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Abstract

Existing research has addressed the effectiveness of transfer learning methods using as much
available target data as possible. In contrast, in this thesis the classification performance trend of
selected transfer learning techniques when 1 to 100 image representations per class are available
during training is analyzed. Training followed by testing using classification accuracy was re-
peated 11 times with an increasing number of image samples per class. Thereby, the focus was on
a few training samples per class. Transfer learning methods investigated include end-to-end clas-
sifications and variants adopting deep feature extraction, such as nearest neighbor classification
or the subsequent application of a Support Vector Machine (SVM) classifier. Deep feature adap-
tations (no additional training, fine-tuning, and adapter network) were explored. The datasets
Aircraft, Fruit and Vegetable, Indoor Scenes, Office-31, and Virus were examined, some closely
related to ImageNet and others to a lesser extent. Moreover, AlexNet, ResNet-50, DenseNet-121,
VGG-16, and MobileNet-V3 were included in the analysis, each pre-trained with ImageNet. The
analysis revealed that ImageNet benchmarks could be used to select an appropriate pre-trained
network for target datasets with overlapping ImageNet domains. Extracting deep features from
the pre-trained network without training and enrolling a gallery comparing each class with an
averaged feature representation to test images based on their cosine similarity outperformed fine-
tuning approaches with up to 20 training images per class. With more than 20 images per class,
fine-tuning approaches yield the highest performance. Feature extraction with subsequent usage
of the SVM classifier provided the best performance of all methods examined, but only if more
than 20 image samples per class were utilized. The advantage of the nearest neighbor classifica-
tion compared to end-to-end classification became apparent. Furthermore, the amount of image
data used to create the gallery was strongly related to the performance of the transfer learning
method. When target datasets were dissimilar to ImageNet, superior performance was observed
with a constant gallery including five image samples, which were not utilized during training.
The results illustrated the dependence of the number of image samples per class and their rele-
vance in selecting suitable transfer learning methods.






Zusammenfassung

Die bisherige Forschung hat sich mit der Effektivitdt von Transfer-Learning-Methoden mit mo-
glichst vielen verfiigbaren Zieldaten beschiftigt. Im Gegensatz dazu wird in dieser Arbeit die En-
twicklung der Klassifizierungsperformance ausgewahlter Transfer-Learning-Verfahren analysiert,
wenn beim Training 1 bis 100 Bildreprasentationen pro Klasse zur Verfiigung stehen. Das Train-
ing mit anschlielendem Testing mittels Classification Accuracy wurde 11 Mal mit steigender An-
zahl von Bildproben pro Klasse wiederholt. Dabei lag der Schwerpunkt auf einigen wenigen
Ubungsproben pro Klasse. Zu den untersuchten Transfer-Learning-Methoden gehéren End-to-
End-Klassifikationen und Varianten mit Deep Feature Extraktion, wie z. B. Nearest Neighbour-
Klassifikation oder die anschliessende Anwendung eines Support Vector Machine (SVM)-Klas-
sifikators. Deep Feature Adaptionen (kein zusétzliches Training, Fine-Tuning und Adapternet-
zwerk) wurden erforscht. Die Datensdtze Aircraft, Fruit and Vegetable, Indoor Scenes, Office-31
und Virus, von denen einige eng mit ImageNet verwandt sind und andere weniger, wurden un-
tersucht. Aufierdem wurden AlexNet, ResNet-50, DenseNet-121, VGG-16 und MobileNet-V3 in
die Analyse einbezogen, die jeweils mit ImageNet vortrainiert wurden. Die Analyse ergab, dass
ImageNet-Benchmarks verwendet werden konnen, um ein geeignetes vortrainiertes Netzwerk
fiir Zieldatensétze mit tiberlappenden ImageNet-Doménen auszuwéhlen. Das Extrahieren von
Deep Features aus dem vortrainierten Netzwerk ohne Training und das Erstellen einer Galerie,
die jede Klasse mit einer gemittelten Deep Feature Reprasentation mit Testbildern auf der Grund-
lage ihrer Kosinusahnlichkeit vergleicht, tibertraf das Fine-Tuning mit bis zu 20 Trainingsbildern
pro Klasse. Mit mehr als 20 Bildern pro Klasse, erzeugen Fine-Tuning Ansétze die hochsten Leis-
tungen. Feature Extraction mit anschlieffender Verwendung des SVM-Klassifikators lieferte die
beste Leistung aller untersuchten Methoden, allerdings nur, wenn mehr als 20 Bildproben pro
Klasse verwendet wurden. Der Vorteil der Nearest-Neighbour-Klassifizierung gegentiber der
End-to-End-Klassifizierung wurde deutlich. Die Menge der Bilddaten, die zur Erstellung der Ga-
lerie verwendet wurden, stand in engem Zusammenhang mit der Leistung der Transfer-Learning-
Methode. Wenn die Zieldatensidtze dem ImageNet nicht dhnlich waren, wurde eine bessere Leis-
tung mit einer konstanten Galerie beobachtet, die fiinf Bildbeispiele enthielt, die beim Train-
ing nicht verwendet wurden. Die Ergebnisse verdeutlichen die Abhéngigkeit von der Anzahl
der Bildbeispiele pro Klasse und deren Relevanz fiir die Auswahl geeigneter Transfer-Learning-
Methoden.
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Chapter 1

Introduction

In recent years convolutional neural networks (CNNSs) have achieved remarkable results in im-
age classification tasks. A prime representative of this is AlexNet ( , ), whose
implementation achieved the lowest error rate at the ImageNet Large Scale Visual Recognition
Competition ILSVRC) in 2012 ( , ). Several adapted CNNs have been pro-
posed since then and have proven to be useful in practice for various image classification scenar-
ios. Selected networks, which are also used in this thesis, are DenseNet-121 ( , ),
ResNet-50 ( , ), MobileNet-V3 ( , ) and VGG-16 (

, ). CNNs consist of stacked convolutional, pooling, and fully-connected layers. A

convolutional layer performs matrix multiplications between input tensors and the learnable ker-
nels resulting in activation maps. Afterward, the maps may be down-sampled using pooling
layers. The convolutional and pooling layers output is fed into fully-connected layers and con-
sequently used for classification ( , ). Typically, these deep networks are not
designed to be trained with only a few image samples since millions of parameters must be op-
timized, leading to overfitting and, thus, a lower significance of classification results.
( ) argue that deep learning networks require large amounts of data to learn latent patterns.
However, only small amounts of labeled data instances are often available, making CNN inferior
to traditional machine learning methods, despite their preeminence in modern machine learning.
Transfer learning attempts to circumvent this problem by training the network with a similar,
widely accessible labeled database (source). Subsequently, the trained parameters of the network
can be reused in a network specifically designed for classifying the limited available database
(target). Thus, the target network can already resort to adapted weights, simplifying the learning
process and allowing more complex networks to be deployed. After the transfer, a widely used
method employs fine-tuning to account for the inherent data characteristics of the target network.
Another approach extracts deep features from a specific layer in the pre-trained network. These
are then used as a starting point for further network modifications or algorithms specifically de-
signed to classify target image tasks. Regardless of how the transfer learning approach is carried
out, the basic concept remains the same in all cases. The existing data knowledge from the source
domain will be used to optimize the learning task in the target domain, as shown in figure 1.1.
The goal is to improve the target decision function, which is in control of the class assignment
of the input image, using the latent patterns in such a way that the classification performance is
optimized. Several studies have already been published summarizing the most common transfer
learning methods in the last few years. This fact indicates that a lot of attention is being paid to
this area ( , ; , ; , ; , ;

7 7 7 7 4 )'
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Figure 1.1: TRANSFER LEARNING PROCESS. This figure illustrates the learning process of transfer
learning, where knowledge from a source domain is used to solve the learning task in the target domain

( , 2018).

1.1 Contribution

Although transfer learning approaches were developed and refined in recent work, it has not been
investigated which transfer learning approach should be optimally applied when only very few
training data of 1-3 image samples per class are available. Nor was it investigated whether the
preference may change with the availability of more training data. Therefore, this thesis aims to
investigate whether noticeable performance differences exist between the approaches examined.
In each approach, one or more CNNs pre-trained with ImageNet are used in the experiments.
The examined networks AlexNet, DenseNet-121, ResNet-50, MobileNet-V3, and VGG-16 are de-
scribed in more detail in chapter 2.1. Since several pre-trained networks are utilized for transfer
learning approaches in related work, an additional analysis compares the classification accuracy
of the pre-trained networks for all transfer learning methods to investigate their applicability for
transfer learning tasks. Experiments are repeated with five carefully selected datasets, namely
Aircraft, Fruit and Vegetable, Indoor Scenes, Office-31, and Virus described in chapter 4. The
variable similarity with ImageNet ensures that the statements made can be transferred to a cer-
tain extent to other image datasets with limited data availability, even if these have not been
analyzed. Care is also taken to ensure that the datasets consist of at least 20 classes to make the
tasks sufficiently challenging. The five datasets are divided into training, validation, and test
splits. Dedicated training data of the target datasets are used for training. In addition, validation
data is utilized during training to analyze training effectiveness and evaluate regularization met-
rics. These metrics are explained in section 5.3.2. Finally, the image classification performance is
carried out with the test data. The accuracy performance of a transfer learning approach is always
analyzed as it progresses when more and more training images are available per class. Thus, one
approach is repeated with increasing training examples per class. This procedure makes it pos-
sible to compare the progress of the approaches based on the number of samples per class and
thus make a statement about their performance. It is important to note that the analysis focuses
on comparing transfer learning approaches with only a few training images. A brief description
of the transfer learning approaches used is presented below.
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Three different classification variants described more thoroughly in chapter 3.1 are distinguished.
The first variant uses the softmax layer of the employed network for classification, which pro-
vides the probabilities for the respective occurrence of a class among all possible classes. The
class with the highest probability finally defines the predicted class. This method is referred to
hereafter as end-to-end classification. The last fully-connected layer and the softmax layer of
the employed network will be neglected in the second variant. The network’s output before the
last fully-connected layer represents the deep features that optimally have the necessary inherent
data characteristics of the target dataset to achieve accurate classification. When using the deep
features, a gallery is enrolled in which features represent the respective classes. Two methods
are distinguished from each other. The former uses all image samples available for training to
create the gallery. The latter utilizes five image samples per class, which have not been used dur-
ing training. The deep features are extracted using the already described method to determine to
which class the test image samples belong. Nearest neighbor classification is applied to determine
the smallest distance between the test features and the respective class features in the gallery. The
cosine similarity distance is used as a measure. For the third method, the deep features are ex-
tracted from the network, similar to the second method. Instead of enrolling a gallery, the features
are sequentially used as input for the Support Vector Machine (SVM) classifier with a linear ker-
nel. With the additional input of the respective class affiliation, the classifier should be able to
learn distinct decision boundaries for the respective classes. The boundaries can then be utilized
to classify the test samples, which are also extracted from the network and consequentially fed
into the learned classifier.

Additionally, three different network configurations thoroughly described in chapter 3.2 are ex-
amined. In the first variant, the network pre-trained with ImageNet is used without additional
training. Thus, no end-to-end classification is part of the experiments. In the second variant,
the pre-trained network is fine-tuned using the training data from the target dataset. Finally,
an adapter network consisting of two or three fully-connected layers is used for the third vari-
ant. Analogous to nearest neighbor classification, the deep features may be extracted from the
pre-trained network, but also the output of the last fully-connected layer (logits) can be utilized.
Subsequently, the features or the logits are fed into the adapter network as input. Which num-
ber of adapter layers, which early stopping scheme, and whether deep features or logits are best
suited as adapter network input in terms of accuracy performance will also be determined in a
separate experiment. All classification variants according to chapter 3.1 can be examined with the
fine-tuned and adapter network.
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1.2 Research Questions

Based on the last section, the following research questions (RQ) are outlined, which will be dis-
cussed in the subsequent chapters:

» RQ 1: Given the adapter network approach, does an architecture with two or three fully-
connected layers, the use of an early-stopping scheme during training, as well as the ex-
traction of deep features or logits for the network input, lead to more accurate classification
results?

* RQ 2: Are there accuracy differences between the examined CNNs pre-trained with Ima-
geNet across all investigated target datasets and transfer learning approaches? Based on
the accuracy performance, should a specific network possibly be prioritized for applying
transfer learning for multi-class image classification?

* RQ 3: Which presented transfer learning approach achieves better classification results
when only a few samples per class are available, and does this apply to all datasets ex-
amined?

+ RQ 4: Can a specific number of image samples per class be identified for which the fine-
tuned features achieve a superior classification performance than the original features?

« RQ 5: Are there differences in nearest neighbor classification when the gallery is enrolled
using all available training samples or a constant number of image samples that are not
considered during training?

1.3 Structure

This thesis is divided into several chapters, which are briefly described subsequently. In chapter
2 a concise definition of transfer learning is given, pre-trained networks are described, and previ-
ous related work in this area is outlined. Chapter 3 conceptually describes the transfer learning
approaches. The datasets used for the experiments are described in detail in chapter 4. Chapter
5 presents the investigation procedure and the machine learning concepts used in training, fol-
lowed by chapter 6, where the outcome of the experiments is outlined. Finally, in the chapters 7
and 8 the interpretation and final conclusions, including further aspects that would extend this
work, are being discussed.



Chapter 2

Background & Related Work

In order to be able to grasp the concept of transfer learning better, this section discusses the exact
definition, which is also reflected in some transfer learning surveys. Transfer learning approaches
from related work are described subsequently. ( ); ( );

( ) define a domain D = {®, P(X)} which consists of the feature space ® and a marginal dis-
tribution P(X) where X is defined as following: X = {z|z["l € X,n = 1,..., N}. N refers to the
number of available image samples and x the image instance. The marginal distribution is de-
fined as a probability distribution that focuses on only one variable of multivariate data.

( ) states that two domains are not equal if either ® or P(X) or both are different from
each other. Furthermore, a task T = {Y,, f(z)} consists of a label space Y and a decision function
f(z) which is ideally learned during the training process. Analogous to domains, two tasks are
not equal if either Y or f(x) or both are different. There is a source domain D, which ideally pro-
vides widely accessible labeled data with many image samples N,. The target domain D, yields
only a limited number of image instances NV;, which indicates that IV, is small. A network has
already been trained according to the source task 7. Knowledge obtained from the training is
used to learn the target decision function f;(z) of the target task 7;. Finally, the transfer learning
definition is formulated as follows:

Transfer Learning Definition: Transfer learning tries to optimize the performance of the learned deci-
sion function fi(x) of the target domain learning task T, by utilizing the learned latent knowledge from
the source domain learning task T, and source domain Ds where Ts # T; and/or Ds # D, and N5 > N,

( , 2018).

According to ( ), transfer learning can be further divided into more fine-grained
subclasses. Considering the availability of labels, one could differentiate transfer learning ap-
proaches into transductive, inductive, and unsupervised. The first class includes scenarios where
only source labels are available, whereas the second refers to those with additional availability in
the target domain. The datasets of this thesis can also be assigned to this subdivision. The third
approach groups together all approaches with no label information. Furthermore, a distinction
is made between homogeneous and heterogeneous transfer learning. The former involves ap-
proaches where the source and target domains share the same feature space ®. At the same time,
the latter is more concerned with disjoint feature spaces, which introduces further complexity.

( ) outline further data-based and model-based interpretation subclasses which
are not considered within the scope of this work. Merely methods concerning parameter and fea-
ture sharing are analyzed. In this process, pre-trained networks by the source dataset are adapted
with the training dataset of the target. This can be accomplished in various ways as outlined in
sections 2.2.1 and 2.2.2. Also worth mentioning is the distinction between domain adaptation
and transfer learning. In domain adaptation tasks, the difference between the source and target
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dataset is found in the domain, but the label spaces are ultimately the same. The goal is to re-
duce the domain shift between source and target. This is achieved, for example, by minimizing
the maximum mean discrepancy and correlation distances or using the generation of adversarial
samples ( , )- In transfer learning, the label spaces may differ, so minimizing the
domain shift with the specified methods is not indicated.

2.1 Pre-trained networks

This section briefly describes the CNNs used in this thesis. The networks are available for the
experiments already pre-trained with ImageNet. The image input size for CNNs should be pro-
vided with mini-batches of 3-channel RGB images of shape (3 x 224 x 224). The softmax layer
maps the outputs of the last fully-connected layer, called logits, to probability values. The num-
ber of outputs is based on the available classes in the dataset. A summary of all networks can be
found in table 2.1. The top-1 accuracy scores were taken from the PyTorch website.!

Table 2.1: CNN CHARACTERISTICS. All networks were pre-trained with ImageNet. In case convolu-
tional layers form a unit, only the respective block is counted as a layer (e.g., MobileNet-V3). Top-1-accuracy
scores are taken from the official PyTorch website."

Conv. Layers / Blocks Parameters Feature Size Top-1 Accuracy

AlexNet 5 61.1M 4096 56.522
VGG-16 13 138.36 M 4096 71.592
ResNet-50 50 25.56 M 2048 76.130
MobileNet-V3 19 548 M 17280 74.042
DenseNet-121 120 798 M 1’024 74.434

2.1.1 AlexNet

AlexNet was proposed by ( ) and achieved the lowest error rate at the Im-
ageNet Large Scale Visual Recognition Competition (ILSVRC) in 2012 ( , ).
The network with over 60 million trainable parameters consists of five successive convolutional
layers with 11 x 11 filters in the first, 5 x 5 filters in the second, and 3 x 3 filters in the following
layers. Each convolutional layer is followed by an intermediate normalization and maximum
pooling layer up to the third layer. The maximum pooling layer was also applied after the last
convolutional layer. Finally, it consists of two fully-connected layers with 4’096 neurons, respec-
tively, followed by the fully-connected layer with softmax. The Rectified Linear Unit (ReLU) non-
linearity was applied after every layer output. Due to the high number of parameters, a dropout
layer with a probability of 0.5 was added to the first two fully-connected layers. Furthermore,
data augmentation was also used during training with ImageNet to minimize overfitting. Re-
garding the hyperparameters, the training was performed with stochastic gradient descent with
0.9 momentum and a weight decay of 0.0005, an initial learning rate of 0.01 divided by ten if the
validation error is not improving, and about 90 epochs.

]https: / /pytorch.org/vision/stable/models.html
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2.1.2 VGG-16

( ) attempted to investigate the impact on neural network depth due
to the availability of larger databases such as ImageNet. They found that using smaller convolu-
tional filter sizes of 3 x 3 in deeper networks with more stacked convolutional layers resulted in a
performance improvement compared to AlexNet, which deploys 11 x 11 filters in the first convo-
lutional layer ( , )- They proposed a standard architecture called VGG, which
stands for Visual Geometry Group, with two different depths: 16 or 19 convolutional layers fol-
lowed by three fully-connected layers with 4’096 neurons in the first and the second, followed by
a fully-connected layer with C' number of neurons and the softmax layer. Similar to the AlexNet
architecture, ReLU has followed the hidden layers. In this thesis, the 16-layer network is being
used to perform the experiments.

