
Multi-Target Adversarial
Attacks with LOTS

Master Thesis

Noah Chavannes
16-701-872

Submitted on
April 30 2022

Thesis Supervisor
Prof. Dr. Manuel Günther

Ar
tifi

ci
al Intelligence M

A
C

H
IN

E

Learning

Department of
Informatics

1

Master Thesis

Author: Noah Chavannes, noah.chavannes@uzh.ch

Project period: 01.11.2021 - 30.04.2022

Artificial Intelligence and Machine Learning Group
Department of Informatics, University of Zurich

Acknowledgements

I would like to express my gratitude to everyone who has supported me in any way during this
work.

First of all, I would like to thank Prof. Dr. Manuel Günther, who was always available for ques-
tions and provided precious feedback. I had complete freedom in designing my experiments and
structuring my thesis and always felt well supported. I always found the discussions exciting and
informative. I learned a lot from you and am grateful for this opportunity. Thank you!

Secondly, I would like to thank Dr. Andrin Pelican, who supported me with his excellent statisti-
cal knowledge and hints that guided me in the right direction.

Finally, I would like to thank my girlfriend, my family, and my friends who supported me with
great forbearance, patience, humor, and distractions.

Abstract

Face recognition systems are on the rise and are being widely used throughout the industry. With
the advance of face recognition systems, more and more adversarial attacks are emerging. Layer-
wise Origin-Target Synthesis is one such attack in which the image of a source person is iteratively
modified so that a face recognition system identifies it as another person. We extend this approach
by allowing one input image to mimic multiple targets simultaneously. We further improve the
loss function of the approach by including additional components that measure the structural
similarity between the original image and the adversarial image. We evaluate our new method
quantitatively with experiments and conduct an empirical analysis with 73 participants to in-
vestigate the relationship between human perception and similarity metrics. Our results show
that we can successfully perform multi-target attacks and keep perturbations minimal. We also
show how different source-target constellations affect the quality of adversarial images. Lastly,
we demonstrate that the similarity metrics used to measure the size of perturbations are not per-
fect predictors of human perception.

Zusammenfassung

Gesichtserkennungssysteme sind auf dem Vormarsch und finden breite, branchenübergreifende
Anwendung. Mit dem Vormarsch solcher Systeme tauchen auch vermehrt Angriffe auf gegen
sie auf. Die "Layerwise Origin-Target Synthesis" ist ein solcher Angriff, bei welchem ein Bild
einer Ausgangsperson iterativ so verändert wird, dass es von einem Gesichtserkennungssystem
als eine andere Person identifiziert wird. Wir erweitern diesen Ansatz, sodass ein Bild einer
Person mehrere Zielpersonen gleichzeitig nachahmen kann. Wir verbessern die Loss-Funktion
des Ansatzes, indem wir zusätzliche Komponenten hinzufügen, die die strukturelle Ähnlichkeit
zwischen dem Originalbild und dem generierten Bild messen. Wir bewerten unsere neue Meth-
ode quantitativ mit Experimenten und führen eine empirische Analyse mit 73 Teilnehmern
durch, um die Beziehung zwischen menschlicher Wahrnehmung und den eingesetzten Ähn-
lichkeitsmetriken zu untersuchen. Unsere Ergebnisse zeigen, dass wir erfolgreich Multi-Target-
Angriffe durchführen und die Veränderung des Bildes minimal halten können. Wir zeigen auch,
wie sich unterschiedliche Zusammensetzungen von Ausgangsperson und Angriffszielen auf die
Qualität der generierten Bilder auswirken und dass die strukturellen Ähnlichkeitsmetriken, die
wir zur Messung der Größe von Perturbationen verwenden, keine perfekten Prädiktoren für die
menschliche Wahrnehmung sind.

Contents

1 Introduction 1

2 Related Work 3
2.1 Face Recognition . 3

2.1.1 Origins of Face Recognition . 3
2.1.2 Current State of Face Recognition . 4

2.2 Adversarial Attacks . 6
2.2.1 Origins of Adversarial Attacks . 6
2.2.2 Current State of Adversarial Attacks . 7

3 Background 11
3.1 Dataset . 11

3.1.1 Image Collection . 11
3.1.2 VGGFace2 Statistics . 11

3.2 Network . 12
3.2.1 Architecture . 12
3.2.2 Feature Extraction . 14

3.3 Layerwise Origin-Target Synthesis (LOTS) . 15
3.3.1 Idea . 15
3.3.2 Approach . 15
3.3.3 Findings . 18

4 Extending LOTS 19
4.1 Preprocessing . 19

4.1.1 Image Selection . 19
4.1.2 Face Cropping . 20
4.1.3 Feature Extraction . 21
4.1.4 Threshold Calculation . 22

4.2 Mimicking Multiple Targets Simultaneously . 23
4.2.1 Including Source . 24

4.3 Loss Function Adaptions . 25
4.3.1 Multi-Component Loss . 25
4.3.2 Cosine Distance Loss . 25
4.3.3 Structural Similarity Index (SSIM) . 27
4.3.4 Multi-Scale Structural Similarity Index (MSSSIM) 27
4.3.5 Comparing SSIM to MSSSIM . 29

4.4 Extended LOTS Algorithm . 29

viii Contents

5 Quantitative Experimentation with Extended LOTS 33
5.1 Finding Hyperparameters . 33
5.2 Image Sampling for Experiments . 34

5.2.1 Random Sampling . 35
5.2.2 Gender-Based Sampling . 35
5.2.3 Cosine-Distance-Based Sampling . 37
5.2.4 Image-Quality-Based Sampling . 39

5.3 Evaluation Methodology . 39
5.3.1 Attack Difficulty . 39
5.3.2 Iterative Experiment Definitions . 40

5.4 Evaluation Results . 40

6 Empirical Evaluation of Similarity Metrics 45
6.1 Evaluation Setup . 45

6.1.1 Custom Questionnaire Tool . 45
6.1.2 Sample Selection . 48
6.1.3 Distribution of the Questionnaire . 49

6.2 Results . 49
6.2.1 Demographics . 50
6.2.2 Initial Observations . 50
6.2.3 Logit Regression Model . 52
6.2.4 Findings . 57

7 Discussion 63
7.1 Revisit Extended LOTS . 63
7.2 Transferability of Adversarial Attacks . 65
7.3 Defenses Against Adversarial Attacks . 66
7.4 Measuring Human Perception . 67

8 Conclusion 69

A Attachments 71
A.1 MAAD-Attributes . 71
A.2 Custom Questionnaire Tool . 72

A.2.1 Landing page . 72
A.3 Adversarial Samples on FMR=0.001, 4 Targets . 74
A.4 Logit Regression Models . 79

A.4.1 SSIM Only Model . 80
A.4.2 MSSSIM Only Model . 80
A.4.3 SSIM + MSSSIM Model . 81
A.4.4 SSIM + Other Variables Model . 82
A.4.5 MSSSIM + Other Variables Model . 83
A.4.6 SSIM + MSSSIM + Other Variables Model . 84
A.4.7 SSIM + Other Variables Model, Full Dataset 85
A.4.8 Reduced FMR Model, Reduced Dataset . 86

A.5 Re-Run LOTS with SSIM Only . 88

Chapter 1

Introduction

Face recognition systems are capable of assigning a person’s image to a specific identity. In addi-
tion, such systems can also be used for verification, as is the case when unlocking a mobile phone.
The idea behind face recognition has been around for a long time and has been experimented with
since the 1960s. However, it was not until the advent of more powerful computers and even larger
datasets that highly efficient face recognition systems using deep learning concepts emerged (Yan
et al., 2019). Since then, face recognition technology has been used in various applications includ-
ing automated border control, photo tagging in social media, citizen surveillance, and military
purposes (Vakhshiteh et al., 2021).

As face recognition technology has advanced, more and more approaches for attacking such
systems have emerged. One category of attacks are adversarial attacks. In an adversarial attack,
an image is altered so that a face recognition system can no longer recognize a person or even
wrongly identifies the person as someone else. Such adversarial attacks can be carried out by
digitally altering images and physically, e.g., wearing sunglasses with a special print (Sharif et al.,
2016). There are attacks in which someone tries not to be recognized (untargeted attack) and
attacks in which the attackers try to have their images recognized as a specific different person
(targeted attack). Networks can be attacked of which both, the architecture and the dataset used,
are known (white-box attack), and networks of which no details are known (black-box attack).
However, black-box attacks are still limited and mainly focus on untargeted attacks. The goal of
such attacks can be different. For example, one can use an untargeted attack to avoid being auto-
matically detected by social media platforms. Alternatively, one can use a targeted attack, which
would allow someone to use someone else’s passport to smuggle through automated border con-
trol. However, there are also dangerous attacks in which, for example, road signs are manipulated
with stickers to force self-driving cars to interpret a stop sign as a speed 80 sign (Kurakin et al.,
2018; Vakhshiteh et al., 2021).

Rozsa et al. (2017) presented the layerwise origin-target synthesis technique (LOTS), a targeted
adversarial attack that modifies an input image of a person so that a face recognition system
identifies this person as a specific different person. In this process, so-called feature vectors are
extracted from a convolutional neural network which represent a person’s facial characteristics.
The authors use these feature vectors to iteratively modify the original image to include the facial
characteristics of another target. The work is limited in the sense that only one target can be
attacked at a time.

In this thesis, we want to extend the LOTS approach so that it can attack multiple targets
simultaneously. In the course of this adaptation, we will also optimize the loss function so that
the perturbations present in the adversarial image are minimal. The goal is to generate minimal
perturbations such that the network classifies an input image as any number of other people.
Therefore, this is a targeted attack. Our method could be used to generate a passport photo that
would allow multiple people to travel with the same passport simultaneously.

2 Chapter 1. Introduction

Our contribution includes the extension of the LOTS algorithm to multiple targets and the
adaption of the loss function by integrating two new loss components that take into account the
similarity between the original image and the adversarial image. Furthermore, we evaluate our
adaptations in quantitative experiments and compare the results with the original LOTS algo-
rithm. In addition, we implemented a custom questionnaire tool and surveyed 73 participants.
We analyze this empirical data to draw conclusions about the similarity metrics used. We can use
our algorithm to generate adversarial images that have good similarity scores and attack multiple
targets simultaneously. We show how different constellations of source and targets within an at-
tack affect the quality of the adversarial images and how we can interpret the similarity measures.

The thesis is structured as follows: In Chapter 2, we discuss related work and the current state
of research on face recognition software and adversarial attacks. Chapter 3 discusses the back-
ground, which serves as the foundation for understanding the thesis and covers the dataset, the
network architecture, and the original LOTS algorithm and its concept. In Chapter 4, we highlight
the preprocessing steps necessary to extend the LOTS algorithm, we extend the LOTS algorithm
such that it can mimic the features of multiple targets simultaneously, and we improve the loss
function. In Chapter 5, we perform a hyperparameter search for the extended LOTS algorithm.
Additionally, we introduce source-target sampling methods and perform and evaluate the quan-
titative experiments regarding the extended LOTS algorithm. In Chapter 6, we implement our
custom questionnaire tool, which we use to perform an empirical analysis. Subsequently, the col-
lected data is analyzed and evaluated. In Chapter 7, we discuss our findings, and in Chapter 8,
we conclude our work and present possible avenues for future work.

Chapter 2

Related Work

This chapter will discuss the origins and the current state of research in face recognition. Further-
more, we will identify and categorize different adversarial attack methods.

2.1 Face Recognition
Face recognition can be divided into two main techniques. The first technique is face identifica-
tion, which describes the process of assigning a unique identity to an image of a person. In most
cases, face detection is applied first, in which it is scanned whether a human face is present in
an image and where exactly it is located. Furthermore, there is the process of face verification,
which compares two images to see if they contain the same person without knowing their exact
identity. We will briefly discuss the origins of face recognition and then describe the current state
of research in more detail.

2.1.1 Origins of Face Recognition
In the 1960s, Woodrow W. Bledsoe and other researchers took the first steps toward face recog-
nition (Bledsoe, 1964). Their research contract was issued by the U.S. Department of Defense
(Ballantyne et al., 1996). In their approach, users had to manually mark the coordinates of 20
facial landmarks, e.g. the coordinates of the subject’s pupils, upon which an algorithm searched
for the person with the most similar characteristics in a database. Even then, however, they had
already problems with rotations, scaling and tilts of different subjects (Bledsoe, 1966). Goldstein
et al. (1971) then automated Bledsoe’s approach in 1970 and increased the number of facial land-
marks to 21. Sirovich and Kirby (1987) then presented the Eigenface approach, in which a set of
base images can be created using PCA on a dataset. An arbitrary image from the dataset can be re-
constructed by linearly combining the resulting base images. Turk and Pentland (1991) extended
this work and presented the first automated face recognition system based on the Eigenface ap-
proach. Wiskott et al. (1997) presented the Elastic Bunch Graph Matching (EBGM) algorithm,
which could be used for face recognition. In this approach, filters are created with the help of
Gabor wavelets. These filters can be applied to recognize local textures. Using the locations of
these textures, a graph can be spanned over an image in which the nodes denote textures’ loca-
tions, and the edges denote the distances between individual textures. Several such graphs are
combined to form a bunch graph, which can be used to display and recognize different faces by
recombining different nodes and edges. However, face recognition with EBGM only works with
identical poses. In the 2000s, the research focus was directed toward handcrafted features, where
the Gabor filters found further application (Liu and Wechsler, 2002). In 2010, Cao et al. (2010)

4 Chapter 2. Related Work

introduced a methodology that uses unsupervised learning and PCA to express faces through
low-dimensional feature vectors. However, this methodology struggled with different uncon-
trolled facial variations. Thereafter, the focus of the research community shifted toward Deep
Learning.

We only presented a brief extract of the history of face recognition technology. The survey
paper by Zhao et al. (2003) covers the origins of face recognition in more detail.

2.1.2 Current State of Face Recognition
Since the advent of Deep Learning and Convolutional Neural Networks (CNN), face recogni-
tion has made significant progress in recent years. Higher computing power and ever-increasing
datasets further contributed to the success of face recognition techniques (Parkhi et al., 2015).

Only large companies have the resources to create their own large datasets. Therefore, it is not
surprising that Facebook’s Taigman et al. (2014) introduced DeepFace in 2014, an approach that
achieved the best performance on the Labeled Faces in the Wild (LFW) benchmark (Huang et al.,
2008) and the YouTube Faces (YTF) dataset (Wolf et al., 2011). They achieved these results using
a private dataset containing 4.4 million images uploaded to Facebook. The authors introduced
a multi-step process where they first perform face detection and identify landmarks. Based on
these landmarks and with the help of a 3D model, the face is frontalized, i.e., deviating poses
are converted into a frontal pose. After the alignment, they pass the image to a deep CNN to
extract features and compare them using a weighted chi-square similarity. In addition, a so-
called siamese network architecture was followed, in which two identical networks share the
same weights but are applied to two different inputs. This is used to verify if two different images
contain the same person. Ultimately, DeepFace consists of an ensemble of several deep CNNs
trained on different seeds, with and without the siamese architecture. The authors later built
upon their work and trained on a larger dataset of 10 million identities with 50 images each. They
were able to show how the generalization ability of a model can be improved by controlling the
dimensionality of the last fully connected layer (Taigman et al., 2015).

A short time later, Schroff et al. (2015) from Google introduced FaceNet, which debuted the
triplet loss. With triplet loss, the model is trained with three image samples simultaneously. The
first image is the so-called anchor, which is the reference image. In addition, a positive sample
(same identity as the anchor) and a negative sample (different identity as the anchor) are supplied.
The triplet loss, unlike previous approaches, not only tries to minimize the distance between pos-
itive samples and the anchors but also to maximize the distance between negative samples and
the anchors. The triplets are selected so that the distance between the anchor and a positive sam-
ple is maximal, and the distance between a negative sample and the anchor is minimal. During
training, the face descriptors are embedded into a Euclidean space. Doing so allows face verifi-
cation tasks to be solved with Euclidean distances and face recognition with a k-nearest neighbor
(k-NN) algorithm. The authors trained a CNN on datasets of different sizes, ranging from 2.6
million to 260 million images, and showed that the performance improvements are only marginal
after a certain dataset size. According to the authors, the network does not require preprocessing
steps apart from cropping and is robust to invariants of lighting, age or poses. At the time of pub-
lication, the authors had the best face verification performance on the LFW dataset. They were
also able to outperform Facebook’s DeepFace on the YTF benchmark. While the FaceNet method
used euclidean distances, the research direction switched to cosine distances shortly thereafter.

Liu et al. (2017a) presented SphereFace in 2017. The authors wanted to solve the problem that
the maximum intra-class distance in open-set face recognition is often larger than the minimum
inter-class distance. This can lead to problems during training and inference. They introduced
an angular softmax loss (A-Softmax) to solve this problem, which projects the extracted facial
features onto a hypersphere. They justify this with the intuition that faces also lie in a non-linear

2.1 Face Recognition 5

Figure 2.1: CLASSIFICATION BOUNDARIES OF LOSS FUNCTIONS. Visualization of the classification
boundaries of the different losses considering the case of a binary classification. (Deng et al., 2019)

space. The authors could not outperform FaceNet on the LWF and the YTF benchmark with their
SphereFace by a narrow margin. They further achieved 85.56% verification performance on the
MegaFace Challenge (Kemelmacher-Shlizerman et al., 2016).

Wang et al. (2018) present with CosFace an alternative to SphereFace. They want to solve the
same problem regarding softmax functions’ lack of discriminatory power. They propose the large
margin cosine loss (LMCL). Similar to the A-Softmax loss of SphereFace, an angular margin is
considered. However, in contrast, the angle is considered in the cosine space and not only in the
angular space, leading to an even more apparent separation of classes. In addition, the feature
and the weight vectors are normalized with respect to the L2 norm so that during training, only
the angle is relevant for learning the discrimination. With their approach, they achieve better
performance on the LFW and the YTF benchmark than the authors of FaceNet. With 96.65%, they
outperformed SphereFace on the MegaFace Challenge by a wide margin.

The authors of ArcFace have introduced another alternative to CosFace and SphereFace with
the Additive Angular Margin Loss (Deng et al., 2019). The approach differs in that the geodesic
distance is considered, resulting in better discriminatory power due to more precise geometric
mapping on a hypersphere. The Additive Angular Margin Loss results in a linear margin within
the whole interval, whereas CosFace and Sphere Face apply a non-linear angular margin. Figure
2.1 from the authors’ work visually illustrates the classification boundaries of the different meth-
ods considering the case of a binary classification. The authors achieved the best performance on
all three benchmarks at the time of publication. Compared to SphereFace, CosFace, and ArcFace,
which use advanced loss functions, the network we use in our thesis was trained using a standard
Softmax loss function. Our extended LOTS algorithm generates the adversarial images using a
multi-component loss, which with the cosine distance, considers an angular component.

In 2019, Yan et al. (2019) introduced VarGFaceNet, a new light-weight network architecture.
The goal of the network is to have high discriminatory power and high generalization capabili-
ties. They achieve this through variable grouping, which was introduced with VarGNet (Zhang
et al., 2019). According to the authors, the main problem is that there are many different iden-
tities in large datasets. Nevertheless, they want to achieve small computational costs while still
being able to discriminate between a large number of identities. They achieve this by introducing
special network blocks and stringing together convolutions optimized for face recognition tasks.
The authors demonstrate the effectiveness of their model with the best performance on the LFW
dataset (as of March 2022).

ElasticFace was introduced in 2021 by Boutros et al. (2021). The authors claim that softmax
losses like ArcFace and CosFace, which consider the geodesic distance and use a fixed penalty
margin, do not work as expected under real conditions. This is due to inconsistent inter-class
and intra-class variation. With ElasticFace, they propose a softmax loss that makes the margin

6 Chapter 2. Related Work

96.9%

98.4%

99.9%

Ac
cu

ra
cy

97.35%

99.63% 99.42%
99.73%99.83% 99.85% 99.82%

LFW Verification Performance

2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

84.1%

92.0%

99.9%

Ac
cu

ra
cy

85.56%

96.65%
98.48% 98.81%

MegaFace Verification Performance
90.0%

94.5%

99.0%

Ac
cu

ra
cy

91.40%

95.12% 95.00%

97.60%98.02%
YTF Verification Performance

DeepFace
FaceNet
SphereFace
CosFace
ArcFace
VarGFaceNet
ElasticFace

Figure 2.2: VERIFICATION PERFORMANCE BENCHMARKS. Verification performance of different works
on the LFW (first row), the YTF (second row) and the MegaFace benchmarks (third row).

constraints elastic and allows a model to adapt to the dataset dynamically. With their method,
they beat seven out of nine mainstream benchmarks. They achieved exceptional verification per-
formance on the MegaFace Challenge with an accuracy of 98.81%.

A verification performance comparison on the LFW, the YTF and the MegaFace benchmark of
the works mentioned above can be found in Figure 2.2.

2.2 Adversarial Attacks
This section will look at the origins and the current state of research on adversarial attacks. Ad-
versarial attacks are defined as the modification of an image so that a network under attack gen-
erates a misclassification. Whereby the modifications (perturbations) should be imperceptible to
the human eye Vakhshiteh et al. (2021).

2.2.1 Origins of Adversarial Attacks
Szegedy et al. (2014) were the first to use an L-BFSG method to compute perturbations that were
not visible to a human and yet could trick a neural network. A little later, Goodfellow et al. (2015)
proposed the Fast Gradient Sign Method (FGSM), which can generate an adversarial image using
a one-step approach. This is done by adding a value to the original image, which is calculated
from the direction of the gradient sign of the loss function. Kurakin et al. (2018) extended the

2.2 Adversarial Attacks 7

FGSM idea with the Basic Iterative Method (BIM). Instead of a one-step process, perturbations are
added to the image in an iterative manner. From this method, which is also known as the Iterative
Fast Gradient Sign Method (I-FGSM), the idea for the Iterative Fast Gradient Value Method (I-
FGVM) was born. In I-FGVM, an update is made in the direction of the gradient value instead
of the sign of the gradient (Rozsa et al., 2016). As an extension of the I-FGVM, Rozsa et al. (2017)
later introduced the LOTS algorithm, which serves as a foundation for this thesis.

Su et al. (2019) have presented a method to trick a network by changing only one pixel. They
use Differential Evolution to find these pixels (Das and Suganthan, 2010). Furthermore, access
to the classification outputs of the network is needed. Differential Evolution randomly changes
pixels and measures, which changes have decreased the network’s confidence with respect to the
correct label the most. The pixels that caused the most significant change in confidence are se-
lected and slightly modified in the next step. Then, the process is repeated with the slightly mod-
ified pixels until a pixel is found where the network no longer predicts the correct class. Another
targeted attack that focuses on changing as few pixels as possible is the Jacobian-Based Saliency
Map Attack (JSMA) (Papernot et al., 2016). The L0 norm of the perturbation constrains the attack.
In this approach, one pixel is changed at a time, and the effect on the resulting classification is
recorded in a saliency map. This map is later used to select the pixels that promise the greatest
probability of success. While JSMA and the method introduced in this thesis are both white-box
and targeted attacks, JSMA limits the number of pixels changed, whereas we do not constrain
the perturbations. Unlike previous approaches, Moosavi-Dezfooli et al. (2017) have presented an
image-agnostic algorithm called Universal Adversarial Perturbations. The algorithm is able to
trick a network on multiple images with the same perturbation. It is an iterative approach, which
can also generalize well between different network architectures. The main difference to our the-
sis is that we generate image-specific perturbations, whereas the authors generate universally
valid perturbations used in untargeted attacks.

In order to resist adversarial attacks, defense mechanisms were also researched. One such
approach was defensive distillation, in which a second network is used to predict the output of
the first network, which helps make a network more robust against attacks (Papernot et al., 2015).
Carlini and Wagner (2017) then presented three attacks and showed that their methods also work
for networks using defense distillation. For the attacks, small perturbations are sought to generate
a misclassification. The perturbations are constrained in their L0, L2, or L∞ norm depending on
the attack. Further adversarial attacks and their origins are discussed to a greater extent in the
surveys by Akhtar and Mian (2018) and by Vakhshiteh et al. (2021).

2.2.2 Current State of Adversarial Attacks
There are various ways to categorize adversarial attacks. For example, they can be categorized as
white-box versus black-box, targeted versus untargeted, or image specific versus universal attack.
A further way of categorization is by dividing the adversarial attacks by their strategy. The first
category deals with attacks that seek to exploit the weaknesses of different network architectures.
The second category covers physical attacks in which a real person’s appearance is changed to fool
a network. The last category deals with geometric transformations intended to trick a network
(Vakhshiteh et al., 2021). We will focus on face-related adversarial attacks in the remainder of this
section.

CNN-Based Attacks

Goswami et al. (2018) have presented two image-level distortion methods that can significantly
reduce the verification capabilities of networks. Their image-level distortions can be applied to
any image and were not exclusively designed for faces. However, they apply the distortions to

8 Chapter 2. Related Work

images containing faces in their experiments. The first approach is called Grid-based Occlusion,
in which pairs of points are selected at the edges of the image and connected with a one-pixel thick
line. In the second approach, three sets of pixels are selected. In the first set, the most significant
bit is flipped with a certain probability; in the second set, the second-most significant bit is flipped,
and in the third set, the third most significant bit is flipped. This results in noise, which is applied
to the image. The authors show that verification performance decreases noticeably on different
networks. Kwon et al. (2019) introduced the Face Friend-safe adversarial attack method. In this
method, a friendly network and an enemy network are used to generate adversarial images. The
goal is to find an adversarial image with minimal perturbations such that the friendly network
still correctly predicts the original label. However, the enemy network should no longer correctly
predict the label of the adversarial image. The authors achieve this with a transformer that uses
the losses of the two networks to generate distortions that should be minimal.

Nguyen et al. (2020) have developed a system that generates master faces that can be used to
fool face recognition networks. Their work is inspired by Bontrager et al. (2018), who generated
universal fingerprints (master prints) that could bypass biometric security systems. A master face
is a face that is intended to resemble as many faces as possible. Using a generative adversarial
network (GAN) and an evolution algorithm, the authors generate master faces. These faces are
fed into a face recognition system, and a score is calculated. The evaluation algorithm uses the
scores to influence the input for the next iteration of master faces such that they improve and
resemble more people. The authors were able to show that False Match Rates (FMR) of up to
35% could be enforced when attacking face recognition systems with master faces. However,
they achieved the best results when knowledge about the dataset was available. In addition,
they showed that limited success is possible even when the network architecture or the dataset
is unknown. This work has certain similarities to our thesis in that both approaches attempt to
modify a face to look as similar as possible to many other faces. However, our thesis deals with
a targeted attack, in which adversarial perturbations alter existing images of people. The work of
Nguyen et al. (2020) deals with an untargeted attack, in which the faces are artificially generated
using a GAN.

