
Department of Informatics

Bachelor’s Thesis

Improving CodeDiffVis for Code Review
Visualizations

Raffael Botschen
17-935-867

raffael.botschen@uzh.ch

supervised by
Prof. Dr. Alberto Bacchelli

Enrico Fregnan
Zurich Empirical Software Engineering Team

28th May 2022

Abstract

Code review is an important part ofmodern software development and is commonly done change-
based. For this, understanding the code change is a key factor for it to be effective, and tool
support is needed. CodeDiffVis is a prior tool for Java that aims to support reviewers by visual-
izing the call and dependency graph between code entities in a code change. Due to the positive
reception, we decided to improve it. We add support for Python and functional programming, as
well as multi-language code changes. We evaluate our tool in a series of interviews and an online
questionnaire. Reviewers responded positively, thinking it is useful for gaining an overview.

i

Zusammenfassung

Code review ist ein wichtiger Teil moderner Softwareentwicklung und wird häufig änderungs-
basiert durchgeführt. Dafür ist Verständnis ein Schlüsselfaktor, undUnterstützung durchWerkzeuge
ist nötig. CodeDiffVis is ein existierendes Werkzeug für Java das Reviewer unterstützen will in-
dem es den Funktionsaufruf- und Abhängigkeitsgraph zwischen Entitäten im Code visualisiert.
Aufgrund der positiven Rückmeldungen haben wir entschieden es zu verbessern. Wir imple-
mentieren Unterstützung sowohl für Python und funktionales Programmieren, als auch für Än-
derungen in mehreren Sprachen. Wir evaluieren unser Werkzeug in mehreren Interviews und
einem online Fragebogen. Reviewers gaben positive Rückmeldungen, und dachten es sei nützlich
um einen Überblick zu bekommen.

ii

Contents

Abstract i

Zusammenfassung ii

1 Introduction 1

2 Problem Description 3
2.1 Visualizations and ReviewVis . 3
2.2 Motivating Example . 3
2.3 Goal of this Thesis . 3

3 Related Work 5
3.1 Source Code Visualization . 5
3.2 Code Collaboration, Version Control Using Git and Code Review 5
3.3 Related Tools and Concepts . 6

3.3.1 Approaches to Improve Reviewers’ Understanding of Code 6
3.3.2 Tools to Assist in Code Review . 7

4 Background 8
4.1 Abstract Syntax Trees (AST) . 8
4.2 Modules and Resolving Symbols in Python . 9
4.3 Coupling and Dependencies . 10

5 Design and Implementation 12
5.1 Python Graph Structure . 12
5.2 Back-End: CodeDiffParser . 12
5.3 Graph Creation and Structure . 14
5.4 Front-End: CodeDiffVis . 17

5.4.1 Settings . 18
5.4.2 Interactions . 19
5.4.3 A ReviewVis Example . 20

6 Research Questions 22

7 Evaluation 23
7.1 Methodology . 23

7.1.1 Rapid Iterative Testing and Evaluation (RITE) 23
7.1.2 RITE Adaptions . 23
7.1.3 RITE Iterations . 24
7.1.4 Post-interview Questionnaire . 25
7.1.5 Demographics . 25

7.2 Results and Analysis . 25
7.2.1 Developer’s Perception of ReviewVis With Python 26
7.2.2 Reviewers’ Perception of ReviewVis for Merge-requests Containing Py-

thon and Java . 32
7.2.3 Future Work on ReviewVis to Better Support Developers During Code

Review . 33

iii

8 Limitations 38
8.1 Internal Threats to Validity . 38
8.2 External Threats to Validity . 38

9 Discussion 40

10 Conclusion 43

References 45

A Consent Form 49

B Interview Structure 53

C Interview Example Graphs 56

D Questionnaire 58

iv

List of Tables

1 Dependency types in OOP as described by Jenkov [Jenkov, 2014]. 11
2 Node types extracted from Python code. 13
3 Link types extracted from source code. 13
4 Explanation and Comparison of Node Types from the Java and Python CDP im-

plementations. 15
5 Explanation and Comparison of Link Types from the Java and Python CDP im-

plementations. 16
6 Overview of the participants ordered by interview date. 25

List of Figures

1 Example Python Program containing a function and class definition. Later in the
same program the function is called with a string, and a newly created object is
assigned to a variable. 8

2 Visualization of a simplified AST for the code in Listing 1 using Python’s built-
in ast module. The graph is slightly simplified for clarity. Each node stands for
an object, with their children representing their members. Leaves are shown in
italic. If a node has more member variables than is shown, it is indicated by a
“...” symbol. A Name node can represent any symbol, including variables, objects
and function names. Symbols and bindings are not resolved by the ast module,
instead this is done at runtime. 9

3 Example for a method call that cannot be resolved without additional information. 10
4 Settings for the tool exposed to the user. They can be adjusted within the browser. 19
5 Snippet from a graph containing multiple languages, with one node for each lan-

guage. 19
6 Warning node with hover text, and the opened warning window. 20
7 Merge request with corresponding graph showing different aspects of the tool.

GitLabs diff-based code view is on the left, and the created graphwith annotations
on the right. 21

8 Usefulness of ReviewVis as perceived by the participants. 26
9 A class nodeMainClasswith amethod nodemethod. This method node is connec-

ted to other class nodes. In the left example, it is only connected to node Class1,
and the resulting angular position (blue arrow) points directly at the connected
node. In the right example, the method is connected to two nodes, Class1 and
Class2. The resulting vectors are shown in light blue. They are summed up and
normalized to obtain the vector for the final method position (dark blue arrow).
The direction is between the two nodes, and the vector is shorter because the
connections are more spread out. 28

10 Part of a graph showing a nested class (PlotArmor) and its parent class (Hero),
with the method Hero.get_shot calling the method PlotArmor.save. On the left is
the initial link design, and on the right the final link design for the same links.
Arrows were added and class-to-method links redesigned to make the relation
types and directions clearer. 29

11 Function greet with a nested function get_greeting, which gets called by greet. To
prevent confusion, only the calling relation is shown with a link, with the parent
relation being signified by the parent’s name on top of the child node. 29

12 Comparison of the initial and final (after the interviews) warning node design. . 29

v

13 The comment indicator on a node. There are two comment threads in GitLab on
line 8, and one on line 9. The box with the comments is shown when hovering
over the blue C. 30

14 Ease of Use of ReviewVis as perceived by the participants. 31
15 Warnings indicating that the tool encountered a problem (e.g., could not resolve

a call). There are two warnings for the file helpers, one for line 2 and one for line
3. In the settings the individual warning nodes can be toggled on or off. 32

16 Example for a graph containing nodes for both Python and Java. 32

vi

1 Introduction

When the concept of code review was first described by Fagan in 1976, it was a strict and formal
process based on code inspection [Fagan, 1976]. Since then, the usage in software projects has
evolved to be more flexible and lightweight, with a multitude of tools being developed to support
code reviews [Rigby et al., 2012]. The modern approach called Modern Code Review is mostly
change-based and supported by tools, with changes being generally reviewed by only one or two
reviewers in an informal and asynchronous process [Baum and Schneider, 2016]. In addition to
these changes in process, the benefits and goals of code reviews have also changed. Identifying
defects is still perceived as the primary goal, with benefits observed in practice being knowledge
transfer, team awareness and the creation of alternate solutions [Bacchelli and Bird, 2013].

Code reviews have beenwidely adopted in industry [Rigby and Bird, 2013; Baum and Schneider,
2016], but there remain challenges when doing code review. Especially large changes are a signi-
ficant challenge in code review, with keeping track of the review progress becoming increasingly
difficult [Baum and Schneider, 2016; Baum et al., 2019]. Apart from size, Kononenko et al. have
also linked higher change complexity to an increased difficulty of performing a review, because
a reviewer needs to understand the code change in its greater context [Kononenko et al., 2016].

Overall, a key finding is that understanding the review artifact is the most important aspect
of reviewing code [Baum and Schneider, 2016; McIntosh et al., 2016]. Similarly, Bacchelli and
Bird have also found that understanding context and change is the key factor in a review [Bac-
chelli and Bird, 2013]. Another factor are the limited cognitive resources of developers, which
negatively impact code review effectiveness for larger changes [Baum et al., 2019]. Tools could
in theory help improve understanding and reduce mental load, and in practice there has indeed
been a wide adoption of tools supporting the code review process. But there still is potential for
further improvements in these tools to increase review efficiency and effectiveness [Baum and
Schneider, 2016].

Based on these findings, various solutions that could improve the code review process have
been researched. One approach is to improve review efficiency by improving code understanding
using automated tools for static analysis. They can be run before the review to make the results
available at review time. An example for such a tool is SonarQube1, which can be used from
within the programmers integrated development environment (IDE). Another area of improve-
ment is the ordering of code changes in change-based code reviews [Baum and Schneider, 2016].
By grouping together related changes, a graph can be constructed to guide a reviewer through
a code review [Baum et al., 2017]. And to ensure that the reviewer understands the changes,
developers with experience in the frameworks and concepts used can be selected, for which a
solution based on mining the potential reviewers’ project comments has been proposed [Guo
et al., 2019].

Tools like GitHub2 and the open-source equivalent GitLab3 present the code changes and
their contexts, to make it easier to see which code was deleted, added or changed. But they
don’t offer support for developers for understanding the code changes. This can be inefficient,
especially with larger and or more complex code changes.

The paper by Fröhlich has shown that providing a visual overview of the code changes is be-
neficial [Fröhlich, 2020]. They developed a tool called CodeDiffVis (or ReviewVis) to analyze Java
source code to construct a combined dependency and call graph, which would then be displayed
when doing code review. The aimwas to make the information flowwithin the change faster and
easier to understand. When evaluated, they found that for improving developers’ understanding,
their tool was generally perceived positively when it comes to usefulness. In a follow-up study,
these findings were confirmed [Fregnan et al., 2022a].

1https://www.sonarqube.org/
2https://github.com/
3https://gitlab.com/

1

One of the main limitations identified by Fröhlich was the lack of support for multiple pro-
gramming languages, which limited the usefulness of ReviewVis [Fröhlich, 2020]. To address
this, we extended the language support to include Python. This entailed extending the concept
of graph visualizations to functional programming. We also implemented support for automat-
ically handling graphs containing multiple programming languages.

We evaluated our implementation in a series of interviews with developers. When possible,
collected feedback was used to iteratively improve the tool. Further information was collected
in an online questionnaire for the interviewees. Participants responded positively to the tool,
finding it easy to learn and useful to gain an overview over a changeset. They would like support
for more programming languages and means of integrating ReviewVis with other tools.

2

2 Problem Description

In this section we explain the tool we expanded and improved in more detail, shortly describing
the technical implementation and developers feedback. Then we present the goal of this thesis
and how we achieved it.

2.1 Visualizations and ReviewVis

One approach to improve the critical understanding of the code under review is enhanced tool
support for the reviewers. This could be done with visualizations, and in a study done by Fröhlich
they indeed found that most developers who participated in their study thought visualization
tools could benefit code review [Fröhlich, 2020]. Despite this, only a minority used any. This
seems to indicate an opportunity to improve the code review process.

Fröhlich developed the tool ReviewVis (previously CodeDiffVis) to create such visualizations
[Fröhlich, 2020]. Their tool consists of two parts: CodeDiffParser (CDP) analyzes Java source code
to create a call and dependency graph. Taking advantage of the findings of Baum and Schneider
that code reviews are commonly done change based, their tool analyzes code changes to only
extract the information relevant for the review. This can be exported to a file. An extension
for Google Chrome called CodeDiffVis (CDV) then loads the information from this file to draw
the graph for merge requests. This graph is customizable and interactive, and can be displayed
alongside the code change under review.

When evaluating this tool, they found that most participants would like to use the tool, and
that it provides useful information. Of interest is also that it was well received for large code
changes of 8 or more files, which was the area identified by Baum and Schneider as the most
significant challenge. Not all parts of the tool were received as well, with less positive feedback
for graph customization features and lack of support for keeping track of a review. But the
underlying concept was received well, which in our opinion made further work on it justified.

2.2 Motivating Example

To understand a changeset, the reviewer needs to either be already familiar with the project, or
should be able to understand it easily. When doing the review, the reviewer then needs to keep
the structure and context of the code in their mind. This means extracting the code entities like
classes, methods and functions and analyze how they depend on each other. Furthermore they
need to understand the call flow between these entities to understand how they interact. To do
this, the code needs to be navigated and searched to find these entities and relations between
them. Our tool addresses this problem by extracting this information and visualizing it in a
graph, to reduce the cognitive load on developers.

2.3 Goal of this Thesis

One of the main limitations of Fröhlich’s tool was that the backend consisting of CDP only sup-
ported Java code. The frontend (CDV) was language agnostic in theory, but supported only an
object-oriented programming style and included features primarily useful for Java code. This
limited its usefulness to only this language and meant that it could only be evaluated for Java
code.

The thesis statement is as follows:

ReviewVis is a useful tool for code review visualizations for both Python alone and Java
and Python together.

3

To enable us to validate our thesis, we implemented a Python version of CDP to analyze
Python code. For this, we introduces a number of new code entities to represent different code.
The frontend was extended to support functional programming and other features. Parts of it
were also rewritten to automatically handle arbitrary combinations of languages. This allows
ReviewVis to support Python code, and graphs with multiple languages.

We evaluated ReviewVis in a series of remote interviews with software developers. In them
we asked developers about their perception of ReviewVis in three examples we chose: a smaller
changeset, a larger and more complex changeset, and the largest changeset combining Java and
Python. Topics we focused on are the graph visualizations, means of interacting with the graph,
multi-language graphs, and what their overall perception is. Developers were also encouraged
to mention any other feedback they had. Furthermore, they answered an online questionnaire
using the Technology Acceptance Model to quantitatively assess their perception of the tool and
future adoption. We validate out hypothesis by analyzing the interview recordings and answers
from the online questionnaire.

4

3 Related Work

3.1 Source Code Visualization

Modern integrated development environments (IDEs) like Visual Studio Code and PyCharm
typically present source code divided by files. Depending on the programming language and
paradigm, in most cases each file contains one or more code entities. These can be classes in the
case of object-oriented programming (OOP) or functions in case of functional programming (FP).
Focusing on the file-structure has the advantage that it is nearly universal between languages
and operating systems, making it easier for single IDEs to support many languages, while users
of them can use a common interface.

But in only considering the file structure, the often more important logical structure of the
code (i.e., the software entities and their relations) is not considered, which can introduce some
problems. One is that because all file contents including whitespace are displayed, display space
is wasted. Another one is that frequently code that is irrelevant to the user is displayed, with the
relevant code fragments being at a different position within the file or another file altogether.
This makes frequent navigation in the code necessary for users to get all relevant information.
These problems have been recognized, andmany researchers have searched for possible solutions
[Plumlee and Ware, 2006; Bragdon et al., 2010a; Deline et al., 2012].