2.1.3 ResNet-50

( ) achieved with their proposed deep residual networks architecture (ResNet) the
lowest error rate at ImageNet Large Scale Visual Recognition Competition (ILSVRC) in 2015 (

, ). The network tackles the degradation problem where the accuracy of clas-
sification tasks using deep networks starts to saturate and degrades over time. By adding an
identity residual mapping between stacked layers, as shown in figure 2.1 the performance of the
deep neural network will not suffer by specific layers since they can be bypassed, allowing much
deeper networks in general without having additional parameters. The architecture is based on
VGG nets with weighted convolutional layers, 3 x 3 filters with stride 2 at the end, followed by
a global average pooling layer, the fully-connected layer, and the softmax layer with C outputs.
After each convolutional layer, batch normalization and, ReLU non-linearity are performed. The
residual networks provide the following number of layers: 18, 34, 50, 101, and 152. The three
deepest versions utilize a so-called bottleneck design where instead of two stacked layers, three
layers (1 x 1, 3 x 3, 1 x 1 convolutions) are used as a residual block with the described shortcut.
This thesis uses the 50-layer network with 23 million trainable parameters to perform the experi-
ments. The ImageNet training with augmented training data was done with stochastic gradient
descent with 0.9 momentum, weight decay of 0.0001, and a batch size of 256 and involved up to
6+ 10° iterations. The learning rate is initialized with 0.1 and divided by ten if the validation error
is not improving.

identity

Figure 2.1: RESIDUAL LEARNING IN RESNET. This figure illustrates the residual learning framework
where an identity layer shortcut was added between two layers. The output of the identity layer is then
added to the output of the two layers. When ResNet-50, ResNet-101, or ResNet-152 is used, three convolu-
tional layers are used as building blocks. Batch normalization is omitted in this figure for clarity ( ,

)-
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2.1.4 MobileNet-V3

The work of ( ) tried to address the trend of ever better performance using
deeper networks by presenting an efficient network architecture, but with advantages in terms of
size and speed. To reduce the computations and the network size, a depthwise separable convo-
lution was used instead of the standard convolution, divided into a depthwise and a pointwise
convolution. In the standard convolution, the operations are performed over all input channels,
i.e., the RGB channels. In depthwise convolution, on the other hand, separate convolutions are
performed for each channel. Pointwise convolutions are sequentially applied to stack the indi-
vidual channels back together. They are dense 1 x 1 convolutions and do not require memory
reordering. After the convolutional layers, a batch norm and ReLU non-linearity are performed.
The figure 2.2 illustrates the difference between standard convolution and depthwise separable
convolution layers. Before the fully-connected layers, a global average pooling layer is put in
place, which reduces the spatial resolution to 1. Finally, a fully-connected layer with C' outputs
is installed with an adjacent softmax layer at the end. To further reduce the computational cost
while making a reasonable tradeoff in performance, two shrinking hyperparameters are intro-
duced in the form of multipliers. These parameters can externally control either the dimension
of each layer’s output parameters or the inputs’ size. Thus, the complexity of the network can be
influenced. The width parameter « results in the equally fewer in and output parameters used on
each layer and is always multiplied by the input and output channels. The resolution parameter
p reduces the input resolution and the image representation in all layers. It is multiplied by the
input feature map of a given layer. In 2018, a newer network version was introduced, building
upon the earlier version by adding an inverted residual block to the depthwise and a point-wise
convolution. Unlike the residual pattern, the residual block squeezes the input, then expands it
and squeezes it again to the input dimension, which the authors call an inverted residual block.
Moreover, the authors introduced a linear bottleneck where the last non-linearity in the inverted
residual block is neglected to prevent loss of information. They have also limited the output range
of ReLU non-linearity between 0 to 6. In this thesis, the third generation, named MobileNetV3-
Large, presented by (2019) is applied. This network introduces a squeeze and
excitation module in the residual layer, swish non-linearity, neural architecture search, and some
manual layer removals, which are not further explained here. For pre-training with ImageNet,
the learning rate is set to 0.1 with a decay rate of 0.01 every three epochs with a dropout rate of
0.8 and 12 weight decay.

| 3x3 Conv | [3x3 Depthwise Conv |
| |

I ——

RelLU RelLU

| | | |
|

| 1x1 Conv ]
I

| BN |
|

| RelLU I

Figure 2.2: DEPTHWISE SEPARABLE CONVOLUTION. This figure illustrates the standard convolutional
layer (left) in comparison with the depthwise separable convolution (right), additionally with batch norm
and ReLU non-linearity. ( , ).
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2.1.5 DenseNet-121

The ResNet architecture used the idea of shortcut identity paths connecting layers of different
depths to provide the best information flow. This concept was also adopted as the foundation
for the Densely Connected Convolutional Networks (DenseNet) architecture ( , ).
However, what distinguishes this architecture from previous ones is that each layer has a connec-

tion to all other layers with matching feature-map sizes. This results in @ total connections
when the network is adopted for L layers. The number of total parameters of the network is
significantly less than ResNet architectures because only 12 filters per convolutional layer are put
in place. The authors also argue that overfitting and performance degradation can be effectively
reduced due to the dense connections between layers, especially if only limited data is available.
The training with ImageNet was done with stochastic gradient descent with an initial learning
rate of 0.1 and a batch size of 264 for 90 epochs. The learning rate was effectively divided by 0.1
when 30 and 60 epochs were reached.

2.2 Related Work

In the following sections, the related work in the area of transfer learning is presented. Thereby,
a distinction is made between fine-tuned approaches in section 2.2.1, applications with comple-
mentary shallow networks and feature extraction in section 2.2.2, feature transferability studies
in section 2.2.3 and finally transfer learning experiments regarding different sample sizes and
network sizes in section 2.2.4.

2.2.1 Fine-tuning

According to ( ), a typical method is fine-tuning the CNN pre-trained with Ima-
geNet using the target data. In this case, it is necessary to change the number of network outputs
to correspond with the size of the target label space. Specified layers of the CNN can be frozen so
that the already learned layers are not modified during fine-tuning. ( ) showed
through layer visualizations that learned features increase in complexity and variation in deeper
layers. Analogously, ( ) denote the learned features in earlier layers as general
and those in the last layers as specific. General features are simple structures, such as edges and
corners, which are present in any computer vision domain. In contrast, specific features already
have a high degree of variation and complexity. Objects like wheels, eyes, bottles, etc., are al-
ready identifiable when activities produced by deeper layers are visualized ( , ).
Depending on the similarity of the source and target domains, fine-tuning tries to preserve the
features that both domains share. Source-specific features should be adapted to match target-
specific features. Thus, fine-tuning freeze particular layers and adapting the remaining ones to
the specificity of the target dataset. Typically, small learning rates are adopted not to modify
too drastically the already adapted weights of the pre-trained layer and thus the learned data
characteristics of the source dataset. The information learned from the source dataset should be
transferable to the target dataset to bridge the limited data availability. Several works have been
published utilizing this transfer learning technique to overcome the problem of limited image
data in different domains.

Approaches were presented where only specific layers are fine-tuned when classification perfor-
mance would improve. ( ) reported that fine-tuning VGG-19 utilized as
a pre-trained network outperforms the hybrid learning approach where deep features were ex-
tracted from the pre-trained network and then used as an input for the SVM classifier, which will
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be discussed in section 2.2.2. They performed their experiments with the GHIM10K and Cal-
Tech256 databases. The first database consists of 20 classes with over 500 images per class. The
second database comprises 256 classes with 80 images each. The authors did not investigate how
the results might change with fewer samples per class. ( ) analyzed the impact
of the data size on the transfer ability of deep features and reported that freezing the first two
to three layers would result in a performance boost compared with training the network from
scratch, especially when only a few data samples are available.

( ) developed a method called Differential Evolution based Fine-
Tuning (DEFT) and showed its application on osteosarcoma images outperformed comparable
methods. Similarly, ( ) argue that it is not necessarily beneficial to fine-tune only
the last coherent layers of the pre-trained network and propose SpotTune. This adaptive fine-
tuning algorithm decides which layers of the pre-trained network should be frozen or not for
each training sample. They tested their approach on the visual decathlon datasets resulting in
favorable results compared to traditional fine-tuning strategies. Another approach is AdaFilter,
proposed by (2020). Only specific convolutional filters based on activations of previous
layers are selected to decide if fine-tuning should be applied or not on every sample instance.
Similar to the other works, the authors used more than ten samples per class in their experiments.

2.2.2 Shallow Networks & Feature Extraction

Another transfer learning approach consists of using the features of the pre-trained network as
input in additional shallow networks like SVM or neural networks. In this way, the pre-trained
network is utilized as a feature extractor. During training, only the shallow network is adapted
to the target dataset. Compared to the fine-tuned approach, a higher learning rate can be applied
when using a neural network, also denoted as an adapter network, since the layers” weights are
randomly initialized and otherwise not sufficiently adapted to the target dataset. Approaches in
the field of transfer learning extract the deep features from the learned network, be it an adapter,
pre-trained, or fine-tuned network, and use it to enroll a gallery in which the features represent
the respective classes. The nearest neighbor classification can then be used to assign test images
to a class. This technique involves probing the test images against the gallery and using a distance
measure such as the cosine similarity distance.

In order to classify Alzheimer’s disease based on MRI images of the brain, the work of

( ) utilized AlexNet pre-trained with ImageNet. The authors replaced the last three lay-
ers with a softmax layer, a fully-connected layer, and an output classification layer which they
defined as adaptation layers. These layers are then trained using the MRI training data. They
showed that their approach achieved better results than the traditional SVM model. However, it
should be noted that the multi-classification task included only four classes and that more than
20 samples were used for each class. Their results indicate that unsegmented MRI images seem to
have sufficient expressiveness to achieve a superior classification result compared to segmented
images. These segmented images are extracted by building non-overlapping regions using k-
Means clustering.

( ) observed in their work about watchlist adaptation of faces as an open-set
problem that a three-layer adapter network with 128 and 64 neurons in the first two layers on top
of a pre-trained VGG2 face recognition network achieves better results than using only the pre-
trained network alone. The raw output of the pre-trained network, also called logits, is directly
fed into the adapter network. In this thesis, an additional performance comparison is conducted
when either logits or deep features are fed into the adapter network. Additionally, they reported
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favorable results considering the enrollment of gallery templates with sequential cosine similar-
ity computation compared to raw features from a pre-trained network. More importantly, they
reported that deep features of the adapter network perform better than the end-to-end classifica-
tion. As this analysis was only tested on face datasets for an open-set problem, the findings can
only be transferred to the classification of other domains to a limited extent.

The work of ( ) also used deep features extracted from pre-trained networks,
namely AlexNet and VGG-16, to carry out flower species classification (Flowerl7 and Flower102).
The features of both networks were combined and selected by the so-called minimum redun-
dancy maximum relevance (mRmR) algorithm and fed into an SVM classifier with a radial bases
function kernel. They showed in their work that by combining and selecting the deep features ex-
tracted from two networks, their approach outperforms state-of-the-art methods. It is also worth
mentioning that the authors extracted the features from two different locations within the two
networks, from the activations of fc6 and fc7.

2.2.3 Feature Transferability

The extracted deep features from the network trained in advance with the source dataset could
also have a negative effect if they do not match the characteristics of the target dataset. This effect
is also called negative transfer and should be avoided if possible ( , ). However,
since this is not straightforward to measure, several papers have already been published on this
topic. ( ) examined the transferability of deep learning features extracted from
AlexNet trained on the source dataset ImageNet. For this purpose, they randomly assign 500
classes from ImageNet to the source and target datasets. Since ImageNet contains clusters of sim-
ilar classes, both databases contain statistically similar images by using this method. Moreover,
less similar source and target databases are generated due to the existing hierarchical structure of
ImageNet, which is also explained in section 4.1. The authors assigned only man-made entities
to one database and natural entities to another. The transferability was examined by varying the
number of layers that are utilized to transfer the knowledge to the target network. Their empirical
experiments suggest that the CNN using the weights from the pre-trained network can increase
the classification performance regardless of which layer weights are frozen, which persists af-
ter fine-tuning. They report that a higher dissimilarity between source and target tasks results
in worse performance when weights are transferred without fine-tuning. However, fine-tuning
pre-trained networks on small target datasets may lead to overfitting, predominantly when the
network consists of many parameters.

Similarly, ( ) investigated the transferability of deep features from pre-trained
networks using ImageNet to the target domains DomainNet and CheXpert. Among other experi-
ments, they compared the classification results from a network with random weight initialization,
a pre-trained network on the source dataset, a network trained on the target dataset with the ran-
dom initialization, and a pre-trained network on the source with additional fine-tuning on the
target dataset. They reported that networks pre-trained with the source dataset converge faster
when using the CheXpert dataset than random weight initialization. When benchmarking the
same networks again with the DomainNet dataset, a performance increase was found compared
to random weight initialization, suggesting that reusing deep features brings tangible benefits to
image classification performance. They also argue that although the source and target datasets
appear visually different, using a transfer learning approach may still help improve classifica-
tion performance. In particular, the features from early layers contribute to the favorable transfer
learning results.
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2.2.4 Sample & Network Size

The approaches studied indicate that deep feature re-usage in either form benefits image classifi-
cation. However, the influence of sample size on transfer learning approaches was not addressed.

( ) consequently tried to analyze this impact. They report that the minimum num-
ber of training examples required to adapt a pre-trained network to produce a meaningful clas-
sifier for the target dataset can be estimated by setting a threshold. They used data from plastics
manufacturing processes and utilized the ResNet-18 model as the pre-trained model for the anal-
ysis. Three different transfer learning methods were utilized: First, the linear classifier layer is
replaced by a linear SVM layer. Second, the last layer is replaced by a new softmax classifier,
and third, the whole pre-trained network can be fine-tuned. The experiments were repeated on
sample sizes per class ranging from 20 to 200 image samples. The results indicate that the sec-
ond approach performs much worse than the others (< 90% accuracy over all sample sizes). The
fine-tuning approach with data augmentation shows the best performance, especially when more
image samples are included. For one of the two datasets which were used in the experiments,
even with fewer samples, the classification performance is more than 10% higher compared to
the first method. The authors also compared the results of ResNet-18 with ResNet-121, finding
that ResNet-18 performs superior with fewer samples per class when the fine-tuning approach is
used. If using the first approach, the network with more parameters is preferable. The authors ar-
gue that feature extraction model elements are essential for the successful application of transfer
learning. The experiments were conducted with binary datasets, and the validity of the classifiers
with less than 20 samples per class was not tested.

The analysis conducted by ( ) regarding the effectiveness of transfer learning us-
ing different model parameter sizes has been thoroughly investigated and extended by

( )- The authors examined the transfer classification performance of 16 modern networks
pre-trained with ImageNet on 12 image multi-classification datasets which consist of 20 to 5000
images per class. Their findings indicate that the ImageNet top-1 accuracy of the networks corre-
lates with the classification performance of transfer learning. Thus, higher ImageNet classification
rates yield more general deep feature representations of the same network.
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Transfer learning approaches

After describing the most common transfer learning approaches in chapter 2, this chapter high-
lights the approaches that will be explored in more detail in the experiments. First, a distinction is
made between end-to-end, nearest neighbor, and SVM classification, which is elaborated upon in
section 3.1. Then, a further distinction is drawn concerning pre-trained networks without addi-
tional training of the target dataset, fine-tuned networks, and adapter networks described in more
detail in section 3.2. Except for the first one, the networks are trained using stochastic gradient
descent with the objective of minimizing the cross-entropy loss function defined in equation (3.1)
where C denotes the number of classes, . the true class, and y. the predicted class.

c
JCE = - Z te IOg(yc) (31)
c=1

3.1 Classification Variants

Since different performance results were found when using end-to-end and nearest neighbor clas-
sification in the work of ( ), these methods are also examined in more detail in
this thesis as variants. Moreover, as with other approaches outlined in chapter 2, the SVM classi-
fier is used as an additional transfer learning approach. The figure 3.1 illustrates the differences
which are also outlined in more detail in section 3.1.1, 3.1.2 and 3.1.3. The trained layers are
utilized in all cases until before the last fully-connected layer. Subsequently, the entire network
including the last fully-connected and softmax layer is used for end-to-end classification (green
arrow), or the deep features are extracted before the last fully-connected layer (red arrow). The
features are then used for either nearest neighbor or SVM classification. The variants are eval-
uated in terms of their classification accuracy using the test samples. Classification accuracy is
particularly used as a performance indicator. The defined equation (3.2) uses a Kronecker Delta
function I which sums up only correctly classified classes where the predicted class of the n-th
sample ¢l equals the true class of the n-th sample ¢".

N
1
_ = Aln] _ 4[n]
Acc = I 321 I(e™ = ¢t (3.2)
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Figure 3.1: CLASSIFICATION VARIANTS. This figure illustrates the three classification variants used to
conduct the experiments. End-to-end classification leverages all available network layers, including the last
fully-connected layer and the softmax layer (green arrow). The red arrow indicates the output immediately
before the last fully-connected layer is used either for a) Nearest neighbor or b) SVM classification.

3.1.1 End-to-end Classification

The trained network is directly used in this method to classify the target dataset. The test image
samples of the target dataset are fed into the trained network. The softmax layer assigns the raw
outputs of the last fully connected layer, also called logits Z, to the class probability values in the
range of 0 and 1, as given in equation (3.3). If the individual probabilities are summed up, the
result is 1. The predicted class ¢ is then determined by the largest probability value, as given in
the equation (3.4).

§(z) = — SPlz) (33)
=) S5 exp(z;)
¢ = argmax S(z.) (3.4)
1<e<C

3.1.2 Nearest Neighbor classification

The trained networks are used as feature extractors, illustrated in Figure 3.1, to create a deep
feature gallery representing the features of each class of the target dataset. The target samples
are fed into the learned network, but the last two layers are not needed. Instead of using the
previous layer’s output as input for the last fully-connected layer, the output data, called deep
features, is utilized to enroll the gallery. For each class, at least one feature will be available as a
class representative. The gallery will be enrolled in two different methods:

1. COS: The features of all currently used target samples per class are included in the gallery.

2. MEAN: A single representation per class is included in the gallery. The single representation
is created by calculating the average over all available features per class.

Let K be defined as the total number of features in the gallery over all classes, then ), denotes
the feature representation in the gallery where k refers to the k-th feature. K corresponds to
at least C if the average feature per class or even only one sample per class is used. All target
samples are extracted in the same way as described above, but the gallery is enrolled only with the
training samples. The validation features will be applied for computing AUROC, a regularization
metric for early stopping as outlined in chapter 5.3.2. The deep features are also extracted for the
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test samples. A similarity measure is used to predict the class of the test pattern. This measure
determines the highest similarity with the putative best matching deep features. The greatest
similarity finally represents the predicted class ¢ as shown in equation (3.6). For this purpose,
the cosine similarity score is applied, which is described in equation (3.5). The score is computed
between @, for each k and the probe sample g. Given the nature of the equation, the features
are normalized by themselves. In MEAN, whether the features are normalized before or after
averaging is relevant since a different result is obtained. For the approach, however, an additional
normalization is omitted so that the implicit normalization only takes place after the averaging.

Simk(@kag’) = MaVk € [1727 T 7K] (35)
18kl
¢ = argmax Simy (Fk, §) (3.6)
1<k<K

As mentioned in section 1.1, the transfer learning approach classifications are repeated in the ex-
periments with gradually increasing numbers of training samples per class. Thus, since concep-
tually more gallery data is available, the following distinction involves gallery samples relevant
for selection:

1. Increasing Gallery (I-GAL): With more training examples per class, the number of features
per class that are available for the gallery increases to the same extent. COS and MEAN are
formed according to the available features.

2. Constant Gallery (C-GAL): The available features do not change with this variant. When
using the fine-tuning or adapter network, five samples per class are not taken into account
during training but are available for classification after training. The samples used for train-
ing are not taken into account for the enrollment of the gallery. This means that the gallery
will not have more features available, even with a higher number of samples per class. COS
and MEAN are therefore always formed with the same five image samples. It is important
to point out that the deep feature representation may change depending on the number
of training samples per class, although the same five samples are always used. However,
the extracted features will definitely stay the same when the pre-trained network is used
without training.

