes are discussed
to provide foundational knowledge. These layers are used to analyze the current Swiss
postal voting system, which consists of seven phases, from Setup to Destruction. This
system focuses on the voters’ privacy and relies on the people’s trust due to its lack of
verifiability. The basics of blockchain solutions are introduced along with the foundation
of voting systems. Namely, the Ethereum blockchain and the Smart Contract enable
publishing code to interact with the blockchain. Related work was summarised into four
sections: in-person vs. remote voting and paper-based vs. electronic voting. With a
focus on remote paper-based voting, related work was evaluated to design a prototype
improving the current security standards.

An analysis of the current security threats of the SPVS revealed that manipulation of the
eligible voter’s list (either in the citizen registry or as voting envelopes) remains among
the most significant threats. Similar to previous papers, the prototype’s design focused on
keeping track of the voting envelopes to mitigate this threat. A simple blockchain solution
was designed to alleviate as many threats as possible and achieve a higher verifiability
standard. It is to be used alongside the seven SPVS phases. In the Setup phase, the
municipality generates as many random ids as there are eligible voters. These ids are
posted on the blockchain and are sent to the ES to be printed on the VSC of each voting
envelope as QR codes. In the casting phase, each voter can use an app to scan this QR
code to verify later whether the tallying office received their ballot. In the tallying phase,
the officials scan the QR code to validate the authenticity of the envelope and mark each
random id as received. The VSC is then separated from the actual vote to be tallied. In

41

42 CHAPTER 8. SUMMARY AND CONCLUSIONS

the last step, part of the blockchain is made public to achieve Eligibility Verifiability, and
then before the next voting cycle, all the digital data is destructed.

This prototype was implemented via Smart Contract in Solidity on the Ethereum blockchain
with three interaction layers for the different stakeholders. It was then evaluated and dis-
cussed upon the set requirements and its usability. It serves as a proof-of-concept to infuse
the current SPVS with Eligibility Verifiability and as mitigation to some SPVS threats,
primarily focused on forgery.

8.2 Conclusions

This paper provides a step towards higher verifiability in remote postal voting systems
without compromising its current privacy standards. It combines the privacy standards
of postal voting and adds Eligibility Verifiabliaty through the decentralized nature of
blockchain. It also enables the voters to verify whether the tallying office has received
their ballot to break down the new technology’s complexity. This paper alleviates some of
the trust placed in the electoral officials by providing a decentralized tamper-proof audit
trail on the blockchain. While the current cost of the prototype limits its usability in the
current SPVS, this approach demonstrates possibilities for improving verifiability without
diminishing its privacy or ease of use for the voters. It proves that remote postal voting
is still a strong contender for politically binding elections worldwide.

Further studies can focus on keeping paper-based voting as a foundation and building
more verifiability on top of them. Specifically improving this prototype’s efficiency and
scalability, or in a broader context introducing verifiability in general in remote paper-
based voting schemes. However, keeping in mind that the political environment in which
elections are held as a whole, rather than just the effectiveness of the voting process,
shapes the foundation of public trust. Future work can focus on voting environments as
a whole, investigate how to maximize voter turnout, and how to lessen the need for the
public trust in the political climate by improving the voting systems themselves.

Bibliography

[1] Adida, B. Helios: Web-based Open-Audit voting. In 17th USENIX Security
Symposium (USENIX Security 08) (San Jose, CA, July 2008), USENIX Associa-
tion. https://www.usenix.org/conference/17th-usenix-security-symposium/
helios-web-based-open-audit-voting.

[2] Amundsen, B. No more online voting in norway. Sciencenorway.no
(September 2019). Retrieved April 15, 2022, from https://sciencenorway.no/

election-politics-technology/no-more-online-voting-in-norway/1562253.

[3] Barben, D. Moutier-abstimmung: Folgt das nächste desaster? Der
Bund (2021). Retrieved March 12, 2022, from https://www.derbund.ch/

brisantes-papier-weckt-unbehagen-677279356631.

[4] Bernhard, D., and Warinschi, B. Cryptographic voting - a gentle introduction.
In FOSAD (2013).

[5] Bernhard, M., Benaloh, J., Halderman, J. A., Rivest, R. L., Ryan, P.
Y. A., Stark, P. B., Teague, V., Vora, P. L., and Wallach, D. S. Public
evidence from secret ballots, 2017.