Physical Appearance Attacks

Sharif et al. (2016) have presented a system that physically attacks a network by 2D or 3D print-
ing the frame of eyeglasses, which contains perturbations. The perturbations must be robust to
different perspectives. They collect a set of images, and search for a perturbation for which all
images of the set are misclassified. This perturbation is created in an iterative procedure. The
attack classifies as an untargeted attack, in which the aim is to prevent a person from being rec-
ognized. Another physical attack approach, Visible Light-based Attack (VLA), was presented by
Shen et al. (2019). They generate perturbations and project them onto a person’s face using a
light source. Targeted and untargeted attacks are possible. The authors use a perturbation frame,
in which the actual perturbations are present, and a concealing frame, with which the pertur-
bations are to be made imperceptible for humans. The authors rely on the persistence of vision
(POV) effect to hide the perturbations. Two different images (perturbation frame and concealing
frame) are projected onto the face of the human with a alternating frequency of 25Hz. The human
brain does not perceive the two rapidly successive images separately and thus fades the colors
together. However, for a camera with a fast shutter speed, the perturbations are clearly visible
(Zhang et al., 2015). Zhu et al. (2019) have presented an attack in which makeup is used to gener-
ate adversarial images. Two different GANs are used. The first GAN transfers makeup to a face
without makeup, and the second GAN hides perturbations in the regions where the makeup was
applied. The method can be used both as an untargeted and a targeted attack. While physical
appearance attacks change a person’s appearance noticeably, we try to hide the perturbations as

2.2 Adversarial Attacks 9

well as possible.

Geometrical Attacks

Dabouei et al. (2019) have introduced the Fast Landmark Manipulation (FLM) method. In this
method, landmarks are detected with a face detector and displaced by a spatial transformation.
The displacement of the individual landmarks is done by a flow displacement, which is calculated
using the gradient with respect to the landmark location. Since the gradient can point in all
directions, the results are sometimes not quite natural-looking images. In a further experiment,
they introduced Grouped Fast Landmark Manipulation (GFLM), which generates more natural-
looking adversarial images. This involves semantically grouping landmarks and then perturbing
the group rather than the individual landmarks. According to the authors, the GFLM method has
an exceptionally high success rate and is also extremely difficult to detect.

Chapter 3

Background

In this chapter, we discuss the foundations necessary to understand this thesis. This includes
the selection of the dataset, the network architecture, and mainly the original LOTS paper (Rozsa
et al., 2017), upon which our thesis is based.

3.1 Dataset
There are many different datasets that contain images of faces: LFW (Huang et al., 2008),
MegaFace (Kemelmacher-Shlizerman et al., 2016), CelebA (Liu et al., 2015) or VGGFace2, to name
a few. In our thesis, we use images of faces as input for experiments and also to create represen-
tation vectors of different identities. The authors of the LOTS paper base their experiments on
the VGGFace dataset. We decided to use the VGGFace2 dataset, the successor of VGGFace, in
order to stay close to the original LOTS experiments but also to benefit from the newer and larger
dataset. Furthermore, we require a dataset that contains images of as many identities as possible
with as many images per identity as possible, which the VGGFace2 dataset is able to provide.
The VGGFace2 dataset was released by Cao et al. (2018) from the University of Oxford in 2018.

3.1.1 Image Collection
The images of the VGGFace2 dataset originated from the Google Image Search and were collected
in a multi-step process. First, a list of 500k public figures was compiled. In manual work, the
people were weeded out, which did not have enough different images. This step reduced the
list of people to less than 10k. In the next step, images of the remaining people were collected
in different poses, perspectives and lighting conditions. Next, the MTCNN face detector (Zhang
et al., 2016) was applied to the images, providing corresponding bounding boxes and five facial
landmarks. In further steps, outliers, near-duplicates and images, on which no face could be
detected, were removed. Finally, the dataset was filtered one more time in an automatic and a
manual process to ensure the highest possible quality (Cao et al., 2018).

3.1.2 VGGFace2 Statistics
The VGGFace2 dataset contains 3.31 million images of 9131 different identities. An average of
362.6 images are present per identity, with a minimum of 80 and a maximum of 843 images. The
images show the identities in different poses, lighting conditions, at different ages and against
different backgrounds. The dataset is more or less balanced regarding gender, with 59.3% males.
The authors provide no further information on distributions in other categories. We, therefore,

12 Chapter 3. Background

evaluated the MAAD-Face dataset (Terhörst et al., 2021). The MAAD-Face dataset is based on the
VGGFace2 dataset but extends it with attributes that can give us some more insight into the data
composition. For each image in the VGGFace2 dataset, the MAAD-Face dataset provides a list
of attributes with a classification of attribute is present, attribute is absent, or attribute is undefined.
The attributes include gender, ethnicity, hair colors and hairstyles, facial hair, and other physical
properties. For each attribute, we counted the number of images where the attribute was present
and thus made a more detailed evaluation of the data composition. The full list of attributes
and their presence in the images of VGGFace2 dataset can be found in the Appendix A.1. The
analysis of the data composition is limited by the attributes available in the MAAD-Face dataset.
For example, only the attributes black, asian, and white exist in relation to ethnicity; an attribute
for hispanic or other ethnicities is missing.

Figure 3.1 shows the result of the evaluation in the categories gender, ethnicity and age. In
terms of gender, the data is consistent with the VGGFace2 dataset. At 59.2%, there is a slight im-
balance in favour of men. In terms of age, we observe that the majority of the images (67%) come
from young people. This is followed by the middle-aged group with 19% and the senior group
with 14%. The exact boundaries of the different age groups are not mentioned in any of the pa-
pers. Regarding ethnicity, the dataset is very unbalanced, although there has been some progress
since the release of the VGGFace dataset. The dominant class is white with 88.7%, followed by
black with 6.5% and asian with only 4.8%. Since this imbalance in ethnicity may be caused by
the fact that there are more example images of people from the white group, the ethnicity was
additionally analyzed per identity, assuming the majority class to be true in each case. The results
slightly improve when looking from the per-identity perspective, but the overwhelming majority
remains with the white group at 84.5%. The authors of the VGGFace2 dataset explain the differ-
ence with a different number of public figures in each group. It should be noted that this analysis
is not necessarily 100% correct, as there will be classification errors regarding the MAAD-Face
attributes, and in addition, there is also an attribute is undefined class.

The VGGFace2 dataset is divided into 8631 training classes and 500 test classes. The images
are not constrained regarding size and shape. Samples of the dataset are shown in Figure 3.2. The
images are resized but otherwise unedited.

3.2 Network
Nowadays, most image recognition tasks are approached using Convolutional Neural Networks
(CNN). More specifically, Residual Networks (ResNet) (He et al., 2016) have proven to be espe-
cially useful, as they allow the training of deeper networks without much additional complexity.
Deeper networks generalize better and are therefore particularly well suited for image recognition
tasks. We use a ResNet with an extension, namely the Squeeze-and-Excitation Blocks introduced
by Hu et al. (2018). Cao et al. (2018) show that a ResNet with Squeeze-and-Excitation Blocks (SE-
ResNet) perform especially well on the VGGFace2 dataset. We need such a network to extract
facial feature vectors from images of people. This allows us to mathematically measure the sim-
ilarities of faces. In this section we describe the architecture of the SE-ResNet and how we can
extract facial feature vectors from it.

3.2.1 Architecture
In principle, images are nothing more than matrices with one numerical value per pixel and
colour channel. One could simply flatten such images, as is done in the Eigenface approach
(Turk and Pentland, 1991), and feed them into a Multi-Level Perceptron (MLP) network to per-
form classification or recognition tasks. However, with an MLP, it becomes extremely difficult

3.2 Network 13

59.2%

40.8%

Gender (Measured per Image)
Male
Female

67.0%

19.0%

14.0%

Age (Measured per Image)
Young
Middle Aged
Senior

88.7%

6.5%4.8%

Ethnicity (Measured per Image)
White
Black
Asian

84.5%

8.6%
6.9%

Ethnicity (Measured per Identity)
White
Black
Asian

Figure 3.1: VGGFACE2 DISTRIBUTIONS. Distribution of the VGGFace2 images in different categories,
analyzed using MAAD-Face attributes.

to detect spatial dependencies. Therefore, CNNs are mostly used for such tasks. CNN is a deep
learning network architecture that allows spatial dependencies to be recognized by applying mul-
tidimensional filters to the input. The process of applying filters to the input is called convolution
and results in so-called feature maps. It is said that early filters learn edges and shapes, and later
filters can recognize whole patterns and objects. Between single convolutions, pooling layers can
be integrated. The purpose of pooling layers is to reduce the size of the feature maps. Finally, the
feature maps of the CNN can be flattened and fed into fully connected layers to perform classifica-
tion tasks. When building a CNN, the trade-off between layer width and layer depth usually has
to be considered. The consensus is that networks with deeper layers have better generalization
capabilities, and networks with wider layers memorize better and are therefore more prone to
overfitting. However, it is not possible to simply stack layers on top of each other to get a deeper
network, as this would lead to the vanishing gradient problem. The vanishing gradient problem
describes a phenomenon wherein backpropagation to later layers can lead to an infinitely small
gradient. This leads to over-saturated networks and can also degrade network performance. A
network is over-saturated if the majority of the individual neurons only output values close to the
asymptotic end of the corresponding activation function (Rakitianskaia and Engelbrecht, 2015).

He et al. (2016) presented Residual Networks, which combat this vanishing gradient problem
and thus allow the training of deeper networks. They achieve this by a so-called residual block,

14 Chapter 3. Background

Figure 3.2: VGGFACE2 SAMPLES. Samples of the VGGFace2 dataset. The images are resized but not
reshaped.

which passes the unchanged input to the block from shallower to deeper layers.
Such ResNets can be extended with squeeze-and-excitation (SE) blocks (Hu et al., 2018). The

idea is to allow the networks to adaptively adjust the weights of the individual channels of the
different feature maps. This is done by having a small side network within the residual block that
weights the residual according to its internal weights before adding back the identity values. Hu
et al. (2018) has shown that SE blocks yield significant performance improvements with minimal
additional computational costs.

Cao et al. (2018) evaluated different networks on their VGGFace2 dataset and found that the
SE-ResNet-50 performed best among all the networks examined. Additionally, it was pointed
out that the network is best trained on MS1M (Guo et al., 2016) and fine-tuned on the VGGFace2
dataset. Therefore we decided to use a SE-ResNet-501 analogously to the specifications of Hu et al.
(2018), which was trained on the MS1M dataset using a Softmax loss function and later fine-tuned
on the VGGFace2 dataset. The SE-ResNet-50 we use does not work with pixels values normalized
between 0 and 1 but rather uses the full pixel value range of 0 to 255. When loading an image,
the image is transformed from RGB to BGR color space, and the mean values of the VGGFace2
dataset (r=131.0912, g=103.8827, b=91.4953) are subtracted.

3.2.2 Feature Extraction
We use the SE-ResNet-50 to extract facial feature vectors from input images. Figure 3.3 shows
the last part of the SE-ResNet-50 network. The output of the last convolution has a size of 7x7 at
2048 channels. Global average pooling reduces this output to a size of 1x1 at 2048 channels. With
global average pooling, all values per channel are averaged, which results in the mentioned 2048
channels with one value each. We can interpret this result as a feature vector, which is a member
of the R2048 vector space. The entire classification stack, which first flattens the feature vector
and connects it to a fully connected layer with 8631 neurons (=number of training identities) and
then passes it on to a Softmax layer, is omitted for our thesis. Omitting the classification stack is
common practice for face recognition networks. For the thesis, we assume that we attack a face

1https://github.com/cydonia999/VGGFace2-pytorch

https://github.com/cydonia999/VGGFace2-pytorch

3.3 Layerwise Origin-Target Synthesis (LOTS) 15

1x17x7

20
48

Global Average
Pooling

20
48

Previous Layers

Flatten Fully
Connected Softmax

Classification

Last Convolution

Feature Vector

Figure 3.3: EXTRACTING FACIAL FEATURE DESCRIPTORS. Extracting a facial feature descriptor vector
form the SE-ResNet-50. The last convolutional layer of the SE-ResNet-50 is reduced using global average
pooling which results in the facial feature description vector. The classification stack of the network is omit-
ted.

recognition system that evaluates the similarity of two identities based on the cosine similarity,
respectively, the cosine distance between the respective feature vectors.

3.3 Layerwise Origin-Target Synthesis (LOTS)
In this section, we want to discuss "LOTS about Attacking Deep Features", the work of Rozsa et al.
(2017), in more detail. The LOTS technique forms the basis for this thesis, and the concept should
therefore be understood.

3.3.1 Idea
The authors wanted to investigate the vulnerabilities of networks that use deep features to rec-
ognize people. To investigate such networks, they developed LOTS. LOTS stands for Layerwise
Origin-Target Synthesis. It describes a technique that perturbs a source image of a person so that
a network using deep features misidentifies the features extracted from the image as deep fea-
tures of another person. Prior to LOTS, adversarial attacks focused on attacking the classification
output on end-to-end networks. LOTS was the first adversarial attack that focused on networks
using deep features.

3.3.2 Approach
The experiment is based on the VGGFace dataset with 2.6M images of 2’622 different identities.
The associated VGGFace network was used as the network under attack. In face recognition tasks,
people’s faces are represented as deep features, so-called face descriptors, and compared with
already known face descriptors. The authors extract these face descriptors from the VGGFace
network at the fully-connected layer seven before ReLU activation. Such face descriptors are
vectors and can be compared, for example, using the cosine distance or the Euclidean distance. If

16 Chapter 3. Background

().
.
.

Ft = Target Deep Features

Network
(VGG Face)

Input Image

compare to

is below
threshold

yes
Terminate

nocalculate Euclidian loss

 || Ft - Fs ||2

modify input image slightly
toward the direction defined by
the gradient of the calculated
loss with respect to the input

image

().
.
.

Fs = Deep Features

Start

1
2

Figure 3.4: LOTS TECHNIQUE. Visualization of the iterative LOTS technique.

the distance of two vectors to be compared is below a particular threshold value, which must be
determined in advance, they are considered to be face descriptor vectors of the same person.

In order to compare the extracted face descriptors with a reference, face descriptor vectors of
known identities have to be created first. This is done with the help of so-called gallery templates,
which are a collection of 50+ images of the same person. From each of the images, the face de-
scriptors are extracted and averaged. The resulting vector is the face descriptor of this identity.
They calculate the additional threshold values needed for the cosine and euclidian distance by
comparing gallery templates with other sample images from the same and from different identi-
ties. The identical process was also used in this thesis and is therefore described in more detail in
Section 4.1.4.

Figure 3.4 shows the concept of the LOTS technique. The process starts with an image of any
person. This image is fed into the VGGFace network, and the deep features (Fs) are extracted. In
the beginning, a target is chosen, which will be mimicked by the deep features extracted from the
adversarial image. The extracted deep features (Fs) are now compared with the face descriptor
of the target (Ft). Depending on the experiment, they use the cosine distance or the Euclidean
distance for comparison. If the value is below the defined threshold value, the process terminates,
and the adversarial image, which mimics the deep features of the target, is created. If the value is
not below the threshold, the euclidian loss between Fs and Ft is calculated, and the input image
is slightly modified toward the direction defined by the gradient of the loss with respect to the
image. Normally, gradients are used in combination with an optimizer to adjust the weights of a
network such that the result of a forward pass with a specific input is closer to the expected result.
However, the authors use the gradient here to change the pixel values of the input image such
that, with fixed weights of the network, the extracted features from the input image (Fs) are closer
to the target (Ft) they have defined. The whole process is repeated until the comparative value
between Fs and Ft is below the threshold value. We explain the synthesis process visualized in
Algorithm 1 line by line.

• Line (1): Definition of the LOTS function. The imagesrc is the image to be synthesized
into an adversarial image. The featurest are the target features to be mimicked by the
adversarial image. The threshold (τ) defines a value below the distance between the features
extracted from the adversarial image, and the featurest have to be, in order to be considered
a successful attack. The cosine distance or the Euclidean distance can be used as a distance
measure.

• (2): We assign the original imagesrc to the variable imageadv . While applying the algorithm,

3.3 Layerwise Origin-Target Synthesis (LOTS) 17

Algorithm 1 Original LOTS Algorithm

1: function APPLYLOTS(imagesrc, featurest, τ)
2: imageadv = imagesrc
3: while distance(featurest, model.extract_features(imageadv)) > τ do
4: loss = euclidean_loss(imageadv , featurest)
5: gradient = loss.backpropagation().get_gradient(imageadv)
6: gradientstep = gradient/max(abs(gradient))
7: imageadv = clamp(imageadv - gradientstep)
8: end while
9: return round(imageadv)

10: end function

the variable imageadv is synthesized to the final adversarial image, but it corresponds to the
original image before the first modification.

• (3): The while condition encloses the modification part of the algorithm and checks whether
the distance between featurest and the features extracted from the imageadv are below the
defined τ value. The distance function can either be the cosine distance or the Euclidean
distance.

• (4): The Euclidean loss is calculated between the featurest and the features extracted from
imageadv . We define the Euclidean loss formally in Equation (3.1), where f is a function that
extracts features from the image using the model.

• (5): In a backpropagation step, the gradients are calculated. The gradient of the loss with
respect to the imageadv is assigned to the gradient variable. The gradient is formally defined
in Equation (3.2).

• (6): The gradient is scaled by elementwise division by the highest absolute value such that
L∞ = 1. The result is assigned to the gradientstep variable. The gradient step is formally
defined in Equation (3.3).

• (7): The imageadv is re-assigned by subtracting the gradientstep from imageadv and clamping
the result. Clamping is the process of restricting the change to be within specified bound-
aries. The modifications applied to the imageadv are formally defined in Equation (3.4).

• Line (8): End of the iterative synthesis process.

• Line (9): Since floating-point numbers are used during the synthesis process, the pixel val-
ues must be rounded to integers before returning.

• Line (10): End of the LOTS function.

lossEuc.(imageadv, featurest) =
1

2
∥ featurest − f(imageadv) ∥2 (3.1)

gradient(imageadv, featurest) = ∇imageadv
(lossEuc.(imageadv, featurest)) (3.2)

gradientstep(imageadv, featurest) =
gradient(imageadv, featurest)

max(abs(gradient(imageadv, featurest)))
(3.3)

18 Chapter 3. Background

imageadv = clamp(imageadv − gradientstep(imageadv, featurest)) (3.4)

Often, Lp norms are used to evaluate adversarial quality. However, such norms only quan-
tify perturbations but provide little information about the human perception of the adversarial
images. Therefore, the authors used a psychometric called perceptual adversarial similarity score
(PASS) (Rozsa et al., 2016) to measure the quality of adversarial images. PASS consists of two
parts. The first part ensures that the images are aligned in terms of perspective. Then, the struc-
tural similarity index measure (SSIM) is calculated. SSIM is a metric that measures image quality
degradation based on contrast, structure and luminance. A value of 1 means perfect similarity,
and a value of 0 means the images are entirely different from each other. For the experiments, six
identities were handpicked from the VGGFace dataset (=internal adversaries). In addition, they
selected six identities that were not present in the dataset (=external adversaries). This allows
them to evaluate whether such attacks work better on identities the network has already been
trained on or whether the network generalizes well and the attack works on all inputs. In total,
they performed four experiments. The end-to-end network was attacked once on the softmax
layer and once on the feature descriptor layer. Furthermore, in the third and fourth experiment,
the feature descriptors were extracted and compared with either Euclidean or cosine distances.
For each experiment, all 2’621 identities of the dataset were chosen as targets and attacked using
the 12 adversaries.

3.3.3 Findings
The authors show that LOTS works better on systems that extract face descriptors, which are
compared using the Euclidean or cosine distance, than on end-to-end systems. On the former
systems, the perturbations were less visible. There was no discrepancy between external and
internal adversaries in terms of adversarial quality. They further show that certain targets are
more challenging to mimic than others. They explain this by the fact that these faces are closer
to the average face than others, and thus less visible perturbations are needed to generate an
adversarial.

Chapter 4

Extending LOTS

The main scope of the thesis is to extend the LOTS algorithm such that an adversarial image can
mimic the facial features of multiple targets simultaneously. The process of extending LOTS is
described in this chapter. In addition, we made further optimizations during the development
process that reach beyond the multi-target scope.

4.1 Preprocessing
This section describes the preprocessing applied to all the images, such that the network can
extract facial features belonging to individual identities. The first section covers the details of
the sample and gallery-template image selection process. Next, we show how the images are
cropped, followed by the feature extraction process. Lastly, we explain the methodology used to
calculate classification threshold values.

4.1.1 Image Selection
Section 3.1 introduced the VGGFace2 dataset, on which the feature extraction network was fine-
tuned on. We use the same images to conduct the experiments and to evaluate the performance
of the extended LOTS algorithm. A face recognition model extracts a feature vector from an input
image of a person and compares the value to known representation vectors of other identities.
If the distance between the two vectors under comparison is below a defined threshold value,
the face recognition model classifies the two identities as the same. In order to later conduct ex-
periments and generate adversarial images, we need vectors that represent the averaged facial
features of a subject. Rozsa et al. (2017) created gallery templates for each identity, which is a col-
lection of images containing the subject. For each image of the gallery template, feature vectors
are extracted and averaged. The averaged vector is the resulting facial representation vector of the
identity. We create gallery templates and not just use a single image of an identity because differ-
ent angles, perspectives, rotations, or exposures will affect the feature extraction. Using multiple
images to represent a person makes the network more robust and the person’s representation
more accurate. For each identity, we select additional probe samples. We convert these images to
feature vectors by feeding them through the network. These images and their feature vectors can
then be used to calculate identification threshold values and serve as experiment input.

For each identity of the test set, we randomly sampled 50 images that compose the gallery
template. Furthermore, we randomly sampled 155 additional probe images, which serve as input
images and are used for threshold value calculations. Since not every identity provides the same
number of possible probe images, we chose the number of images to be sampled so that we can

20 Chapter 4. Extending LOTS

Algorithm 2 Scaling and cropping of one single image

1: image = load image from disk
2: bbx = load bounding box from disk
3: width_scale = multiply width of bbx by 0.3
4: height_scale = multiply height of bbx by 0.3
5: if width_scale > height_scale then
6: scale_px_diff = width_scale
7: else
8: scale_px_diff = height_scale
9: end if

10: area = translate bbx from [x, y, width, height] to area (left, upper, right, lower)
11: area = Extend area by subtracting scale_px_diff from area left and upper coordinates and

by adding scale_px_diff to area right and lower coordinates
12: crop image to area
13: resize smaller side of image to 256px
14: center crop image to 224px x 224px

retain most identities while having the largest number of probe images for threshold calculations.
For each identity of the training set, we randomly sampled 50 images that compose the gallery
template. We do not select any probe images for identities of the training set since we never use
identities the network was trained on as inputs in experiments, and we do not consider them in
the threshold value calculations. We only use the identities of the training set as targets in ex-
periments, for which the gallery templates are sufficient. Not all 9131 identities in the VGGFace2
dataset have sufficient images to compose gallery templates and still provide sample images. We
only consider the remaining 9084 identities having enough images for the sampling process.

4.1.2 Face Cropping

Since the images from the VGGFace2 dataset come in any form and shape, we have to crop them
to a uniform size such that we can use them as input for the network. Cao et al. (2018) state that
to preprocess the images, they used the MTCNN face detector (Zhang et al., 2016) to extract a
bounding box, which they extended by a factor of 0.3. They then crop to the extended bounding
box and resize the shorter side to 256 pixels. A 224 x 224 center crop is taken from the resulting
image, which yields the final input image. The dataset contains a file with the bounding boxes
for all the images. Unfortunately, scaling by a factor of 1.3 can be interpreted in several ways,
and more detailed specifications could neither be found in the paper nor the code. However,
we found some sample images and preprocessing code on the original GitHub1 repository. We
applied their preprocessing to the sample images, which yielded images we could use to evaluate
our cropping method. To avoid future confusion, we explain our cropping process in Algorithm
2.

We save the images as PNG files to avoid issues with JPG compression. Figure 4.1 shows some
examples of images after we have cropped them. Depending on the subject’s size in the original
image and the original image’s resolution, the resulting image’s quality ranges from blurry to
sharp. The face cropping was implemented using multi-processing.

1https://github.com/ox-vgg/vgg_face2

https://github.com/ox-vgg/vgg_face2

4.1 Preprocessing 21

Figure 4.1: CROPPED IMAGE SAMPLES. Examples of images cropped using the MTCNN face detector
and applying the face cropping algorithm.

Image Pool of One Identity Select Crop Extract Features

G
al

le
ry

 T
em

pl
at

e
Pr

ob
e

Im
ag

es

Fa
ce

 C
ro

pp
er

SE
-R

es
N

et
-5

0

().
.
.

().
.
.

().
.
.

().
.
.

().
.
.

().
.
.

av
er

ag
e

().
.
.

n=50

n=155

Figure 4.2: PREPROCESSING PIPELINE. Preprocessing pipeline visualized for one identity. Includes the
image selection for the gallery template and sample groups, cropping of the images and feature extraction
using the SE-ResNet-50.

4.1.3 Feature Extraction

Face recognition models need facial feature vectors to compare different identities. In order to
extract such vectors, we pass the previously cropped images with size 224 x 224 pixels into a net-
work, in which the classification layer is omitted (Section 3.2.2). For all the images of an identity
that compose the gallery template, we extract the feature vectors, average them, and save them as
identity representation feature vectors. We extract the feature vectors and save them without fur-
ther computation for all sample images of each identity. Features are extracted batch-wise and all
vectors are saved as NumPy arrays. The whole process from image selection to feature extraction
is depicted in Figure 4.2.

