
Creation of a Dataset Modeling the
System Calls of Spectrum Sensors

Affected by Malware

Ramon Solo de Zaldivar
Zurich, Switzerland

Student ID: 18-708-552

Supervisor: Dr. Alberto Huertas Celdran, Jan von der Assen
Date of Submission: April 18, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis
Communication Systems Group (CSG)
Department of Informatics (IFI)
University of Zurich
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland
URL: http://www.csg.uzh.ch/

Zusammenfassung

Die zunehmende Nutzung von IoT-Geräten bringt zahlreiche neue Anwendungsfälle mit
sich. Von der Gesundheitsfürsorge über die Standortverfolgung bis hin zu Prozessautoma-
tisierung und Crowdsensing werden IoT-Geräte mehr denn je eingesetzt. Aufgrund dessen
wächst die Sorge um die Cybersicherheit, da das System zu einem begehrten Ziel für Cy-
berangreifer wurde. Durch ihre weitreichende Verwendung können IoT-Geräte Zugang zu
einer Vielzahl von Daten haben, was sie zu einem attraktiven Ziel für Cyberkriminelle
macht. Diese Geräte bieten keine Unterstützung von herkömmlicher Sicherheitssoftware
und sind deshalb nur unzureichend gesichert. Sie sind das Ziel verschiedener Arten von
Malware, Botnetzen und Backdoors sowie auch Rootkits und.

Eine praktikable Möglichkeit, diese Cybersicherheitsprobleme zu lösen und gezielte Malware-
Angriffe zu verhindern, sind Einbruchmeldesysteme (IDSs). Herkömmliche IDSs sind je-
doch nicht fähig neue unbekannte Malware-Angriffe zu erkennen, die auch als Zero-Day-
Angriffe bekannt sind. Aus diesem Grund setzen neue Forschungen stark auf Machine
Learning (ML) und Deep Learning (DL) basierte IDSs. Eine Schlüsselkomponente, um die
Wirksamkeit dieser IDS zu bestimmen, ist ein hochwertiger Datensatz, der das Verhalten
eines Geräts bei normalem Verhalten und auch das Verhalten bei neuartiger Kompri-
mittierung durch Malware enthält und mit dem das ML- oder DL-basierte IDS trainiert
werden kann. Ein ML- oder DL-basiertes IDS mit einem hochwertigen Datensatz ist sta-
tistisch gesehen besser geeignet, neue Malware zu erkennen. Trotz der Bedeutung dieser
Datensätze gibt es nur wenige von hâoherer QualitÃ¤t, die das interne Verhalten von
IoT-Geräten im Normalzustand und bei Angriffen durch Zero-Day-Angriffe wie Botnets
und Backdoors modellieren.

Infolge dieser Einschränkung zielt diese Arbeit darauf ab, einen Qualitätsdatensatz zu
erstellen, der das interne Verhalten eines IoT-Geräts sowohl im Normalbetrieb als auch
bei einem Angriff genau darstellt. Um dies zu erreichen, werden die Systemaufrufe des
IoT-Geräts, in diesem Fall ein ElectroSense-Sensor, bei normalem Verhalten überwacht,
gesammelt, bereinigt und in einem zentralen Verzeichnis gespeichert. Anschliessend wird
das Gerät mit aktueller Malware infiziert, welche die IoT-Geräte angreift. Hierfür wird ein
Bashlite-Botnet, das Thetick-Backdoor, dem Bdvl-Rootkit und einem Ransomware-Proof-
of-Concept benutzt, worauf im Anschluss der Überwachungs-, Erfassungs- und Speicher-
prozess wiederholt wird. Die Infektionen erfolgen sequentiell, d. h. das Gerät wird nicht
mit mehr als einer Malware gleichzeitig infiziert. Der generierte Datensatz zeigt norma-
les und anormales Verhalten auf, welches durch die verschiedenen Malwares klassifiziert
wird. Abschliessend werden die Sequenzen und Häufigkeiten der Systemaufrufe statistisch
ausgewertet.

i

ii

Abstract

The growing usage of IoT devices brings in itself multiple different new use cases. From
healthcare, location tracking to process automations and crowdsensing, IoT devices are
being used more than ever. In parallel there has been a growing cybersecurity concern, as
IoT devices are becoming a desirable target for cyber attackers. IoT devices, depending on
their purpose can have access to large amounts of data which makes them an attractive
target for cyber criminals. To further this issue, these devices are poorly secured and
inherently, as they are resource constrained, can not support conventional cybersecurity
software. IoT devices have been the targets of different kinds of malware, from botnets
and backdoors to rootkits, ransomwares and others.

A feasible way to sever these cyber security concerns and prevent these targeted malware
attacks from happening, is with the help of Intrusion Detection Systems (IDSs). Never-
theless, traditional IDSs are powerless when it comes to detecting new unknown malware
attacks, other wise known as zero day attacks. For this reason, new research is relying
heavily on Machine Learning (ML) and Deep Learning (DL) decision engine based IDSs.
A key component that determines the efficacy of these IDSs is a quality dataset, contain-
ing the behavior of a device under normal behavior and also the behavior when it has
been compromised by novel malware, with which the ML or DL based IDS can be trained.
A ML or DL based IDS with a quality dataset is then statistically better suited to detect
novel malware. In spite of the importance of these datasets, quality datasets, especially
ones modelling the internal behavior of IoT devices in a normal state and when under
attack by zero day attacks such as botnets, backdoors and others, are scarce.

In wake of this limitation, this thesis aims to create a quality dataset that accurately
represents the internal behavior of an IoT device, both when it is functioning normally
and when it is under attack. In order to accomplish this, the system calls of the IoT device,
which in this specific case is an ElectroSense sensor, are monitored under normal behavior,
gathered, cleaned and stored in a centralized directory. Then, the device is infected with
current malware affecting IoT devices, such as the bashlite botnet, thetick backdoor, bdvl
rootkit and a ransomware proof of concept and the monitoring process is repeated for
each malware. The infections are sequential, meaning that the device is not infected with
more than one malware at a time. Finally the generated dataset contains normal and
anomalous behavior classified by malware. It is then evaluated through analyzing the
sequences and frequencies of the system calls statistically.

iii

iv

Acknowledgments

I would like to extend a warm thank you to my supervisors Dr. Alberto Huertas Celdran
and Jan Von der Assen for their guidance and insightful inputs during my thesis. Our
meetings and discussions gave me a clear perspective of the road map for this thesis.

I would also like to thank and acknowledge the ones closest to me for supporting me
unconditionally throughout this thesis.

Further, I would to express my gratitude to Prof. Dr. Burkhard Stiller and the whole
Communication Systems Group (CSG) of the University of Zurich for allowing me to
complete this challenging and rewarding thesis at their research group.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 3

1.3 Thesis Outline . 3

2 Background 5

2.1 Device Fingerprinting . 5

2.2 System Calls . 5

2.3 System call Pre-Processing . 6

2.4 Malware . 8

2.4.1 Botnet . 8

2.4.2 Rootkits . 9

2.4.3 Backdoors . 10

2.4.4 Ransomware . 10

vii

viii CONTENTS

3 Related Work 13

3.1 Datasets modeling device behaviour . 13

3.1.1 Network Datasets . 13

3.1.2 Host Datasets . 15

3.2 Intrusion Detection Systems . 16

4 Creation of a System Call based Dataset 19

4.1 ElectroSense Scenario . 19

4.2 System Call Monitoring Process . 20

4.2.1 Architecture . 20

4.3 Malware affecting ElectroSense . 24

4.3.1 Bashlite . 24

4.3.2 Bdvl . 25

4.3.3 Thetick . 26

4.3.4 RansomwarePoC . 28

4.4 Datasets creation . 29

5 Evaluation 31

5.1 Results . 31

5.1.1 Thetick . 36

5.1.2 Bashlite . 38

5.1.3 Bdvl . 40

5.1.4 RansomwarePoC . 43

5.1.5 Comparing Malware . 45

6 Summary, Conclusions and Future Work 47

6.1 Summary and Conclusions . 47

6.2 Future Work . 48

Bibliography 49

CONTENTS ix

Abbreviations 57

Glossary 59

List of Figures 59

List of Tables 62

A Installation Guidelines 65

A.1 Botnets . 65

A.1.1 Bashlite . 65

A.2 Rootkits . 66

A.2.1 Bedevil (bdvl) . 66

A.3 Backdoors . 66

A.3.1 theTick . 66

A.4 Ransomware . 67

A.4.1 RansomwarePoC . 67

B Contents of the ZIP file 69

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

The ever-growing demand and usage of Internet-of-Things (IoT) devices are enabling many
new and multi faced use cases, such as crowdsensing. Crowdsensing takes advantage of
spread out IoT devices to gather data and send it to a crowdsensing platform where the
collected data is aggregated, processed and analyzed. At the same time, this growing
usage of IoT devices and the large amounts of data being gathered by them, makes these
devices more attractive for cyber attackers. Thus, there has been a growing cybersecurity
concern affecting the integrity, availability and confidentiality of the sensitive data that
is sensed, processed and stored by these IoT devices. In view of the fact that IoT devices
are cheap and resource-constrained, they do not hold the computing capacity necessary to
support state of the art security software to fend off malicious attacks. This vulnerability
can have major negative consequences and monetary implications in case of a data breach
[2].

