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Abstract

The aim of this study is to devise deep learning (DL) approaches trained on paired and unpaired
data that are able to generate realistic synthetic computed tomography (CT) images for magnetic
resonance-guided radiotherapy (MRgRT) in the area of the abdomen and to assess its clinical ap-
plicability. The imaging data of 76 patients with a tumour in the abdomen who were treated with
MRgRT at USZ was collected retrospectively and divided in training (59) and test sets (17). To
improve the current state-of-the-art of DL technologies by studying different architectures and
ensembles of configurations, the following experiments were conducted: (a) evaluating the influ-
ence of the different GAN architectures trained on paired (Pix2pix) and unpaired data (CycleGAN
and CUT, which firstly applied for the purpose of sCT generation); (b) investigating the footprint
of different preprocessing methods (Nyul, novel N-peaks); (c) improving spatial consistency of
results by adjusting the network configuration (2D, pseudo3D); (d) testing different GAN training
objectives (LSGAN, WGAN-GP); (e) estimating the influence of the loss function on the generated
results (per-pixel L1 loss, VGG19 perceptual loss). The quality of sCT generation was assessed us-
ing both, image similarity and dosimetric accuracy metrics. The dosimetric accuracy of the best
performing models was estimated by comparing the dose distribution of MRgRT treatment plans
calculated from synthetic CT and original CT images using dose-volume histogram (DVH) pa-
rameters to allow assessment of the clinical applicability of the DL methods. Our results suggest
that DL models trained with unpaired data achieve similar performance as models requiring per-
fectly aligned image pairs, and even perform better in the bone and air pocket areas. The mean
absolute errors (mean ± SD) calculated within the body contour are 71.0±20, 73.4±21 and 84.5 ±19
HU when using the best performing configuration of pix2pix, CycleGAN and CUT, respectively.
The proposed DL-based synthetic CT generation methods may be considered clinically applicable
for treatment planning in the abdominal area with the mean DVH indicator discrepancies with
the original plan of less than 1% for all models, and less than 0.5% for all tumour DVH indicators
for the best performing model, CycleGAN. The study confirmed that generation of synthetic CT
using a DL approach from low field magnetic resonance images in the abdomen is feasible and
allows a reliable calculation of irradiation plans in MRgRT.





Zusammenfassung

Das Hauptziel dieser Studie ist die Entwicklung von Deep Learning (DL) Ansätzen, die auf
gepaarten und ungepaarten Daten trainiert werden und in der Lage sind, realistische synthetische
Computertomographie (CT)-Bilder für die magnetresonanzgeführte Strahlentherapie (MRgRT)
im Abdomen zu generieren und ihre klinische Anwendbarkeit zu evaluieren. Die Bildgebungs-
daten von 76 Patienten mit einem Tumor im Abdomen, die am USZ mit MRgRT behandelt wur-
den, wurden retrospektiv gesammelt und in eine Trainings- (59) und Testgruppe (17) unterteilt.
Um den aktuellen Stand der DL-Techniken durch die Untersuchung verschiedener Architekturen
und Ensembles von Konfigurationen zu verbessern, wurden die folgenden Experimente durchge-
führt: (a) Bewertung des Einflusses der verschiedenen GAN-Architekturen, die auf gepaarten
(Pix2pix) und ungepaarten Daten trainiert wurden (CycleGAN und CUT, die erstmals für diesen
Zweck der sCT-Generierung eingesetzt wurden); (b) Untersuchung des Einflusses verschiedener
Vorverarbeitungsmethoden (Nyul, neue Methode N-Peaks); (c) Verbesserung der räumlichen
Konsistenz der Ergebnisse durch Anpassung der Netzwerkkonfiguration (2D, pseudo3D); (d)
Test der verschiedenen GAN-Trainingsziele (LSGAN, WGAN-GP); (e) Abschätzung des Einflusses
der Verlustfunktion auf die generierten Ergebnisse (L1-Fehler pro Pixel, VGG19-Wahrnehmungsfehler).
Die Qualität der sCT-Generierung wurde sowohl anhand der Bildähnlichkeit als auch der dosimetrischen
Genauigkeit bewertet. Die dosimetrische Genauigkeit der leistungsstärksten Modelle wurde durch
den Vergleich der Dosisverteilung von MRgRT -Behandlungsplänen geschätzt, die anhand von
synthetischen CT- und Original-CT-Bildern unter Verwendung von Dosis-Volumen-Histogramm-
Parametern (DVH) berechnet wurden, um die klinische Anwendbarkeit der DL-Methoden zu
bewerten. Unsere Ergebnisse deuten darauf hin, dass DL-Modelle, die auf ungepaarte Weise
trainiert wurden, eine ähnliche Leistung erzielen wie Modelle, die perfekt übereinstimmende
Bildpaare erfordern, und in den Knochen- und Luftblasenregionen sogar besser abschneiden. Die
Mittleren Absoluten Fehler (Mittelwert ± Standardabweichung), die innerhalb der Körperkontur
mit der leistungsstärksten Konfiguration von pix2pix, CycleGAN und CUT berechnet wurde, be-
trug jeweils 71.0±20, 73.4±20 und 84.5 ±19 HU. Die vorgeschlagenen DL-basierten Generierungsmeth-
oden synthetischer CT können als klinisch ausreichend für die Behandlungsplanung bei Tumoren
im Abdomen angesehen werden, da die mittleren Abweichungen der DVH-Indikatoren vom ur-
sprünglichen Plan für alle Modelle weniger als 1% betragen. Für das leistungsstärkste Mod-
ell, CycleGAN, betragen alle Tumor-DVH-Indikatoren sogar weniger als 0.5%. Diese Studie hat
bestätigt, dass die Generierung synthetischer CT mit Hilfe eines DL-Ansatzes für Magnetreso-
nanzbilder (MR) des Abdomens mit schwachem Magnetfeld machbar ist und eine zuverlässige
Berechnung von Bestrahlungsplänen in der MRgRT ermöglicht.
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Chapter 1

Introduction

1.1 Motivation
A leading cause of death worldwide is cancer, accounting for about 10 million deaths in 2020,
or nearly one in six deaths, according to the World Health Organisation, WHO (2022). Cancer
treatment modalities is a combination of radiotherapy, surgery, chemotherapy, immunotherapy
and hormone therapy. Radiotherapy remains an integral part of cancer treatment: about 50% of
all cancer patients receive radiotherapy during the course of their disease; it contributes to 40% of
curative treatment of cancer (Baskar et al., 2012). Radiation therapy aims to deliver a dose of ra-
diation that destroys the target tumour cells and spares healthy tissue from radiation. To achieve
this, magnetic resonance-guided radiation therapy (MRgRT) was intriduced, which is one of the
latest technical achievements in the field of radiation oncology. In MRgRT, treatment and imag-
ing are performed simultaneously with a hybrid device composed of a linear accelerator (LINAC)
coupled to a magnetic resonance scanner. Compared to standard methods, in MRgRT exposure to
radiation only occurs when the detected tumour is in the correct position in the cine magnetic res-
onance (MR) image, and the treatment beam switches off automatically when the tumour moves
outside a certain boundary, as shown in Figure 1.1. This keeps radiation to unwanted areas to a
minimum and allows the therapy to be applied.

In practice, MR images on the MR Linac are used to set up the patient and adapt the treatment
to the daily anatomy without ionising radiation. MR images are characterised by absense of
ionizing radiation and a high soft tissue contrast, which motivates their clinical application in
delineating tumours and their target volumes for irradiation, as well as organs at risk (OAR)
whose irradiation could cause damage. In principle, MR signal can be interpreted as a map of
density of water protons in the tissues of the body. However, the intensity on MR images is a
relative measurement, which could vary due to different imaging settings, devices and even the
presence of implants. This does not provide a direct estimate of tissue density, more in particular
electron density (ED), which is required to calculate the radiation dose.

This is why computed tomography (CT) plays a fundamental role in radiotherapy. The CT
scan is used to directly estimate the electron density map by precise calibration of Hounsfield
units (HU) and consequently applied for calculating the dose distribution. The drawbacks of CT
include radiation exposure to the patient, limited soft tissue contrast, additional burden on pa-
tients and cost for the healthcare system. Therefore, in today’s medical practice in MRgRT, CT
scans are only taken during the planning phase. During treatment sessions, the benefits of com-
plementary modalities are utilised: current standard practice includes the generation of synthetic
CT (sCT) at treatment visits for dose estimation, based on the deformable registration of the orig-
inal CT with the MR of the day. This may however introduce additional alignment uncertainties,
for example due to changes in anatomy over time, leading to errors of up to 3 mm and an increase
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Figure 1.1: Automated beam gating based on cine-magnetic resonance imaging in a sagittal plane
through the tumor. Cine MR images provide detailed information about both the anatomy and
the dynamic movement of the airways. Beam is on while the target cancer volume (green) is
within bounds (red; a) and automatically turned off when more then predefined fraction of the
target is outside the defined boundary (b). Source: Spindeldreier et al. (2021)

in the target volume. This would, in turn, affect the accuracy of the overall treatment and would
mean damage to healthy tissue (Spadea et al., 2021; Ulin et al., 2010; Nyholm et al., 2009).

To overcome these limitations, several approaches have been proposed. Among these are the
bulk density and multi-atlas approaches. The bulk density approach, which employs a rigid im-
age registration technique combined with a manual outer body correction scheme, has provided
fairly efficient and accurate results. However, it requires manual electron density assignment to
delineated tissues on MR images. Apart from that, it requires costly expert labour. That is why
multi-atlas approaches, which are based on the deformable registration of image sets (atlases)
previously delineated by trained experts, have been introduced recently. The aim of the atlas-
driven approach is to encode the relationship between the segmentation labels and the image
intensities observed in the atlases in order to assign segmentation labels to the voxels of an unla-
belled image (Pham et al., 2000). To obtain the sCT of a treatment visit, the spatial correspondence
between a patient’s unlabelled MR volume and an MR atlas is established, and the labels are fur-
ther propagated. The calculated deformation map is then applied to the CT scans of the atlas.
Due to the high computational complexity of deformable registrations, the multi-atlas approach
is time-consuming (Iglesias and Sabuncu, 2015; Demol et al., 2016; Andres et al., 2020).

Time and accuracy are key factors in cancer treatment that require further exploration and
development of the currently proposed methods, as adaptive MRgRT involves the patient wait-
ing in the treatment position until the plan adaptation is complete. One of the most promising
methods is a deep learning (DL) based generation of sCTs. Neural networks (NN) have demon-
strated their potential in various image-to-image translation tasks, including the generation of
sCT from MR images. Research in the last three years showed that Generative adversarial net-
works (GANs), which employ more than one loss in training, could outperform traditional con-
volutional neural networks (CNN) architectures, which compute a single loss function between
input and output images for optimisation. GANs have become the state-of-art technique for the
sCT generation task (Spadea et al., 2021). At present, the most commonly used architectures
are Image-to-Image Conditional Generative Adversarial Network (Pix2Pix), introduced by Isola
et al. (2017), and Cycle-consistent Generative Adversarial Network (CycleGAN), introduced by
Zhu et al. (2017). While the Pix2Pix model requires co-registered image pairs, CycleGAN only
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requires images from each modality rather than nearly perfectly aligned image pairs of the same
patient. Due to the scarcity of data, the importance of architectures that do not require the align-
ment of image pairs is increasing dramatically. One of the latest models developed by Park et al.
(2020) is Contrastive Learning for Unpaired Image-to-Image Translation (CUT). The model uses
a patch-based approach instead of manipulating the content of an entire image. Correspond-
ing patches in the input and output image should have high mutual information. The proposed
framework enables one-sided translation without image alignment. It was successfully applied
to the different image-to-image translation tasks, including style transfer, object transfiguration,
season transfer and photo enhancement (Han et al., 2021). To the best awareness, CUT has not
yet been used for the task of synthetic CT generation in the abdomen region, which motivates the
current work.

Most DL approaches for sCT generation are based on paired data, i.e. intrinsically registered
CT and MR scans acquired on the same day and at the same patient position. These conditions
are scarce in the currently available public datasets of medical images as well as in our partner
institution, the University Hospital Zurich (USZ). Fewer studies are available for the abdominal
field of view (FOV) because the study population is more difficult due to organ movement, the
presence of air pockets and co-registration issues.

1.2 Goals
The aim of this project is to devise deep learning approaches trained on paired and unpaired data
that are able to generate realistic sCT images from MR images. The proposed method intends to
improve current state-of-the-art DL techniques by studying different architectures and ensembles
thereof, as well as different combinations of preprocessing methods and losses best suited for the
proposed task. To assess the clinical applicability of the method, the accuracy of sCT-based dose
calculation will be evaluated.

The objectives of this project are formulated in the following research questions:
RQ1: Could NN architectures, trained in unpaired fashion, achieve similar performance as

architectures, requiring perfectly aligned image pairs in the abdominal area?
RQ2: Could biologically motivated normalisation methods improve the performance of NNs

for sCT generation by focusing on specific tissue intensity correction?
RQ3: Could a NN trained with the help of three adjacent 2D slices avoid 3D discontinuities

in the area of the abdomen, which is heavily affected by respiratory and peristaltic changes?
RQ4: Could different GAN objectives by improving the optimisation process result in a better

quality of generated sCTs?
RQ5: Would using a perceptual loss function in generator instead of a per-pixel loss function

help to overcome the known problems in abdomen sCT generation: fuzzy organ boundaries and
bone formation errors?

1.3 Structure
Chapter 2 provides the clinical background for MR-guided radiotherapy. Chapter 3 goes into
deeper detail of the current Deep Learning based techniques for image-to-image translation tasks,
including the sCT generation. In Chapter 4, we present the different experiments which aim to
improve the current state-of-the-art DL approaches for sCT generation. This includes the image
acquisition and preprocessing steps, the set of applied NN architectures, their modifications, and
various loss functions. Chapter 5 presents the achieved results, which were assessed by means
of both image similarity and task-specific (dosimetry accuracy) metrics. Chapter 6 provides the



4 Chapter 1. Introduction

discussion on the experiment results and threats to validity. Chapter 7 is a general conclusion to
the work.



Chapter 2

Background: Medical Imaging
In Radiotherapy

2.1 Magnetic Resonance Imaging
MR imaging is a medical imaging technique that uses a magnetic field and radio frequency (RF)
signals to produce images of anatomical structures. The only substance in tissue with a sufficient
concentration of magnetic nuclei to produce good images is hydrogen in water molecules. The
nucleus of a hydrogen atom consists of a single proton. Therefore, the MR image is an image of
water protons. When tissue containing hydrogen (small magnetic nuclei), i.e. protons, is placed
in a strong magnetic field, some protons orient themselves in the same direction as the magnetic
field. MR imaging requires a magnetic field that is both strong and uniform. The field strength
of the magnet is measured in teslas (T). The standard field is 1.5T, which can go up to 3T for the
brain imaging, positively affecting the quality of alignment. This alignment creates magnetisation
in the tissue, which in a following relation process generates the RF signal detectable by the MR
scanner’s receiver coils. These signals are used to create MR images of the body. A brief overview
of this imaging process is demonstrated in Figure 2.1. If a tissue does not have a sufficient con-
centration of hydrogen-containing molecules, it is not visible in the MR image. On MR images,
soft tissues with a higher hydrogen concentration, such as fat, muscles or tumours, are clearly
discernible, while bone structures are barely identifiable.

Figure 2.1: Simplistic overview of how protons are used for measuring a MRI signal. When an
RF current is pulsed through the patient, the protons are stimulated, and spin out of equilibrium,
straining against the pull of the magnetic field. When the radiofrequency field is then turned
off, the MRI sensors are able to detect the energy released as the protons realign with the mag-
netic field. The time it takes for the protons to realign with the magnetic field, as well as the
amount of energy released, changes depending on the environment and the chemical nature of
the molecules. Physicians are able to tell the difference between various types of tissues based on
these magnetic properties. Sources: Rosbergen (2021); NIBIB (2022)
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MR imaging produces images that are different from images produced by other imaging
modalities. An advantage of MRI is the ability to selectively image a variety of tissue by selecting
the appropriate RF sequence. If a certain pathological condition is not visible in one sequence, it
is possible to detect it with a different sequence. During the imaging procedure, an image record-
ing of the patient’s body is first divided into slices, and then slices are divided into a matrix of
voxels. Each voxel is an independent RF signal source. The voxel size can be adjusted, in turn
determining the detail of the image and also affecting the image noise. The five most important
image quality characteristics - contrast sensitivity, detail, noise, artefacts and spatial resolution -
can be largely controlled by the settings of the various protocol factors, as described by Sprawls
(2000). MR imaging is done without ionising radiation, so patients are not exposed to the harmful
effects of ionising radiation.

2.2 Computed Tomography Imaging
Computed tomography is a common imaging technique as it overcomes most of the limitations
of traditional radiography. In particular, CT allows the differentiation of tissues with very narrow
attenuation coefficients and the visualisation of 3D volumes with a high resolution.

Figure 2.2: Simplistic overview of CT imaging process. Source: Ahad (2015)

The principle of CT imaging process is as follows: multiple projections are taken with an X-ray
tube that can produce an X-ray beam and a group of detectors that rotate around the patient, the
arrangement and number of which can vary according to the generation of the device (see Fig-
ure 2.2). Those projections are further reconstructed into a 3D image. On these images the density
of different biological tissues is calculated using a linear attenuation coefficient µ expressed in
Hounsfield units (HU ):

µ(HU) = 1000
µ− µ(H2O)

µ(H2O)
(2.1)



2.3 Magnetic Resonance-Guided Radiotherapy 7

where µ represents the linear attenuation coefficient of the hit tissue, while µ(H2O) represents the
linear attenuation coefficient of the water. The principle for calculating the attenuation coefficients
is based on Lambert-Beer’s law, which relates the change in the number of photons after hitting a
material to a certain linear attenuation coefficient:

N = N0e
−µx (2.2)

where N0 represents the number of photons striking the material, while N represents the atten-
uation after they have passed through it. The attenuation coefficient is indicated by µ, and x
represents the space covered in the material.