3.1.3 Support Vector Machine (SVM)

( ) developed a binary classification learning algorithm that solves binary
classification tasks by maximizing the distance between classes in multi-dimensional space. The
network was extended to multi-classification problems by splitting the entire task into multiple
binary classifiers using either a one versus one or a one versus rest approach. In the first case,
w hyperplanes must be constructed as each pair of classes is compared with each other,
while in the second case, C' hyperplanes must be built ( , ). The exper-
iments in this thesis are solely based on the one versus rest approach since fewer classifiers are
needed, resulting in faster classification performance. Deep features are used to train the classifier.
After extraction from the learned network using the training image samples, the deep features are
normalized with the Euclidean norm (/*>-norm). Then, a grid search is performed using the ex-
tracted deep features to find the optimal soft margin parameter C, which should help define a
decision boundary in favor of generalization that also allows for misclassification. The regular-
ization parameters available for selection are 0.1, 1, 10, and 100. The deep features of the test
images are also used for classification. The deep features of the test images are used for classifi-

cation. After normalization, each of the C constructed hyperplanes can make a binary statement
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about the possible class outcome. The use of majority voting yields a class that has been proposed
most often and is consequently predicted. Due to the increased complexity of other kernels and
the limited data available for the experiments, only the linear SVM is applied in this thesis.

3.2 Network Variants

In order to examine the effectiveness when using a few samples per class, three different trans-
fer learning network approaches are examined. As a starting point, the CNNs pre-trained with
ImageNet, described in chapter 2.1, are always utilized and modified accordingly. The figure 3.2
illustrates the differences which are also outlined in more detail in section 3.2.1, 3.2.2 and 3.2.3.

pre-trained CNN

(a) Pre-trained Network

pre-trained CNN

(b) Fine-tuned Network

pre-trained CNN

H—.

Deep Features

: Z b)
Adapter Network

Logits

(c) Adapter Network

Figure 3.2: NETWORK VARIANTS. This figure illustrates the network variants (a) Pre-trained network
where all layers are frozen (b) Fine-tuned network where the layers will be adjusted during training with
the target dataset and (c) Adapter network where the layers remain frozen but either a) the deep features
are extracted just before the last fully-connected layer or b) the output of the last fully-connected layer, the
logits, serve as input for the adapter network. The approaches (b) and (c) will be trained using the target
dataset.
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3.2.1 Pre-trained network

In this method, the respective pre-trained network is directly used to classify the target dataset,
i.e., no additional training is performed. As shown in figure 3.2(a), the trained layers are frozen
so that no weight adjustment can occur. For classification, the network is used solely as a feature
extractor. Thus, the last fully-connected layer and the softmax layer are not needed in this case.
In principle, this signifies that more samples per class for the classification do not extract features
that are more adapted to the target network. When using C-GAL, the classification accuracy
does not change even with a larger number of training samples since the same five samples are
constantly employed in the gallery.

3.2.2 Fine-tuned network

The trained layers of the pre-trained network do not remain frozen in this method, as shown in fig-
ure 3.2(b). During training, all pre-trained weights are fine-tuned according to the target dataset.
The last fully-connected layer and the softmax layer of the pre-trained network are aligned ac-
cording to the number of classes and then trained with a small learning rate using the target
training dataset. When using the fine-tuned network, all classification variants under section 3.1
can also be deployed.

3.2.3 Adapter network

When using the adapter network variant illustrated in figure 3.2(c) the learned layers in the pre-
trained network remain frozen. Only the additionally introduced adapter network, which can
be used either as a 2-layer or 3-layer variant, is trained with the training target database. The
adapter network in both configurations is shown in figure 3.3. The learned information of the
pre-trained network is extracted and serves as input into the adapter network. In order to in-
vestigate the effect studied by ( ) regarding the transferability of features, it is
possible to perform the extraction at two different layers of the network as illustrated in figure
3.2(c). In variant a), the layer outputs before the last fully-connected layer are used as input to the
adapter network. This is the same place where feature extraction occurs when performing nearest
neighbor classification in section 3.1.2. However, when using variant b), the outputs of the last
fully-connected layer, the logits, are utilized. The layer dimensions in the first layer of the adapter
network are based on the dimensions of the deep features or logits. The output dimensions in
variant a) depend on the network architecture and therefore follow the defined feature size in
table 2.1 in chapter 2.1. When using logits, the dimension depends on the number of available
classes in a respective dataset. Since ImageNet is used as the source dataset for all networks, the
output dimensions are the same for all pre-trained networks. Before the deep features or the logits
are fed as input into the adapter network, normalization with the Euclidean norm is performed
analogously to the mentioned normalization when using the SVM classifier in section 3.1.3. Since
the network learns in batches, the layer dimensions are also specified in batches, which is deter-
mined before training begins. An experiment in this work addresses the appropriate choice of the
number of layers and dimensions based on the accuracy performance, which is why no absolute
dimensions are reported in figure 3.3. As with the fine-tune network approach, all classification
variants can be applied.
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(a) Three-Dense-Layer Adapter-Network
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Figure 3.3: ADAPTER NETWORKS. This figure illustrates the architecture of the adapter networks with (a)
Three-Dense-Layers (b) Two-Dense-Layers. The extracted a) Deep features or b) Logits from the pre-trained
network are normalized before being fed into the adapter network. B is the specified batch size, D1 the
output size of the first fully-connected layer, D2 the output size of the second fully-connected layer and C
the number of classes.
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Databases

This chapter describes the databases used to perform the experiments in this thesis. Each one
of them is an image database with more than 20 different labeled classes. Certain classes are
excluded from the analysis for some databases because the number of samples is too small com-
pared to other classes and would have prevented a thorough analysis. ImageNet was chosen as
the source dataset because this dataset is already widely used and has large class variability. The
CNN s used also have networks that have already been pre-trained with ImageNet. The target
datasets were selected to have varying degrees of similarity to ImageNet to examine the transfer
learning methods studied on similar but more diverse datasets. The key database characteristics
are shown in table 4.1.

Table 4.1: DATASET CHARACTERISTICS. The table shows database characteristics, such as the number
of image samples, class amount, image resolution, etc. The resolution values given are averaged values
determined by random sample testing. Therefore, the resolutions may differ from the outlined values.

Size Num. of classes Training samples per class Resolution
ImageNet 12M 1k 05-1k 400 x 350
Aircraft 10k 30 33 1200 x 768
Fruit and Vegetable 10k 36 95 200 x 250
Indoor Scenes 15.62k 67 67 256 x 256
Office-31 4652k 31 44 300 x 300
Virus 1245k 22 31 256 x 256

4.1 ImageNet

The ImageNet database was proposed by ( ) and has since been extensively uti-
lized for many deep learning computer vision tasks, amongst others, for image classification and
image recognition. At this point, the dataset already consists of over 14 million hand-labeled im-
ages, each divided into over 20’000 synsets, semantically identical word classes, which can then
be grouped, resulting in a hierarchical structure as illustrated in figure 4.1. In this thesis, the Im-
ageNet subset of 1000 classes and 1.2 million images provided by PyTorch ( , )
is adopted and was also used at the LSVRC. The classes represent, among others, a variety of
animals, everyday objects, and food. Due to the variety of classes, the average number of 500-
1’000 images represented by a synset, the availability, and the average resolution of 400 x 350,
ImageNet is suitable for pre-training deep learning networks for transfer learning tasks and was
also employed for this purpose in this work.
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Figure 4.1: IMAGENET SUBTREES. This figure illustrates ImageNet’s hierarchical structure by visualizing
the mammal (top) and vehicle (bottom) subtree, starting with the root category on the left, followed by the
leaves on the right. (Deng et al., 2009).

4.2 Aircraft

The Aircraft database proposed by Maji et al. (2013) consists of 10°000 aircraft images with ap-
proximately 1-2 Megapixels resolution divided into 100 different classes. It can also be structured
hierarchically in four different ways. The finest grouping recognizes each aircraft model indi-
vidually, but according to Maji et al. (2013), this is not measurable with the external depiction
of airplanes alone and therefore not suitable for a fine-grained image classification task. Second,
data can be clustered into model variants that cannot be visually distinguished. Third, families
cluster model variants to form fairly distinct discrepancies. And finally, aircraft families from the
same manufacturer form the most granular hierarchy with 30 classes overall and approximately
33 samples per family. Only this last variant is considered for the experiments in this thesis. Two
sample classes of the database are shown in figure 4.2.

(a) Boeing (b) Eurofighter

Figure 4.2: AIRCRAFT MANUFACTURER IMAGES. This figure shows an example of nine training images
from each of the two classes of the Aircraft dataset. (a) Boeing manufacturer class (b) Eurofighter manufac-
turer class.
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4.3 Fruit and Vegetable

The Fruit and Vegetable dataset, with 36 different classes, overlaps significantly with the Ima-
geNet dataset, making it an ideal candidate for homogeneous transfer learning processes. The
number of fruit classes is smaller than the vegetables, with only ten different representations. The
database was scraped from the Internet by Seth (2020) and has already been used to generate a
balanced training, validation, and testing split. Each class consists of approximately 100 sam-
ples in the training set and ten samples each for the validation and testing set. The author does
not specify the resolution of the images. However, by random sampling, it was found that the
resolution varies greatly between high-resolution images up to about 5000 x 5°000 pixels and low-
resolution samples of only about 200 x 250 pixels. Several images have already been segmented
and centered on their respective objects on a white background. However, numerous examples
contain multiple objects that are not centered. Two sample classes of the database are shown in
figure 4.3.

e ;
(a) Orange (b) Eggplant

Figure 4.3: FRUIT AND VEGETABLE IMAGES. This figure shows an example of nine training images
from each of the two classes of the Fruit and Vegetable dataset. (a) Orange class (b) Eggplant class.

4.4 Indoor Scenes

This dataset proposed by Quattoni and Torralba (2009) was collected by web scraping online
sharing tools (Flickr) and the LabelMe dataset. It consists of 67 balanced classes with different
indoor scenes. The domain is divided into the group classes store, home, public spaces, leisure,
and workplace, with several subclasses containing 15620 images with a minimum resolution
of 200 pixels on the smallest axis. Since the authors did not provide a validation dataset, ten
samples per class from the training set are extracted for this purpose. In contrast to the other
datasets mentioned above, this one does not focus on a specific object in the image but rather
on the whole scene in general and therefore includes several objects. The classification task is
particularly challenging because there is high in-class variability in the images, which can also be
seen in figure 4.4.
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(b) Mall

Figure 4.4: INDOOR SCENES IMAGES. This figure shows an example of nine training images from each
of the two classes of the Indoor scenes dataset. (a) Gym class (b) Mall class.

4.5 Office-31

The dataset was initially developed by Saenko et al. (2010) for domain adaptation tasks where
the classes to be predicted remain the same across different domains. Each of the three different
domains contains 31 classes of office equipment with a total of 4’652 samples. The first domain
amazon, also used for this work, provides significant intra-class variations from a canonical view-
point and a segmented, centered object with a white background, as shown in figure 4.5. The
medium-resolution images with 300 x 300 pixels were collected by web scraping of Amazon prod-
ucts. The other two domains were recorded with a low-resolution webcam and a high-resolution
camera from different angles. Since this thesis investigates the transfer learning methods between
a source and a target dataset with different classes, only the amazon dataset is considered.
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Figure 4.5: OFFICE-31 IMAGES. This figure shows an example of nine training images from each of the
two classes of the Office-31 dataset. (a) Desk chair class (b) Headphones class.
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4.6 Virus

This dataset was proposed by Matuszewski and Sintorn (2021) and consists of 1245 images of
22 unbalanced virus classes, which were acquired by two electron microscopes in Germany. The
raw images were preprocessed by centering on the captured virus particles and then cropped such
that the pixel size equals 1nm and rescaled to 256 x 256 pixels. By nature, some virus particles are
elongated, which need special treatment to prevent the identical virus particles from occurring
in several image patches. Due to the multiple occurrences of particles in one raw image, the
preprocessing resulted in more images per virus class. In order to perform the experiments in
this thesis consistently with the same sample size per class, the Sapovirus class is neglected. The
authors also carefully split the data into training, validation, and test sets, particularly preventing
data leakage between sets.

(a) Rotavirus (b) Influenza

Figure 4.6: VIRUS IMAGES. This figure shows an example of nine training images from each of the two
classes of the Virus dataset. (a) Rotavirus class (b) Influenza class.

4.7 Data preparation

The five databases described in this chapter need only minimal pre-processing steps, as the au-
thors have thoroughly prepared them. Since the Office-31 dataset has not yet been split, ten
randomized image samples per class were used for validation and testing. The remaining im-
age samples are assigned to the training set. Regarding the Indoor Scenes dataset, merely no
validation set exists. Thus, it was reassigned from the training set using the same method as de-
scribed before. Additionally, a separate script was created that generates a csv-file for each split
per dataset, listing all image samples, each containing the absolute image path, the class label,
and a number that can be uniquely assigned to a class per line. Since the image samples are
sorted alphabetically by class, class numbers from 0 to C' can be created, which are later used
for image classification. To achieve a good separation from the training logic and to iterate easily
through the image samples, the classes Dataset and DataLoader provided by PyTorch are used. The
prepared csv-file for the respective split is read by the Dataset primitive, which was implemented
specifically for handling image samples, deep features, and logits. The DataLoader enables the
image samples to be fed into the network in mini-batches, shuffled during the training of the
networks. By using the iterable, multiprocessing steps and image transformations for data aug-
mentation described in section 5.3.2 can also be applied. A loaded image is converted into a
tensor with floating-point numbers between 0 and 1, followed by a normalization step where the
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values are subtracted by the mean and divided by the standard deviation. The operations result
in bounded values of [-3, 3]. Mean ([0.485, 0.456, 0.406]) and standard deviation ([0.229, 0.224,
0.225]) are obtained from ImageNet training data and applied to every image sample over all
datasets. Due to the different resolutions of image samples according to table 4.1 and the fact that
the pre-trained networks expect an input resolution of 224 x 224 pixels, the images are re-scaled
so that the smaller side is 256 pixels. The re-scaling is followed by a center crop of 224 x 224 pixels.



Chapter 5

Experimental framework

This chapter lays the foundation for the experiments by describing the procedure and the imple-
mentation details. Network training and classification will always follow the same procedure as
illustrated in algorithm 1. Since the datasets each have a different number of training samples, as
seen in table 4.1, the number of samples per class with which the networks are trained will vary.
However, in any case, the training and classification for a deep transfer learning approach will
be performed 11 times with an increasing sample size per class. A logarithmic scale bounded by
a minimum of 1 and a maximum of the largest number of possible samples per class is used to
choose the number of samples per class during training. As a result, experiments focus on the
small number of samples per class. Nonetheless, an analysis of the trend in classification perfor-
mance can be seen when more training samples are available per class. In order to make general
evaluations of the different training methods, the training images are reshuffled in each epoch.
This ensures that their order changes, although the same training images are always used. Also,
image transformations are used for data augmentation as described in section 5.3.2. After each
network training with a specific sample size per class, it is essential to reset the learned weights
of the network so that the training remains unbiased and can be compared with each other. While
the number of training data per run constantly changes, the validation and test data remain the
same. This fact also allows comparing the classification performance between changed sample
sizes per class of a deep learning approach and across approaches. Furthermore, the learned net-
works are stored on the local disk. Therefore it is possible to reuse the network for classification.
This is especially useful when using deep features classification approaches since, in this case,
networks already trained with the target dataset can be reused to extract the deep features.

5.1 Experiment structure

The performance comparisons follow the same chronological order as the research questions men-
tioned in the introduction. First, according to RQ 1, the adapter network design is evaluated.
Since there are many design options when using the adapter network approach (e.g., number of
layers, number of neurons per layer, use of logits or deep features, selection of an early stopping
scheme), the design decisions in this work are examined using only the Indoor Scenes dataset
and ResNet-50. Initially, it will be investigated whether the logits or the extracted deep features
from the pre-trained network are more effective in terms of accuracy when they are used as input
to the adapter network. Then, the early stopping regularization, described in section 5.3.2, is in-
vestigated. Lastly, two and three fully-connected layers with different numbers of neurons in the
first two layers are compared in terms of their classification performance, and the most promising

Thttps:/ /numpy.org/doc/stable /reference/ generated /numpy.logspace.html
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Algorithm 1 LEARNING & CLASSIFICATION PROCEDURE. This algorithm describes the simplified
learning and classification process. M defines the number of available maximum training samples per class
and F the number of epochs. The array sizes is generated using the Numpy function logspace.'

test < load test data
validation < load validation data
model < Load network
sizes < logspace(1, M,12)
for size in sizes do
reset network state
train < load training data with size samples per class
for epoch =1,2,...,FE do
network training with train
network validation with validation
end for
network classification with test
: end for
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design is selected. The results are presented in chapter 6.1. In all subsequent performance com-
parisons with other deep learning approaches, the adapter network design determined in this
way is used.

Secondly, according to RQ 2, all five pre-trained networks and all five target datasets are ex-
amined applying nearest neighbor classification, more specifically, by enrolling I-GAL with the
MEAN approach. The results are compared with the top-1 accuracy scores reported on the Py-
Torch website. Suppose the results indicate that the performance of a particular pre-trained net-
work is significantly worse than that of other networks under study. In that case, it is not consid-
ered for further analysis. Third, according to RQ 3, the approaches mentioned in chapter 3 are
compared to determine which transfer learning technique is particularly suitable for a small num-
ber of image samples per class. However, it is also always discussed how the approach performs
when more samples are available per class. The analysis also allows statements to be made about
RQ 4. Each transfer learning approach is performed once with the described logarithmic scale for
each pre-trained network selected based on their performance in RQ 2. Subsequently, the mean
and standard deviation for all individual pre-trained network results is calculated per sample size
and approach. This indicates the consistency of the approach over different pre-trained networks.
The experiments are divided into the following sub-analyses:

1. Comparison of end-to-end classification using the adapter and the fine-tuned network.

2. Comparison of nearest neighbor and SVM classification using the adapter, the fine-tuned,
and the pre-trained network. The mean and standard deviation of the performance results
applying nearest neighbor (with COS and MEAN) and the SVM classification of a network
training approach are calculated.

3. Based on the results of step 2, the most promising approach, including nearest neighbor
and SVM classification (adaptive, fine-tuned, or pre-trained network), is used to analyze
the classification methodology. The nearest neighbor (with COS and MEAN) and the SVM
classification results are compared.

4. The best variants of steps 1 and 3 are compared here to finally make a statement about which
transfer learning approach is best suited for only a few samples per class.
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Fourth, RQ 5 examines the significance of the deep features in the gallery by comparing the clas-
sification performance of the increasing gallery (I-GAL) with the performance of the constant
gallery (C-GAL). The gallery of the first approach becomes correspondingly larger, with more
samples per class. Only the optimal deep feature approach identified by RQ 3 is used for classi-
fication. Again, only the selected pre-trained networks from RQ 2 are used to calculate the mean
and standard deviation.