ElectroSense, a crowdsensing platform dedicated to sensing and analysing the radio fre-
quency spectrum, relies on Raspberry Pis attached to a software defined radio (sdr) fron-
tend and an antenna to collect the data [74]. Raspberry Pis are single-board computers
that are cheap and can be used as IoT devices [3]. The ElectroSense network consists of
these Raspberry Pis acting as sensors, that collect the data which is then sent to the Elec-
troSense backend. The ElectroSense backend runs different algorithms on the gathered
data and offers its results to the users via API [74]. A high level overview of the network
is illustrated in Figure 1.1. ElectroSense provides multiple use cases. From retrieving the
electrosmog measurements, optimizing indoor networks, to helping governmental entities
enforce spectrum regulations [74]. As a consequence of these use cases mentioned above
and all the other areas in which IoT devices are being implemented, there is a growing
necessity to make these devices as secure as possible. IoT devices, as mentioned before,
are naturally not as secure as other devices, due to their simple setup and resource con-
straints. Further, a report from 2017 [4] stated that multiple IoT devices manufactures
release devices with default credentials, some of which are hard coded and can not be

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: ElectroSense Network

changed. These security flaws combined, make IoT devices an attractive target for cyber-
security attacks. For this reason, there is a need to bolster the security of these devices
to prevent future compromise.

Traditionally, cybersecurity systems used to detect intrusions provoked by heterogeneous
malware, by relying on signature databases. This approach of comparing the signature of
a program with the signatures of the malware database has become inefficient, as today,
attackers are fully aware of these databases and they purposely modify the malware to
ensure that their signatures are different from the ones stored in these databases. These
traditional cybersecurity systems are not able to detect new malware variants or families,
also known as zero-day attacks as their signatures are not found in the databases [19].

Currently, the trend to avoid this inefficiency has been the usage of classifiers and anomaly
detectors based on Machine Learning (ML) and Deep Learning (DL) [8, 9, 10]. Nonethe-
less, there are still multiple open challenges to create accurate models that are able to
detect and classify malware in a timely manner. One of the open challenges is the creation
of precise datasets modeling the effects on the internal behavior of resource limited de-
vices while they are under attack from more recent, sophisticated and dangerous malware
families. These datasets would then be used to train decision engines that could effec-
tively recognize that a device is under attack in a timely manner [5]. Most of the existing
literature and datasets however, dealing with resource-constrained devices and anomalies
produced by malware do not model the devices’ internal behavior, but rather focus on
their network communications, thus, being useless for particular malware families. Some
malware families like backdoors, rootkits and ransomware are undetectable over the net-
work, as their exploits compromise a device and not a network. By not creating datasets
that revolve around gathering data of the internal behaviour of the devices under attack
by these malware, it leaves them even more vulnerable to these types of attacks. This
highlights the importance of creating datasets that model the internal behaviour of these
resource-constrained devices. An issue that further underlines the importance of these
datasets, is that existing datasets are obsolete, since they do not consider recent malware
affecting resource-constrained devices. Also, because these IoT devices, in this case more
specifically spectrum sensors, can not use current security measures, it is important to
have a dataset modelling the internal behavior so they can be then used together with
ML or DL to prevent cyberattacks to happen or at least minimize the consequences.

1.2. DESCRIPTION OF WORK 3

1.2 Description of Work

This work focuses on addressing the challenges outlined above by creating a novel dataset
modeling the system calls of a resource-constrained device while infected with different
relevant and recent cyberattacks affecting data privacy, availability and integrity. The
target device that will be used for testing in this work is a Raspberry Pi, which is part of
the ElectroSense IoT crowdsensing network. The system calls of the test device will be
monitored while under attack of malware such as backdoors, botnets, rootkits and ran-
somwares and also while the device is operating normally. Therefore, this thesis involves
the following key aspects:

• Research, analyse and select most suitable approach to monitor system calls of a
Raspberry Pi running a Linux based OS without impacting the performance of its
dedicated function.

• An analysis of different malware families affecting IoT devices. Comparing different
malware types such as backdoors, botnets, rootkits and ransomwares and under-
standing how they work and how they affect the ElectroSense sensor.

• Selection and execution of one vector per malware family on the target device.

• Design, implement and validate a script that monitors and gathers the system calls
of the spectrum sensor used in this work.

• The creation of a dataset modeling the internal behavior of the ElectroSense sensor
while it is operating normally and while it is under attack from the different mal-
ware vectors. The dataset contains a subset of datasets each containing the behavior
monitored during different malware attacks. Each dataset has as features, the ab-
solute time at which a specific system call was executed, the process that executed
it, as well as the process identification number (PID) and the system call name.

• Validation of the dataset through a statistical analysis involving system call fre-
quency and n-gram frequency for n = 2.

1.3 Thesis Outline

The outline of this work is as follows. Chapter 2 provides a the necessary background
knowledge to understand the work done in this thesis. Chapter 3 reviews work previously
done related to existing datasets and different IDSs. Then, Chapter 4 highlights the
system call gathering and monitoring approach proposed in this work. It also depicts the
architecture of the monitoring script, as well as the whole environment setup in which
the data is collected. Subsequently, chapter 5 presents the scripts developed in order to
analyzes and review the gathered results statistically and evaluates the results. Finally,
this work ends with Chapter 6 with a summary and conclusion of the work done and a
future work outlook.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

This chapter covers all the necessary information needed to understand the work that
was done in this thesis. Firstly, it covers device fingerprinting. Secondly, it presents a
definition of system calls. Thereafter, it elaborates on different pre processing methods
used for system calls. Finally, this chapter closes with expanding on malware affecting
IoT devices.

2.1 Device Fingerprinting

The goal of device fingerprinting is to establish a fingerprint, also referred to as a base
line, of a devices behavior to be able to compare and understand the behavior of the
device when it is operating normally and when it has been compromised [6]. Different
data produced by the device such as resource usage, hardware events registered through
the hardware performance counters(HPCs), system calls, software signatures, network
communication and the data collected through the devices sensors can be used to create
a devices are some of the possible ways to create a behavioral fingerprint of a device
[19]. In the case of IoT devices, generating these behavioral fingerprints is a challenge,
especially because of the multitude of devices produced by multiple manufacturers, each
with their own protocols and procedures [6]. System calls allow for the creation of OS-
based behavioral device fingerprints [20].

2.2 System Calls

System calls are defined as the interaction between user programs and the kernel of the OS
[81]. System calls are the link between user mode and kernel mode. They are used when a
process or program needs to hand over information to the kernel or request resources [7].
In a Linux environment, system calls provide the necessary interface for an application to
communicate with the Linux Kernel [11].

5

6 CHAPTER 2. BACKGROUND

2.3 System call Pre-Processing

The previous sections discussed behavioral fingerprinting and the serviceability of system
calls in creating an accurate behavioral base line for a device. This section explores
different system call pre-processing methods, which are used to represent the system calls
in a way that not only statistical information can be inferred from them but also, to be
able to feed this data to ML or DL based IDSs in order to train them to more accurately
and promptly detect zero day attacks. methods that are used for intrusion detection
systems. This section focuses on the frequency, sequence and graphs of system calls.