On CT images, the Hounsfield scale is shown in greyscale. Denser tissue with greater X-ray
absorption has positive values and appears bright; less dense tissue with lower X-ray absorption
has negative values and appears dark (Chappell, 2019; Broder and Preston, 2011). An example of
the HU scale of a head CT image is shown in Figure 2.3.

Figure 2.3: Approximate HU values for tissues commonly found on head CT images. Source:
Kamalian et al. (2016)

On the whole, CT images are characterised by very accurate spatial information, information
on tissue density required for dosimetry calculations, and distinguishable bones that enable the
detection of bone tumour. The main disadvantages are the rather suboptimal imaging of soft
tissues and the ionising radiation of healthy tissues.

2.3 Magnetic Resonance-Guided Radiotherapy
Recently, hybrid devices have been developed that combine MRI scanners with a LINAC for
radiotherapy delivery, bringing to the clinics a novel technique: magnetic resonance-guided ra-
diotherapy. One of such hybrid devices, shown on fig:linac: The ViewRay (Mountain View, CA,
USA) MRIdian LINAC system combines a 0.35 T MRI scanner with compact LINAC. Technical
details of the system are described by Klüter (2019).

Daily MR imaging provides excellent soft tissue contrast for patient adjustment and also al-
lows for on-table customisation of treatment plans, which is fully integrated into the system’s
treatment workflow. Automatic beam control during treatment is facilitated by cine MR imaging
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Figure 2.4: (a) Schema of the system with the main hardware components: superconducting
double-donut magnet, circular irradiation gantry and patient couch; (b) schema of the irradia-
tion gantry with LINAC components and MLC. The fraction of alligned protons depends on the
strenght of the magnetic field, while 0.35 the mmore protons aligned the image quality improves.
If we have strong magnetic field, MR takes few minutes due to the low magnetic field. Source:
Klüter (2019)

and structure tracking. The new hybrid MR-LINAC system offers superior 3D anatomical imag-
ing for precise tumour delineation and the instantaneous detection of interfractional changes. At
the same time, it provides information through cine MRI, enabling continuous monitoring of tu-
mour volume and nearby critical structures throughout the treatment session. Compared to con-
ventional radiotherapy techniques, safety margins and thus irradiated volume can be reduced,
lowering the risk of toxicity.

As described earlier, CT images are still a requirement for the treatment planning process,
supported by an overlay of an MR image of a patient. The CT image is required to obtain a
map of electron density and to calculate the dose distribution in the patient, while the MR image
provides better soft tissue contrast that allows precise delineation of tumour and organ contours
for treatment planning. During treatment planning, both CT and MR images are taken during
the treatment planning visit (Day 0) and co-registered further. The time interval between the two
scans is kept as limited as possible (<30 min). The same setup and fixation is used for the patient
for both image modalities.

To calculate the radiation dose, the current clinical workflow utilises the CT acquired at Day
0 and produce synthetic deformable CT (dCT) images of the day, based on its co-registration to
the most recent MR image, acquired at each treatment visits. Electron density values are assigned
to the voxels of the patient’s MR images by warping the electron densities of the dCT images.
However, the uncertainty of image registration increases with the variation of a patient’s anatomy
and especially with the presence of tumours. The error in deformable registration can be as high
as 3.7 mm, as shown in a study evaluating deformable registration methods by Nyholm et al.
(2009) A schematic overview of the current clinical practice of MRgRT at the USZ is shown in
Figure 2.5, where the MRIdian LINAC system is in clinical use since 2019.

2.4 Dose Volume Calculation and Evaluation of Dose
Distributions

Radiotherapy aims to destroy cancer cells that are dividing. Nevertheless, it also affects the di-
viding cells of healthy tissue and this damage to the healthy cells causes undesirable side effects.
Radiotherapy is about striking a balance between destroying cancer cells and minimising damage
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Figure 2.5: Schematic representation of the USZ cancer treatment routine

to healthy tissue, especially organs at risk that are close to the tumour and may be in the irradi-
ation path. An ideal dose distribution scenario exists when the prescribed amount of radiation
is delivered to the planning target volume (PTV), which consists of the tumour volume and the
margin accounting for organ movement (Antolak and Rosen, 1999), and no healthy tissue is dam-
aged. However, this is not achievable because healthy tissues lying along the irradiation path.
The aim of dose optimisation is therefore to get target dose to the PTV and try to deliver as little
dose as possible outside the tumour volume.

While planning, the physician defines the target region for the prescription dose and the maxi-
mum doses for other structures, by optimising different beam parameters and locating the isocen-
ter of a tumour. The gray (Gy) is used as a unit of the radiation quantity absorbed dose that mea-
sures the energy deposited by ionising radiation in a unit mass of matter being irradiated, and is
used for measuring the delivered dose of ionising radiation in radiotherapy:

1Gy = 1
J

kg
(2.3)

The dose absorbed by a volume depends on it is mass and the amount of energy delivered to
the volume. The energy, reaching the volume depends on the attenuation µ that the radiation
meets on its way there. The gold standard for dose calculation is the physics-based Monte Carlo
method, in which the movements of millions of radiation particles are simulated to produce an
estimate of the dose distribution based on the selected beam parameters (Wyckoff et al., 1976;
Library, 2011).

Concerning the task of sCT generation, this means that not only the density of a tumour on
generated images plays a role, but also the density of tissues on the beam trajectory as well as the
densities of OAR volumes. This fact illuminates the importance of assessing dosimetry accuracy
while considering the quality of sCT generation. In this regard, per-pixel error metrics could be
used to assess the quality of an image as a whole, but this takes into account the errors outside the
region of interest, which could be neglected in real-world environments. In addition, deviations
in bone tissue that lie outside the beam direction could lead to significant errors in accuracy per
pixel due to the high HU values of bone on CT images and their large gradient difference from soft
tissue. This fact is particularly important in the abdomen because the ribs contain low hydrogen
concentrations and are thus almost invisible on MR scans, adversely affecting the robustness of



10 Chapter 2. Background: Medical Imaging In Radiotherapy

the CT algorithm. Hence, only evaluation of dose distributions would provide the most accurate
assessment of the potential for integrating the methods into current clinical practice.

Evaluation of the dose distribution for MRgRT treatment plans is performed with the use of
2D isodose line plots over the region of interest on CT images, i.e. PTV and OAR. Several tools
have been developed, of which the dose-volume histogram (DVH) is generally considered among
the most beneficial (Drzymala et al., 1991). A DVH is a graph that shows the relationship between
the volume of an organ or PTV and the dose that the volume is receiving.

Figure 2.6: Schematics of (a) differential DVHs and (b) cumulative DVHs for the PTV and lungs
in a phase-2 mediastinum treatment plan. Source: Hussain and Muhammad (2017a)

There are two options for plotting the dose-volume histogram: differential and cumulative. A
differential DVH is a representation of the frequency of occurrence of different dose values. The
entire irradiated volume is divided into a finite number of small volume elements (voxels). All
voxels that receive a dose from a specific dose range are counted. This process is repeated for all
voxels in the volume of interest. A plot showing the number of voxels in each bin and the dose
range of the bin is a differential DVH. A cumulative DVH describes how much of the volume
receives a dose equal to or greater than the dose in question. Mathematically, a cumulative DVH
can be calculated by integrating the differential DVH. Hussain and Muhammad (2017b) provide
a neat illustration of the corresponding cumulative and differential DVHs (see Figure 2.6). Radi-
ation oncologists base their decisions for plan approval based on a cumulative DVH as well as a
stratified evaluation of 2D dose distributions.

There are a variety of parameters to quantitatively compare the dose distribution calculated
with real dCT and generated synthetic CT. Based on the statistical analysis, the spread or disper-
sion of a dose within a volume could be measured by the following parameters, which are used
in the study: D2, Dmean, D95 and D98 for PTV and OAR. D2 and D98 represents the dose to the
2% and 98% of the volume, respectively. In other words D98 indicates that 98% of the target vol-
ume receives this dose or higher. In this definition, D98 and D2 are considered as near-minimum
and near-maximum doses respectively. While Dmean is a mean dose, delivered to a volume. One
of the most essential metrics is D95. D95 for a PTV indicates that 95% of the tumour volume re-
ceives this dose. That means that D95 should be as close as possible to the prescribed irradiation
dose (Kim and Suh, 2007). Moreover, the dose constraints for the critical structures in abdominal
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plans are normally estimated for the set of OAR: stomach, duodenum, bowel, spinal cord (D2)
and liver (D98). The listed above dose distribution parameters provide coverage of the most per-
tinent components of the DVH-based dosimetric accuracy estimation and enable a matter-of-fact
comparison of the sCTs generated by different methods.





Chapter 3

Related work

3.1 Generative Adversarial Networks (GAN)
Medical image synthesis can be formulated as an image-to-image translation task, where a model
maps the input image (A) to a target image (B). Among all possible strategies, deep learning
methods have drastically improved the current MR-to-CT atlas-based registration employed in
clinical practice (Yi et al., 2019). Many of the recently applied DL architectures for image-to-image
translation tasks are based on the Generative Adversarial Network (GAN) concept proposed by
Goodfellow et al. (2014)

Figure 3.1: Generative Adversarial Network (GAN) concept. Source: Kim (2018)

GANs are generative models designed for direct sampling from the desired data distribution
without the need to explicitly model the underlying probability density function. They are com-
posed of two neural networks: the generator G and the discriminator D. The input of G, z, is a
random noise sampled from a prior distribution pz(z), which for simplicity is usually chosen to be
a Gaussian or uniform distribution. The output of G is expected to have a visual similarity to the
real sample x drawn from the real data distribution pdata(x),E is the expectation value. Figure 3.1
shows the interaction between the generator and the discriminator. The training procedure for G
is to maximise the probability that D makes an error. This framework corresponds to a minimax
two-player game:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

Generative adversarial networks circumvent the difficulty of approximating many hard-to-
perform probabilistic computations. In GANs, only backpropagation is used to obtain gradients,
no inference is required during learning, and a variety of factors and interactions can be easily
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incorporated into the model. The stochastic minibatch gradient descent training of generative
adversarial networks is described in Algorithm 1. Source: Goodfellow et al. (2014)

If the discriminator is trained to optimality before each generator parameter update, then min-
imising the value function amounts to minimising the Jensen-Shannon divergence between the
real data distribution pdata(x) and prior distribution pz(z). This, however, often leads to the van-
ishing gradient problem when the generator fails due to the fact that an optimal discriminator
does not provide enough information for the generator to advances.To solve the well-known van-
ishing gradient problem in GANs, a number of other learning objectives have been proposed,
the most commonly used of which are Least Squares GAN (LSGAN) and Wasserstein GAN (WS-
GAN) (Hunter, 2018). Where the original GAN uses a log loss, the LSGAN uses an L2 loss (which
equates to minimising the Pearson X2 divergence) while training the discriminator, which forces
generator to produce samples toward decision boundary. In the LSGAN, the loss for real samples
should be lower than the loss for fake samples. This allows the LSGAN to target fake samples that
have a really high margin. The authors of the LSGAN claims (Mao et al., 2017) that the LSGANs
are able to generate higher quality images than original GANs and solve the vanishing gradient
problem. Another learning objective (Wasserstein GAN) was introduced to solve the mode col-
lapse problem of original GANs. Mode collapse occurs when the discriminator gets stalled in a
local minimum and fails to find the optimal strategy, while each iteration of the generator is over-
optimised for a particular discriminator and the discriminator never manages to finagle its way
out of the local minimum. As a result, the generators rotate through a small set of output types.
The Wasserstein loss alleviates mode collapse by training the discriminator to optimality without
worrying about vanishing gradients (Arjovsky et al., 2017). It leverages the Wasserstein distance
to produce a value function which has better theoretical properties than the original GAN:

min
G

max
D∈Ds

L(D,G) = Ex∼pdata(x)[D(x)]− Ez∼pz(z)[log(1−D(G(z)))] (3.2)

whereDs is the set of 1-Lipschitz functions. In that case, under an optimal discriminator, minimis-
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ing the value function with respect to the generator parameters minimises Wasserstein distance
between the real data distribution pdata(x) and prior distribution pz(z) . WGAN requires that the
discriminator ( referred to as the critic in that paper) must lie in the space of 1-Lipschitz functions,
which the authors enforce via weight clipping, although this can lead to gradient extinction or
gradient explosion problems (Qin and Jiang, 2018). Another research called "Improved WGAN"
proposes instead of the weight clipping but rather add a penalisation term to the norm of the gra-
dient of the critic function(Gulrajani et al., 2017) to achieve Lipschitz continuity. To circumvent
tractability issues, we enforce a soft version of the constraint with a penalty on the gradient norm
for random samples x̂ ∼ px̂, where x̂ represents a soft version of the constraint with a penalty on
the gradient norm for random samples and px̂ is a uniform sampling distribution along straight
lines between pairs of points sampled from real data distribution pdata(x) and prior distribution
pz(z). The objection function of Wasserstein GAN-GP is:

min
G

max
D∈Ds

L(D,G) = Ex∼pdata(x)[D(x)]− Ez∼pz(z)[log(1−D(G(z)))]

+ λEx̂∼px̂

[
(‖∇zD (x̂)‖2 − 1)

2
]

(3.3)

There are several other research works focusing on the theoretical improvement of GANs to
overcome the well-known GAN stability training problems, which are further embedded in the
numerous architectures and utilised across wide range of domains (Hunter, 2018). Regarding
medical image analysis, various applications of GANs have been developed for image prepro-
cessing, organ segmentation, anomaly detection, domain adaptation and translation of an image
of one modality to an image of another modality, including the synthesis of sCT, as it is demon-
strated in Figure A.3. The current state of DL-based architectures for generating sCT includes
pix2pix: a conditional generative adversarial image-to-image network that requires paired im-
ages from two modalities co-registered with voxel-wise correspondence (Isola et al., 2017). The
main motivation of researchers has long been to overcome the main limitation: the lack of aligned
image pairs for domain translation, which is particularly peculiar to medical images. An alter-
native architecture that accommodates the additional cycle consistency loss has been developed
more recently and is called Cycle Consistent Generative Adversarial Network or CycleGAN (Zhu
et al., 2017). It requires only images from each modality rather than almost perfectly aligned
paired images of the same patient. In the next sections, the architectures and the differences in
loss function objectives for the purpose of sCT generation are discussed, as well as the new patch-
bathed method for unpaired image-to-image translation, which is known as CUT (Park et al.,
2020).

3.2 Image-to-Image Conditional Generative Adver-
sarial Network (pix2pix)

GANs are generative models that learn a mapping from random noise vector z to output image y,
G : z → y . In contrast, conditional GANs (Li et al., 2020) learn a mapping from observed image
x and random noise vector z, to y,G : x, z → y.

The pix2pix model is a conditional image-to-image generative adversarial network that re-
quires paired images from two modalities that are co-registered with voxel-wise correspondence
(Isola et al., 2017). In addition to the adversarial GAN losses consisting of the generator loss and
the discriminator loss (real versus fake image pairs), it includes an additional loss based on the



16 Chapter 3. Related work

Figure 3.2: Training a conditional GAN. The discriminator, D, learns to classify between fake
(synthesised by the generator) and real tuples. The generator, G, learns to fool the discrimina-
tor. Unlike an unconditional GAN, both the generator and discriminator observe the input MRI.
Inspired by original pix2pix paper by Isola et al. (2017)

absolute difference between the generated image and the original paired image (L1 norm loss).
The L1 norm loss is expressed as:

LL1(GTS ) = Ex,y(|y −GTS (x)|1) (3.4)

where GTS is the generator network that produces images corresponding to the target modality
from the source modality images, and E is the expectation that depends on both x, the set of
source modality images, and y, the set of target modality images. The source modality images x
in our tasks are MR images and the target modality images y are CT images. The adversarial loss
penalises at the scale of subimage patches and is expressed as:

LGAN (GTS , DT ) = Ex,y(logDT (x, y)) + Ex log(1−DT (x,GTS (x))) (3.5)

where DT is the target modality discriminator that aims to distinguish between real and fake
images, E is the expectation value. When using pix2pix networks, the number of samples in the
source and target domains must be the same since the data sets must be aligned with each other.
The adversarial loss is calculated using the binary cross entropy cost function. The final cost
function, which is used to optimise the network, is a weighted summation of the aforementioned
losses:

ΘG,D = arg min
G

max
D

(LGAN (GTS , DT ) + λLL1(GTS )) (3.6)

where λ is the user-defined weighting factor for the L1 loss (Klages et al., 2020).
The basic pix2pix implementation consists of a U-Net-based generator and a PatchGAN-based

discriminator. One of the reasons pix2pix first achieved task-agnostic image translation support-
ing multiple image-to-image translation tasks, including biomedical, is an architecture of the gen-
erator.

U-Net-based generator. U-Net is a convolutional neural network that was initially developed
for segmenting biomedical images by Ronneberger et al. (2015). It is one of the most cited archi-
tectures in medical image analysis for a range of applications. The special feature of the U-net that
has a positive impact on the accuracy of the models is the introduction of the skip connector in the
standard encoder-decoder architecture, which allows the information from the earlier layers to be
transferred to later layers, while the upsampling process in the decoder is done by concatenating
current layer with the respective encoder layer resolution. In addition, skip connectors improve
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(a) Encoder (b) Decoder

Figure 3.3: PIX2PIX GENERATOR. U-Net-based generator architecture including encoder (a) and decoder
(b) parts. Source: Sharon and Eda Zhou (2020)

gradient flow and help to solve the vanishing gradient problem. In each block of the pix2pix en-
coder, the spatial information is reduced by a factor of 2. The output size at the end is 1*1*512.
Each of the blocks contains the convolution layer (stride=2), batch normalisation and LeakyReLU
as activation. The decoder part consists of the same number of blocks as the encoder to be able to
rebuild the image in the same size. Each block of the decoder consists of the transposed convo-
lution, which performs a corresponding upsampling procedure. The transposed convolution is
followed by a BatchNorm and subsequently by a ReLU activation function. Batch normalisation
has been shown to be essential to train both networks avoiding mode collapse (Radford et al.,
2015). Dropout is added to the first three blocks of the decoder. Dropout randomly deactivates
different neurons at each iteration of training so that different neurons can learn in a stochastic
manner. In the end, either the real sample or the generated sample is concatenated with what was
inputted into the generator as an input condition and passed on to the discriminator.