22 Chapter 4. Extending LOTS

4.1.4 Threshold Calculation
Face recognition models usually use the Euclidean distance or the cosine similarity to determine
whether two feature vectors represent the same identity. Since cosine similarity tends to perform
better on face recognition tasks (Li and Zhu, 2016), we use the cosine similarity respectively the
cosine distance in our approach. The cosine similarity between two vectors is calculated accord-
ing to Equation (4.1), and the derived cosine distance between two vectors is shown in Equation
(4.2). In our case, the cosine distance can take on values between 0 and 1 since the feature vec-
tors themselves only contain positive values. A cosine distance of 0 means that the two vectors
are identical, and a distance of 1 implies that the vectors are perpendicular to each other and,
therefore, very different.

cosine similarity = Sc(A,B) = cos(θ) =
A ·B

∥ A ∥∥ B ∥
=

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

(4.1)

cosine distance = Dc(A,B) = 1− Sc(A,B) (4.2)

We want to find a cosine distance threshold for our model for which we can confidently say
that if a calculated distance between two input vectors lies below this threshold, they represent
the same person. To find this threshold, we define a False Match Rate (FMR) that we want to
aim for. The FMR defines how many inputs we are allowed to misidentify as the same person,
even though it is a different person. With an FMR of 0.001, one out of 1000 comparisons of two
different faces may be incorrectly identified as belonging to the same person.

After that, we calculate positive and negative distance scores. To create a positive distance
score, we calculate the cosine distance between a person’s gallery template and a feature vector
extracted from a probe image of the same person. For a negative distance score, we compute the
cosine distance between the gallery template of one person and a feature vector extracted from
a probe image of a different person. We use only the identities from the test data set and create
the maximum number of positive and negative distance scores for each identity. The process is
depicted in Figure 4.3. With a number of 453 identities, each with a gallery template and 155
sample feature vectors, this results in 70’215 positive and 31’737’180 negative distance scores.

Once we have generated the positive and negative distance scores, we sort the list of negative
distance scores in ascending order. We then calculate an index using Equation (4.3). We access the
list of negative distance scores with the calculated index, which yields the cosine distance thresh-
old for the desired FMR. The reason for this is that with, for example, 1’000 negative distance
scores sorted in ascending order and a FMR of 0.1, the decisive element is located at position
100 (1’000 * 0.1). Accessing the element at position 100 means that we exactly reached a FMR of
0.1 since we let the first 100 elements pass, even though the distance scores were calculated by
comparing faces of different identities. The calculated position is rounded down. Next, we can
calculate the corresponding True Match Rate (TMR). We select all false non-matches, which are
positive distance scores (same person) with a cosine distance above the calculated cosine distance
threshold. We can then calculate the TMR using Equation (4.4).

indexcosThreshold = ⌊length(negative distance scores) · FMR⌋ (4.3)

TMR = 1− length(false non-matches)

length(positive distance scores)
(4.4)

We have calculated the cosine distance threshold values and TMRs for multiple FMRs ranging
from 10-6 to 1. The results of these calculations are shown in Table 4.1.

4.2 Mimicking Multiple Targets Simultaneously 23

().
.
.
Gallery Template
().
.
.

().
.
.

Identity 1

Probes

().
.
.
Gallery Template
().
.
.

().
.
.

Identity 2

Probes

().
.
.
Gallery Template
().
.
.

().
.
.

Identity n

Probes

n=453

Positive Distance Score

Negative Distance Score

Figure 4.3: THRESHOLD CALCULATION. Visualisation of the process for creating positive and negative
distance scores using gallery templates and sample feature vectors.

FMR 1.0 0.1 0.01 0.001 0.0001 0.00001 0.000001
Cos. Dist. Threshold @FMR 0.933 0.583 0.475 0.392 0.326 0.249 0.104

TMR @FMR 1.000 0.997 0.984 0.961 0.920 0.792 0.146

Table 4.1: COSINE DISTANCE THRESHOLD AT FALSE MATCH RATE. This table shows the cosine
distance threshold and True Match Rate (TMR) at different False Match Rates (FMR).

In general, one can observe that for FMRs ranging from 10-4 to 1, the model remains quite
accurate, with TMRs of over 90%. However, the cosine distance thresholds decrease rapidly. At
a FMR of 10-5, the model has a TMR slightly below 80%. At an FMR of 10-6 we are down to a
TMR of just under 15%. Of course, it depends on the application which FMR-TMR combination
is chosen. For cases in which false matches would be disastrous, a model with FMR 10-5 would
be recommended. For less strict applications, FMR 10-3 or 10-4 would be valid options. Figure 4.4
visualizes the FMR-TMR trade-off. As these are computationally intensive tasks, the calculation
of thresholds was implemented using multi-processing.

4.2 Mimicking Multiple Targets Simultaneously
The original LOTS technique can modify a single input image to mimic the facial features of an
arbitrary target. However, the target must have a gallery template available. In an iterative pro-
cess, LOTS modifies the image until the Euclidean distance between the target’s gallery template
and the facial features extracted from the perturbed input image falls below a defined threshold
(Rozsa et al., 2017). We extend the LOTS algorithm and allow multiple targets to be mimicked
simultaneously using the same input image. Unlike the original LOTS technique, we use cosine
distance instead of Euclidean distance to compare the similarity of different facial feature vectors.
Both methods would be suitable to measure the difference between two vectors, but since we
assume a model using the cosine distance, we also use it within the algorithm.

In order to attack multiple targets simultaneously, the gallery templates of all targets are

24 Chapter 4. Extending LOTS

0.0
00

00
1

0.0
00

01
0.0

00
1

0.0
01 0.0

1 0.1 1

False Match Rate (FMR)

0.2

0.4

0.6

0.8

1.0
Tr

ue
 M

at
ch

 R
at

e
(T

M
R)

Receiver Operating Characteristic

Figure 4.4: RECEIVER OPERATING CHARACTERISTIC. Shows the True Match Rate (TMR) at different
False Match Rates (FMR).

loaded first. After each iteration, we pairwise check if the cosine distance between the facial
features extracted from the modified input image and the individual targets is below the defined
threshold. For a successful attack on multiple targets, all distances must be below the threshold
at the same time, not just on average. The success criterion is defined in Equation (4.5). For all t,
where t represents a single target from the list of targets, the following condition must be true:
The cosine distance (Dc, Equation (4.2)) between the function f , which extracts a facial feature vec-
tor from an input image (imageadv), and the gallery template of the target t (GalleryTemplatet),
must be below the defined cosine distance threshold (τcosDist).

If this is not the case after 5000 iterations, the attack attempt is automatically stopped since the
perturbations are very clearly visible in this case.

∀t ∈ targets, (Dc(f(imageadv), GalleryTemplatet) < τcosDist) (4.5)

4.2.1 Including Source
Another important addition to the algorithm is including the source as a target. In the original
LOTS, the input image is perturbed to mimic the facial features of the specified target. No consid-
eration is given to the fact that the input image continues to mimic the facial features of the source.
In a use case where, for example, two people want to share the same passport, the cosine distance
of the facial features extracted from the adversarial image to both, the gallery template of the
source and the gallery template of the target, must be below the defined cosine distance threshold
value. The implementation is simple. The gallery template vector of the source is added to the
list of targets. The algorithm does not need to be changed. However, including the source in
the list of targets could lead to problems. The algorithm tries to change the input image so that
the cosine distances between extracted facial features and the gallery templates of the targets be-
come smaller. By including the source as a further target, the newly introduced component tries
to constrain change and keep the extracted features close to the original. During the synthesis
of the adversarial image, we ensure that the cosine distances between the source and the targets
are below the threshold simultaneously. Including the source as a target effectively constrains

4.3 Loss Function Adaptions 25

deviation from the initially extracted feature vector and adds one additional target, which might
worsen the algorithm’s performance slightly.

4.3 Loss Function Adaptions
The loss function of the algorithm mainly determines how strong the perturbations are and how
they manifest themselves. This section shows how we have adapted the loss function and intro-
duces two new loss components to minimize perturbations further.

4.3.1 Multi-Component Loss
For our work, we will introduce a multi-component loss. It consists of a component that mea-
sures the cosine distance between all targets and the features extracted from the adversarial image
(losscos) and two components that measure the similarity between the adversarial image and the
source image (lossssim, lossmsssim). In order to combine the different components, they are mul-
tiplied by a specific weight and then added together to form the total loss. The multi-component
loss is calculated according to Equation (4.6), whereas we explain the individual loss components
in the following sections.

losstotal = wcos · losscos + wssim · lossssim + wmsssim · lossmsssim (4.6)

Introducing weights allows us to control how much influence each component has. The extended
LOTS algorithm’s main goal is to reduce the cosine distance between all attacked targets and the
source below a defined threshold value. Adding the complementary similarity loss components
could lead to conflicting goals if lowering the cosine distances is not compatible with maintaining
the structure using similarity measures. By adjusting the weighting of the similarity measures, the
achievement of a low distance can be prioritized again. Figure 4.5 shows how the different loss
components influence the quality of the adversarial image. Each column depicts a modification
of the loss function where the image in the first row shows the perturbed image, the second row
shows the isolated perturbations, and the third row shows the perturbations scaled with a factor
of 3 for better visibility. The result of combining all loss components is shown in the fifth column.

4.3.2 Cosine Distance Loss
The original LOTS technique calculates the Euclidean distance between the facial feature vectors
extracted from the network and the gallery template of the target and uses this as the loss. An
alternative to the Euclidean distance loss would be the cosine similarity/distance. Both metrics
are common and valid solutions to assess the similarity of two vectors. The Euclidean distance
measures how close two points are in the vector space, whereas cosine similarity measures the
angular distance between two vectors. We have chosen the cosine distance as a loss component
because we also assume a model that compares input and target using cosine distances.

losscos =
1

N

N∑
n=1

(Dc(featurescurr, targetn))
2 (4.7)

Equation (4.7) shows how we calculate the loss in a multi-target scenario. The cosine distances
between the facial features extracted from the input image of the current iteration (featurescurr)
and the facial features of the targets is calculated and squared. We experimented with a cosine
distance loss that was not squared, with weighted distances, and with only including targets

26 Chapter 4. Extending LOTS

Im
ag

e

MSE Loss
(Original LOTS)

Cosine Distance Loss Cosine Distance Loss
& SSIM

Cosine Distance Loss
& MSSSIM

Cosine Distance Loss
& SSIM & MSSSIM

Original

Pe
rtu

rb
at

io
n

Pe
rtu

rb
at

io
n

x
3

SSIM=0.9433
MSSSIM=0.9840

ØL1 = 2.7
L2 = 1545.2
L = 39.0

SSIM=0.9637
MSSSIM=0.9897

ØL1 = 2.1
L2 = 1223.2
L = 34.0

SSIM=0.9844
MSSSIM=0.9934

ØL1 = 1.8
L2 = 1111.3
L = 29.0

SSIM=0.9702
MSSSIM=0.9934

ØL1 = 1.9
L2 = 1141.5
L = 33.0

SSIM=0.9857
MSSSIM=0.9949

ØL1 = 1.7
L2 = 1080.5
L = 29.0

SSIM=1.0000
MSSSIM=1.0000

ØL1 = 0.0
L2 = 0.0
L = 0.0

Figure 4.5: INFLUENCE OF LOSS FUNCTION ON ADVERSARIAL IMAGE. Influence of different loss
functions on the manifestation of perturbations. Each column represents an experiment, whereas the first
row represents the perturbed image, the second row the isolated perturbations, and the third row the isolated
perturbations scaled by a factor of 3 for better visibility. Below each column, we show similarity scores
and different Lp norms that express the perturbations. The last column shows the original image without
perturbations as a reference. Experiment description per column: (1) MSE loss only, (2) cosine distance loss
only, (3) cosine distance loss & wssim = 1.0, wmsssim = 0.0 (4) cosine distance loss & wssim = 0.0, wmsssim =
1.0, (5) cosine distance loss & wssim = wmsssim = 1.0, (6) original image.

above the threshold in the loss component. We found that squaring the cosine distance led to
the fastest conversion and best success rate since it emphasizes the targets farthest away from the
input in the cosine distance loss component. The squared cosine distances are summed up and
divided by the number of targets. In the context of this thesis, we refer to the average squared
cosine distance loss between the source and all targets when we mention the cosine distance loss.

Comparing the first and the second column in Figure 4.5 shows the improvement when chang-
ing the loss from Euclidean distance, as it was used in the original LOTs technique, to the co-
sine distance. The change results in an improvement that manifests in weaker perturbations.
In addition to the visual observation of the weaker perturbations, the similarity metrics SSIM
and MSSSIM of the two loss functions can also be compared. For both metrics, the cosine dis-
tance loss achieves significantly higher values. We apply the extended LOTS technique using the
same source image and targeting three different targets (without including the source) and using
FMR=0.001 in all columns. The last column shows the original image without any perturbations
as a reference.

Different Lp norms can also quantify the perturbations. The L1 norm of the perturbation vec-
tor is defined as the sum of all value changes in all color channels of all pixels. From the L1 norm,
we can derive the ∅L1 norm, which measures the per-image average change of each color chan-

4.3 Loss Function Adaptions 27

nel value of a pixel. It is calculated by dividing the L1 norm by the image size (224x224) and the
number of color channels (3). The L2 norm measures the Euclidean distance of the perturbation
vector and can be interpreted as a metric to measure the magnitude of the perturbation. The L∞
norm indicates the largest change of a single value in the color channels of a pixel. Also, in all Lp

norms, a clear improvement can be seen if we use the cosine distance loss instead of the Euclidean
distance loss.

4.3.3 Structural Similarity Index (SSIM)
The structural similarity index (SSIM) is a widely used statistical measure to assess the quality of
an image. Wang et al. (2004) introduced it to measure the degradation of structural information
in images. For this purpose, two images’ luminance, contrast, and structural components are
compared. A score between 1 (=same image) and 0 (=different image) is assigned to a pair of
images. The authors have not defined the color space of SSIM but mention that adding color
components does not significantly affect the index’s performance. The index is applied to color
images in many applications by converting a color image to a grayscale image. Examples of a
conversion would be the Rec. 601 color encoding standard or a conversion from RGB into the
YCrCb color space (Nilsson and Akenine-Möller, 2020).

Nilsson and Akenine-Möller (2020) have investigated the SSIM metric and found that it can
lead to unexpected results under certain circumstances. For example, since SSIM compares the
luminance values and not the colors directly, different colors with the same luminance value can
lead to an SSIM score of 1, even though a human can see the color differences. They also show that
minimal changes that a human cannot detect can sometimes lead to very low SSIM scores. The
authors argue that the SSIM score cannot be used as a perfect measure for substituting human
perception under these circumstances. They also advise against using the SSIM loss in Deep
Learning models, as these infrequent problems can lead to biases in the learning process.

We can still use the SSIM score for our use case because we are not directly training a Deep
Learning model but using an iterative algorithm to perturb an image. Using it, we can constrain
the magnitude of the perturbations and ensure that the structure does not change significantly.
The idea of including an SSIM loss component is that we keep the adversarial image as close as
possible to the original image in terms of structure.

We calculate the SSIM loss component according to Equation (4.8).

lossssim = 1− ssim(imagesrc, imageadv) (4.8)

We compute the SSIM score between the original, unmodified image (imagesrc) and the ad-
versarial image of the current iteration (imageadv). This SSIM value is then subtracted from 1,
yielding our structural similarity loss component. The function ssim denotes a PyTorch imple-
mentation of the SSIM from GitHub.2 As we can observe in Figure 4.5, the strength of the pertur-
bations decreases when we add the SSIM loss (third column) in addition to the cosine distance
loss (second column). This is also reflected in the similarity scores and the Lp norms.

4.3.4 Multi-Scale Structural Similarity Index (MSSSIM)
Wang et al. (2003) introduced the Multi-Scale Structural Similarity Index (MSSSIM), which builds
upon the SSIM. They designed the approach to consider factors such as distance between the
observer and the image plane, perceptual capabilities of the observer, and sampling density of
the image signal. The MSSSIM iterates and calculates contrast, structure, and luminance com-
ponents on different scales. In each scale, the contrast and structure components are calculated

2https://github.com/VainF/pytorch-msssim

https://github.com/VainF/pytorch-msssim

28 Chapter 4. Extending LOTS

Im
ag

e
SSIM max MSSSIM max Original

Pe
rtu

rb
at

io
n

Pe
rtu

rb
at

io
n

x
3

SSIM=0.9892
MSSSIM=0.9945

ØL1 = 1.8
L2 = 1114.2
L = 32.0

SSIM=0.9716
MSSSIM=0.9948

ØL1 = 1.9
L2 = 1123.5
L = 30.0

SSIM=1.0000
MSSSIM=1.0000

ØL1 = 0.0
L2 = 0.0
L = 0.0

Figure 4.6: INFLUENCE OF SSIM AND MSSSIM ON ADVERSARIAL IMAGE. Influence of the SSIM
and MSSSIM metrics as loss components. In order to emphasize their effect, the loss components were
overweighted. Experiment description per column: (1) cosine distance loss & wssim = 2.0, wmsssim = 0.0,
(2) cosine distance loss & wssim = 0.0, wmsssim = 2.0, (3) original image.

analogously to the SSIM, followed by low-pass filtering and downsampling with a factor of two,
resulting in the next scale. The low-pass filtering and downsampling are performed five times,
multiplying corresponding results. Only on the last scale the luminance component is calculated
and multiplied to the product of the structure and contrast values of preceding scales. We also
want to extend our loss with an MSSSIM component by proceeding based on Equation (4.9).

lossmsssim = 1−msssim(imagesrc, imageadv) (4.9)

The msssim function also comes from the PyTorch implementation on GitHub2. Analogous
to the SSIM loss, the MSSSIM between the original image (imagesrc) and the adversarial image
of the current iteration (imageadv) is calculated and subtracted from 1, resulting in the MSSSIM
loss component. Compared to the loss that only considers the cosine distance, a small improve-
ment can also be seen when the MSSSIM loss component is considered. Compared to the cosine
distance loss with an SSIM component, there are not fewer visible perturbations, but they seem
to manifest themselves in a slightly different way (Figure 4.5). We can also see this in the similar
∅L1 and L2 norm values.

4.4 Extended LOTS Algorithm 29

4.3.5 Comparing SSIM to MSSSIM
To compare the SSIM and MSSSIM loss components, we applied the algorithm to the same sample
images as in Figure 4.5 but weighted the loss components much more heavily. We chose wssim =
2.0, wmsssim = 0.0 and wssim = 0.0, wmsssim = 2.0 for the respective experiments. This results
in better visibility of the manifestation of the perturbations. In Figure 4.6, we can observe that
the SSIM loss focuses on changing surfaces and the MSSSIM loss tends to change the edges. To
support this claim, we manually compared 100 adversarial images, generated once with wssim =
2.0, wmsssim = 0.0, and once with wssim = 0.0, wmsssim = 2.0, and observed the same behavior.
However, it is difficult to say whether one loss component is more suitable than the other to
control the amount of perturbation applied to the adversarial image. The Lp norms also do not
show any major deviations. We decided to use both similarity loss components, because we
cannot estimate which component has which influence and we can later override the influence
with a weighting.

4.4 Extended LOTS Algorithm
In this section, we explain how we constructed the extended LOTS algorithm. For this purpose,
we explain the individual steps from Algorithm 3 line by line.

• Line (1): Definition of the LOTS function. The imagesrc is the image to be synthesized into
an adversarial image. The featurest variable contains the gallery templates of identities to
be attacked. If the source is to be included in the synthesis, its gallery template must also be
added to the featurest list. The τcos variable contains the cosine distance threshold, below
which two feature vectors to be compared are assumed to be of the same identity. The step
width variable (widthstep) determines the maximal value a pixel of the adversarial image is
changed during an iteration. The variables wcos, wssim, and wmsssim are the weights of the
respective loss components.

• (2): We assign the original imagesrc to the variable imageadv . While applying the algorithm,
the variable imageadv is synthesized to the final adversarial image, but it corresponds to the
original image before the first modification.

• (3): The while condition encloses the modification part of the algorithm, where a maximum
number of modification iterations is defined.

• (4): The features from the current adversarial image (imageadv) are extracted (Section 3.2.2)
from the model (SE-ResNet-50) and assigned to the variable called featuressrc.

• (5)-(8): We define the variable cos_distances as an empty list in which different cosine dis-
tances between source and targets are stored. For each target t in the list featurest, we calcu-
late the cosine distance between the featuressrc of the current adversarial image extracted
in line (4) and the target t. The cosine distances are squared and added to the cos_distances
list.

• (9)-(11): We check whether all elements from the cos_distances list are below the defined
cosine τcos value. If so, the imageadv tensor is transformed back into an image. The mean
values of the VGGFace2 dataset are added back to the tensor and the resulting adversarial
image is returned from the function. The synthesis was successful.

• (12): We compute an SSIM score between the current adversarial image (imageadv) and the
original, unmodified source image (imagesrc), subtract it from 1, and assign it to the variable
lossssim.

30 Chapter 4. Extending LOTS

• (13): We compute an MSSSIM score between the current adversarial image (imageadv) and
the original, unmodified source image (imagesrc), subtract it from 1, and assign it to the
variable lossmsssim.

• (14): We calculate the losstotal of the current iteration by summing up the squared cosine
distances, dividing them by the number of elements, and multiplying them by the weight
(wcos). The product of lossssim and weight (wssim) and the product of lossmsssim and weight
(wmsssim) are added to the losstotal.

• (15): In a backpropagation step, the gradients are calculated. The gradient of the losstotal
with respect to the imageadv is assigned to the gradient variable.

• (16): This calculation scales the gradient and ensures that the largest value within the
gradientstep tensor exactly equals widthstep. The value of each color channel of a pixel is
therefore changed by a maximum of widthstep per iteration. The calculations are performed
elementwise.

• (17): We subtract the gradientstep from the imageadv , which means we change the pixel
values such that the extracted features from the new image (c) are closer to the featurest.

• (18)-(20): Clamping is the process of restricting the change to be within specified boundaries.
Since the mean values of the VGGFace2 dataset (r=131.0912, g=103.8827, b=91.4953) are
subtracted from the corresponding channels when loading an image, the clamping range
must also be adjusted. The range no longer spans from 0 to 255 but from −x to 255 − x,
where x is the respective mean of a color channel. Line (18) clamps to the blue channel, line
(19) the green channel, and line (20) the red channel.

• (21): The individual color channels are merged and assigned to the variable imageadv .

• (22): End of the iterative synthesis process.

• (23): If the synthesis failed to generate an adversarial image with all cosine distances below
the threshold within the maximum number of iterations, the attack was unsuccessful, and
an error message returned.

• (24): End of the LOTS function.

The actual implementation uses PyTorch and differs slightly from Algorithm 3, but the func-
tionality is exactly as described. The whole algorithm is packaged in a Python class where basic
properties like the cosine distance threshold, loss component weights, the step width, and various
file paths can be set. Also, the MSE loss can be used analogously to the original LOTS paper for
comparison purposes. The LOTS algorithm can then be applied in a single run, where one adver-
sarial image is synthesized, saving statistics and a comparison image between the adversarial and
original image as well as the perturbations themselves. A multi-run is also possible, in which the
list of targets is extended in an iterative process, allowing good visualization of how the number
of targets influences the magnitude of the perturbation. The single and multi-runs are mainly
available for experimentation or if fine-tuning and optimizing a single adversarial image is the
goal. The algorithm can also be used directly without any statistics and outputs.

4.4 Extended LOTS Algorithm 31

Algorithm 3 Extended LOTS Algorithm

1: function APPLYLOTS(imagesrc, featurest, τcos, widthstep, wcos, wssim, wmsssim)
2: imageadv = imagesrc
3: while maximum iterations not reached do
4: featuressrc = model.extract_features(imageadv)
5: cos_distances = []
6: for t in featurest do
7: cos_distances.append(cosine_distance(featuressrc, t)2)
8: end for
9: if all elements of cos_distances < τcos then

10: return convert_tensor_to_image(imageadv)
11: end if
12: lossssim = 1 - ssim(imageadv , imagesrc)
13: lossmsssim = 1 - msssim(imageadv , imagesrc)
14: losstotal = wcos · sum(cos_distances)

len(cos_distances) + wssim · lossssim + wmsssim · lossmsssim

15: gradient = losstotal.backpropagation().get_gradient(imageadv)
16: gradientstep = gradient · (widthstep/max(abs(gradient)))
17: c = imageadv - gradientstep
18: cb = clamp(c[0],−91.4953, 255.0− 91.4953)
19: cg = clamp(c[1],−103.8827, 255.0− 103.8827)
20: cr = clamp(c[2],−131.0912, 255.0− 131.0912)
21: imageadv = cat(cb, cg , cr)
22: end while
23: return Error("unsuccessful synthesis")
24: end function

Chapter 5

Quantitative Experimentation
with Extended LOTS

Chapter 4 showed the approach we used to extend the LOTS algorithm. In this chapter, we show
how we quantitatively evaluate the algorithm using different experiments.

5.1 Finding Hyperparameters
In Chapter 4, we have defined and used variables such as the step width (widthstep) or the individ-
ual weights for the different loss components. However, we still have to find appropriate values
for these variables. For example, the similarity measures should not be weighted too highly; oth-
erwise, they may have a more substantial effect than the cosine distance loss components. The
algorithm would never achieve the primary goal of bringing all cosine distances below a certain
threshold. The choice of widthstep influences how many iterations the algorithm needs to generate
an adversarial image, but at the same time also how strong the perturbations are. No combina-
tion of values works equally well within all examples exposed. Nevertheless, we proceeded as
described next to find a combination of values that works well for most of the samples the algo-
rithm is exposed to. First, we manually experimented to identify a range of values that produced
more or less valuable results. Then we defined 50 samples, randomly selecting the source image
and four targets each. We defined a set of possible values for the variables widthstep, wssim, and
wmsssim. The weight of the cosine loss component (wcos) was assumed to be 1, since the variation
of wssim or wmsssim results in a corresponding weight ratio between the similarity loss compo-
nents and the cosine loss component. The values that the hyperparameters could assume in the
first run are shown in the first row of Table 5.1. A total of 144 combinations were possible, for
each we generated adversarial images on the 50 random samples. Thus, 7200 adversarial images
were generated in the first run, and the corresponding SSIM scores, MSSSIM scores, and success
rates were stored.

In order to evaluate the 7200 experiments, we grouped them according to the hyperparame-
ters. We calculated the average values for the SSIM scores, the MSSSIM scores, and the number
of iterations needed to generate the adversarial image for each combination of hyperparameters.
Furthermore, we calculated the success rate per hyperparameter group. In a manual step, these
values were used to define a new set of hyperparameters, shown in the second row of Table 5.1.
We tested the new 45 hyperparameter combinations in a second run, resulting in 2250 experi-
ments.