Frequency based approaches rely on the calculating the frequency of occurrences when
compared to other system calls. Liao and Vemuri [21], for example, treat all system calls
generated by a program as single ”words”. These words then build a single array of system
calls, which they refer to as ”document”. Thereafter, text analysis models such as the k-
Nearest Neighbour (KNN) ML algorithm can be applied to train an IDS [21]. Another
frequency based method, used to extract features out of a system call sequence is the
N-gram vector. Xu et al. [76] define an N-gram as a finite sequence n of system calls of
length n. With the parameter L being the number of unique system calls and n being
the the length of a contiguous sequence of system calls, for any given system call trace
there exist Ln different n-grams. Together with the support vector machine classifier
and various system call graphs created with the n-gram data, 87.3% of classification
accuracy was achieved [76]. Furthermore, after thorough investigation, Tan et al. [77]
concluded for datasets UNM [22] and ADFA-LD [68] a 6-gram and a 7-gram provide the
best performance for those datasets respectively [77] [78]. In conjunction with the N-gram
algorithm, the sliding window method with window size n mostly used to iterate over the
whole system call trace to then generate n-grams of system calls [81].

In contrast, another set of methods are based on using the sequence of system calls.
One of these algorithms is known as sequence time-delay embedding (stide) [40]. This
method firstly, removes all parameters from the system calls to reduce complexity and
computational resource and secondly, enumerates all unique adjoining sequences of system
calls of a predefined length [40]. Stide uses the sliding window algorithm across each trace
and adds each unique sequence to a separate database, where they are stored as trees for
performance reasons [40]. Pairing stide with a Hidden Markov Model (HMM) classifier
delivered 96.9% detection accuracy [40]. Furthermore, Dymshits et al. [38] designed a
compact format where sequence of system calls are transformed into time constrained
count vectors, which were then used by long short-term memory (LSTM) and recurring
neural network (RNN) classifiers to deliver a detection rate between 90% and 93%.

A further method to pre-process system calls is by presenting them as graphs. Mpanti
et al. [41] propose a method in which the system calls generated by a single program
are portrayed as direct acyclic dependency graphs. The vertices symbolize and the edges
symbolize the system calls and their flow respectively. Next, a more abstract version
of these graphs is produced by grouping system calls by functionality. Lastly, temporal
evolution graphs are created in order to detect and classify anomalous behavior [41]. A
further instance of system call graphs is presented in the work by Grimmer et al. [42].
They portray each programs system calls n-grams sequences as a graph with the vertices

2.3. SYSTEM CALL PRE-PROCESSING 7

signifying a system call and the edges the transition from one system call to another [42].
Thereafter a broader probability graph is derived from all graphs. The frequencies of
each transition and also the probability of the transition are calculated and added to the
edges. These probability graphs are then feed to classifiers such as nearest neighbor and
k-centers [42].

Table 2.1 below, presents an overview of the different pre-processing methods. The meth-
ods and works listed are separated through a double horizontal line to signify a change in
pre-processing method.

Table 2.1: System call Pre-Processing & Classifiers

Pre-processing
Approach

Approach in
detail

Classifiers Devices Malware
Detected

Detection
Accu-
racy

[21] Frequency Each program
produces a ”doc-
ument” of sys-
tem calls

KNN - DoS,
Buffer
overflow

91.7%

[76] Frequency N-gram SVM Genymotion
android
emulator

- 87.3%

[40] Sequence stide, T-stide HMM Unix de-
vices

Buffer
overflow,
Trojan
backdoor

96.9%

[38] Sequence 10 second sys-
tem call count
vectors

LSTM &
RNN

Linux de-
vices

- 90-93%

[39] Sequence Create a feature
vector using n-
gram with n =
1,2,3

Random For-
rest (RF),
Native Bayes
(NB) & SVM

IoT MIPS
running
Linux

DDoS,
Bashlite,
Hajime

Up to
97.44%

[41] Graphs Temporal evolu-
tion graphs

Cover &
delta simi-
larity metrics

- - -

[42] Graphs Portray n-grams
as graphs with
probability &
frequency edges

KNN &
k-centers

- Java &
Linux me-
terpreter

80%

[37] Graphs Converting sys-
tem calls into
a system call
graph

Convolutional
Neural Net-
work
(CNN)

QEMU
ARM

IoT
Botnets

97.22%

8 CHAPTER 2. BACKGROUND

2.4 Malware

Spectrum sensors, due to their resource limitations, are vulnerable to an array of different
malware. This work covers Botnets, Backdoors, Ransomware and Rootkits as they are
among the most common and harmful cyber-attacks for IoT ElectroSense sensors. Table
2.2 provides an overview of the different malware vectors that exist for the malware families
mentioned above. The table is subdivided into malware families which are denoted by
two horizontal lines. Also the table lists the behavior and main objective of each malware
vector.

2.4.1 Botnet

A botnet is a network of infected devices, also called bots, that can be remotely controlled
by an attacker, which is often referred to as botmaster. The infected devices can also be
IoT devices. The attacker makes use of the botnet through an interface called Command
and Control (C&C) server. Through the C&C server, the botmaster can to carry out
attacks such as a distributed denial of service (DDoS) [24]. The C&C server is responsible
for broadcasting the attackers commands to the infected devices and maintaining their
connections. The anonymity gained through this interface and the fact that the infected
bots are distributed across the world are the key aspects of what makes botnets so attrac-
tive for cybercriminals. The DDoS attack is one of the most common attacks launched
from a botnet. DDoS attacks try to interfere and interrupt either a user’s connectivity by
exhausting network and transport layers or user services by depleting the server resources
[35]. Figure 2.1 illustrates the general infrastructure of such an attack. Other more ad-
vanced botnets like for example Mirai [29] offer extra features. For example, the bots in
a Mirai botnet not only carry out commands specified from the botmaster through the
C&C, but they also actively search for more devices that can be added to the botnet and
report back to a report server which then ensures that these new devices are added to the
botnet by executing the bot compiled to the corresponding architecture [12]

2.4. MALWARE 9

Figure 2.1: Botnet DDoS Attack

2.4.2 Rootkits

Rootkits are a set of software tools that are generally used by an attacker to obtain
administrative privileges, also referred to as root privileges, indefinitely and hide their
malicious activity on a target device [36]. Besides gaining root privileges of the target
system, the main goals of a rootkit is granting unauthorized access to the target device,
hiding it’s functions and processes, either by cleaning system logs, modifying system
commands and the operating system Kernel and ensuring control over the target system
even after rebooting [53]. Rootkits are generally classified in two groups. On the one hand,
LD PRELOAD, also called ”user mode rootkits”, take advantage of the LD PRELOAD
environment variable to inject ill natured libraries that overrides the actual libraries and
their functionality [17]. On the other hand, the other group is called Loadable Kernel
Module (LKM) rootkits. They modify where the pointers are directed to in system calls.
They can also abuse device drivers and kernel probes [17]. Rootkits are hard to detect,
nonetheless the inherent modification of how the functions behave creates a detectable
footprint in form of malicious code either in the user space or kernel space [17]. Moreover,
rootkits are often used to create backdoors in the target device. A visual representation of
how a user mode rootkit works and how it intercepts a call from a user space application
before it reaches the dynamic linker is provided in Figure 2.2 below. This interception
allows the rootkit to load its own code to the dynamic linker without the user nor the OS
noticing a change.

10 CHAPTER 2. BACKGROUND

Figure 2.2: User mode rootkit. Source: Adapted from [18]

2.4.3 Backdoors

Backdoors are a type of malware that allows for continuous legal or illegal access to a device
by bypassing system authentication and gaining root privileges [43] [13]. Legal access
because often times, backdoors are installed onto IoT devices by the company producing
them for debugging and security purposes [14]. These pre-installed backdoors can be
exploited by attackers. In addition, backdoors can be installed on a device through rootkits
or trojans [13]. Backdoors permit the attacker to then remotely execute commands on
the target device, launch a DDoS attack, access and retrieve system information and
confidential data. Moreover, backdoors serve as a gateway for other types of malware
being installed on the target device [13]. Ransomware and Spyware are among the malware
that can be installed through a backdoor. Also, backdoors allow the attacker to delete
data stored in the target device, reboot it and also include it in a botnet.