One approach is the bubble metaphor, introduced by Bragdon et al. [Bragdon et al., 2010b].
A bubble is an editable code fragment. Multiple bubbles can be displayed concurrently, to show
all and only the relevant code fragments instead of single whole files. In theory this reduces
time needed for navigating code, and indeed Bragdon et al. found in another study that, in a
quantitative experiment, their Code Bubbles IDE significantly reduced both the time required
for navigation and understanding code [Bragdon et al., 2010a].

Another approach, which was used in this thesis, is the representation of source code using
graphs. Nodes can represent whole files or code changes, or features of the code like classes and
methods, or functions in OOP and FP respectively. The edges represent the relations between the
nodes, and can be call based or dependency based. Call based relations, i.e. method or function
calls from node A to node B, with both nodes being classes or functions, result in a call graph.
Dependency based relations, where the relations represent dependencies between features (e.g.,
object creation of one class in another), result in a dependency graph. Such a graph can also be
created for only parts of the whole codebase, i.e. a code change in the context of a code review.
Baum et al. introduced the approach of constructing a graph based on the relatedness of code
changes (as measured by a multitude of factors) in 2017 as the result of searching for an optimal
ordering of change parts [Baum et al., 2017]. Our approach is explained in more details in chapter
5.

3.2 Code Collaboration, Version Control Using Git and Code Review

Since its introduction by Fagan in 1976 [Fagan, 1976], code review has become an important
part of the software development process. While the original code inspections as first proposed
by Fagan were very time and resource consuming, the modern code review process has shifted
from a formal and structured process to a more informal one [Bacchelli and Bird, 2013]. Bac-
chelli and Bird introduced the term Modern Code Review (MCR) to describe the change-based,
lightweight, and tool-supported approaches that are commonly seen practiced today [Bacchelli
and Bird, 2013]. MCR is performed in a peer review style, where the changes are reviewed by
one or more developers (the approvers), which are different from the developer who wrote the
code change (the author). Reviewers can give feedback in comments or approve the code change.
Bacchelli and Bird identifiedmany advantages of code review, with improved knowledge transfer
and the creation of alternate solutions among them. At the same time, the detection of defects,

5

while commonly seen as one of the main reasons for doing code review, was limited in practice
[Bacchelli and Bird, 2013].

A popular tool for versioning is Git4. When using Git, a set of changes to the code are
combined into a commit, which represents a new version of the code base. Multiple concurrently
active code bases are supported by splitting them into branches. This way there can be a release
branch which is the main code base, branches for untested beta software, and branches that
contain work in progress like new features. When work on a branch is finished, e.g. when
a feature is complete, the branch can be merged into another one, meaning the branches are
united. This can be done in multiple ways. When merging two branches the source code bases
are simply compared, whereas rebasing tries to preserve the individual commits made to the
branches in their temporally correct order. This has implications for tools which analyze the
ordering of commits.

The importance and popularity of code review in modern times has led to the creation of
many tools to support code review, with well-established code reviews being based on Git. These
include GitHub5, which is owned by Microsoft, and the open-source alternative GitLab6. They
have source code versioning management capabilities and can support code review. This is done
by showing changes from commits or merge requests in their web interfaces based on a git diff
view, showing the added and deleted source code parts. In code review the reviewer can then
use this for their review. This change-based review process is commonly done today [Bacchelli
and Bird, 2013].

Other web-based tools supporting versioning management and code review support include
Phabricator7 and Gerrit8. Phabricator is an open-source project originating from Facebookwhich
supports multiple version control systems like Git, SVC and Mercurial. It also supports issue
tracking which Gerrit lacks. Gerrit is an open-source project initially developed by Google. Its
strength is code review support and tracking commit changes.

3.3 Related Tools and Concepts

3.3.1 Approaches to Improve Reviewers’ Understanding of Code

Change Part Ordering is an approach proposed by Baum et al. to facilitate code review [Baum
et al., 2017]. Tools like Gitlab currently display code changes in alphabetical order. Baum et
al. proposed that changing the order in which these code changes are displayed could reduce
cognitive load and found that an optimal order is grouping together related changes [Baum et al.,
2017]. Relatedness is determined using the underlying call graph of the code change. But this
does not account for other possible relations that are not helped with this approach, like when
changes are in the same file. Therefore we believe that although employing this theory would
reduce the navigation within the code change and thereby reduce reviewers’ cognitive load, it
could be reduced more significantly by file-independent visual support focusing more directly
on the relatedness.

Another approach, tackling the automatic decomposition of changesets for code review, is
the tool ClusterChanges by Barnett et al. [Barnett et al., 2015]. They observed that despite
best practices recommending otherwise, changesets often containmultiple independent changes.
This complicates the code review process, because developers need to mentally decompose the
changes. To address this, their tool partitions the code changes into different partitions, and
shows them in a tree view. By selecting a specific partition, all related changes can be listed. It
was meant to validate the proposed use case. They found that, evaluated on C# code within their

4https://www.git-scm.com/
5https://www.github.com/
6https://www.gitlab.com/
7https://www.phacility.com/phabricator/
8https://www.gerritcodereview.com/

6

organization, ClusterChanges can indeed decompose such changesets in a way that developers
agree with the proposed decomposition. A replication study by Luna Freire et al. replicated this
finding for open-source Java projects [Luna Freire et al., 2018].

3.3.2 Tools to Assist in Code Review

Softagram analyzes source code and its dependencies of merge requests. It supports a wide range
of code versioning platforms including Gitlab, GitHub, Bitbucket, Azure and Gerrit, as well as
various programming languages (including Java, Python and C++). A merge request triggers an
analysis, the result of which is posted as a graph in the comments. This graph includes added and
removed dependencies, as well as hidden or unwanted dependencies. Dependencies can also be
shown on per-package or per-class level. Softagram focuses on dependencies, with rules helping
with the detection of erroneous dependencies. This focus on dependencies only means that call
graphs cannot be produced, meaning there is only partial overlap between it and ReviewVis.

Ho-Quang et al. developed a tool similar to Softagram for whole project inspection called
RoleViz [Ho-Quang et al., 2019]. They make use of the notion of role-stereotypes introduced by
Wirfs-Brock in 2006, which categorizes the type of functionality that a class has within a system,
as well as typical types of interaction with other classes [Wirfs-Brock, 2006]. RoleViz uses the
most common role found in a class as this class’ main role. Packages are analyzed similarly with
respect to dependencies between each other. Based on this a visualization is created. In a study
by the same author they compared it to Softagram using a complex Java project, and found that
it has better results for comprehension tasks, while not increasing the cognitive load [Ho-Quang,
2019]. Participants identified the need for behavioral information like call graphs as a limitation
of the tool [Ho-Quang et al., 2019].

7

4 Background

To create an abstract representation of source code like a graph, the code first must be parsed to
create a hierarchical representation. From this the elements that are of interest can be collected:
e.g., classes, methods, functions, etc. Connections between these elements like dependencies
and method or function calls can be collected or inferred as well. This chapter explains how this
can be done for Python source code. In chapter 4.1 we first talk about Abstract Syntax Trees
(ASTs) as a possible abstract source code representation. Chapter 4.2 talks about the challenges
an limitations of Python. Chapter 4.3 presents the dependencies that can be extracted.

4.1 Abstract Syntax Trees (AST)

To represent parsed source code, Abstract Syntax Trees (ASTs), which are sometimes just called
syntax trees, can be used. They are a hierarchical representation of source code with only the
parts relevant for further analysis included, as opposed to parse trees which contain all parts
of the source code [Cooper and Torczon, 2011]. This could be things like brackets, colons or
comments, which may not be relevant when the AST is used, e.g. for a compiler. Python’s
standard library has a module called ast. It is used internally to create the AST of Python code,
which can then be compiled into a Python code object. Using this module, ASTs can be created
programmatically. Because the ast module is used by Python itself when executing code, it is
guaranteed to be up-to-date and a correct representation of the code’s behavior (for the installed
version). It does not resolve any names (symbols), meaning that this has to be done in a separate
processing step.

Consider Figure 1 with some simple Python code, defining a function and a class, and using
them. The AST for it which is generated using the ast module is schematically drawn in Figure
2. The AST will usually be comparatively big. The ast module does not resolve any symbols,
meaning it does not resolve class, method or function dependencies. This is different from other
languages like Java, where the AST will already include some of this information. The reason is
Python’s dynamic typing system, which only resolves the type at runtime.

example.py

function definition
def bar(text):

print(text)

class definition
class Thing:

constructor
def __init__(self, mass):

self.weight= mass

function call
bar("Hello")

variable declaration and object instantiation
obj = Thing(5)

Figure 1: Example Python Program containing a function and class definition. Later in the same
program the function is called with a string, and a newly created object is assigned to a variable.

8

Figure 2: Visualization of a simplified AST for the code in Listing 1 using Python’s built-in ast
module. The graph is slightly simplified for clarity. Each node stands for an object, with their
children representing their members. Leaves are shown in italic. If a node has more member
variables than is shown, it is indicated by a “...” symbol. A Name node can represent any symbol,
including variables, objects and function names. Symbols and bindings are not resolved by the
ast module, instead this is done at runtime.

4.2 Modules and Resolving Symbols in Python

One of the main limitations of the Python ast module lies in Python’s typing system. In statically
typed languages like Java the types are already known at compile time and can therefore be
represented in an AST. Python instead makes use of a dynamic typing system where the type of
objects is only known at runtime. While it is still possible to infer some information about the

9

types in a program, the information content of the AST is limited compared to statically typed
languages. Python also makes use of duck typing, where an object can be used like one of a
certain type if it has all methods and properties of that type. This further complicates a static
analysis of the program, because it requires further processing of the AST.

For example, imagine a function that takes an object foo as a parameter and calls the method
bar() of that object. Figure 3 shows the source code for it. When analyzing the source code, we
can infer that foo must be of a type which has a method with signature bar(). If we also know
how this function is used, i.e. that the function is called with an object of a specific type, we can
infer a connection between this function and the type (class) which gets used by it. But this is
solely dependent on what information is available to us from the source code. If this function
is part of a library, we cannot know how it will be used. Also, because of duck typing we can
only make statements about how the function is used in the analyzed code, not how it could be
used in general. Overall, this means that while we can make some deductions about the code,
we generally will not be able to know everything about how the code will behave at runtime or
how it can be used by other code [Python Software Foundation, 2022].

Takes an object and calls its method bar.
def fun(foo):

foo.bar()

Figure 3: Example for a method call that cannot be resolved without additional information.

To explain how the Python interpreter resolves names, an overview of the way of structuring
code in Python needs to be given first. Definitions can be put into a file, from which they can be
imported. Such files are called modules, and they can contain arbitrary executable code. Several
modules, the standard modules, are already built in. For bigger projects packages can be used,
which can contain submodules (e.g., the module name A.B names a submodule B in package A).
While single modules can be imported from packages, the author of the package can also define
a standard set of modules that get imported from the package.

Resolving a symbol happens at runtime and depends on the runtime environment. If a name
is defined in the same file, resolving it is trivial and can be done using simple static code analysis.
If the name is imported from somewhere, the interpreter first searches for a built-in module of
that name. If it does not find it, the modules in the same directory are searched. After that,
the interpreter searches a list of directories including the directory containing the input script,
PYTHONPATH (a list of directory names), and an installation dependent default. Scripts can
modify these directories lists. This means that resolving names statically requires searching a
wide number of directories and might not be accurate. In practice, for most programs the used
names are either in the same package, or in one of the standard directories. Therefore, simple
static analysis can still work accurately for most programs.

The problems of static analysis in Python are due to its nature, and therefore have existed
since its conception. With Python’s popularity came interest in this, as static analysis tools are
needed for example in IDEs for automatic code completion and detection of issues. Thus, much
work has been done in this area, and we were able to use a popular tool called jedi9, which is
explained in more detail in section 5.2 when explaining the CodeDiffParser backend.

4.3 Coupling and Dependencies

Coupling and dependencies are key concepts especially in object-oriented programming (OOP).
Coupling is a measure of dependency among software components. To understand the connec-

9https://www.github.com/davidhalter/jedi

10

tions between different nodes in the AST, a coupling analysis needs to be done to understand
how they are coupled.

Dependencies are a subset of couplings. If one object is used by another, we have a depend-
ency. For example, if a class B uses class A, A is a dependency of B because B cannot work
without A. If such a dependency between two classes exists, they are coupled.

In general, coupling relations can be divided into four high-level groups [Fregnan et al., 2019;
Bavota et al., 2013]:

1. Structural coupling: The static relations between entities in the source code, like called
methods and inheritance.

2. Dynamic coupling: Runtime calls between classes and methods.

3. Semantic coupling: Entities that have similar terms in in their comments and identifiers,
hinting at similar responsibilities.

4. Logical coupling: Entities that are frequently shared together and that therefore are logic-
ally connected.

Bavota et al. found that semantic and structural coupling are the most important types of
coupling [Bavota et al., 2013]. Semantic coupling can be extracted using more advanced tech-
niques such as Machine Learning [Guo et al., 2019], which are out of the scope of this thesis.
The focus of this thesis is on structural coupling, which can be determined deterministically us-
ing source code. Structural coupling relations can be divided into a small set of relations that
developers are already familiar with, instead of needing to introduce coupling measures and
concepts new to the developers. Structural coupling can also be inferred using well-understood
algorithms for each language with known limitations. More complex techniques can introduce
new failure modes and require complex calculations, slowing down the tool.

Dependencies can be static or dynamic [Jenkov, 2014]. Like with coupling, static dependen-
cies refer to dependencies that can be resolved using static analysis, while dynamic dependencies
can only be resolved at runtime. By parsing an AST only static dependencies can be captured.

Jenkov identifies three kinds of dependencies, shown in Table 1. He differentiates between
method dependencies, going from the method of one class to the method of another, and actual
class dependencies. Unless the method dependency is part of a static class, there is a class or
interface dependency as well.

Dependency Type Explanation

Class dependency
A class or interface that has a dependency on a class. This
can be a class hierarchy dependency or a class reference,
i.e., an instantiated object of another class.

Interface dependency
A class or interface that has a dependency on an interface.
This can be a class implementing an interface, an interface
that is extending another interface or a type reference.

Method dependency A class or interface that has a dependency on a concrete
method or field of an object.

Table 1: Dependency types in OOP as described by Jenkov [Jenkov, 2014].