For each hyperparameter combination i, we again calculated the average SSIM scores
(ssim_meani), MSSSIM scores (msssim_meani), iterations per group (iterationsi), and the suc-

34 Chapter 5. Quantitative Experimentation with Extended LOTS

Run widthstep wcos wssim wmsssim Comb. Exp.
1 [1, 2, 3, 4] [1] [0, 0.5, 0.7, 0.9, 1.2, 1.4] [0, 0.5, 0.7, 0.9, 1.2, 1.4] 144 7200
2 [2, 3, 4] [1] [0.7, 0.8, 0.9] [0.8, 0.9, 1.0, 1.1, 1.2] 45 2250

Table 5.1: HYPERPARAMETER SELECTION. Different sets of hyperparameters tested in two runs, show-
ing the number of possible combinations and experiments that were run.

cess rate (success_ratei). Using Equation (5.1), we assigned a score to the different combinations.

scorei =
ssim_meani +msssim_meani

2

+ success_ratei ·
success_rate

102
− iterationsi ·

iterations

109

(5.1)

The intuition behind the formula is to include various aspects in the overall evaluation of
a hyperparameter combination. The first term of the equation measures the average SSIM and
MSSSIM score of the adversarial images in a group. It is the most important part since we want
to generate adversarial images with high structural similarity to the original image. In the second
term, we reward combinations with a high success rate, where the average success rate on the
overall data (success_rate) determines the influence of this term. In the third term, a combina-
tion is penalized if it takes more iterations than average (iterations) to generate the adversarial
images. The factors 102 and 109 determine the influence of the corresponding terms and were de-
termined experimentally. It should be noted that many other combinations produce adversarial
images with almost identical scores. We do not intend the formula to be used as the ultimate tool
for finding the best combination but merely to describe our intuition mathematically behind our
selection of hyperparameters. An extract of the results of the two hyperparameter search runs
is shown in Table 5.2. We show the three best and the three worst results for each run. The se-
lected hyperparameters, the average SSIM and MSSSIM scores, the average number of iterations
required, the success rate (SR), and the total score calculated with the formula in Equation (5.1)
are listed. We can observe that, depending on the choice of hyperparameters, there is a trade-off
between the two similarity metrics and the success rate. A higher success rate is associated with
worse similarity metrics. There are combinations with an excellent balance between similarity
scores and success rates, combinations with very high success rates but low similarity scores, and
combinations with low success rates and very high similarity scores. Ultimately, the choice of
the combination depends on the desired properties of the synthesis. Based on our evaluation
formula, the hyperparameter combination with the best overall score is highlighted in Table 5.2
(green) and listed in Equation (5.2).

widthstep = 3.0

wcos = 1.0

wssim = 0.9

wmsssim = 1.0

(5.2)

5.2 Image Sampling for Experiments
We want to test whether different properties of the respective sources and targets used in the
synthesis process influence the performance of the extended LOTS algorithm. For this purpose,
we define different experiments, each consisting of 100 samples with specifically selected prop-
erties. In the rest of this section, we describe how we sample the sources and targets used in the

5.2 Image Sampling for Experiments 35

Run widthstep wcos wssim wmsssim ∅ SSIM ∅ MSSSIM ∅ Iter. SR Score
1 3.0 1.0 1.2 0.9 0.9819 0.9912 1932 81.63% 0.99023
1 3.0 1.0 1.4 1.2 0.9835 0.9922 2318 73.47% 0.99020
1 3.0 1.0 0.9 1.2 0.9794 0.9918 1738 87.75% 0.99009
...

...
...

...
...

...
...

...
...

...
1 2.0 1.0 0.0 0.0 0.9077 0.9701 336 100.00% 0.94677
1 3.0 1.0 0.0 0.0 0.9033 0.9685 245 100.00% 0.94391
1 4.0 1.0 0.0 0.0 0.8936 0.9650 209 100.00% 0.93735
2 3.0 1.0 0.9 1.0 0.9792 0.9912 1504 89.80% 0.99090
2 3.0 1.0 0.8 1.2 0.9782 0.9917 1467 91.84% 0.99088
2 3.0 1.0 0.9 1.2 0.9793 0.9918 1671 87.76% 0.99085
...

...
...

...
...

...
...

...
...

...
2 2.0 1.0 0.7 0.8 0.9770 0.9904 1580 90.00% 0.98931
2 4.0 1.0 0.7 1.2 0.9758 0.9912 1415 88.00% 0.98923
2 2.0 1.0 0.8 1.0 0.9786 0.9913 1886 78.72% 0.98911

Table 5.2: RESULT HYPERPARAMETER SEARCH. The three best and worst results of the two hyper-
parameter search runs. The selected hyperparameters, the average SSIM and MSSSIM scores, the average
number of iterations required, the success rate (SR), and the total score calculated with the formula in Equa-
tion (5.1) are listed. The combination with the best overall score is highlighted in green.

experiments so that they comply with the requirements.

5.2.1 Random Sampling
The first experiment consists of randomly sampled source and target identities. This experiment
is designed to test the general performance of the extended LOTS algorithm when no specific
consideration is given to the characteristics of the source and targets. Since the VGGFace2 dataset
is not balanced in terms of gender, we ensure that half of the sampled sources are female and the
other half are male. The sources are sampled only from the test set of the VGGFace2 dataset. We
further ensure that the targets are gender-balanced and come from both the test and the training
set of the VGGFace2 dataset. We can apply this process to sample any amount of targets for a
given source.

There is no guarantee that after applying the extended LOTS algorithm, the cosine distance
between the source and the extracted feature vector from the adversarial image is still below the
cosine threshold. It could be that the feature vector is too far away from the source due to the
perturbations, and the network no longer recognizes the person who is depicted in the image. To
prevent this, we can additionally define that the source can also be added to the list of targets.
This ensures that the feature vector from the adversarial image does not move too far away from
the source.

The random sampling process results in experiments (1) and (2), listed in Table 5.3.

5.2.2 Gender-Based Sampling
The goal of the gender-based experiments is to find out whether the gender of the sources or tar-
gets impacts the performance of the extended LOTS algorithm, whether syntheses between same-
sex sources and targets exhibit fewer perturbations, and whether there is a gender for which the
algorithm works better. In gender-based sampling, we proceed analogously to random sampling.

36 Chapter 5. Quantitative Experimentation with Extended LOTS

Name Abbr. Sampling
Method

Comment

1 Random random

Random
Sampling

Sources and targets are sampled
randomly

2 Including Source include source Sources and targets are sam-
pled randomly and the source is
added to the list of targets

3 Female −→ Female f −→ f

Gender-Based
Sampling

Sources and targets are female
4 Female −→ Male f −→ m Sources are female, targets are

male
5 Male −→ Male m −→ m Sources and targets are male
6 Male −→ Female m −→ f Sources are male, targets are fe-

male
7 Min. Cosine

Distance
min

Distance-Based
Sampling

Cosine distances between
sources and targets are minimal

8 Min. Cosine
Distance Group

min group Cosine distances between
sources and targets and within
the targets are minimal

9 Max. Cosine
Distance

max Cosine distances between
sources and targets are maximal

10 Max. Cosine
Distance Group

max group Cosine distances between
sources and targets and within
the targets are maximal

11 Min. Cosine
Distance Group +
Include Source

min group
+
include source

Cosine distances between
sources and targets and within
the targets are minimal and the
source is added to the list of
targets

12 Blurry Image blurry

Quality-Based
Sampling,
Random
Sampling

Sources and targets are sampled
randomly and the blurriest im-
age is selected as the source im-
age

13 High-Quality
Image

high quality Sources and targets are sampled
randomly and a high-quality im-
age is selected as the source im-
age

14 Sharp Image sharp Sources and targets are sampled
randomly and the sharpest im-
age is selected as the source im-
age

Table 5.3: EXPERIMENT TYPES. Table listing the various experiments and indicating which method was
used to generate them.

5.2 Image Sampling for Experiments 37

However, we specify whether all sources should be female or male and whether all targets should
be female or male. The sources are again sampled only from the test set, whereas targets are sam-
pled from the test set and the training set. This procedure results in four different experiments
(3)-(6), listed in Table 5.3.

5.2.3 Cosine-Distance-Based Sampling
In this subsection, we define experiments in which sources and targets are selected based on
cosine distances. We want to analyze whether the distances between source and targets impact the
size of the perturbations. We expect samples in which the sources and targets are close together
to have smaller perturbations and require fewer iterations to bring all cosine distances below
the defined threshold. Correspondingly, we expect more perturbations for samples in which the
source and targets are farther apart. This concept results in 4 different sampling approaches,
illustrated in simplified form in Figure 5.1. Using these four sampling approaches, we define the
five experiments (7)-(11) , which are listed in Table 5.3.

Calculating Gallery Template Cosine Distances

To determine samples where the cosine distance between sources and targets corresponds to spe-
cific properties, we first need to know the distances between all possible identities. We achieve
this by calculating the distances between all gallery templates. We store the distances between
the respective identities in a matrix, which we can use as a lookup table for later experiment gen-
eration. Since we have 9084 identities in our dataset, we calculate 82’519’056 cosine distances
between the gallery templates of all identities. We then use the gallery template cosine distances
to look up distances between source and targets during the sampling process.

Minimal Cosine Distance Between Source and Targets

We want to find samples where the sum of the distances between the source and the respective
targets is minimal. However, there are already pairs of identities that look so similar that the co-
sine distance between their gallery templates is below the cosine distance threshold. In order to
exclude such samples in which the source and target are already below the threshold, we intro-
duce a range in which the cosine distance of two gallery templates must lie. The range is defined
as [τcosDist + 0.05, τcosDist + 0.10]. To generate the sample set, we proceed as follows. We use the
distance lookup table for each source identity from the VGGFace2 test set to find all other iden-
tities where the distance to the source identity is in the defined range. From these identities, we
randomly select the desired number of targets. For all selected targets, the following condition
must be fulfilled:

∀t ∈ targets : τcosDist + 0.05 ≤ Dc(source, t) ≤ τcosDist + 0.1 (5.3)

For each identity, the average distance to its sampled targets is calculated. We then sort the result
based on the calculated average distances. The 100 samples with the smallest average distance
are used for the experiment. Finally, we randomly select a source image for each source identity.

Minimal Cosine Distance Between Source and Within Targets

In this experiment, we not only want to minimize the cosine distance between the source and the
targets but also ensure that the cosine distances between the individual targets are minimal. Find-
ing the samples that perfectly minimize all these distances is impossible for computational-cost
reasons. We, therefore, use a heuristic iterative to find samples that minimize the corresponding

38 Chapter 5. Quantitative Experimentation with Extended LOTS

distances in the best possible way. Again, we have the problem that there are already samples
with a cosine distance below the threshold, which we want to exclude. However, we do not need
to define a range but can instead define a lower limit (τcos+0.05). Then we select a target for each
source from the VGGFace2 test set, with a cosine distance that is above the limit but minimal. In
an iterative step, we select the next target (tnew) based on the conditions in Equation (5.4).

tnew = argmin
t∈I with τcos+0.05≤Dc(source,t)

Dc(source, t) +

N∑
n=1

Dc(t, tn) (5.4)

From all possible identities in the VGGFace2 dataset, excluding the source and already selected
targets (denoted as I), we select the target that minimizes the cosine distance between itself and
the source as well as itself and all other targets selected in previous steps (t1, . . . , tN). Additionally,
the condition that τcos + 0.05 is less or equal to the cosine distance between the source and the
newly selected target must be fulfilled. For each source identity, the distances are continuously
summed up. Afterward, the 100 samples with the smallest total distance are selected. Finally, we
select a random source image for each source identity.

Maximal Cosine Distance Between Source and Targets

We want to select samples having a maximum distance between the source and the respective
targets. We can use the distance lookup table to select the desired number of targets that maximize
the distance to the source for each identity from the VGGFace2 test set. For each newly selected
target (tnew) the following condition has to be fulfilled:

tnew = argmax
t∈I

Dc(source, t) (5.5)

From all possible identities in the VGGFace2 dataset, excluding the source and already selected
targets (denoted as I), we select the target that maximizes the cosine distance between itself and
the source. For each identity, we compute the total distance between the source and all the targets.
We then sort the result by the total distance and select the 100 identities with the largest total
distance for the experiment. We further randomly select a source image for the 100 samples.

Maximal Cosine Distance Between Source and Within Targets

Finally, we want to select samples that have a maximum distance between source and target as
well as between the individual targets themselves. Analogous to the minimum distances, the
computation of the perfect samples is computationally expensive. We, therefore, use a heuristic
iterative to find satisfying samples. For each identity of the VGGFace2 test set, we search for the
corresponding target that maximizes the distance between source and target. In the next iterative
step, we search for a target (tnew) that satisfies the condition in Equation (5.6).

tnew = argmax
t∈I

Dc(source, t) +

N∑
n=1

Dc(t, tn) (5.6)

From all possible identities in the VGGFace2 dataset, excluding the source and already selected
targets (denoted as I), we select the target that maximizes the cosine distance between itself and
the source as well as itself and all other targets selected in previous steps (t1, . . . , tN). We sum up
the total distance per identity. The identities are sorted by the total distance, and the 100 samples
with the largest distance are selected for the experiment. For each source identity, a source image
is randomly selected.

5.3 Evaluation Methodology 39

min min group max max group

Figure 5.1: VISUALIZATION COSINE-DISTANCE-BASED SAMPLING. Visualization of the sampling
of different cosine-distance-based experiments. The orange point represents the source, the blue points the
selected targets. Note that we compare the cosine distances of n-dimensional vectors in the actual sampling
process. In these plots, the cosine distances are expressed by the length of the connecting line for illustration
purposes.

5.2.4 Image-Quality-Based Sampling
If we want to investigate different qualities of images, we can resort to random sampling. For the
image quality, we do not want to look at the composition and properties of the source or targets;
instead, we want to select the source image, which is modified by the extended LOTS algorithm,
according to its quality. We are interested in blurry, high-quality, and overly sharp images.

To evaluate the quality of an image, we use the OpenCV Python library.1 We transform an
image into a grayscale image and apply a Laplacian filter to it, highlighting regions with fast
intensity changes. If we calculate the variance of this filter, this can be considered a measure of
the focus of the image (Pech-Pacheco et al., 2000).

We use the sources and targets we have already selected in the random sampling and replace
the source image with an image having the desired quality. For each of these sources, we load
all available images and calculate the variance of the Laplacian filter. Then we sort the available
images of each identity according to the calculated variance. The image with the smallest value
corresponds to the blurriest image of the identity. Accordingly, the image with the highest value
corresponds to the sharpest image. To find a high-quality image, we randomly select an image
with a Laplacian filter variance between 400 and 600. The range for the variance corresponding
to high-quality images was determined experimentally. The three resulting experiments (12)-(14)
are listed in Table 5.3.

5.3 Evaluation Methodology
This section will show the methodology we used to determine which experiments were per-
formed. We further introduce two different factors that impact the difficulty of the experiments.

5.3.1 Attack Difficulty
We can artificially influence the difficulty of the attacks. In Section 4.1.4, we calculated different
False Match Rates and the corresponding cosine distance thresholds for our network. The lower
we choose the False Match Rates, the lower the cosine distance threshold has to be between the
source and all targets, and the more difficult the attack becomes. We will use different False

1https://github.com/opencv/opencv-python

https://github.com/opencv/opencv-python

40 Chapter 5. Quantitative Experimentation with Extended LOTS

Match Rates for our experiments, simulating a more difficult or a less difficult attack. For the
experiments, we will use the False Match Rates 10−3, 10−4, and 10−5.

In addition to changing the difficulty of the attack using different False Match Rates, we can
also control the degree of difficulty by altering the number of targets that are attacked simulta-
neously. The more cosine distances between source and targets have to fall below the defined
cosine distance threshold at the same time, the more complex the experiment. We perform the
experiments with a number of targets ranging from 1 to 20. Besides the number of targets, the
include source experiment also impacts the difficulty since the source is also added to the list of
targets, and we effectively have one additional target.

5.3.2 Iterative Experiment Definitions
There are numerous ways to define a set of experiments. Our experiments contain 100 samples
having specific characteristics regarding the source-targets constellation. We can perform them
at different difficulty levels by combining various False Match Rates and the number of targets
to attack. To find our set of experiments, we selected them in an iterative process. Since not all
experiments are suitable for the same difficulty level, we start at an intermediate difficulty and
rerun the experiment at a harder or easier difficulty level, depending on the results. We start all
experiments at a False Match Rate of 0.001 and by attacking four targets. For each experiment, we
measure the average MSSSIM and SSIM scores, the average number of iterations required by the
extended LOTS algorithm for a successful attack, and the success rate of the individual samples
per experiment. After each run, we evaluate the performance of the experiments. Experiments
with less than 75% success rate were carried out again on a lower difficulty by attacking one
fewer target. Experiments with a success rate of higher or equal to 95% were performed again on
a harder difficulty, attacking one more target. Exceptions are the gender-based experiments since
a statement regarding the influence of gender is already possible after one run. Furthermore, the
random experiment is conducted on all difficulty levels, from attacking one target to attacking
six targets, since it serves as a baseline. While conducting the experiments, we observed good
performance of the min group and a min group + include source experiment. Therefore, we run
these experiments with a hard difficulty by attacking 10, 15, and 20 targets.

We experimented with more difficult attacks in the second part by lowering the False Match
Rates. However, we only considered random and the include source experiment. This is because
peculiarities of different compositions of source and targets and image qualities and groupings
can also be investigated by executing less difficult attacks on higher False Match Rates. The main
goal of the second part was to investigate whether, in general (random experiment), attacks are
still possible at all. For the False Match Rate of 0.0001, we successfully performed experiments
with attacking 1, 2, 3, or 4 targets simultaneously. However, the random experiment attacking 4
targets had a success rate of only 5%. For the attacks using a False Match Rate of 0.00001, only
experiments targeting 1 or 2 targets were performed due to the already low success rate of 57%
on the random experiment attacking 2 targets.

5.4 Evaluation Results
A total of 48 experiments with 100 images each were performed, corresponding to the generation
of 4800 adversarial samples. The results of the evaluation are shown in Table 5.4. We performed
all experiments on an Nvidia RTX 3070 or an Nvidia RTX 2080Ti.

The random experiment achieves a success rate of 88% when attacking four targets and us-
ing a False Match Rate of 0.001. With five targets, the success rate decreases to 51%, and with
six targets, to 26%. When comparing the include source experiment to the random experiment,

5.4 Evaluation Results 41

Difficulty Experiment Type ∅MSSSIM ∅SSIM ∅Iter. SR
FMR@0.001 4 Targets random 0.9909 0.9792 1723.81 88%

include source 0.9908 0.9791 3577.67 43%
min 0.9962 0.9900 197.50 99%
max 0.9902 0.9758 89.75 100%
min group 0.9978 0.9935 11.14 100%
max group 0.9866 0.9695 4978.38 1%
blurry 0.9912 0.9819 1247.57 93%
sharp 0.9903 0.9800 2479.49 73%
high quality 0.9904 0.9788 2205.05 76%
m −→ m 0.9922 0.9820 991.62 94%
m −→ f 0.9909 0.9785 529.89 97%
f −→ f 0.9941 0.9854 409.92 99%
f −→ m 0.9908 0.9786 1089.53 95%

3 Targets random 0.9928 0.9827 395.59 99%
include source 0.9922 0.9824 1837.78 80%
max group 0.9873 0.9711 3842.22 40%
sharp 0.9922 0.9834 548.17 99%

2 Targets random 0.9951 0.9867 27.23 100%
include source 0.9953 0.9886 241.01 100%
max group 0.9898 0.9757 264.88 100%

1 Target random 0.9980 0.9940 7.83 100%
include source 0.9979 0.9941 12.24 100%

5 Targets random 0.9897 0.9766 3319.74 51%
min 0.9951 0.9881 715.30 95%
max 0.9901 0.9763 196.96 99%
min group 0.9972 0.9921 18.17 100%

6 Targets random 0.9892 0.9757 4230.10 26%
min 0.9943 0.9868 1357.89 86%
max 0.9906 0.9774 594.24 95%
min group 0.9971 0.9917 47.87 100%

7 Targets min group 0.9963 0.9902 58.50 100%
max 0.9906 0.9781 932.90 89%

10 Targets min group 0.9951 0.9880 250.04 100%
min group+
include source

0.9953 0.9884 307.05 100%

15 Targets min group 0.9935 0.9844 986.95 94%
min group+
include source

0.9936 0.9848 1124.22 92%

20 Targets min group 0.9925 0.9828 2188.38 80%
min group+
include source

0.9925 0.9830 2373.72 77%

Table 5.4: PART 1: EXPERIMENT RESULTS. Results of the experiments conducted at FMR=0.001. Results
are measured using average MSSSIM and SSIM scores, the average number of iterations, and the success
rate (SR). The average values also include the values of the experiments that were not successful.

42 Chapter 5. Quantitative Experimentation with Extended LOTS

we must consider that the include source experiment effectively attacks one additional target.
Therefore, we always compare the include source experiments with random experiments that
attack one more target to ensure a fair comparison. When comparing the random experiment
with 4 targets and the include source experiment with 3 targets, we can observe a slightly higher
success rate and slightly fewer iterations needed in the random experiment. However, the simi-
larity metrics favor the include source experiment. The same can be observed when comparing
the random experiment with 5 targets and the include source experiment with 4 targets. We can
conclude that including the source makes the synthesis of the adversarial image slightly more
difficult, as can be observed in the success rates and the average iterations needed. Regardless,
including the source also ensures better similarity metrics since the algorithm is constrained in
moving feature vectors extracted from the adversarial image too far away from the source. If the
number of targets attacked decreases, the synthesis of the adversarial image becomes easier, and
the effect observed where the random experiment has a higher success rate and fewer average
iterations needed vanishes. The positive effect on the similarity metrics by including the source
remains, as it can be observed in the comparison between the random experiment with 3 targets
and the include source experiment with 2 targets, or the random experiment with 2 targets and
the include source experiment with 1 target. In general, we can say that for a higher number of
targets, including the source increases difficulty but improves the similarity metrics. For a lower
number of targets, including the source decreases the difficulty but still improves the similarity
metrics. Figure 5.2 visualizes how the number of targets affects the degree of difficulty using a
sample from the random experiment. It is evident that the higher the number of targets, the more
perturbations are present, which is further proven by the similarity metrics and Lp norms.

Looking at gender-based experiments, it is evident that better similarity scores are achieved
in experiments with same-gender sources and targets. Adversarial attacks with female sources
and targets produce better similarity scores, need fewer iterations, and have a success rate of
99%, which is 5% higher than the male equivalents. In the f −→ m, and m −→ f experiments,
the similarity scores are almost identical but are significantly lower than the scores of the same-
gender attacks. The experiments with female targets need fewer iterations than experiments with
male targets and have a higher success rate. It appears to be easier to mimic the feature vectors of
female subjects.

Regarding the experiments with quality-based sampling, blurry images show better similarity
scores, a better success rate (93%), and fewer iterations needed for a successful attack than the
high-quality and sharp images. The high-quality images are slightly ahead of the sharp images in
terms of combined similarity metrics, requiring about 200 iterations less on average and having
a 3% higher success rate (76%). The experiment with the sharp images was carried out again
with three targets, where an average success rate of 99% was achieved with approximately 550
iterations.

In the distance-based experiments, it is immediately apparent that the max group experiment
is the only experiment that does not perform well, with a success rate of 1%. A possible reason for
this might be that it is not feasible to change the adversarial image so that the extracted feature
vector is close to all targets at the same time. The other experiments have a success rate of 99% or
100%. The min and min group experiments have very high similarity scores, with the min group
experiment performing slightly better. The min group experiment is also ahead of the min exper-
iment regarding the number of iterations needed for a successful attack. Surprisingly, the max
experiment is also ahead of the min experiment in terms of iterations but has significantly lower
similarity scores. We can explain all these observations using the graphics in Figure 5.1. Looking
at the max and the min group experiment, we see that they need the fewest iterations. The targets
in the min group experiment are all in similar locations; therefore, they must all be modified in the
same direction. There is no guarantee that the targets are grouped in the max experiment. How-
ever, it is likely that groups of similar-looking people will have similar distances and directions

5.4 Evaluation Results 43

Im
ag

e
Original 1 Target 2 Targets 3 Targets 4 Targets

Pe
rtu

rb
at

io
n

Pe
rtu

rb
at

io
n

x
3

SSIM=1.0000
MSSSIM=1.0000

ØL1 = 0.0
L2 = 0.0
L = 0.0

SSIM=0.9982
MSSSIM=0.9993

ØL1 = 0.6
L2 = 335.7
L = 9.0

SSIM=0.9915
MSSSIM=0.9965

ØL1 = 0.9
L2 = 586.7
L = 24.0

SSIM=0.9889
MSSSIM=0.9954

ØL1 = 1.1
L2 = 682.0
L = 33.0

SSIM=0.9871
MSSSIM=0.9940

ØL1 = 1.5
L2 = 957.9
L = 40.0

Figure 5.2: INFLUENCE OF NUMBER OF TARGETS ON ADVERSARIAL IMAGE. Visualization of the
perturbations when attacking a different number of targets. Each column depicts an adversarial image with
its isolated perturbations and the perturbations enhanced by scaling it with a factor of 3. Additionally, the
similarity metrics and Lp norms are shown.

to the source and might be all selected for the same experiment. Since the cosine distances are
larger in the max experiment, more iterations are needed than in the min group experiment, and
more perturbations are present. The min experiment still has good similarity scores, which is due
to the fact that all targets are already close to the source. However, the adversarial image must be
adjusted such that the extracted features change in multiple different directions, which leads to
more iterations and perturbations. The max group experiment is not successful with four targets
because high distances and different adjustment directions make the experiment too difficult. In
general, we can say that large distances lead to more perturbations, which is manifested in the
poorer similarity scores of the max and max group experiments. Furthermore, different adap-
tation directions also lead to more perturbations, which is why the min group experiment has a
better similarity score than the min experiment, and the max experiment has a better similarity
score than the max group experiment. The max group experiment was only successful with two
targets. The max experiment was still successful with an 89% success rate on seven targets, while
the min experiment was still successful with an 86% success rate on six targets. When comparing
both, the min and the max experiment on 6 targets, we see that the max experiment with a success
rate of 95% outperforms the min experiment with a success rate of 86%. We can conclude that it is

44 Chapter 5. Quantitative Experimentation with Extended LOTS

Difficulty Experiment Type ∅MSSSIM ∅SSIM ∅Iter. SR
FMR@0.0001 4 Targets random 0.9904 0.9782 4885.51 5%

3 Targets random 0.9915 0.9808 2771.41 59%
2 Targets random 0.9939 0.9845 189.89 99%

include source 0.9936 0.9855 2653.01 62%
1 Target random 0.9978 0.9918 9.83 100%

include source 0.9971 0.9924 100.45 99%
FMR@0.00001 2 Targets random 0.9932 0.9845 2677.83 57%

include source 0.9931 0.9847 4940.85 2%
1 Target random 0.9962 0.9891 13.44 100%

include source 0.9959 0.9904 2149.98 64%

Table 5.5: PART 2: EXPERIMENT RESULTS. Results of the experiments conducted at FMR=0.0001 and
FMR=0.00001. Results are measured using average MSSSIM and SSIM scores, the average number of itera-
tions, and the success rate (SR). The average values also include the values of the experiments that were not
successful.

more difficult to successfully synthesize an adversarial image for different adaptation directions
than for large cosine distances. However, the different adaption directions produce better similar-
ity scores. Accordingly, the min group has the best characteristics for both distance and direction
and achieved a success rate of 80% for 20 targets at the same time. In addition, we carried out
min group+ include source experiments, in which the source was also added to the list of targets.
Similar results were achieved on 10, 15, and 20 targets as in the normal min group experiment.
However, there was a slight advantage in terms of success rate and average iterations needed for
the normal min group, experiment, and a slight advantage for the min group + include source
experiment in terms of similarity scores.