PatchGAN-based discriminator. A PatchGAN discriminator penalises the structure only at the
patch level. Such a discriminator effectively models the image as a Markov random field, assum-
ing independence between pixels separated by more than one patch diameter. This discriminator
attempts to classify whether each N × N patch within an image is real or fake. The discriminator
patches are applied to the image by convolution, combined to form the matrix of responses, and
all responses are further averaged to obtain the final result D. The advantages of the discriminator
include speed due to the smaller size of the patches and the ability to control the quality of the
large images.

Figure 3.4: Schematic representation of the PatchGAN. Source: Sharon and Eda Zhou (2020)

One of the major difficulties when applying pix2pix to medical applications is that it requires
co-registered image pairs. Another architecture, CycleGAN, has the potential to leapfrog the
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limit of using a perfectly aligned dataset for training and could achieve similar performance on
an image and dose basis for medical image-to-image translation tasks (Largent et al., 2019).

3.3 Cycle-Consistent Generative Adversarial Network
(CycleGAN)

The CycleGAN model is a cycle-consistent generative adversarial network, which was introduced
by Zhu et al. (2017). CycleGAN is similar to pix2pix in that it uses the same foundational network
blocks, but it requires only images from each modality, rather than nearly perfectly aligned paired
images from the same patient. CycleGAN seeks to learn not the specific transformation of each
individual pixel, but the transformation of the image properties as a whole. The requirement for
alignment of images is eliminated by an additional cycle consistency loss, so that each image that
passes through the pair of generators attempts to reproduce itself.

Figure 3.5: Schematic representation of the cycle consistensy loss: given a real image x in X, if the
two generators G and F are good, mapping it to domain Y and then back to X should give back
the original image x, i.e., x → G(x) → F(G(x)) ∼ x. Similarly, the backward direction should also
have y → F(y) → G(F(y)) ∼ y. Source: Wang and Lin (2018)

Cycle consistency in both directions is required for this training. The sequence is for the sCT
generation task as follows: MR → sCT1 → sMR1 and CT → sMR2 → sCT2. Cycle consistency is
ensured by minimising the L1 norm losses between the output synthesised images (sMR1, sCT2)
and the corresponding input modality images (MR and CT, respectively). The result is a single
cycle network consisting of a pair of GANs operating on the two image modalities. The cycle
consistency loss is expressed as:

Lcyc(G
y
x, G

x
y) = Ex(|x−Gxy(Gyx(x))|1) + Ey(|y −Gyx(Gxy(y))|1) (3.7)

where Gyx is the generator in the direction of MR → CT as x is an input modality (MR) and y is
output or target modality (CT). Accordingly, Gxy depicts the generator in the direction CT → MR.
The GAN loss is expressed as:

LGAN (Gyx, G
x
y , Dx, Dy) = Ey[log(Dy(y))] + Ex[log(1−Dy(Gyx(x)))]

+ Ex[log(Dx(x))] + Ey[log(1−Dx(Gxy(y)))]
(3.8)

where Dx is the input modality discriminator (MR) and Dy is the target modality discriminator
(CT). An additional identity loss that forces the intermediate images to have similar intensities to
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(a) U-Net skip connection via
concatenation

(b) ResNet skip connection via addition

Figure 3.6: SKIP CONNECTIONS. The violet arrows show the differences in skip connections between the
U-net architecture (a) and the ResNet (b)

the actual intermediate group is expressed as follows:

Lidentity(Gyx, G
x
y) = Ey(|y −Gyx(y)|1) + Ex(|x−Gxy(x)|1) (3.9)

The final cost function, which is used to optimise the network, is a summation of the afore-
mentioned losses:

ΘG,D = arg min
G

max
D

LGAN (Gyx, G
x
y , Dx, Dy)+λcycLcyc(G

y
x, G

x
y)+λidentityLidentity(Gyx, G

x
y) (3.10)

where λcyc and λidentity are the user-defined weighting factors. These cyclic constraints are less
stringent than the voxel-wise constraints of the pix2pix model, however the objective of creating
images in the second modality based on the input images remains. (Klages et al., 2020).

By devoting attention to the architecture of specific network components, the generators could
be implemented using the U-Net described in Section 3.2 or as in the implementation by Zhu et
al.1 using a ResNet-based generator (see Figure A.4). ResNet-based generator consists of mul-
tiple ResNet blocks between a series of basic downsampling/upsampling blocks in an encoder-
decoder approach (see Figure 3.3). Instead of the U-Net skip connection aimed to recover spatial
information lost during downsampling, where the parts of the downsampling operations are con-
catenated with the corresponding upsampling operations, in ResNet the skip connection aimed
to preserve features learned in earlier layers. That is why it skips every two consecutive con-
volutions within the downsampling or upsampling operations by itself and "flatten" the model
therefore. Detailed representation of the ResNet9 building blocks with a skip connection is shown
in Figure 3.6b. This aids in solving the vanishing gradient problem by providing an alternative
path for the gradient to flow through (He et al., 2016).

The discriminator of CycleGAN is a convolutional PatchGAN classifier, similar to pix2pix,
models high frequency image structure in local patches and only penalises structure at the scale
of image patches (see Figure 3.4). It consists of 3 convolutional layers with different filter sizes but
the same kernel sizes and strides, followed by fully connected layers. LeakyReLU is used as the
activation function for non-linearity and a batch normalisation layer for the convolutional layers,
sigmoid activation function is used in the last fully connected layer.

One of the important notes on the training strategy of CycleGANs, implemented by the Zhu
et al.1, is that they are using the pool aspect, introduced by Shrivastava et al. (2017). They keep an
image buffer that stores the 50 previously generated images and increase the discriminators by
using a history of the images generated instead of using the ones produced in latest generators
cycle. This helps to reduce the oscillations of the loss over time and thus avoid model collapse.

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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This problem occurs when the generator learns to map several different input values to the same
output (Goodfellow, 2016).

The CycleGAN demonstrates comparable results to models that require perfectly aligned im-
age pairs, which has the potential to eliminate the additional cost of co-registering images as-
sociated with the task of sCT generation. This is where one of the main advantages of such an
architecture becomes apparent. It performs well with image style changes, however, it has diffi-
culties with significant geometric changes due to the cyclic architecture and domain invariance.
The presence of two cycles is the underlying reason for the longer training time.

3.4 Contrastive Learning for Unpaired Image-to-Image
Translation (CUT)

Contrastive Unpaired Translation (CUT) utilises a contrastive learning-based framework that
aims to associate input and output fields, whereby ’query’ refers to an output patch and ’posi-
tive’ and ’negative’ are corresponding and non-corresponding input patches, sampled within the
image (see Figure 3.7). CUT framework was introduced by Park et al. (2020) on Computer Vision
and Pattern Recognition conference.

Figure 3.7: The schematic representation of the CUT architecture, utilising novice patchwise con-
trastive loss. Source: Park et al. (2020)

In CUT, the generator is divided into two parts, where the encoder Genc learns to capture
domain-invariant concepts, and the decoder Gdec learns to generate domain-specific patterns.
These are applied in sequence to generate an output image y = G(z) = Gdec(Genc(x)). The
adversarial loss is employed to encourage the output to be visually similar to images from the
target domain:

LGAN(G,D,X, Y ) = Ey∼Y logD(y) + Ex∼X log(1−D(G(x))) (3.11)
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The authors propose using the first half of the CycleGAN generator as Genc. One of the key
novelties of this approach is the use of a noise contrastive estimation framework to maximise
the mutual information between the input and output images of the generator. This is done by
sampling a patch from the image produced by generator (query patch) and comparing it to the
input patch at the same location (positive patch). In addition, N patches are sampled from other
locations in the input image, which are referred to as "negative". By sampling negative patches
within the image, the authors hypothesise that the encoder does not need to model large intra-
class variation. They then use Genc together with a two-layer MLP to encode both input and
output fields in a common embedding space. The query, positive, and N negatives in generator
are mapped to K-dimensional vectors v, v+ ∈ RK and v− ∈ RN×K , respectively. v−n ∈ RK

denotes the n-th negative. They normalise vectors onto a unit sphere to prevent the space from
collapsing or expanding. An (N+1)–way classification problem is set up, where the distances
between the query and other examples are scaled by τ = 0.07:

`(v, v+, v−) = − log

[
exp(v · v+/τ)

exp(v · v+/τ) +
∑N
n=1 exp(v · v−n/τ)

]
(3.12)

It is fed as logits to a cross-entropy loss function that represents the probability of selecting
a positive over a negative. The PatchNCE loss uses the matching of corresponding input-output
patches in the generator at a given location:

LPatchNCE(G,H,X) = Ex∼X

L∑
l=1

Sl∑
s=1

`(ẑsl , z
s
l , z

S\s
l ). (3.13)

Beyond that, a multi-layered approach is proposed, in which not only image patches from the
input or output image in the generator are sampled, but also from deeper layers. The external
NCE loss uses image patches that differ from the rest of the data set ("negative" patches):

Lexternal(G,H,X) = Ex∼X,z̃∼Z−

L∑
l=1

Sl∑
s=1

`(ẑsl , z
s
l , z̃l), (3.14)

where dataset negatives z̃l are sampled from an external dictionary Z− from the source domain.
Detailed description could be found in (He et al., 2020).

Additionally, PatchNCE loss LPatchNCE(G,H, Y ) utilised on images from domain Y to prevent
the generator from making unnecessary changes. This loss is essentially a learnable, domain-
specific version of the identity loss, commonly used by previous unpaired translation methods
(Taigman et al., 2016). The final cost function, which is used to optimise the CUT network, is a
summation of the aforementioned losses:

LGAN(G,D,X, Y ) + λXLPatchNCE(G,H,X) + λY LPatchNCE(G,H, Y ). (3.15)

As for the specific architecture implementation of the blocks, it is the same as the setting of Cy-
cleGAN with ResNet-based generator and PatchGAN described in the previous section, except
that the cycle consistency loss is replaced by the contrastive loss. Compared to CycleGAN, CUT
allows for one-sided translation in the unpaired image-to-image translation setting, while im-
proving quality and reducing training time. Besides, one-way translation could be advantageous
for medical image-to-image translation, as tissue features are usually consistent for each patient
(except for tumours), while there is high variability in physiology, which very often affects even
co-registered image pairs of different modalities and may complicate cycle-consistent training.
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3.5 Application of GANs for the sCT Generation Tasks
The desired elimination of computed tomography from the MRgRT pipeline with the aim of re-
ducing the irradiation of healthy tissues has been a challenge for researchers for a considerable
time. Currently, there are 3 basic approaches to estimating electron density maps, which are re-
quired for tumour radiation dose calculation:

• Bulk density approach, which is based on manual segmentation and further assignment of
a homogeneous, predefined density to each region. The advantage of this approach is the
possibility of quality control by experts. However, the quality of the density assignment
and thus of the calculated dose estimate depends entirely on the quality of the segmenta-
tion. This means that incorrect assignment at the margins of the tissue would affect the
dose distribution in overall terms. The bulk approach requires MR images with a special
sequence: the ultra-short echo time (UTE), which is characterised by a long acquisition time
and negative effects on the quality of the bone representation on the images. Finally, it is
tedious for human experts (Kang et al., 2017).

• Multi-atlas based approach, which involves rigid and nonrigid mapping of atlas CT images
onto a target MR image. To accurately map intricate anatomy, an atlas dataset is created
from co-registered CT-MR image pairs. An initial step involves pairwise mapping of MR
atlas images to the target MR image. The advantages of this approach include its appli-
cability to the entire image population along with very reasonable quality. This approach
does not require the daunting manual delineation efforts by experts. That is why this ap-
proach is widely used in hospitals for radiation dose correction during patient treatment.
The drawbacks include the need for co-registered image pairs, the mathematical complexity
of deformable registration and quality errors for some of the patients who differ substan-
tially from the "average atlas representative" of the population (Pham et al., 2000).

• Machine learning based approach where algorithms learn the intensity mapping of MR im-
ages to electron density maps usually through highly nonlinear systems. Neural networks
show the high capability to estimate the electron density maps. One of the advantages is
the fully automatic training process. Though, the best results have been obtained with the
algorithms that require co-registration of the image modalities so far (Klages et al., 2020)

The existing studies analyse the results of substitute CT generation across different meth-
ods between the bulk density and multi-atlas based approaches (Edmund and Nyholm, 2017;
Johnstone et al., 2018) or between multi-atlas based approaches and machine learning based ap-
proaches (Han, 2017; Arabi et al., 2018). No studies were found investigating the difference in the
results across 3 methods for the abdomen area.

Farjam et al. (2019) provided a comparison of an atlas-based sCT generation and a bulk den-
sity approaches for the pelvic region. The bulk density-based approach was reported to produce
very sharp and neat images, while the proposed atlas-based approach produced a rather blurred
image. The largest discrepancies were found in the bony structures. The proposed multiatlas
approach outperforms the bulk density-based approach in terms of Hounsfield unit (HU) assign-
ment and performs slightly better in terms of reproducing the dose distribution from the original
plan (see Table 3.1).

Han (2017) were investigating the difference in performance of the atlas-based methods and
machine learning U-Net architecture in brain images. They demonstrated that NN-based meth-
ods were able to surpass others and produce acceptable results, with mean absolute errors (MAE)
of 84.8 HU compared to 94.5 HU for deep convolution neural network (DCNN) and Atlas-based
methods correspondingly Fard et al. (2021). A year later, Arabi et al. (2018) tested the same model
with different atlas-based methods for a bigger cohort of the patients (n=38) and confirmed that
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Bulk density-based approach Atlas-based approach
over entire CT 65 ± 5 47 ± 5
bones 172 ± 9 116 ± 12
fat 43 ± 7 36 ± 6
muscles 47 ± 5 42 ± 4

Table 3.1: The average of mean absolute errors (MAE,mean ± SD) in HU between the atlas-based
and bulk density based approach for MR-only radiotherapy of pelvis anatomy, reported by Reza
Farjam et al. Farjam et al. (2019)

Atlas-based approach DCNN-based
body 42.4 ± 8.1 32.7 ± 7.9
bones 130.2 ± 23.4 119.9 ± 22.6

Table 3.2: The average of mean absolute errors (MAE,mean ± SD) in HU between the atlas-based
(ALWV-Iter Burgos (2017))method and machine learning-based method (U-Net architecture) for
MR-only radiotherapy of pelvis anatomy, reported by Arabi et al. (2018)

the deep convolution neural network in most of the cases outperform the multi-atlas based meth-
ods (see Table 3.2). However, the biggest difference is still in the bone region. This could be
explained by the low hydrogen content of the bones and the low intensities on the MR images,
which closely resemble air.

In 2016, one of the first research groups were applying GANs for the purpose of the sCT gener-
ation. Nie et al. (2017) developed a pix2pix like architecture, where the generator was consisting
of the encoder and decoder parts. Moreover, they addressed the issue of image misalignment
by incorporating an image-wise loss together with a voxel-wise loss component. It offers an ad-
ditional auto-content model, which gives to the classifier additional context information. They
trained it on 16 subjects from the brain dataset and 22 subjects from the pelvic dataset. In both
cases, GAN outperformed atlas-based approaches, with an average MAE of 171.5 HU and 92.5
HU for atlas-based methods and GAN for the brain dataset and 66.1 and 39.0 for pelvic dataset
correspondingly. It is important to note that the errors in the different fields of view are not com-
parable due to differences in the set of organs imaged, physiological differences and, in addition,
differences between device settings.

Wolterink et al. (2017) applied the CycleGAN architecture with the ResNet generator and
PatchGAN discriminator for the purposes of the sCT generation from brain MR images. One
of their intriguing findings is that training on unpaired data actually shows the better perfor-
mance when using the CycleGAN architecture: "Qualitative analysis showed that CT images
obtained by the model trained with unpaired data looked more realistic, contained less artefacts
and contained less blurring than those obtained by the model trained with paired data." Authors
hypothesised that errors in the co-registration of the MR and CT pairs could be responsible for
the worse performance of aligned methods.

Klages et al. (2020) employed pix2pix and CycleGAN architectures to assess the effects of
multiple combination strategies on accuracy for patch-based synthetic computed tomography
generation for MRgRT planning in head and neck (HN) cancer patients . Their results showed
that pix2pix slightly outperformed CycleGAN with the corresponding MAE of 156.3 HU and
165.2 HU. They suggest that this may be due to the specific loss functions applied (they used
L1 losses per pixel). They also tested different input configurations and found that combining
the three orthogonal views improved the results compared to training with axial slices only. As
preprocessing, they used histogram standardisation techniques and applied intensity clipping.
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The assessment of the dosimetric accuracy results revealed that the NNs have a high potential
for clinical applicability. In studies by Maspero et al. (2020), the authors found that has accurate
MR-based dose calculation using a combination of three orthogonal planes for sCT generation
is feasible even for paediatric brain cancer patients (with mean MAE 61.0 HU in body), when
training on a heterogeneous dataset with help of pix2pix architecture. The mean prescribed dose
difference was withing the acceptable norm.