11

5 Design and Implementation

Tool support has been identified as a potential way to support reviewers by helping them under-
stand the code changes better. They found that there is a need to better understand especially
large changes, and hypothesized that a visualization of the code change could be helpful [Baum
and Schneider, 2016]. The first version of ReviewVis developed by Fröhlich et al. aimed to ex-
plore this hypothesis [Fröhlich, 2020]. As a first prototype, they focused on developing potential
visualizations for change-based code comparisons. Java was picked to be the basis for the visual-
izations, as it was a popular programming language. For creating the graph they used the Eclipse
AST Java parser, which was the most reliable in their testing. To display it, a browser plugin for
GitLab was developed, which handles the visualization separately from GitLab itself, making it
less invasive and more modular. GitLab was chosen as it is open-source and commonly used
in practice by developers. When evaluating their tool, developers responded positively to the
visualizations. Because the existing concept seemed to work well, this thesis kept the original
structure of ReviewVis while extending it from only OOP to FP, and added support for reviewing
projects using multiple languages. Python was chosen as it too was a popular language, and had
support for different programming paradigms.

We first describe the elements (i.e., nodes and links) of the graph which is visualized in
Chapter 5.1. Then we describe how ReviewVis works. In short, in consists of two compon-
ents: CodeDiffParser and CodeDiffVis. CodeDiffParser analyzes a code change and extracts the
graph, which can be exported to a file. It is explained in Chapter 5.2. CodeDiffVis can then load
this file and visualize the graph in the browser. It is explained in Chapter 5.4. We also give an
example for a merge request and the visualization produced by the tool in Chapter 5.4.3.

5.1 Python Graph Structure

The graph is formed by nodes and links connecting these nodes. The nodes contain the necessary
information to understand the type and position of the node, with additional meta-information
to enable various features. The links establish connections between these nodes, describing their
relationships.

Nodes contain the file path, the node name, the name of the enclosing entities (e.g., class
for methods), the name of the collection of entities that it is part of (packages in Java, modules
in Python), the type of node (e.g., function, class, etc.), the new and old position within the file
(if applicable), the status (added, changed, unchanged, or deleted), parent node id (node within
which this node was defined), the id of the node itself, a flag for if the node is generated (Java
specific), and the programming language. A list of the possible node types with an explanation
for each of them is given in Table 2.

The links contain the source (origin) node id, the target (destination) node id, the relation
type (e.g., method call, superclass, etc.), the status (added, changed, unchanged, or deleted), and
the id to identify this relation. The possible link relations and explanations for them can be found
in Table 3.

5.2 Back-End: CodeDiffParser

CodeDiffParser (CDP) is used as the back-end component of ReviewVis, analyzing the program
and creating the call and dependency graphs from it. The results of this analysis can be saved in
JSON format to a file. This file can then be used as input to the frontend component to displaying
the graph.

The existing CDP was a Java-based source code analyzer for Java that worked by parsing the
source code for the code changes and extracting relevant code entities (i.e. classes and methods,
as well as method calls) from it. The results, consisting of nodes marked either changed, un-

12

Node Type Explanation
CLASS Class definition.
METHOD Method definition.
FUNCTION Function definition.
METHOD_REFERENCE Reference to a method (e.g., method call).
FUNCTION_REFERENCE Reference to a function (e.g., function call).

SCRIPT File containing some code not part of a function or class.
Useful to group together references.

TOOLERROR The tool encountered a problem (e.g., unable to resolve
call).

UNKNOWNFILE File not in one of the supported programming languages.

Table 2: Node types extracted from Python code.

Link Type Explanation

SUPERCLASS Links from a subclass to the superclass from which the
subclass inherits.

ENCLOSING_CLASS Class defined within another class. Links from the inner
class to the outer class.

METHOD Link connecting a class to one of its methods.

METHOD_CALL Link connecting the node where the method call origin-
ates to the called method.

FUNCTION Links from a (non-class) node in which the function node
is contained to the function node.

FUNCTION_CALL Links from a node calling a function to the called function.

TOOLERROR Links from the node in which the node encountered the
problem to the script node in which the error occurred.

Table 3: Link types extracted from source code.

changed, added or deleted, and links between these nodes describing their relation, are saved to
a file. One limitation was that it only worked for Java. This meant a lack of support for functional
and procedural programming languages.

To extend the existing functionality with another language, Python was chosen. Like Java
it is a popular programming language, ranking in the top 3 in the TIOBE index10, the RedMonk
programming language rankings11 and IEEE Spectrum12. It supports both object-oriented and
functional programming, in contrast with Java which is heavily OOP oriented. This required the
addition of some new nodes and links to the graph to capture the additional structure not found
in Java. At the same time, Java has some special classes like interfaces that are not present in
Python.

The biggest challenge when creating a parser for Python was to find a framework that can
correctly resolve dependencies in Python code. Python uses dynamic typing, which means types
are only checked at runtime. This means that the type of a variable can be changed during
runtime, and resolving the type of a variable is a non-trivial task. This is compared to statically
typed languages, whose types are fixed at compile time and therefore known then. The implic-
ation is that static type analysis requires complex analysis algorithms, and any self-developed

10https://www.tiobe.com/tiobe-index/
11https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/
12https://spectrum.ieee.org/top-programming-languages-2021

13

program won’t have the functionality and extensive testing of an off-the-shelf professionally de-
veloped solution. Therefore, it was decided to use an existing framework and integrate it into the
program. For constructing the AST, Python already had corresponding functionality in its stand-
ard library with the ast module, which can parse code according to the installed Python runtime.
Using it provides a convenient and reliable way of constructing the AST from the source code to
identify parts of the code of interest to us. This way we can identify the static structure including
classes, methods, and functions in the analyzed files, but it doesn’t solve the more complicated
task of resolving the dependencies and creating the call graph.

What was needed was a way of resolving the dependency of any function call (including
method calls), as well as references to external code from a symbol. For this we chose jedi. It
is a tool for static analysis that is typically used by plugins for IDEs. It has over 300 million
downloads and supports a variety of editors, which should result in ongoing development and
extensive testing. It also has a simple and stable API sufficient for our purposes.

Given a file, jedi can infer the (potential) definition(s) of a symbol at a specified position in
the file. This gives us the information needed for our purposes, like the file path of the definition,
and the parent node (e.g., the class in case of a method) can be recursively derived to analyze
the structure. This is done for all class, method and function definitions identified using the
previously constructed AST, as well as any function/method calls.

5.3 Graph Creation and Structure
When running CDP, a new graph object is created which collects the nodes and links obtained
from all files that are analyzed (usually the files that were changed). For each analyzed file, the
nodes and links from it are added to this graph object. This process works in Python as follows:

1. CDP determines the project to which each file belongs.

2. The source code is parsed using functionality from the ast module included in the Python
standard library: The ast.parse() function creates an AST according to the grammar of the
used Python installation.

3. Each node is visited, starting at the top, with a subclass of the ast.NodeVisitor class. This
class implements handlers for the nodes that are of interest to CDP (i.e., function and class
definitions, as well as function calls).

4. The node is added to the graph. If it is a definition and a parent node exists (i.e., class node
for methods, enclosing function or class, etc.), a link connecting the node and its parent is
added. If it is a call, the node for the called function, as well as a link from the calling node
to the called node, is added to the graph.

To resolve the name and exact type of these nodes, jedi’s Script.infer() method is used. Be-
cause the AST treats functions, methods, and type instantiations the same, the exact type is
derived from the parent nodes and the context. The process for specific situations is as follows:

• For function definitions, methods are defined by their parent node being a class. In this
case a METHOD node is added to the graph, with a METHOD link from the METHOD
node to the defining class node. Otherwise, a FUNCTION node is added, and in the case of
a nested function a link with the FUNCTION relation is added to the enclosing function.

• For class definitions, a node is added for each super class, together with a link from the
class to the super class. Then a node is added for the class itself. If there’s an enclosing
definition, another link is added. If it is another class, the current class is an inner class,
and the link has the ENCLOSING_CLASS relation. If it is a function, the link relation is of
type FUNCTION.

14

• For function calls, CDP needs to differentiate between class instantiations, method calls,
and true function calls. For class instantiations a TYPE_REFERENCE and a METHOD_
REFERENCE node are added, with METHOD_CALL andMETHOD links connecting them.
For functions a FUNCTION_REFERENCE node is added as well as a FUNCTION_CALL
link.

• If a function call is not enclosed in another node, i.e., it is a statement in a script file, a
SCRIPT node is added to the graph, with a link from the function call node to the SCRIPT
node.

• Not all code statements might be correctly resolved, either because of errors in the code,
encoding, or the dynamic nature of Python. One example would be a function or method
call that cannot be resolved (e.g., function or class gets passed as a parameter to a function
which calls the function or method, and caller is unknown). In this case an ERROR node
is added to the graph, containing a note describing the error. If the error occurred within
a file, a SCRIPT node and a link from the error to it are added.

This results in a tree, with the class, method and function declarations as well as class in-
stantiations making up the dependencies, and the method and function calls the call graph. The
links store and describe the relationship between the nodes.

Node Type Description Used in Java Used in Python
CLASS OOP Class y y

INTERFACE
Interface class (definesmeth-
ods that need to be imple-
mented)

y n

ABSTRACT_CLASS
Abstract class (must be sub-
classed, provides method im-
plementations)

y n

METHOD
Method of an OOP class
(function belonging to a
class)

y y

FUNCTION Function not belonging to
any class n y

TYPE_REFERENCE Reference (usage of some
kind) to an OOP class y y

METHOD_REFERENCE
Reference (usage of some
kind) to the method of an
OOP class

y y

FUNCTION_REFERENCE Reference (usage of some
kind) to a function n y

SCRIPT File in which code is stored n y

TOOLERROR Error occurred in tool when
parsing n y

UNKNOWNFILE File not in one of the suppor-
ted programming languages y y

Table 4: Explanation and Comparison of Node Types from the Java and Python CDP implement-
ations.

15

Link Type Description Used in Java Used in Python

SUPERCLASS
Target node is class from
which the source node (class)
inherits.

y y

ENCLOSING_CLASS
Target node is class in which
the source node (class) is
defined.

y y

INTERFACE
Target node is Interface that
the source node (class) im-
plements.

y n

TYPE Target node is class that the
source node depends on. y n

METHOD
Target node is method that
the source node (class)
defines

y y

METHOD_CALL
Target node is the method
that gets called from the
source node.

y y

FUNCTION Target node is function that
the source node define. n y

FUNCTION_CALL
Target node is the function
that gets called from the
source node.

n y

Table 5: Explanation and Comparison of Link Types from the Java and Python CDP implement-
ations.

Tables 4 and 5 give an overview over the node and link types respectively. Because of dif-
ferences between Java and Python, not all nodes and links can be in graphs for all languages.
For example, Java has no functions, and therefore no FUNCTION nodes or FUNCTION_CALL
links. Conversely, Python has no interfaces, meaning that nodes of type INTERFACE will not be
present in any Python graph.

While the exact process of creating this graph is different from the Java implementation,
creating the final graph is done similarly. First, the target branch (i.e., the branch the code changes
should be merged into) is analyzed, and all nodes and links are marked DELETED. Then the
source branch (i.e., the branch being merged from) is analyzed in the same way, but now the
nodes are added to the existing graph from the target branch. If a node is already in the graph, it
is marked as UNCHANGED, otherwise it is marked ADDED. When both branches are finished,
all parent nodes of added methods or functions are marked CHANGED. This is the final graph,
which can be exported to a json file and will be used for the visualizations.

Nodes and relation types are shared between languages where present, to make the result-
ing graph representation as language agnostic as possible. For specific languages fields can be
added to the nodes to enable more complex functionality. However, having a shared set of fields
provides tools a shared API, independent of the language used. Implementations for new lan-
guages can use this interface and be compatible with existing tools that use it (i.e., the frontend
of this tool).

16

5.4 Front-End: CodeDiffVis

CodeDiffVis (CDV) is used as the front-end component of ReviewVis, taking a file containing a
graph in JSON format and displaying it. The file is currently generated using CDP, but CDV can
read any file containing a graph conforming to the updated API specifications explained above.
CDV is implemented as a Chrome browser plugin, which loads the graph from a specified file
and opens a new separate window to display it when visiting GitLab. By showing the graph in
a separate window, the reviewer is more flexible in how they can do the review. It is also easier
to add support for the tool to websites other than GitLab or use it standalone. However, while
the visualization is independent from the tool used for code review, some advanced features are
only implemented for GitLab.

Using the D3.js Javascript library13, a force-directed graph is produced. In it, each node
is attracted to the center of the graph, while at the same time being repulsed by other nodes.
An auxiliary force keeps connected nodes (e.g., nested classes) close together. To prevent the
graph from becoming too visually crowded, nodes cannot overlap. There are multiple ways to
manipulate the graph, which are described later.

To display the nodes, methods are extracted from their classes, and a completely flat layout
is used. This makes it possible to display object-oriented as well as functional code in a visually
consistent manner, and can handle arbitrarily deep nesting. Methods are connected with links
to their class, and classes have a colored circle around them in which the method nodes are kept.
This is done tomakes the connection clearer. We added FUNCTION nodes to represent functions.
We also added SCRIPT nodes, which represent files containing code not in any other node. They
are displayed like class nodes, except that no nodes have to be in the circle.

The links are styled to show two different types of relations: dotted for function and method
calls, and solid for dependencies. This was done to clearly differentiate the two types of relations.
There are however some cases where the two types overlap, for example in the case of nested
functions, where the parent function calls the nested function. In this case only the (dotted) call
relation is shown. To signify the structural relation between the two nodes, the child node has
the name of the parent node displayed over it to show that a structural relation exists.

The link direction is indicated by an arrow at the end of the connection. This was done
because depending on the type of link that connects two nodes, the direction of that connection
is not always clear. When there is a clear structure in the relation between nodes from which
the hierarchy is clear, like classes connecting to methods, the direction of this connection can be
deduced from the context. But in other cases, like functions and methods calling each other, the
direction of the call relations is ambiguous.

It is not always possible to represent the complete source code in the graph. This can be
due to errors in the code leading to an incorrect AST. But as explained in chapter 4.2, even in
correct source code, it is not always possible to determine the type of an object and therefore the
methods that get called in Python. This needs to be communicated to the user, so that they are
aware that the graph might be inaccurate. To address this, a new type of node in the graph is
added for the TOOLERROR node. For each file in which the tool encounters an error, one such
node is added to the graph. A yellow question mark signifies that it is a warning about something
the tool could not analyze.

The tool can handle graphs frommultiple languages at the same time, a case that gets detected
automatically when nodes from multiple (arbitrary) languages are present. For this, there exist
two possibilities to display them: (1) a separate window for each language or (2) combining them
in one window. This can be changed in the settings. In the first case, when the tool displays
each languages’ graph in a separate window, a separate graph for each programming language
is created. When the languages should be combined in one window, the graphs are placed in the
same window. To differentiate them, all nodes of each language get a border with a specific color.