We further tested the random and the include source experiment using a more difficult attack
by lowering the False Match Rates. The results are shown in Table 5.5. It is remarkable that the
random experiments are still successful, but only with a limited number of targets. After all, at
FMR=0.0001, 59% can still be achieved with three targets, 99% with two targets, and 100% with
one target. Looking at the include source experiment, 62% of the attacks are still successful with
two targets and 99% with one target. Regarding the experiments using an FMR of 0.00001, only
57% of the attacks are successful with two targets and 100% with one target. The include source
experiment leads to a success rate of 2% for two targets and 64% for one target. We can observe
the same behavior as for FMR=0.001 regarding experiments that include the source being more
successful and having fewer perturbations on a low number of targets.

We can compare our results to a certain extent with the results from the original LOTS algo-
rithm (Rozsa et al., 2017). The authors have also tested their adversarial images on a network that
evaluates two feature vectors’ similarity based on cosine distances. In addition, they assessed
the similarity between the original image and the adversarial image with the PASS score, which
can be translated into the SSIM score since there are no perspective transformations between the
adversarial image and the original image. The authors attacked one target at a time on a network
with a False Match Rate of 0.001. They achieved an average SSIM score of 0.9908. We can compare
their result with our random experiment (False Match Rate of 0.001, 1 target), where we achieved
an average SSIM score of 0.9940. In both experiments, a success rate of 100% was achieved. How-
ever, the feature vectors were not extracted from the same network. Nevertheless, we can say that
we can attack one target with an adversarial image that contains fewer perturbations.

Of all the experiments performed on four targets and a network with a False Match Rate of
0.001, the best and worst successful adversarial samples are shown in the Appendix (A.2, A.3,
A.4, A.5, A.6).

Chapter 6

Empirical Evaluation of
Similarity Metrics

We could extract different SSIM and MSSSIM scores from the different experiments conducted.
However, it is difficult to say how much significance these scores have about the quality of the
adversaries. From visual observations, it appears that adversarial images with higher scores have
less perceivable perturbations. However, it is impossible to say at which similarity scores human
observers can no longer detect the perturbations. Therefore, we want to empirically evaluate the
explanatory power of the scores with regard to human perception and compare the results with
the experiments we conducted in the previous chapter.

6.1 Evaluation Setup
This section discusses how we conduct the qualitative evaluation of the similarity metrics using
a custom-built questionnaire tool. We will discuss the functionalities of the tool as well as the
selection of samples and the distribution of the questionnaire.

6.1.1 Custom Questionnaire Tool

With a survey, we wanted to determine at which SSIM resp. MSSSIM score a human observer
can correctly recognize a modified image as such at first glance. The assumption is that the lower
the score, the higher the probability that an adversarial image is detected as such. Since the usual
survey tools are not suitable for this kind of question, we have developed our own survey tool.
The tool consists of a front-end, developed with the Angular Framework1 from Google, which
takes care of the correct presentation of the questions. In addition, a Java back-end was created
with the Spring Boot Framework,2 which compiles an individual question catalogue for each
participant and receives the answers from the participants. The answers are stored in a MariaDB
SQL database.3 We made sure that mobile users could also use the web application without
issues.

1https://angular.io/
2https://spring.io/projects/spring-boot
3https://mariadb.org/

https://angular.io/
https://spring.io/projects/spring-boot
https://mariadb.org/

46 Chapter 6. Empirical Evaluation of Similarity Metrics

Landing Page

The goal of the landing page is to explain the task to a participant and to give clear and simple
instructions. It should not matter how much previous knowledge a participant has. The intro-
ductory text explains the principle of adversarial images on a high level. In addition, a simple use
case establishes a reference to everyday life. Furthermore, it is explained that the questions are
intended to find out how our scores compare to human perception. The full introductory text can
be found in the Appendix (A.2.1).

The next section of the page contains the instructions. We tell the participant that two pictures
will be displayed simultaneously for two seconds. The picture on the left serves as a reference
picture. It should show the participant what a person looks like in good quality and unchanged
form. The right picture is the picture on which we want to test the participant. It can be either an
adversarial image or an unaltered image. The participant must rate whether the image is altered
or not on a Likert scale. The scale contains the following answer options: unaltered, likely unaltered,
do not know, likely altered, and altered. The aim is to recreate a situation such as a passport control,
where an employee takes a quick look at the passport photo (picture on the right) and compares
it with the actual person (picture on the left). A passport photo is rarely looked at for more
than 2 seconds. We also explain that we do not alter the shape of the face or the person’s age.
Also, blurriness, funny poses, makeup, watermarks, magazine cover letters are not considered
alterations since such images are present in the dataset. It would be easier to show examples of
adversarial images. However, since the perturbations are very distinctive, the participants would
quickly notice a pattern. Since we mainly want to test whether the participants can spot the
adversarial images at first glance, we cannot give much assistance. We also show the participants
a set of eight images containing blurry images, images containing watermarks, people in strange
poses, etc., to make it clear that such attributes do not count as an alteration. The full set of
instructions can be found in the Appendix (A.2.1).

In the last section, we query the age and gender of the participant. The participant can choose
how many questions they would like to answer, whereby corresponding time estimations are
provided. The options include 70, 100, 130, or 160 questions, whereas 100 questions are the de-
fault. As a small incentive, participants can enter a raffle to win a voucher, with the probability of
winning proportional to the number of questions answered. To enter the raffle, the participants
have to enter their e-mail addresses. A screenshot of the complete landing page is provided in the
Appendix (A.1).

Question Page

As soon as the participant has started the questionnaire, he or she will be redirected to the ques-
tion page. Here, either adversarial images or unaltered images with their corresponding reference
images are presented for 2 seconds. The participants now must classify the displayed image in
the Likert scale mentioned above. After the 2 seconds have elapsed, the images are faded out,
but the participant can still rate them on the scale. We have also ensured that the images are not
displayed again in the event of a page refresh. A screenshot of an example question is shown
in Figure 6.1. Below the Likert scale, a blue bar indicates the remaining time the two images are
displayed.

Result Page

After the participant has answered all the questions, or in the event of aborting the experiment,
the result page is displayed. Here, we present the participant’s performance visually. Two bar
charts show how the participant has assigned the images on the Likert scale to the corresponding
classes (altered/unaltered). In addition, the correct classification rate per class and overall is

6.1 Evaluation Setup 47

Figure 6.1: QUESTIONNAIRE SCREENSHOT: QUESTION. Screenshot of an image pair. The left image
is the reference image, and the right image is the image we test the participants on. Below the image is, we
display the Likert scale the participant has to use for the rating. Below the Likert scale, a blue bar indicates
the remaining time the two images are displayed.

Figure 6.2: QUESTIONNAIRE SCREENSHOT: RESULT. Screenshot of the result page. The page shows
the overall performance of the participant as well as the performance per class (altered/unaltered).

48 Chapter 6. Empirical Evaluation of Similarity Metrics

Algorithm 4 Calculating Sampling Probabilities

1: df = load selected samples into dataframe
2: df = select only adversarial samples from df
3: for score in [’ssim’, ’msssim’] do
4: min = df [score].quantile(0.015)
5: max = df [score].quantile(0.985)
6: bucket_size = (max-min)/10
7: bucketsscore = create 10 buckets with bucket_size
8: end for
9: for sample in df do

10: i = get index of bucket for sample[′ssim′]
11: bucketsssim[i] += 1
12: j = get index of bucket for sample[′msssim′]
13: bucketsmsssim[j] += 1
14: end for
15: buckets_probssim = [min(bucketsssim) / n for n in bucketsssim]
16: buckets_probmsssim = [min(bucketsmsssim) / n for n in bucketsmsssim]
17: for sample in df do
18: i = get index of bucket for sample[′ssim′]
19: j = get index of bucket for sample[′msssim′]
20: sample[′sampling_probability′] = (buckets_probssim[i] + buckets_probmsssim[j])/2
21: end for

shown. The charts provide the participants with an overview of their performance. It is ensured
that the participant cannot participate a second time by setting a questionnaire completed variable
in the browser’s session storage. A screenshot of the results page is shown in Figure 6.2.

6.1.2 Sample Selection
We cannot query all samples from all experiments for the questionnaire. Therefore, we had to
make a selection of samples that we presented to the participants. The main objective was to
select samples from each experiment category and ensure that the SSIM and MSSSIM scores were
distributed as evenly as possible within their range. The sampling was done in a two-step process.

In the first step, we loop through the experiments and select those that have a success rate of at
least 10%. We then randomly selected 10 samples from each of the remaining experiments, with
the adversarial image being used for half of the samples and an unaltered original image being
used for the other half.

Since the SSIM and MSSSIM scores are not uniformly distributed in the selected samples, we
compensate for this in the second step. For this purpose, we calculate a sampling probability,
which is taken into account when generating the individual question sets for the participants.
However, it is difficult to distribute the SSIM and MSSSIM values exactly uniformly because the
scores always occur in pairs since a sample has an SSIM and an MSSSIM score. In order to obtain
a reasonably good distribution, we create buckets for the SSIM and MSSSIM scores. We use the
1.5%-Quantile as lower bound and the 98.5%-Quantile as upper bound to filter outliers. The range
between these two bounds is divided evenly into 10 buckets. We iterate through all samples and
distribute the SSIM and MSSSIM scores into the corresponding buckets. We keep track of how
many samples are present in each bucket. We then calculate the sampling probability of each
bucket by dividing the minimum value of all buckets by the bucket’s own value. This ensures

6.2 Results 49

0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000
SSIM resp. MSSSIM Scores

0

200

400

600

800

1000

Co
un

t

Without Sampling Probability
SSIM
MSSSIM

0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000
SSIM resp. MSSSIM Scores

0

200

400

600

800

1000
With Sampling Probability

SSIM
MSSSIM

Figure 6.3: INFLUENCE OF SAMPLING PROBABILITY. Histogram of the SSIM and MSSSIM distribution
with and without considering the sampling probability. Simulated assuming 75 people each answering 100
questions, where half are adversarial images.

that buckets with a large count get a small sampling probability, and buckets with a small count
get a large sampling probability. Since the SSIM and MSSSIM scores occur in pairs, the sampling
probability is calculated from the average of a sample’s respective SSIM and MSSSIM sampling
probabilities. The sampling process is depicted in Algorithm 4.

We simulated the generation of the question sets in advance. We assumed 75 participants, each
answering 100 questions. Figure 6.3 shows how the distribution of the SSIM and MSSSIM scores
changes within the buckets when considering the sampling probability. It is also evident that the
two scores cover different ranges, with the buckets of the MSSSIM scores being much narrower.
It is clearly visible that no perfectly uniform distribution is possible due to the occurrence of the
scores in pairs. Nevertheless, the scores are distributed much more nicely.

6.1.3 Distribution of the Questionnaire
We distributed the questionnaire through several channels. On the one hand, friends with all dif-
ferent backgrounds were contacted directly. On the other hand, we distributed the questionnaire
to people with IT affinity through employment relations. Additionally, people from the Artificial
Intelligence and Machine Learning Group at the University of Zurich were informed by e-mail.
Finally, we spread the questionnaire on the University of Zurich’s marketplace. This should lead
to a balanced group of participants regarding gender and background. The questionnaire was
online for 20 days.

6.2 Results
In this section, we analyze the data we collected. We look at the participants’ demographics and
describe how we create a logit regression model and how to extract statements from it. We analyze
the participants’ responses and present our findings using the logit regression model.

50 Chapter 6. Empirical Evaluation of Similarity Metrics

20 25 30 35 40 45 50 55 60
Age

0

2

4

6

8

10

12

14

Co
un

t
Age of Participants

Female
Male

Figure 6.4: AGE DISTRIBUTION PARTICIPANTS. Distribution of the participants’ age by gender.

6.2.1 Demographics
A total of 73 participants took part in the questionnaire. Thus, 7990 individual questions were
answered, with a single participant answering an average of approximately 104 questions. Of the
participants, 33 were female, and 40 were male. The average age was 29.8 years, with the youngest
participant being 20 years old and the oldest 60 years old. Figure 6.4 shows a histogram of the
age distribution for the different genders. It becomes clear that more younger people participated,
but the age distribution between the genders does not differ much. The reason for this is that the
questionnaire was distributed mainly through university channels.

6.2.2 Initial Observations
After loading, cleaning and preprocessing the data, we can already make some initial observa-
tions. We generate a new binary variable rated_as_adversarial from the Likert scale we used in
the questionnaire. As the name implies, the variable should reflect whether a participant identi-
fied a single sample as an adversarial image. For this purpose, we assign the Likert scale values
unaltered and likely unaltered as False and the values altered and likely altered as True. The
questions answered with do not know are omitted. We then plot a histogram showing the SSIM
and MSSSIM scores partitioned by the new rated_as_adversarial variable (Figure 6.5). We only
consider the adversarial samples since the SSIM or MSSSIM score would always be 1 for the un-
altered images. The first row compares the SSIM scores, where the first column is the distribution
of responses in which the adversarial images were detected as such. The second column shows
the distribution of responses in which the adversarial sample was able to deceive human per-
ception and was not detected. Comparing the two graphs, it is evident that the distribution for
the correctly recognized images is balanced, and the distribution is skewed to the right for the
adversarial images that were incorrectly rated as original/unaltered. Therefore, we can conclude
that, on average, better SSIM scores are required to deceive a human, which was to be expected.
Overall, the participants were more often able to unmask the adversarial images than they were
fooled. In the second row, we analyze the answers using the same methodology but with re-
spect to the MSSSIM scores. The analysis of the SSIM scores can be transferred one-to-one to the

6.2 Results 51

0.97 0.98 0.99 1.00
SSIM Score

0

100

200

300

400

500

Co
un

t
Rated as Adversarial Image
SSIM

0.97 0.98 0.99 1.00
SSIM Score

0

100

200

300

400

500
Rated as Unaltered/Original Image

SSIM

0.9875 0.9900 0.9925 0.9950 0.9975 1.0000
MSSSIM Score

0

100

200

300

400

500

Co
un

t

Rated as Adversarial Image
MSSSIM

0.9875 0.9900 0.9925 0.9950 0.9975 1.0000
MSSSIM Score

0

100

200

300

400

500
Rated as Unaltered/Original Image

MSSSIM

Figure 6.5: CLASSIFICATION OF ADVERSARIAL SAMPLES. Distribution of adversarial samples cor-
rectly classified as adversarial (first column) and incorrectly classified as unaltered (second column) for the
SSIM score (first row) and the MSSSIM score (second row).

MSSSIM scores.

If we focus on the responses regarding unaltered images, we can calculate how many of these
images were correctly rated as such. Surprisingly, only 66.2% of the unaltered images were cor-
rectly classified. We can use this value as a benchmark in later experiments. Several factors may
be the reason why the value is so low. On the one hand, some participants might not have un-
derstood the task correctly, or the task was too difficult. On the other hand, people might have
wanted to finish the questionnaire as quickly as possible. We, unfortunately, cannot derive the
actual reason from our data. The low correct classification rate on the unaltered images is also
generally reflected in the wide scatter of the data. Many samples, even those with very high or
very low SSIM or MSSSIM scores, were classified differently by various participants. This wide
scatter makes the evaluation of the data more difficult.

Finally, we collected a few statements from the participants. Participant 1 stated that af-
ter about a third of the experiment, he noticed the type of perturbations we applied to the im-
ages. From then on, it was easier to classify the images correctly. A similar statement came from
Participant 2, who said he noticed a pattern halfway through. Participant 3 would have liked
to see an example of an adversarial image. As mentioned before, this was not possible because it
would have made the task too easy. Participant 4 (55+ years) felt that the 2 seconds we showed
the images for was too short.

52 Chapter 6. Empirical Evaluation of Similarity Metrics

6.2.3 Logit Regression Model
A logit regression model is a subclass of generalized linear models. It allows us to estimate a
binary variable from any number of independent variables. In our case, we want to find a model
that can predict the dependent variable rated_as_adversarial from different experiment condi-
tions. From the calculated model, we can later extract statements about the individual indepen-
dent variables, such as the SSIM score.

Preparation

Three preprocessing steps are necessary before we can create the first models. Since we sus-
pect a learning effect over time, which is also evident from the statements of Participant 1 and
Participant 2, we want to introduce two new variables that allows us to observe this learning
effect. Having created a unique random ID for each participant and having stored a timestamp
for each answer, we can assign a temporal index to each answer. We have to distinguish whether
the image is original or adversarial. We select all answers of a single participant and sort them in
ascending order by timestamp. Then we can assign a running index to each answer, incrementing
the variable temporal_orig for original images and the variable temporal_adv for adversarial im-
ages. For original images, we set the variable temporal_adv to 0, and for adversarial images, vice
versa. This is because the two variables can each be viewed as a combination between the group
membership (adversarial image or original image) and the indicator variable (temporal index).
This is a standard procedure to observe effects isolated per group. In other words, the temporal
index of an adversarial image does not influence the learning effect on the original images. The
same is true the other way around.

Since we also want to include the participants’ answers regarding original images, we need to
assign corresponding SSIM and MSSSIM scores to these questions. Since the original images do
not contain perturbations, the SSIM and MSSSIM score values are set to 1.0.

Furthermore, we have to evaluate whether we need to balance the data with respect to the
variable rated_as_adversarial. Imbalanced datasets can lead to models with a bias. We have
collected 7990 answers. Of these answers, 480 were rated as do not know and could not be consid-
ered. Of the remaining samples, 3624 were answered with rated_as_adversarial and 3886 with
rated_as_adversarial = False.

We calculate the ratio of the False values (Number of False/Total Number), which is 0.517.
This is only a very slight imbalance regarding True and False values, and we, therefore, do not
need to balance the dataset.

Finding the Model

We use the statsmodels4 python package to calculate the logit regression models. Our goal is to
create multiple models using different variables and compare them with each other. We split the
data into a training and a test set with a ratio of 0.35. Splitting the data allows us to evaluate
the different models by calculating performance metrics on data the models were not trained on.
All models use the same train data for fitting and test data for evaluation. After the best model
is found, we retrain the model on the entire dataset to avoid losing valuable data points. The
statsmodels package internally uses the patsy5 package, which allows us to express a statistical
model using R-Style formulas. An example of such an R-Style formula is shown in Formula (6.1).

rated_as_adversarial ∼ ssim+ fmr (6.1)

4https://www.statsmodels.org/stable/index.html
5https://patsy.readthedocs.io/en/latest/overview.html

https://www.statsmodels.org/stable/index.html
https://patsy.readthedocs.io/en/latest/overview.html

6.2 Results 53

FMR Category Contrast Coding System 1-Hot Approach
*FMR=0.001 [0 0] [1 0 0]
FMR=0.0001 [1 0] [0 1 0]

FMR=0.00001 [0 1] [0 0 1]

Table 6.1: CONTRAST CODING SYSTEM VERSUS 1-HOT APPROACH. Comparing the encoding pro-
duced by a contrast coding system with the encoding produced by the 1-hot approach. * marks the reference
level in the contrast coding system.

This formula is read as follows: the dependent variable rated_as_adversarial is to be de-
scribed by the independent variables ssim and fmr. The ∼ symbol means that the variable to its
left is described by combining the variables to its right. We can include individual independent
in the formula by stringing them together with the + operator. Passing such an R-style formula to
the statsmodel package allows us to extract a logit regression model to which we can then fit the
data. Categorical variables are automatically translated into dummy variables, for which a con-
trast coding system is used.6 A category with N values is thereby translated in a sequence on N-1
variables. The remaining variable is used reference level, against which all the other values from
the same category are compared. The dummy variables are encoded similarly to 1-hot vectors,
with the difference that the encoding misses one value. The difference in the encoding is visual-
ized in Table 6.1 for different False Match Rate categories. For each category, we determine the
variable that is used as a reference level. Discrete variables are used without any conversion. In
addition, we can provide a weighting for the True and False values of the rated_as_adversarial
variable to rebalance the data in case the selection of the training data results in an imbalance. The
models are calculated from an expression on the training data and are then evaluated on the test
data. The model is fitted to the data using the iterative reweighted least square (IRLS) method. In
the IRLS method, the coefficients of the independent variables are adjusted in an iterative process
so that the least squares are minimized. We obtain a confusion matrix from the calculated model
by evaluating the fitted model against the test data. Using the confusion matrix, we calculate the
misclassification rate. The misclassification rate is a performance metric that measures how many
predictions were correct without distinguishing between false matches or false non-matches and
is calculated according to Equation (6.2).

misclassification_rate =
false matches+ false non-matches

length(test set)
(6.2)

In addition, the statsmodels package provides a summary with typical statistical metrics
where we focus on the p-values and coefficients of the individual independent variables. The
pseudo-R2(ρ2) is a further metric that allows us to evaluate the models. The ρ2 value is a statis-
tical metric for logit regression models that measures how well the model fits the data. Values
range from 0 to 1, 0 representing no fit and 1 representing a perfect fit. Values from 0.2 to 0.4
are considered an excellent fit (McFadden, 1977). These values allow us to compare the differ-
ent models. The models’ ρ2 values and p-values are denoted in the model statistics, which we
reference in Table 6.3.

A list of the independent variables, including type, description and possible values, can be
found in Table 6.2. First, we create three simple models and compare their performance. We want
to predict rated_as_adversarial once using the SSIM score, once using the MSSSIM score and
the last time using both similarity metrics. Table 6.3 shows that the misclassification rates and ρ2

values are nearly identical. Comparing these metrics, no model is yet to be favored.
Next, we extend the first three models with the remaining independent variables. In addition

6https://www.statsmodels.org/dev/examples/notebooks/generated/contrasts.html

https://www.statsmodels.org/dev/examples/notebooks/generated/contrasts.html

54 Chapter 6. Empirical Evaluation of Similarity Metrics

Variable Type Description Possible Values
ssim Discrete SSIM score 0.0 - 1.0

msssim Discrete MSSSIM score 0.0 - 1.0
targets Discrete Number of targets 1 - 20

type Categorical Type of experiment random*
(Table 5.3) include_source

ff (=female → female)
fm (=female → male)
mm (=male → male)
mf (=male → female)
min
min_group
min_group_include
max
max_group
blurry
high_quality
sharp

fmr Categorical False Match Rate FMR0.001*
FMR0.0001
FMR0.00001

temporal_adv Discrete Number that indicates 0 - 80
at what stage the
adversarial image was displayed
for a participant

temporal_orig Discrete Number that indicates 0 - 80
at what stage the
original image was displayed
for a participant

user_sex Binary Sex of participant 0 (=male)
1 (=female)

user_age Discrete Age of participant -
* These variables are defined as reference level
and therefore do not have own p-values and coefficients

Table 6.2: INDEPENDENT VARIABLES. List of independent variables used in the logit regression model
with their type, description and possible values.

MR ρ2 Model Expression Model Statistics
0.3222 0.0923 rated_as_adversarial ∼ ssim Appendix A.4.1
0.3260 0.0919 rated_as_adversarial ∼ msssim Appendix A.4.2
0.3226 0.0930 rated_as_adversarial ∼ ssim+msssim Appendix A.4.3
0.3279 0.1026 rated_as_adversarial ∼ ssim+ other_variables Appendix A.4.4
0.3279 0.1043 rated_as_adversarial ∼ msssim+ other_variables Appendix A.4.5
0.3275 0.1044 rated_as_adversarial ∼ ssim+msssim+ other_variables Appendix A.4.6

Table 6.3: MODEL EVALUATION. Different misclassification rates (MR) and pseudo-R2 (ρ2) values for
different model expressions. The variable other_variables substitutes the following: targets+ type+fmr+
temporal_adv + temporal_orig + user_sex+ user_age.

6.2 Results 55

to the similarity metrics, we consider the False Match Rate, the type of experiment, how many
people were targeted simultaneously, the learning effect, as well as the gender and age of the
participants. Evaluating the extended model yields similar results as the basic models. The mis-
classification rates and ρ2 scores are nearly identical but with a slight advantage for the model that
considers both similarity metrics besides the other independent variables. The misclassification
rates are relatively high for all models, ranging between 32.22% and 32.79%. However, if we com-
pare this with the correct classification rate on the unaltered images (66.22%), respectively, their
misclassification rate of 33.78%, the values seem to be plausible. The statistics of all the models
can be found in the appendix, as indicated in Table 6.3.

A common approach for model selection is to include or exclude variables from a starting
model until the p-values of the individual coefficients are no longer significant. This would be the
right approach if we wanted to generate a model that should have predictive power in the future.
However, we only want to evaluate our collected data with respect to all properties. Therefore,
we will not discard variables that have p-values that do not imply statistical significance. Despite
non-significant p-values, the variables serve a purpose. While we cannot make direct statements
about them, they allow us to control the model with respect to them. It is important that the
variables for which we want to make direct statements, namely the similarity measures, remain
statistically significant.