5.2 Evaluation metrics

Transfer learning methods aim to achieve the highest possible correct classification rates from
limited available data. With the help of the performance indicator, different transfer learning ap-
proaches can be compared. The accuracy metric depicted in equation (3.2) is calculated several
times with increasing samples per class to compare their resulting performance in terms of pro-
gression when more images are available per class. The analysis is primarily visual, as the trend
in the accuracy values of the different approaches when using more and more samples per class
is most easily represented by respective line plots. The sample sizes per class are plotted on the
x-axis, and the effective precision values are plotted on the y-axis. Since the focus is on small sam-
ples, the x-axis in the graphs is used as a logarithmic scale. When transfer learning approaches are
examined across multiple pre-trained networks, the accuracy scores are considered together, and
their mean and standard deviation are calculated. In addition to the general accuracy analysis,
confusion matrices are created to compare classification performance at the granularity level of
individual classes. A C' x C matrix is created where the true classes are represented on the x-axis
and the predicted classes on the y-axis. Training and classification procedures are repeated ten
times to determine the significance of the results in the case of the adapter network design exper-
iments. The mean and standard deviation results for the approach are calculated to compare the
performance. In the remaining experiments, the mean and standard deviation from the classifi-
cation results of the same transfer learning approach across the relevant pre-trained networks is
computed.

5.3 Implementation details

The conducted approaches are implemented exclusively in Python. The libraries PyTorch, NumPy,
Pandas, and Sklearn are also used. The adapter network is developed utilizing the module base
class of PyTorch, which allows defining the forward pass of the network as well as explicit layers
with the required input and output variables.

5.3.1 Network design

All network designs are based on one of the pre-trained networks described in chapter 2.1. Py-
Torch conveniently allows loading networks already pre-trained with ImageNet into the local
cache, which allows for simple modification afterward. For this purpose, a separate class was
defined, containing the respective network objects loaded by PyTorch. All networks used are op-
timized with stochastic gradient descent with 0.9 momentum. PyTorch combines the log-softmax
and the negative log-likelihood loss to build the cross-entropy loss function. In this way, no ex-
plicit softmax layer must be defined in the network implementation. When using nearest neigh-
bor classification or SVM, the last fully-connected layer in all networks is replaced by an identity
layer, which outputs the input unchanged. For this purpose, the extraction function and the nor-
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malization, in case SVM or the adapter network are utilized, are implemented in a separate class.
The network design differs between the already mentioned network variants in chapter 3.2:

1. Pre-trained network: Since this variation does not include training and is not used for net-
work classification using softmax, no modifications need to be made.

2. Fine-tuned network: This network uses the already pre-trained network from the source
dataset with the learned weights and is fine-tuned using the target dataset. Thus, it is neces-
sary to verify that the gradients of the network needed to calculate the updated weights in
each layer are enabled to guarantee that the weights are actually updated during training.
Since the networks pre-trained with ImageNet consist of 1’000 outputs in the last fully-
connected layer, which reflects the number of classes in the dataset, the number of outputs
is adapted to the respective number of classes from the target dataset. The training includes
50 epochs with a learning rate of 0.0001 and decay of 0.1 when reaching a plateau, which is
described in more detail in section 5.3.2. The training is ideally performed with a low learn-
ing rate to avoid over-adaptation of latent features that have already been learned from the
source dataset.

3. Adaptive network: When using the adapter network, the last fully-connected layer of the
pre-trained network is replaced by an identity layer when the deep features are utilized.
If the logits are to be used as input to the adapter network, the last fully connected layer
remains unchanged, which also leaves the logits unchanged. The logits or deep features
are normalized and fed into the adapter network. Care must be taken that the input size
of the first fully-connected layer of the adapter network corresponds to the size of the deep
features or logits the batch size. However, no special care is required concerning batch size,
which is controlled internally by PyTorch. A variable can control the output size of the first
layer. Also, two or three fully-connected layers can be utilized, as seen in figure 3.3. If three
fully-connected layers are chosen, the output of the third layer can also be controlled with a
variable. Also evident in figure 3.3, the tanh activation function is applied to the output of
the first fully-connected layer, followed by a dropout layer, described in section 5.3.2 with
a 0.5 probability that is active only during training. The softmax layer is essentially the
same according to the number of classes already mentioned when designing the fine-tuned
network. The training is conducted with 100 epochs with a learning rate of 0.01 with the
possibility of using the early stopping approach described in chapter 5.3.2, which could still
reduce the number of epochs.

5.3.2 Regularization

Since only limited image data are used in this work and many parameters have to be adapted
in deep learning networks, there is an increased risk that the network overfits the dataset. This
problem can be reduced by regularization techniques, which is why these techniques are used in
implementing the networks. The following sections describe the applied techniques.

Data augmentation

While designing AlexNet, ( ) already recognized that even the ImageNet
dataset is too small to train a network with more than 60 million parameters without significant
overfitting. For this reason, image transformations on the original images are used to increase
the number of training samples artificially. PyTorch also remedies this by introducing a module
that chains transformation arbitrarily together. Care has been taken during the transformation to
ensure that the images are only transformed in the same way they would naturally occur. For
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the first transformation, an arbitrary patch of the image and an arbitrary aspect ratio is selected.
This section is then re-scaled to the corresponding needed input size of 224 x 224 pixels. The
parameters used correspond to the standard values defined by PyTorch. Secondly, an image’s
brightness, contrast, saturation, and hue are randomly changed. Thirdly, a horizontal flip with a
probability of 0.5 is applied. After the data augmentation steps, ImageNet-specific normalization
is performed, which is described in chapter 4.7. Since only more data are needed for the training,
no data augmentation steps are performed for the validation and test sets. The conversion to a
tensor and the normalization remain the same as already described when using training samples.

Dropout

Another regularization technique is dropout, which is applied in almost all pre-trained networks
in this thesis (AlexNet, VGG-16, DenseNet-121, MobileNet-V3). This technique ensures that the
neurons in the hidden layers do not learn features dependent on other neurons. By preventing
this so-called co-adaptation, more robust learning is possible. In the experiments, the output of
neurons is set to zero with a probability of 0.5. Therefore, these randomly selected neurons are
neglected when computing the backpropagation step during training. Dropout is applied in the
adapter network after the first fully-connected layer and hyperbolic tangent activation function
(tanh), as illustrated in figure 3.3.

Early stopping

When training deep learning networks, classification performance on the test set may decrease as
training epochs increase. This fact may occur since the network overadjusts to the training data
and is therefore unable to handle image data that is not yet known. This problem can occur, espe-
cially when insufficient training data is available. Therefore, the early stopping technique is used
for training the adapter network that terminates the learning process prematurely when this over-
fitting occurs. To determine the stopping process, a predefined metric compares the best value so
far with the current value at each epoch. Overfitting is detected when the current value indicates
worse performance than the best value. Since stochastic gradient descent is utilized as the opti-
mization step, it would be counterproductive to terminate the training process immediately after
the first detection since the results fluctuate considerably. Therefore, a counter variable is defined,
which is incremented with each detection. Finally, a threshold is selected at which training is ter-
minated after the specified number of detections is reached. The best model is used as a reference
for this transfer learning approach. Two different metrics are utilized to detect overfitting:

1. Validation error: The equation (3.1) describes the cross-entropy loss function, whose deriva-
tion is essential for the backpropagation step and thus for the actual learning process of the
network. In order to get a reference of how the network behaves at this point of the learning
step concerning not yet known data, the equation is used to determine the error rate of the
validation data set.

2. Area under receiver operating characteristic curve (AUROC): Receiver operating charac-
teristic (ROC) graphs visualize the performance of machine learning classifiers. The false-
positive rate (1 - specificity) and true positive rate (sensitivity) are calculated based on the
classification results of the test set and then plotted on the x-axis and y-axis, respectively,
to create a ROC graph. With the help of the prediction scores, which originate from the
output of the softmax layer, the 1 - specificity and sensitivity are determined with arbitrary
frequency in the range [0,1] each time with the corresponding threshold and finally plotted
as a data point. The resulting data points are connected to form a line. Calculating the area
under the curve of this plotted line results in a value in the range [0,1]. The closer this value
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approaches 1, the better a classifier can distinguish between the correct and wrong classes.
ROC graphs are primarily designed for binary classifiers. Hence, an AUROC value of 0.5
means that the classifier cannot distinguish between correct and incorrect class and only de-
termines a random or always a constant class ( , )- Analogous to the extension
of the SVM classifiers for multi-classification in chapter 3.1, the one versus rest approach
can also be used where the actual class is the positive class and all other classes the neg-
ative class. Sklearn provides the roc_auc_score function’ to calculate the AUROC without
computing the sensitivity and specificity by hand. During training, the deep features of the
validation data are extracted. A pairwise similarity calculation analogous to equation (3.5)
is computed, which results in a square matrix. The similarity values calculated over the
same classes are the positive ones. All others are classes with negative connotations. Since
the comparisons are repeated in the squared matrix, only the strictly upper triangle is re-
quired for the calculation. The strict upper triangle is flattened and serves as input to the
roc_auc_score function along with the label assigned to each value, which contains 1 for
positive and 0 for negative class connotations.

Learning rate decay

As the training of a deep neural network progresses, it may be practical to reduce the learning
rate chosen at the beginning to improve the classification performance of the neural network
when the accuracy stops improving further ( , )- Meanwhile, different methods exist to
determine when and how the learning rate should be minimized. For example, while presenting
the MobileNet-V3 architecture, the authors report the application of a decay rate of 0.01 every
three epochs during training ( , ). In the experiments, however, a scheduler’
from Sklearn was employed. Analogous to the metrics described in chapter 5.3.2, the validation
error or AUROC calculated at each training step is recorded by the scheduler and checked to see
whether the value has improved or worsened compared to the previous epoch. If the value has
deteriorated five times in a row, the learning rate is decreased by dividing it by 0.1, while the
rate has a lower bound of 0.1e — 5. This regularization technique is utilized for the fine-tuning
approach.

thtps: / /scikit-learn.org/stable/modules/generated /sklearn.metrics.roc_auc_score.html
3https: / /pytorch.org/docs/stable/generated / torch.optim.lr_scheduler.ReduceLROnPlateau.html
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Chapter 6

Resulis

In this chapter, the results of the experiments are presented. In particular, visual graphs and tables
are used to compare the classification of the transfer learning methods. The exact values of the
performed experiments for each dataset can be found in the appendix chapters A, B, C, D, and
E. The results for each research question introduced in chapter 1 are presented individually.

6.1 Adapter network design

The results considered in the adapter network design decisions according to RQ 1 are presented.
The resulting adapter network design is then employed for the remaining experiments and sub-
sequently compared to other deep transfer learning approaches. Each network configuration is
trained ten times and classified with the same test data. Finally, the average accuracy value is
plotted together with the standard deviation.

6.1.1 Network input

This section compares the input variants for the adapter network described in section 3.2.3. For
the analysis, the Indoor Scenes dataset is tested using ResNet-50. Experiments are carried out for
both input variants employing a Two-Dense-Layer and a Three-Dense-Layer network with 512
neurons in the first and 64 in the second layer utilizing the end-to-end classification approach.
As shown in the figure 6.1, network configurations with two fully-connected layers achieve the
best classification performance across all samples per class compared to all other variants. It
is also observed that for both network variants, using deep features as input achieves higher
performance, regardless of the training size compared to the logits input. Logits and deep features
perform comparably using the three-layer network only when more than 30 samples per class
are available. The two-layer configuration with deep features performs best across all training
variables, as seen in table 6.1.

Table 6.1: LOGITS AND DEEP FEATURES INPUT PERFORMANCE. End-to-end classification perfor-
mance utilizing deep features and logits as adapter network input employing ResNet-50 as a pre-trained
network and a two or three-dense layer adapter network is used on the Indoor Scenes dataset.

1 2 5 48 67

Features-512 0.274£0.015 0.391 £0.013 0.52+0.01 0.698 +0.005 0.714 +0.01
Features-512-64 0.204 =0.015 0.301 £0.015 0.387 £0.017 0.618 £0.011 0.65 £ 0.015

Logits-512 0.22+0.013 0.319+£0.016 0.45+0.013 0.664 £0.004 0.681 £ 0.007
Logits-512-64  0.134 £0.021 0.22+£0.01 0.351 £0.012 0.615+0.011 0.638 =0.013
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Figure 6.1: RESNET-50 CLASSIFICATION PERFORMANCE LOGITS AND DEEP FEATURES INPUT.
This figure illustrates the end-to-end classification accuracy on the Indoor Scenes dataset with increasing
image samples per class. Experiments are carried out with deep features (blue) and logits (orange) as adapter
network input. A Two-Dense-Layer network (dashed) and a Three-Dense-Layer network (solid) with 512
neurons in the first and 64 in the second layer are employed.

6.1.2 Early stopping

Herein, the early stopping metrics presented in chapter 5.3.2 are compared. Due to resource con-
straints, only ResNet-50 pre-trained with ImageNet and the two fully-connected layers adapter
network with 512 respective outputs are used for the analysis. According to chapter 3.1 clas-
sification, the nearest neighbor classification with the COS approach is selected for the image
classification of the Indoor Scenes dataset. In order to better analyze the accuracy differences
compared to the method without early stopping, where the training comprises 100 epochs, the
values with early stopping are subtracted from the baseline values. The evaluation figure 6.2
shows that the validation metric yields a slightly better classification performance than AUROC
tested with three different thresholds (15, 20, 30). The thresholds were selected empirically during
the experiments. It can also be seen that with fewer samples per class, the early stopping method
with validation error performs better, but with more than 20 samples per class, no early stopping
technique seems more efficient. However, since the focus is on the few samples per class, an early
stopping criterion with validation error is used for all adapter networks in further experiments.
A snapshot of the classification performance can be seen in the table 6.2

Table 6.2: EARLY STOPPING PERFORMANCE. Classification performance with early stopping techniques
using ResNet-50 and adapter network on Indoor Scenes dataset employing nearest neighbor classification
with the COS approach.

1 2 5 11 67
100 epochs 0.278 £0.01  0.392+£0.009 0.513 £0.014 0.567 £0.011 0.715 £+ 0.008
AUROC-15 0.258 £0.023 0.347£0.018 0.411 £0.046 0.49 £0.033  0.667 = 0.009
AUROC-20 0.279 £0.011 0.387+£0.014 0.469 +0.025 0.552 £ 0.009 0.689 £ 0.009
AUROC-30 0.272£0.013 0.396 £0.012 0.518 £0.012 0.57 £0.008  0.71 £ 0.008

Validation loss-15 0.279 £ 0.013 0.396 +0.011 0.519 £ 0.01 0.576 4+ 0.006 0.716 + 0.007
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Figure 6.2: RESNET-50 CLASSIFICATION PERFORMANCE WITH EARLY STOPPING. This figure illus-
trates the nearest neighbor classification accuracy employing the COS approach on the Indoor Scenes dataset
with increasing image samples per class testing the early stopping metrics presented in chapter 5.3.2. The
accuracy values are subtracted by the accuracy values obtained with 100 training epochs. In the case of AU-
ROC three different threshold are used: 15 (blue), 20 (orange), and 30 (green). The validation error metric is
performed with a threshold counter of 15 (red).

6.1.3 Layer design

In order to determine the number of layers and neurons of the first two layers of the adapter
network, which have a relatively better accuracy performance compared to other configurations,
four different plots are created as shown in the figure 6.3. Analogous to the determination of the
early stop metric, the pre-trained ResNet-50 and the Indoor Scenes dataset are used, but this time
with end-to-end classification and early stop with validation error threshold at 15 counts. The
first plot 6.3(a) shows four different neuron outputs (64, 128, 256, 512) of the first layer when only
two fully-connected layers are applied. The performance increase with more neurons is the same
for all configurations, with only 64 neurons showing a slightly reduced performance compared to
the others. An analogous behavior is also observed with three fully-connected layers illustrated
in plots 6.3(b) and 6.3(c). In plot 6.3(d), the network with two fully-connected layers is compared
to networks with three fully-connected layers with the same number of neurons in the first output
layer but different configurations in the second output layer. The two-layer network shows better
accuracy across all sample sizes per class, as seen in table 6.3. For this reason, the two-layer
network with 512 output neurons is chosen for all following experiments.

Table 6.3: TWO- vS. THREE-DENSE LAYERS PERFORMANCE. End-to-end classification performance
using ResNet-50 and adapter network with either two or three fully-connected layers on Indoor Scenes
dataset.

1 2 5 11 67

512 0.285+0.009 0.391+0.013 0.52+0.01 0.578 £0.011 0.714 +£0.01
512-64  0.204 £0.015 0.301 £0.015 0.387£0.017 0.471+0.01 0.65 +0.015

512-32  0.199 £ 0.02 0.275 £ 0.016 0.377£0.011 0.452 £0.013 0.634 £ 0.009
512-256 0.224 £0.019 0.313 £0.02 0.406 £0.013  0.481 £ 0.008 0.653 £0.016
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Figure 6.3: ADPATIVE NETWORK LAYER COMPARISON. This figure shows the classification perfor-
mance using ResNet-50 on the Indoor Scenes dataset changing the adapter network structure to (a) Two-
Dense-Layers with variable number of outputs in the first layer, Three-Dense-Layers with either (b) 32 or (c)
64 output neurons in second layer and (d) Two- and Three-Dense-Layers with 512 output neurons in first
layer.

6.2 Pre-trained network comparison

According to RQ 2, the aim is to determine whether all five pre-trained networks with ImageNet
are equally capable of producing sufficiently descriptive deep features. Thus, representative gal-
leries specifically adapted to the target dataset should be enrolled to achieve an accurate image
classification. The experiments performed include nearest neighbor classification with the MEAN
approach. Similar to other experiments, the classification was repeated with increasing sample
sizes per class. As depicted in figure 6.4, AlexNet shows lower performance, especially on the
Aircraft, Fruit and Vegetable, Indoor Scenes, and Office-31 datasets. This is not only observed for
one sample per class but also gradually when more samples per class are available. The accuracy
performance does not reach the performance of the other networks investigated. The classifica-
tion of the Virus dataset proves to be more effective than for other networks when 1 sample per
class is used. In the progression, however, the accuracy improves less strongly in comparison. To



6.2 Pre-trained network comparison 35

put this result in context with the published network ImageNet classification performances!, the
absolute top-1-accuracy differences between AlexNet and the remaining examined networks are
depicted in table 6.4. To complement this, table 6.5 shows the relative ratio of the difference be-
tween the accuracy values measured in the experiment and the published values classified with
ImageNet between AlexNet and ResNet-50, as specified in equation (6.1). It can be seen that the
absolute classification difference of 19.608% between ResNet-50 and AlexNet is only reached for
the Indoor Scenes dataset between three and nine samples per class. However, almost for all
differences, more than one-third of this amount is found, demonstrating the constant superior
performance of ResNet-50 compared to AlexNet. For this reason, AlexNet is not included in fur-
ther experiments, especially because the other networks demonstrate similar classification values.
The Virus data set seems to be an exception because, in contrast to other datasets, MobileNet-V3
offers up to 10% better performance when more samples per class are available. AlexNet and
VGG-16 can still produce similar results with one sample per class but achieve performance up
to 5 % lower than ResNet-50 and DenseNet-121 as the number of samples increases. Overall, the
performance loss is proportionally greater than the difference between the other networks, which
justifies the exclusion of the network for the remaining experiments. Thus, only the performance
results of MobileNet-V3, DenseNet-121, and ResNet-50 are evaluated in further experiments.

AccResNet—SO - ACCAleznet (6 1)

Accaigs = 19.608

Table 6.4: ABSOLUTE NETWORK ACCURACY DIFFERENCE. This table illustrates the absolute accuracy
difference in percent between AlexNet and VGG-16, ResNet-50, MobileNet-V3, and DenseNet-121 evaluated
on ImageNet."