2.4.4 Ransomware

In a ransomware attack, the attacker infects a system and encrypts its data until the user
of the target system pays a ransom fee defined by the attacker [15]. There are different
sub types of ransomware. On the one hand, crypto ransomware encrypts important data
files from the target device. This type of ransomware targets mostly systems where
large amounts of data are located [16]. Generally, the attacker demands that the ransom
payment is paid in cryptocurrency or other method that is hard to trace [16]. Figure 2.3
depicts the workflow of crytp ransomware. This type or ransomware typically finds its
way through spam mail. On the other hand, the locker ransomware prevents the user
from accessing the infected machine entirely and also alters the way in which the IoT
device behaves in order to coax the victim into paying the ransom [16].

2.4. MALWARE 11

Figure 2.3: Crypto Ransomware attack. Source: Adapted from [15]

Table 2.2: Malware types and specific vectors

Vector Malware
Family

Behavior Goals

backdoor[31] Backdoors Server sends commands to
IP of raspberrypi on given
port and extract files from
the raspberrypi to the at-
tackers device

Open a shell on the target
device

httpBackdoor
[30]

Backdoors Retrieve system informa-
tion like SSH keys through
GET requests and execute
command line commands
through POST requests.

Gather system information
and execute commands

thetick[32] Backdoors C&C structure where the
attacker can send com-
mands to multiple clients

Open shell on target device

Bashlite[25][24] Botnet Grow botnet through brute
forcing telnet credentials

Grow botnet for DDoS at-
tack

Mirai[29][24] Botnet Allows bots to scan for vul-
nerable devices. Resolves
C&Cs IP addresses using
DNS. Communication with
binary protocol

DDoS attack which opera-
tor may also sell through
web interface

12 CHAPTER 2. BACKGROUND

Persirai [23] Botnet Access webcam interface
through TCP port

Tries to get access to the
webcam related router
through plug and play
(UPnP) vulnerability to
download and execute the
malware binaries

Hajime [23] Botnet Similar infection method to
Mirai but makes use of Bit-
Torrent DHT protocol for
distributed communications

Every message is encrypted
and signed using public and
private keys.

BrickerBot
[23]

Botnet Uses SSH default creden-
tials and known vulnerabili-
ties to gain access to the de-
vice

Attempts a permanent
denial of service either
through defacing a device
firmware, erasing all files
and reconfiguring network
parameters

Ransomware-
PoC [34]

Ransomware Generates AES key which is
encrypted by the attackers
RSA public key

Encrypts target device di-
rectories with AES key

EKANS[33] Ransomware Scan domain for controllers
to compromise

Encrypt files and display
ransom note

Bdvl[27] Rootkit Preload Hidden backdoors, keylog-
ging and gaining access to
passwords and files

Diamorphine
[28]

Rootkit LKM Hide high CPU usage by
hooking read() and sysinfo()
syscalls. Also has the ability
to hide/unhide any process

Beurk[26] Rootkit Preload Hidding backdoor clients,
files and directories. Also
real time log clean-up

Chapter 3

Related Work

This chapter discusses the literature related to this thesis. Firstly, an overview of the
existing behavioral datasets that have been created over the years to train different In-
trusion Detection Systems (IDSs) is provided. Secondly, an overview of different types of
IDSs is presented.

3.1 Datasets modeling device behaviour

With the rise of IoT usage it has now become more important than ever to understand
the internal behavior of these devices when they are under attack and control of different
types of malware to be able to take action accordingly. This is where datasets and IDSs
come into play. This section discusses an array of datasets, both network and host based,
used to train different IDS. First it reviews multiple network based datasets and then it
transitions to explore host based datasets.

3.1.1 Network Datasets

Network based datasets focus on storing the network generated data of the intercom-
munication between devices in a network. They contain mostly transfer protocol data
generated by protocols such as HTTPS, HTTP, FTP and others.

The Center of Applied Internet Data Analysis (CAIDA) organization has created multiple
datasets from 2002 to 2016. On of these datasets is the CAIDA DDOS Attack from 2007,
which contains almost an hour of DDoS attack generated traffic traces which have been
anonymized [55]. One of the limitations of this dataset is that normal non-attack traffic
is not present, making the dataset an inaccurate and asymmetric representation of real
world network flows [55] [56].

Produced over a seven-day period in 2012 by the Information Security Center of Excellence
(ISCX) from the University of New Brunswick (UNB) the ISCXIDS2012 is a dataset that

13

14 CHAPTER 3. RELATED WORK

contains regular and irregular network traffic [63]. The dataset is comprised of multiple
alpha and beta profiles. The alpha-profiles contain descriptions of attack scenarios and
the beta-profiles describe distributions and behaviors of different entities such as packet
sizes of different protocols [57]. These profiles are then used to generate attacks and re-
alistic network traffic. Attack scenarios like HTTP denial of service, IRC (Internet Relay
Chat) DDoS and brute force SSH and network protocols like HTTP, IMAP and SMTP
can be found in the beta-profiles [52, 57]. Drawbacks of the ISCXIDS2012 dataset are
the limited traffic protocols and the absence of HTTPS, which accounts to nearly 70%
of current network traffic [63]. To make up for these limitations the Canadian Institute
for Cybersecurity dataset (CICIDS2017) was released. The beta-profile for this dataset
is comprised of not only the protocols contained in ISCXIDS2012 but also the broadly
used HTTPS network protocol [52]. The Alpha-profiles are composed of brute force,
heart-bleed, botnet, DDoS, web and infiltration attacks targeted at different Windows
and Ubuntu based operating system servers and computers [52]. Shortcomings of this
dataset include high class imbalance, which if used for training of a classifier, induces
lower accuracy and higher false alarm rates [62]. Also as per Panigrahi et al. [62] the CI-
CIDS2017 dataset has ”[...] 288602 instances having missing class label and 203 instances
having missing information.”.

Moreover the dataset CSE-CIC-IDS2018, a collaborative effort between the Communi-
cations Security Establishment (CSE) and the CIC, is an update to the CICIDS2017
dataset that is much larger and contains over 16 Million instances of simulated network
traffic [66]. Nevertheless, both the CSE-CIC-IDS2018 and CICIDS2017 datasets have
drawbacks, such as high class imbalance which results in low detection accuracy and a
high false positive rate [66].

The KDD Cup 1999 dataset (KDD) [50], created by Stolfo et al. [49], is based on 7 weeks
of network traffic raw tcpdump data provided by the 1998 DARPA Intrusion Detection
Evaluation Program [64]. The dataset contains traces of simulated attacks of the likes
of DoS, unauthorized remote access, user-to-root privilege escalation and probing attacks
[49]. Tavallaee et. al. [48] investigated the shortcomings of this dataset and found
that, apart from it all being synthetic data that does not resemble the real world, due
to the large amounts of redundancy present in the dataset causes learning algorithms to
be biased, in a way that it decreases the probability of discovering harmful attacks over
the network. Another inherent problem of the KDD dataset is that the network attack
taxonomies are not well defined, there is no concrete threshold of what is classified as an
attack and what not [48].

To solve some of the issues of the KDD the Network Security Laboratory (NSL) KDD
dataset was created. The NSL KDD dataset does not contain redundancy in the training
set, causing the classifiers to not be biased towards more frequent traces [51]. Also, there
is no duplication of records in the test set, consequently bettering the performance of the
learners [51].

The Defense Advanced Research Agency (DARPA) commissioned Linconln Laboratory
1999 dataset is an artificially created dataset used to benchmark intrusion detection sys-
tems [45]. The dataset was designed to resemble both the network traffic and host audit
logs generated by an US Air Force base [44]. The network traffic was generated through

3.1. DATASETS MODELING DEVICE BEHAVIOUR 15

automata-based programming that simulated network behavior different users such as
secretaries, system administrators, programmers, attackers and other users [46]. It con-
tains three weeks of training and two weeks of test data with 58 attack types, all executed
against UNIX and Windows NT hosts [44]. The dataset contains different DoS attacks,
multiple user-to-root attacks and root-to-user attacks [46]. The major drawback of this
dataset, as Brown et al. [47] point out, is that the real life network behavior differs from
the one portrayed in the dataset. Also, because of the rapid evolution of network attacks
this dataset has become outdated, thus training an IDS, more specifically a NIDS, with
this dataset would bring very low detection rates [54].

3.1.2 Host Datasets

Host based datasets on the other hand, are datasets that store system internal activities.
Instead of focusing on the communication between devices, host based datasets focus on
the internal behaviour. Data such as system calls and logs are commonly stored in these
datasets.