For these reasons, we choose a model that includes all variables. We can observe a very high
correlation of 0.977 between the SSIM and the MSSSIM score in the data. The high correlation
of the two similarity metrics suggests that we use a model which only includes one similarity
measure. In general, all the models are very similar in their performance, and choosing any of
those models would be an adequate fit for evaluating the questionnaire result. The range of
the SSIM scores is slightly larger than the range of the MSSSIM scores, which may simplify the
evaluation. In addition, the PASS score was used in the original LOTS, which can be translated
into an SSIM score in our use case and thus enables comparability. For these reasons, we will use
the SSIM-only model that includes the other variables described as R-Style formula in Formula
(6.3).

rated_as_adversarial ∼ ssim+ targets+ type+ fmr

+ question_temporal_idx+ user_sex+ user_age
(6.3)

After deciding on the model, it is trained once on the whole dataset before using it for the
evaluation. The statistics of the final model can be found in the Appendix A.4.7. The final model
reaches an ρ2 score of 0.1106, which indicates a slightly better fit to the data than the models we
used in the decision process. However, the score is still below the 0.2 to 0.4 range, which indicates
that our model does not excellently fit the data. The ρ2 score suggests that the data is chaotic,
which is again confirmed by the low correct classification rate on the original images.

Extracting Statements from a Model

To explain how to extract statements from a model, we introduce a simplified model defined by
the R-Style formula in Formula (6.4). Although we have already selected the final model, the
resulting equations would be too long, so we use the simple model for illustrative purposes. The
principle is transferable to the final model.

rated_as_adversarial ∼ ssim+ fmr + user_age (6.4)

We want to predict the probability of rated_as_adversarial using the SSIM score, the False
Match Rate as a category, and the participant’s age. After creating a model using the R-Style
formula and fitting it to the data, we can extract an intercept and coefficients for all the input
variables.

56 Chapter 6. Empirical Evaluation of Similarity Metrics

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.66

p=0.50

Logistic Regression Curve

SSIM @ p=0.66: 0.9812
SSIM @ p=0.50: 0.9907

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.50

Logistic Regression Curve

FMR=0.001 @ p=0.50: 0.9907
FMR=0.0001 @ p=0.50: 0.9922
FMR=0.00001 @ p=0.50: 0.9881

Figure 6.6: LOGISTIC REGRESSION CURVES. The left plot shows the relation of the SSIM score on the
probability of an image being rated as adversarial. The right plot shows the influence of different False
Match Rates on the SSIM score at p=0.5. These plots were created using a simplified model and serve to
illustrate the interpretation of the plots.

With the intercept and the coefficients, we can form a linear equation according to Equation
(6.5). We use the average from the dataset for each discrete variable to solve the equation. For
categorical variables, no average value exists. We have to calculate how often the specific value
occurs within its category and express this with a percentage value. If we insert these values
and solve Equation (6.5), we can use the result and the formula in Equation (6.6) to calculate
the probability of participants rating and average image as adversarial. It is important to note
that one value per category is always assumed as the reference level and has no coefficient of
its own. For example, if we want to know the influence of FMR=0.001, which is the reference
level, we know from Table 6.1 (first row) that we have to use 0 as coefficients for FMR=0.0001 and
FMR=0.00001. This means the influence of FMR=0.001 on the outcome of the equation is already
embedded within the model’s intercept. Therefore it does not need a coefficient of its own.

y = intercept+ coefssim · ssim+ coefFMR0.0001 · FMR0.0001

+ coefFMR0.00001 · FMR0.00001 + coefuser_age · user_age
(6.5)

P (rated_as_adversarial) =
ey

1 + ey
=

1

1 + e−y
(6.6)

Instead of the average value, we can also define specific values to use. For example, we can
assume 0.99 for the SSIM score, and then calculate the probability that a participant rated an
image with an SSIM score of 0.99 as adversarial. If we also want to consider categorical variables,
we can enable them by setting the desired type to 1 and inserting 0 for all other dummy variables
of the same category. For example, we want to know the probability of a participant rating an
adversarial image as True for an image with an SSIM score of 0.99 and a False Match Rate of
0.0001. We have to set FMR0.0001 = 1 and FMR0.00001 = 0 in Equation (6.5) and can then solve
again for the probability with Equation (6.6).

However, we do not want to calculate probabilities with our model but determine the influ-
ence of the various variables on the SSIM score. For this purpose, the Equation (6.5) can be solved
for ssim. We can use average values or specific values for the remaining discrete values as before.
We can also activate dummy variables or use occurrence ratios for categorical values as before.
What is new is that we need a value for y as well. Therefore we assume a probability and solve
Equation (6.6) with regards to y. We now have all the tools to extract arbitrary statements about
the SSIM score. In addition, we can iterate over probability values between 0 and 1 to generate a
logistic regression plot given that we fix the other variables.

6.2 Results 57

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

General Observations

SSIM @ p=0.50: 0.9890

Figure 6.7: INFLUENCE OF SSIM SCORE. The influence of the SSIM score on the probability of an average
adversarial image being recognized as such.

Figure 6.6 shows two such plots. The left plot shows the relation between the SSIM score and
the probability of an image being classified as adversarial. The red horizontal lines mark different
probability levels. For example, the plot on the left shows that with an SSIM score of 0.9907, half
of the participants would recognize an adversarial as such.

The black line at x = 1.0 marks the limit of the SSIM score. The point at which the curve
intersects the black line reflects the participants’ performance on unaltered images.

We can also show the influence of the SSIM score on the probability that an image is rated
as adversarial, considering different categories. The plot on the right shows the influence of the
SSIM score, taking into account the False Match Rate. It can be seen that a False Match Rate of
0.001 requires a lower SSIM score than a False Match Rate of 0.0001 to trick the same number of
participants (50%). The two plots in Figure 6.6 were generated for illustrative purposes only. The
evaluation of the full data with the final model follows in the next section.

6.2.4 Findings

General Findings

For general statements about the SSIM score, we will first look at different probability levels
and use the average values for the remaining values. Figure 6.7 shows which SSIM scores are
necessary to achieve the different probability levels for an average image. In general, the lower
the probability level, the more challenging the task since we measure the probability of detecting
an adversarial.

For the rest of the section, we will abbreviate the probability that an image is classified as
adversarial by p. If we look at the SSIM score at p = 0.5, we could say that a score higher than
0.9890 is necessary to perform better than a random guess. However, it should be noted that
the correct classification rate on the unaltered images was also only 66.2% which corresponds to a
probability of p = 0.338 (green level). Considering the participants’ performance on the unaltered
images, we can assume a probability level of p = 0.5 as an above-average guess since it is only
16.2% above the level obtained on the unmodified images.

58 Chapter 6. Empirical Evaluation of Similarity Metrics

For further analysis, we can keep these two probability levels. Whereby a level of p = 0.5
corresponds to an above-average guess, and the level of p = 0.338 corresponds to the benchmark
performance on the unaltered images.

Demographic Related Findings and Learning Effect

Next, we can examine the influence of the participants’ demographics and the learning effect on
the SSIM scores. The two temporal variables we introduced earlier allow us to show the learning
effect over time. The plot at the top left of Figure 6.8 shows that the probability that an image
is classified as adversarial for adversarial images increases over time, and for original images, it
decreases. Thus, an opposite effect is visible, which underlines that the classification performance
of the participants increases over time. The curves in the plot were sampled at 1000 different
probability levels each. We can further observe the learning effect on the plot in the upper right
corner of Figure 6.8. The curves for the first question for adversarial images (green) and original
images (blue) lie on top of each other, indicating the same performance. For the 75th question,
a better score is needed for adversarial images (red) to reach the same probability level as for
the first question, which shows that it becomes harder to trick the participants. Analogously,
it can be observed that for the original images, the score needed to correctly classify an image
with the same score as an adversarial has decreased, which is equivalent to a higher probability
of classifying an image as an original. Furthermore, the curve of the original images for the 75th
question lies below the p = 0.338 benchmark level, indicating that the participants achieved better
classification performance after 75 questions than the average performance on original images,
which is to be expected when assuming a learning effect.

The plot at the bottom left of Figure 6.8 shows a very slight difference between the two gen-
ders, with a slightly higher SSIM score being required for women to reach the same probability
level. Thus, for women, slightly better adversarial images are needed to trick them. However, the
difference is diminishing small.

The bottom right plot of Figure 6.8 shows how the different age categories affect the SSIM
score for an equal probability level. There are no significant differences between the various age
groups. Therefore this factor can be neglected.

Experiment Type Related Findings

When investigating the type of experiment, it is crucial to fix the number of attacked targets to
4 and the False Match Rate to 0.001 since most experiments regarding the type were performed
under these conditions exclusively.

We can compare the random target selection, where the properties of the source and the targets
are irrelevant, with the random experiments, where the properties are irrelevant, but the source is
also included as a target. Figure 6.9 (top left) shows that the include source experiment requires a
slightly lower SSIM score to reach the same probability level. Even though the difference is minor,
including the source might help hide the perturbations and make them less perceivable.

If we look at the experiments regarding the cosine distances between source and targets, we
see that samples with minimum distances between source and the respective targets and exper-
iments with minimum distances between source, the targets and the targets themselves perform
best (Figure 6.9, top right). Since the source and the targets are already close to each other from
the beginning of the experiment, less perturbations are needed on average to reach the targets.
Interestingly, in experiments with maximal distances between the source and the targets and be-
tween the source, the targets, and within the targets, the SSIM scores required do not have to be
significantly better than for minimal distances. In general, better adversarial images are generated
when the source and target are close to each other in terms of cosine distance.

6.2 Results 59

0 10 20 30 40 50 60 70 80
Temporal Question Index

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P(

Ra
te

d
as

 A
dv

er
sa

ria
l)

Learning Effect
Temporal Question Index Adversarial
Temporal Question Index Original

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

Learning Effect

1st Orig @ p=0.50: 0.9888
75th Orig @ p=0.50: 0.9850
1st Adv @ p=0.50: 0.9889
75th Adv @ p=0.50: 0.9936

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

Performance Based on Gender

Female @ p=0.50: 0.9895
Male @ p=0.50: 0.9886

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

Performance Based on Age

20 years old @ p=0.50: 0.9887
30 years old @ p=0.50: 0.9891
40 years old @ p=0.50: 0.9894

Figure 6.8: INFLUENCE OF LEARNING EFFECT AND DEMOGRAPHICS. The influence of the learning
effect and the participants’ demographics on the SSIM score at given probability levels.

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

Including Source as Target @ targets=4, FMR=0.001

random @ p=0.50: 0.9888
include source @ p=0.50: 0.9879

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

Source/Target Cosine Distances @ targets=4, FMR=0.001

min @ p=0.50: 0.9909
min group @ p=0.50: 0.9914
max @ p=0.50: 0.9924
max group @ p=0.50: 0.9927

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

Source/Target Gender @ targets=4, FMR=0.001

f->f @ p=0.50: 0.9962
f->m @ p=0.50: 0.9939
m->m @ p=0.50: 0.9881
m->f @ p=0.50: 0.9927

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

Image Quality @ targets=4, FMR=0.001

sharp @ p=0.50: 0.9841
high quality @ p=0.50: 0.9913
blurry @ p=0.50: 0.9947

Figure 6.9: INFLUENCE OF EXPERIMENT TYPE. The influence of the type of experiment on the SSIM
score at given probability levels.

60 Chapter 6. Empirical Evaluation of Similarity Metrics

Bl
ur

ry

Original Adversarial Perturbation Perturbation x 3

SSIM=0.9805
MSSSIM=0.9905

ØL1 = 1.7
L2 = 969.3
L = 26.0

Sh
ar

p

SSIM=0.9829
MSSSIM=0.9911

ØL1 = 2.9
L2 = 1949.9
L = 134.0

Figure 6.10: SHARP VERSUS BLURRY IMAGES. Comparison of perturbations in sharp and blurry images.
Although the sharp image contains significantly more perturbations, they are much more difficult to detect
by eye than in the blurry image. In both cases, 4 targets were attacked simultaneously.

The experiments investigating the gender of the sources and the targets yield interesting re-
sults (Figure 6.9, bottom left). It is evident that when the sources are male, lower SSIM scores have
to be achieved than when the sources are female, given a certain probability level. The difference
between only male source and targets versus only female source and targets is the largest. It is
therefore generally easier to attack when the sources are male. Ultimately, the easiest attack is
when the source and targets are male.

The image quality also significantly influences the required SSIM scores (Figure 6.9, bottom
right). With blurred images, it is particularly difficult to trick the participants. Perturbations are
most often generated in areas where major landmarks reside (e.g., eyes, mouth, nose) or around
the edges of the face. Moreover, no mechanism ensures that the generated perturbations fit the
original image in terms of focus/blurriness. When adding the perturbations to a blurry original
image, the difference in focus might make them more notable, especially in the locations of major
landmarks. In sharp images, on the other hand, there are often more perturbations present, but
these can be better hidden in the adversarial image. Figure 6.10 shows that the perturbations
are much easier to detect in the blurry image than in the sharp image, even though the latter
contains significantly more perturbations. Therefore, a lower SSIM score is necessary for sharp
images to trick people since the perturbations can be easily hidden. This is further emphasized
by the fact that the curve of the sharp images intersects the p = 0.338 benchmark level at an
SSIM score of 0.9959, which indicates that with sharp images and an SSIM score above 0.9959,
a better performance than on the unaltered original images is achievable. The focus properties
of the high-quality images lie between the blurry and the sharp images, which is reflected in the
required SSIM score for an equal probability level, which lies between the level of blurry and
sharp images.

Attack Difficulty Related Findings

When we want to look at the attack difficulty based on the False Match Rate, we also need to fix
the number of targets and the type of experiment. We choose 2 targets and a random source-target
selection experiment.

When we want to look at the attack difficulty based on the False Match Rate, it is evident
that the more difficult attack with FMR=0.0001 needs higher SSIM scores than the attack with

6.2 Results 61

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

False Match Rates (FMR) @ type=random, targets=2

FMR=0.001 @ p=0.50: 0.9889
FMR=0.0001 @ p=0.50: 0.9924
FMR=0.00001 @ p=0.50: 0.9873

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

Reduced Model: False Match Rates @ type=random, targets=2

FMR=0.001 @ p=0.50: 0.9895
FMR=0.0001 @ p=0.50: 0.9903
FMR=0.00001 @ p=0.50: 0.9905

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02
ssim

0.0

0.2

0.4

0.6

0.8

1.0

P(
Ra

te
d

as
 A

dv
er

sa
ria

l)

p=0.500

p=0.338

Number of Targets @ type=random, FMR=0.001

1 target @ p=0.50: 0.9890
2 targets @ p=0.50: 0.9889
3 targets @ p=0.50: 0.9889
4 targets @ p=0.50: 0.9888
5 targets @ p=0.50: 0.9888
6 targets @ p=0.50: 0.9887

Figure 6.11: INFLUENCE OF ATTACK DIFFICULTY. The influence of the attack difficulty on the SSIM
score at given probability levels. The plot in the top right was generated using a reduced model according
to this R-Style formula: rated_as_adversarial ∼ ssim + fmr, fitted to a reduced dataset only containing
random experiments at 2 targets.

FMR=0.001 (Figure 6.11, top left). This can be explained by the fact that more difficult attack
requires lower cosine distances between source and targets, and therefore more iterations are
needed, and more perturbations are present in an image. If an image contains many perturba-
tions, the SSIM score must be higher to avoid detection of an adversarial. However, it is notice-
able that the even more difficult attack with FMR=0.00001 requires SSIM scores below the attack
with FMR=0.001. We can explain this since, for experiments with FMR=0.00001, only one or two
targets were attacked simultaneously. Therefore, the resulting similarity scores were, on average,
higher than for FMR=0.001 experiments, where more difficult experiment types are present, and
more targets were attacked simultaneously. Because coefficients are fixed once the model is fitted
to the data and calculated based on all samples observed, the model predicts lower SSIM scores
needed at FMR=0.00001 for the same probability level.

By creating a reduced model that only uses the SSIM score and the False Match Rate to predict
the probability of an image being rated as adversarial and using a reduced dataset only contain-
ing samples of random experiments at 2 targets, we can observe the expected behavior. With
increasing attack difficulty based on a lower False Match Rate, the SSIM scores required for the
same probability level must be higher (Figure 6.11, top right). The reduced model’s statistics can
be found in Appendix A.4.8.

The number of targets we attack simultaneously does not affect the SSIM score required for
the equal probability level (Figure 6.11, bottom left). This indicates that even though the attack
becomes more difficult with an increasing number of targets, the SSIM score to trick people stays

62 Chapter 6. Empirical Evaluation of Similarity Metrics

constant, which means that, in terms of targets, the size of the perturbations is decisive in deter-
mining whether an image is rated as adversarial or not.

Evaluation Conclusion

In conclusion, we can say that SSIM score is not equal to SSIM score. Although we can generally
state that a specific score is sufficient for average images to trick a human with a certain probabil-
ity, different SSIM scores are necessary depending on the circumstances. For an average image,
we state that at an SSIM score of 0.9924, the probability of being rated as adversarial is 45%, at
SSIM=0.9958, the probability is 40%, and at SSIM=0.9993, the probability is 35%, almost at the
benchmark level of 33.8% on original images.

Furthermore, we demonstrated a learning effect, whereby participants correctly identified the
original and the adversarial images at a higher rate over time. However, the demographics of the
participants themselves did not significantly affect the required SSIM scores.

We observed blurry images requiring higher SSIM scores than sharp images at a given prob-
ability level. Furthermore, sharp images achieve a better result at a given SSIM score in terms of
the probability of being detected. However, as noted in Chapter 5, sharp images have lower SSIM
scores than blurry images on average. Therefore, we can conclude that more perturbations can be
included in sharp images without them being noted by the participants.

In Chapter 5, we show that higher SSIM scores are obtained when creating f −→ f adversarial
images compared to m −→ m samples. In the questionnaire evaluation, however, we saw that
significantly lower SSIM scores are required for m −→ m experiments than for f −→ f experiments
at the same probability level. The effects, therefore, cancel each other out. The f −→ f experiments
generate higher SSIM scores on average but also require higher SSIM scores at a given probability
level.

We have further shown that in experiments in which the source and targets have a high dis-
tance, better SSIM scores are required at a given probability level. In the experiments in Chapter
5, we also observed that the minimum distance experiments produce better SSIM scores than
their maximum distance counterparts. The two effects add up. In experiments with minimum
distances, better SSIM scores are achieved on average in adversarial image generation, and lower
SSIM scores are needed for a given probability level.

In all plots, we can observe falling curves. This means that the probability of an adversarial
image being exposed decreases with smaller perturbations, respectively higher SSIM scores. If
the SSIM score were a perfect measure to predict human perception, the SSIM scores required at a
given probability level would be identical, regardless of experiment type and attack difficulty. All
curves would lie on top of each other. Since this is not the case, we conclude that the SSIM is not
a perfect measure that can independently determine whether human perception can be tricked.
The circumstances must always be taken into account. Nevertheless, the SSIM is an excellent
indicator and point of reference, especially if we consider an average attack.

Chapter 7

Discussion

7.1 Revisit Extended LOTS
In the empirical evaluation, we decided to omit the MSSSIM score because of its high correlation
with the SSIM score. In order to find out whether this is advantageous not only for the evaluation
but also for the algorithm itself, we want to re-run all experiments from Chapter 5 but remove
the MSSSIM component from the loss. For this purpose, we performed a hyperparameter search
analogous to Section 5.1 and decided to use widthstep = 2, wcos = 1.0, wssim = 1.5, wmsssim = 0.0.
Subsequently, we executed all experiments again, using the new set of hyperparameters. In the
appendix, we present the results and the comparison to the original experiments in Table A.11.
Across all experiments, we raised the average SSIM score from 0.9837 to 0.9863. The success rate
has decreased from 81.40% to 79.65%. This is expected since the SSIM score is weighted higher
than before, and the MSSSIM loss component is omitted. With the removal of the MSSSIM loss
component, the average MSSSIM scores have dropped from 0.9931 to 0.9891. The perturbations
generated look significantly different, with a greater focus on the areas instead of edges. This
was also expected since we had investigated the different influences of SSIM and MSSSIM on
the perturbations in Section 4.3.5 and observed a similar pattern. Figure 7.1 compares the an
experiment using the same source-target constellation, once with the original hyperparameters
and once with the new ones. Whether this adjustment is a real improvement has to be judged from
image to image. As expected, the SSIM scores increased, and the MSSSIM score decreased. There
are fewer perturbations overall in the original experiment, as indicated in the ∅L1 and L2 norms.
The maximum perturbation per pixel is lower in the experiment using the new hyperparameters,
as indicated in the L∞ norm. Additionally, the perturbations in the cheek region and between
the eyes are slightly less visible. We think that perturbations focusing on areas instead of edges,
corresponding to higher SSIM loss weights, might be less visible.

We can state that the best results are obtained when the hyperparameters are adjusted individ-
ually for each adversarial image to be synthesized. For example, Figure 7.2 shows an experiment
with the same source-target constellation, once conducted with the standard hyperparameters
and once with empirically selected hyperparameters (finetuning). Although the ∅L1 norms are
similar in the finetuning experiment and L2 and L∞ are even larger, the perturbations are less vis-
ible. The SSIM and MSSSIM scores are significantly higher in the finetuning experiment, which
hides the perturbations better. However, empirically selecting the hyperparameters for each sam-
ple in a large-scale experiment would be too time-consuming, which is why we recommend using
the default parameters if numerous adversarial images should be generated at once.

Under perfect conditions, we can achieve very impressive results. The first row of Figure
7.3 shows an adversarial attack on 20 targets, where additionally, the source is included in the
list of targets. We determined the hyperparameters empirically and sampled the targets from

64 Chapter 7. Discussion

Ex
te

nd
ed

 LO
TS

Original Adversarial Perturbation Perturbation x 3

SSIM=0.9816
MSSSIM=0.9914

ØL1 = 2.2
L2 = 1398.8
L = 61.0

Ex
t.L

OT
S

Re
-R

un SSIM=0.9841
MSSSIM=0.9860

ØL1 = 2.5
L2 = 1543.8
L = 50.0

Figure 7.1: EXTENDED LOTS VERSUS EXTENDED LOTS RE-RUN. Adversarial images and pertur-
bations were generated using the same source and targets, once using the original hyperparameters and
once the new hyperparameters, in which only the SSIM similarity loss component is present. Four tar-
gets were attacked simultaneously. Hyperparameters Extended LOTS: widthstep = 3, wcos = 1.0, wssim =
0.9, wmsssim = 1.0, Hyperparameters Extended LOTS Re-Run: widthstep = 2, wcos = 1.0, wssim =
1.5, wmsssim = 0.0.

Ex
te

nd
ed

 LO
TS

Original Adversarial Perturbation Perturbation x 3

SSIM=0.9798
MSSSIM=0.9920

ØL1 = 2.5
L2 = 1571.3
L = 57.0

Ex
t.L

OT
S

Fin
et

un
ed

SSIM=0.9868
MSSSIM=0.9938

ØL1 = 2.5
L2 = 1721.6
L = 93.0

Figure 7.2: EXTENDED LOTS VERSUS EXTENDED LOTS EMPIRICAL FINETUNING. Adversarial
images and perturbations were generated using the same source and targets, once using the original hy-
perparameters and once empirically selecting hyperparameters. Five targets were attacked simultaneously.
Hyperparameters Extended LOTS: widthstep = 3, wcos = 1.0, wssim = 0.9, wmsssim = 1.0, Hyperparame-
ters Extended LOTS Finetuning: widthstep = 1, wcos = 1.0, wssim = 2.2, wmsssim = 2.0.

7.2 Transferability of Adversarial Attacks 65

Ex
t.

LO
TS

 Fi
ne

tu
ne

d Original Adversarial Perturbation Perturbation x 3

SSIM=0.9907
MSSSIM=0.9956

ØL1 = 2.2
L2 = 1335.7
L = 48.0

Ex
t.

LO
TS

 Fi
ne

tu
ne

d

SSIM=0.9975
MSSSIM=0.9976

ØL1 = 1.6
L2 = 1097.6
L = 66.0

Figure 7.3: EXTENDED LOTS EMPIRICAL FINETUNING. First row: Experiment attacking 20 targets
with empirically finetuned hyperparameters. Targets are sampled form a min group and source is included
in the list of targets. Hyperparameters: widthstep = 1, wcos = 1.0, wssim = 2.2, wmsssim = 2.0
Second row: Experiment attacking 4 targets with empirically finetuned hyperparameters. Targets are sam-
pled form a m −→ m experiment and a sharp image is chosen as starting point of the synthesis. Hyperpa-
rameters: widthstep = 1, wcos = 1.0, wssim = 15.0, wmsssim = 5.0.

a min group experiment. Although the Lp norms are relatively high, the SSIM and MSSSIM
scores are excellent, and therefore the perturbations are barely visible. We have learned from
the evaluation of the questionnaire that m −→ m experiments and sharp images require lower
SSIM scores and are especially good at hiding perturbations. In the second row of Figure 7.3,
we selected male sources and 4 male targets and chose a sharp image as a starting point for
the synthesis. We empirically selected the hyperparameters and achieved extraordinarily high
SSIM and MSSSIM scores. This shows that when knowing the peculiarities of the source-target
constellation, and if the situation allows for free source-target selection, high-quality adversarial
images can be generated.

Ultimately, the quality of the adversarial sample must be evaluated on a case-by-case basis,
and we cannot rely on scores and norms alone. From time to time, artifacts occur scores cannot
express. For example, the color of the subject’s left eye in Figure 7.1 changes during synthesis.
Therefore, it is up to the user to assess which adversarial samples are suitable for an attack and
which samples should be discarded. However, we can say that for attacks on one to two targets,
the results are excellent in the vast majority of cases, and the perturbations are hardly visible.