Several studies have investigated the effects of different loss functions on sCT generation. Hi-
asa et al. (2018) integrated gradient consistency loss (one of the perceptual losses) into training
to improve accuracy at the boundaries for CycleGANs. The results show that gradient consis-
tency loss slightly improves MAE. They investigated CT generation for orthopaedic purposes
and applied a rather strong clipping of the CT intensity in the range [-150, 350] HU as one of the
preprocessing steps. Following the same idea, Lei et al. (2019) introduced structure-consistency
loss (MPD), which extracts structural features from the image defining the loss in the feature space
to keep the spatial information. They employs both, conditional GAN and CycleGAN and test
the change in the architecture of the generator, changing the ResNet part on the proposed Dense
block. Lei et al.’s results showed improvements in this sense relative to other unsupervised meth-
ods. GD loss function minimises the difference of the magnitude of the gradient between the
synthetic image and the original planning CT. For the proposed method, the mean MAE between
sCT and CT were 55.7 Hounsfield units (HU) for 24 brain cancer patients and 50.8 HU for 20
prostate cancer patients. Kang et al. (2021) introduces perceptual loss using some of the ResNet
blocks of the discriminator in CycleGAN for his calculations. It presents great results and outper-
formed the U-net with per-pixel L1 loss in terms of errors and similarities for the purpose of sCT
generation, and dose estimation for treatment planning of both, thorax and abdomen. Curiously,
the generation of the bone structures has been improved, but there remain certain glitches. Re-
ferring to the applications of per-pixel loss functions, where inter-pixel errors are calculated, and
perceptual loss functions, where higher level differences such as content and stylistic discrepan-
cies are compared, it is worth pointing out that the task-specific loss functions were implemented
too for the sCT generation task. Farjam et al. (2021) introduced task-specific loss functions, based
Fuzzy-c-means (FCM) clustering was then utilised to classify voxels into fat, muscle, and bone.
During the every learning cycle, the wrong classification of every tissue type was penalised as
the training objective. The new loss function calculation improved the MAE by more than 18% in
high density areas, compare to L1: MAE (mean ± SD) equals to 29.68 ± 4.41, 16.34 ± 2.67, 23.36 ±
2.85, and 105.90 ± 22.80 HU over the entire body(no air), fat, muscle, and bone tissues correspond-
ingly. Although they used the U-Net CNN architecture and not its GAN version, the results they
show deserve further investigation, especially in terms of comparing the performance of CNN
and its GAN version. Among the limitations of the approach, it is certainly worth noting that
their used manual landmark-based standardisation technique for MRI intensities.

In the largest literature reviews on deep learning methods for CT generation, such as (Spadea
et al., 2021; Boulanger et al., 2021; Fard et al., 2021), researchers emphasise the importance of
different preprocessing methods and their influence on the final results. The evaluation of 4 MRI
standardisation approaches as well as the impact of distortion field correction on sCT generation
results was investigated by Andres et al. (2020) on one of the largest cohorts with more than
400 brain volumes . The impact of key parameters was assessed on the final results obtained
with deep CNNs. Authors drew a number of conclusions regarding preprocessing. Andres et al.
found that correcting the bias field (an undesirable artefact primarily arises from the improper
image acquisition process or the specific properties of the imaged object (Song et al., 2017)) did
not greatly affect the results for the data they used. They suggest that this may be due to the NN
learning how to estimate the bias field of a device. Another finding was that the white-stripe MRI
normalisation technique outperformed other methods. This method was presented by Shinohara
et al. (2014) as one of the biologically motivated normalisation techniques. The aim of the method
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is to minimise the discrepancy between the distributions of intensities across subjects and visits
within tissue classes in the brain.

One of the most common methods that can be used in the abdominal area inter-subjects set-
tings, is the Nyul method (Nyúl et al., 2000) showed the second best performance. Not only the
lack of specific methods for normalising tissue intensities, but also considerable differences in the
shape and position of non-rigid organs and air pockets make the abdominal cavity one of the
most difficult regions for training neural networks. Figure 3.9, compiled by Boulanger et al. in
2021, highlights that the abdomen is one of the least studied anatomical locations. One of the
best results (MAE = 60.4 HU) for abdominal sCT generation was obtained with a multichannel
conditional GAN architecture with ResNET-based generator and L1 loss by Xu et al. (2019). How-
ever, they used 4 MR sequences were reconstructed for each subject: fat, water, in-phase (IP), and
opposedphase (OP), giving segmentation-like MR inputs. It was possible for them because they
trained models on high field MR images.

This study setting does not allow for combining the different MR sequences due to lower
quality of the MR images coming from hybrid devices. Coupling LINAC and MR systems was
a technical challenge. It required compromises in the image quality and scanning time. For the
MRIdian LINAC the solution was to preserve the best quality of the radiation unite and to use a
lower magnetic field (0.35T). Advantages of low field MR include reduced costs, better patient ac-
cess, and greater safety. In this case, high quality examinations can be achieved using appropriate
protocols and investing more scanning time than with high-field MR systems. The main disad-
vantage of low field MR is the reduced signal to noise ratio compared with high-field systems,
which could cause additional acquisition artifacts (Hori et al., 2021; Konar and Lang, 2011).

Spadea et al. (2021) showed that the number of studies, investigating DL approaches for sCT
generation, based on low field MRI, is 6.5% (0.3-1T), while in all other studies the MR inputs of
higher quality were utilized. The best performing study in a similar setting to this study (0.35T
MR images as input) was performed by Davide Cusumano et al. Cusumano et al. (2020). They
utilised Pix2Pix architecture with U-Net generator and PatchGAN disriminator. Inclusion criteria
for each slice were the absence of artefacts, the absence of blurred areas, high correspondence of
bony and internal anatomy, as well as air pockets. A total of 9950 images were considered for
training the network: 4848 (2681 pelvis, 2167 abdomen) slices were utilised for training the neural
network. The body contour, the bones and the soft tissues for the evaluation of the experiment
were manually delineated. They achieved the MAE equals to 78 HU within the body contour
(see Table 3.3) and DVH parameters Mean Difference <1% (see Table 3.8). One of the best results,
which employs CycleGAN architecture in the area of abdomen with 0.35T MR images as input,
is reported by Kang et al. in 2021 Kang et al. (2021). Among the most captivating aspects of their
study is that they used a mixed dataset of CT and MR images of the pelvis, thorax and abdomen
with the aim of preventing the overfitting of networks specialised in a particular area. They
used perceptual loss, which examines the discrepancy between high-dimensional representations
of images extracted by a CycleGAN discriminator. Moreover, they also utilised three adjacent
axial layers as NN input to avoid 3D discontinuity. They achieved the MAE equals to 58.8 HU
within the body contour, while norm it by the total number of image voxels (see Table 3.3) and
DVH parameters mean difference equals to +/- 0.6% for PTV and equals to +/- 0.15% for OAR
(duodenum, stomach, liver).

To the best of our knowledge, this is the first study that employs CUT for MR-based synthetic
CT generation in abdominal area.

In conclusion, the deep learning methods described above aim to solve the problem of irradi-
ating healthy tissue in MRgRT by synthetic CT generation based on the MR images. The GANs
showed lower geometric errors and higher dosimetric accuracy in sCT generation compared to
the bulk density and atlas-based methods currently being used in clinical practice. The Cycle-
GAN architecture, which does not require aligned image pairs, shows comparable performance
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Pix2Pix
MAE body 78.71 ± 18.46
MAE bones 152.71 ± 30.14
MAE soft tissue 53.89 ± 10.7

Table 3.3: The average of mean absolute errors (MAE,mean ± SD) in HU of sCT generation, utilis-
ing pix2pix architecture for MR-only radiotherapy of abdomen anatomy, reported by Cusumano
et al. (2020)

CycleGAN
MAE 58.8 ± 4.4
PSNR 26.3 ± 0.7
SSIM 0.91 ± 0.01

Table 3.4: The average of geometrical errors (mean ± SD) in HU of sCT generation in abdomen,
utilising CycleGAN architecture for MR-only radiotherapy, reported by Kang et al. (2021)

to pix2pix, which requires co-registered image pairs. Many parameters, such as the NN architec-
ture, different loss functions and the preprocessing methods, could have a positive impact on the
results of the image-to-image translation tasks. GANs have experienced the most difficulty with
sharp translation of the bone region. The next steps in research on GAN-based sCT generation
could be the introduction of a robust NN architecture for the abdominal area and its optimisation.
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Figure 3.8: Mean values of volume and dose difference calculated between sCT and CT for all the
DVH indicators considered. Absolute dose values were reported in Gy for all the parameters in-
vestigated except for V95% of PTV. where the volume percentage difference was considered. For
each DVH parameter the standard deviation (SD) and the corresponding range was also reported.
Source: Cusumano et al. (2020)

Figure 3.9: Mean absolute error (MAE) results for body structure between reference CT and sCT
generated with a deep learning method for studies including the brain, Head and Neck, liver,
abdomen, and pelvis. Each marker represent a study result. Full markers represent generator-
only models and empty markers generative models with adversarial. Star markers represents
the abdominal studies, utilizing low field MR images. Results are divided into three categories:
studies including less than 18 patients, studies including 19 to 40 patients and studies including
more than 40 patients. Red dotted lines represent the median values. The median values are: 74.2
HU for the brain, 77.9 HU for Head and Neck, and 42.4 HU for the pelvis. Modified from source:
Boulanger et al. (2021)





Chapter 4

Experiments: Materials and
Methods

4.1 Overview
In this work, we investigated different methods to improve current MR-based sCT generation
methods using state-of-the-art generative adversarial networks: pix2pix, CycleGAN, CUT. The
following set of experiments was performed:

• Comparing architectures trained in aligned (pix2pix) and non-aligned ways (CycleGAN,
CUT).

• Investigating the influence of different preprocessing methods (Nyul, N-peaks).

• Enhancement of results’ spatial consistency by adjusting the network configuration (2D,
pseudo3D).

• Testing different GAN training objectives (LSGAN, WGAN-GP).

• Estimating the influence of the loss function on the generated results (per-pixel loss versus
perceptual loss).

The robustness of the trained networks was analysed using the clinical dataset prepared specif-
ically for this study. This chapter describes the implementation details of the preprocessing
pipeline, from the patient selection strategy to the adapted normalisation approaches, as well
as the challenges to overcome. The quality of sCT generation was assessed using per-pixel met-
rics, i.e. mean absolute error (MAE), mean square error (MSE) and peak signal-to-noise ratio
(PSNR), as well as perceptual metrics, i.e. structural similarity index (SSIM) and Fréchet-Dirichlet
distance (FID). The dosimetric accuracy of the best performing models was estimated comparing
the dose distribution of MRgRT treatment plans calculated from sCT and original dCT images
using dose-volume histogram parameters to allow assessment of the clinical applicability of the
DL methods. The schematic representation of the entire study flow can be seen in Figure 4.1.

4.2 Imaging Data Acquisition and Selection
Imaging data of 76 patients with abdominal tumour treated with MRgRT at USZ was collected
retrospectively after approval by the local ethics committee. The ages for these patients ranged
from 30 to 85, with a median age of 61; 48 patients were male and 28 were female. The exclusion
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Figure 4.1: Outline of the developed study process. The main stages of the study include: data
acquisition and selection; data preprocessing; network training and evaluation. All stages are
organised into several steps, which are described in detail in Chapter 4. The steps shown in
purple refer to MR images, brown - to CT images, and blue - to both image modalities.

criteria for the study were age below 18 years and the presence of devices in the abdomen that
could cause additional artefacts on the images. Patients with kidney stones were included in the
study. All data was anonymised. The aim was to obtain imaging data used in the real MRgRT
treatment cycle that had not previously been processed or modified.

For each treatment cycle of every patient, a pair of co-registered MR-CT images acquired dur-
ing the treatment planning was available. This resulted in 93 co-registered volumes as some
patients had been treated more than once and had cancer in different organs. Treatment cycles of
all patients were performed without the use of a contrast agent. MRI scans were acquired using
true fast imaging with steady-state precession (TRUFI) pulse sequence. CT scans were acquired
using SIEMENS scanner with 120 KVP. The deformable registration was performed using com-
mercial image registration software, Velocity AI 3.2.1 (Varian Medical Systems, Palo Alto, CA),
to align acquired CT images to MR images. The MR pixel spacing was set to 1.5mm and then
automatically adapted to the field of view used for each patient with values ranging 1.49 – 1.63
mm. The resolution details of MR and co-registered to it CT images could be found in Table 4.1.

The data was further analysed for the presence of co-registration artefacts. Due to differences
in the acquisition process, poor quality of slices at the edge of the field of view, device settings,
and moving air pockets, most of the artefacts were present in the first and last slices for each
patient. The examples are demonstrated in Figure 4.2 However, the number of corrupted slices
varied from treatment to treatment and comprised at least the first and the last 10 slices in the z-
direction. To enable an automated procedure for exclusion of the corrupted slices, at first, tumour
sizes were examined. Then, the structure sets of delineated tumour(s) and a number of organs
for every treatment were exported in DICOM format. In case of multiple tumours or version of
PTV delineation, the largest tumour volume was considered (see examples in Figures A.5, A.6).
Statistics of the PTV sizes in the axial direction are shown in Figure 4.3 as well. After careful
analysis of the data, only 20 slices around the center of tumour were used for the study in order
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Pixel Spacing, mm Slice Thickness, mm Matrix Size, pix # Axial Slices # Treatment Volumes
1.6304 * 1.6304 3 276 * 276 80 84
1.4970 * 1.4970 3 300 * 334 144 3
1.4957 * 1.4957 3 234 * 234 144 2
1.5037 * 1.5037 3 152 * 266 88 2
1.4999 * 1.4999 3 310 * 360 88 1
1.4970 * 1.4970 3 300 * 334 88 1

Total 93

Table 4.1: The resolution of acquired and co-registered MR and CT volumes

Figure 4.2: CORRUPTED SLICES. Examples of co-registration artefacts at the beginning of the field of view
in Z-direction

to maintain high image quality and consistent procedure for selection of the field of view. This
strategy made it possible to completely cover the largest tumour and at the same time obtain good
quality slices. It resulted in a total number of 3720 slices.

To facilitate the training process and avoid bias in the evaluation of network performance, the
entire data set was split into train, test, and validation sets according to the following principles:

• The dataset was split on a treatment-basis into training (80%) and testing (20%) (see Table
4.2, Figure A.13).

• Non-overlapping groups: a patient could only be either in the train or test set (restriction
based on the "patient id").

• Stratified folds: each set contained approximately the same percentage of samples for each
cancer site as the entire set.

• Restriction of multiple treatments: a patient who had undergone multiple treatments could
only be in the train set.

• The validation set consists of 20% of the training set identified with the same conditions
(non-overlapping patient groups stratified by cancer area).

The functionality was implemented using the module sklearn.model_selection and a few specific
manual adjustments.

4.3 Data Preprocessing
Data preprocessing has a significant impact on the quality of the sCT generation tasks, with dif-
ferences in the individual pixel intensities leading to differences in the generated electron density
map and hence differences in the accuracy of the overall irradiation distribution.
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Figure 4.3: Size of the tumour(s) in Z-axis slices. The size of tumour in Z direction in mm could
be calculated by multiplying the number of slices by the slice thickness (3 mm)

Cancer area Train set, treatments (patients) Test set, treatments (patients) Total, treatments (patients)
LIV 30 (26) 7 (7) 37 (33)
ABD 16 (12) 3 (3) 19 (15)
ADR 15 (11) 3 (3) 18 (14)
KID 8 (7) 2 (2) 10 (9)
PAN 7 (7) 2 (2) 9 (9)
Total 76 (59) 17 (17) 93 (76)

Table 4.2: Train and test set separation, represented by the cancer areas

The following steps were performed to remove artefacts in the acquisition, reduce the intensity
variations of the same tissues between different volumes, and prepare the inputs for the different
network configurations (see Figure 4.1):

• Images conversion from DICOM to NIFTI format. Extraction of body mask and its further
application. Extraction of delineated set of organs for tissue-based intensity normalisation.
Extraction of the tumour masks for the further FOV adjustment.

• Resampling of the 3D images to match the most common voxel size.

• Resizing of the 3D images to match the common matrix size (cropping or padding).

• Bias field correction for MR images to compensate for the gain variation.

• Nyul intensity normalisation for MR images.

• N-peaks intensity normalisation for MR images. Both intensities are applied to match the
ranges in inter-patient settings and to avoid domain shift while NN training.

• Min-max normalisation and intensity clipping for CT images to have a consistent range of
values and improve network performance in the bone area.

• Preparation of training, validation and test splits for different experimental settings.
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Images conversion from DICOM to NIFTI format. The first essential step was to convert all
image files from DICOM to NIFTI format. The advantages of DICOM include interoperability be-
tween different software and modality features, performance, and flexibility. The disadvantages
include that it requires a significant amount of storage. Whitcher et al. point out that DICOM is
not very efficient for image and signal processing (Whitcher et al., 2011), while the NIFTI format is
simpler and takes up less space. All the required metadata from the DICOM headers was stored
in CSV files. The conversion of the volumes was done using dicom2nifti and nibabel packages.

At this stage, the binary masks of the delineated tissue sets were also extracted. For this
purpose, the DICOM structure file was used, which contains names of all previously delineated
tissues defined as Region of Interest (ROI) in the DICOM definitions. The ROI Contour Mod-
ule is employed to define the ROI as a set of contours. Each ROI contains a sequence of one or
more contours, where a contour is either a single point (for a point ROI) or more than one point
(for an open or closed polygon) NEMA (2016). After analysing all the delineated ROIs, the deci-
sion was reached to use the liver and fat as reference tissues for intensity normalisation and the
background, as three reference points are required. The liver was chosen because it was delin-
eated for all patients and it has one of the most homogeneous intensities on MR images among
the abdominal organs, with the exception of the urinary bladder. The tag "liver" was extracted
from the names of ROIContourSequence, and its coordinates for each volume were found in the
attribute ContourSequence for further matching with the original DICOM 3D volume. Fat tissue
was selected because it contains a lot of hydrogen, which is the lightest tissue and is present in
nearly every patient. In addition, the fat masks were successfully used for tissue-based intensity
normalisation and further sCT generation by Farjam et al. (2021) and Hou et al. (2021). Fat mask
extraction was based on knowledge of the HU ranges in the CT and additional manual inspec-
tion of the population: all pixels with intensities in the range [-160;-60] were assigned to fat. For
the more precise selection of the tissue binary opening operation were utilised from scipy.ndimage
package. Further details and limitations of the approach for mask selection are described in the
discussion (see Chapter 6). Extraction of the tumour mask with the largest delineated volume
or a multiple thereof was performed using the above-mentioned ROIContourSequence names con-
taining the tag "PTV". In order to perform the resizing step further, 40 high quality layers around
tumour centre was defined on the Z-axis.