The Australian Defence Force Academy Linux Dataset (ADFA-LD) dataset was developed
to address the shortcomings of the outdated KDD datasets [68]. The malware featured in
this dataset create a more realistic depiction of a system being completely under attack,
from the infection phase all the way to the execution phase [67]. The dataset includes
attack traces from attacks like web exploitation, poisoned executables, remote password
brute-force and trigered vulnerabilities, social engineering and system manipulation using
webshell [67]. According to Creech et al. [67] the dataset is made up of 833 normal system
call traces, 4373 normal traces to analyze false alarm rates and 6 different types of attacks
spread out in 746 traces for testing [81]

Another dataset also produced by the Australian Defence Force Academy is the Windows
Dataset, ADFA-WD, the Windows OS counterpart to the ADFA-LD. It consists of a col-
lection of dynamic link libraries (DLL) access requests and system calls [69]. The target
system used was based on a Windows XP Service Pack 2 distribution with a running
FTP and web server, a management tool, a streaming audio digital radio package, and
a wireless and ethernet networking connectivity with a fake wireless access point [70].
The nine DLL calls were selected based on it being able to represent system behavior, its
capability of representing modern threat vectors and its effectiveness in reaching efficient
training and testing in the Host based Intrusion Detection System (HIDS) decision engine
[70]. Furthermore, 12 known vulnerabilities to the target device were made use of. These
vulnerabilities allow for exploits such as metasploit attacks, reverse ordinal payload injec-
tion, blind shell spawning to name a few [69]. The dataset contains 356 traces of normal
training data, 1828 traces of normal validation data and 5773 attack traces [70].

Furthermore, the dataset ADFA-WD:Stealth Attacks Addendum (ADFA-WD:SAA) is an
extension of the ADFA-WD dataset. It contains 863 new attack traces, fewer compared to
the ADFA-WDs 5773 attack traces. It is expected to be used in conjunction with ADFA-
WD. The focus of ADFA-WD:SAA is mainly on using stealth attacks for generating
traces of DLL calls. The three stealth attacks used were Doppelganger, Chimera and
Chameleon. The Doppelganger attack exploits the target device by using normal system

16 CHAPTER 3. RELATED WORK

functions. Firstly, it adds a new user with elevated privileges on the target device. Then,
a new shellcode creates a remote access instance, granting access to a remote third party.
Moreover, the Chimera stealth attack exploits a valid process running on the target system
and spawns a new process which is then used to connect back to the attacker. The third
and final stealth attack of the ADFA-WD:SAA dataset is called Chameleon. It uses an
independent excerpt of machine code that creates a command shell without having to rely
on system services [67].

In addition to the aforementioned datasets, the University of New Mexico (UNM) datasets
contain system call traces of multiple processes [79]. One of the datasets is the sendmail
dataset. System calls of this program were traced on a device running a Unix based OS
called SunOS version 4.1.1 [83]. Furthermore, another UNM dataset contains system call
traces of login and ps processes that were gathered from a single target device running on
the Linux Kernel version 2.0.35 [84]. This dataset also contains traces of a Trojan backdoor
attack targeted at login and ps commands [84]. In addition, the dataset containing traces
of the Xlock program where it is being interfered with by a buffer overflow attack [85]
[82]. Although the UNM datasets have been and are still used to benchmark IDSs, they
are outdated and do not contain traces of attacks of current importance [82].

The Firefox dataset [82] was created to address the some of the issues found in the UNM
datasets. It consists of both normal and anomalous system call traces. On the one hand,
normal behavior system call traces were collected by monitoring standard behavior of the
functionality of the Firefox web browser. On the other hand, to gather anomalous traces,
several different attacks were launched against the browser. Attacks such as, memory cor-
ruption exploit that attempts to execute randomly selected code, integer overflow attack
and the exploit of dangling pointers to originate a DoS and execute arbitrary code and
Document Object Model (DOM) exploit causing memory corruption are used to generate
anomalous behavior [82] [65]. A natural down sight to this dataset is that the focus lies
solely on the Firefox web browser.

3.2 Intrusion Detection Systems

An IDS is a threat monitoring systems that can be differentiated into host based intrusion
detection system (HIDS) or network based intrusion detection system (NIDS) based on
what type of data they work with. NIDSs examine network traffic and network generated
data, where as HIDSs analyze system specific internal data and activities and thus has
a greater prospect of detecting malware attacks that target the internal workings of a
device [65]. Also, in comparison to NIDSs, HIDSs are able to single out which processes
are involved in any given attack and at the same time, are able to follow the attacks
behavior all the way to its outcome [75].

HIDSs can be subdivided even further to specify what type of data it is that they are
analyzing. System-call based HIDSs, for example, dissect, as the name already implies,
system call traces [65]. HIDSs, more specifically, system call based HIDSs are an effective
approach, however, these systems are currently struggling to handle the ever growing
data volume of system call traces that are being generated. This renders them incapable

3.2. INTRUSION DETECTION SYSTEMS 17

of executing in depth system call analysis, which are vital for the detection of attacks,
especially those that are being executed through multiple hosts [65]. Moreover, HIDSs
greatly consume computing resources of the device that it is running on in order to better
train the decision engines and in turn better the malware detection rate. This makes
current HIDSs software an unfavorable option for IoT devices, like the ElectroSense sensor
discussed in this work, as these are low resourced constrained devices [65].

IDSs use datasets to train their decision making engines and also to benchmark their
detection rates. Here we differentiate between the datasets targeted for HIDSs and NIDSs
usages. HIDSs datasets, as mentioned above, contain internal system behavior data like
system calls. By contrast, NIDSs datasets store information of the communication and
network traffic between devices.

In general it can be observed that the trend of intrusion detection datasets up until now
has focused more on the network aspect, which is good to detect only a subset of mal-
ware such as botnets, but not other malware like rootkits, backdoors and ransomware.
More importantly, most datasets used in IDS currently do not focus on IoT devices and
even less on their internal behavior when infected by malware. Also, the malware traces
in the datasets that have been used regularly to train IDSs such as, ADFA-LD, UNM
and also network datasets such as DARPA and CSE-CIC-IDS2018 have either outdated
malware attack traces or false positive rates which are to high to deliver acceptable de-
tection accuracy percentages. This thesis seeks to cover the gaps of the limitations of the
current literature, by creating a dataset that models the internal behavior of IoT devices
through system calls. The focus here lies especially in gathering the behavior of the device
while it is under attack of novel malware of the likes of botnets, backdoors, rootkits and
ransomware.

Table 3.1 provides an overview of an array of different datasets that have been created,
categorizing them into either internal behaviour or network oriented behaviour datasets.
The separation of these two types is signaled through a double horizontal line in the table.
Along with the types, the contents, malware attack traces found in the dataset and the
drawbacks of each dataset are summarized in the table.

Table 3.1: Existing Datasets

Type Dataset Contents Malware attacks Drawbacks

Internal ADFA-
LD(2013)
[52]

System call traces of
various Linux devices

FTP and SSH pass-
word brute force,
Java Meterpreter and
Linux Meterpreter

Lack of attack diver-
sity and attacks in
dataset are not well
separated from nor-
mal behavior

Internal ADFA-
WD(2013)
[52]

DLL traces Metasploit exploit,
DNS spoofing, reverse
shell spawn through
PDFs

-

18 CHAPTER 3. RELATED WORK

Internal ADFA-
WD:
SAA
(2013)

DLL traces of three
stealth malware

Doppelganger,
Chimera, Chameleon

-

Internal UNM
(1999)
[52]

System call from vari-
ous processes

Trojan backdoor,
buffer overflow and
DoS

No system call argu-
ments and not rep-
resentative of today’s
attack diversity

Internal Firefox
DS [82]

Normal and malicious
system call traces gen-
erated by Firefox web
browser

Memory corruption
exploit and DoS

Focus lies on Firefox
web browser only and
it has not been used in
many case studies

Internal
and
Net-
work

NGIDS-
DS [71]

Host based logs and
network packets

DoS, Shellcode and
Backdoors

Only used in few stud-
ies

Network DARPA
(1998-99)
[45]

FTP, Telnet and e-
mail activities

DoS, Buffer overflow,
remote FTP

Outdated infrastruc-
ture and attack types

Network CSE-
CIC-
IDS2018
[59]