7.2 Transferability of Adversarial Attacks
The transferability of adversarial attacks is an essential characteristic. It describes whether and
how well an attack created on a specific network and dataset can be transferred onto another net-
work. Especially in black-box attacks, where the underlying network architecture and datasets
used are unknown, transferability is an important property since it is the only way to execute an
attack. Transferability from one network to another is easy when both networks use the same
architecture and datasets and difficult when the network under attack was trained on different
datasets and used another architecture (Vakhshiteh et al., 2021). Sharif et al. (2019) were able to
show that dodging attacks, in which they attempt to enforce a misclassification of a person to any
arbitrary person, could be transferred from one network to another. For the attack, eyeglasses are

66 Chapter 7. Discussion

either digitally placed on subjects’ faces or physically printed out and worn by the subjects. The
digital attack had a transferability of 63% from the VGG architecture to the OpenFace architec-
ture and 10% in the other direction. Thus, the transferability properties were not symmetric. In
the physical attacks, the transferability from VGG to OpenFace was still 44% and from OpenFace
to VGG 28%. The dodging experiment is an untargeted attack. Furthermore, the authors per-
formed a targeted impersonating attack but did not publish its transferability properties, which
might indicate a lack of success. Zhong and Deng (2020) presented a method for transferability
enhancement and tested it on numerous networks, datasets, and various loss functions. They
examined a targeted attack in which they generated an adversarial image to achieve misclassi-
fication of a person to another specific person. The authors found that feature-level attacks are
more transferable than label-level attacks. They have also shown that their method can be used
for successful black-box attacks on different networks. The VGGFace2 network was a better than
average source network to generate transferable attacks on other networks. Liu et al. (2017b) have
studied the transferability of targeted and untargeted adversarial attacks. They have shown that
targeted attacks are less transferable than untargeted attacks. The authors then presented a novel
approach in which model ensembles are used to generate adversarial images. They designed a
black-box attack, in which they query labels for objects from Clarifai.com. For reference, they
also created adversarial images with a VGG-16 network. Of the adversarial images created using
their approach, 18% were classified from Clarifai.com with a label close to the target. In addition,
57% of the targeted attacks produced a misclassification (untargeted). For the adversarial images
using the VGG-16 network, 2% were classified with a label close to the target. However, 76% of
the samples produced misclassifications.

From these works, we can conclude that transferability is possible up to a certain point. The
most suitable attacks are untargeted attacks, which aim to achieve a misclassification. However,
there is no guarantee of success even with untargeted attacks, and performance is highly depen-
dent on the selected networks and datasets. Also, targeted black-box attacks aiming to mimic the
features of one target could be executed successfully by employing enhancement methods. We
can assume very low transferability if we draw conclusions about our extended LOTS algorithm
based on these works. Although the VGGFace2 network turned out to be a good source network,
the transferability was limited even with only one attacked target. Since we are attacking multi-
ple targets simultaneously, the probability is very low that the external network under attack will
correctly classify all our targets. In order to achieve transferability on multiple targets, consider-
ing the current state of research, we have to execute a white-box attack. In white-box attacks, the
architecture and the used dataset of the network under attack are known. However, there is no
guarantee of a successful attack even under these circumstances.

7.3 Defenses Against Adversarial Attacks
There are various methods to protect a network against adversarial attacks. Adversarial samples
can already be used in training to make the network more robust against attacks. It is also possible
to deviate from the usual network architectures in order to prevent white-box attacks. Another
defense possibility is the use of model ensembles, in which individual networks are specialized
to detect adversarial samples. Tramèr et al. (2017) presented Ensemble Adversarial Training, in
which the training data is augmented with adversarial images generated by other networks. They
show that their approach improves the network’s robustness against black-box attacks. Tao et al.
(2018) have presented a technique that examines and strengthens the connections between neu-
rons and critical attributes for identification, resulting in an adversarial sample detection rate of
94%. Despite various defense strategies, adversarial attacks are also becoming more sophisti-
cated. The defense strategies themselves are becoming victims of attacks. A good example is the

7.4 Measuring Human Perception 67

Defense Distillation technique (Papernot et al., 2015), which was defeated shortly after by Carlini
and Wagner (2017).

If we assume that our extended LOTS attack will go undetected, other defenses are still in
place. For example, suppose a person wants to use the extended LOTS method to generate a
modified passport photo so that other people can travel with it for illegitimate purposes. In that
case, the passport photo must first be printed on the passport and be injected into the face recog-
nition system. In Switzerland, for example, this is not possible, as passport photos may only be
taken by an authority and require physical presence. Therefore, digital adversarial attacks are not
possible, at least not for the official passport. It is also difficult to execute a physical adversarial
attack because, as mentioned, there are always authorities on site. In other countries, such as Ger-
many, submitting a digital photo for a passport is still possible. This would make an adversarial
attack with the extended LOTS more conceivable. However, it would still be necessary to know
the details of the face recognition network, and different countries probably use different face
recognition systems. For a successful attack, therefore, an attacker needs an authority that allows
digital passport photos and knowledge of the internal details of the face recognition systems of
all the countries to be visited. In addition, the level of difficulty increases with the number of
people who are to use the passport simultaneously. Finally, it is still possible that the automated
passport control is out of order, and the attacker has to go through a counter.

7.4 Measuring Human Perception
Furthermore, the question arises whether the SSIM score is suitable for measuring human per-
ception with respect to the detection of perturbations. Nilsson and Akenine-Möller (2020) have
noted that the SSIM score was not originally designed to measure human perception but is merely
a measure of the structural similarity between two images. While people are particularly good
at detecting structural differences between images, which is why the two similarity metrics are
quite representative, there are undoubtedly other factors. Our empirical evaluation established a
link between human perception and the SSIM. We concluded that the SSIM score could describe
human perception to a certain degree. However, we have also shown that other factors influence
the perceptibility of perturbations and that we cannot establish an SSIM threshold value above
which perturbations are no longer detected. We have also seen that there is indeed a learning
effect in recognition of adversarial samples. We tested at which score people recognize an adver-
sarial image correctly within the 2 seconds in which it is shown. As the experiment progressed,
higher scores were needed to trick people. Trained eyes would therefore be able to recognize ad-
versarial samples under real conditions, at least if several targets were attacked simultaneously.
In a single-target attack, the perturbations are diminishingly small that they are very unlikely to
be detected. Andersson et al. (2020) propose FLIP as an alternative to the SSIM score since this
technique better represents human perception and does not suffer from the problems described
in Section 4.3.3. We have nevertheless used the SSIM score for this thesis to have a basis for com-
parison with the original LOTS work that uses the PASS score, which we can translate into the
SSIM score.

Chapter 8

Conclusion

We presented the existing LOTS algorithm and showed the network and dataset used for this
thesis. Our first contribution was to extend and improve the LOTS algorithm. We showed how
the LOTS algorithm can be applied to multiple targets simultaneously and how the source of the
synthesis can also be used as a target. Using the source as a target ensures that the face recogni-
tion network correctly recognizes the person’s identity in the source image. We further extended
the loss function by replacing the MSE loss with the cosine distance loss and adding an SSIM
score and an MSSSIM score component, measuring image similarity. As a second contribution,
we implemented different sampling methods to investigate the influences of the composition of
sources and targets. We then conducted 48 quantitative experiments creating 4800 adversarial
samples and evaluated them using the similarity metrics. We successfully generated adversarial
images for all possible source-target constellations, whereby the success decreases with increas-
ing difficulty caused by attacking additional targets or using lower False Match Rates. In order to
understand the influence of similarity metrics on human perception, we implemented a custom
questionnaire tool in a third contribution and conducted an experiment with 73 participants. We
evaluated and interpreted the results empirically using different logit regression models. We con-
cluded that the SSIM score can be used to draw conclusions about human perception to a certain
degree but that other influencing factors like the gender of the source and targets, image quality,
or distances between source and targets have to be considered. It is impossible to define a fixed
SSIM value above which people no longer recognize adversarial images. In addition, we found a
learning effect from which we conclude that people can be trained to recognize adversarial sam-
ples. Finally, we re-ran our experiments to incorporate the findings of the empirical analysis into
the algorithm. We concluded that choosing hyperparameters by manual experimentation on a
per-attack basis leads to the best result. However, there is still no guarantee of success, but at-
tacks on one or two targets produce adversarial images in which the perturbations are hardly
visible.

We see several ways in which this work could be extended in the future. On the one hand,
more work could be invested in finding the best hyperparameters. In addition, the findings from
the experiments could be taken into account, and the algorithm could be enhanced to adjust the
hyperparameters during synthesis dynamically. The conversion speed and the source-target con-
stellation could be considered to achieve better results automatically. We could also experiment
with other loss functions, such as the ArcFace loss, and evaluate whether they can produce even
better results (Deng et al., 2019). We have mentioned that the SSIM score is not necessarily the
best measure to evaluate human perception. We could extend the loss with other metrics like
the FLIP score or even use the score to replace the similarity metrics (Andersson et al., 2020). In
addition, to achieve better transferability, we could apply the extended LOTS algorithm to the
most common networks simultaneously, extract the feature vectors, and modify the input image
to move in the right direction for all networks.

Appendix A

Attachments

A.1 MAAD-Attributes

MAAD-Attribute is present is absent is undefined
Male 1958913 1349127 0

Young 1250114 989321 1068605
Middle_Aged 354968 2395142 557930

Senior 260687 3013551 33802
Rosy_Cheeks 33990 2321058 952992

Shiny_Skin 581133 1110002 1616905
Bald 207554 3004817 95669

Wavy_Hair 856616 2193351 258073
Receding_Hairline 513859 1948374 845807

Bangs 355048 2701346 251646
Sideburns 1097130 2198368 12542

Black_Hair 514619 2067750 725671
Blond_Hair 347723 2574286 386031

Brown_Hair 817910 1196846 1293284
Gray_Hair 316839 2839278 151923
No_Beard 2108546 466498 732996
Mustache 16629 2629842 661569

5_o_Clock_Shadow 434288 1834468 1039284
Goatee 9229 2655062 643749

Oval_Face 466869 793888 2047283
Square_Face 1709811 1585311 12918
Round_Face 5905 2287232 1014903

Double_Chin 605454 2326091 376495
High_Cheekbones 857224 1328748 1122068

Chubby 406896 2410459 490685
Obstructed_Forehead 195722 2316315 796003

Fully_Visible_Forehead 1668763 845847 793430
Brown_Eyes 1303174 401359 1603507

Bags_Under_Eyes 917779 1367622 1022639
Bushy_Eyebrows 1071154 2119007 117879

Arched_Eyebrows 762116 1814707 731217
Mouth_Closed 139989 485079 2682972

Smiling 625844 1034713 1647483
Big_Lips 939155 1532764 836121

Big_Nose 503066 1202627 1602347
Pointy_Nose 1816441 1044887 446712

Heavy_Makeup 982666 2314175 11199
Wearing_Hat 256130 2946013 105897

Wearing_Earrings 992962 1961832 353246
Wearing_Necktie 350886 2162852 794302
Wearing_Lipstick 1126676 2138389 42975

No_Eyewear 2597310 199386 511344
Eyeglasses 339032 2854252 114756
Attractive 884429 2301934 121677

Table A.1: MAAD-ATTRIBUTES. MAAD-Attributes and their presence in the images of the VGGFace2
dataset.

72 Appendix A. Attachments

A.2 Custom Questionnaire Tool

A.2.1 Landing page
Full Introduction Text

Hi there! My name is Noah Chavannes, and I am currently writing my Masters Thesis at the
Artificial Intelligence and Machine Learning Group of the University of Zurich. I am sure you
have heard of face recognition software. My thesis is about tricking face recognition software such
that they can no longer correctly identify people. The idea is as follows: We slightly modify an
image of a person such that for face recognition tools, it looks like multiple other people. But for us
humans, the image should still look the same. Such images would allow multiple people to travel
with the same passport at airports that use automated border control systems. Or it could help
someone to hide from big brother. Since it is tough to quantify human perception mathematically,
we want to test our algorithm by showing you several samples and evaluating whether you could
correctly identify the fakes. By answering the survey, you can help us determine how strongly
we can perturb the images until humans notice something going on.

Full Instructions
• We will show you two images for a duration of two seconds. Example: (See screenshot in

Figure A.1)

• The image on the left-hand side is a reference image. Its only purpose is to give you an idea
of what the person looks like (in good quality).

• The image on the right-hand side is the image we want to test you on. You have to determine
whether you think it is altered or not. You do not have to compare it directly to the reference
image. Please just judge whether you think we tampered with the image or you think it
looks natural.

• You will have to answer on the following scale: (See screenshot in Figure A.1)

• Please only use the "do not know" button if you really have to.

• We do not change the shape of the face or the age of the person.

• We do not change the resolution of the image.

• Since the images were sampled from many different places, they might be very blurry or
depict people in funny poses, wearing makeup, etc.

• Images might also contain watermarks or text from magazine covers.

• Blurriness, funny poses, makeup, watermarks, magazine cover letters, etc. does not count
as altered!

• To give you a better idea, the following images are unaltered: (See screenshot in Figure A.1)

• After answering a question, the two second timer of the next question automatically starts.

• You can always see your overall progress on the top of the screen and you can stop at any
time, but we would highly appreciate it if you could make it to the end.

• After answering all the questions, we will show you an overview on how often you got it
right.

A.2 Custom Questionnaire Tool 73

Figure A.1: QUESTIONNAIRE SCREENSHOT: LANDING PAGE. Screenshot of the custom questionnaire
tool’s landing page.

74 Appendix A. Attachments

A.3 Adversarial Samples on FMR=0.001, 4 Targets

Ra
nd

om
 (b

es
t)

Original Adversarial Perturbation Perturbation x 3

SSIM=0.9904
MSSSIM=0.9958

ØL1 = 1.5
L2 = 1003.7
L = 32.0

Ra
nd

om
 (w

or
st

)

SSIM=0.9658
MSSSIM=0.9840

ØL1 = 3.7
L2 = 2387.7
L = 84.0

In
clu

de
 S

ou
rc

e
(b

es
t)

SSIM=0.9878
MSSSIM=0.9957

ØL1 = 1.9
L2 = 1248.5
L = 48.0

In
clu

de
 S

ou
rc

e
(w

or
st

)

SSIM=0.9763
MSSSIM=0.9896

ØL1 = 3.3
L2 = 2113.9
L = 62.0

M
in

 (b
es

t) SSIM=0.9960
MSSSIM=0.9982

ØL1 = 0.7
L2 = 400.5
L = 12.0

M
in

 (w
or

st
) SSIM=0.9796

MSSSIM=0.9949
ØL1 = 2.3

L2 = 1607.5
L = 55.0

Figure A.2: PART 1: BEST AND WORST EXPERIMENT TYPE RESULTS. Adversarial images from the
best and the worst successful experiment of each experiment type. All images are created with the default
hyperparameters and attack 4 targets simultaneously on a network using a FMR of 0.001.

A.3 Adversarial Samples on FMR=0.001, 4 Targets 75

M
ax

 (b
es

t)

Original Adversarial Perturbation Perturbation x 3

SSIM=0.9881
MSSSIM=0.9954

ØL1 = 1.1
L2 = 624.7
L = 18.0

M
ax

 (w
or

st
) SSIM=0.9547

MSSSIM=0.9836
ØL1 = 3.4

L2 = 2186.4
L = 89.0

M
in

 G
ro

up
 (b

es
t)

SSIM=0.9973
MSSSIM=0.9991

ØL1 = 0.7
L2 = 387.5
L = 10.0

M
in

 G
ro

up
 (w

or
st

)

SSIM=0.9812
MSSSIM=0.9933

ØL1 = 1.9
L2 = 1173.3
L = 40.0

=
M

ax
 G

ro
up

 (b
es

t)

SSIM=0.9695
MSSSIM=0.9865

ØL1 = 4.4
L2 = 2881.2
L = 134.0

M
ax

 G
ro

up
 (w

or
st

) =

SSIM=0.9695
MSSSIM=0.9865

ØL1 = 4.4
L2 = 2881.2
L = 134.0

Figure A.3: PART 2: BEST AND WORST EXPERIMENT TYPE RESULTS. Adversarial images from the
best and the worst successful experiment of each experiment type. All images are created with the default
hyperparameters and attack 4 targets simultaneously on a network using a FMR of 0.001. The best and the
worst result of the max group experiment are identical since we only successfully produced one adversarial
image in this category.

76 Appendix A. Attachments

Bl
ur

ry
 (b

es
t)

Original Adversarial Perturbation Perturbation x 3

SSIM=0.9899
MSSSIM=0.9965

ØL1 = 0.8
L2 = 492.1
L = 21.0

Bl
ur

ry
 (w

or
st

)

SSIM=0.9712
MSSSIM=0.9873

ØL1 = 2.4
L2 = 1550.8
L = 68.0

Sh
ar

p
(b

es
t) SSIM=0.9890

MSSSIM=0.9956
ØL1 = 1.9

L2 = 1282.1
L = 53.0

Sh
ar

p
(w

or
st

)

SSIM=0.9703
MSSSIM=0.9853

ØL1 = 4.0
L2 = 2461.8
L = 144.0

Hi
gh

 Q
ua

lit
y

(b
es

t)

SSIM=0.9889
MSSSIM=0.9950

ØL1 = 2.3
L2 = 1635.6
L = 89.0

Hi
gh

 Q
ua

lit
y

(w
or

st
)

SSIM=0.9694
MSSSIM=0.9837

ØL1 = 3.2
L2 = 2005.2
L = 99.0

Figure A.4: PART 3: BEST AND WORST EXPERIMENT TYPE RESULTS. Adversarial images from the
best and the worst successful experiment of each experiment type. All images are created with the default
hyperparameters and attack 4 targets simultaneously on a network using a FMR of 0.001.

A.3 Adversarial Samples on FMR=0.001, 4 Targets 77

m
->

 m
 (b

es
t)

Original Adversarial Perturbation Perturbation x 3

SSIM=0.9906
MSSSIM=0.9970

ØL1 = 1.1
L2 = 711.3
L = 20.0

m
->

 m
 (w

or
st

)

SSIM=0.9719
MSSSIM=0.9862

ØL1 = 2.5
L2 = 1420.6
L = 40.0

m
->

 f
(b

es
t) SSIM=0.9865

MSSSIM=0.9955
ØL1 = 1.6
L2 = 964.6
L = 30.0

m
->

 f
(w

or
st

)

SSIM=0.9654
MSSSIM=0.9872

ØL1 = 3.1
L2 = 1802.4
L = 46.0

f->
 f

(b
es

t) SSIM=0.9931
MSSSIM=0.9975

ØL1 = 1.0
L2 = 582.0
L = 17.0

f->
 f

(w
or

st
) SSIM=0.9758

MSSSIM=0.9902
ØL1 = 3.1

L2 = 1894.9
L = 64.0

Figure A.5: PART 4: BEST AND WORST EXPERIMENT TYPE RESULTS. Adversarial images from the
best and the worst successful experiment of each experiment type. All images are created with the default
hyperparameters and attack 4 targets simultaneously on a network using a FMR of 0.001.

78 Appendix A. Attachments

f->
 m

 (b
es

t)

Original Adversarial Perturbation Perturbation x 3

SSIM=0.9863
MSSSIM=0.9953

ØL1 = 1.5
L2 = 967.0
L = 51.0

f->
 m

 (w
or

st
) SSIM=0.9665

MSSSIM=0.9855
ØL1 = 4.0

L2 = 2517.9
L = 88.0

Figure A.6: PART 5: BEST AND WORST EXPERIMENT TYPE RESULTS. Adversarial images from the
best and the worst successful experiment of each experiment type. All images are created with the default
hyperparameters and attack 4 targets simultaneously on a network using a FMR of 0.001.

A.4 Logit Regression Models 79

A.4 Logit Regression Models

This section lists the different logit regression models used along with their statistics. We have
used and explained the Pseudo-R2(ρ2) value to compare the models in the thesis. All attributes
listed in the model statistics are briefly explained in Table A.2.

Attribute Description
Dep. Variable The dependent variable to be expressed with the independent variables.
Model Which model is used. In our case a Generalized Linear Model (GLM).
Model Family Which model family is used. We use a Binomial model since we have binomial

distribution.
Link Function Which link function is used. In our case the logit function since we have a

logit regression model.
Method Which method is used for fitting the data. In our case iteratively reweighted

least squares (IRLS) as explained in the thesis.
Date Date when the data was fitted to the model.
Time Time when the data was fitted to the model.
No. Iterations How many iterations were needed to fit the model using IRLS.
Covariance Type Specifies how the covariance is calculated. For the IRLS method, nonrobust

is the default value. It is used when homoscedasticity within the data is ex-
pected.

No. Observations How many data points are available to fit the model to.
Df Residuals Degree of freedom of the residuals. Calculated by No. Observations −

No. ofPredicting V ariables− 1.
Df Model Degree of freedom of the model. Number of predicting (independent) vari-

ables.
Scale Parameter used in the log-likelihood calculation. For binomial distributions,

this parameter is always 1.
Log-Likelihood The log-likelihood is a numerical indicator of the probability that the model

produced the given data, where a higher value indicates a better fit.
Deviance Deviance is another quality-of-fit statistic. A lower value indicates a better fit.
Pearson chi2 A Pearson Chi-Square test is another quality-of-fit statistic.
Pseudo R-squ. Pseudo-R2(ρ2): Measures how well the model fits the data as explained in the

thesis.
coef Coefficients of the independent variables. Measures how strongly a change in

the independent variable impacts the prediction of the dependent variable.
std err Standard error of the coefficients.
z In a logit regression, the z-value is calculated by dividing the coefficient by its

standard error. It is used for calculating the p-values.
P > |z| P-value. Probability of the the null hypothesis that the coefficient has no effect

on the model. The lower the value the more significant is the coefficient for
the model.

[0.025 Lower bound of the 95%-confidence interval of the coefficients.
0.975] Upper bound of the 95%-confidence interval of the coefficients.

Table A.2: MEANING OF MODEL STATISTICS. Explanation of the attributes found in the model statistics
of the logit regression models.

80 Appendix A. Attachments

A.4.1 SSIM Only Model
Model R-Style Formula

rated_as_adversarial ∼ ssim

Model Statistics

Dep. Variable: rated_as_adversarial No. Observations: 4881
Model: GLM Df Residuals: 4879
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3144.8
Date: Fri, 15 Apr 2022 Deviance: 6289.5
Time: 11:19:53 Pearson chi2: 4.89e+03
No. Iterations: 4 Pseudo R-squ. (CS): 0.09226
Covariance Type: nonrobust

coef std err z P> |z| [0.025 0.975]

Intercept 64.9632 3.152 20.609 0.000 58.785 71.141
ssim -65.5599 3.177 -20.638 0.000 -71.786 -59.334

Table A.3: STATISTICS SSIM MODEL. Generalized Linear Model Regression Results

A.4.2 MSSSIM Only Model
Model R-Style Formula

rated_as_adversarial ∼ msssim

Model Statistics

Dep. Variable: rated_as_adversarial No. Observations: 4881
Model: GLM Df Residuals: 4879
Model Family: Binomial Df Model: 1
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3145.7
Date: Fri, 15 Apr 2022 Deviance: 6291.3
Time: 11:19:53 Pearson chi2: 4.90e+03
No. Iterations: 4 Pseudo R-squ. (CS): 0.09192
Covariance Type: nonrobust

coef std err z P> |z| [0.025 0.975]

Intercept 150.2641 7.304 20.572 0.000 135.948 164.580
msssim -150.8459 7.328 -20.585 0.000 -165.209 -136.483

Table A.4: STATISTICS MSSSIM MODEL. Generalized Linear Model Regression Results

A.4 Logit Regression Models 81

A.4.3 SSIM + MSSSIM Model
Model R-Style Formula

rated_as_adversarial ∼ ssim+msssim

Model Statistics

Dep. Variable: rated_as_adversarial No. Observations: 4881
Model: GLM Df Residuals: 4878
Model Family: Binomial Df Model: 2
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3142.7
Date: Fri, 15 Apr 2022 Deviance: 6285.4
Time: 11:19:53 Pearson chi2: 4.89e+03
No. Iterations: 4 Pseudo R-squ. (CS): 0.09302
Covariance Type: nonrobust

coef std err z P> |z| [0.025 0.975]

Intercept 104.5972 19.992 5.232 0.000 65.414 143.780
ssim -36.1645 14.883 -2.430 0.015 -65.334 -6.995
msssim -69.0280 34.284 -2.013 0.044 -136.224 -1.833

Table A.5: STATISTICS SSIM + MSSSIM MODEL. Generalized Linear Model Regression Results

82 Appendix A. Attachments

A.4.4 SSIM + Other Variables Model

Model R-Style Formula

rated_as_adversarial ∼ ssim+targets+type+fmr+temporal_adv+temporal_orig+user_sex+
user_age

Model Statistics

Dep. Variable: rated_as_adversarial No. Observations: 4881
Model: GLM Df Residuals: 4859
Model Family: Binomial Df Model: 21
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3116.9
Date: Fri, 15 Apr 2022 Deviance: 6233.8
Time: 11:19:54 Pearson chi2: 4.89e+03
No. Iterations: 4 Pseudo R-squ. (CS): 0.1026
Covariance Type: nonrobust

coef std err z P> |z| [0.025 0.975]

Intercept 51.7921 4.890 10.591 0.000 42.207 61.377
blurry 0.2663 0.236 1.128 0.259 -0.196 0.729
f−→f 0.4593 0.204 2.250 0.024 0.059 0.859
f−→m 0.1368 0.202 0.678 0.498 -0.259 0.533
high quality -0.0518 0.218 -0.238 0.812 -0.479 0.375
include source 0.0098 0.099 0.099 0.921 -0.185 0.204
max 0.3039 0.124 2.449 0.014 0.061 0.547
max group 0.3617 0.165 2.195 0.028 0.039 0.685
m−→f 0.2378 0.218 1.093 0.274 -0.189 0.664
min 0.1870 0.142 1.317 0.188 -0.091 0.465
min group 0.1122 0.137 0.818 0.413 -0.157 0.381
min group include 0.0383 0.211 0.182 0.856 -0.374 0.451
m−→m -0.2943 0.221 -1.330 0.184 -0.728 0.139
sharp -0.4537 0.164 -2.758 0.006 -0.776 -0.131
FAR0.00001 -0.0604 0.136 -0.444 0.657 -0.327 0.206
FAR0.0001 0.2410 0.113 2.140 0.032 0.020 0.462
ssim -52.4572 4.928 -10.645 0.000 -62.115 -42.799
targets 0.0067 0.013 0.520 0.603 -0.019 0.032
temporal_adv 0.0034 0.002 1.778 0.075 -0.000 0.007
temporal_orig -0.0063 0.002 -3.211 0.001 -0.010 -0.002
user_sex 0.0469 0.065 0.722 0.470 -0.080 0.174
user_age 0.0021 0.004 0.560 0.575 -0.005 0.009

Table A.6: STATISTICS SSIM + OTHER MODEL. Generalized Linear Model Regression Results

A.4 Logit Regression Models 83

A.4.5 MSSSIM + Other Variables Model

Model R-Style Formula

rated_as_adversarial ∼ msssim + targets + type + fmr + temporal_adv + temporal_orig +
user_sex+ user_age