13https://www.github.com/d3/d3

17

The graphs for the individual languages can also be hidden, so reviewers can focus only on the
language(s) they want. This is done by adding a toggle for each language in the same window.
Figure 5 shows the toggle and colored node borders.

Java has a strict structure, with each file containing exactly one class and nothing else. As
such, Java code can be structured in a strict hierarchy, with class nodes as root nodes and meth-
ods as leaves. In contrast, Python can contain any number of classes, functions and other code
together in a file. As such, the role of root node can be played by either a class, a function, or
a script node. This necessitated adjusting or rewriting parts of the frontend to be able to work
with a flexible hierarchical structure, moving it closer to being language agnostic. Together with
the added support for functions and scripts this means that the tool should work for most pro-
gramming languages with little to no adjustments.

Overall, the goal was to make the reviewing experience as consistent as possible between
different languages, and make it language agnostic (assuming the graph conforms to the API
described in the previous chapter). Structures and designs are the same for each language if they
are present. The same types of nodes have the same design, the call and dependency graphs
are shown the same, and colors, settings and interactions (described later) are shared between
languages. This means that, with the changes described above, the tool was made language
agnostic, and can automatically handle new languages. This removes the need to reimplement
CDV for new languages, and users have a consistent visualization.

5.4.1 Settings

CDV provides some settings to reviewers so they can customize the application to better fit their
needs. These are stored locally and are used for all graphs that get displayed. All settings wok the
same for all languages, if supported (only Java has generated nodes, and as such Python graphs
are not influenced by it). An example of the settings window is provided in Figure 4. They are
as follows:

1. Json URL: Path to the json file containing the graph to be displayed. Can be either a local
storage location or a web url.

2. Color schema toggle: Switch between nodes being colored by logical package (package in
Java, module in Python) or change status. For logical packages, a rainbow colormap is used
that adjusts to the number of packages. For change-based coloring, there are six different
colors used: green (added), orange (changed), red (deleted), grey (generated nodes, Java
only), white (unchanged), and light blue (non-programming language nodes).

3. Unknown files toggle: Show or hide nodes not written in a recognized programming lan-
guage (nodes labeled OTHER in graph). Such nodes are displayed in light blue.

4. Generated nodes toggle: Show or hide generated nodes (Java only). Generated classes and
methods generally do not need to be reviewed, but may be relevant for dependencies.

5. Methods toggle: Show or hide all methods. If the reviewer is only interested in the high-
level structure, only classes and functions can be shown.

6. Warnings toggle: Show or hide tool warnings. Warnings get displayed as nodes with a
special yellow border and a question mark.

7. Multiple windows toggle: If there are multiple different programming languages, the tool
can open either a separate window for each of them, or they can all be displayed in one
window.

18

Figure 4: Settings for the tool exposed to the user. They can be adjusted within the browser.

5.4.2 Interactions

There are multiple ways to interact with the graph to help the reviewer adjust it to their needs,
navigate within it, and navigate between it and the code under review. Most interactions, in-
cluding navigating between the graph and the code and adjusting the graph layout, are similar
in functionality to the ones described by Fröhlich [Fröhlich, 2020], therefore we only repeat the
most important ones here: The appearance of the graph can be changed by moving the nodes
around. By hovering over a node, users can highlight the parts of the graph that are connected to
it. Users can navigate between the graph and the code by clicking on a node to jump to the relev-
ant code in GitLab (graph-to-code) and hover over code in GitLab to highlight the corresponding
node (code-to-graph). Finally, nodes can be removed completely by right-clicking them.

A new way of customizing the graph was implemented for combining graphs of multiple
languages into one graph. This removes the need for multiple windows which have to be man-
aged separately, but moves the problem of managing the graphs into one window. Displaying
multiple graphs takes up screen space, and developers might only be interested in a subset of
the graphs. To combat this, each languages’ graph’s visibility can be toggled individually within
the containing window, with nodes having a colored border indicating their language. Figure 5
shows part of such a graph and the language toggles. This way reviewers can adjust the graphs
to their needs, while preserving the advantages of having only one window.

Figure 5: Snippet from a graph containing multiple languages, with one node for each language.

Another addition is the added information forwarning nodes. Warning nodes have a question
mark in their corner, which can be clicked to bring up the warning information. For this, a new
field is displayed in the top left of the window, listing all warnings the tool encountered in the

19

file of this node. It can be closed again using the close button. Figure 6 shows an example.

Figure 6: Warning node with hover text, and the opened warning window.

5.4.3 A ReviewVis Example

To help explain the tool, we present a sample merge request and the graph created for it in
Figure 7. It consists of four files, containing two classes, multiple functions, and some code not
contained in any code entity. The change-based coloring is used, meaning deleted nodes are red,
changed nodes orange, and added nodes green.

We further explain the graph using the numbers we added to identify specific elements:

1. Rectangular nodes with circles around them represent classes. They contain a C (for class)
and the class name.

2. Nested nodes have the name of the parent node displayed above them. Furthermore, a
solid line with an arrow pointing towards the parent node links the node to its parent.

3. Method nodes have rounded corners and are placed within the class circle. They contain
the method name. A solid line connects them to their class node.

4. Script nodes are displayed similar to class nodes (as they are root nodes as well). They
contain an S (for script) and the filename.

5. Dotted lines represent calls (both to methods and functions). They connect the calling
node with the called node, with an arrow pointing towards the called node.

6. Rectangular nodes without circle are class nodes. They contain an F (for function) and the
function name.

7. Functions can be nested, similar to classes. If they also get called by the parent node, only
the calling relation is shown. The parent is still identified by the text above the node.

8. Nodes can be disconnected from the rest of the graph, if they do not interact (in the code).

9. A comment in GitLab is indicated by a blue C (for comment) on the node in which the
commented line is. Hovering over it shows the comment(s).

10. Tool warnings are displayed with a dotted yellow border and a question mark. The warn-
ings can be displayed individually, or grouped together on a per-file basis.

20

(a) GitLab merge request.

(b) Graph created for GitLab merge request.

Figure 7: Merge request with corresponding graph showing different aspects of the tool. GitLabs
diff-based code view is on the left, and the created graph with annotations on the right.

21

6 Research Questions

The principal goal of this thesis is to extend the ReviewVis tool to support multiple program-
ming languages, as previous research found this to be one of the primary limitations of the
tool[Fröhlich, 2020; Fregnan et al., 2022a]. We chose Python on account of it being a popular pro-
gramming language, ranking in the top 3 in the TIOBE index14, the RedMonk programming lan-
guage rankings15 and IEEE Spectrum16. Additionally, it also supports functional programming,
in contrast with Java which is heavily OOP oriented, which allows us to evaluate graph-based
code visualizations for functional programming paradigms. We implemented the backend in Py-
thon to extract the graph, and extended the frontend to support visualizations in Python (and
other functional programming languages). Support for reviewing multiple graphs in different
languages was also added. To evaluate the tool’s extension, ReviewVis was shown to developers
in a series of interviews to discuss our implementation. To better understand developers needs
and inform future work on the tool, we also explored in these interviews how the existing work
could be improved, and what features could be added to better support developers during code
review. We aimed to answer the following questions:

RQ1.1 What is a reviewer’s perception of ReviewVis when applied to merge-
requests containing only Python code?

The goal of RQ1.1 is to evaluate the tool for Python, which supports both object-oriented
and functional programming language paradigms. We compare it to GitLabs file-based diff view.
As such we can evaluate the tool for Python specifically, while also evaluating our approach for
different programming paradigms at the same time, including the newly added functional pro-
gramming. This is done by conducting a series of interviews, showing developers the tool in
multiple examples and asking their opinion, as well as collecting their feedback in a question-
naire.

RQ1.2 What is a reviewer’s perception of ReviewVis when applied to merge-
requests containing both Java and Python files?

RQ1.2 evaluates the tool’s performance when performing a code review for multiple lan-
guages concurrently. This is done by having a sample code review combining Java and Python,
and iterating over developed solutions for displaying multiple graphs concurrently. The evalu-
ation is done like for RQ1.1.

RQ2 How can ReviewVis better support developers during code review?

RQ2 aims to understand the limitations of ReviewVis in its current form, and what the most
important potential improvements and features for the tool are to guide future work. To find
out, in addition to evaluating the tool to identify limitations based on research questions 1.1 and
1.2, the interviews were also used to collect and discuss ideas for new features. Some of them are
implemented between interviews in accordance with the RITE methodology to enable collecting
of feedback and further development during the following interviews.

14https://www.tiobe.com/tiobe-index/
15https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/
16https://spectrum.ieee.org/top-programming-languages-2021

22

7 Evaluation

In this chapter, we go over the RITE methodology we used and how we adapted it, and the
interviews and online questionnaire for evaluating the tool. After that we answer the research
questions, ordered by subtopic where needed.

7.1 Methodology

For the evaluation, we collected feedback from developers using the RITE methodology, with
improvements being made to the tool between interviews. We describe the methodology used
and our justification for it in sections 7.1.1 and 7.1.2. We go over the interview structure in section
7.1.3.

7.1.1 Rapid Iterative Testing and Evaluation (RITE)

The Rapid Iterative Testing and Evaluation method (RITE) can be used to quickly identify is-
sues and fix them, before verifying the effectiveness of the changes. It has first been formally
introduced by Medlock et al. when it was applied to identify and fix issues in a game tutorial
in 2002 [Medlock et al., 2007]. In their study, issues found during each iteration were discussed,
before being fixed. Each new version was then retested. In each iteration the number of is-
sues encountered were counted, and the study was continued until five consecutive participants
encountered no issues.

One of RITE’s advantage over more traditional usability evaluations is that any changes that
were applied can be rechecked, helping in discovering issues that need to be further improved.
By iteratively adapting, the same features can be tested more often with different user interfaces.

Since then, the methodology has been adapted by researchers to better fit their needs. One
is to conclude the study sooner. This is done to save costs, and it relies on the concept that major
issues are often found in the earlier iterations [Bacchelli and Bird, 2013; Rong et al., 2012].

7.1.2 RITE Adaptions

In the interviews we used a holistic approach, where we evaluated all aspects of the tool. In
accordance with RITE, graphical improvements and simple to implement features were directly
implemented in the next version of the tool, so they could be evaluated in practice and iterated
upon if necessary. For more complex changes and advanced features, a possible outline for an im-
plementation was presented. Participants were asked to give feedback, and possible approaches
were discussed. This allowed for the rapid introduction and evaluation of new features and ideas,
further improving the tool in the scope of this thesis as well as collecting data for future work.

Originally the RITE methodology did not limit the number of iterations but continued until
enough consecutive evaluations returned no issues. While this can be a feasible approach when
designing a user interface, in the context of developing new features as well as collecting and
evaluating ideas this is not possible due to the open-ended nature of the process. We argue that
this is especially true for more experienced users, who are going to have more ideas about the
process and how and what a tool should do.

To adapt to this, we used an approach where the number of evaluations is predefined to limit
the length of the study, which is also used in other studies and industry [Bach et al., 2016; Shirey
et al., 2013; Reichlin, 2016]. A follow-up study is used to further test the tool at this state to
counterbalance the adaption of the methodology. Fregnan et al. found that an iterative approach
with a limited number of users was a good compromise between limiting the length of the study
and collecting enough feedback [Fregnan et al., 2022b]. We argue that this is also true for this
study, and that a limited evaluation run with a final feedback run produces sufficient data for our
purposes of evaluating the tool and exploring opportunities for future work.

23

7.1.3 RITE Iterations

The evaluations were done remotely via a video call using Zoom17. Doing it remotely allowed
for greater flexibility regarding who could participate and when. The interviewer showed to the
participants demos of the tool running on their machine for a set of publicly accessible merge
requests, with the screen being shown to the participants. Participants could indicate parts of
the tool to talk about and ask for features and actions to be demonstrated.

At the beginning of the interviews, an introductory question about code review was asked
to establish working experience and tools usage (a more detailed survey was done in a follow-up
questionnaire). After that, a quick overview over the tool and its aim was given.

All examples were presented by having one window with the code under review in a merge
request on GitLab, and another window containing the corresponding graph. These windows
were positioned side-by-side on the same screen, so everything was visible at the same time.
For the largest example with multiple graphs, the graph was shown in full screen for some time
when initially presented to the developer.

For evaluation purposes three scenarios were presented to the participants: a small code
change in Python only involving code entities, a bigger change with a more complex graph in-
cluding non-Python files and tool errors, and a final scenario involving both Java and Python
code changes. Pictures of the graphs can be found in Appendix C. The scenarios were presen-
ted in increasing complexity, with some interactions and features being presented only in the
second example. This was done to give participants the opportunity to get used to the tool and
understand it before being confronted with the more complex graphs. Short explanations were
given for the graph, interactions and settings, and participants were allowed to ask questions
if they felt they did not understand something. We argue that by the end of the interview the
participants had a sufficient understanding of the tool to give useful feedback and estimate the
long-term usefulness of the tool.

Each RITE iteration was structured as an interview, where we asked participants open ques-
tions about different aspects of the tool. The most important was the graph visualizations and
way of displaying node types for multiple different graphs, asking them about the general im-
pression and usefulness of it, as well as hurdles to adoption and issues. As the settings could
modify the graph, they were evaluated by comparing the graphs with and without them on,
when applicable. The interactions were usually evaluated after introducing the graph itself, but
when participants brought them up earlier, discussions were started before explaining all details
of the graph. Finally, the last example evaluated the tool for multiple languages, showing differ-
ent settings and asking about ideas on how to solve it. A scheme of the interviews structure is
available in Appendix B. These were used to start the conversation and as a guideline. They were
extended by questions about specific issues, features and ideas for possible improvements col-
lected over previous interviews. As the interviews progressed and areas of special interest were
identified as well as more ideas collected, more space was given to less structured conversations
about these ideas to maximize new insights.

In each interview after the first, extra space was given to the changes introduced since the
last interview. This was to properly evaluate the changes made and new features introduced,
and further iterate on them if necessary. For more impactful changes, versions with and without
these changes were shown to the participants, and they were asked what their opinion was.

Most interviews lasted for around 40 minutes with some taking over an hour, depending
on the participant and their ideas and available time. As more information was collected over
the interviews, the average time increased because more previously collected insights could be
discussed.