HTTPS, HTTP,
SMTP, POP3, IMAP,
SSH

DoS, SSH Bruteforce,
DDoS, Botnet

Class imbalance

Network CIC-
IDS-2017
[58]

Network traffic for
HTTP, SSH and
IMAP protocols with
payload

Brute Force FTP,
Brute Force SSH,
DoS, Heartbleed, Web
Attack, Infiltration,
Botnet and DDoS

High false positive
rate because of class
imbalance

Network ISCX2012
[60]

HTTP, SSH, SMTP,
POP3, FTP and
IMAP network traces

DoS, DDoS, Brute-
force SSH

Outdated as HTTPS
protocol not present

Network CAIDA
DDoS
(2007)
[55]

DDoS attack traces
split into pcap files

DDoS Very specific to a par-
ticular attack

Network NSL
KDD
(2009)

Raw tcpdump packets DoS, Remote to Local,
Probing and User to
Root attacks

Synthetic data

Network KDD
Cup
(1999)

Raw tcpdump packets DoS, Remote to Local,
Probing and User to
Root attacks

Synthetic data, no ex-
act definition of net-
work attack, record re-
dundancy

Network Kyoto
(2009)
[61]

DNS and mail traffic - Synthetic data and no
false positives

Chapter 4

Creation of a System Call based Dataset

4.1 ElectroSense Scenario

In this work we look at a spectrum sensor, more specifically an ElectroSense sensor as our
target device. The ElectroSense sensor is part of the ElectroSense network. ElectroSense
is a crowdsensing platform that senses the radio frequency spectrum. Multiple Raspberry
Pis with an sdr frontend and an antenna act as the sensors that gather the spectrum
data. This data then gets sent to the ElectroSense backend. The backend system follows
a three layered architecture, also known as Lambda architecture, with a batch, a speed
and a serving layer which allows for greater system scalability if needed [74]. Data sent to
the backend from the sensors is then processed and the results are made available to the
users via open Application Programming Interface (API) [74]. The Raspberry Pi acting
as the embedded sensor used in this work is a Raspberry Pi 4 with an ARMv7 rev 3
processor and 4 GB of RAM. Attached to the Raspberry Pi is an antenna that senses and
collects the radio frequencies that are then processed by the sdr radio frontend and then
sent to the ElectroSense servers. The sensor can sense frequencies between the ranges 20
MHz and 6 GHz. For this work, the ElectroSense sensor is connected to the internet via
LAN cable and has a static IP address.

In order to create datasets modeling the internal behavior of these devices, this work
focuses on gathering system calls from the device and creating datasets out of them. To
capture the system calls from the sensor, a custom script is running on the device which
gathers the system calls in a text file format and proceeds to send them to a remote server.
The remote server in turn, has a script running that cleans the raw data and stores the
files in a by attack, date and hour folder structure. Additionally, in order to evaluate the
datasets and calculate the mean and standard deviation of the system call frequencies and
sequences on a per malware basis, two scripts are executed on the cleaned data. Figure
4.1 describes the setup.

19

20 CHAPTER 4. CREATION OF A SYSTEM CALL BASED DATASET

Figure 4.1: System Call Monitoring and Analytics Process High Level

4.2 System Call Monitoring Process

Different Linux commands to gather the ElectroSense system calls were reviewed. Among
those, perf trace [72] and strace [73] stood out as good candidates. In the end perf

trace was chosen for this work, as it gathers the system calls of the whole system, unlike
strace, that only gathers system calls of user specified processes. Gathering system calls
for only a handful of pre-execution specified processes would limit our ability to begin
monitoring new malware-induced processes and thus render the system call gathering
useless.

4.2.1 Architecture

The system call monitoring architecture consists of 2 scripts. The first one monitor-
ingScript.sh runs on the ElectroSense sensor itself. It consists of the following code blocks:

• Setup
Here, the user can specify variables such as duration of the script execution in
seconds, minutes or days, how long the system call intervals should be in seconds,
after how many iterations the files should be transferred and the RESULTS_PATH in
which the intermediate results should be stored. Furthermore, the user must specify
an IP address and folder directory where the gathered data should be transferred,
listed in the pseudo code below as RSYNC_PATH. If the duration of the script or the
interval duration are not set, the default values, 2 days and 10 seconds will be used
respectively. However, if one or both RSYNC_PATH or RESULTS_PATH are not specified
by the user, the script will not work. The first section of the pseudo-code below in
Algorithm 1 visualizes the flow of the setup.

4.2. SYSTEM CALL MONITORING PROCESS 21

Algorithm 1 Monitoring Script Pseudo-Code

/*Setup*/
Require: RSY NC PATH ̸= NULL
Require: RESULTS PATH ̸= NULL
Require: TIME
Require: SLEEP

if TIME = NULL then
TIME ← ”2days”

end if
if SLEEP = NULL then

SLEEP ← 10
end if
if ITER MAX = NULL then

ITER MAX ← 1
end if

/*Main Loop*/
while CURRENT TIME ≤ START TIME + TIME do

/*Data Transfer Section*/
if ITERATIONS = ITER MAX then

ITERATIONS = 0
for FILE in RESULTS do

rsync FILE to RSY NC PATH
end for

end if

/*Data Gathering + Output*/
CURRENT TIME = NOW
perf trace -o /RESULTS/NOW.log -a – sleep SLEEP
Add EPOCH and UPTIME to NOW.log
ITERATIONS+ = 1

end while

• Monitoring Loop
This loop, also depicted in Algorithm 1 runs for the duration that was specified in
the setup block. It is responsible for the data gathering, output and transfer. Also,
the execution of the collection, output and transfer blocks happens every certain
amount of time according to what was set in the setup block.

• Data Gathering and Output
This is the key component of the monitoring script. The perf trace command is
called and it runs for a predetermined amount of time set in the setup section. When
its done, the output gets written to a temporary file that later on is transferred to
another, with more storage capacity, computer through rsync as shown in the Data
Gathering + Output section in the Algorithm 1.

22 CHAPTER 4. CREATION OF A SYSTEM CALL BASED DATASET

• Data Transfer
After the perf trace command has reached the desired iterations, all the files
temporary files are then transferred to another computer with more storage capacity
via rsync and the iterations counter ITERATIONS is set back to zero, as mirrored in
the Algorithm 1.

As it is important to know if the monitoringScript.sh script interferes with the normal
operation of the sensor, while active. For this reason, the monitoringScript.sh script was
also monitored for resource consumption using the top Linux command. On average, the
perf trace command used in the script consumed 26.65% of one CPU resource while the
rsync command consumed 74.1% of one CPU resource. As the ElectroSense sensor has
4 CPU cores, the above mentioned percentages can be divided by four, as each core has
its own 100% capacity. So the real CPU consumption values are 6.6625% and 18.525%
respectively. Also, the average memory usage of perf trace is 0.2% and for rsync it is
0.1%. Both the CPU and memory usage of the monitoringScript.sh script are low and do
not interfere with the normal behavior of the ElectroSense sensor.

The second script, data cleaning.py, focuses on cleaning the raw data so that it can be
pre-processed more effectively to extract critical information, such as statistical data. The
script removes all arguments from the system calls. Ideally it runs on the machine were
the data is being sent to from the monitoringScript.sh script. A pseudo-code version of
it is depicted in Algorithm 2 and it is organized as follows:

• Setup
In this section, the user must specify three directory paths, one from where the script
should retrieve the raw system call data, another for where to store the processed
data and a third one to specify the location where the system call per process
summary provided by perf trace should be saved. Also, the user must specify for
how long the script should run, this as an int specifying an epoch time in the future.
If any of these variables are not set, the script does not work.

• Main Loop
The program loop runs for a variable amount of time, also specified in the setup
section. This loop is responsible, as the name suggests, for the whole script. It
contains the secondary data extraction section, as well as the data cleaning and
data outputting sections

• Secondary data extraction
This part of the code manages the extraction of the EPOCH and UPTIME of each
system call. These values are later on used to compute the absolute time at which
each system call was executed. Also, this section is in charge of transferring all the
summary data provided by the perf trace command onto a separate file, named
exactly as the original file but with a -summary tag attached to it. These summary
files are saved onto a directory, specified by the user in the setup section.

• Data cleaning
Furthermore, the data cleaning section removes some data from the raw system
call input files such as system call parameters. It calculates the time each system

4.2. SYSTEM CALL MONITORING PROCESS 23

call was called by combining the EPOCH time and the ElectroSense sensors UPTIME,
already extracted in the secondary data extraction section.