VGG-16 ResNet-50 MobileNet-V3 DenseNet-121
AlexNet 15.07 19.608 17.52 17.912

1https: / /pytorch.org/vision/stable/models.html
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Figure 6.4: PRE-TRAINED NETWORK COMPARISON. This figure shows the classification performance
using nearest neighbor classification with the MEAN approach over all five examined pre-trained networks
on the datasets: (a) Aircraft, (b) Fruit and Vegetable, (c) Indoor Scenes, (d) Office-31, and (e) Virus.
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Table 6.5: RELATIVE ACCURACY RESNET-50 VS. ALEXNET. This table illustrates the relative ratio of
the difference between the accuracy values measured in the experiment and the published accuracy values
from table 2.1 classified with ImageNet between ResNet-50 and AlexNet as specified in equation (6.1). The
columns represent the respective ratio using the number of image samples per class.

1 2 3 4 5 7 9 23 31
Aircraft 0316 0364 0334 0416 0368 0458 0.553 0.687 0.645
Fruit and Vegetable 0.738 0.540 0.354 0.326 0.283 0439 0.283 0.285 0.239
Indoor 0.800 0938 1.113 1177 1.136 1.067 1.000 0.843 0.848
Office-31 0.816 0.646 0459 0476 0493 0510 0408 0.425 0.340
Virus -0.356  0.291 0.390 0469 0380 0434 0.170 0276 0.199

6.3 Approach comparison

This section compares the different transfer learning approaches according to RQ 3. The results
of the four sub-analyses described in chapter 5 are discussed one after the other. First, the end-to-
end classification performance of the fine-tuned and adapter network is compared. In figure 6.5
the results of each dataset are shown. It can be seen across all datasets that the adapter network
classifies better than the fine-tuned network when 1-10 samples per class are available. The per-
formance advantage of the adapter network decreases with progress, and for most datasets in the
range of 10 samples per class, both transfer learning methods perform equivalently. The effect
reverses for more than ten samples per class. More precisely, the fine-tuned network shows a
steeper performance increase while it flattens out when the adapter network is used. The Virus
dataset result is an exception to this observation, where the adapter network also performs better
than the fine-tuned network, but the effect is not reversed. It can also be seen that the classifica-
tion with the fine-tuned network, despite a clear tendency, partially suffers performance losses
compared to the previous classification, especially with four samples per class. In table E.1 it can
be seen that DenseNet-121 in particular is responsible for a decrease in performance.

Second, figure 6.6 shows the comparison between pre-trained, adaptive, and fine-tuned using
deep feature classification methods for each dataset. The results of the nearest neighbor classifi-
cation methods using the COS and MEAN approach, as well as the results of the SVM approach,
are considered. There is a similar tendency as in figure 6.5 where the fine-tuned network achieves
a better classification in contrast to the pre-trained and the adapter network with more samples
per class. The fine-tuned network also performs worse for the Fruit and Vegetable, Indoor Scenes,
and Office-31 datasets with a few samples per class. In contrast to figure 6.5, the classification re-
sults for the remaining datasets are similar. The performance of the pre-trained network without
training is comparable to that of the adapter network. However, across all networks, the results
favor using the pre-trained network when fewer samples per class are available.
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Figure 6.5: ADAPTIVE AND FINE-TUNED NETWORK COMPARISON. This figure shows the end-to-end
classification performance using adapter and fine-tuned networks averaging over the results of ResNet-50,
DenseNet-121 and MobileNet-V3 on the datasets: (a) Aircraft, (b) Fruit and Vegetable, (c) Indoor Scenes, (d)
Office-31, and (e) Virus.
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Figure 6.6: ADAPTIVE, FINE-TUNED AND PRE-TRAINED NETWORK COMPARISON. This figure shows
the nearest neighbor classification with COS and MEAN and the SVM classification performance using
adapter, fine-tuned and pre-trained networks averaging over the results of ResNet-50, DenseNet-121 and
MobileNet-V3 on the datasets: (a) Aircraft, (b) Fruit and Vegetable, (c) Indoor Scenes, (d) Office-31, and (e)
Virus.
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Third, instead of distinguishing between pre-trained, fine-tuned, and adapter networks, the near-
est neighbor classification with the COS and MEAN approach and SVM classification is com-
pared. The results of the adapter, fine-tuned, and pre-trained network configurations of the
ResNet-50, DenseNet-121, and MobileNet-V3 networks are considered. In figure 6.7, it can be
seen that the SVM model displays a larger variance than the nearest neighbor classification with
one sample per class, especially on the Fruit and Vegetable and Office-31 dataset. In addition, up
to 5% inferior performance compared to the nearest neighbor classification approach can be seen.
However, with more samples, SVM is advantageous over gallery enrollment. The COS approach
begins to outperform the SVM results when more than 60 samples per class are used in the fruit
and vegetable dataset. Concerning the difference between COS and MEAN, it can be seen that
the accuracy values are identical for one sample per class. This is because the average of one
feature per class yields the same feature again. The use of more samples shows a preference for
the averaged gallery in the Aircraft and Indoor Scenes dataset. Both variants show comparable
values for the Fruit and Vegetable and Office-31 dataset, but the MEAN variant flattens out more
strongly with more than ten samples per class. In the Virus dataset, both classifications variants
are almost identical.

Fourth, herein best transfer learning approaches of the sub-analyses are summarized. From fig-
ure 6.5 it follows that the adapter network classifies better than the fine-tuned network when
using a few samples. For more samples, the effect is reversed. When utilizing the networks as
feature extractors, figure 6.6 shows that the pre-trained network operates most reliably over the
five datasets compared to the adapter and fine-tuned network. Finally, for figure 6.7, the MEAN
approach performs equally well or even better (in the case of the Indoor Scenes dataset) than
the COS approach. The SVM model shows inferior accuracy with few samples compared to the
nearest neighbor classification but achieves a better performance with more samples. Thus, in
figure 6.8 the adaptive network is represented through end-to-end classification and a deep fea-
ture extractor for enrollment of the averaged gallery. In addition, the averaged gallery samples
extracted from the pre-trained network and the fine-tuned network classified with the softmax
layer and with the SVM model are also shown in the graph. It can be seen that for the Aircraft
and Virus dataset, the adaptive network with end-to-end classification performs up to 10% worse
than approaches with deep feature classification. For the remaining datasets, the performance
improves more effectively when using an increasing amount of samples per class. Regarding
the datasets Fruit and Vegetable and Indoor Scenes, it is even better with more samples than the
nearest neighbor classification. If the methods are only considered on their classification results
in up to ten samples per class, then the pre-trained network with MEAN is the best approach.
With more samples, the advantage of using the fine-tuned network combined with the SVM clas-
sifier becomes particularly apparent. Across all datasets, the fine-tuned network with end-to-end
classification achieves the lowest accuracy with few samples. The result can be improved when
the network serves as a feature extractor combined with the SVM model. Generally, the results
indicate that feature extraction methods are equal or superior in comparison with end-to-end
classification methods when using few samples per class.
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Figure 6.7: COS vs. MEAN vS. SVM CLASSIFICATION. This figure shows the classification perfor-
mance comparing the COS and MEAN nearest neighbor classification approach and the SVM classification
results averaged over adaptive, fine-tuned, and pre-trained network configurations averaging over the re-
sults of ResNet-50, DenseNet-121, and MobileNet-V3 on the datasets: (a) Aircraft, (b) Fruit and Vegetable,
(c) Indoor Scenes, (d) Office-31, and (e) Virus.
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Figure 6.8: BEST APPROACHES COMPARISON. This figure shows nearest neighbor classification with
MEAN (dashed), the SVM classification (dashed) and the end-to-end classification (solid) results using the
adapter (blue), fine-tuned (orange) and pre-trained (green) networks averaging over the results of ResNet-
50, DenseNet-121 and MobileNet-V3 on the datasets: (a) Aircraft, (b) Fruit and Vegetable, (c) Indoor Scenes,
(d) Office-31, and (e) Virus.
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6.4 Gallery comparison

In this section, the robustness of the feature gallery in the cosine similarity approach according to
RQ 5 is investigated. Thus, all network variants according to the chapter 3.2 and the pre-trained
networks ResNet-50, DenseNet-121, and MobileNet-V3 are taken into account. The accuracy val-
ues are determined by the nearest neighbor classification with the MEAN approach. Therefore,
the average sample representing the class in the gallery is calculated either with five samples per
class (C-GAL) or all possible training samples (I-GAL). The differences are shown in figure 6.9.
C-GAL achieves higher accuracy values in most datasets when using 1 to 5 samples per class. An
exception to this observation can be found in the Fruit and Vegetable dataset, where C-GAL al-
ready achieves a 2% lower accuracy value with two samples per class. A maximum performance
increase of 10% in the case of C-GAL when applying more training samples is observed. The
improvement of the classification using I-GAL shows a much higher increase in comparison. It is
apparent when more than ten samples per class are available. The Virus dataset shows another
variant of this rule since, in this case, the C-GAL achieves a better classification until just before
applying 20 samples per class. In the case of the Aircraft dataset, C-GAL outperforms I-GAL up
to seven samples per class.
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Figure 6.9: CONSTANT GALLERY (C-GAL) VS. INCREASING GALLERY (I-GAL). This figure shows
the nearest neighbor classification performance with the MEAN approach using five samples per class as
gallery representation, which are not part of the training (C-GAL) compared to the increasing gallery sam-
ples per class (I-GAL). The adaptive, fine-tuned and pre-trained networks are considered averaged over
ResNet-50, DenseNet-121 and MobileNet-V3 on the datasets: (a) Aircraft, (b) Fruit and Vegetable, (c) Indoor
Scenes, (d) Office-31, and (e) Virus.
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6.5 Class performance

In the previous chapters, only the overall performance of a transfer learning approach is ana-
lyzed. For this reason, the individual class performance is discussed to identify the effectiveness
of the descriptive features indirectly. For each of the five datasets, figures 6.10, 6.11, 6.12, 6.13, and
6.14 show the ground truth class performance of the best transfer learning approaches identified
by figure 6.8. Due to comparatively best performance, DenseNet-121 is chosen for the first two
and the last dataset, ResNet-50, for each of the remaining datasets. Additionally, the confusion
matrix adopting the nearest neighbor classification with the MEAN approach and the pre-trained
network with three different sample sizes is shown in the appendix for each dataset (Aircraft: A.1,
A.2, A.3; Fruit and Vegetable: B.1, B.2, B.3; Indoor Scenes: C.1, C.2, C.3; Office-31: D.1, D.2, D.3;
Virus: E.1, E.2, E.3). The results are shown three times in the range of 1 - 12 samples per class to
indicate the classification performance when more samples are used per class.

Regarding the aircraft dataset, one sample per class shows that especially the classes Airbus, Bom-
badier Aerospace, Cirrus Aircraft, Eurofighter, Lockheed Martin, Robin, Supermarine attain more than
40% accuracy for all transfer learning approaches used. However, when the finetuned network
with softmax classification is applied, only Supermarine reaches this value. The remaining classes
are not distinguishable for any network. In particular, the classes Airbus, Bombadier Aerospace,
Ilyushin are incorrectly classified across all approaches. When three samples per class are used,
Airbus loses performance across all transfer learning approaches, with Eurofighter achieving over
30% accuracy across the board. Even using ten samples per class, there are still classes that achieve
less than 10% accuracy. It can still be observed that the class Bombardier Aerospace is classified com-
paratively frequently with the pre-trained network approach.

Using the pre-trained network approach with one sample per class on the Fruit and Vegetable
dataset, ten classes already achieve over 90% accuracy. Most of these classes, such as Pinapple,
Cabbage, Lemon, Cauliflower, Pomegranate also occur in ImageNet. Correspondingly, these classes
are correctly identified by applying other approaches by over 50%. In contrast, the classes Ap-
ple, Corn, Mango, Jalepeno, Paprika are categorized below 20%. In particular, it can be seen that
the classes Corn and Sweetcorn classify the other class in case of misclassification. In progress,
the classification results of the other approaches improve compared to the pre-trained network
approach. The already visible tendency that transfer learning cannot discriminate the mentioned
classes based on the features with one sample per class continues with more samples per class.
However, more than half of the class approaches achieve above 90% accuracy with ten samples.

Referring to the Indoor Scenes dataset, the pre-trained network approach allows classifying seven
classes with over 70% accuracy. Analogous to the Fruit and Vegetable dataset, misclassification
of the classes Movie theater and Auditorium, as well as Library and Bookstore and others, occur,
erroneously predicting the respective other class. This effect is not as pronounced as with the
dataset mentioned above since other classes are also incorrectly classified in addition to the classes
mentioned. Similarly, when classifying with one sample per class, instead of predicting the true
class Cloister, Church Inside is predicted to a larger extent. The effect is no longer visible with three
samples per class, whereas only 1 sample is assigned to the wrong class. The adaptive network
approaches achieve comparable accuracy results compared to the pre-trained approach. On the
other hand, fine-tuned network approaches show more classes with less than 20% accuracy. In
contrast, comparable performance is achieved with more samples per class, especially when using
the fine-tuned network approach with SVM. The classes with the lowest performance results also
show the worst values across all approaches.
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Figure 6.10
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Figure 6.11: GROUND TRUTH CLASS PERFORMANCE FRUIT AND VEGETABLE. This figure shows the

true class classification results for each class utilizing the best transfer learning approaches with DenseNet-

121 identified in RQ 3 on the Fruit and Vegetable dataset using (a) 1 (b) 4 (c) 9 samples per class.
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(b) 3 samples per class
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(c) 11 samples per class

GROUND TRUTH CLASS PERFORMANCE INDOOR SCENES. This figure shows the true
class classification results for each class utilizing the best transfer learning approaches with ResNet-50 iden-

tified in RQ 3 on the Indoor Scenes dataset using (a) 1 (b) 3 (c) 11 samples per class

Figure 6.12
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Using one sample per class on the Office-31 dataset, one-third of the classes achieved over 90%
accuracy. These values can be observed across all transfer learning approaches. Only the fine-
tuned network approaches yield more classified samples under 20% accuracy. The class Punchers
cannot be discriminated by all approaches. Using three samples per class improves the overall
performance, but the number of correctly classified classes above 90% decreases to 6 for the adap-
tive network with similarity distance classification and 5 for the pre-trained network approach.
Except for the fine-tuned network approach with softmax classification, an accuracy of more than
20% is attained for all classes. However, the classification differences between the approaches
diminish with 12 samples per class, resulting in no classification under 20% for all classes. Anal-
ogous to the other datasets, the relatively lower discriminated classes, i.e., Punchers, File Cabinet
also perform less effectively across all approaches with more samples per class.

The pre-trained network approach is the most precise for the virus dataset for the class Pseudo-
cowpox, achieving an accuracy of more than 90%. In contrast, the fine-tuned network approach
with softmax classification achieves less than 20% accuracy for three-quarters of all classes. With
three samples per class, the adaptive network approach for the class Pailloma can achieve a per-
formance above 90%. In contrast, the fine-tuned network with SVM is the only approach to ac-
complish a similar performance for class WestNile. When using more samples, the mentioned
class approaches achieve similar classification values. Solely the fine-tuned approach is not able
to correctly classify the class Papilloma. Analysis of the confusion matrix of the pre-trained net-
work approach shows that although the features allow pronounced discrimination, there is still
a higher dispersion of predicted classes with nine samples per class than in the datasets already
described.
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(c) 12 samples per class

classification results for each class utilizing the best transfer learning approaches with ResNet-50 identified

Figure 6.13: GROUND TRUTH CLASS PERFORMANCE OFFICE-31. This figure shows the true class
in RQ 3 on the Office-31 dataset using (a) 1 (b) 3 (c) 12 samples per class.
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(c) 9 samples per class

Figure 6.14: GROUND TRUTH CLASS PERFORMANCE VIRUS. This figure shows the true class classifi-
cation results for each class utilizing the best transfer learning approaches with DenseNet-121 identified in
RQ 3 on the Virus dataset using (a) 1 (b) 3 (c) 9 samples per class.






Chapter 7

Discussion

In the following, the investigated transfer learning approaches for multi-classification image tasks
for the presented five databases with limited data availability will be highlighted based on the re-
sults in chapter 6. In addition, it is also essential to identify which pre-trained networks should
be preferred for transfer learning regardless of the approach. In addition, it is discussed whether
it is appropriate to create a feature gallery with or without training examples. The results of the
adapter network design according to RQ 1 are described subsequently.

First, the results indicate that deep features as input for the adapter network should be preferred,
which was also why this approach was adopted in the remaining experiments. The result con-
trasts the adapter network configuration used in the work of ( ) where the logits
are used. Still, as ( ) argues, features from earlier layers are not yet as strongly
adapted to the source dataset. This may indicate better performance since parameters from a
prior layer are used. Another reason for the performance difference could be the varying output
dimensions. The logits comprise 1,000 outputs compared to 2,048 when using the deep features
of the pre-trained ResNet-50. The deep features have twice as much information and can pass
it on to the adapter network. Since this performance advantage can only be observed for the In-
door Scenes dataset, it would be interesting to see how the deep features input would compare to
the logits input with less overlapping target and source datasets. Also, a combination analogous
to the technique suggested by ( ) would be an option. Regarding early stop-
ping, there were only marginal differences in performance as shown in figure 6. AUROC, with
a threshold of 15, clearly stopped the training too early, especially when more samples per class
were available. The use of AUROC would theoretically help the discrimination of deep features
because if the features used for the gallery are most clearly distinguishable from other features,
then more meaningful class representations should be available when enrolling in the gallery.
In practice, however, AUROC is very sensitive to parameter changes in the network. Increasing
the threshold from 15 to 30 improves performance by considering sensitivity. The validation error
proved a more robust value in this case and was therefore used in all other experiments. However,
it does not seem suitable, as no significant performance increase is achieved. It remains question-
able whether early stopping is even helpful in this context or whether a more meaningful metric,
such as validation accuracy, should be applied. Regarding the number of fully-connected layers
in the adapter network, the two-layer network showed a performance advantage with only a few
samples. Interestingly, fewer model parameters must be trained in the three-layer network when
512 neurons are used in the first layer and 16 neurons in the hidden layer. In order to minimize
overfitting, the number of model parameters should be kept as small as possible when training
with limited available training data. The design decision deviates from the adapter architecture
proposed by ( ), where a hidden layer with 64 neurons was used. On the other
hand, ( ) used adaptation layers without a hidden layer after the five convo-
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lutional layers of AlexNet. The usage of only one new softmax classifier shows, as evident in the
experiments of ( ), that this architecture is not complex enough for accurate clas-
sification. Similarly, 64 neurons in the first layer of the adapter network are too small to classify
image classes to the same extent as other configurations, resulting in underfitting. The first layer’s
modifications with 128, 256, and 512 neurons show no relevant performance difference. For the
subsequent experiments, 512 neurons were chosen because Aircraft and Virus datasets have fewer
overlaps with ImageNet than Indoor Scenes. Therefore, the classification can be assumed to re-
quire a more complex network. After running each configuration ten times, it can be seen that the
standard deviation is a maximum of 0.02%. This occurs mainly when few training samples are
used. With more samples, typically, fewer deviations are observed. A specific configuration was
performed once for the further experiments because it can be assumed that comparable standard
deviations occur.