In addition, the binary body masks were further extracted, which were required to focus the
histogram-based intensity normalisation and neural networks on the anatomical component of
interest. Initially, body masks were extracted from the delineated body contour (tag "skin" was
used from the names in ROIContourSequence). However, the results of the first round of neural
network training showed that the manually delineated contour is sharp and contains arms that
are more prone to imaging artefacts as they are close to the device boundary (see Figure 6.2a).
The results produced by the NN outputs in the experimental round contain significant blurring
in the body contour of sCT, as shown in Figure 6.2b. The standard approach to remove unwanted
contours using the morphological operations (binary dilation, binary erosion) was not powerful
enough to remove the arms from the image body contours. Therefore, an approach based on the
choice of the largest outlined contour was developed. The proposed solution worked through
the functions findContours and drawContours from cv2 package. The algorithm involved finding
all contours in the manually delineated mask and considering the contour with the largest area,
which is the desired body contour not including the arms. This was coupled with the preceding
iteration of binary opening and three iterations of binary erosion to separate the arm contour from
the body contour if it is too close to the body, and followed by the reverse operations of binary
dilation and binary opening to smooth the contour. The results obtained showed the smoothing
of the contour as well as the exclusion of the arms and the associated artefacts (see Figure 4.7b).
Consequently, the proposed algorithm was applied and all variations in the background of both
modalities were set to 0 for MR and to -1024 for CT; only the pixels related to the anatomical
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(a) Masked body input in trial
round of NN training

(b) Output of NN training (CUT)

Figure 4.4: STANDARD MORPHOLOGICAL-BASED BODY CONTOUR MASK APPLIED. The red arrows
show the artefacts caused by the marker applied to the body contour as well as by the sharpness of the
border; the blue arrows show the artefacts caused by the presence of the hands on the image after training
with the old body mask

(a) Unprocessed original CT slice (b) CT slice after area-based body
contour mask applied

Figure 4.5: PROPOSED AREA-BASED BODY CONTOUR MASK. The images show how the proposed
method works to exclude the arm (b), which is very close to the body contour in the original image (a)

component remained intact.
The complete set of extracted masks is shown in Figure 4.6. All masks were saved as NIFTI

files to allow for further resampling.
Image resampling. Resampling is an integral preprocessing step in medical image analysis.

Real-life measurements rely on real-world voxel size. Measurements taken from different images
should be comparable(Thévenaz et al., 2000). In order not to influence the learning parameters
by variations in voxel size, both MR and dCT slices were resampled to the most commonly rep-
resented voxel size in the data: [1.6304 mm,1.6304 mm,3 mm] (see Table 4.1). Resampling of
all images was carried out by first-order (linear) spline interpolation using the function resam-
ple_to_output from nibabel package.

Image resizing. When the image was converted to a larger voxel size, the matrix size of an
image decreased. To allow the NNs to have the same size of inputs, each axial slice of the image
volumes was cropped or padded to the matrix size as following: X=256, Y=256. When cropping,
the same number of pixels in one image dimension was trimmed. When padding, the same
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Figure 4.6: Original MR slice and set of masks extracted for it

(a) Before N4 applied (b) After N4 applied

Figure 4.7: BIAS FIELD CORRECTION. The images demonstrate how the N4 algorithm helps to eliminate
some of the intensity inhomogeneity. The most obvious effects are observed in the fat and liver tissues

number of pixels was populated with the modality background intensity value. The algorithm
is based on the implementation of crop_or_pad function from the Ludwig AI 1. In each treatment
cycle, 40 slices were taken in the Z-direction, as mentioned in Section 4.2. This was done by taking
the 20 slices around tumour centre. In the event that the ring of 20 slices around the tumour centre
touched the first or last 10 slices acquired for a treatment cycle, the centre of the ring was shifted
so that it did not touch the first or last 10 slices and still contained 40 slices. In 4 treatments, the
shift of the ring centre was performed manually, as artefacts appeared in more than 10 edge slices.

Bias field correction for MR images. MR images are characterised by artefacts during acquisi-
tion caused by the inhomogeneity of the magnetic field, the electrical properties of the tissue and
the poor uniformity of the coils. To correct for non-linear effects on intensity that vary spatially in
an automatic manner, the N4 bias field correction algorithm was applied.

N4 is a variant of the popular retrospective bias correction algorithm N3 (nonparameteric
nonuniform normalisation). Based on the assumption that the distortion of the low-frequency
bias field can be modelled as the convolution of the intensity histogram by a Gaussian, the ba-
sic algorithmic protocol is to iterate between the deconvolution of the intensity histogram by a
Gaussian, the reassignment of intensities and the subsequent spatial smoothing of this result by
a B-spline modelling of the bias field itself. The changes and improvements over the original N3
algorithm are described in the paper by Tustison et al. (2010)

Refer to Figure 4.7 for examples of MR slices before and after the application of the bias field
correction.

Nyul intensity normalisation for MR images. The lack of absolute tissue intensity, especially
in the inter-patient setting, is another delicate problem when working with MR images. There are
many heterogeneous tissues in the abdomen, which makes it difficult to apply machine learning

1https://github.com/ludwig-ai/ludwig
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algorithms. In addition, contrast variability is an additional limitation in inter-patient studies.
Both of these challenges motivate the use of the Nyul intensity normalisation algorithm (proposed
in Nyúl et al. (2000)), one of the few algorithms that can be employed in the abdominal region.

Turning to the details of the normalisation technique, this algorithm tackles the normalisation
problem by examining a standard histogram for a set of contrasting images and comparing the
intensity of each image to the standard histogram. Many sources refer to this algorithm as a
piecewise (affine) histogram-based normalisation, where the standard histogram is learned by
demarcating predefined landmarks of interest.

For this study, the Nyul algorithm was adopted from (Reinhold et al., 2019) implementation.
The landmarks was defined as intensity percentiles at 2,10,20,. . . ,90,98 percent. The standard scale
set to have a predefined rangems

min = 0,ms
max = 100. The intensity values of the set of MR images

Ii were further mapped via following linear map:
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After the standard histogram was computed, the set of percentile {m2,m10,m20, . . . ,m90,m98}
was learned for every new image. These values were then used to segment the image into ten
non-overlapping deciles, which were further identified as Di,j = {x | mi ≤ I(x) < mj}, where
i, j ∈ {2, 10, 20, . . . , 90, 98} and restricting j to equal the next value in the set greater than i. Then,
piecewise linear mapping of the intensities, which were associated with these deciles to the cor-
responding decile on the standard scale landmarks, were performed. The normalised image was
then defined as

Inu =
⋃

i,j∈{2,10,20,...,90,98}i 6=j,i≤j+10

(
I(Di,j)−mi

mj −mi

)(
ms
j −ms

i

)
+ms

i . (4.3)

Finally, the outliers were clipped to the range [0,1]. Refer to Figure 4.8 for examples of MR slices
before and after the application of the Nyul normalisation.

N-peaks intensity normalisation for MR images. N-peaks is a normalisation technique re-
cently developed by Wallimann et al. (2022) at USZ. It is based on the idea that two masked tissues
and the background should have identical intensities across all images. This enables a consistent
physiological interpretation of the normalised images. The N-peaks normalisation is built simi-
larly to the Nyul normalisation method and approaches the normalisation task in two steps: in
the first place, it learns a standard histogram consisting of the N homogeneous tissue intensity
peaks; in the second place, the intensities of the individual images are mapped onto the standard
histogram. Tissue and body masks are required as prerequisites for the method.

Turning to the implementation details in this study, firstly, to find homogeneous areas for
each tissue mask provided, a gradient image was calculated for each 3D image volume, showing
the degree of local intensity change in each voxel. Then, for each voxel, a neighbourhood of
voxels with a distance of a certain radius or less from the voxel was selected. The default radius
parameter for 3D images were set to take into account the voxel itself and its 18 neighbours with
connectivity 2. Furthermore, in this selection, both the maximum value and the minimum value
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Figure 4.8: Nyul normalisation. The changes in intensities after Nyul normalisation are apparent
in the muscle tissue near the spine

of the intensities were calculated. The gradient was then defined as this local maximum minus
the local minimum. The example gradient image is shown in Figure 4.9.

Further on, the algorithm was applied on the level of the given tissue masks (liver, fat) and
background: each voxel was stored together with its intensity and its gradient value in the sorted
by gradient value flat array. The next steps were related to the main component of the algorithm,
which is the interplay between the two values (see Figure 4.10). The voxels, which were closer
to the minimum gradient value of a tissue, were then considered as a part of the homogeneous
region, while the voxels, which were closer to maximum gradient value, were discarded from
the normalisation due to its possibility contains artefacts. The proximity measure was based
on the difference between the Jensen-Shannon distance to the most homogeneous and the most
heterogeneous snippet (see Figure 4.11). The Jensen-Shannon distance between two probability
vectors p and q were defined in the following way:

JSD =

√
D(p ‖ m) +D(q ‖ m))

2
(4.4)

wherem is the pointwise mean of p and q andD is the Kullback-Leibler divergence. The intensity
peak for each homogeneous area was then determined based on the probability density function.
Concluding the first step, the mean intensity value around the peaks for each tissue mask (liver,
fat) in each 3D volume was stored in a data frame as a landmark and considered together with
the background value as the standard histogram consisting of the N homogeneous tissue intensity
peaks.

In the second step, the mean peak intensity of each tissue was treated as the target intensity.
The identified target intensities were then utilised as the basis for a linear normalisation in which
each baseline image intensity was transformed using the following equation, similar to the previ-
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(a) Input image (b) Its gradient

Figure 4.9: N-PEAKS NORMALISATION. The gradient is calculated for each image to find homogeneous
peaks in all provided tissue masks

ously described Nyul normalisation equation:

Inu =
⋃

i,j∈{background,liver,fat}

(
I(Di,j)−mi

mj −mi

)(
ms
j −ms

i

)
+ms

i (4.5)

To make the results comparable to the Nyul normalisation technique, after the linear transfor-
mation of the intensities, an outlier handling strategy was implemented based on 2 percentiles
from each side. Refer to Figure 4.12 for examples of tissue peak intensities detection. After the
outlier handling, the data was scaled to the range [0,1] in similar to the Nyul normalisation fash-
ion.

Min-max normalisation and intensity clipping for CT images CT images are characterised
by absolute intensity values as well as a wide range of intensities in bone tissue. Bone tissue inten-
sities can vary in the approximate range [200,3096] HU. The wide range of bone tissue intensities
results in ROI intensities concentrated in a very small area, whereas there may only be a few bone
voxels with intensities exceeding 1200 HU. This may adversely affect the performance of neural
networks.

Based on a meticulous manual examination, the decision was taken to clip the maximum
intensities of the CT images to 1200 and then to perform a min-max normalisation, scaling dCT
images to the range [0,1] as follows:

f(x) =
x−min(x)

max(x)−min(x)
(4.6)

where x and f(x) are the original and standardised intensities, respectively, and min(x) and max(x)
are the minimum and maximum image intensity values per patient, respectively.

Preparation of training, validation and test splits for different experimental settings. After
applying intensity normalisation methods, different subsets of data were generated to experimen-
tally test different research questions (RQs) to achieve the research objective, which are described
in detail in the next section.
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Figure 4.10: The schematic representation of sorted voxel arrays in N-peaks normalisation di-
vided by snippets. The snippet on the left side contains the most homogeneous voxels. The
intensities there must therefore correspond to the most homogeneous region in the mask. On the
other hand, the snippet at the very right contains the most inhomogeneous voxels. The intensities
it contains are therefore not defining a single peak

Figure 4.11: JSD in the N-peaks normalisation. For each snippet, the JSD to the most homogeneous
snippet is shown in blue. This value naturally starts at 0 on the left, as the snippet has a distance of
0 to itself. This value increases towards the right, as the homogeneous snippet is clearly different
from the inhomogeneous snippet. The JSD of each snippet to the most inhomogeneous snippet is
simultaneously shown in red. All voxels belonging to the area before the two lines cross (green
line) should contain only homogeneous tissue for the given mask

4.4 Experimental Objectives and Key Configurations
In this research, the main objective, which is to improve the current state of the art in DL tech-
niques by studying different architectures and ensembles, was achieved by conducting several
experiments with different research questions.

Experiment 1. DL architectures trained on paired vs unpaired data. The first experiment
was conducted to analyse the impact of the network architecture and its dataset alignment re-
quirement on the quality of the generated sCT.

RQ 1: Could NN architectures, trained in unpaired fashion, achieve similar performance as architec-
tures, requiring perfectly aligned image pairs in the abdominal area?

To this aim, pix2pix architecture, reproducing the configuration proposed by Isola et al. (see
Section 3.2) with U-net generator and PatchGAN discriminator, were trained in aligned fash-
ion, while CycleGAN and CUT, reproducing the configuration proposed by Zhu et al.2 using a
ResNet-based generators and PatchGAN discriminators, were trained in unpaired fashion. The

2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 4.12: N-peaks normalisation. The peak of liver intensity was detected correctly and covers
most of the liver area

(a) Paired data training (pix2pix) (b) Unpaired data training (CUT)

Figure 4.13: EXPERIMENT 1. Examples of the inputs and outputs of the NNs trained in different manners

examples of the different training routines are shown in Figure 4.13. The GANs were trained on
the axial 2D slices of the MR and dCT images. The intensities of the MR images were normalised
using the Nyul normalisation, and the CT images were normalised using the min-max normali-
sation, as described in Section 4.3. The detailed configuration sets for each network architecture
are available in Attachments A.1,A.2,A.3 and are referenced further as the default configurations.

Experiment 2. Role of the MR image preprocessing. The second experiment examines dif-
ferent approaches to MR data normalisation: histogram based versus biologically motivated in-
tensity normalisation methods.

RQ 2: Could biologically motivated normalisation methods improve the performance of NNs for sCT
generation by focusing on specific tissue intensity correction?

To answer this question for each of the NN architectures (pix2pix, CycleGAN, CUT), three
different networks were trained, where MR images were initially preprocessed with: Nyul inten-
sity normalisation; Nyul intensity normalisation + N4 bias field correction or N-peaks intensity
normalisation + N4 bias field correction. As in the first experiment, NNs were trained on ax-
ial two-dimensional slices. The previously mentioned default configurations for each network
architecture were exploited.
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Experiment 3. Role of the NN input-output channels configuration The third experiment
was to quantify the impact of different NN configurations, such as the number of input and out-
put channels.

RQ 3: Could a NN trained with the help of three adjacent 2D slices avoid 3D discontinuities in the area
of the abdomen, which is heavily affected by respiratory and peristaltic changes?

Figure 4.14: Schematic representation of the network configuration studied in Experiment 3, using
the end-to-end journey of Slice 2 (dark purple rectangle) of the resulting 3D volume as an exam-
ple. When testing the network, in the 2D approach, the real MR slice 2 image is passed to the
network as a single-channel input, and the sCT image of slice 2 is generated as a single-channel
output, which is further directly passed for the creation of a patient’s 3D DICOM volume and the
evaluation of the quality of the network training. In the pseudo3D approach employed in this
study, 3 sequential axial MR slices with stride 1 in the Z dimension are passed as three-channel
input, and the sCT images of 3 sequential axial slices are generated as three-channel output. Then,
in the Pseudo3D approach, two different strategies are evaluated for combining the results: based
on the center slice and the median of the matching sCT slices. In the center approach, for the final
evaluation, sCT slice 2 (dark purple rectangle) is taken from the middle slice of the output gener-
ated using three MR slices, where slice 2 was in the middle position (the NN pass is indicated by
light purple arrows). In the median approach, for the final evaluation, sCT slice 2 (dark purple
rectangle) is composed out of all NN passes, where all occurrences of MR slice 2 in the input are
taken from the matched output (all light purple output rectangles) and combined using a 1*1*3
median filter with the same weight for each slice position in the output.

To analyse the impact of network configurations on the spatial quality of the generated sCTs
for each of the NN architectures (pix2pix, CycleGAN, CUT), two different models were evalu-
ated. The first one was taken for comparison purposes from the first experiment carried out in
2D fashion (single axial slices as inputs and outputs); the second model was trained for this ex-
periment in a pseudo3D fashion (three adjacent axial slices as a NN input and three as an output
with one stride in z direction).

Furthermore, two various strategies for combining outputs were additionally evaluated for
pseudo3D models. The first considered only the central slice in the 3D output to finally create a
3D DICOM patient volume. In the second case, all output slices corresponding to the same in-
put two-dimensional slices were considered and further merged using a 1*1*3 median filter. The
schematic representation of all configurations is explained in greater detail in Figure 4.14. The
intensities of the MR images were normalised using the Nyul normalisation, and the CT images
were normalised using the min-max normalisation. Default configurations for each network ar-
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chitecture were applied, with the only difference being the number of input and output channels.
Experiment 4. Role of the different GAN objectives
The fourth experiment was conducted to determine the GAN objective best suited for sCT

generation.
RQ 4: Could different GAN objectives by improving the optimisation process result in a better quality

of generated sCTs?
To determine the impact of GAN objectives on output quality, two distinct GAN objectives

were evaluated: LSGAN and WSGAN-GP (see Section 3.1). The LSGAN objective used in the
pix2pix, CycleGAN and CUT architectures was taken for comparison from the first experiment,
as it is the default configuration in the implementation proposed by Zhu et al. 3. The choice of
this objective was motivated by the fact that it forces the generator to sample toward the deci-
sion boundary and affects the output performance positively. In order to implement WSGAN-GP
objective, which could help to gained improved stability of the optimisation process, especially
in terms of the generator optimisation, the default configuration − − gan_mode from the imple-
mentation proposed by Zhu et al. 3 was changed to wgangp at first. Then, gradient penalty (GP)
computation was employed to three architectures, following the gentle support of the authors
of the implementation 4. All other default configurations remained unchanged, including data
normalisation methods (Nyul for MR, min-max for dCT) and the 2D training approach.