17https://zoom.us/

24

7.1.4 Post-interviewQuestionnaire

After the interviews, participants were given a link to a short (about 10 minutes to fill out) online
questionnaire, available in Appendix D. In it we used the Technology Acceptance Model [Davis
and Davis, 1989] to assess the participants perceptions of the interface. It is a model to assess the
user’s perception of a technology’s usefulness and its ease of use to predict the user’s acceptance.
The three main questions of TAM, perceived usefulness, ease of use and self-predicted future
use, were measured. To measure the participant’s agreement with each statement, a 5-point
Likert scale was used, ranging from “Strongly Disagree” to “Strongly Agree”. We also collected
demographic information and previous experience in this questionnaire. The responses were
linked to the interviews by a code given to the participants.

7.1.5 Demographics

ID Male Current Occupation
Professional
Coding
Experience

Professional
Python
Coding
Experience

Prof. Code
Review
Experience

P1 Male Software Developer,
Engineering Manager 6-10 3-5 6-10

P2 Male Software Developer 11+ 3-5 11+
P3 Male Student 2 2 1
P4 Male Student 1 1 1
P5 Male Software Developer 11+ 0 6-10
P6 Male Software Developer 11+ 0 11+
P7 Male Software Developer 11+ 1 11+
P8 Female Student, Researcher 3-5 0 2

Table 6: Overview of the participants ordered by interview date.

The interviews were conducted with eight participants, listed in Table 6. Seven were male
and one female. Five were working as software developers with one also being an engineering
manager, and three were students with one also being a researcher. 62.5% of the participants
programmed daily and did code review at least once a week. Four of the interviewees have
developed software professionally for over 10 years, two for more than 3 years, and two for 2
years or less. Five participants had at least 6 years of code review experience, with the others
having 2 years or less. Participants had less experience with Python, with only three participants
having over 2 years of experience and three participants having no experience at all.

7.2 Results and Analysis

Here we present the results of the interviews and the follow-up questionnaire. First, we give an
overview over the demographics, before answering the research questions. We used an outline
for the interviews to guide the discussion. Furthermore, developers provided new suggestions
and ideas to improve ReviewVis, going beyond the predefined questions. We categorized the
results where possible to structure the large amount of information collected in the interviews.

25

7.2.1 Developer’s Perception of ReviewVis With Python

7.2.1.1 General Perception of ReviewVis

The primary benefit of ReviewVis as identified by developers in the interviews was giving
an overview of the code changes themselves (7 out of 8 developers) and to see the context of
the code changes made (4 out of 8 developers). The overall perception was positive with most
developers describing the tool as useful or helpful, and five of them expressing that they want
to try it out or use it in their code reviews. Similarly, in the questionnaire all except P5 (who
criticised the default node positioning) predicted that they would use ReviewVis in the future,
and all participants answered that they preferred it over only using GitLab.

Figure 8: Usefulness of ReviewVis as perceived by the participants.

When asked about the usefulness of ReviewVis in the questionnaire, participants’ answers
were mostly positive: all participants answered that they think ReviewVis is useful and that
it would increase their productivity. Participants were unsure if the tool would improve their
performance and effectiveness, with P1 thinking it would hinder him in both. Participant P5 was
not sure whether the tool would speed up their work and answered that it might not make their
job easier. The answers are summarized in Figure 8.

The usefulness of the tool depends on the size of the review changeset. For smaller change-
sets, where only a few nodes are touched, the resulting graph is relatively small. For these cases
developers expected the tool to be less useful, as they would be able to quickly understand the
changeset without the tool. Some developers with over a decade of experience expressed that
for more mature or well-organized code bases, most changes can be made locally (i.e., without
touching a lot of nodes) and as such the tool would not be needed often. But for large changesets
ReviewVis becomes useful, since these changes are the most complex and therefore the hardest
to understand (according to developers). For instance, a participant mentioned large-scale re-
factoring as a case where our tool would be beneficial, showing the overarching pattern of the
change.

Another factor that impacts the usefulness of the tool is the complexity of the graph, as
measured by the number of nodes and relations. In its current form, most developers thought
that ReviewVis provides an appropriate level of abstraction by default. Potential problems they

26

mentionedwere extremely large numbers of nodes or densely connected graphs. When evaluated
for a graphwith over 20 connected nodes and nearly 40 relations between them, the feedbackwas
still positive but more mixed: Two participants thought the graph was too complicated, while
four thought that it still was useful, especially with the ability to highlight specific parts of the
graph. When asked about the setting to hide methods and therefore reduce the graph complexity,
developers reported it as not useful unless the graph becomes too complex. Participants reported
that for the examples used (12-34 nodes with 10-54 connections), the level of detail is appropriate.
The tool was not evaluated for graphs containing more than 34 nodes. Participant P2 thought
the tool would even be useful for reverse engineering, which could involve graphs spanning
hundreds or thousands of nodes. Two developers answered that the tool could be useful for
understanding even very large graphs, although we expect this to heavily depend on the exact
structure of the code change.

Another benefit of the tool that P7 brought up is that it can quickly indicate how something
was implemented. Using the graph, reviewers can see if an existing class was modified, a new
one added, and what classes or functions were changed. They thought this could make the
tool helpful for automatically creating the graph and displaying a picture of it in another tool
alongside other information. Specifically, they thought of Jira18, an issue tracking platform. The
example they gave was that there could be a task to review a modification. When this task is
created, an automatic process creates a picture of the visualization and links it to the task, where
it is shown together with it. The reviewer could then with one glance see what was done, without
having to leave the platform. Another benefit of this approach that they mentioned is that more
users get exposed to the tool, potentially convincing them to try it out.

In some cases there can be nodes that are (visually) not connected to the other nodes: e.g.,
when a function is added which does not interact with other code in the changeset, resulting in
it not being connected to the rest of the graph. Two participants said that they were confused by
them. But our tool only displays the structure of the code. If a developer creates a merge request
resulting in such a situation, e.g. by combining multiple disconnected changes into one merge
request, the tool will just display the result. Therefore this is a situation that is inherent to our
approach, but we think that explaining how this can occur will be enough to prevent confusion.

An important problem of the tool, especially for large and complex changes, is the initial
positioning of the nodes in the graph. Currently the main nodes like class, function and script
nodes are positioned randomly in a circle, with method nodes being positioned around the class
nodes. This does not take the interconnections between nodes into account, which can lead to
suboptimal placements with lines crossing each other. The use of different forces between the
nodes then pulls them into the final configuration which improves the positioning but does not
solve the problem. This was criticized by half of the developers.

To address this, an algorithm to position the method nodes closer to nodes connected to them
was implemented: Instead of spreading them out randomly around the class node, the connected
nodes for each method are collected. For each connected node, the angular position is calculated
as a vector of length 1, pointing from the class node to the connected node. These vectors are
then added and normalized to obtain the methods angular position as a vector. The direction of
the vector gives the direction in which the method node should be positioned, relative to the class
node. The length of the vector encodes the priority (i.e., longer vectors mean that this method’s
connections are less spread out, and therefore it is more important to position them at their
position). Then, the methods are positioned around the class node, with longer vectors being
prioritized. If this position would result in being too close to an already positioned method, the
angular direction is adjusted until it is far enough away from other methods (minimum distance
decreases in number of methods). This way, if the connections are more spread out, the method
is positioned more flexibly. The outcome is that methods are positioned close to their connected
nodes relative to the class. Figure 9 shows the procedure.

18https://www.atlassian.com/software/jira

27

This improves the graph clarity especially for smaller graphs. But for large graphs with a lot
of class nodes, positioning remains a problem. Manually dragging around the nodes to improve
the positioning is possible and was seen as an acceptable solution, but it means more work and
hinders the usage of the tool for automatic graph creation. Good automatic positioning was seen
as superior to manual positioning.

(a) Only one connection. (b) Two connections.

Figure 9: A class node MainClass with a method node method. This method node is connected
to other class nodes. In the left example, it is only connected to node Class1, and the resulting
angular position (blue arrow) points directly at the connected node. In the right example, the
method is connected to two nodes, Class1 and Class2. The resulting vectors are shown in light
blue. They are summed up and normalized to obtain the vector for the final method position
(dark blue arrow). The direction is between the two nodes, and the vector is shorter because the
connections are more spread out.

7.2.1.2 Graph Design and Features

Regarding the design of the graph, the participants thought that the way the nodes them-
selves are designed is good, and that indicating the type of node for similar-looking nodes (classes,
functions, interfaces, etc.) is understandable after a few minutes. Three of the first five parti-
cipants experienced confusion over the design of the relations: they said that method depend-
encies and calls looked too similar, with both being dotted lines just with different length of in-
tervals (see Figure 10a for an example). To address this problem, the relations between methods
and their classes were redesigned to resemble dependencies, shown in Figure 10b. This reduced
the number of relation designs to two clearly distinct types, and in later interviews this problem
did not come up again.

Other improvements made for the relations were the addition of arrows. While for some
relations the meaning was clear (e.g., the connection between a class and a method), developers
mentioned that for some relations like class dependencies, the direction is unclear from the graph
alone (see Figure 10a for an example). To communicate this information to the users, arrows
were added to all relations except method dependencies, as in this case the relation type was
already clear (see Figure 10b for the updated design). In subsequent interviews, participants
either expressed no confusion anymore or even mentioned the arrows positively.

In the graph, the parent node of nested classes and functions is indicated by the name of the
parent node shown over the child node. In the case of nested functions, a function could be both
the parent function and calling function, whichwould lead to two overlapping relations as shown
in Figure 11a. This was confusing for some developers. We updated the graph to only show the
calling relation, using the parent’s name to indicate the nesting (see Figure 11b). When asked

28

(a) Before (b) After

Figure 10: Part of a graph showing a nested class (PlotArmor) and its parent class (Hero), with
the method Hero.get_shot calling the method PlotArmor.save. On the left is the initial link design,
and on the right the final link design for the same links. Arrows were added and class-to-method
links redesigned to make the relation types and directions clearer.

about this new implementation, developers answered that it’s not obvious but understandable
and that they expect to get used to it.

(a) Before (b) After

Figure 11: Function greet with a nested function get_greeting, which gets called by greet. To
prevent confusion, only the calling relation is shown with a link, with the parent relation being
signified by the parent’s name on top of the child node.

The parser might not be able to retrieve all information in a review changeset (this is due to
Python being a dynamic language using duck typing, see chapter 4.2 for a more detailed explan-
ation). This needs to be communicated to the user so they know the graph might be incomplete.
For this, warning nodes were added.

In their first iteration, warning nodes (or error nodes at this time) used a red exclamation
mark to signify a (tool) error. As the exclamation mark was seen as too small, a checkered border
was added after the first interview. Developers interpreted this as an error in the code and were
confused. Errors within the tool were seen as less important than errors in the code, so the alarm-
ing messaging of the error node was thought to be a code error. In later iterations the colors were
changed to yellow (communicating a warning) and a question mark instead of an exclamation
mark to indicate the tool did not understand something. Figure 12 shows a comparison.

(a) Initial warning node design. (b) Final warning node design.

Figure 12: Comparison of the initial and final (after the interviews) warning node design.

This final design was received better by participants. At this stage, further information about
the warning could be displayed by clicking on the question mark. Doing so opens a new window
on the top right, which closes when the close button is pressed. Following feedback that the
connection between the warning node and the window can get lost as the window stays open,
the ability to show the warning information by hovering over the node was added. Participants

29

in the subsequent iterations showed a (slight) preference for the hover text. However, hover text
is only shown while hovering over the node, and moving the mouse closes it. For this reason,
participant P8 would have preferred to additionally have a pop-up window like the existing one,
but positioned in the middle of the screen while preventing the user from interacting with the
graph until it’s closed.

A feature that was requested multiple times was showing which nodes were commented in
GitLab, as code review is commonly done by commenting on the code. This way reviewers can
pay more attention to these nodes. For this, comments are loaded when loading the GitLab page,
and matched to the corresponding node in the graph. The node gets a blue C (blue because it has
good contrast with the node colors, and C for comment), hovering over which displays all the
comments and threads made on code belonging to this node. Figure 13 shows an example with
multiple comments. When evaluated, the indicator (the blue C) needed to be explained initially,
but after that they thought it is clear enough and that it is a useful feature.

Figure 13: The comment indicator on a node. There are two comment threads in GitLab on line
8, and one on line 9. The box with the comments is shown when hovering over the blue C.

7.2.1.3 Interactions and Usability

When compared to GitLab and the file-based diff view, P5 liked the tool for requiring less
scrolling to find the information they want compared to the file-based view on GitLab. The same
developer also liked that it does not just show which files were changed, which could already
be done in GitLab. Another developer also expressed that the visual presentation is preferrable
compared to the textual view. This is not to say that GitLab’s view is not needed: developers still
need to see the code itself. Developers consistently said that the graph-to-code and to a lesser
extent the code-to-graph features were especially helpful, and that the tool would be incomplete
without facilitating moving between the graph and the code. One developer said they would do
a review node by node, using the graph to go to a specific node and reviewing it, and that this
way they could rapidly switch between the two windows.

To track code reviews, unclicked nodes have their name displayed in bold text while clicked
nodes have normal one. 75% of developers thought it was useful and a good way of providing
a way to track code reviews, but P4 mentioned that they would need a way to reverse this, i.e.
make the name bold again, which is currently not possible.

The ability to remove nodes by right-clicking them was seen as less useful. Developers said
they probably would not use it, and that they would be worried about losing information. In
general, many expressed that in their experience, hiding information is dangerous. Additionally,
they thought that right clicking the nodes to hide them is confusing, because this is inconsistent
with other interfaceswere this action brings up submenus. Participants also criticized that hidden
nodes could not be brought back easily and that there was no indicator that they existed once
hidden.

Other interactions with the graph were received well: e.g., highlighting was seen as useful.
In particular the ability to move nodes around was perceived as especially useful, as this could
be used to (un)cluster nodes (e.g., by functionality) during review.

30

Figure 14: Ease of Use of ReviewVis as perceived by the participants.

Figure 14 summmarizes participants’ perceived ease of use of ReviewVis. Overall participants
thought that it would be easy to learn how to use ReviewVis, but they were not sure if they could
remember how to do everything. Based on this we think that a short guide for users to reference
will be enough to use the tool after a first introduction. This is consistent with answers from the
interviews, where most developers answered that they need an initial explanation and maybe
some time to fully understand and get used to it, but especially more experienced developers
thinking they would learn it fast.

7.2.1.4 Settings

Developers can choose between the change-based and a package-based coloring described
in Section 5.4.1. In evaluating them, all developers preferred the change-based coloring for code
review. As such, this was made the default setting in later evaluations. When seeing the graph
with change-based colors, many developers intuitively understood that green means the node
was added and red that the node was deleted, but the meaning of orange (changed) sometimes
needed to be explained. However, overall developers thought the coloring was clear. Package-
based colors were seen as less useful because, as P2 put it: "Normally when doing code review
I already have a grasp of the structure, so I would not use this feature." A possible application
mentioned by P2 was tasks other than code review like reverse engineering, meaning that it is
primarily useful when developers review code they are completely unfamiliar with.