Secondly, RQ 2 is addressed in the following paragraph. Initially, the analysis of

( ) concerning the influence of ImageNet top-1 accuracy values is relevant. According to the
table 2.1, the value of ResNet-50 is about 2% better than the next best networks DenseNet-121
and MobileNet-V3. However, this better performance can only be observed for the Indoor Scenes
dataset in figure 6.4. No clear network preference can be determined regarding the Fruit and
Vegetable and Office-31 datasets. The variation of the performance results can also be due to
the shuffled training data, the data augmentation, and the stochastic gradient descent. For the
Aircraft and Virus datasets, whose classes are more difficult to differentiate than the others, one
can see stronger performance variabilities than for the others. In the former, ImageNet also has
aircraft classes, but the classes are less fine-grained, and in the latter, the microscopic image data
do not occur within the ImageNet classes. In general, however, the conclusion of (

, ) that top-1-accuracy correlates with transfer learning performance can be reinforced.
VGG-16 and AlexNet perform worse than the rest of the networks across all datasets, whereas the
absolute differences of table 6.4 only indicate the performance trend. Although the performance
progression of VGG-16 according to figure 6.4 is similar to that of MobileNet-V3, DenseNet-121
and ResNet-50, it can be seen from the tables A.1, B.1, C.1, D.1, E.1 that the network using the
adaptive approach is especially not able no classify a comparable amount of correct samples.
VGG-16s performance difference compared to other networks is especially inferior when consid-
ering the results conducted on the Virus dataset when using 1 sample per class. Despite the fact
that this trend becomes less prominent when more samples per class are used, it decreases the
overall performance of the adaptive network, which is why VGG-16 was not employed for other
experiments. It is noticeable that the networks, according to table 2.1 have fewer convolutional
layers and a larger deep features dimension. It should also be kept in mind that for target datasets
with a less pronounced domain overlap with ImageNet, the transfer learning performance may
not correlate with the top-1-accuracy scores. This could also explain the better performance of
the virus dataset with MobileNet-V3 and the Aircraft dataset with DenseNet-121 compared to
ResNet-50, especially when more samples per class are available. The findings of ( ,

) concerning the influence of the number of model parameters of the pre-trained network
can only be compared to a limited extent in these experiments since the same network structures
are not compared with different parameter sizes. However, it can be seen that the networks with
the most parameters according to table 2.1 perform worst in these experiments. Drawing this
conclusion on the number of parameters would be wrong because it must also be mentioned that
the other networks are further developments of AlexNet and VGG-16. The structural optimiza-
tions in the network and thus their possibility of more convolutional layers have led to better
results. They should therefore be preferred as a pre-trained network for deep transfer learning
approaches with limited data availability.
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Thirdly, this section discusses the results of RQ 3 and RQ 4. The comparison between the adapter
network and the fine-tuned network shows that the adapter network is superior to the fine-tuned
network approach for transfer learning tasks with 1-10 samples. This can be especially because,
with the fine-tuned network, all parameters of the pre-trained network have to be adjusted. In
contrast, the pre-trained network is not changed in the adapter network approach. In this case,
relatively few layers have to be trained. As an example for ResNet-50 trained on the Indoor Scenes
dataset, the training for the fine-tuned network according to 2.1 includes 25.56 million parameters
and for the adapter network with two fully-connected layers and a deep feature size of 2’048 only
1.1 million ((2'048%512)+ (512%67)+512+467)) parameters. Despite a small learning rate of 0.0001
and an additional decay scheme, diverging weight adaptation seems to occur. With increasing
training size, the fine-tuned network should be superior since the fine-tuning of the pre-trained
network allows the deep features to be adapted to the target dataset before the extraction and
creation of the gallery, thus incorporating specific data characteristics. This is not possible with
the adapter network. As seen in figure 6.8, the additional use of the SVM approach can reduce
the disadvantage of fine-tuning with few samples per class compared to the adaptive and pre-
trained approach. In particular, with more samples, the advantage of fine-tuning the weights in
the pre-trained network becomes evident again. It is also evident that training with the adaptor
network does not significantly improve the discrimination properties of deep features towards
the target dataset. The classification accuracy remains below the results obtained with the pre-
trained network, showing only better performance for the Fruit and Vegetable dataset with more
samples. Therefore, according to these experiments, it is advisable to use the pre-trained network
for enrolling the gallery for a few samples without training. One reason could be that the adapter
network with 1.1 million parameters is too complex to generate better discriminated deep fea-
tures. In contrast, the work of ( ), for example, has shown that the adapter
network they developed with Objectosphere loss outperforms the VGG2 network for open-set
face recognition tasks. The proposed architecture of ( ) also achieves promis-
ing results, although the authors do not compare it to the classification of the pre-trained network
without training. Furthermore, for more difficult classification tasks (Aircraft and Virus) with 1-3
samples per class, the representation of the deep features is so limited that it is not relevant which
transfer learning method is chosen. In this case, it makes sense not to do additional training but
to use the extracted deep features directly from the pre-trained network. In figure 6.7 it is appar-
ent that the extracted features should preferably be used in combination with the SVM classifier
when using more samples. That the utilization of SVM classifiers offers advantages has already
been demonstrated by the work of ( ), where even without feature selection, better
performance is achieved with more samples. Figure 6.8 also illustrates that fine-tuning of deep
features is indicated from 20 samples per class to increase classification performance. Above this
amount of training data, fine-tuning in combination with SVM leads to the best classification ac-
curacy for all datasets with more than 20 samples per class. This occurs even earlier when ten
samples per class are used for the Aircraft and Fruit and Vegetable datasets. With few samples,
however, the SVM classifier cannot learn the decision boundary robustly due to the insufficient
descriptive deep features. In this case, the MEAN approach is the preferred option. Compared to
the COS approach, greater variation can occur, making it challenging for probing test features to
determine the correct class. As pointed out by the work of ( ), the superiority
of deep feature extraction with subsequential gallery enrollment and probing over the use of the
sole softmax classifier in figure 6.8 is evident.
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Differences being more significant for more difficult domains (aircraft, viruses) than for domains
related to ImageNet may be explained by several reasons. This may be due to the fact that deep
features have a larger parameter dimension than the logits fed into the softmax classifier and
therefore contain even more information that is not yet sufficiently compressible. Domains with
greater similarity to the source might already contain enough descriptive power, so that dimen-
sion difference is less relevant.

The constant gallery (C-GAL) features studied in RQ 5 and shown in figure 6.9 are limited in their
ability to increase performance despite more training samples, which indicates that the individ-
ual features are not sufficiently descriptive for the gallery. Under these circumstances, it makes
sense to use the image samples already used for training for the gallery (I-GAL). For this reason,
one can see the difference between the datasets less overlapped with ImageNet and the rest of
the datasets. For the Aircraft and Virus datasets, the better performance of C-GAL despite more
samples per class indicates that image samples that were not part of the training can form a more
robust gallery due to the over-adaptation of the training samples when using the I-GAL approach.
Thus, based on the results, it can be concluded that for fine-grained domains with few samples
per class, samples not used for training should be selected for the gallery. If more than ten sam-
ples are available or the target dataset strongly overlaps with ImageNet, it is recommended to
enroll the gallery with training samples. What has to be considered is that the samples for C-GAL
would also improve the performance of the respective classifier as training samples, which is in
contrast to this methodology. Although this is not the case with the Virus dataset results, this
would need to be further investigated in other experiments with alternative target and source
domains. The findings of ( ) and ( ) regarding the declining
transferability between greater distances between source and target datasets are replicated in the
results of this study. Since deep feature extraction was performed in deeper layers with, accord-
ing to the authors, dataset-specific features in all experiments in this thesis, this could be why
the samples used for training for the gallery perform worse on more distant datasets related to
ImageNet. The extracted deep features are over-adapted to ImageNet. Therefore, when using
image samples that are not yet known to the network, better performance is achieved because
the specificity is less pronounced. The effect is diminished with more samples because it seems
that the number of image samples counteracts the specificity with more variability in the training
data. In smaller distances between source and target dataset, as is the case with the Indoor, Fruit,
and Vegetable, and Office-31 dataset, the specificity of the deep features is advantageous, which
is why in these cases, better performance is also achieved compared to C-GAL.

In this section, conclusions regarding class performance are described. Across all datasets, there is
a high dispersity across classes when only one sample per class is utilized. The networks cannot
yet separate the feature space according to the classes. However, with smaller distances between
the source and target dataset, there are already more classes classified with over 80% accuracy.
In the case of the Aircraft and Virus dataset, on the other hand, even with more samples, there
are still classes that are classified proportionally more frequently. In the case of Aircraft, it can
be assumed that these classes correspond most closely to the feature space of the corresponding
classes in ImageNet, in particular, the class Airliner. Such classes can also be identified in the
other datasets. For the Virus dataset, there is no overlap, so it was to be expected that the features
would not approach the descriptiveness of the features of other datasets. Even the best classifiers
cannot classify classes with highly overlapping feature space in a few samples, and the distinction
is not a trivial task even for humans. Examples are the classes Corn and Sweetcorn in the Fruit and
Vegetable and Trainstation and Subway in the Indoor Scenes dataset.
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Based on the results, it is clear that the transfer learning approaches are only as good as the
extracted deep features. For this reason, it can be seen that the prediction of some individual
classes is relatively inefficient across all approaches investigated. The results indicate that clas-
sification accuracy is not the most appropriate measure for evaluating multi-class classification.
Some classes are always correct, others never. This is not the intended behavior of a classifier.

Transfer learning methods can be applied to different domains, but in this thesis, only super-
vised image classification tasks are being discussed. In order to allow an efficient adaptation with
respect to the five pre-trained networks, and also due to the wide variation of existing transfer
learning methods, only basic principles described in chapter 3 are considered, especially regard-
ing fine-tuning where no layers were frozen. It is also important to note that the deep features
were not extracted from different parts of a specific network but only from the same layer. Fur-
thermore, constructing a constant number of samples per class during training allows a more
straightforward analysis utilizing accuracy metrics over all datasets. However, the data distribu-
tion as a side effect does not correspond to reality. Thus, the results of the conducted experiments
must be taken with caution. Additionally, specific classes have to be neglected from further anal-
ysis due to the limited number of class samples in the Virus and Indoor Scenes data. This fact
is also mentioned in more detail in chapter 4. Before comparing the approaches, network design
decisions had to be made, especially regarding the adapter network, where many design options
are available. Attention is paid to the regularization, number of layers, and deep features or logits
input, which only allows limiting statements about the performance of the adapter network. The
design decisions were made based on the Indoor Scenes only, which generally might not be the
ideal choice for other datasets. Moreover, only the cross-entropy loss function with softmax is
used during the training of the networks. Other loss functions are not considered.






Chapter 8

Conclusion

Many research projects have already successfully adopted transfer learning methods. Often, fine-
tuning or deep feature extraction techniques are utilized, which achieve performance improve-
ments despite the limited availability of the target dataset. However, an in-depth evaluation of
transfer learning methods with only 1-3 training samples per class has not yet been conducted.
Also, the number of training samples per class above which a transfer learning approach is indi-
cated has not yet been investigated to the same extent as in this work. By carefully analyzing the
classification performance of different transfer learning methods, this thesis shows that no addi-
tional deep feature adaptation to the target dataset is indicated, especially for less than 20 samples
per class. The deep features extracted from the pre-trained network using the MEAN approach
should be used directly. As the number of samples increases, it becomes clear that adjustment of
the network weights is advisable. Fine-tuning is indicated when 20 or more samples per class are
available. The top-1 accuracy scores can be considered as an indicator of network performance
on transfer learning tasks. However, network performance generally varies to a greater extent
for more distant target datasets compared to ImageNet-related datasets, leading to the conclu-
sion that ImageNet top-1 accuracy is, in this case, not an appropriate benchmark. Furthermore,
having 1-3 samples per class, it is not relevant which transfer learning method (pre-trained, fine-
tuned, or adaptive) is chosen for more distant classification tasks due to the limitation of the
learned deep feature representation. Interestingly, deep feature extraction generally improves
classification performance, which is particularly noticeable in the case of distant target datasets.
Choosing the appropriate transfer learning approach is not simple, especially when only a few
training samples are available. However, this thesis’s findings should help focus on the essential
transfer learning techniques to achieve the best possible outcome.

In order to further expand the conclusions reached, one focus should be on additional loss func-
tions for training the adapter network and fine-tuning the pre-trained network. Furthermore,
the investigations should be carried out with other target datasets that have more or less over-
laps with the source dataset (e.g., Visual Domain Decathlon'). Experiments with other source
datasets and other pre-trained networks (e.g., Inception-V3?, EfficientNet-V2?) would also be ap-
propriate. As the investigations have shown, achieving accurate performance for fine-grained
and non-source-related datasets with only a few samples is challenging. Other approaches to fur-
ther expand on are few-shot learning algorithms and ensemble models. It would be interesting to
analyze their performances on the same tasks.

1https://www.robots.ox.ac.uk/ vgg/decathlon/
2https: / /pytorch.org/vision/stable/models.html
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In addition, adapter and fine-tuning network variants could be included in the analysis, for ex-
ample, with varying activation features, a different selection of layers to freeze, and where deep
feature extraction should occur. Feature maps visualizations of deep learning networks, for ex-
ample, with the help of Grad-CAM ( , ), would also help to understand the
learning process better.
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Aircraft Results

Table A.1: END-TO-END CLASSIFICATION PERFORMANCE AIRCRAFT. End-to-end classification per-
formance on the Aircraft dataset and pre-trained networks utilizing the fine-tuned and adapter network
approach.

1 2 3 4 5 7 10 25 33

alexnet-adaptive 0.027 0.035 0.029 0.067 0.048 0.064 0.092 0.170 0.173
alexnet-finetuned 0.033 0.063 0.083 0.079 0.098 0.097 0.129 0221 0.237
densenet-adaptive 0.104 0.093 0.069 0.096 0.102 0.098 0.161 0211 0.197
densenet-finetuned  0.041 0.041 0.062 0.042 0.068 0.079 0.127 0.401 0.401
mobilenet-adaptive  0.035 0.076 0.066 0.082 0.117 0.125 0.158 0.243 0.246
mobilenet-finetuned 0.022 0.044 0.035 0.092 0.082 0.038 0.147 0.252 0.285
resnet50-adaptive 0.084 0.075 0.090 0.093 0.163 0.121 0.146 0216 0.240
resnet50-finetuned 0.030 0.085 0.035 0.051 0.134 0.145 0.191 0371 0.404
vgglé-adaptive 0.038 0.045 0.059 0.084 0.086 0.083 0.132 0236 0.243
vgglé-finetuned 0.066 0.071 0.090 0.144 0.132 0.177 0.208 0.358 0.390

Table A.2: ADAPTIVE CLASSIFICATION PERFORMANCE AIRCRAFT. Deep Features classification per-
formance on the Aircraft dataset and pre-trained networks utilizing the adapter network approach.

1 2 3 4 5 7 10 25 33
alexnet-cos 0.045 0.052 0.072 0.091 0.091 0.109 0.147 0.262 0.280
alexnet-mean 0.045 0.052 0.073 0.082 0.089 0.116 0.142 0.283 0.314
alexnet-svmn 0.038 0.053 0.065 0.072 0.085 0.117 0.163 0.306 0.342
densenet-cos 0126 0.161 0.179 0.210 0.222 0226 0258 0.314 0.332

densenet-mean  0.126 0.154 0.185 0.209 0.223 0.219 0.251 0.328 0.363
densenet-svm 0.118 0.139 0.199 0.233 0.260 0.262 0.336 0.460 0.494
mobilenet-cos 0.098 0.154 0.174 0.186 0.214 0.236 0.281 0.372 0.400
mobilenet-mean 0.098 0.151 0.180 0.206 0.222 0.229 0.287 0.402 0.406
mobilenet-svm 0.103 0.157 0.193 0.218 0.252 0.277 0.311 0441 0474
resnet50-cos 0.167 0.169 0.215 0.212 0.222 0.233 0.268 0.320 0.355
resnet50-mean 0.167 0.172 0.193 0.223 0.246 0.264 0.282 0.348 0.393
resnet50-svm 0.153 0.176 0.224 0.246 0.207 0.267 0329 0443 0.449
vggl6-cos 0.042 0.070 0.103 0.119 0.138 0.162 0.219 0.306 0.339
vggl6-mean 0.042 0.069 0.105 0.116 0.134 0.160 0.209 0.350 0.389
vggl6-svm 0.047 0.062 0.116 0.114 0.140 0.180 0.247 0.383 0.413
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Table A.3: FINE-TUNED CLASSIFICATION PERFORMANCE AIRCRAFT. Deep Features classification
performance on the Aircraft dataset and pre-trained networks utilizing the fine-tuned network approach.

1 2 3 4 5 7 10 25 33
alexnet-cos 0.097 0.106 0139 0.149 0.174 0.176 0.218 0.318 0.342
alexnet-mean 0.097 0.106 0.143 0.156 0.168 0.195 0.223 0.325 0.346
alexnet-svm 0.051 0.071 0.109 0.135 0.144 0.155 0.240 0.371 0.431

densenet-cos 0.149 0.152 0.147 0.219 0.180 0.175 0.238 0.580 0.602
densenet-mean  0.149 0.165 0.164 0233 0.176 0.170 0.268 0.574 0.591
densenet-svm 0.095 0.144 0.170 0.222 0.193 0.180 0.314 0.617 0.656
mobilenet-cos 0.096 0.134 0.176 0.215 0.207 0218 0.286 0.403 0.485
mobilenet-mean 0.096 0.147 0.199 0.233 0.239 0252 0.337 0.446 0.497
mobilenet-svm 0.110 0.135 0.206 0.227 0241 0299 0352 0.517 0.577
resnet50-cos 0.162 0.138 0.210 0.237 0.260 0.248 0.315 0.545 0.583
resnet50-mean 0.162 0.140 0.203 0.271 0.266 0276 0.343 0.559 0.586
resnet50-svm 0.150 0.152 0.221 0.276 0.253 0.296 0.369 0.604 0.638

vggl6-cos 0170 0.186 0.202 0.231 0.244 0.278 0.313 0.497 0.533
vggl6-mean 0.170 0.189 0.204 0.238 0.244 0.311 0334 0.508 0.522
vggl6e-svm 0.115 0.149 0.189 0.210 0.242 0.304 0.331 0.552 0.585

Table A.4: PRE-TRAINED CLASSIFICATION PERFORMANCE AIRCRAFT. Deep Features classification
performance on the Aircraft dataset and pre-trained networks.

1 2 3 4 5 7 10 25 33
alexnet-cos 0.093 0.112 0.139 0.139 0.164 0.167 0.211 0264 0.274
alexnet-mean 0.093 0.104 0.136 0.153 0.165 0.190 0.206 0.246 0.242
alexnet-svm 0.048 0.075 0.108 0.129 0.138 0.160 0.208 0.338 0.357
densenet-cos 0.180 0.190 0.207 0.223 0.246 0.262 0.291 0.409 0419

densenet-mean 0.180 0.190 0.229 0.255 0.274 0.285 0.328 0412 0416
densenet-svm 0.129 0.167 0.210 0.250 0.283 0.316 0.390 0.545 0.571
mobilenet-cos 0.104 0.134¢ 0.176 0.194 0218 0.235 0.262 0.364 0.381
mobilenet-mean 0.104 0.157 0.212 0.231 0.236 0.259 0.317 0.375 0.383
mobilenet-svm 0.111 0.151 0.204 0.237 0259 0.298 0.350 0.459 0.522
resnet50-cos 0.155 0.173 0.197 0.209 0.225 0.240 0.267 0.384 0.371
resnet50-mean 0.155 0.175 0.202 0.235 0.237 0279 0.315 0.381 0.369
resnet50-svm 0.153 0.187 0.226 0.275 0.293 0.334 0.387 0.504 0.534

vggl6-cos 0.164 0.178 0.199 0.208 0.221 0226 0.266 0.348 0.346
vggl6-mean 0.164 0.179 0.198 0.224 0.234 0.252 0.296 0.378 0.387
vggl6-svm 0.106 0.148 0.172 0.206 0.204 0.255 0308 0.441 0.449

Table A.5: CONSTANT GALLERY AIRCRAFT. Nearest neighbor classification performance with MEAN
on the Fruit and Vegetable Aircraft networks using the C-GAL approach.