[6] Center, P. R. The voting experience in 2020. Pew Research Center (2020).
Retrieved March 22, 2022, from https://www.pewresearch.org/politics/2020/

11/20/the-voting-experience-in-2020/.

[7] Chaum, D., Essex, A., Carback, R., Clark, J., Popoveniuc, S., Sherman,
A., and Vora, P. Scantegrity: End-to-end voter-verifiable optical- scan voting.
IEEE Security and Privacy 6, 3 (2008), 40–46.

[8] Chevallier-Mames, B., Fouque, P.-A., Pointcheval, D., Stern, J., and
Traoré, J. On some incompatible properties of voting schemes. In Lecture Notes
in Computer Science (05 2010), vol. 6000, pp. 191–199.

[9] Choren, M. How secure are your universally unique identifiers (uuids)?
- why uuids should not be used as security capabilities. VERSPRITE
(03 2020). Retrieved June 16, 2022, from https://versprite.com/blog/

universally-unique-identifiers/.

[10] Cortier, V. Formal verification of e-voting: solutions and challenges. ACM
SIGLOG News 2 (Jan. 2015), 25–34.

43

44 BIBLIOGRAPHY

[11] Cuvelier, Ã., Pereira, O., and Peters, T. Election verifiability or ballot
privacy: Do we need to choose? In Lecture Notes in Computer Science (2013),
Springer Berlin Heidelberg, pp. 481–498.

[12] Di Pierro, M. What is the blockchain? Computing in Science Engineering 19, 5
(2017), 92–95.

[13] Eidgenossenschaft, S. Direct democracy. Schweizerische Eidgenossen-
schaft (07 2021). Retrieved June 26, 2022, from https://www.eda.admin.

ch/aboutswitzerland/en/home/politik-geschichte/politisches-system/

direkte-demokratie.html.

[14] Fichter, A. ”passwort: Wahlen” - der technische hinter-
grund und das glossar zur recherche. Republik (2020). Re-
trieved March 03, 2022, from https://www.republik.ch/2020/09/25/

passwort-wahlen-der-technische-hinter-grund-und-das-glossar-zur-recherche.

[15] Formation, . M. â. A. C. Install metamask for your browser. MetaMask . Re-
trieved July 20, 2022, from https://metamask.io/download/.

[16] Foundation, O. Download. Retrieved June 06, 2022, from https://nodejs.org/

en/download/.

[17] Fujioka, A., Okamoto, T., and Ohta, K. A practical secret voting scheme for
large scale elections. In AUSCRYPT (1992).

[18] IFES. Electionguide - democracy assistance and election news. IFES - International
Foundation for Electoral Systems (12 2019). Retrieved June 24, 2022, from https:

//www.electionguide.org/countries/id/207/.

[19] Inc, I. Infura documentation. INFURA (2022). Retrieved June 26, 2022, from
https://infura.io.

[20] Indergand, I. Verifiability in the swiss remote postal voting system. Master’s
thesis, University of Zurich - Department of Informatics (IFI), 2021.

[21] Jonker, H., Mauw, S., and Pang, J. Privacy and verifiability in voting systems:
Methods, developments and trends. Computer Science Review 10 (2013), 1–30.

[22] Killer, C., Rodrigues, B., Scheid, E. J., Franco, M., and Stiller, B.
From Centralized to Decentralized Remote Electronic Voting. to Be Published.

[23] Killer, C., and Stiller, B. The Swiss Postal Voting Process and Its System and
Security Analysis. 09 2019, pp. 134–149.

[24] Killer, C., Thorbecke, L., Rodrigues, B., Scheid, E., Franco, M., and
Stiller, B. Proverum: A hybrid public verifiability and decentralized identity
management, 2020.

[25] Kremer, S., Ryan, M., and Smyth, B. Election verifiability in electronic voting
protocols. In Computer Security – ESORICS 2010 (2010), Springer Berlin Heidel-
berg, pp. 389–404.

BIBLIOGRAPHY 45

[26] Kristian Gjøsteen, Clémentine Gritti, K. N. M. Ballot logistics: Tracking
paper-base ballots using cryptography. E-Vote-ID (2020).

[27] McMurtry, E., Boyen, X., Culnane, C., Gjøsteen, K., Haines, T., and
Teague, V. Towards verifiable remote voting with paper assurance, 2021.