Experiment 5. Influence of perceptual loss function
The fifth experiment examines the effect of the perceptual loss function in the pix2pix genera-

tor on the quality of SCT in the abdominal region, which is characterised by changes in the shape
and position of non-rigid organs and air pockets, as well as barely visible ribs in MR images.

RQ 5: Would using a perceptual loss function in generator instead of a per-pixel loss function help to
overcome the known problems in abdomen sCT generation: fuzzy organ boundaries and bone formation
errors?

The experiment was inspired by research of Hiasa et al., Lei et al., Kang et al., where the ap-
plied perceptual loss functions affected positively generation of synthetic CT images (see Section
3.5). The perceptual loss VGG19 used in this experiment was applied to explore the possibility of
achieving visually appealing anatomical detail using the pix2pix architecture. For this purpose,
the L1 per-pixel loss (see equation 3.6) was replaced by the VGG19 perceptual loss as follows:

ΘG,D = arg min
G

max
D

(LGAN (Gyx, Dy) + λLLperceptual
(Gyx)) (4.7)

where loss weight λ set to 10 and perceptual loss defined as the distance of features extracted
by pretrained on ImageNET VGG19 network layers Simonyan and Zisserman (2014) to learn the
high-frequency pixel distributions of images:

LLperceptual
(Gyx) =

W∑
a=1

H∑
b=1

[φi,j(I
y)a,b − φi,j(G(Ix))a,b]

2 (4.8)

where φi,j refers to the feature maps obtained from the j-th Convolution/ReLU pair before the
i-th maxpooling layer within the VGG19 network (Takano and Alaghband, 2020).

The components of the SPADE network implementing the VGG19 perceptual loss were used
in this experiment (Park et al., 2019). Since the VGG19 network was pretrained on RGB images,
the experiment was carried in pseudo3D fashion. All other default configurations remained un-
changed, including data normalisation methods (Nyul for MR, min-max for dCT). Afterwards,
the synthetic CTs generated using perceptual loss in pix2pix were compared with those gener-
ated using per-pixel loss in Experiment 3.

3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
4https://github.com/taesungp/contrastive-unpaired-translation/issues/121
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4.5 Evaluation Criteria
As described earlier, 17 MR-dCT image pairs were selected as the test set (see Section 4.2). To
evaluate the accuracy of image translation, both geometric accuracy and dosimetric accuracy were
assessed.

First, the output values of the generated sCT were linearly scaled to [-1024 HU, 1200 HU],
since the intensities of the dCT were initially clipped to this range before being passed to the NN.
Then, mean absolute error (MAE), mean square error (MSE), peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) between every slice of the sCT generated from the preprocessed MRI
and the dCT were calculated as follows:

MAE =
1

N

N∑
i=1

|sCTi − dCTi (4.9)

MSE =
1

N

N∑
i=1

(sCTi − dCT )2 (4.10)

PSNR = 20 · log10

(
MAX −MIN√

MSE

)
(4.11)

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.12)

where i is a pixel within the body contour, N is the total number of pixel within the body contour,
and MAX is the maximum pixel value and MIN is the minimum pixel value of the reference
image, µx and µy are the averages of x and y respectively, σ2

x and σ2
y are the variances of x and

y respectively, σxy is the covariance of x and y. c1 = (k1L)2 and c2 = (k2L)2 are two variables
to stabilize the division with weak denominator, L is the dynamic range of the pixel-values, k1 =
0.01 and k2 = 0.03 by default. In addition, the MAE was calculated in two further areas: bone
regions and body contour without air pockets. The masks for the bone regions were obtained
by thresholding for dCT (x>250 HU). The mask for the body contour without air pockets was
obtained by thresholding separately for dCT and sCT (x<-400 HU) and subsequently multiplying
the obtained masks.

Additionally, Fréchet inception distance (FID),a measure widely used in studies on GANs
proposed by Heusel et al. (2017), was calculated. This metric employs Inception v3 model’s last
pooling layer to map real and generated images into a feature space (Seitzer, 2020). Then, the
Fréchet distance, also referred to a Wasserstein metric, is computed. Intuitively, if the generated
images are realistic, they should have similar statistics as real images, and their FID value will be
low.

Finally, for the three best-performing models of each architecture (pix2pix, CycleGAN, CUT)
the dosimetric accuracy was analyzed based on the MRIdian treatment planning system used for
the Co-60 ViewRay system, similar to (Kang et al., 2021). For this purpose, the generated 2D sCT
slices were transformed back to 3D DICOM volumes (resized and rescaled back to the original
if appropriate). The dose distribution was computed by replacing dCT with sCT images under
the same beam parameters as the original dCT treatment plan. The Monte Carlo simulation with
magnetic-field correction was performed to calculate the dose distribution. To compare the dose
distributions estimated using the sCT and dCT, several dose-volume histogram (DVH) parame-
ters, such as D2, Dmean, D95 and D98 for PTV and D2 for one of the OAR (stomach, duodenum,
bowel, spinal cord) with the highest prescribed dose as well as Dmean for liver were computed
(see Section 2.4). In order to evaluate the uniformity and conformality of the sCT-based dose
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distribution plan, the absolute difference to original plan in Gy and in % were calculated in the
following way:

Difference =
sCTdose − dCTdose

dCTdose
(4.13)

For each DVH parameter the mean and standard deviation (SD) across all evaluated plans was
also reported.
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Results

5.1 Experiment 1. DL architectures trained on paired
versus unpaired data

RQ 1: Could NN architectures, trained in unpaired fashion, achieve similar performance as architectures,
requiring perfectly aligned image pairs in the abdominal area?

In order to evaluate the influence of the different GAN architectures trained on paired and
unpaired data, respectively, the results of sCT generation by a 2D pix2pix (trained on paired
datasets), CycleGAN and CUT (both trained on unpaired datasets) were compared based on ge-
ometric evaluation metrics (see Table 5.1) as well as on visual outcome analysis (see Figure 5.1).

Figure 5.1: Experiment 1. From left to right: original MR image; pix2pix-generated synthetic CT,
CycleGAN-generated synthetic CT, CUT-generated synthetic CT (all - fine-tuned); original de-
formed computed tomography for a patient (high MAE case). From top to bottom: axial, coronal,
sagital views. The rectangles highlight some areas of interest for reconstruction quality: yellow -
air pockets, blue - ribs, red - liver edge

The synthetic CT images generated through architectures, trained in unpaired fashion, show
better quality in dense structures such as the spine and ribs (blue rectangles), with CycleGAN
showing the best results in visual outcome. Geometric analysis confirms this finding, showing
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pix2pix CycleGAN CUT
Baseline Finetuned Baseline Finetuned Baseline Finetuned

MAE 75.27 ±21.64 73.78 ±20.91 76.14±19.78 73.43±20.54 94.12 ±16.54 90.20 ± 17.85
MAE(excl. air) 54.87 ±12.10 53.67 ±11.84 55.96 ±12.58 52.27 ±11.73 65.69 ±11.73 61.99 ±10.53
MAE (bones) 318.40 ±61 320.04 ±57 282.81 ± 40 269.39 ± 47 291.01 ±53 302.34 ±54
MSE 2575.45±639 2501.48±618 2242.89±639 2280.46±722 3319.79±636 2994.31±598
PSNR 38.26 ±1.04 38.39 ±1.03 38.90±1.17 38.86±1.25 37.11 ±0.81 37.57 ±0.85
SSIM 0.982 ±0.010 0.983 ±0.009 0.980±0.009 0.982±0.008 0.975 ±0.008 0.976 ±0.008
FID 80.05 78.36 30.66 29.52 37.40 42.26

Table 5.1: Results of the first experiments. Baseline models trained with default parameters. In the
fine-tuned models learning rate and pool size were changed as following: in pix2pix (lr=0.0001,
pool_size=50), in CycleGAN (lr=0.00001, pool_size=80) and in CUT (lr=0.001, pool_size=80)

that CycleGAN has the lowest FID, which is coated to detect contrasts, and MAE in the bone
region. However, the ribs produced with CUT are more closely resembling the original MR than
those produced with CycleGAN, while ribs on pix2pix sCTs are almost not discernible. It is im-
portant to note that bony anatomy has a major impact on the calculation of radiation dose, so
accurate identification of bone intensities on CT images can have significant clinical implications.

Additional inconsistencies in the position of air pockets between MR and CT may have a
negative impact on the dose estimation. Hence, if any are present due to timing differences in
acquisition, these discrepancies are further resolved by manual correction of the electron density
maps. As it could be seen from the visual outcome, the location and size of the air pockets (yellow
rectangles) are more precise on the synthetic CT images produced by models trained in unpaired
fashion (CycleGAN, CUT). Moreover, the quality of the air pocket generation is more stable on
synthetic CT generated by CycleGAN and CUT than on the dCT. It demonstrates the superiority
of these models over deformable registration methods and DL-based methods, which require
perfectly aligned image pairs.

Nevertheless, it can be seen that CUT struggles to produce sharp organ edges (red rectangles),
which is also confirmed by the analysis of the geometric indices: MAE and MSE are higher than
for CycleGAN and for pix2pix, while PSNR and SSIM are simultaneously lower. Sharp organ
boundaries are important for visual image quality and contouring, yet have much less impact on
dose calculation than the average pixel intensity difference in the beam path to the tumour. It is
evident that the overall "brightness" level between between pix2pix synthetic CT images and the
original dCT images is much closer than between CycleGAN and CUT images. This results in
low MAE and high SSIM. However, due to the blurring of intensity in the bone area, CycleGAN
outperforms pix2pix in the overall geometric estimate.

Overall, answering the research question, both architectures, trained in unpaired fashion,
score better in the bone and air pocket areas. Unpaired CycleGAN outperform pix2pix, an ar-
chitecture trained in a paired manner, on most metrics. However, the average intensity level has
room for improvement in architectures trained in unpaired fashion.

5.2 Experiment 2. Role of the MR image prepro-
cessing

RQ 2: Could biologically motivated normalisation methods improve the performance of NNs for sCT gen-
eration by focusing on specific tissue intensity correction?

The results of the second experiment show that the different normalisation methods have sub-
stantial effects on the performance of models in curtain areas (see Figures 5.2, A.7 for the visual
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assessment and Tables 5.2, 5.3, 5.4 for the geometrical metrics). For instance, as would be ex-
pected, N peak normalisation applied together with N4 bias field correction gives the clearest
liver edge (correspond to red arrow area on dCT), although it gives a slightly worse performance
in the spine (blue arrow), compared to Nyul normalisation without bias field correction. Further-
more, one can see that the CUT and CycleGAN models in such a case have drawn an extra rib
(green arrow, filled) that has no correspondence on the original MR.

When looking at soft tissue regions, such as the region above the left kidney (yellow rect-
angle), the sCT generation by both methods, when N4 bias field correction was applied, seems
less accurate. The CycleGAN model, trained on the images, which were preprocessed with the
histogram-based normalisation method (Nyul) without bias field correction (N4), demonstrates
the best results.

Figure 5.2: Experiment 2. From top to bottom (all - coronal view): real MR image; sCT gener-
ated based on: Nyul normalisation applied to input MRI, Nyul and N4 bias field correction, N
peaks and N4 original deformed computed tomography for a patient (high MAE case). From
left to right: pix2pix (fine-tuned,lr=0.0001, pool_size=50 ), CycleGAN (fine-tuned, lr=0.00001,
pool_size=80), CUT (default parameters). The shapes highlight some areas of interest for recon-
struction quality in dCT as the example: yellow rectangle - soft tissue above left kidney, blue
arrow - spine, red - liver edge, green - rib, purple - arm bone

One of the most valuable results of this experiment is the positive interaction found between
CUT architecture and N-peaks preprocessing method. N-peaks, which belongs to biologically
motivated normalisation methods, produces gains in almost all metrics for the CUT model, eg.
the mean MAE (± standard deviation) decreased from 94.12 ± 16.54 to 84.45 ± 18.96 HU. Visual
analysis shows that for complex cases, the N peak + N4 normalisation method used as prepro-
cessing steps for the CUT model helps to solve the average "brightness" problem mentioned in
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pix2pix*

Nyul Nyul
N4

N peaks
N4

MAE 73.78 ±20.91 76.33±18.97 71.72 ±18.04
MAE (excl. air) 53.67 ±11.84 55.89±10.84 53.61 ±10.91
MAE (bones) 320.04 ±57 307.77 ±56 321.53 ±53
MSE 2501.48±618 2677.38±671 2511.39±632
PSNR 38.39 ±1.03 38.10 ±1.04 38.38 ±1.05
SSIM 0.983 ±0.009 0.982±0.008 0.984 ±0.008
FID 78.36 78.32 83.89

Table 5.2: Results of the second experiments. Pix2pix (*fine-tuned,lr=0.0001,pool_size=50). Bold
metric values show the best performance within an architecture, while blue metric values show
the best performance across all architectures

CycleGAN*

Nyul Nyul
N4

N peaks
N4

MAE 73.43±20.54 74.43±18.90 77.39±21.33
MAE (excl. air) 52.27 ±11.73 51.87 ±11.21 54.46 ±12.65
MAE (bones) 269.39 ± 47 274.29±57 273.92±52
MSE 2280.46±722 2343.01±660 2378.42±708
PSNR 38.86±1.25 38.70±1.15 38.66±1.21
SSIM 0.982±0.008 0.981±0.009 0.980±0.009
FID 29.52 31.01 32.14

Table 5.3: Results of the second experiments. CycleGAN (*fine-tuned, lr=0.00001, pool_size=80).
Bold metric values show the best performance within an architecture, while bold and blue metric
values show the best performance across all architectures

the previous experiment.
Summarising the experimental results, it can be said that normalisation methods have a sig-

nificant impact on sCT generation outputs with positive attitude in different regions. The best
normalisation method have to be chosen for each architecture individually.

5.3 Experiment 3. Role of the NN input-output chan-
nels configuration

RQ 3: Could a NN trained with the help of three adjacent 2D slices avoid 3D discontinuities in the area of
the abdomen, which is heavily affected by respiratory and peristaltic changes?

Evaluation of the geometrical metrics, provided for the third experiment in Tables 5.5,5.6,5.7,
exhibits the superior accuracy of the proposed pseudo3D approach with median slice merging
strategy of outputs. The only exceptions are PSNR, which are higher for all models trained in 2D
fashion, and FID for CycleGAN and CUT.

Based on visual assessment (see Figure 5.3), the pseudo3D approach with a median slices fu-
sion strategy conveys rough anatomy and preserves structural details in 3D, such as the backbone
structure (blue arrow). In CycleGAN, however, the bone structure is smoothed over several lay-
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CUT

Nyul Nyul
N4

N peaks
N4

MAE 94.12 ±16.54 91.67± 16.48 84.45 ±18.96
MAE (excl. air) 65.69 ±11.73 63.59 ±10.47 62.07±11.38
MAE (bones) 291.01 ±53 312.23 ±49 297.66 ± 52
MSE 3319.79±636 3047.51±574 2989.59±635
PSNR 37.11 ±0.81 37.48 ±0.83 37.58 ±0.91
SSIM 0.975 ±0.008 0.975±0.008 0.979 ±0.008
FID 37.40 36.78 40.49

Table 5.4: Results of the second experiments. CUT trained with default parameters. Bold metric
values show the best performance within an architecture, while bold and blue metric values show
the best performance across all architectures (here - none)

pix2pix
2D pseudo3D, median pseudo3D, central

MAE 75.3±22 71.0±20 72.94 ±20.22
MAE (excl. air) 54.9±12 51.8 ±11 53.60 ±10.84
MAE (bones) 318.4±61 293.8±57 291.50 ±58
MSE 2575 20323 20913
PSNR 38.26 29.63 29.50
SSIM 0.982 0.984 0.983
FID 80.05 70.21 71.58

Table 5.5: Results of the third experiments. Pix2pix trained with default parameters. Bold metric
values show the best performance within an architecture, while bold and blue metric values show
the best performance across all architectures

ers, when pseudo3D approach is applied. This is also reflected in the significant increase in the
MSE metric, which severely penalises large errors, while MAE assesses the overall impact.

CycleGAN and CUT models are able to capture peristaltic changes better, when trained in
pseudo3D fashion, while a certain amount of fuzziness is observed for pix2pix. The CUT model
retained the location of the air pocket (green arrow) better than all models.

Answering the research question, pseudo3D models have proven helpful in avoiding 3D dis-
continuities. The strategy of outputs fusion, based on the median, improves the overall quality of
generated sCT images.

5.4 Experiment 4. Role of the different GAN objec-
tives

RQ 4: Could different GAN objectives by improving the optimisation process result in a better quality of
generated sCTs?

Figure 5.4 shows resulting sCT slices after inference employing the WGAN-GP objectives in
three models. As can be seen, the models trained in unpaired fashion fail to learn CT-specific
features, and both CUT and CycleGAN show some air hollows, which is reflected in the metrics
shown in Table 5.8. On the positive note, one can notice that CycleGAN and CUT preserve sharp-
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CycleGAN
2D pseudo3D, median pseudo3D, central

MAE 76.1±20 75.5±20 78.5 ±20
MAE (excl. air) 56.0±13 55.5±12 58.4 ±13
MAE (bones) 282.8±40 275.8±40 279.5 ±40
MSE 2242.9 22992 24143
PSNR 38.9 28.97 28.75
SSIM 0.980 0.982 0.980
FID 30.66 38.69 37.74

Table 5.6: Results of the third experiments. CycleGAN trained with default parameters. Bold met-
ric values show the best performance within an architecture, while bold and blue metric values
show the best performance across all architectures

CUT
2D pseudo3D, median pseudo3D, central

MAE 94.1±17 84.5±17 87.8 ±17
MAE (excl. air) 65.7±12 58.7±12 61.4 ±12
MAE (bones) 291.0±53 282.9±52 288.5 ±50
MSE 3320 27792 29327
PSNR 37.11 28.03 27.79
SSIM 0.975 0.978 0.977
FID 37.40 39.93 39.75

Table 5.7: Results of the third experiments. CUT trained with default parameters. Bold metric
values show the best performance within an architecture, while bold and blue metric values show
the best performance across all architectures (here - none)
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Figure 5.3: Experiment 3. From top to bottom (all - sagital view): real MR image; sCT generated
trained in: 2D approach, pseudo3D and merged based on median, pseudo3D and merged based
on central slice; original deformed computed tomography for a patient (high MAE case). From
left to right: pix2pix, CycleGAN, CUT (all - default parameters, Nyul intensity normalisation).
The shapes highlight some areas of interest for reconstruction quality in dCT as the example:
yellow rectangle - soft tissue around stomach, blue arrow - spine, red - thoracic wall, green - air
pocket

ness of the structural elements, while training with WGAN-GP. At the same time, WGAN-GP-
based pix2pix delivers acceptable results, with some additional blurring compared to LSGAN.