1 2 3 4 5 7 10 25 28

densenet-adaptive-mean 0.188 0.217 0220 0.233 0223 0.232 0232 0265 0277
densenet-finetuned-mean 0295 0.306 0245 0.272 0196 0.161 0250 0.515 0.497
densenet-pretrained-mean  0.324 0.324 0.324 0.324 0.324 0324 0.324 0324 0324
mobilenet-adaptive-mean 0.241 0.195 0201 0.226 0229 0.241 0260 0355 0.339
mobilenet-finetuned-mean 0281 0.257 0.286 0262 0.275 0278 0.306 0.360 0.410
mobilenet-pretrained-mean 0287 0.287 0287 0.287 0287 0.287 0287 0.287 0.287
resnet50-adaptive-mean 0.246 0240 0240 0.249 0254 0.245 0269 0301 0.308
resnet50-finetuned-mean 0.286 0.236 0.280 0.305 0.341 0.294 0.345 0.499 0473
resnet50-pretrained-mean 0.287 0.287 0.287 0.287 0.287 0.287 0.287 0.287 0.287
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Figure A.1l: CONFUSION MATRIX AIRCRAFT - 1 SAMPLE. This figure shows the confusion ma-
trix adopting the nearest neighbor classification with MEAN using the pre-trained network approach.
DenseNet-121 is utilized as pre-trained network on the Aircraft dataset using 1 sample per class.
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Figure A.2: CONFUSION MATRIX AIRCRAFT - 3 SAMPLES. This figure shows the confusion ma-
trix adopting the nearest neighbor classification with MEAN using the pre-trained network approach.
DenseNet-121 is utilized as pre-trained network on the Aircraft dataset using 3 samples per class.



64 Appendix A. Aircraft Results

ATR

Airbus

Antonov [IENRE

Beechcraft
Boeing [ENE

Bombardier Aerospace
British Acrospace [RIREERY
Canadair

Cessna

Cirrus Aircraft

Dassault Aviation

pornier (K

Douglas Aircraft Company
Embraer

Eurofighter

Fairchild

Estimated

Fokker
Gulfstream Aerospace
lyushin 12 2 2 E 0.4

Lockheed Corporation E
Lockheed Martin

McDonnell Douglas

Supermarine
Tupolev

Yakovle

de Havilland [
% 6 8 3 3 48 30 14
£ 33€ 28 8% > 5 wgcgggagnu>>wu°
géeggs ] §£sc8s5258¢822¢
“Tfsgz2gEgE 35 8§83 5%38c885¢8342
g8 ¢85 £E g23528¢ ERF 3
g g28° S £ 513 g H
55 H E gk 3 s
- - g g g 838
58 S 5 238
E ] £ ¥ =
H H 8 3
H

Ground Truth

Figure A.3: CONFUSION MATRIX AIRCRAFT - 10 SAMPLES. This figure shows the confusion ma-
trix adopting the nearest neighbor classification with MEAN using the pre-trained network approach.
DenseNet-121 is utilized as pre-trained network on the Aircraft dataset using 10 samples per class.



Appendix B

Fruit and Vegetable Results

Table B.1: END-TO-END CLASSIFICATION PERFORMANCE FRUIT AND VEGETABLE. End-to-end
classification on the Fruit and Vegetable dataset and pre-trained networks utilizing the fine-tuned and
adapter network approach.

1 2 4 6 9 13 20 67 95

alexnet-adaptive 0.017 0.145 0432 0585 0.657 0.755 0.816 0.877 0.903
alexnet-finetuned 0524 0588 0.741 0.772 0.786 0.819 0.864 0.942 0.983
densenet-adaptive 0596 0.727 0.797 0.830 0.864 0.855 0.861 0.900 0.908
densenet-finetuned 0435 0.627 0.769 0.827 0.866 0.900 0.916 0.964 0.978
mobilenet-adaptive  0.638 0.708 0.838 0.844 0.844 0.872 0.889 0916 0.933
mobilenet-finetuned 0.538 0.652 0.755 0.816 0.844 0.883 0.891 0.955 0.975
resnet50-adaptive 0.649 0.702 0.838 0.844 0861 0.875 0.883 0.908 0.889
resnet50-finetuned 0563 0.674 0.819 0.833 0.855 0.883 0.900 0.955 0.978
vgglé-adaptive 0.042 0231 0.607 0.724 0.808 0.822 0.875 0.900 0.925
vgglé6-finetuned 0.638 0.655 0.774 0.830 0.847 0.883 0.889 0.961 0.981

Table B.2: ADAPTIVE CLASSIFICATION PERFORMANCE FRUIT AND VEGETABLE. Deep Features
classification performance on the Fruit and Vegetable dataset and pre-trained networks utilizing the adapter
network approach.

1 2 4 6 9 13 20 67 95
alexnet-cos 0.245 0357 0.530 0.608 0.702 0.811 0.833 0.931 0.986
alexnet-mean 0245 0349 0.530 0.585 0.697 0.794 0.811 0.858 0.878
alexnet-svmn 0.231 0365 0.521 0.599 0.694 0.792 0.856 0.906 0.928
densenet-cos 0.558 0.686 0.775 0.803 0.833 0.856 0.886 0.942 0.956

densenet-mean  0.588 0.677 0.800 0.814 0.811 0.847 0.839 0.872 0.875
densenet-svm 0.563 0.683 0.781 0.833 0.844 0.875 0.878 0.917 0.914
mobilenet-cos 0.627 0.725 0.825 0.839 0.825 0.869 0.894 0.964 0.986
mobilenet-mean 0.627 0.717 0.828 0.839 0.833 0.856 0.858 0.886 0.878
mobilenet-svm  0.560 0.706 0.819 0.844 0.844 0.875 0.894 0.919 0.956
resnet50-cos 0.680 0.706 0.817 0.842 0.850 0.869 0.897 0.947 0.986
resnet50-mean 0.680 0.719 0.831 0.828 0.850 0.856 0.844 0.875 0.881
resnet50-svm 0.655 0.719 0.817 0.850 0.864 0.878 0.878 0.931 0.917
vggl6-cos 0279 0438 0.714 0.742 0.825 0.828 0.861 0.944 0.986
vggl6-mean 0279 0427 0731 0.744 0816 0.817 0.836 0.858 0.892
vggl6-svm 0.281 0.435 0.697 0.750 0.805 0.856 0.842 0.906 0.942
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Table B.3: FINE-TUNED CLASSIFICATION PERFORMANCE FRUIT AND VEGETABLE. Deep Features
classification performance on the Fruit and Vegetable dataset and pre-trained networks utilizing the fine-
tuned network approach.

1 2 4 6 9 13 20 67 95
alexnet-cos 0552 0.636 0.753 0.767 0.792 0.828 0.836 0.919 0.986
alexnet-mean 0552 0.661 0.753 0.794 0.783 0.775 0.808 0.850 0.850
alexnet-svm 0.432 0519 0.663 0.728 0.775 0.806 0.867 0.931 0.986
densenet-cos 0508 0.672 0.814 0.828 0.886 0.900 0.903 0.953 0.986
densenet-mean  0.508 0.683 0.811 0.819 0.867 0.881 0.881 0.916 0.936
densenet-svm 0.483 0.683 0.811 0.847 0.872 0.897 0.900 0.967 0.986
mobilenet-cos 0.613 0.686 0.811 0.825 0.819 0.875 0.886 0.956 0.986
mobilenet-mean 0.613 0.706 0.806 0.828 0.850 0.883 0.878 0.919 0.900
mobilenet-svm 0527 0.667 0.794 0.831 0.867 0.886 0.917 0.961 0.975
resnet50-cos 0.652 0.728 0.847 0.822 0.872 0.889 0911 0.961 0.986
resnet50-mean 0.652 0.730 0.842 0.836 0.864 0.889 0.875 0.933 0.942
resnet50-svm 0.602 0.708 0.836 0.861 0.861 0.886 0.914 0.956 0.969
vgglé-cos 0.680 0.714 0.814 0.842 0.831 0.861 0.883 0.967 0.986
vgglé-mean 0.680 0.714 0.811 0.847 0.847 0.867 0.856 0.908 0.897
vgglé-svm 0.547 0.605 0.803 0.808 0.856 0.878 0.900 0.956 0.986

Table B.4: PRE-TRAINED CLASSIFICATION PERFORMANCE FRUIT AND VEGETABLE
classification performance on the Fruit and Vegetable dataset and pre-trained networks.

. Deep Features

1 2 4 6 9 13 20 67 95
alexnet-cos 0.538 0.650 0.744 0.761 0.758 0.794 0.811 0.919 0.986
alexnet-mean 0.538 0.655 0.747 0.764 0.769 0.758 0.783 0.789 0.797
alexnet-svm 0.393 0.516 0.702 0.708 0.753 0.792 0.844 0.906 0.942
densenet-cos 0.674 0.744 0.819 0.836 0.839 0.856 0.864 0.950 0.986
densenet-mean  0.674 0.775 0.831 0.842 0.850 0.856 0.858 0.878 0.867
densenet-svin 0.616 0.719 0.803 0.847 0.883 0.917 0.908 0.953 0.956
mobilenet-cos 0.622 0.706 0.783 0.789 0.808 0.828 0.853 0.947 0.989
mobilenet-mean 0.622 0.725 0.817 0.825 0.836 0.850 0.867 0.875 0.869
mobilenet-svm  0.549 0.700 0.808 0.842 0.856 0.892 0.919 0.961 0.975
resnet50-cos 0.683 0.725 0.819 0.833 0.825 0.856 0.872 0.947 0.986
resnet50-mean 0.683 0.761 0.817 0.828 0.825 0.844 0.839 0.844 0.844
resnet50-svm 0.638 0.725 0.811 0.839 0.858 0.881 0.900 0.950 0.956
vggl6-cos 0.655 0.708 0.778 0.781 0.828 0.825 0.858 0.950 0.986
vggl6-mean 0.655 0.711 0.797 0.822 0.811 0.839 0.836 0.847 0.835
vggl6e-svm 0.469 0.611 0.767 0.800 0.822 0.867 0.875 0.939 0.983

Table B.5: CONSTANT GALLERY FRUIT AND VEGETABLE. Nearest neighbor classification performance
with MEAN on the Fruit and Vegetable dataset and pre-trained networks using the C-GAL approach.

1 2 4 6 9 13 20 67 90
densenet-adaptive-mean 0.588 0.637 0.646 0.674 0.702 0.727 0.716 0.811 0.803
densenet-finetuned-mean 0.542 0.669 0.724 0.738 0.799 0.799 0.791 0.844 0.847
densenet-pretrained-mean  0.705 0.705 0.705 0.705 0.705 0.705 0.705 0.705 0.705
mobilenet-adaptive-mean 0.647 0.689 0.767 0.733 0.775 0.786 0.786 0.817 0.819
mobilenet-finetuned-mean  0.683 0.707 0.724 0.735 0.740 0.755 0.766 0.808 0.794
mobilenet-pretrained-mean 0.680 0.680 0.680 0.680 0.680 0.680 0.680 0.680 0.680
resnet50-adaptive-mean 0.647 0.661 0.697 0.711 0.700 0.725 0.742 0.789 0.803
resnet50-finetuned-mean 0.707 0.691 0.760 0.749 0.785 0.813 0.799 0.872 0.874
resnet50-pretrained-mean 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710 0.710
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Figure B.1: CONFUSION MATRIX FRUIT AND VEGETABLE - 1 SAMPLE. This figure shows the con-
fusion matrix adopting the nearest neighbor classification with MEAN using the pre-trained network ap-
proach. DenseNet-121 is utilized as pre-trained network on the Fruit and Vegetable dataset using 1 sample
per class.
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Figure B.2: CONFUSION MATRIX FRUIT AND VEGETABLE - 4 SAMPLES. This figure shows the con-
fusion matrix adopting the nearest neighbor classification with MEAN using the pre-trained network ap-
proach. DenseNet-121 is utilized as pre-trained network on the Fruit and Vegetable dataset using 4 samples
per class.
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Figure B.3: CONFUSION MATRIX FRUIT AND VEGETABLE - 9 SAMPLES. This figure shows the con-
fusion matrix adopting the nearest neighbor classification with MEAN using the pre-trained network ap-
proach. DenseNet-121 is utilized as pre-trained network on the Fruit and Vegetable dataset using 9 samples
per class.



Appendix C

Indoor Scenes Results

Table C.1: END-TO-END CLASSIFICATION PERFORMANCE INDOOR SCENES. End-to-end classifica-
tion performance on the Indoor Scenes dataset and pre-trained networks utilizing the fine-tuned and adapter
network approach.

1 2 3 5 7 11 16 48 67

alexnet-adaptive 0.036 0.094 0.148 0.284 0.338 0.364 0413 0513 0.538
alexnet-finetuned 0.118 0.186 0.245 0.300 0.325 0.393 0428 0.547 0.573
densenet-adaptive 0215 0325 0.379 0416 0479 0493 0.540 0.639 0.654
densenet-finetuned  0.087 0.183 0.260 0.375 0.400 0519 0564 0.731 0.751
mobilenet-adaptive 0243 0.332 0426 0481 0507 0.553 0592 0.662 0.690
mobilenet-finetuned 0.114 0.192 0.312 0369 0.440 0492 0.535 0.679 0.690
resnet50-adaptive 0249 0410 0.447 0.511 0569 0.573 0.613 0.699 0.728
resnet50-finetuned 0.169 0300 0.364 0457 0.506 0.587 0.619 0.746 0.769
vggl6-adaptive 0.115 0216 0.397 0451 0507 0.534 0573 0.651 0.666
vggl6-finetuned 0.190 0.318 0.390 0451 0474 0542 059 0.709 0.719

Table C.2: ADAPTIVE CLASSIFICATION PERFORMANCE INDOOR SCENES. Deep Features classifi-
cation performance on the Indoor Scenes dataset and pre-trained networks utilizing the adapter network
approach.

1 2 3 5 7 11 16 48 67
alexnet-cos 0.047 0.101 0.140 0.224 0270 0.308 0.336 0.423 0.429
alexnet-mean 0.047 0.102 0.163 0.247 0.316 0.362 0.395 0.498 0.526
alexnet-svm 0.039 0.092 0.140 0.233 0.292 0352 0386 0.513 0.542

densenet-cos 0242 0306 0315 0.396 0422 0439 0493 0.568 0.589
densenet-mean  0.242 0.325 0.336 0.402 0443 0464 0497 0.601 0.607
densenet-svm 0.225 0309 0.338 0409 0462 0511 0556 0.644 0.675
mobilenet-cos 0272 0337 0376 0438 0455 0485 0494 0.605 0.603
mobilenet-mean 0.272 0.356 0419 0485 0492 0530 0555 0.635 0.637
mobilenet-svm 0.227 0324 0.387 0477 0505 0.557 0.572 0.677 0.688
resnet50-cos 0.314 0415 0442 0466 0495 0498 0.532 0.602 0.631
resnet50-mean 0.314 0427 0.463 0.509 0.547 0555 0.592 0.666 0.670
resnet50-svm 0.267 0.389 0435 0.502 0.546 0560 0.594 0.705 0.717
vggl6-cos 0.094 0235 0.325 0400 0422 0481 0.509 0.580 0.594
vggl6-mean 0.094 0232 0.328 0430 0452 0515 0550 0.615 0.633
vggl6e-svm 0.083 0.209 0.319 0425 0455 0515 0.558 0.658 0.683
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Table C.3: FINE-TUNED CLASSIFICATION PERFORMANCE INDOOR SCENES. Deep Features classifi-
cation performance on the Indoor Scenes dataset and pre-trained networks utilizing the fine-tuned network
approach.

1 2 3 5 7 11 16 48 67
alexnet-cos 0.182 0.208 0.223 0.244 0264 0300 0326 0429 0.454
alexnet-mean 0.182 0.239 0.278 0.325 0.366 0.403 0425 0.525 0.525
alexnet-svm 0.081 0.126 0.185 0.255 0.314 0366 0.406 0.535 0.551

densenet-cos 0.161 0.229 0.277 0.361 0.353 0464 0.505 0.642 0.677
densenet-mean 0.161 0.250 0.298 0401 0416 0.514 0.553 0.688 0.709
densenet-svm 0.167 0.257 0.322 0417 0466 0553 0.574 0.717 0.743
mobilenet-cos 0.197 0274 0309 0.351 0385 0441 0472 0594 0.621
mobilenet-mean 0.197 0.322 0.389 0442 0474 0539 0555 0.666 0.659
mobilenet-svm 0.114 0251 0356 0419 0456 0.510 0.556 0.681 0.700
resnet50-cos 0.246 0325 0.367 0464 0477 0543 0575 0.692 0.722
resnet50-mean 0.246 0.345 0400 0.495 0.541 0.598 0.617 0.723 0.761
resnet50-svm 0.195 0336 0366 0493 0529 0590 0.636 0.747 0.772

vggl6-cos 0242 0369 0373 0428 0441 0483 0525 0.630 0.647
vggl6-mean 0.242 0.402 0.430 0491 0518 0561 0596 0.677 0.682
vggl6e-svm 0.121 0.268 0.326 0412 0474 0.540 0.587 0.689 0.707

Table C.4: PRE-TRAINED CLASSIFICATION PERFORMANCE INDOOR SCENES. Deep Features classifi-
cation performance on the Indoor Scenes dataset and pre-trained networks.

1 2 3 5 7 11 16 48 67
alexnet-cos 0.188 0.233 0.244 0.266 0.288 0.312 0.333 0.393 0.402
alexnet-mean 0.188 0.276 0.304 0.359 0.381 0.409 0.428 0.514 0.520
alexnet-svm 0.072 0.131 0.185 0.263 0.315 0370 0.408 0.520 0.541
densenet-cos 0.291 0.358 0.402 0436 0438 0480 0.513 0.559 0.593

densenet-mean  0.291 0416 0473 0529 0.551 0.587 0.599 0.663 0.663
densenet-svm 0235 0365 0449 0526 0541 0584 0.613 0.712 0.724
mobilenet-cos 0299 0.356 0.389 0.437 0457 0479 0507 0.563 0.580
mobilenet-mean 0299 0.413 0469 0.545 0565 0597 0.605 0.677 0.680
mobilenet-svm 0.228 0.352 0418 0.516 0543 0572 0596 0.712 0.725
resnet50-cos 0.345 0.416 0451 0486 0487 0511 0535 0.614 0.637
resnet50-mean 0.345 0.460 0.523 0.590 0.604 0.618 0.624 0.679 0.686
resnet50-svm 0.277 0432 0483 0.563 059 0.616 0.640 0.723 0.744

vggl6-cos 0320 0.394 0417 0461 0477 0488 0502 0.559 0.579
vggl6-mean 0.320 0.425 0472 0.530 0.553 0.564 0.593 0.633 0.641
vggl6e-svm 0.149 0.270 0373 0465 0505 0555 0.591 0.658 0.689

Table C.5: CONSTANT GALLERY INDOOR SCENES. Nearest neighbor classification performance with
MEAN on the Indoor Scenes dataset and pre-trained networks using the C-GAL approach.