• Data Outputting
The data outputting section saves the cleaned system call data files onto a directory,
with sub directories ordered by date and hour time.

Algorithm 2 Data Cleaning Script Pseudo-Code

/*Setup*/
Require: destination dir ̸= NULL
Require: input dir ̸= NULL

if time = NULL then
time← ”2days”

end if
/*Main Loop*/
while current time ≤ start time+ time do

/*Secondary Data Extraction*/
for file in input dir do

if file ends with .log then
EPOCH = file.get(EPOCH)
UPTIME = file.get(UPTIME)
writefile.get(Summary)tofile summary.txt

end if

/*Data Cleaning*/
for line in file do

abs time = line.get(abs time)
process name = line.get(process name)
pid = line.get(pid)
syscall name = line.get(syscall name)
write line to output.log abs time, process name, pid, syscall name
truncate output.log

end for

/*Data Outputting*/
if destination dir + fileHour exists then

save output.log to destination dir + fileHour
else

create destination dir + fileHour folder
save output.log to destination dir + fileHour

end if
end for

end while

24 CHAPTER 4. CREATION OF A SYSTEM CALL BASED DATASET

4.3 Malware affecting ElectroSense

The following section elaborates on the four different malware families specific im-
plementations chosen in this work and how they were executed.

4.3.1 Bashlite

Bashlite [25], also known as Gafgyt, LizardStresser, Lizkebab, Torlus and Qbot is a
botnet designed to infect IoT devices and add them to a botnet to carry out DDoS
attacks. In order to execute this botnet a few changes have to be made to the source
code [25]. Mainly, in the client.c file the IP address of the C&C server has to be
specified like shown in figure 4.3. Also, as shown in figure 4.2 in the server.c file the
management port and password can be changed as desired. The setup of this botnet
for this thesis consisted of a C&C center hosted on a Linux Ubuntu server with IP
address and port 192.168.1.10:8888. Next, the bot, in this case the ElectroSense
sensor was connected to the C&C center through 192.168.1.10:6667. And finally,
a different Raspberry Pi with the IP address 192.168.1.17 was the target of the
attacks.

Figure 4.2: Bashlite change management port & password

Figure 4.3: Bashlite set IP address to C&C

Once the bot has connected to the C&C, Bashlite offers the following administrative
commands:

– ! PING checks connection to bot.

– ! GETLOCALIP gets IP address of the bot.

– ! SCANNER ON/OFF turns function of bots being able to scan for other bots
on or off.

– ! KILLATTK stops the ongoing attack.

– ! LOLNOGTFO disconnects from the bot.

4.3. MALWARE AFFECTING ELECTROSENSE 25

Further, it offers the following flooding attack commands:

– ! HOLD <target ip address> <port (0 for random)> <time (in seconds)>.

– ! JUNK <target ip address> <port (0 for random)> <time (in seconds)>.

– ! TCP <target ip address> <port (0 for random)> <time (in seconds)> <net-
mask> <flags (syn, ack, psh, rst, fin, all)> <packet size> <time poll interval
(in seconds)>

– ! UDP <target ip address> <port (0 for random)> <time (in seconds)> <net-
mask> <packet size> <time poll interval>.

For this thesis, in order to automate the attack procedures for an extended amount
of time, the process automation software UiPath [86] was used. The process au-
tomation script for Bashlite looped on a bihourly basis through a HOLD, TCP and
UDP attack for 30 hours.

A visual representation of the attack execution is displayed in figure 4.4. On the right
side console, the C&C center where different attack commands have been entered
can be appreciated. Likewise, the left side console illustrates the bot receiving the
commands.

Figure 4.4: Bashlite commands

4.3.2 Bdvl

Bdvl [27] is a LD PRELOAD rootkit, meaning it runs in the user space of a device.
After installation on the target device, it will hide itself from the process memory
map files. It supports multiple functionality like port hiding, credential logging from
SSH incoming SSH connections. Also it features file stealing, where the attacker
can specify what types of file formats and size it should steal. It also offers multiple
backdoors. The PAM backdoor is installed after the malware is executed on the
target. It creates a backdoor user through which the attacker can log into the
remote target. Every directory or file created with this newly created backdoor user

26 CHAPTER 4. CREATION OF A SYSTEM CALL BASED DATASET

Figure 4.5: Bdvl commands

will be hidden from all other users on the device. Some of the malware’s commands
include

– ./bdv <hide|unhide> <path>
Hides the path of a specific directory.

– ./bdv uninstall
Uninstalls the malware from the target device and removes all data that was
gathered.

– ./bdv unhideself
Unhides the directory where bdvl is installed on.

– ./bdv changeid
Changes the rootkits group identifier (GID).

– ./bdv makelinks
Creates links that point to all directories of the target device.

Again, UiPath was used to automate the attackers commands onto the target device.
After the malware was executed in the remote device, the UiPath script logged into
the target device with the new, malware conceived, user. After successful login the
malware started stealing data automatically. The scripts loop created a directory,
unhid it, hid it again and then proceeded to remove it.

4.3.3 Thetick

Thetick [32] is a backdoor malware designed to affect embedded systems. It has a
C&C console, from where the attacker can execute multiple commands on the target
device. This backdoor also allows for multiple target devices to be connected to the
C&C console, from which the attacker can switch between devices. The attacker
can use the following commands, also listed in 4.6

4.3. MALWARE AFFECTING ELECTROSENSE 27

– bots
Returns a list of the clients with their respective IP address and a Universal
Unique Identifier (UUID).

– chmod <file>
Changes a file’s access mode, much like the existing Linux command.

– clear
Clears the screen.

– current
Shows information on the currently selected bot.

– dig <domain name>
Resolves local domains at the target network.

– download <url> <remote file>
Downloads a file to the target bot via HTTP.

– exec <command>
Executes a non interactive command.

– exit
Exits the console.

– fork
Creates a new bot instance that connects automatically.

– help
- Shows a list of available commands.
help *
- Shows help for all commands.
help <command>
- Shows help for selected command.

– kill
Terminates the connection to the currently selected bot.

– pivot <listen on port> <connect to IP address> <connect to port>
Creates a TCP tunnel.

– proxy [ls]
- Lists all active proxies.
proxy [add] <port> [bind address] [username] [password]
- Adds a new proxy.
proxy rm <port>
- Removes an active proxy.

– pull <remote file> <local file>, Copies a file from the target device.

– push <local file> <remote file>, Copies a file to the target machine.

– rm <remote file>, Deletes a file on target device.

– shell, Initializes an interactive shell through the C&C connection.

– use <>, <IP Address>, <number>, <UUID>, Selects a bot from the list by
UUID, IP address or number. If no argument is passed then the current bot
gets deselected.

28 CHAPTER 4. CREATION OF A SYSTEM CALL BASED DATASET

Figure 4.6: TheTick Command & Control console

Like with the other malware instances, a UiPath script was created to automate the
actual execution of the malware while the system calls were being gathered. Once
script selected a bot then the loop began. It wrote some random text into a file,
next, the script copied the newly created file from the target device to the attacking
device and simultaneously removed it from the target device. Subsequently, a text
file was pushed from the attacking device to the target bot, where it was then also
deleted after successful transfer.

4.3.4 RansomwarePoC

This ransomware is designed to encrypt local directories and files with an AES
key, which is in turn encrypted with the RSA public key of the attacker [34]. This
ransomware has two versions. One, is the basic version which works in the command
line only. The second one, extracts the key and sends it back to a CC specified in
the source code. Also, a ransom pop up note is displayed on the victims screen. For
the purpose of this thesis and because ElectroSense sensors usually accessed through
SSH, version 1 was used. The following commands are available for the ransomware.

– -e Encrypts the target directory.

– -d Decrypts the target directory.

– -p <directory | file> Specify which directory or file to encrypt.

Figure 4.7 depicts how the encryption command is executed on the command line.
Again, with the help of UiPath, a script that contains a loop which in every iteration
encrypted a folder on the target device was created.

4.4. DATASETS CREATION 29

Figure 4.7: RansomwarePoC Encryption

4.4 Datasets creation

As mentioned before, datasets that represent the internal behavior of IoT devices
are scarce and this is an issue as datasets are a key component in being able to detect
malware in IoT devices, especially zero day attacks with the help of ML and DL
combined with a quality dataset. This section elaborates on how multiple system call
based datasets were generated, using the Raspberry Pi based ElectroSense sensor.