[28] Minhaz. Html5-qrcode, 2015-2022. Retrieved June 01, 2022, from https://github.

com/mebjas/html5-qrcode.

[29] Miragliotta, N., Laing, M., and Thornton-Smith, P. A Review of conve-
nience voting in the state of Victoria. Electoral Regulation Research Network, Oct.
2018.

[30] Neff, C. A. A verifiable secret shuffle and its application to e-voting. In Proceedings
of the 8th ACM Conference on Computer and Communications Security (New York,
NY, USA, 2001), CCS ’01, Association for Computing Machinery, pp. 116–125.

[31] O’Sullivan, D. How the world’s most frequent voters han-
dle postal ballots. SWI swissinfo.ch (october 2020). Re-
trieved April 15, 2022, from https://www.swissinfo.ch/eng/

how-the-world-s-most-frequent-voters-handle-postal-ballots/46070666.

[32] Peter Wolf, Rushdi Nackerdien, D. T. Introducing electronic voting: Es-
sential considerations. IDEA - International Institute for Democracy and Electoral
Assistance (12 2011), 36. Retrieved June 30, 2022, from https://www.corteidh.

or.cr/tablas/28047.pdf.

[33] Ryan, P. Y. A., Bismark, D., Heather, J., Schneider, S., and Xia, Z.
Prêt à voter: a voter-verifiable voting system. IEEE Transactions on Information
Forensics and Security 4, 4 (2009), 662–673.

[34] Schumacher, S., and Conaughton, A. From voter registra-
tion to mail-in ballots, how do countries around the world run their
elections? Pew Research Center (2020). Retrieved March 22,
2022, from https://www.pewresearch.org/fact-tank/2020/10/30/

from-voter-registration-to-mail-in-ballots-how-do-countries-around

-the-world-run-their-elections/.

[35] SEZC, . S. C. L. Request testnet link. Chainlink . Retrieved June 20, 2022, from
https://faucets.chain.link/.

[36] Specter, M., and Halderman, J. A. Security analysis of the democracy live
online voting system. In 30th USENIX Security Symposium (USENIX Security
21) (Aug. 2021), USENIX Association, pp. 3077–3092. https://www.usenix.org/

conference/usenixsecurity21/presentation/specter-security.

[37] Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H.,
MacAlpine, M., and Halderman, J. A. Security analysis of the estonian internet
voting system. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (New York, NY, USA, 2014), CCS ’14, Association
for Computing Machinery, pp. 703–715.

46 BIBLIOGRAPHY

[38] Swinford, S. Postal voting fraud is ’easy’, electoral commissioner
says. Daily Telegraph (april 2015). Retrieved March 20, 2022, from
https://www.telegraph.co.uk/news/uknews/law-and-order/11560017/

Postal-voting-fraud-is-easy-electoral-commissioner-says.html.

[39] Tagesschau. Der günstige preis der direkten demokratie. srf.ch (05
2016). Retrieved June 28, 2022, from https://www.srf.ch/news/schweiz/

der-guenstige-preis-der-direkten-demokratie.

[40] Tiwari, S. An introduction to qr code technology. In 2016 International Conference
on Information Technology (ICIT) (2016), pp. 39–44.

[41] tutorialspoint. Solidity - contracts. Retrieved June 06, 2022, from https://www.

tutorialspoint.com/solidity/solidity_contracts.html.

[42] Wackerow, P. Gas and fees. Ethereum Blockchain (06 2022). Retrieved June 26,
2022, from https://ethereum.org/en/developers/docs/gas/.

[43] Wackerow, P. Intro to ethereum. Ethereum Blockchain (06 2022).
Retrieved June 26, 2022, from https://ethereum.org/en/developers/docs/

intro-to-ethereum/.