Model Statistics

Dep. Variable: rated_as_adversarial No. Observations: 4881
Model: GLM Df Residuals: 4859
Model Family: Binomial Df Model: 21
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3112.1
Date: Fri, 15 Apr 2022 Deviance: 6224.1
Time: 11:19:54 Pearson chi2: 4.90e+03
No. Iterations: 4 Pseudo R-squ. (CS): 0.1043
Covariance Type: nonrobust

coef std err z P> |z| [0.025 0.975]

Intercept 121.1009 10.965 11.044 0.000 99.609 142.592
blurry 0.1784 0.240 0.743 0.457 -0.292 0.649
f−→f 0.5202 0.204 2.552 0.011 0.121 0.920
f−→m 0.1383 0.203 0.681 0.496 -0.260 0.537
high quality -0.0432 0.218 -0.198 0.843 -0.471 0.385
include source 0.0008 0.099 0.008 0.994 -0.194 0.196
max 0.3550 0.124 2.866 0.004 0.112 0.598
max group 0.4535 0.162 2.794 0.005 0.135 0.772
m−→f 0.2423 0.218 1.109 0.267 -0.186 0.671
min 0.2043 0.142 1.435 0.151 -0.075 0.483
min group 0.1728 0.138 1.249 0.212 -0.098 0.444
min group include 0.1411 0.212 0.665 0.506 -0.275 0.557
m−→m -0.2637 0.222 -1.187 0.235 -0.699 0.172
sharp -0.4780 0.166 -2.886 0.004 -0.803 -0.153
FAR0.00001 -0.0527 0.136 -0.386 0.699 -0.320 0.215
FAR0.0001 0.2689 0.113 2.381 0.017 0.048 0.490
msssim -121.7583 11.001 -11.067 0.000 -143.321 -100.196
targets 0.0012 0.013 0.095 0.924 -0.024 0.027
temporal_adv 0.0037 0.002 1.933 0.053 -5.1e-05 0.007
temporal_orig -0.0064 0.002 -3.343 0.001 -0.010 -0.003
user_sex 0.0519 0.065 0.799 0.424 -0.075 0.179
user_age 0.0019 0.004 0.518 0.604 -0.005 0.009

Table A.7: STATISTICS MSSSIM + OTHER MODEL. Generalized Linear Model Regression Results

84 Appendix A. Attachments

A.4.6 SSIM + MSSSIM + Other Variables Model

Model R-Style Formula

rated_as_adversarial ∼ ssim+msssim+targets+type+fmr+temporal_adv+temporal_orig+
user_sex+ user_age

Model Statistics

Dep. Variable: rated_as_adversarial No. Observations: 4881
Model: GLM Df Residuals: 4858
Model Family: Binomial Df Model: 22
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -3112.0
Date: Fri, 15 Apr 2022 Deviance: 6224.0
Time: 11:19:54 Pearson chi2: 4.90e+03
No. Iterations: 4 Pseudo R-squ. (CS): 0.1044
Covariance Type: nonrobust

coef std err z P> |z| [0.025 0.975]

Intercept 115.9634 21.267 5.453 0.000 74.280 157.647
blurry 0.1855 0.241 0.769 0.442 -0.287 0.658
f−→f 0.5167 0.204 2.530 0.011 0.116 0.917
f−→m 0.1380 0.203 0.679 0.497 -0.260 0.536
high quality -0.0437 0.218 -0.200 0.841 -0.472 0.384
include source 0.0023 0.100 0.023 0.982 -0.193 0.197
max 0.3502 0.125 2.800 0.005 0.105 0.595
max group 0.4443 0.166 2.682 0.007 0.120 0.769
m−→f 0.2418 0.218 1.107 0.268 -0.186 0.670
min 0.2052 0.142 1.441 0.150 -0.074 0.484
min group 0.1710 0.138 1.235 0.217 -0.100 0.442
min group include 0.1365 0.213 0.641 0.521 -0.281 0.554
m−→m -0.2665 0.222 -1.199 0.231 -0.702 0.169
sharp -0.4760 0.166 -2.873 0.004 -0.801 -0.151
FAR0.00001 -0.0522 0.136 -0.383 0.702 -0.320 0.215
FAR0.0001 0.2673 0.113 2.363 0.018 0.046 0.489
ssim -4.5278 16.080 -0.282 0.778 -36.044 26.988
msssim -112.0966 36.012 -3.113 0.002 -182.679 -41.514
targets 0.0015 0.013 0.112 0.911 -0.024 0.027
temporal_adv 0.0036 0.002 1.861 0.063 -0.000 0.007
temporal_orig -0.0063 0.002 -3.260 0.001 -0.010 -0.003
user_sex 0.0515 0.065 0.792 0.428 -0.076 0.179
user_age 0.0019 0.004 0.522 0.601 -0.005 0.009

Table A.8: STATISTICS SSIM + MSSSIM + OTHER MODEL. Generalized Linear Model Regression
Results

A.4 Logit Regression Models 85

A.4.7 SSIM + Other Variables Model, Full Dataset

Model R-Style Formula

rated_as_adversarial ∼ ssim+targets+type+fmr+temporal_adv+temporal_orig+user_sex+
user_age

Model Statistics

Dep. Variable: rated_as_adversarial No. Observations: 7510
Model: GLM Df Residuals: 7488
Model Family: Binomial Df Model: 21
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -4761.0
Date: Fri, 15 Apr 2022 Deviance: 9522.0
Time: 11:20:02 Pearson chi2: 7.53e+03
No. Iterations: 4 Pseudo R-squ. (CS): 0.1106
Covariance Type: nonrobust

coef std err z P> |z| [0.025 0.975]

Intercept 59.4590 3.966 14.993 0.000 51.686 67.232
blurry 0.3557 0.191 1.860 0.063 -0.019 0.731
f−→f 0.4448 0.168 2.652 0.008 0.116 0.774
f−→m 0.3069 0.168 1.826 0.068 -0.022 0.636
high quality 0.1500 0.177 0.849 0.396 -0.196 0.496
include source -0.0588 0.081 -0.723 0.470 -0.218 0.101
max 0.2147 0.100 2.142 0.032 0.018 0.411
max group 0.2328 0.131 1.776 0.076 -0.024 0.490
m−→f 0.2316 0.177 1.307 0.191 -0.116 0.579
min 0.1243 0.115 1.078 0.281 -0.102 0.350
min group 0.1533 0.110 1.388 0.165 -0.063 0.370
min group include 0.2059 0.169 1.221 0.222 -0.125 0.536
m−→m -0.0448 0.175 -0.256 0.798 -0.388 0.298
sharp -0.2849 0.134 -2.129 0.033 -0.547 -0.023
FAR0.00001 -0.0972 0.111 -0.880 0.379 -0.314 0.119
FAR0.0001 0.2067 0.093 2.224 0.026 0.025 0.389
ssim -60.2153 3.997 -15.066 0.000 -68.049 -52.382
targets -0.0029 0.010 -0.281 0.779 -0.023 0.018
temporal_adv 0.0038 0.002 2.411 0.016 0.001 0.007
temporal_orig -0.0031 0.002 -1.960 0.050 -0.006 -1.73e-07
user_sex 0.0540 0.052 1.031 0.302 -0.049 0.157
user_age 0.0021 0.003 0.674 0.500 -0.004 0.008

Table A.9: STATISTICS SSIM + OTHER MODEL, FULL DATASET (FINAL MODEL). Generalized
Linear Model Regression Results

86 Appendix A. Attachments

A.4.8 Reduced FMR Model, Reduced Dataset
Model R-Style Formula

rated_as_adversarial ∼ ssim+ fmr

Model Statistics

Dep. Variable: rated_as_adversarial No. Observations: 459
Model: GLM Df Residuals: 455
Model Family: Binomial Df Model: 3
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -275.31
Date: Fri, 15 Apr 2022 Deviance: 550.61
Time: 11:20:12 Pearson chi2: 464.
No. Iterations: 4 Pseudo R-squ. (CS): 0.1490
Covariance Type: nonrobust

coef std err z P> |z| [0.025 0.975]

Intercept 108.7397 13.538 8.032 0.000 82.206 135.274
FAR0.00001 0.1121 0.246 0.455 0.649 -0.370 0.595
FAR0.0001 0.0850 0.261 0.325 0.745 -0.427 0.597
ssim -109.8947 13.642 -8.055 0.000 -136.633 -83.156

Table A.10: STATISTICS REDUCED FMR MODEL. Generalized Linear Model Regression Results

A.4 Logit Regression Models 87

88 Appendix A. Attachments

A.5 Re-Run LOTS with SSIM Only

Run 1 Run 2 SSIM
FMR Targets Experiment Type ∅SSIM ∅Iter. SR ∅SSIM ∅Iter. SR Diff.
0.001 4 Targets Random 0.9792 1723.8 88% 0.9826 2222.5 83% 0.0034

Include Source 0.9791 3577.6 43% 0.9826 3857.8 35% 0.0035
Min 0.9900 197.5 99% 0.9915 244.14 99% 0.0015
Max 0.9758 89.75 100% 0.9793 179.66 100% 0.0035
Min Group 0.9935 11.14 100% 0.9942 15.67 100% 0.0007
Max Group 0.9695 4978.3 1% 0.9742 4999 0% 0.0047
Blurry 0.9819 1247.5 93% 0.9855 1239.6 93% 0.0036
Sharp 0.9800 2479.4 73% 0.9835 2757.5 68% 0.0035
High Quality 0.9788 2205 76% 0.9823 2575.7 71% 0.0035
m −→ m 0.9820 991.62 94% 0.9849 1211.3 90% 0.0029
m −→ f 0.9785 529.89 97% 0.9819 751.52 98% 0.0034
f −→ f 0.9854 409.92 99% 0.9877 506.98 99% 0.0023
f −→ m 0.9786 1089.5 95% 0.9821 1324.6 92% 0.0035

3 Targets Random 0.9827 395.59 99% 0.9853 503.54 98% 0.0026
Include Source 0.9824 1837.7 80% 0.9853 2034 79% 0.0029
Max Group 0.9711 3842.2 40% 0.9761 4198.3 29% 0.0050
Sharp 0.9834 548.17 99% 0.9859 817.77 97% 0.0025

2 Targets Random 0.9867 27.23 100% 0.9883 38.21 100% 0.0016
Include Source 0.9886 241.01 100% 0.9904 390.21 99% 0.0018
Max Group 0.9757 264.88 100% 0.9794 387.56 98% 0.0037

1 Target Random 0.9940 7.83 100% 0.9946 11.03 100% 0.0006
Include Source 0.9941 12.24 100% 0.9949 17.16 100% 0.0008

5 Targets Random 0.9766 3319.7 51% 0.9806 3535.9 47% 0.0040
Min 0.9881 715.3 95% 0.9899 910.29 93% 0.0018
Max 0.9763 196.96 99% 0.9797 297.8 99% 0.0034
Min Group 0.9921 18.17 100% 0.9931 23.78 100% 0.0010

6 Targets Random 0.9757 4230.1 26% 0.9798 4363.3 22% 0.0041
Min 0.9868 1357.8 86% 0.9889 1744.7 82% 0.0021
Max 0.9774 594.24 95% 0.9810 809.8 91% 0.0036
Min Group 0.9917 47.87 100% 0.9927 56.87 100% 0.0010

7 Targets Min Group 0.9902 58.5 100% 0.9915 68.37 100% 0.0013
Max 0.9781 932.9 89% 0.9816 1235.6 87% 0.0035

10 Targets Min Group 0.9880 250.04 100% 0.9900 354.47 100% 0.0020
Min Group +
Include

0.9884 307.05 100% 0.9903 412.9 100% 0.0019

15 Targets Min Group 0.9844 986.95 94% 0.9870 1215.8 94% 0.0026
Min Group +
Include

0.9848 1124.2 92% 0.9873 1357 91% 0.0025

20 Targets Min Group 0.9828 2188.3 80% 0.9858 2436.6 74% 0.0030
Min Group +
Include

0.9830 2373.7 77% 0.9860 2547.4 74% 0.0030

0.0001 4 Targets Random 0.9782 4885.5 5% 0.9820 4846.1 5% 0.0038
3 Targets Random 0.9808 2771.4 59% 0.9840 2924.5 56% 0.0032
2 Targets Random 0.9845 189.89 99% 0.9868 264.19 98% 0.0023

Include Source 0.9855 2653 62% 0.9878 2906.6 62% 0.0023
1 Target Random 0.9918 9.83 100% 0.9926 13.97 100% 0.0008

Include Source 0.9924 100.45 99% 0.9935 131.59 99% 0.0011
0.00001 2 Targets Random 0.9845 2677.8 57% 0.9870 2739.8 57% 0.0025

Include Source 0.9847 4940.8 2% 0.9873 4927.7 2% 0.0026
1 Target Random 0.9891 13.44 100% 0.9902 18.68 100% 0.0011

Include Source 0.9904 2149.9 64% 0.9920 2283.9 62% 0.0016
AVERAGE 0.9837 1370.9 81.40% 0.9863 1514.82 79.65% 0.0026

Table A.11: COMPARISON ORIGINAL EXPERIMENTS VERSUS SSIM ONLY RE-RUN. Comparison of
the average SSIM scores, iterations and success rates of two different runs. Run 1: Original experiment with
the hyperparameters: widthstep = 3, wcos = 1.0, wssim = 0.9, wmsssim = 1.0, Run 2: Experiment with SSIM
score only and the following hyperparameters: widthstep = 2, wcos = 1.0, wssim = 1.5, wmsssim = 0.0.

A.5 Re-Run LOTS with SSIM Only 89

List of Figures
2.1 Classification Boundaries of Loss Functions . 5
2.2 Verification Performance Benchmarks . 6

3.1 VGGFace2 Distributions . 13
3.2 VGGFace2 Samples . 14
3.3 Extracting Facial Feature Descriptors . 15
3.4 LOTS Technique . 16

4.1 Cropped Image Samples . 21
4.2 Preprocessing Pipeline . 21
4.3 Threshold Calculation . 23
4.4 Receiver Operating Characteristic . 24
4.5 Influence of Loss Function on Adversarial Image . 26
4.6 Influence of SSIM and MSSSIM on Adversarial Image 28

5.1 Visualization Cosine-Distance-Based Sampling . 39
5.2 Influence of Number of Targets on Adversarial Image 43

6.1 Questionnaire Screenshot: Question . 47
6.2 Questionnaire Screenshot: Result . 47
6.3 Influence of Sampling Probability . 49
6.4 Age Distribution Participants . 50
6.5 Classification of Adversarial Samples . 51
6.6 Logistic Regression Curves . 56
6.7 Influence of SSIM Score . 57
6.8 Influence of Learning Effect and Demographics . 59
6.9 Influence of Experiment Type . 59
6.10 Sharp versus Blurry Images . 60
6.11 Influence of Attack Difficulty . 61

7.1 Extended LOTS versus Extended LOTS Re-Run . 64
7.2 Extended LOTS versus Extended LOTS Empirical Finetuning 64
7.3 Extended LOTS Empirical Finetuning . 65

A.1 Questionnaire Screenshot: Landing Page . 73
A.2 Part 1: Best and Worst Experiment Type Results . 74
A.3 Part 2: Best and Worst Experiment Type Results . 75
A.4 Part 3: Best and Worst Experiment Type Results . 76
A.5 Part 4: Best and Worst Experiment Type Results . 77
A.6 Part 5: Best and Worst Experiment Type Results . 78

90 Appendix A. Attachments

List of Tables
4.1 Cosine Distance Threshold at False Match Rate . 23

5.1 Hyperparameter Selection . 34
5.2 Result Hyperparameter Search . 35
5.3 Experiment Types . 36
5.4 Part 1: Experiment Results . 41
5.5 Part 2: Experiment Results . 44

6.1 Contrast Coding System versus 1-Hot Approach . 53
6.2 Independent Variables . 54
6.3 Model Evaluation . 54

A.1 MAAD-Attributes . 71
A.2 Meaning of Model Statistics . 79
A.3 Statistics SSIM Model . 80
A.4 Statistics MSSSIM Model . 80
A.5 Statistics SSIM + MSSSIM Model . 81
A.6 Statistics SSIM + Other Model . 82
A.7 Statistics MSSSIM + Other Model . 83
A.8 Statistics SSIM + MSSSIM + Other Model . 84
A.9 Statistics SSIM + Other Model, Full Dataset (Final Model) 85
A.10 Statistics Reduced FMR Model . 86
A.11 Comparison Original Experiments versus SSIM only Re-Run 88

Bibliography

Akhtar, N. and Mian, A. (2018). Threat of adversarial attacks on deep learning in computer vision:
A survey. Ieee Access, 6:14410–14430.

Andersson, P., Nilsson, J., Akenine-Möller, T., Oskarsson, M., Åström, K., and Fairchild, M. D.
(2020). FLIP: A difference evaluator for alternating images. Proc. ACM Comput. Graph. Interact.
Tech., 3(2):15–1.

Ballantyne, M., Boyer, R. S., and Hines, L. (1996). Woody Bledsoe: His life and legacy. AI magazine,
17(1):7–7.

Bledsoe, W. (1964). The Model Method in Facial Recognition, Technical Report PRI 15, Panoramic
Research, Inc., Palo Alto. California.

Bledsoe, W. (1966). Man-Machine facial recognition: Report on a Large-Scale experiment. Techni-
cal Report PRI-22.

Bontrager, P., Roy, A., Togelius, J., Memon, N., and Ross, A. (2018). DeepMasterPrints: Generating
masterprints for dictionary attacks via latent variable evolution. In 2018 IEEE 9th International
Conference on Biometrics Theory, Applications and Systems (BTAS), pages 1–9.

Boutros, F., Damer, N., Kirchbuchner, F., and Kuijper, A. (2021). ElasticFace: Elastic margin loss
for deep face recognition. arXiv preprint arXiv:2109.09416.

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A. (2018). VGGFace2: A dataset for
recognising faces across pose and age. In 2018 13th IEEE International Conference on Automatic
Face Gesture Recognition (FG 2018), pages 67–74.

Cao, Z., Yin, Q., Tang, X., and Sun, J. (2010). Face recognition with learning-based descriptor. In
2010 IEEE Computer society conference on computer vision and pattern recognition, pages 2707–2714.
IEEE.

Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pages 39–57.

Dabouei, A., Soleymani, S., Dawson, J., and Nasrabadi, N. (2019). Fast geometrically-perturbed
adversarial faces. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 1979–1988. IEEE.

Das, S. and Suganthan, P. N. (2010). Differential evolution: A survey of the state-of-the-art. IEEE
transactions on evolutionary computation, 15(1):4–31.

92 BIBLIOGRAPHY

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). ArcFace: Additive angular margin loss for
deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4690–4699.

Goldstein, A. J., Harmon, L. D., and Lesk, A. B. (1971). Identification of human faces. Proceedings
of the IEEE, 59(5):748–760.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial exam-
ples. In Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Goswami, G., Ratha, N., Agarwal, A., Singh, R., and Vatsa, M. (2018). Unravelling robustness
of deep learning based face recognition against adversarial attacks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Guo, Y., Zhang, L., Hu, Y., He, X., and Gao, J. (2016). MS-Celeb-1M: A dataset and benchmark for
large-scale face recognition.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7132–7141.

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller, E. (2008). Labeled faces in the wild: A
database forstudying face recognition in unconstrained environments. In Workshop on faces
in’Real-Life’Images: detection, alignment, and recognition.

Kemelmacher-Shlizerman, I., Seitz, S. M., Miller, D., and Brossard, E. (2016). The MegaFace bench-
mark: 1 million faces for recognition at scale. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4873–4882.

Kurakin, A., Goodfellow, I. J., and Bengio, S. (2018). Adversarial examples in the physical world.
In Artificial intelligence safety and security, pages 99–112. Chapman and Hall/CRC.

Kwon, H., Kwon, O., Yoon, H., and Park, K.-W. (2019). Face friend-safe adversarial example
on face recognition system. In 2019 Eleventh International Conference on Ubiquitous and Future
Networks (ICUFN), pages 547–551. IEEE.

Li, H. and Zhu, X. (2016). Face recognition technology research and implementation based on
mobile phone system. In 2016 12th International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery (ICNC-FSKD), pages 972–976.

Liu, C. and Wechsler, H. (2002). Gabor feature based classification using the enhanced Fisher
linear discriminant model for face recognition. IEEE Transactions on Image processing, 11(4):467–
476.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L. (2017a). SphereFace: Deep hypersphere
embedding for face recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 212–220.

Liu, Y., Chen, X., Liu, C., and Song, D. (2017b). Delving into transferable adversarial examples and
black-box attacks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

BIBLIOGRAPHY 93

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes in the wild. In
Proceedings of the IEEE international conference on computer vision, pages 3730–3738.

McFadden, D. (1977). Quantitative methods for analyzing travel behaviour of individuals: Some
recent developments. Cowles Foundation Discussion Papers, 474.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and Frossard, P. (2017). Universal adversarial
perturbations. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1765–1773.

Nguyen, H. H., Yamagishi, J., Echizen, I., and Marcel, S. (2020). Generating master faces for use in
performing wolf attacks on face recognition systems. In 2020 IEEE International Joint Conference
on Biometrics (IJCB), pages 1–10. IEEE.

Nilsson, J. and Akenine-Möller, T. (2020). Understanding SSIM. arXiv preprint arXiv:2006.13846.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., and Swami, A. (2016). The limita-
tions of deep learning in adversarial settings. In 2016 IEEE European symposium on security and
privacy (EuroS&P), pages 372–387. IEEE.

Papernot, N., McDaniel, P. D., Wu, X., Jha, S., and Swami, A. (2015). Distillation as a defense to
adversarial perturbations against deep neural networks. CoRR, abs/1511.04508.

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition.

Pech-Pacheco, J. L., Cristóbal, G., Chamorro-Martinez, J., and Fernández-Valdivia, J. (2000). Di-
atom autofocusing in brightfield microscopy: a comparative study. In Proceedings 15th Interna-
tional Conference on Pattern Recognition. ICPR-2000, volume 3, pages 314–317. IEEE.

Rakitianskaia, A. and Engelbrecht, A. (2015). Measuring saturation in neural networks. In 2015
IEEE Symposium Series on Computational Intelligence, pages 1423–1430.

Rozsa, A., Günther, M., and Boult, T. E. (2017). LOTS about attacking deep features. In 2017 IEEE
International Joint Conference on Biometrics (IJCB), pages 168–176. IEEE.

Rozsa, A., Rudd, E. M., and Boult, T. E. (2016). Adversarial diversity and hard positive generation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages
25–32.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). FaceNet: A unified embedding for face recog-
nition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 815–823.

Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K. (2016). Accessorize to a crime: Real
and stealthy attacks on state-of-the-art face recognition. In Proceedings of the 2016 acm sigsac
conference on computer and communications security, pages 1528–1540.

Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K. (2019). A general framework for adversar-
ial examples with objectives. ACM Transactions on Privacy and Security (TOPS), 22(3):1–30.

Shen, M., Liao, Z., Zhu, L., Xu, K., and Du, X. (2019). VLA: A practical visible light-based attack
on face recognition systems in physical world. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 3(3):1–19.

Sirovich, L. and Kirby, M. (1987). Low-dimensional procedure for the characterization of human
faces. Josa a, 4(3):519–524.

94 BIBLIOGRAPHY

Su, J., Vargas, D. V., and Sakurai, K. (2019). One pixel attack for fooling deep neural networks.
IEEE Transactions on Evolutionary Computation, 23(5):828–841.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R.
(2014). Intriguing properties of neural networks. In Bengio, Y. and LeCun, Y., editors, 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16,
2014, Conference Track Proceedings.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). DeepFace: Closing the gap to human-
level performance in face verification. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1701–1708.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2015). Web-scale training for face identification.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2746–2754.

Tao, G., Ma, S., Liu, Y., and Zhang, X. (2018). Attacks meet interpretability: Attribute-steered
detection of adversarial samples. Advances in Neural Information Processing Systems, 31.

Terhörst, P., Fährmann, D., Kolf, J. N., Damer, N., Kirchbuchner, F., and Kuijper, A. (2021). MAAD-
Face: A massively annotated attribute dataset for face images. IEEE Transactions on Information
Forensics and Security, 16:3942–3957.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., and McDaniel, P. (2017). Ensem-
ble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204.

Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. Journal of cognitive neuroscience,
3(1):71–86.

Vakhshiteh, F., Nickabadi, A., and Ramachandra, R. (2021). Adversarial attacks against face recog-
nition: A comprehensive study. IEEE Access, 9:92735–92756.

Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., and Liu, W. (2018). CosFace: Large
margin cosine loss for deep face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 5265–5274.

Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612.

Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). Multiscale structural similarity for image
quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers,
2003, volume 2, pages 1398–1402. Ieee.

Wiskott, L., Krüger, N., Kuiger, N., and Von Der Malsburg, C. (1997). Face recognition by elastic
bunch graph matching. IEEE Transactions on pattern analysis and machine intelligence, 19(7):775–
779.

Wolf, L., Hassner, T., and Maoz, I. (2011). Face recognition in unconstrained videos with matched
background similarity. In CVPR 2011, pages 529–534. IEEE.

Yan, M., Zhao, M., Xu, Z., Zhang, Q., Wang, G., and Su, Z. (2019). VarGFaceNet: An efficient
variable group convolutional neural network for lightweight face recognition. In Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops, pages 0–0.

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using multi-
task cascaded convolutional networks. IEEE signal processing letters, 23(10):1499–1503.

BIBLIOGRAPHY 95

Zhang, L., Bo, C., Hou, J., Li, X.-Y., Wang, Y., Liu, K., and Liu, Y. (2015). Kaleido: You can watch it
but cannot record it. In Proceedings of the 21st Annual International Conference on Mobile Computing
and Networking, pages 372–385.

Zhang, Q., Li, J., Yao, M., Song, L., Zhou, H., Li, Z., Meng, W., Zhang, X., and Wang, G. (2019).
VarGNet: Variable group convolutional neural network for efficient embedded computing.
arXiv preprint arXiv:1907.05653.

Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. (2003). Face recognition: A literature
survey. ACM computing surveys (CSUR), 35(4):399–458.

Zhong, Y. and Deng, W. (2020). Towards transferable adversarial attack against deep face recog-
nition. IEEE Transactions on Information Forensics and Security, 16:1452–1466.

Zhu, Z.-A., Lu, Y.-Z., and Chiang, C.-K. (2019). Generating adversarial examples by makeup
attacks on face recognition. In 2019 IEEE International Conference on Image Processing (ICIP).