A file can contain multiple warnings. A setting is provided to either show only one warning
node per file with all warnings collected, or an additional warning node for each warning, which
gets linked to the file warning node. Figure 15 shows a comparison. Feedback on this feature
was mixed, with developers tending to prefer only one node to reduce clutter. P3 even wanted a
way to hide all warnings, which is currently not possible.

The tool provides a setting to show nodes not written in one of the supported programming
languages (e.g., txt or xml files). Reviewers’ feedback on this feature was mixed, with two saying
that they would not use it, six saying that they think it’s useful, and four of them saying that it
depends but that it’s good to have a choice. One developer mentioned that by being disconnected

31

(a) One warning node per file.
(b) One warning node per warning

Figure 15: Warnings indicating that the tool encountered a problem (e.g., could not resolve a
call). There are two warnings for the file helpers, one for line 2 and one for line 3. In the settings
the individual warning nodes can be toggled on or off.

from the graph it doesn’t provide much information, but if usages in the code could be detected
and displayed in the graph it would become interesting.

7.2.2 Reviewers’ Perception of ReviewVis for Merge-requests Containing Python and
Java

The tool offers two settings for how to handle graphs containing multiple languages. It can
either open a new window for each language, each with its own graph. Or it can open only one
window, with all language graphs distinguished by their border color of nodes and a toggle for
the graph of each language. Figure 5 shows an example. The feedback when comparing these
two options was mixed. Generally, developers preferred having only one window, although three
preferred multiple windows as well, with three participants also bringing up other approaches
described at the end of this section. Overall, the interest in this feature was smaller, because
while some thought it is useful, many developers rarely were in a situation where they reviewed
code in multiple languages concurrently. An important application domain would probably be
full-stack website development with different languages for the frontend and backend, which
was not tested.

Figure 16: Example for a graph containing nodes for both Python and Java.

One important factor was thework setup: Developers with a smaller setup like a single laptop
screen had less space for the graphs. Some preferred the combined approach, because this way
they only had one window and could just toggle the languages on and off as needed. Others
with a similar setup preferred multiple windows, because having multiple graphs in one small
windowwas too large andwould require a lot of zooming around. Developerswith amulti-screen
setup had more space for multiple windows, allowing them to arrange the windows as needed.
Because the tool does not recognize connections between language graphs, this carries the same
information as combining them. This meant that only a minority would display multiple graphs
concurrently within the same window, with most preferring to instead toggle between them or

32

splitting them up into separate windows.
Another factor was the preference for less windows. Many participants expressed that they

wanted less windowmanagement, which could be achieved by combining the graph. By allowing
users to toggle the languages individually, some thought that they could do the code review in
one window even if they wanted only one graph at the time. Also, combining everything into one
window has the benefit that it is quicker to use due to not having to switch between windows,
and it allows developers to more easily detect logical connections, even if the tool does not show
them. Some also expressed that less windows but with more configuration options are better
than multiple windows.

Coloring the node border of each language in a different color was received well by de-
velopers. They thought it was intuitive, and one had the same idea when asked about possible
solutions without being presented with the tool. Some said the link from colors to language
was not clear, while others said it’s clear from context. To make it clearer for everyone, the col-
ors were also added to the language toggles. In its current implementation the borders are only
shown when more than one language is toggled on, but one developer expressed that they would
like to have the colored borders always shown for multi-language graphs.

Some ideas for other solutions were displaying both graphs in one window but enclosing
each of them in a box to clearly separate them, and to separate them using tabs instead of fully
separated windows. Using tabs would have the advantage of only being one window to manage,
while at the same time making switching between languages quick and easy, and later parti-
cipants who were asked about this thought it was a viable option.

7.2.3 Future Work on ReviewVis to Better Support Developers During Code Review

In the interviews, we collected feedback regarding issues with the implementation of the tool as
presented to the participants, as well as possible future improvements and features. In discussing
themwe also got some further insights into what developers value in a visualization tool for code
review like the one we created. We first focus on what can be improved in the current state of the
tool. Then we present features and changes requested by developers that can be implemented
within ReviewVis. Lastly, we report where integration with other tools can improve support
for developers during code review, and identify some areas outside of code review where code
visualizations as implemented by ReviewVis could be useful.

7.2.3.1 Directions for Improving the Current Implementation

While many of the issues that came up during the interviews could be addressed, evaluated
and further improved using the RITE approach, there remain some problems that we were not
able to (fully) address due to time constraints and the complexity of the required changes. These
should be addressed in further work on the tool. We focused on the tool and the visualizations
itself, evaluating developers’ opinion on it. But factors outside of it like toolchain integration are
going to influence especially adoption rates, so this needs to be considered as well.

Themost common concern (mentioned by five interviewees) is the possible sub-optimal auto-
matic positioning of nodes. The nodes are semi-randomly distributedwithin thewindow, starting
with the main nodes (classes, etc.) and finishing with the method nodes. From there different
forces move them into their final position. This approach does not take any of the relations into
account. This is especially a problem for larger graphs. While there is not always a clear optimal
positioning, the main metrics for a good graph extracted from the responses are tightly coupled
nodes being positioned closely together and lines not crossing, the second one confirming the
findings by Purchase et al.[Purchase et al., 1996]. Because this is one of the main issues brought
up and as it impacts the core functionality of the tool, more advanced approaches to determine
the optimal positioning would be one of the most important improvements that can be made.

33

This includes determining what optimal positioning is, as it might require trade-offs between
better node positioning and minimizing lines crossing.

As part of the RITE methodology, something that was done during the interviews to improve
the visualization was to improve the positioning of methods around nodes: using the algorithm
described in Section 7.2.1, they could be positioned closer to the most connected nodes within
the class circle. For example, when a method calls another node that is below the parent classes
node, it makes sense to position the method node below the parent closer to the called node.
This improved the visualization for the medium sized examples, but for the large graph some
developers still thought that it could be improved. The reason is that parent nodes (i.e., class,
function and script nodes) can still be positioned far apart despite being connected, and crossing
lines are not taken into account.

P6 mentioned the idea that the author could define an optimal layout for reviewers to use.
However this can increase the authors’ workload and might limit the applicability of the tool.
Therefore it might be inferior to automatic solutions. Having good automatic positioning means
that the tool would be more viable in scenarios where the user cannot interact with the graph
(e.g., when only a picture of the graph is given), which will be discussed later in this chapter.

When evaluated for a larger graph containing eleven class nodes, 3 developers also reported
that the class nodes with their circles should be further apart by default, as some of them were
quite large and overlapped with other circles. From the interviews we could not determine if this
could also be solved by having smaller class circles.

Another problem is that changes made to the graph cannot be easily undone, with some
changes requiring a reload of the graph. For instance, developers would like to have a way to
make a node name bold again to indicate that it was not yet reviewed, and showing hidden
nodes. Especially the ability to hide nodes without indicating that any nodes were hidden was
perceived as dangerous by two developers: reviewers might forget they decided to remove these
nodes from the graph, and therefore not inspect them during the review. Having a list of hidden
nodes or something similar from which they can be brought back could address this issue.

7.2.3.2 Requested ReviewVis Extensions

A primary direction for future work is including support for more programming languages:
the currently supported languages cover only a minority of use cases, and most participant men-
tioned this as a limitation of the tool. This echoes the findings of Fröhlich et al. for Java [Fregnan
et al., 2022a]. Adding other (popular) languages would increase the range of projects in which
this tool could be used. Guidance to select them could be taken from the TIOBE index19, the
RedMonk programming language rankings20 and IEEE Spectrum21, which all rank C, C++, C#
and JavaScript (JS) in their Top 10 most popular programming languages. JS specifically, which
is commonly used in combination with other languages for web development, would also enable
researchers to better understand the appeal of the tool for multiple languages, at least when used
for some web development projects.

One feature that was requested by P1 and which later participants expressed interest in when
asked was a way to hide nested nodes (i.e., nodes contained within other nodes of the same type,
such as functions defined within another function), for both functions and classes. Two different
reasons were given for this: Three developers expressed that for graphs with a lot of nested
nodes, it could become cumbersome to use and visually overcrowded. By only showing the top-
level function or class, this could be prevented. The other factor was that the top-level node
is the most important in the opinion of developers, with the nested nodes often only playing a
supporting role for the parent or being used to structure code. As such, depending on the code,

19https://www.tiobe.com/tiobe-index/
20https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/
21https://spectrum.ieee.org/top-programming-languages-2021

34

hiding them does not meaningfully reduce the information content of the graph.
Another type of nodes thatmultiple developers expressed interest in hiding are deleted nodes.

This could be done by using a toggle in the settings. The justification for this was that deleted
nodes are of less interest, as they don’t represent any code that needs to be reviewed. By removing
them from the graph its complexity is reduced, and the developers can focus on the important
changes. Two out of three developers who supported this had relatively little experience with
only 1-2 years of working experience. More experienced developers were split on the usefulness
of such a feature: one reported that deletions are rare in established code bases, making such a
feature less useful.

Another potentially useful feature that was reported by P8 was to have more fine-grained
control for the type of unknown nodes for files not recognized by the tool in the graph. For
example, while showing nodes written in languages not supported by the tool might still be of
use, metadata files might not be. Adding a filetype-based white- or blacklist would enable a more
fine-grained filtering of these nodes. This way, specific files like JS files could be included, while
xml files could be excluded.

Developers were also asked about what they would think of adding more information to the
graph using indicators on nodes, or showing more information when hovering over a node. The
opinions on this depended on the type of information. For example, detecting errors in the code
and displaying them in the tool was seen by five of the developers as potentially useful, while P4
said that it is “not really the point of the tool”. The same developer expressed that they would not
be completely against more information, just that it really depends on what the information is.
For example, something that was received well when discussed in the interviews are argument
lists for function and method calls. All participants (except one) who expressed interest in this
feature also said that the additional information should not use too much space or clutter the
graph. For example, showing the information only when hovering over the corresponding node
was seen as a potential solution. Adding toggles for such indicators would allow developers to
select for themselves what information should be indicated in the graph, and to adjust to specific
graphs as needed.

Overall, when talking about nodes and links in the graph, interviewees reported that they
are important information and they generally would not hide them. Also, when they are hid-
den, the tool should clearly communicate this to the user. Many developers thought that hiding
information can result in them forgetting about it, leading to problems. When the idea of auto-
matically hiding some nodes for very large graphs came up, developers answered that it could
be useful. However, it would need to be clearly indicated, and they must be able to display any
hidden information (e.g. nested nodes) again. This might be achievable with existing features
like hiding methods and settings to hide nested nodes, but would need to be evaluated in further
studies.

A potential feature that was brought up was a way to recognize renames and indicate them
in the graph. The idea was that instead of having a deleted node with the old name and an added
node with the new name, there would be a single changed node with a name like oldName-
>newName. When asked about this idea, especially developers with less experience (<2 years)
were interested in such a feature, while more experienced developers (>5 years) were more alert
towards potential issues. The most important factor for the more experienced developers was
that this feature must be reliable. It would need to depend on some kind of heuristic to detect
renames, which might be wrong. They also said that the way the tool works currently is very
clear (meaning clear rules), while complicated processing might end up making the graph harder
to understand. As one developer noted, it can also lead to a loss of information when it is not
only a simple rename, but also contains added or deleted relations, which would not be distin-
guishable in the graph. Another developer who liked the idea brought up the possibility of a
rename relation, but said that this could make the graph more complicated.

Currently the change-based color scheme shows the additions, changes and deletions, while

35

the package-based color scheme shows the package or file level structure of the graph. While
all participants preferred the change-based color scheme, some thought that the package-based
color scheme could also provide valuable information. However, currently users can only choose
one of them and not use them simultaneously. An idea that P8 had is to have the nodes using one
color scheme and adding borders with the other color scheme. This would combine the two, and
could be a third option for developers to choose from. When combined with the approach for
multiple languages in one window, which also uses border colors, this would have to be replaced
by another approach like dotted or doubled borders, which could become overwhelming for
reviewers.

Another color scheme that was requested was a colorblind accessibility mode. For change-
based coloring, red and green are used which are intuitively understandable, but can be hard for
red-green colorblind people to differentiate. And for automatic coloring like with package-based
coloring, the color distribution is random which can introduce issues as well. To address this
problem, a colorblind mode should be added with alternative coloring that is easy to differentiate.

When it came to the way code is currently visualized, two developers said that an alternative
visualization scheme for certain types of code could be interesting, mainly tests. Tests have
a different structure and function to normal code, and as such could benefit from specialized
features. However, no concrete examples were given.

One information that would be interesting to have in the graph is the change size. In its
current implementation, large changes (spanning a large percentage of the total code) look the
same as one-line changes in the graph. This way developers can see where the major changes
were made and focus their attention on them. What information and how to communicate it
exactly would need to be further researched, but some proposals are a percentage or LOC (lines
of code) changed vs LOC total, or to communicate LOC added and removed separately.

The size of the circle around main nodes is currently proportional to the name length (i.e.,
longer names correspond to larger circles). But as P6mentioned, circle size carries a lot of inform-
ation, as larger circles which take up more screen space indicate higher importance. To make
better use of circle size, it could be tied to the LOC or number of methods of the class, which
would be the most intuitive in the opinion of the developer who brought it up, but might not be
very useful information. Other ideas to use it include change size, either with bigger circles cor-
responding to larger change sizes or two concentric circles indicating LOC added and removed.
The circle size would need to be normalized, because the information communicated might differ
by order of magnitudes (e.g., single-line code change vs hundreds of lines rewritten). Also, a later
developer thought that using the circle size to communicate more information would not be a
good idea, but admitted that they would have to see the actual implementation.

7.2.3.3 Integration With Other Tools and Use Cases Other Than Code Review

Focusing on code review, integrating information from other sources into the tool can be
very useful in the opinion of five developers. One example is showing the result of static ana-
lysis tools like SonarCube22, which statically checks code quality, within the graph. But it is
important that they do not hinder developers in using the tool to obtain a light-weight over-
view of a code change, which is seen by developers as its core strength. For indicators (i.e., little
symbols added to nodes, like the comment indicator), adding toggles to turn them off and on
individually would be a good solution, allowing developers to be flexible in their tool choice and
usage. An alternative would be hover text, which does not add visual information and as such
reduces the risk of information overload. Finding ways to best integrate information into the
existing tools and what information is most useful should be researched further.

Developers were also interested in how the tool could be integrated into their workflows.
They expressed that using the tool should not hinder them in their work, meaning that it is easy

22https://www.sonarqube.org/

36

to set up and can be used with little if any additional effort. Toolchain integration is, in their
opinion, a major factor in the adoption of the tool in practice.