Ultimately, the results of the four experiments show that the LSGAN objective is more robust
in GAN training and tends to find the optimal solution, seen at least in the current version of the
implementation.

5.5 Experiment 5. Influence of perceptual loss func-
tion

RQ 5: Would using a perceptual loss function in generator instead of a per-pixel loss function help to
overcome the known problems in abdomen sCT generation: fuzzy organ boundaries and bone formation
errors?

The sCT produced with the VGG19-based perceptual loss show similar performance to those
produced with the L1 loss, both in the visual comparison of the results (see Figure 5.5), where
VGG19 contributes with additional blurring in the bone region, and in the comparison of the
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Figure 5.4: Experiment 4. From left to right: original MR image; pix2pix-generated synthetic
CT, CycleGAN-generated synthetic CT, CUT-generated synthetic CT (all - default parameters,
WGAN-GP); original deformed computed tomography for a patient (high MAE case). From top
to bottom: axial, coronal, sagital views

pix2pix CycleGAN CUT
LSGAN WGAN-GP LSGAN WGAN-GP LSGAN WGAN-GP

MAE 75.3±22 71.0±20 76.1±20 149.6±21 94.1±17 166.5±24
MAE (excl. air) 54.9±12 51.8 ±11 56.0±13 132.2 ±15 65.7±12 142.4±13
MAE (bones) 318.4±61 323.5±55 282.8±40 455.1±87 291.0±53 448.1±89
MSE 2575 2388 2242.9 4770 3320 5115
PSNR 38.26 38.61 38.9 35.57 37.11 35.27
SSIM 0.982 0.983 0.980 0.967 0.975 0.961
FID 80.05 90.54 30.66 119.93 37.40 92.59

Table 5.8: Results of the fourth experiment. All models trained with default parameters. Bold
metric values show the best performance within an architecture

geometric metrics (see Table 5.9). As could be seen, a worse performance in the area of the bones
is shown with the default parameters of the training. It can be concluded that the perception loss
based on the VGG19, pretrained on ImageNET, does not help to overcome either fuzzy organs or
bone formation errors.

5.6 Dosimetric accuracy analysis
As final purpose of the study is to assess the clinical applicability of the DL-based methods, which
incorporate the cross-correlation of many parameters in the treatment planning process, the sCT-
based dose distribution plans for the best-performing models were further evaluated with the
help of MRIdian treatment planning system (see Figures 5.6, A.14, A.15, A.16) for all of the 17
patients from the test set. Model selection was based on geometrical metrics as well as on recon-
struction quality in the area of interest: organ boundaries, bones and overall soft tissue intensities.
The best performing models include: pix2pix trained in Pseudo3D with LSGAN objective and L1
loss, MR preprocessed with Nyul (see Table 5.5, MAE 71.0±20 HU); CycleGAN trained in 2D with
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Figure 5.5: Experiment 5. From left to right: original MR image; pix2pix-generated synthetic CT:
in 2D fashion with L1 loss, in pseudo3D fashion with L1 per-pixel loss, in pseudo3D fashion with
VGG19 perceptual loss; original deformed computed tomography for a patient (high MAE case).
From top to bottom: axial, coronal, sagital views. The shapes highlight some areas of interest for
reconstruction quality in dCT as the example: yellow rectangle - spine on axial view, blue arrow
- spine on coronal view, red - liver edge, green - rib

pix2pix, pseudo3D
L1 VGG19

MAE 71.0±20 72.5±20
MAE (excl. air) 51.8 ±11 53.9 ±12
MAE (bones) 293.8±57 330.8±57
MSE 20323 20164
PSNR 29.63 29.61
SSIM 0.984 0.984
FID 70.21 68.91

Table 5.9: Results of the fifth experiment. Both models trained with default parameters. Bold
metric values show the best performance within an architecture

LSGAN objective and L1 loss, MR preprocessed with Nyul (see Table 5.1, MAE 73.4±21); and CUT
trained in 2D with LSGAN objective and L1 loss, MR preprocessed with N-peaks and N4 (see Ta-
ble 5.2, MAE 84.5 ±19). Box-plot analysis showing the dosimetric differences in % and Gy for
every DVH indicator (minimum, maximum, median, first and third quartiles) of the three best
models is shared between Figures 5.7 and 5.8, respectively. Mean and standard deviation (SD)
of differences are reported in the Table 5.10. The representative plans with low and high DVH
indicator differences could be found in Figures A.8, A.9.

The dosimetric accuracy analysis shows that, with the exception of a few outliers, the discrep-
ancies between the dose differences of sCT-based and original dCT-based plans are less than 1%
for most of the patients, demonstrating that the proposed DL-based sCT generation methods
may be considered clinically applicable for treatment planning in the abdominal area. More-
over, the model with the smallest differences, CycleGAN, demonstrates high uniformity and con-
cordance of dose distribution plans, with differences for all PTV DVH indicators of less than 0.5%
(less than 0.3 Gy) and the smallest standard deviation.
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DVH indicator pix2pix pix2pix cycleGAN cycleGAN CUT CUT
Diff, % Diff, Gy Diff, % Diff, Gy Diff, % Diff, Gy

PTV Dmean 0.33 (0.27) 0.15 (0.13) 0.32 (0.21) 0.13 (0.10) 0.40 (0.37) 0.17 (0.17)
PTV D2 0.33 (0.27) 0.18 (0.16) 0.44 (0.37) 0.20 (0.16) 0.51 (0.37) 0.25 (0.21)
PTV D95 0.53 (0.63) 0.17 (0.19) 0.38 (0.28) 0.13 (0.09) 0.44 (0.36) 0.15 (0.14)
PTV D98 0.57 (0.61) 0.18 (0.18) 0.48 (0.41) 0.14 (0.11) 0.53 (0.38) 0.16 (0.11)
OAR D2* 0.57 (0.60) 0.10 (0.10) 0.56 (0.46) 0.09 (0.07) 0.65 (0.60) 0.10 (0.09)
Liver Dmean* 0.29 (0.30) 0.04 (0.04) 0.31 (0.25) 0.04 (0.04) 0.30 (0.30) 0.04 (0.04)

Table 5.10: Dosimetric accuracy evaluation of the best performing models. Mean values of dose
difference calculated between sCT and dCT for all the DVH indicators considered, calculated
based on the absolute dose value differences, which were reported in Gy and %. For each DVH
parameter the standard deviation (SD) is reported. Bold values shows the lowest difference across
all architectures. * Among the OARs for this study, duodenum, stomach, bowel, spinal cord are
considered, only the organ with the highest D2 dose were considered for each patient. While com-
puting the mean and standard deviation for liver Dmean, doses below below 5Gy were excluded

Figure 5.6: Comparison of dose volume histogram for PTV and OARs between sCT generated by
CycleGAN (low MAE case) shown on left and original dCT shown on right. Dashed line indicates
the result of dCT and the solid line shows the result of sCT methods
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Figure 5.7: The box plot analysis of the DVH differences in %. The red line shows a threshold
for clinical applicability. Among the OARs for this study, duodenum, stomach, bowel, spinal
cord are considered, only the organ with the highest D2 dose were considered for each patient.
While computing the mean and standard deviation for liver Dmean, doses below below 5Gy were
excluded

Figure 5.8: The box plot analysis of the DVH differences in Gy. Among the OARs for this study,
duodenum, stomach, bowel, spinal cord are considered, only the organ with the highest D2 dose
were considered for each patient. While computing the mean and standard deviation for liver
Dmean, doses below below 5Gy were excluded





Chapter 6

Discussion

The present study is aimed to devise deep learning approaches that are able to generate realistic
sCT images from MR images. The study provides additional insights into their generalisation
capabilities and the quality evaluation of sCT-based dose distribution plans, a critical prior for
the clinical implementation of new technological advances.

Experimental results show that DL models trained in the unpaired fashion (CycleGAN, CUT)
could achieve comparable results to the paired trained pix2pix model, with better performance
in generating air pockets and bones and slightly more moderate in generating average intensities
of soft tissues. Although it is impossible to state which normalisation method - histogram-based
or biologically motivated - is ultimately best for preprocessing across all GAN models, it has
been found that the novel N-peaks normalization helps to achieve significantly better quality
of sCT generation for CUT models. Moreover, a pseudo3D configuration for neural networks
coupled with the median fusion strategy is confirmed as another key component to help avoid
three-dimensional discontinuities in an abdominal region highly susceptible to respiratory and
peristaltic changes, and LSGAN with L1 loss may be favoured as more robust objective for the
GAN training .

In terms of image accuracy, the geometric evaluation of the model performance obtained in
this study and the comparison as a reference for the current state-of-the-art ( Cusumano et al.
(2020), Kang et al. (2021)) in abdominal sCT generated from 0.35 MRI for MRgRT are presented in
Table 6.1. As can be seen from the table, both pix2pix and CycleGAN configured in this study out-
perform the state of the art in all metrics except MAE (bone), which was reported by Cusumano
et al. For pix2pix, the mean MAE within the body contour was dropped by 7 HU, which corre-
sponds to an improvement of around 9.8%, compare to the results of our study, while comparing
the performance of pix2pix from Cusumano et al. with our CycleGAN architecture corresponds
to a mean decrease in MAE by around 5 HU and 6.7%. The mean MAE reported by Kang et al.
for the CycleGAN architecture is difficult to compare with the results of this study because MAE,
MSE (and those PSNR) were both scaled to the number of voxels within the image, whereas in this
study the errors were scaled to the number of voxels within the body contour, which naturally
makes the MAE and PSNR numbers higher overall. However, even in such an setting, the Cycle-
GAN architecture used in this study could be seen to significantly outperform the results of Kang
et al. with an increase in SSIM of almost 7.6%, which corresponds to a significant image quality
improvement. The relative position of this study compared to others using DL-based methods to
generate sCT is shown in Figure 6.1. As it could be seen this study outperforms state-of-the art,
trained on low field magnetic resonance images. The studies showing better results have been
trained on higher field MR images.

A further comparison with the state-of-the-art, based on the dosimetric accuracy, (see table
6.2) reveals that the best performing model proposed in this study (CycleGAN) outperforms
the state-of-the-arts for all DVH indicators. Furthermore, the lower variability in the estimation
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Our results (73 patients in dataset) Cusumano et al.
60 patients

Kang et al.
90 patients*

pix2pix CycleGAN CUT pix2pix CycleGAN
MAE 71.0±20 73.43±20.54 84.45 ±18.96 78.71 ± 18.46 58.8 ± 4.4 ***
MAE (excl. air) 51.8 ±11 52.27 ±11.73 62.07±11.38
MAE (bones) 293.8±57 269.39 ± 47 297.66 ± 52 152.71±30.14
MSE 20323? 2280.46±722 2989.59±635
PSNR 29.63 38.86±1.25 37.58 ±0.91 26.3 ± 0.7***
SSIM 0.984 0.982±0.008 0.979 ±0.008 0.91 ± 0.01
FID 70.21 29.52 40.49

Table 6.1: Comparison of the state-of-the-art with the results of the our study based on the ge-
ometrical evaluation. * NN trained on patients who had pelvic (n = 24), thoracic (n = 24) and
abdominal (n = 24) cancer for the purpose of NN generalisability, results provided for abdominal
sCT test (n = 6). *** MAE and MSE within the body were scaled to the total number of image
voxels in the study by Kang et al., which differs from the method of our study where the error is
scaled to a much smaller number of voxels within the body contour

of DVH parameters for sCT plans is observed for all methods proposed in this study, compared
to state-of-the-arts.

Moreover, the compatibility of sCT-based plans, in which dose evaluation was performed
without correction for air pocket position change, compared to dCT-based plans, in which such
correction was applied in advance, shows that DL-based methods could eliminate costly work
for the clinicians while still providing dosimetric evaluation of high quality. The example of the
DL-produced sCTs, which capture the position of the air pockets well, can be seen in Figures 6.2,
A.10.

Although the CUT architecture, which was first applied to generate sCT in this study, shows
moderate performance based on the geometrical evaluation with MAE 84.5±19 HU, compared to
best performing pix2pix with MAE 71.0±20 HU and cycleGAN with MAE 73.43±20.54 HU, the re-
sults of the dosimetric accuracy reveals it high potential for further upgrade. The CUT model has
outperformed the results of the state-of-the-art CycleGAN model, proposed by Kang et al. (2021)
in all of the comparable metrics (PTV mean difference equals to 0.2 Gy versus 0.17 Gy , PTV D2 is
0.4 Gy versus 0.25 Gy and PTV D98 equals to 0.5 Gy versus 0.16 for the CycleGAN proposed by
Kang et al. (2021) and CUT from this research, respectively). Moreover, the additional motivation
for further CUT investigation is the fact that the current research showed that the model could be
successfully trained in unpaired manner, for which purpose more CT and MR data are available,
which are, however, not co-registered, and those, could not be used for pix2pix.

During the implementation different scenarios that might hinder the validity of the study
results were observed. Most of them, however, may be addressed and investigated in follow-up
studies.

One of the main concerns relates to the dataset formation. In contrast to most of the studies
(Cusumano et al., 2020; Kang et al., 2021; Klages et al., 2020) no manual exclusion of 3D volumes
was performed due to the low signal or lack of spatial integrity between MR and co-registered CT,
as well as significant peristaltic changes, large tumours or bone co-registration artefacts. More-
over, the lower quality images, such as those with a significant bias field (see real MR image in
Figure 5.3) or some acquisition artefacts (see Figures A.11, A.12), were retained in the dataset. All
of those facts contribute to removing the potential bias of a specific input quality may have on
training and generation of a robust model. However, all the CT and MR images used in the study
were acquired on the same devices and MR was acquired only with 0.35T magnetic field, which
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Our results (73 pat. in dataset):
Mean difference (SD) : for PTV below 0.5% (below 0.3 Gy) Related work (MR 0.35T)

pix2pix CycleGAN CUT
Pix2pix
Cusumano et al.
60 pat.

CycleGAN
Kang et al.
90 pat.**

DVH
indicator Diff, % Diff, Gy Diff, % Diff, Gy Diff, % Diff, Gy Diff Diff, Gy

PTV
Dmean 0.33 (0.27) 0.15 (0.13) 0.32 (0.21) 0.13 (0.10) 0.40 (0.37) 0.17 (0.17) -0.08 (0.22)Gy* 0.2

PTV D2 0.33 (0.27) 0.18 (0.16) 0.44 (0.37) 0.20 (0.16) 0.51 (0.37) 0.25 (0.21) -0.13 (0.3) Gy 0.4
PTV D95 0.53 (0.63) 0.17 (0.19) 0.38 (0.28) 0.13 (0.09) 0.44 (0.36) 0.15 (0.14) -0.28 (1.06) %
PTV D98 0.57 (0.61) 0.18 (0.18) 0.48 (0.41) 0.14 (0.11) 0.53 (0.38) 0.16 (0.11) -0.05 (0.23) Gy 0.5
OAR
D2*** 0.57 (0.60) 0.10 (0.10) 0.56 (0.46) 0.09 (0.07) 0.65 (0.60) 0.10 (0.09) -0.04 (0.23) Gy

Liver
Dmean*** 0.29 (0.30) 0.04 (0.04) 0.31 (0.25) 0.04 (0.04) 0.30 (0.30) 0.04 (0.04)

Table 6.2: Comparison of the state-of-the-art with the results of the our study based on the dosi-
metric accuracy evaluation. Mean values of dose difference calculated between sCT and dCT
for all the DVH indicators considered, calculated based on the absolute dose value differences,
which were reported in Gy for all the parameters as well as in percents. For each DVH parameter
the standard deviation (SD) is reported. The DVH difference for state-of-the-art is reported in
units they were reported in papers.*D50 is reported in original paper. ** NN trained on patients
who had pelvic (n = 24), thoracic (n = 24) and abdominal (n = 24) cancer for the purpose of NN
generalisability, results provided for abdominal sCT test (n = 6). *** Among the OARs for this
study, duodenum, stomach, bowel are considered, only the organ with the highest D2 dose were
considered for each patient. While computing the mean and standard deviation for liver Dmean,
doses below below 5Gy were excluded. In study by Cusumano et al. Duodenum/Bowel were
considered as OARs
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Figure 6.1: Mean absolute error (MAE) results for body structure between reference CT and sCT
generated with a deep learning method for studies including the brain, HN, liver, abdomen, and
pelvis. Each marker represent a study result. Star markers represent abdominal studies that have
been trained under conditions similar to this study (0.35T MR images). The study by Kang et al.
was not mapped due to lack of MAE figures within the body contour. It can be seen that there are
few studies in the abdominal region, with this study being superior to the state-of-the-art, based
on geometrical accuracy evaluation. Modified version taken from: Boulanger et al. (2021)

could cause lower model generalisation capability in case of employment of a more heteroge-
neous dataset. In order to solve the problem of sample variability, additional data augmentation
could be carried out. In addition, patients with metal implants were excluded. Therefore, fur-
ther investigation of the errors in the DL-based sCT generation specific to the mentioned patient
cohort is required.

Alongside the quality of the images produced, an important factor in sCT implementation in
clinical practice is the speed of sCT generation and the dosimetric calculation based on it: this
is particularly important in procedures such as MRgRT, where the patient is in the treatment
position waiting for the plan adjustment to be completed. Due to the time constraints of the
research, speed is beyond the scope of this thesis.