Abbreviations

ABI Application Binary Interface
CaI Cast-as-Intended
DL Distributed Ledger
EO Election Office
ER Electoral Register
ES External Supplier
ETH Ether
EV Eligibility Verifiability
EVM Ethereum Virtual Machine
E2EV End-to-end Verifiability
FC Federal Chancellery
IV Individual Verifiability
PB Paper Ballot
PBE Paper Ballot Envelope
PVPF Postal Voting Process Flow
PWA Progressive Web App
RaC Recorded-as-Cast
RFID Radio Frequency Identification
RPV Remote Postal Voting
SC Smart Contract
SP Swiss Post
SPVS Swiss Postal Voting System
TaR Tallied-as-Recorded
TE Threat Event
UI User Interface
UUID Universally Unique Identifier
UV Universal Verifiability
VE Voting Envelope
VSC Voting Signature Card
WBB Web Bulletin Board

47

48 ABBREVIATONS

List of Figures

2.1 Representation of neccessary artifacts for SPVS depicted by Killer and
Stiller [23] . 7

3.1 Foundations of Voting Systems Analysis 15

4.1 Stakeholder Callgraph Design Overview . 21

5.1 Register Eligible Voters UI Layer . 26

5.2 Voter’s Device UI Layer . 27

5.3 Tallying Office UI Layer . 28

5.4 Result UI Layer . 29

6.1 Threat Event Evaluation [23] . 35

49

50 LIST OF FIGURES

Listings

5.1 Smart Contract Modifiers . 24
5.2 Smart Contract Visibility Quantifier . 25
A.1 Smart Contract env file . 54

51

52 LISTINGS

Appendix A

Installation Guidelines

This prototype uses Solidity, Truffle, Bulma version 0.9.4, Html15-qrcode version 2.2.1,
next.js version 12.1.6, react.js 18.2.0, solc version 0.8.15, and web3.js version 1.7.3 on runs
the macOS operating system on Firefox.

1. Setup

(a) Node.js is a prerequisite to run this system; if it isn’t installed, download the
installer from the nodejs.org website [16].

2. Clone Repositories

(a) Clone the Frontend GitHub repository by running
$ git clone https://github.com/LexHeggli/verify-voter-app

(b) Clone the Smart Contract GitHub repository by running
$ git clone https://github.com/LexHeggli/verify-voter-sc

(c) navigate to the root of the SC project with $ cd verify-voters-sc

3. Run Smart Contract

(a) Install all dependencies using $ npm install

(b) navigate to the root of the project with $ cd verify-voters-sc

(c) Create a .env file in the root of the project. Two variables will be saved in this
file, a private key from the wallet provider and the Infura Website.

(d) Set up an Infura account on the website [19] and sign into the account. Cre-
ate a new project and navigate into the project settings. Change the End-
point to Rinkeby and copy the second URL, the URL starting with wss:

//rinkeby.infura.io/ws/.... In the verify-voters-sc, open the .env file and
add INFURA_API_URL= and then directly add the URL.

(e) Install Metamask as a browser extension if it isn’t already installed. Create
a Metamask account [15] and select the account to be used for this project.
Select the three dots on the side to see the setting and click on Account details.

53

54 APPENDIX A. INSTALLATION GUIDELINES

In order to export the private key, enter the MetaMask password and copy the
key. In the verify-voters-sc open the .env file and add PRIVATE_KEY_1= and
then directly add the password. An example of an env file is shown in 3e.

1 PRIVATE_KEY_1=

cf9034b2ae12fg4c59fdedt74434c234e2654dbr54e1d40c3m387fdbdk7c17e6

2 INFURA_API_URL=wss:// rinkeby.infura.io/ws/v3/

c6652e4d32834d95bfhdf8f4d1fhcc0r

3

Listing A.1: Smart Contract env file

(f) In the root of the project run truffle migrate --network rinkeby. Once
that deployment goes through, go under 2_verify_voter_migration.js in
the deployment output and copy the contract address.

(g) In order to test the Smart Contract on Ethereum, some test Ether is needed.
On the Chainlink website [35], click on ’Connect Wallet’ and follow the steps
to connect chainlink to the MetaMask account. Next, ensure the ’0.1 test
ETH’ checkbox is checked, fill out the captcha, and send the request. Once the
request is complete, there should be 0.1 test Ether on the MetaMask account.

4. Start Frontend Application

(a) Navigate to the root of the project with $ cd verify-voters-app

(b) Install all dependencies using $ npm install

(c) In the blockchain folder, open verify.js, in this file, replace the current URL
located in the WebsocketProvider in the second line with the Infura URL from
step 3 d from above.

(d) In the same file, paste the contract address from Step 3 f into the con-

tract_address variable.

(e) Run $ npm run dev to run the application and to receive the localhost link.

(f) Open a browser with MetaMask installed and run the localhost link.