A popular request was expanding the tool for more use cases beyond strictly support for code
review. This includes situations where the tool is used standalone (i.e., independently of GitLab,
without being linked to the analyzed code) when only a high-level understanding of the code
structure is needed.

One example is integrating the tool into Jira23, a task tracking platform P7 mentioned when
talking about their workflow. Their company splits work into tasks and assigns them to de-
velopers, with other developers reviewing the changes made. They wanted to have a picture
of the graph on completed tasks to show how the change was structurally implemented (e.g. a
single large class, multiple small classes or functions). This way they could see a quick overview
without having to leave Jira.

Other than that, developer P2 mentioned that it could be very interesting for reverse engin-
eering, as it provides a high-level overview over the code structure. And P5 mentioned that it
could be interesting to compare arbitrary branches in GitLab to see how ongoing development in
them has led to divergent graphs, or to see what has been done so far. This is not directly related
to code review, but shows that a tool like ReviewVis can effectively communicate information
which could be useful in other aspects of software engineering. Applications of this tool beyond
code review should be explored further in future studies.

23https://www.atlassian.com/software/jira

37

8 Limitations

In the following sections we discuss both internal and external possible threats to validity. We
also explain how we tried to mitigate known effects and discuss the possible impact of decisions
when this was not possible.

8.1 Internal Threats to Validity
Participant Selection The participants were selected partially from the professional net-

works of the authors. They were recruited by contacting them directly, explaining the study and
asking them if they would be willing to participate. It is possible that participants were more
likely to join because they felt pressured to do so. To mitigate this effect, it was made clear to
participants that they could drop out of the study at any time, without providing any reason.

Lack of Interaction The interviews were done remotely, with the tool running on the
interviewers’ machine and the screen being sharedwith the participants. Because the focus of the
tool was on the visualization, which were fully visible, this did not impact most of the interview.
The interactions had to be explained and shown to the participants instead of them trying them
out for themselves. Since the interactions only require one or at most two actions (clicking,
clicking andmovingmouse, scrolling) and therefore are relatively simple, they are easy to explain
and understand. Furthermore, the effect of the interactions can be seen by the participants.
However, we cannot exclude the remote nature of the evaluation might have introduced bias in
the participants’ evaluation of the tool.

Sample Merge Requests The merge requests used for the interviews were chosen by the
author and the same ones were used for all interviews to make comparisons possible. They were
selected to provide examples for different scenarios and to show all features of the tool. We be-
lieve that the insights from the evaluation can be translated to general code reviews, because the
examples include scenarios covering a significant number of real-world scenarios. If participants
understood the tool well enough to evaluate it, we believe they could also estimate the tools
performance in other scenarios which they had experienced previously. That said, future studies
should be conducted to evaluate the tool for a wider range of scenarios.

Interviewer Effects The interviews were conducted by the author of this thesis, who is
familiar with the tool and has worked on it. This could influence how the tool was presented and
the questions asked. To try and mitigate this, the questions were open-ended without presuming
any opinion of the participants. Some participants personally knew the author, which could have
biased them towards giving overly positive feedback. We tried to encourage honest feedback by
stressing that the tool is still in development and explicitly asking for what participants disliked.

Evaluation Time The tool was introduced during the interviews, and participants had
limited time to evaluate it. The evaluation happened also only during one period, the interview,
instead of over a longer time period. Some participants further evaluated the tool on their own,
and some additional feedback could be given in the questionnaire, but this was limited.

8.2 External Threats to Validity
Experimenter Effect The author of this thesis was also the primary interviewer, which

might have influenced the interviews. To mitigate it, somebody else with research and inter-
viewing experience sat in on some of the interviews to ensure that any possible influences were
limited.

38

SamplingBias Participantswere recruited from the professional network of the authors. It
is possible that this could have introduced some bias concerning the selected participants. By se-
lecting participants frommultiple companies and contexts, as well as including some participants
from other channels, we tried to mitigate any possible biases. However, we cannot exclude that
the limited sample of participants selected might have influenced our findings. Further studies
should be conducted to strengthen the generalizability of our findings.

39

9 Discussion

In this chapter we discuss the insights and results obtained from the interviews. We present
recommendations for future work based on our findings.

Support for More Programming Languages Developers reported that support for more
programming languages should be one of the primary areas of future work. This echoes the prior
findings for Java [Fregnan et al., 2022a; Fröhlich, 2020]. Adding other (popular) languages would
increase the range of projects in which this tool could be used. Guidance to select them could
be taken from the TIOBE index24, the RedMonk Programming Language Rankings25 and IEEE
Spectrum Top Programming Languages26, which all rank C, C++, C# and JavaScript (JS) in their
Top 10 most popular programming languages as of the time of writing. JS specifically, which is
commonly used in combination with other languages for web development, would also enable
researchers to better understand the appeal of the tool for multiple languages, at least when used
for some web development projects.

Thanks to the work done for this thesis, the CDV frontend can support most modern pro-
gramming languages. For the CDP backend, a separate parser needs to be implemented for each
language. To integrate them all, the Language Server Protocol (LSP)27 could be used, which
supports almost any language and instances of which can run in parallel.

Technical Limitations Another area where more work can be done is to extend the sup-
port to more programs: Regarding version control systems, ReviewVis currently only supports
GitLab. Extending it to other version control systems would allow it to be used more broadly.
Because it is mostly self contained, adding support for more platforms requires only punctual
adjustments. Future work could implement an API for the features and interactions that need
to interact with the platform (i.e., graph-to-code, loading comments), with platform-specific ad-
apters. For browser support, ReviewVis supports Google Chrome, which is at the time of writing
the most widely used webbrowser according to Kinsta28. Nonetheless, ReviewVis could be ex-
tended to other popular browsers as well. As ReviewVis relies on HTML and JavaScript for its
visualizations, which are browser agnostic, the tool itself would not need to be adjusted.

Large changesets Participants consistently found the tool useful for changesets that were
medium sized (around 5-15 nodes). For smaller changes the tool does not offer enough informa-
tion, as developers expected to understand the changeset without it. Developers disagreed most
about the usefulness for large changes: A complex graph is harder to understand. However, it
corresponds to a larger and more complex code change, where tool support could be even more
useful. This matches the findings by Fregnan et al., who found that ReviewVis was seen as most
useful for large merge requests (8+ files), with a minority thinking it might not be useful [Freg-
nan et al., 2022a]. An important factor that future work should focus on is improving automatic
positioning of the nodes in the graph: tightly coupled nodes should be positioned close together,
while minimizing crossing lines to improve understandability [Purchase et al., 1996]. And more
general, research should explore in more detail what makes ReviewVis useful for large changes.
We believe that graph complexity (i.e., number of nodes and interconnections) is a major factor
in this, and a way to measure it and investigate see how it impacts usefulness would be help-
ful. This would improve our understanding of the tool and help guide the development of new
features.

24https://www.tiobe.com/tiobe-index/
25https://redmonk.com/sogrady/2022/03/28/language-rankings-1-22/
26https://spectrum.ieee.org/top-programming-languages-2021
27https://www.langserver.org/
28https://www.kinsta.com/browser-market-share/

40

Information Content Developers thought that the level of detail (i.e., how much inform-
ation is presented) in the graph is at a good balance, providing enough information to be useful
but not overloading it. Adding information was seen as potentially useful if it could be done
without reducing visual clarity, for example by using hover text or opening a submenu when
right-clicking a node. The focus there should be on information within the domain of the tool
like function parameters, as opposed to information requiring complex heuristics like code errors.
One option could be adding indicators (i.e., little symbols on specific nodes, like the comment
indicator). This would be scaleable to other information, but might reduce visual clarity. Another
option could using existing visualizations more effectively: One developer mentioned that the
size of a node (especially class nodes with a circle around them) carries a lot of information (i.e.,
larger nodes are more important). Using this to communicate more information, for example as
an indicator of change size within this node, would be interesting for future research. Removing
information could also be useful especially for complex graphs. Examples from the interviews
would be options to hide nested nodes (functions and classes), or deleted nodes. But hiding in-
formation can be dangerous, so there needs to be a way to make the developer aware of hidden
information and letting them display it. Overall, keeping the graph simple was seen as more im-
portant than adding more information. Future work could explore what additional information
developers want, and how to display it in the visualization.

Importance of Adaptability The perceptions of the tool were influenced by the exper-
ience and tools the participants used. For example, some projects are more fluid than others
(resulting in more deletions), and tools and features like the option to hide deleted nodes would
be primarily useful for these code bases. Similarly, deciding what information to show and how
depends on the structure and type of the code (many small classes vs. larger classes, tests, etc.).
The same is true for the work setup, with less screen space leading to developers preferring
denser presentations. Prior experience with other tools also made developers think about how
information from them could be integrated with ReviewVis. As these needs diverge and some-
times have oppositional preferences, a single implementation cannot be optimal for all users.
This means that the tool should allow developers to adapt it to their needs and be flexible in
how and for what it can be used. Future studies should therefore investigate which features are
the most important for developers. These should then be exposed to the user in the form of
settings. As the feedback to the current implementation of settings (i.e., toggles in the browser)
was positive, this approach could be used for additional settings. Less important settings can be
grouped into submenus. Another possibility could also be a settings file. This could enable users
to share settings they found to work well for their use case. The default settings, used when the
tool is not set up yet, should be well-chosen based on prior feeedback on what is most useful and
understandable.

Requested Features When it came to adding advanced features to the tool that rely on
heuristics (e.g. to find renames), many developers were skeptical that they would be unreliable
or that it would be hard to understand how they work. As such they would be distracting or not
trustworthy. Generally, they advised to prioritize the core strengths of the tool (static analysis
to create an abstraction of the code change) over advanced features. Developers were more
interested in the toolchain integration than in adding features to the tool itself. One aspect of
this is to make the tool easy to use in their workflow, without (much) additional work, which
confirms prior findings [Johnson et al., 2013; Sadowski et al., 2018]. By making it the default
developers would bemore likely to use it. Some participants also expressed interest in integrating
ReviewVis in other tools and vice versa. For example, having a picture of the graph in Jira29 (a
task tracking website) to see implementation structure, or having it in their IDE. The other way
around would be to indicate or show information from other tools like static analysis tools in

29https://www.atlassian.com/software/jira

41

the graph. However, this was controversial, with many thinking that this could add too much
information.

ReviewVis Beyond Code Review Multiple developers expressed interest in ReviewVis
for use cases other than code review, and in the questionnaire participants found ReviewVis
more useful for general applications than just using it for code review. One possible area where
it could be useful would be for reverse engineering, where an overview of the structure of the
code could be very useful. Another area was to use just pictures of the graph in other tools to
give an overview without having to leave the other tool (preferably with improved automatic
node positioning). We think this indicates that a graph-based visualization like ReviewVis has
benefits like improved understanding of code that apply not only to code review, but other tasks
as well. As such, this could be of interest for future research.

42

10 Conclusion

We extended and improved a tool for code review support called ReviewVis that uses a graph
visualization to display dependencies and calls within the code. We added support for a second
programming language, Python, and added support for functional programming paradigms. We
also added support for doing code review inmultiple languages concurrently. We then conducted
a series of remote interviews to evaluate it, and iteratively improved it following a RITE-inspired
methodology. In the interviews we focused on determining how reviewers perceive the tool
when used for Python, what their opinion on the tool for code review in multiple languages was,
and how the tool could be further improved. Furthermore, we evaluated the perception of the
tool using the TAMmodel. Participants responded positively to the tool, preferring it over using
just GitLab and predicting that they would use it. They found it easy to learn and especially
useful for gaining an overview of code changes. Reviewers preferred a simple visualization in
which they can selectively display more information, with the tool focusing on its core strengths
of showing an abstraction of the code change without complex analysis. They advised to focus
more on seamless integration into existing toolchains, and noted that such a visualization could
also be useful in other areas where large changesets need to be understood.

Future work on the tool should focus on extending tool support to more languages, as this is
its primary limitation, and to improve node positioning to improve the visualization. After that,
it should be explored in more details what the limitations of the tool for different code bases and
change sizes are and how they can be addressed. Integrations into toolchains and other tools,
not only for code review but for other areas where visualizations could help code understanding,
was seen as an important factor for adoption and usefulness.

43

References

A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern code review. In
2013 35th International Conference on Software Engineering (ICSE), pages 712–721, 2013. doi:
10.1109/ICSE.2013.6606617.

B. Bach, N. Kerracher, K. W. Hall, S. Carpendale, J. Kennedy, and N. Henry Riche. Telling stories
about dynamic networks with graph comics. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, CHI ’16, page 3670–3682, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450333627. doi: 10.1145/2858036.2858387.
URL https://doi.org/10.1145/2858036.2858387.

M. Barnett, C. Bird, J. Brunet, and S. K. Lahiri. Helping developers help themselves: Automatic
decomposition of code review changesets. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 134–144, 2015. doi: 10.1109/ICSE.2015.35.

T. Baum and K. Schneider. On the need for a new generation of code review tools. In International
Conference on Product-Focused Software Process Improvement, pages 301–308. Springer, 2016.

T. Baum, K. Schneider, and A. Bacchelli. On the optimal order of reading source code changes for
review. In 2017 IEEE international conference on software maintenance and evolution (ICSME),
pages 329–340. IEEE, 2017.

T. Baum, K. Schneider, and A. Bacchelli. Associating working memory capacity and code change
ordering with code review performance. Empirical Software Engineering, 24(4):1762–1798, Aug
2019. ISSN 1573-7616. doi: 10.1007/s10664-018-9676-8. URL https://doi.org/10.1007/
s10664-018-9676-8.

G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and A. De Lucia. An empirical
study on the developers’ perception of software coupling. pages 692–701, 2013. doi:
10.1109/ICSE.2013.6606615. URL https://www.scopus.com/inward/record.uri?eid=2-
s2.0-84886384362&doi=10.1109%2fICSE.2013.6606615&partnerID=40&md5=
1bb40e5ead70d573d2679c11f2bc1638. cited By 94.

A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F. Adeputra,
and J. J. LaViola Jr. Code bubbles: rethinking the user interface paradigm of integrated de-
velopment environments. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, pages 455–464, 2010a.

A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F. Adeputra,
and J. J. LaViola. Code bubbles. In Proceedings of the 28th international conference on Human
factors in computing systems - CHI '10. ACM Press, 2010b. doi: 10.1145/1753326.1753706. URL
https://doi.org/10.1145%2F1753326.1753706.