Another limitation is associated with the implementation of the preprocessing routine for ev-
ery model. The study has revealed the importance of MR preprocessing methods in the abdom-
inal region, with a potential sCT generation quality gain within the same DL model of about
10% in MAE mean (see results of N-peak N4 preprocessing (biologically motivated) compared to
Nyul preprocessing (histogram-based) method for CUT model in Table 5.4). This result goes in
line with the results of the largest studies related to sCT generation in the brain area on about 400
patients by Andres et al. (2020), where the white-stripe normalisation technique, which belongs to
the group of biologically motivated normalisation techniques, outperformed the histogram-based
normalisation with mean MAE head equals to 78 HU and 92 HU correspondingly. In the human
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(a) Original dCT (b) Generated sCT

Figure 6.2: AIR_OR STRUCTURE. The example of the original dCT and sCT generated by CycleGAN
coronal slices, overlaid with the air pocket delineated on original MR drawn in blue. The position of the air
pocket is better captured by the DL-based method for sCT generation

brain, the choice of tissues for normalisation (white matter, grey matter) and their automatic mask
delineation based on brain anatomy does not cause additional burden on the validity. At the same
time, no studies were found that focused on investigating the best preprocessing routine for gen-
erating abdominal sCT. For this reason, the choice of fat and liver tissue as landmarks for N-peaks
normalisation in this study could be crucial for evaluating the performance of the method due to
the different anatomy of the patients. Some of the patients in the study had almost no fat tis-
sue, only muscle, while in many others the presence of muscle tissue was minimal (examples are
shown in Figure 6.3). Therefore, when applied to the different populations, the algorithm may not
find the biological landmark for normalisation in some patients and the results may be different.
Besides, the fat masks for N-peaks normalisation were calculated based on the intensities of dCT
images, which means that the current technique can not be readily applied in practice if CT imag-
ing is completely excluded from the radiotherapy routine. The solution to this hurdle could lie
in adapting the various methods for MR-based automatic soft tissue segmentation in the abdom-
inal region, as it has been done with the fuzzy C-means (FCM) clustering algorithm (Hou et al.,
2021) or with graph cuts and image derived energies Christensen et al. (2017) or via DL-based ap-
proaches (Estrada et al., 2020). Finally, N4-Algorithm was applied as a step in the preprocessing
routine, as it was found that N-peak normalisation without it during the pilot trials is struggling
to identify correct tissue peaks due to the large variations in intensities of neighbouring pixels
within the intensities of a tissue. Therefore, the exploration and fine-tuning of techniques to cor-
recting bias fields is of interest, as they can strongly influence the results of biologically motivated
intensity normalisation.

In addition, the elimination or intensification of the CT intensity range clipping in the bone
region could be important if the preprocessing workflow for sCT generation would be applied to
another clinical task, such as CT reconstruction for orthopedic purposes (Hiasa et al., 2018).

The results of the third experiment, where the pseudo3D training approach showed better per-
formance than the median output merging strategy, especially in terms of the mean MAE value
of pix2pix and CUT for whole-body contours, which increased by 6 and 10%, respectively, could
be explained by the increase in the network perceptive field for each output pixel. Furthermore,
despite its blurring effect, the median filter seems to provide greater benefit by accumulating the
information from the largest number of slices compared to the poorer merging strategy based only
on the central slice. Since the Nyul normalisation method was used for all architectures for this
experiment, it is intriguing to find out if the synergies between the biologically motivated normal-
isation methods and the network configurations could yield an even higher overall quality scores.
The choice of whole slices as the spatial configuration for the experiment was motivated by the
expectation that for the network trained in an unpaired manner, especially for CUT, manipulat-
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(a) Almost no fat tissue (b) Minimal presence of muscle tissue

Figure 6.3: N-PEAKS NORMALIZATION CHALLENGES. The different physiological conditions of pa-
tients in the abdominal cavity make it difficult to select certain tissues for normalisation

ing mainly within the input-output pairs of the generator, would be enhanced by capturing the
contextual information from the whole image. Additionally, retaining the full image resolution
could decrease the time in the end-to-end flow for sCT-based dose evaluation. The results of the
experiment, though, showed the relevance of increasing the size of the receptive field for sCT gen-
eration tasks, which is consistent with the results of Klages et al. (2020), where the combination
of overlapping patches and multiple views was found to boost performance in the head and neck
area. Therefore, researching further configuration into NN operating the abdominal area, which
is known for its strong physiological changes compared to the other areas of cancer treatment, is
another matter of interest.

Concerning the results of the fourth experiment, which examined the different GAN objec-
tives, it is noticeable that WGAN-GP struggles to catch CT specific features compared to LSGAN.
First of all, although WGGAN-GP shows an improvement in performance for pix2pix, the Cycle-
GAN and CUT models both have difficulties. One could explain this by the higher computational
complexity due to the additional loss functions in the architectures that perform the training in
unpaired fashion. Due to the poor performance of WGAN models, the review of related work was
performed. It was found that training Wasserstein GANs with momentum-based optimisers such
as Adam, which was used in the default NN configuration for all experiments, becomes unstable.
This is justified because the criterion loss is highly unsteady, which meant that momentum-based
optimisers seemed to perform more poorly (Hunter, 2018). Another run of the experiment is
required to change the optimiser and tune the gradient penalty weights.

In the fifth experiment, the role of the perceptual loss function in the generator was evaluated.
A negligible reduction in geometric metrics was observed when L1 was replaced by the VGG-
19-based loss function. This could be due to the fact that the VGG19 used in the experiment was
trained on the ImageNet dataset, which was designed for use in visual object recognition research
and not for medical image analysis. However, the presence of blur, which is sometimes forgivable
in computer vision tasks, could be the reason for significant dosimetric differences. Solutions to
the current limitations include additional optimisation of the loss weight λ, training the network
on medical images, or introducing a different type of perceptual loss as suggested in the research
by (Hiasa et al., 2018; Lei et al., 2019; Kang et al., 2021)

Finally, the performance of the GAN architectures specifically selected for research could be
strongly influenced by the loss function and the combination of the different layers that compose
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the generator and discriminator (Spadea et al., 2021). Regarding the DL models used in research
for generating sCTs, the problem that has not yet been solved is the quality of bone restoration
and, in particular, the generation of ribs, which may be among the organs at risk if the tumour
is located close to them. The proposed attention-gate model for medical imaging as one of the
modifications of the U-net, which automatically learns to focus on target structures of different
shapes and sizes, especially by highlighting some silent features, seems to be feasible for solving
this problem ?. This model has been successfully applied to the large CT abdominal datasets for
multi-class image segmentation, which deserve to be evaluated for the possibility of establishing
reliable quality of DL-based sCT generation and its potential clinical appliance.





Chapter 7

Conclusion and Outlook

In the thesis, we have addressed the non-trivial question of synthetic CT generation for MRgRT
with the particular focus on the sparsely studied area of the abdomen. The CUT architecture,
trained in an unpaired fashion, was applied for the first time for the sCT generation task among
with other state-of-the-art architectures, such as CycleGAN and Pix2pix. The models were trained
on the clinical dataset, consisting of 76 patients, that was prepared for the purposes of this study.
Optimisation of the various parameters, such as different preprocessing techniques (including the
novel biologically motivated N-peaks normalisation), networks configuration and training objec-
tives, helped to achieve generation of the high quality synthetic CT images, which were evaluated
using geometric and dosimetric accuracy metrics. The proposed DL-based sCT generation meth-
ods may be considered clinically applicable for treatment planning in the abdominal area, with
the mean DVH indicator discrepancies with the original dCT-based plan of less than 1% for all
models and less than 0.5% for all PTV DVH indicators for the best performing model. The best
performing model proposed in this study (CycleGAN) outperforms the state-of-the-arts for all
DVH indicators, having PTV Dmean difference with original plan within 0.32%, as well as for
most geometrical metrics. Generating the bone tissue with high accuracy remains a problem. Fu-
ture work includes extending the applied network configuration by searching for the synergistic
effect over the best found parameters, incorporating additional study data for unpaired training,
and applying an attention-based model to generate sCT for the abdomen and other anatomical
locations.
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Listing A.1: Pix2Pix Model default configuration

----------------- Options ---------------

batch_size: 1

beta1: 0.5

beta2: 0.999

checkpoints_dir: ./checkpoints

continue_train: False

crop_size: 256

dataset_mode: aligned

direction: BtoA [default: AtoB]

display_env: main

display_freq: 400

display_id: None

display_ncols: 4

display_port: 8097

display_server: http://localhost

display_winsize: 256

easy_label: experiment_name

epoch: latest

epoch_count: 1

evaluation_freq: 5000

gan_mode: vanilla

gpu_ids: 0

init_gain: 0.02

init_type: xavier

input_nc: 1 [default: 3]

isTrain: True [default: None]

lambda_L1: 100.0

lr: 0.0002

lr_decay_iters: 50

lr_policy: linear

max_dataset_size: inf

model: pix2pix [default: cut]

n_epochs: 100 [default: 200]

n_epochs_decay: 0 [default: 200]



68 Appendix A. Attachements

n_layers_D: 3

name: nifti_pix2pix_lsgan_2d_baseline [default: experiment_name]

ndf: 64

netD: basic

netG: unet_256

ngf: 64

no_antialias: False

no_antialias_up: False

no_dropout: True

no_flip: False

no_html: False

norm: batch

normD: instance

normG: instance

num_threads: 4

output_nc: 1 [default: 3]

phase: train

pool_size: 0

preprocess: none [default: resize_and_crop]

pretrained_name: None

print_freq: 100

random_scale_max: 3.0

save_by_iter: False

save_epoch_freq: 5

save_latest_freq: 5000

serial_batches: False

stylegan2_G_num_downsampling: 1

suffix:

update_html_freq: 1000

verbose: False

----------------- End -------------------

dataset [AlignedDataset]

model [Pix2PixModel]

optimiser [Adam]

Listing A.2: CycleGAN Model default configuration

----------------- Options ---------------

batch_size: 1

beta1: 0.5

beta2: 0.999

checkpoints_dir: ./checkpoints

continue_train: False

crop_size: 256

dataset_mode: unaligned

direction: AtoB

display_env: main

display_freq: 400

display_id: None
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display_ncols: 4

display_port: 8097

display_server: http://localhost

display_winsize: 256

easy_label: experiment_name

epoch: latest

epoch_count: 1

evaluation_freq: 5000

gan_mode: lsgan

gpu_ids: 0

init_gain: 0.02

init_type: xavier

input_nc: 1 [default: 3]

isTrain: True [default: None]

lambda_A: 10.0

lambda_B: 10.0

lambda_identity: 0.5

lr: 0.0002

lr_decay_iters: 50

lr_policy: linear

max_dataset_size: inf

model: cycle_gan [default: cut]

n_epochs: 100 [default: 200]

n_epochs_decay: 0 [default: 200]

n_layers_D: 3

ndf: 64

netD: basic

netG: resnet_9blocks

ngf: 64

no_antialias: False

no_antialias_up: False

no_dropout: True

no_flip: False

no_html: False

normD: instance

normG: instance

num_threads: 4

output_nc: 1 [default: 3]

phase: train

pool_size: 50

preprocess: none [default: resize_and_crop]

pretrained_name: None

print_freq: 100

random_scale_max: 3.0

save_by_iter: False

save_epoch_freq: 5

save_latest_freq: 5000

serial_batches: False
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stylegan2_G_num_downsampling: 1

suffix:

update_html_freq: 1000

verbose: False

----------------- End -------------------

dataset [UnalignedDataset]

model [CycleGANModel]

optimiser [Adam]

Listing A.3: CUT Model default configuration

----------------- Options ---------------

CUT_mode: CUT

batch_size: 1

beta1: 0.5

beta2: 0.999

checkpoints_dir: ./checkpoints

continue_train: False

crop_size: 256

dataset_mode: unaligned

direction: AtoB

display_env: main

display_freq: 400

display_id: None

display_ncols: 4

display_port: 8097

display_server: http://localhost

display_winsize: 256

easy_label: experiment_name

epoch: latest

epoch_count: 1

evaluation_freq: 5000

flip_equivariance: False

gan_mode: lsgan

gpu_ids: 0

init_gain: 0.02

init_type: xavier

input_nc: 1 [default: 3]

isTrain: True [default: None]

lambda_GAN: 1.0

lambda_NCE: 1.0

lr: 0.0002

lr_decay_iters: 50

lr_policy: linear

max_dataset_size: inf

model: cut

n_epochs: 100 [default: 200]

n_epochs_decay: 0 [default: 200]

n_layers_D: 3
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nce_T: 0.07

nce_idt: True

nce_includes_all_negatives_from_minibatch: False

nce_layers: 0,4,8,12,16

ndf: 64

netD: basic

netF: mlp_sample

netF_nc: 256

netG: resnet_9blocks

ngf: 64

no_antialias: False

no_antialias_up: False

no_dropout: True

no_flip: False

no_html: False

normD: instance

normG: instance

num_patches: 256

num_threads: 4

output_nc: 1 [default: 3]

phase: train

pool_size: 0

preprocess: none [default: resize_and_crop]

pretrained_name: None

print_freq: 100

random_scale_max: 3.0

save_by_iter: False

save_epoch_freq: 5

save_latest_freq: 5000

serial_batches: False

stylegan2_G_num_downsampling: 1

suffix:

update_html_freq: 1000

verbose: False

----------------- End -------------------

dataset [UnalignedDataset]

model [CUTModel]

optimiser [Adam]
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Figure A.1: MRI exams Total Per 1 000 inhabitants, 2009 – 2019 [https://data.oecd.org/]

Figure A.2: Doctors Total Per 1 000 inhabitants, 2009 – 2019 [https://data.oecd.org/]
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Figure A.3: Example applications using GANs. (a) Left side shows the noise contaminated low
dose CT and right side shows the denoised CT that well preserved the low contrast regions in the
liver Yi and Babyn (2018). (b) Left side shows the MR image and right side shows the synthesized
corresponding CT. Bone structures were well delineated in the generated CT image Wolterink
et al. (2017). (c) The generated retinal fundus image have the exact vessel structures as depicted
in the left vessel map Costa et al. (2017). (d) Randomly generated skin lesion from random noise Yi
et al. (2019). (e) An organ (lung and heart) segmentation example on adult chest X-ray. The shapes
of lung and heart are regulated by the adversarial loss Dai et al. (2018). (f) The third column shows
the domain adapted brain lesion segmentation result on SWI sequence without training with the
corresponding manual annotation Kamnitsas et al. (2017). (g) Abnormality detection of optical
coherence tomography images of the retina Schlegl et al. (2017). Source: Yi et al. Yi et al. (2019)

Figure A.4: Schematic representation of the CycleGAN ResNet-based generator. In contrast to the
U-Net configuration, the ResNet has a "flatter" architecture, as the skip connections are retained
in the transformation part. The first step, encoding, consists of extracting features from an image,
which is done using a convolutional network. The goal of the transformation is to retain the
features of the original input, such as the size and shape of the object, so ResNet is well suited for
this type of transformation. Decoding is similar to the U-net and aims to reproduce the image in
the same size.Source: CycleGAN blog Hardik Bansal (2017)
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Figure A.5: Example of a patient with multiple tumours. PTV highlighted in red

Figure A.6: Example of a patient with the largest tumour among the patients selected for the
study. PTV highlighted in red
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(a) pix2pix (b) CycleGAN (c) CUT

Figure A.7: EXPERIMENT 2. From left to right: original MR image; sCT, CycleGAN-generated synthetic
CT, CUT-generated synthetic CT (all - fine-tuned); original de- formed computed tomography for a patient
(high MAE case). From top to bottom: axial, coronal, sagital views. The rectangles highlight some areas of
interest for reconstruction quality: yellow - air pockets, blue - ribs, red - liver edge
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Figure A.8: Examples of the high DVH differences in sCT-based dosimetric evaluation. Solid lines
shows the original dCT plan on DVH. Dotted line shows the sCT-based plan. Red lines shows the
dose estimation for PTV

Figure A.9: Examples of the low DVH differences in sCT-based dosimetric evaluation. Solid lines
shows the original dCT plan on DVH. Dotted line shows the sCT-based plan. Red lines shows the
dose estimation for PTV
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Figure A.10: The example of the sCT generated by CycleGAN, overlaid with the air pocket delini-
ated on original MR (AIR_OR structure) drawn in blue. The position of the air pocket is well
captured by the DL-based method for sCT generation

Figure A.11: Example of a low quality MR input (the presence of stripes along the entire liver,
including the area close to the tumour, highlighted in red) affecting the formation of the generated
sCT and leading to a difference in DVH parameters exceeding 1%



78 Appendix A. Attachements

Figure A.12: Example of a low quality MR input (red arrow shows the artefact of the acquisition)

Figure A.13: Train and test set separation, represented by age and gender



79

Figure A.14: Comparison of dose volume histogram for PTV and OARs between sCT generated
by pix2pix (low MAE case) shown on left and original dCT shown on right. Dashed line indicates
the result of dCT and the solid line shows the result of sCT methods
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Figure A.15: Comparison of dose volume histogram for PTV and OARs between sCT generated
by CycleGAN (low MAE case) shown on left and original dCT shown on right. Dashed line
indicates the result of dCT and the solid line shows the result of sCT methods
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Figure A.16: Comparison of dose volume histogram for PTV and OARs between sCT generated
by CUT (low MAE case) shown on left and original dCT shown on right. Dashed line indicates
the result of dCT and the solid line shows the result of sCT methods
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4.14 Schematic representation of the network configuration studied in Experiment 3,
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5.1 Experiment 1. From left to right: original MR image; pix2pix-generated synthetic
CT, CycleGAN-generated synthetic CT, CUT-generated synthetic CT (all - fine-
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tissue around stomach, blue arrow - spine, red - thoracic wall, green - air pocket . . 51
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A.4 Schematic representation of the CycleGAN ResNet-based generator. In contrast to
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