1 2 3 5 7 11 16 48 62

densenet-adaptive-mean 0396 0.399 0407 0421 0426 0460 0469 0.520 0.536
densenet-finetuned-mean 0382 0377 0377 0417 0407 0504 0517 0.625 0.617
densenet-pretrained-mean  0.566 0.566 0.566 0.566 0.566 0.566 0.566 0.566 0.566
mobilenet-adaptive-mean 0441 0455 0453 0459 0469 0500 0518 0.560 0.571
mobilenet-finetuned-mean 0468 0453 0.483 0464 0486 0503 0514 0578 0.573
mobilenet-pretrained-mean 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556
resnet50-adaptive-mean 0491 0493 0501 0522 0.528 0536 0534 0584 0.574
resnet50-finetuned-mean 0.486 0466 0477 0533 0518 0.562 0.587 0.663 0.649
resnet50-pretrained-mean 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604 0.604




7

Ground Tuth

Figure C.1: CONFUSION MATRIX INDOOR SCENES - 1 SAMPLE. This figure shows the confusion
matrix adopting the nearest neighbor classification with MEAN using the pre-trained network approach.
ResNet-50 is utilized as pre-trained network on the Indoor Scenes dataset using 1 sample per class.

Figure C.2: CONFUSION MATRIX INDOOR SCENES - 3 SAMPLES. This figure shows the confusion
matrix adopting the nearest neighbor classification with MEAN using the pre-trained network approach.
ResNet-50 is utilized as pre-trained network on the Indoor Scenes dataset using 3 samples per class.
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Figure C.3: CONFUSION MATRIX INDOOR SCENES - 11 SAMPLES. This figure shows the confusion
matrix adopting the nearest neighbor classification with MEAN using the pre-trained network approach.
ResNet-50 is utilized as pre-trained network on the Indoor Scenes dataset using 11 samples per class.



Appendix D

Office-31 Results

Table D.1: END-TO-END CLASSIFICATION PERFORMANCE OFFICE-31. End-to-end classification per-
formance on the Office-31 dataset and pre-trained networks utilizing the fine-tuned and adapter network
approach.

1 2 3 4 6 8 12 31 44

alexnet-adaptive 0.037 0.070 0.120 0.177 0403 0.447 0.607 0.727 0.753
alexnet-finetuned 0.410 0473 0537 0.557 0.653 0.640 0.713 0.760 0.763
densenet-adaptive 0.557 0.600 0.637 0.653 0.680 0.697 0.780 0.810 0.800
densenet-finetuned  0.350 0.480 0.450 0.557 0.620 0.630 0.667 0.797 0.830
mobilenet-adaptive 0523 0.620 0.653 0.733 0.747 0.743 0.810 0.810 0.810
mobilenet-finetuned 0267 0.460 0.537 0.587 0.667 0.703 0.720 0.807 0.820
resnet50-adaptive 0.653 0.673 0.730 0.720 0.753 0.760 0.787 0.850 0.830
resnet50-finetuned 0.443 0533 0590 0573 0710 0.730 0.773 0.840 0.850
vggl6-adaptive 0.053 0.087 0310 0.330 0483 0.583 0.687 0.783 0.813
vgglé-finetuned 0.553 0590 0.613 0.637 0.680 0.720 0.737 0.803 0.817

Table D.2: ADAPTIVE CLASSIFICATION PERFORMANCE OFFICE-31. Deep Features classification per-
formance on the Office-31 dataset and pre-trained networks utilizing the adapter network approach.

1 2 3 4 6 8 12 31 44

alexnet-cos 0.113 0.150 0.190 0.210 0.323 0.380 0.507 0.647 0.703
alexnet-cos copy 0.113 0.150 0.190 0.210 0.323 0.380 0.507 0.647 0.703
alexnet-mean 0.113 0.150 0.197 0.200 0.343 0.400 0.530 0.657 0.690
alexnet-svm 0.090 0.120 0.210 0.210 0.343 0.367 0.523 0.687 0.717
densenet-cos 0.627 0.633 0.650 0.683 0.730 0.753 0.773 0.787 0.803
densenet-mean 0.627 0.643 0.653 0.660 0.713 0.700 0.757 0.760 0.770
densenet-svm 0.567 0.607 0.650 0.667 0.713 0.720 0.760 0.823 0.833
mobilenet-cos 0573 0.667 0.667 0717 0.753 0.723 0.780 0.833 0.820
mobilenet-mean 0573 0.643 0.683 0.750 0.757 0.757 0.803 0.817 0.807
mobilenet-svm 0397 0.617 0.630 0.657 0.713 0.713 0.820 0.813 0.843

resnet50-cos 0.653 0.690 0.703 0.733 0.747 0.770 0.777 0.850 0.837
resnet50-mean 0.653 0.687 0.733 0.747 0.770 0.753 0.783 0.810 0.830
resnet50-svm 0.613 0.677 0.707 0.743 0.750 0.757 0.783 0.820 0.873
vggl6-cos 0.137 0.183 0.247 0377 0507 0540 0.610 0.747 0.783
vggl6-mean 0.137 0.170 0.257 0.383 0.500 0.533 0.610 0.747 0.777

vgglé-svm 0.120 0.193 0.230 0370 0477 0513 0590 0.760 0.777
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Table D.3: FINE-TUNED CLASSIFICATION PERFORMANCE OFFICE-31. Deep Features classification
performance on the Office-31 dataset and pre-trained networks utilizing the fine-tuned network approach.

1 2 3 4 6 8 12 31 44
alexnet-cos 0.473 0.500 0.553 0.583 0.620 0.627 0.680 0.720 0.723
alexnet-mean 0.473 0.540 0.603 0.610 0.640 0.663 0.703 0.700 0.707
alexnet-svm 0.303 0.420 0.510 0.503 0577 0590 0.673 0.750 0.797

densenet-cos 0.513 0510 0.570 0.603 0.660 0.653 0.713 0.823 0.850
densenet-mean 0.513 0.553 0.570 0.603 0.687 0.667 0.713 0.760 0.800
densenet-svm 0470 0550 0.597 0.643 0.720 0.667 0.710 0.837 0.873
mobilenet-cos 0.600 0.647 0.647 0.643 0.690 0.710 0.763 0.807 0.837
mobilenet-mean 0.600 0.630 0.643 0.663 0.707 0.740 0.757 0.760 0.773
mobilenet-svm 0.520 0.563 0.580 0.640 0.707 0.747 0.783 0.840 0.853
resnet50-cos 0.553 0.630 0.670 0.690 0.740 0.730 0.783 0.847 0.870
resnet50-mean 0.553 0.657 0.693 0.683 0.763 0.717 0.790 0.793 0.837
resnet50-svm 0.550 0.603 0.657 0.670 0.743 0.740 0.760 0.837 0.860

vggl6-cos 0.613 0.640 0.663 0.663 0.713 0.703 0.753 0.817 0.853
vggl6-mean 0.613 0.653 0.683 0.683 0.747 0.747 0.760 0.793 0.770
vggl6e-svm 0.463 0.593 0.527 0.650 0.673 0.670 0.730 0.803 0.820

Table D.4: PRE-TRAINED CLASSIFICATION PERFORMANCE OFFICE-31. Deep Features classification
performance on the Office-31 dataset and pre-trained networks.

1 2 3 4 6 8 12 31 44
alexnet-cos 0.497 0.543 0.563 0.590 0.643 0.633 0.673 0.743 0.743
alexnet-mean 0.497 0577 0.627 0.640 0.680 0.683 0.720 0.710 0.733
alexnet-svm 0.307 0.373 0473 0497 0.593 0.620 0.647 0.770 0.787
densenet-cos 0.610 0.683 0.703 0.703 0.723 0.743 0.763 0.843 0.857

densenet-mean  0.610 0.670 0.693 0.693 0.740 0.737 0.760 0.780 0.777
densenet-svm 0.580 0.660 0.667 0.730 0.740 0.730 0.783 0.853 0.863
mobilenet-cos 0.597 0.667 0.687 0.697 0.710 0.740 0.773 0.830 0.840
mobilenet-mean 0.597 0.707 0.730 0.747 0.753 0.777 0.793 0.793 0.790
mobilenet-svm  0.557 0.627 0.643 0.697 0.733 0.760 0.810 0.843 0.860
resnet50-cos 0.657 0.703 0.713 0.730 0.760 0.770 0.803 0.843 0.863
resnet50-mean 0.657 0.703 0.717 0.733 0.777 0.783 0.800 0.793 0.800
resnet50-svm 0.587 0.690 0.740 0.747 0.767 0.767 0.807 0.867 0.840

vggl6-cos 0.647 0.670 0.690 0.690 0.720 0.733 0.763 0.797 0.833
vggl6-mean 0.647 0.690 0.713 0.707 0.733 0.733 0.763 0.763 0.767
vggl6-svm 0370 0.490 0.553 0.667 0.693 0.690 0.717 0.793 0.820

Table D.5: CONSTANT GALLERY OFFICE-31. Nearest neighbor classification performance with MEAN
on the Office-31 dataset and pre-trained networks using the C-GAL approach.

1 2 3 4 6 8 12 31 39

densenet-adaptive-mean 0.627 0.647 0.623 0.653 0.670 0.677 0.670 0.730 0.737
densenet-finetuned-mean 0.670 0.617 0.643 0.647 0.650 0.647 0.650 0.693 0.737
densenet-pretrained-mean  0.723 0.723 0.723 0723 0.723 0.723 0.723 0.723 0.723
mobilenet-adaptive-mean 0.710 0.717 0.737 0.763 0.793 0.760 0.790 0.800 0.787
mobilenet-finetuned-mean  0.760 0.737 0.730 0.723 0.730 0.757 0.740 0.737 0.730
mobilenet-pretrained-mean 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760
resnet50-adaptive-mean 0.740 0.747 0.753 0.763 0.777 0.747 0.783 0.770 0.797
resnet50-finetuned-mean 0.710 0717 0.717 0.707 0.767 0.710 0.767 0.787 0.790
resnet50-pretrained-mean 0.747 0.747 0.747 0.747 0747 0.747 0.747 0.747 0.747
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Figure D.1: CONFUSION MATRIX OFFICE-31 - 1 SAMPLE. This figure shows the confusion matrix
adopting the nearest neighbor classification with MEAN using the pre-trained network approach. ResNet-

50 is utilized as pre-trained network on the Office-31 dataset using 1 sample per class.
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Figure D.2: CONFUSION MATRIX OFFICE-31 - 3 SAMPLES. This figure shows the confusion matrix
adopting the nearest neighbor classification with MEAN using the pre-trained network approach. ResNet-

50 is utilized as pre-trained network on the Office-31 dataset using 3 samples per class.
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Figure D.3: CONFUSION MATRIX OFFICE-31 - 12 SAMPLES. This figure shows the confusion matrix
adopting the nearest neighbor classification with MEAN using the pre-trained network approach. ResNet-
50 is utilized as pre-trained network on the Office-31 dataset using 12 samples per class.



Appendix E

Virus Results

Table E.1: END-TO-END CLASSIFICATION PERFORMANCE VIRUS. End-to-end classification perfor-
mance on the Virus dataset and pre-trained networks utilizing the fine-tuned and adapter network approach.

1 2 3 4 5 7 9 23 31

alexnet-adaptive 0.058 0.051 0.050 0.045 0.069 0.057 0.086 0.156 0.199
alexnet-finetuned 0.087 0.198 0.183 0.163 0.189 0.222 0.231 0.302 0.327
densenet-adaptive 0.091 0214 0279 0.332 0286 0310 0362 0370 0.473
densenet-finetuned  0.073 0.149 0.188 0.072 0.196 0.195 0.238 0.328 0.361
mobilenet-adaptive  0.132 0.247 0.298 0.226 0285 0.346 0.353 0412 0418
mobilenet-finetuned 0.122 0.199 0.292 0.257 0.330 0.303 0.352 0.423 0.479
resnet50-adaptive 0.078 0.254 0.243 0.283 0.322 0.358 0.340 0.405 0.438
resnet50-finetuned 0.021 0.196 0.247 0.234 0306 0.302 0.307 0.405 0.372
vggle6-adaptive 0.049 0.048 0.067 0.074 0.079 0.073 0.135 0.186 0.242
vgglé6-finetuned 0.129 0.184 0.183 0.241 0.219 0.298 0.333 0.429 0471

Table E.2: ADAPTIVE CLASSIFICATION PERFORMANCE VIRUS. Deep Features classification perfor-
mance on the Virus dataset and pre-trained networks utilizing the adapter network approach.

1 2 3 4 5 7 9 23 31
alexnet-cos 0.100 0.100 0.098 0.109 0.140 0.167 0.185 0.312 0.332
alexnet-mean 0.100 0.114 0.099 0.118 0.132 0.159 0.178 0.300 0.315
alexnet-svm 0.080 0.102 0.102 0.124 0.141 0.180 0.180 0.358 0.360
densenet-cos 0203 0.281 0.284 0.364 0.369 0414 0414 0466 0.473

densenet-mean  0.203 0273 0.309 0.355 0.359 0419 0406 0478 0478
densenet-svm 0.185 0314 0301 0.328 0.373 0432 0434 0.504 0.488
mobilenet-cos 0.226 0.316 0.330 0.348 0.400 0.387 0427 0.507 0.512
mobilenet-mean 0.226 0.307 0.332 0.339 0.340 0.384 0436 0.508 0.506
mobilenet-svm  0.192 0.305 0.325 0.367 0.360 0.398 0.460 0.544 0.553
resnet50-cos 0.187 0.304 0.309 0.338 0.381 0.424 0.400 0.508 0.496
resnet50-mean 0.187 0.290 0.298 0.339 0.371 0380 0395 0.483 0.451
resnet50-svm 0.154 0.316 0307 0.344 0.394 0435 0440 0.528 0.503
vggl6-cos 0.064 0.074 0.079 0.107 0.147 0.196 0.233 0.336 0.332
vggl6-mean 0.064 0.075 0.084 0.109 0.148 0.188 0.217 0.331 0.331
vggl6-svm 0.061 0.071 0.075 0.118 0.170 0.196 0.241 0.382 0.399
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Table E.3: FINE-TUNED CLASSIFICATION PERFORMANCE VIRUS. Deep Features classification perfor-
mance on the Virus dataset and pre-trained networks utilizing the fine-tuned network approach.

1 2 3 4 5 7 9 23 31
alexnet-cos 0209 0.259 0220 0.264 0.318 0.346 0381 0.469 0.480
alexnet-mean 0.209 0.249 0.238 0.276 0.291 0.350 0415 0478 0.514
alexnet-svm 0.140 0.172 0.184 0.253 0.270 0.340 0.382 0.512 0.486

densenet-cos 0.134 0.284 0.316 0.155 0.327 0.337 0411 0497 0.532
densenet-mean  0.134 029 0299 0.162 0287 0322 0379 0513 0491
densenet-svm 0.110 0.300 0.298 0.195 0.341 0.357 0.430 0.515 0.564
mobilenet-cos 0.250 0.334 0.377 0.347 0449 0428 0.515 0.568 0.563
mobilenet-mean 0.250 0.342 0.421 0.340 0.461 0420 0501 0567 0.548
mobilenet-svm  0.222 0.316 0.390 0.327 0419 0433 0486 0.568 0.618
resnet50-cos 0.243 0.307 0.363 0.345 0.387 0.443 0428 0.557 0.564
resnet50-mean 0.243 0309 0373 0.300 0.352 0.428 0.409 0.573 0.528
resnet50-svm 0.232 0.316 0.370 0.340 0.347 0.449 0431 0.555 0.550

vggl6-cos 0.203 0.248 0.289 0.316 0.327 0.357 0427 0.552 0.525
vggl6-mean 0.203 0.246 0.289 0.309 0.302 0.364 0.406 0.565 0.553
vggl6e-svm 0.153 0.241 0.253 0.255 0.278 0.381 0.457 0.557 0.575

Table E.4: PRE-TRAINED CLASSIFICATION PERFORMANCE VIRUS. Deep Features classification per-
formance on the Virus dataset and pre-trained networks.

1 2 3 4 5 7 9 23 31
alexnet-cos 0.238 0.258 0.250 0.277 0.307 0.330 0.353 0.409 0.401
alexnet-mean 0.238 0.241 0.263 0.276 0.318 0.345 0393 0429 0419
alexnet-svm 0.171 0.200 0.205 0.219 0.240 0.327 0.344 0437 0439
densenet-cos 0232 0328 0.328 0.357 0386 0405 0425 0491 0.495

densenet-mean  0.232 0.334 0346 0395 0411 0422 0431 0477 0.480
densenet-svm 0.202 0.332 0.346 0.370 0.408 0434 0473 0.552 0.572
mobilenet-cos 0.211 0.336 0.348 0.391 0.448 0463 0492 0.543 0.534
mobilenet-mean 0.211 0.322 0.346 0.372 0.406 0454 0481 0.548 0.584
mobilenet-svm  0.199 0326 0.336 0.396 0442 0.489 0.523 0.631 0.640
resnet50-cos 0.168 0.289 0.321 0.356 0.377 0398 0.429 0.486 0.493
resnet50-mean 0.168 0.298 0.339 0.368 0.393 0.430 0426 0483 0458
resnet50-svm 0.163 0322 0.361 0.398 0419 0470 0475 0.532 0.527

vggl6-cos 0215 0.254 0.260 0.301 0320 0.331 0.340 0.388 0.392
vggl6-mean 0.215 0.267 0.291 0.279 0.301 0.339 0.350 0438 0415
vggl6-svm 0.154 0.205 0.214 0.250 0275 0324 0360 0.442 0.465

Table E.5: CONSTANT GALLERY VIRUS. Nearest neighbor classification performance with MEAN on the
Virus dataset and pre-trained networks using the C-GAL approach.

1 2 3 4 5 7 9 23 26

densenet-adaptive-mean 0.385 0.388 0.398 0408 0416 0434 0446 0476 0.455
densenet-finetuned-mean 0369 0408 0488 0.201 0388 0.370 0.451 0.517 0.503
densenet-pretrained-mean  0.504 0.504 0.504 0504 0.504 0504 0.504 0.504 0.504
mobilenet-adaptive-mean 0.506 0.445 0470 0469 0474 0454 0511 0515 0.507
mobilenet-finetuned-mean 0547 0.562 0550 0.512 0546 0.516 0549 0.631 0.590
mobilenet-pretrained-mean 0.588 0.588 0.588 0.588 0.588 0.588 0.588 0.588 0.588
resnet50-adaptive-mean 0.408 0.402 0397 0401 039 0393 0423 0464 0.458
resnet50-finetuned-mean 0.519 0486 0473 0476 0491 0487 0515 0590 0.549
resnet50-pretrained-mean 0516 0.516 0516 0.516 0516 0516 0516 0.516 0.516
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Figure E.1: CONFUSION MATRIX VIRUS - 1 SAMPLE. This figure shows the confusion matrix adopting
the nearest neighbor classification with MEAN using the pre-trained network approach. DenseNet-121 is
utilized as pre-trained network on the Virus dataset using 1 sample per class.
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Figure E.2: CONFUSION MATRIX VIRUS - 3 SAMPLES. This figure shows the confusion matrix adopting
the nearest neighbor classification with MEAN using the pre-trained network approach. DenseNet-121 is
utilized as pre-trained network on the Virus dataset using 3 samples per class.
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Figure E.3: CONFUSION MATRIX VIRUS - 9 SAMPLES. This figure shows the confusion matrix adopting
the nearest neighbor classification with MEAN using the pre-trained network approach. DenseNet-121 is
utilized as pre-trained network on the Virus dataset using 9 samples per class.
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