K. Cooper and L. Torczon. Engineering a Compiler. Morgan Kaufmann, 2 edition, 2011.

F. Davis and F. Davis. Perceived usefulness, perceived ease of use, and user acceptance of in-
formation technology. MIS Quarterly, 13:319–, 09 1989. doi: 10.2307/249008.

R. Deline, A. Bragdon, K. Rowan, J. Jacobsen, and S. Reiss. Debugger canvas: Industrial ex-
perience with the code bubbles paradigm. Proceedings - International Conference on Software
Engineering, pages 1064–1073, 06 2012. doi: 10.1109/ICSE.2012.6227113.

M. E. Fagan. Design and code inspections to reduce errors in program development. IBM Systems
Journal, 15:182–211, 1976. ISSN 0018-8670. doi: 10.1147/sj.153.0182. URL http://doi.org/
10.1147/sj.153.0182.

45

https://doi.org/10.1145/2858036.2858387
https://doi.org/10.1007/s10664-018-9676-8
https://doi.org/10.1007/s10664-018-9676-8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886384362&doi=10.1109%2fICSE.2013.6606615&partnerID=40&md5=1bb40e5ead70d573d2679c11f2bc163 8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886384362&doi=10.1109%2fICSE.2013.6606615&partnerID=40&md5=1bb40e5ead70d573d2679c11f2bc163 8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886384362&doi=10.1109%2fICSE.2013.6606615&partnerID=40&md5=1bb40e5ead70d573d2679c11f2bc163 8
https://doi.org/10.1145%2F1753326.1753706
http://doi.org/10.1147/sj.153.0182
http://doi.org/10.1147/sj.153.0182

E. Fregnan, T. Baum, F. Palomba, and A. Bacchelli. A survey on software coupling rela-
tions and tools. Information and Software Technology, 107:159–178, 2019. ISSN 0950-5849.
doi: https://doi.org/10.1016/j.infsof.2018.11.008. URL https://www.sciencedirect.com/
science/article/pii/S0950584918302441.

E. Fregnan, J. Frohlich, D. Spadini, and A. Bacchelli. Graph-based visualization of merge requests
for code review. 2022a.

E. Fregnan, F. Petrulio, L. Di Geronimo, and A. Bacchelli. What happens in my code reviews?
an investigation on automatically classifying review changes. Empirical Software Engineering,
27(4):89, Apr 2022b. ISSN 1573-7616. doi: 10.1007/s10664-021-10075-5. URL https://doi.
org/10.1007/s10664-021-10075-5.

J. Fröhlich. Code review visualizations with codediffvis for java. Master’s thesis, 2020.

D. Guo, D. Tang, N. Duan, M. Zhou, and J. Yin. Coupling retrieval and meta-learning for context-
dependent semantic parsing. CoRR, abs/1906.07108, 2019. URL http://arxiv.org/abs/
1906.07108.

T. Ho-Quang. Empowering empirical research in software design: Construction and studies on
a large-scale corpus of uml models. 2019.

T. Ho-Quang, M. R. Chaudron, G. Robles, and G. B. Herwanto. Towards an infrastructure for
empirical research into software architecture: challenges and directions. In 2019 IEEE/ACM
2nd InternationalWorkshop on Establishing the Community-Wide Infrastructure for Architecture-
Based Software Engineering (ECASE), pages 34–41. IEEE, 2019.

J. Jenkov. Understanding Dependencies, 05 2014. URL http://tutorials.jenkov.com/ood/
understanding-dependencies.html.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. Why don’t software developers use static
analysis tools to find bugs? In 2013 35th International Conference on Software Engineering
(ICSE), pages 672–681, 2013. doi: 10.1109/ICSE.2013.6606613.

O. Kononenko, O. Baysal, and M. W. Godfrey. Code review quality: How developers see it. In
Proceedings of the 38th international conference on software engineering, pages 1028–1038, 2016.

V. d. C. Luna Freire, J. Brunet, and J. C. A. de Figueiredo. Automatic decomposition of java open
source pull requests: A replication study. In A. M. Tjoa, L. Bellatreche, S. Biffl, J. van Leeuwen,
and J. Wiedermann, editors, SOFSEM 2018: Theory and Practice of Computer Science, pages
255–268, Cham, 2018. Springer International Publishing. ISBN 978-3-319-73117-9.

S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical study of the impact of modern
code review practices on software quality. Empirical Software Engineering, 21:2146–2189, 2016.
ISSN 1382-3256,1573-7616. doi: 10.1007/s10664-015-9381-9. URL http://doi.org/10.1007/
s10664-015-9381-9.

M. C. Medlock, D. R. Wixon, M. Terrano, and R. L. Romero. Using the rite method to improve
products; a definition and a case study. 2007.

M. D. Plumlee and C. Ware. Zooming versus multiple window interfaces: Cognitive costs of
visual comparisons. ACM Trans. Comput.-Hum. Interact., 13(2):179–209, jun 2006. ISSN 1073-
0516. doi: 10.1145/1165734.1165736. URL https://doi.org/10.1145/1165734.1165736.

H. C. Purchase, R. F. Cohen, and M. James. Validating graph drawing aesthetics. In F. J. Branden-
burg, editor, Graph Drawing, pages 435–446, Berlin, Heidelberg, 1996. Springer Berlin Heidel-
berg. ISBN 978-3-540-49351-8.

46

https://www.sciencedirect.com/science/article/pii/S0950584918302441
https://www.sciencedirect.com/science/article/pii/S0950584918302441
https://doi.org/10.1007/s10664-021-10075-5
https://doi.org/10.1007/s10664-021-10075-5
http://arxiv.org/abs/1906.07108
http://arxiv.org/abs/1906.07108
http://tutorials.jenkov.com/ood/understanding-dependencies.html
http://tutorials.jenkov.com/ood/understanding-dependencies.html
http://doi.org/10.1007/s10664-015-9381-9
http://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1145/1165734.1165736

Python Software Foundation. Modules, 05 2022. URL https://docs.python.org/3/
tutorial/modules.html.

S. Reichlin. Rite — the really ingenious testing experience, 07 2016. URL https://blog.
ginetta.net/rite-the-really-ingenious-testing-experience-5deee99252e1.

P. Rigby, B. Cleary, F. Painchaud, M.-A. Storey, and D. German. Contemporary peer review in
action: Lessons from open source development. IEEE Software, 29:56–61, 2012. ISSN 0740-7459.
doi: 10.1109/ms.2012.24. URL http://doi.org/10.1109/ms.2012.24.

P. C. Rigby and C. Bird. Convergent contemporary software peer review practices. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages 202–212, 2013.

G. Rong, J. Li, M. Xie, and T. Zheng. The effect of checklist in code review for inexperienced
students: An empirical study. 2012 IEEE 25th Conference on Software Engineering Education
and Training, pages 120–124, 2012.

C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and C. Jaspan. Lessons from building
static analysis tools at google. Commun. ACM, 61(4):58–66, mar 2018. ISSN 0001-0782. doi:
10.1145/3188720. URL https://doi.org/10.1145/3188720.

J. Shirey, Q. Nguyen, and A. Charng. The rite way to prototype, 03 2013. URL https://uxmag.
com/articles/the-rite-way-to-prototype.

R. Wirfs-Brock. Characterizing classes. IEEE Software, 23(2):9–11, 2006. doi: 10.1109/MS.2006.43.

47

https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html
https://blog.ginetta.net/rite-the-really-ingenious-testing-experience-5deee99252e1
https://blog.ginetta.net/rite-the-really-ingenious-testing-experience-5deee99252e1
http://doi.org/10.1109/ms.2012.24
https://doi.org/10.1145/3188720
https://uxmag.com/articles/the-rite-way-to-prototype
https://uxmag.com/articles/the-rite-way-to-prototype

A Consent Form

49

Participant Consent Form

Visualizing Code Review Changes as a Graph: Towards Supporting

Multiple Programming Languages

ZEST Research Group

University of Zurich

Department of Informatics

Binzmühlestrasse 14

8050 Zurich

Switzerland

Contact Email:

raffael.botschen@uzh.ch

fregnan@ifi.uzh.ch

You are invited to participate in a study entitled “Visualizing Code Review Changes as a Graph:

Towards Supporting Multiple Programming Languages” that is being conducted by Raffael Botschen

and Enrico Fregnan.

Raffael Botschen is a bachelor’s student in Software Engineering at the University of Zurich. You may

contact him if you have further questions at raffael.botschen@uzh.ch.

Enrico Fregnan is a PhD student in the ZEST group at the Institute of Informatics, University of Zurich.

You may contact him if you have further questions at fregnan@ifi.uzh.ch.

This work is supervised by Prof. Dr. Alberto Bacchelli, who can be contacted at bacchelli@ifi.uzh.ch.

The purpose of this and previous research projects is to evaluate a tool that helps with code reviews

by visualizing the code changes. This is done by analyzing the source code, extracting features of

interest (e.g., classes, methods, functions and their relationships to each other) and then displaying

them in a browser.A previous project has already constructed such a tool exclusively for Java. This

current project has extended it to work with Python as well, introducing new programming

paradigms (including functional programming from Java’s object-oriented programming) and

enabling support for displaying changes across multiple programming languages. Our goal is to

receive feedback on the current state of the tool regarding usefulness as well as potential

improvements and new features.

The Study

If you consent to voluntarily participate in this research, your participation will include an interview

with you 30-40 minutes in length explaining the tool and asking about your opinion on it.

Potential Risks

In case your participation in the study is in any way stressful for you, you have the right not to

answer a question or to terminate your participation in any given moment. In case of further

questions or doubts, you may contact any of the researchers (contacts are provided above) or the

OEC Human Subjects Committee of the University of Zurich at human.subjects@oec.uzh.ch

Conditions of the Study

• Voluntary Participation

Your participation in this research must be completely voluntary. If you do decide to

participate, you may withdraw at any time without any explanation. If you do withdraw from

the study your data will be erased and will not be included in any analysis.

• Anonymity and Confidentiality

All the data we gather from you will be anonymized - will not include any personal names,

names of companies or places that could help to identify you as a respondent. Your contacts

and consent materials will not be in any way connected to the audio-files, interview

transcripts, or any other data we will obtain from you.

• Possibility not to answer or withdraw details from your interview

You are free to not answer any and all the questions we ask you. Also, at any moment, you

can ask us to remove a specific information from your answers.

• Dissemination of Results

It is anticipated that the results of this study will be shared with the public and the research

community through a paper that will be published online. In the section down below, you

may ask for the publication to be sent to you personally.

• Disposal of Data

Immediately after the data collection phase, we will create an anonymized database and

dispose of any non-anonymized content: e.g., video-files. We would like to ask you to give us

permission to keep your anonymized responses for purpose of sharing it with other

researchers or using it in future research.

• Possibility to withdraw data

If, at any point, you decide that you would like your data to be completely withdrawn from

the study, you are free to do so.

Please select statement

o I consent to the use of my data in current study.

o I consent to provide my anonymized data to other researchers and for future studies.

o I would like to receive the final publication from this study.

A copy of this form will be stored by the researchers until you request your data to be deleted or the

collected data is deleted by the researchers.

Your signature below indicates that you understand the above conditions of participation in this

study, that you have had the opportunity to have your questions answered by the researchers, and

that you consent to participate in this research project.

Name of Participant Date

Signature

B Interview Structure

53

[General questions about code review]
- Do you do code review in your team?
- How often? With which tools?
- What are the challenges you face?

[Explain the idea behind the tool (visualize changes in a merge-request as a graph) and show
first example.]

Was everything clear in our explanation? Do you have further questions?

1. General questions about the graph:

a) What did you think about the graph created by the tool?
b) Would you use it in your code review?
c) Why do you think it would be helpful / not helpful?
d) What do you think about how the nodes are displayed?
e) What do you think of the settings?

2. Questions about the interactions:

a) What do you think about the interactions offered by the tool?
b) Why?
c) How can they be improved?
d) Which interactions would you add?
e) Specific questions about two new interactions/features (e.g., warning).

[show second example]

1. General questions about the graph in this scenario:

a) What do you think of the graph in this scenario?

b) Do you think it would be helpful/unhelpful in your code review?
c) How could it be improved?

2. Questions about the interactions:

a) What do you think about the interactions offered by the tool in this scenario?
b) Why?
c) How can they be improved?

3. Questions about the warnings/errors visualization:

a) What do you think of the way errors/warnings are displayed?
b) What do you think of the type of errors and warning that are displayed?
c) How could they be improved?

4. More specific python-related questions:

d) By convention, methods in Python whose name is _name are protected and
__name are private. Would you like to see this added to graphs for Python
(similar to Java)?

e) Python has modifiers like @classmethod, @overload and @decorator. Do you
think adding this information to the graph would be useful?

[show third example]

1. General questions about the graph in this scenario:

a) What do you think of the graph in this scenario?
b) Do you think it would be helpful/unhelpful in your code review?
c) How could it be improved?

2. Questions about the interactions:

a) What do you think about the interactions offered by the tool in this scenario?
b) Why?
c) How can they be improved?

3. Questions about having multiple languages in the graph:

a) What are your thoughts on displaying multiple languages in the graph?
b) What are your thoughts on how the tool currently displays them?
c) How would you display them instead?

[Conclusion]

Do you have any additional thoughts on the tool?

[Questionnaire and TAM]

C Interview Example Graphs

Figure 17: Smaller introductory example.

56

Figure 18: Example for a graph with more elements (warnings, unknown files, comments, ...).

Figure 19: Example combining Python and Java.

57

D Questionnaire

58

59

60

61

62

63

	Title Page
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Problem Description
	Visualizations and ReviewVis
	Motivating Example
	Goal of this Thesis

	Related Work
	Source Code Visualization
	Code Collaboration, Version Control Using Git and Code Review
	Related Tools and Concepts
	Approaches to Improve Reviewers’ Understanding of Code
	Tools to Assist in Code Review

	Background
	Abstract Syntax Trees (AST)
	Modules and Resolving Symbols in Python
	Coupling and Dependencies

	Design and Implementation
	Python Graph Structure
	Back-End: CodeDiffParser
	Graph Creation and Structure
	Front-End: CodeDiffVis
	Settings
	Interactions
	A ReviewVis Example

	Research Questions
	Evaluation
	Methodology
	Rapid Iterative Testing and Evaluation (RITE)
	RITE Adaptions
	RITE Iterations
	Post-interview Questionnaire
	Demographics

	Results and Analysis
	Developer’s Perception of ReviewVis With Python
	Reviewers' Perception of ReviewVis for Merge-requests Containing Python and Java
	Future Work on ReviewVis to Better Support Developers During Code Review

	Limitations
	Internal Threats to Validity
	External Threats to Validity

	Discussion
	Conclusion
	References
	Consent Form
	Interview Structure
	Interview Example Graphs
	Questionnaire