System calls are a prominent way to model a devices internal behavior. The datasets
presented here were constructed with the monitoringScript.sh script detailed in sub-
section 4.2.1. Firstly, the normal behavior of the ElectroSense sensor was monitored
by gathering system calls for 48 hours. The normal behavior of the sensor is de-
scribed as sensing the spectrum data with help of the antenna and sending the
gathered data to the ElectroSense backend. Secondly, the monitoringScript.sh was
executed in the sensor shortly before the device was infected with theTick backdoor.
Backdoor commands were executed onto the device for 30 hours in three runs, one
lasting 11 hours, the second one 14 hours and the last one 5 hours. The moni-
toringScript.sh was executed shortly before in order to capture the initial infection
process in the system calls. Next, theTick was uninstalled from the device and it
was made sure that no more traces of the backdoor were found on the device by
checking and killing any processes related to it. Then, the LD Preload rootkit bdvl
was installed onto the device and attacks like stealing files, creating, hiding and un-
hiding directories were executed. Again, the monitoringScript.sh script was started
before the infection phase. System calls were gathered in one run of 8 hours, two
runs of 9 hours and one run of 2 hours, for a total of 28 hours. Subsequently, the
rootkit was uninstalled before starting the monitoring script again and infecting the
device with Bashlite. The ElectroSense sensor acted as a bot in a DoS attack, send-
ing HOLD, UDP and TCP SYN and ACK attacks to a specified device. The sensor
was monitored over the course of a single run of 30 hours with the attacks rotating
every two hours. Finally, RansomwarePoC was executed on the device with the help
of an automated script created with UiPath [86]. The encryption of a directory was
enacted every 15 seconds over the course of a single 30 hour run.

Table 4.1 provides an overview of the created datasets. Each dataset carries the
name of the malware with which the device was infected at the time of the system
call gathering. It is ordered by malware type and attacks carried out.

Having gathered the raw system calls of the device, the script data cleaning.py

30 CHAPTER 4. CREATION OF A SYSTEM CALL BASED DATASET

described earlier, was run on all the generated data. This script outputs files with
four columns; absolute time, process, process ID and name of the system call without
its arguments. In summary, each dataset contains the features absolute time, process
name, process id and system call name, with each datasets size ranging from 10
gigabytes and 390 gigabytes.

Table 4.1: Datasets with their corresponding behavior

Dataset Malware
Family

Time(hours) Attacks/Behavior

Normal - 48 Normal ElectroSense

Thetick Backdoor 30 Backdoor, hidden shell, exec com-
mands

Bdvl Rootkit 28 Stealing files, hiding and unhiding di-
rectories, backdoor

Bashlite Botnet Controlled by C&C, carrying out TCP,
UDP and HOLD flood attacks

RansomwarePoC Ransomware 30 Encrypt directories using a generated
AES key

Chapter 5

Evaluation

This chapter assesses the dataset created in chapter 4 and compares the differences be-
tween the normal behaviour and each malware behaviour of the ElectroSense sensor. This
chapter also compares the behaviors between the malware. The malware infected datasets
show considerable differences in behavior when compared statistically to one another and
also when compared to the normal behavior.

5.1 Results

To start out the evaluation, for each dataset, the mean and standard deviation of the
frequency of each system call was calculated. For each 10 second file containing cleaned
system call data related to a specific behavior, the mean and standard deviation were
calculated. This value was then aggregated to a data frame, where after iterating through
all the files of a single malware, the mean and standard deviation were computed on the
aggregated data. This results in a mean of means and a standard deviation of standard
deviations. Both the mean and standard deviation of the system call frequency was
computed with the help of the script frequency.py. The script is structured as follows.

Listing 5.1: Frequency.py Setup Snippet

31 if(options.input == None):

32 print(parser.usage)

33 exit (0)

34 else:

35 dirs = options.input

36
37 index = []

38 count = 1

39 round = 1

40 df1 = pd.DataFrame ()

41 df2 = pd.DataFrame ()

42 df_hourWise = pd.DataFrame ()

31

32 CHAPTER 5. EVALUATION

• Setup
This section of the script ensures that all variables needed later on are initialized
and that the user has provided a valid input directory, where the cleaned system call
data should be located. Listing 5.1 shows an excerpt from the setup section. Lines
31 through 35, ensure that the user specified directory is set. If it is not provided,
the script terminates. Lines 38 through 42 initialize multiple variables needed later
on. The variable index keeps track of the position of the next system call inside of
an array, in order to add the values in the corresponding column. The count and
round variables keep record of how many files have been processed in the current
folder and how many folder directories have been processed respectively.

• Main Loop
The main loop, as demonstrated below in Listing 5.2, iterates through each direc-
tory specified by the user and subsequently iterates through each sub-directory and
its files. It initializes a nested list on line 54, where the first list at index = 0 rep-
resents the system calls found in the files and the list at index = 1 and upwards,
the corresponding frequency value for a specific system call in a concrete file. For
example, the values of the first file processed correspond to the list inside the nested
list at index = 1 and the n-th file values to the n-th list inside of the nested list.
The nested list is reset for every sub-directory, as shown in line 54. Then, a data
frame is built for each file and rows that contain rsync, perf or monitoringScri
as process names are removed from the data frame as shown in lines 65 through
67. This is done to ensure that behaviors produced by the monitoringScript.sh are
not present when calculating the frequency of the system calls of the ElectroSense
sensor. Moreover, the ”*” sign on multiple system calls, which denotes that that
specific system call is a continuation of a previous invocation, is also removed in
line 69. Thereafter, the frequencies are calculated for each system call, normalized
on line 70 and later on added to the nested list initialized earlier. Lines 76 through
93 handle the addition of the different values to the nested list, in the correct row
and column. After all files of a sub-directory are processed, a column, representing
the mean of all frequency values for the system calls is added to another data frame
that keeps track of all processed directories. Also, the count is increased by one,
signifying that a sub-directory has been processed. This procedure is seen through
lines 95 and 99.

Listing 5.2: Frequency.py Main Loop

46 for dir in dirs:

47 behavior = dir.split("/")[-2]

48 subdirs = [x[0] for x in os.walk(dir)]

49 print(subdirs)

50 for subdir in subdirs [1:]:

51 print("Subdir:",subdir)

52 hour = subdir.split("/")[-1]

53 # create nested list to save values temporarly

54 d = [[] ,[]]

55 print(subdirs)

56 for files in os.walk(subdir):

57 for filename in files [2]:

5.1. RESULTS 33

58 file = os.path.join(subdir ,filename)

59 file = file.replace("\\\\", "\\")

60 print("Current file {}\n Time: {}".format

(file , datetime.datetime.now()))

61 df = pd.read_csv(file , sep="\t", names =["

ABS TIME", "Process Name", "PID", "

System_Call"])

62 df.columns = df.columns.str.replace(’\s+’

, ’_’)

63
64 # remove rsync , perf and monitoringScri

65 df = df[df[’Process_Name ’].str.contains("

rsync")==False]

66 df = df[df[’Process_Name ’].str.contains("

perf")== False]

67 df = df[df[’Process_Name ’].str.contains("

monitoringScri")==False]

68
69 df[’System_Call ’] = df[’System_Call ’].str

.replace(’*’, ’’)

70 val_count = df.System_Call.str.split(

expand=True).stack ().value_counts(

normalize=True).sort_index ()

71
72 if(count > len(d) -1):

73 d.append ([’NaN’]*len(d[0]))

74 print("Count: {}, len(d): {}".format(

count ,len(d)))

75
76 for key in val_count.keys():

77 if key not in d[0] and count ==1:

78 d[0]. append(key)

79 index = len(d[0]) - 2

80 d[1]. append(val_count[key])

81
82 elif key not in d[0] and count !=1:

83 d[0]. append(key)

84 for i in range(1,len(d) -1):

85 d[i]. append(’NaN’)

86 d[count]. append(val_count[key])

87
88 elif key in d[0]:

89 i = d[0]. index(key)

90 if i > len(d[count]) -1:

91 d[count]. append(val_count[key

])

92 elif d[count][i] == ’NaN’:

34 CHAPTER 5. EVALUATION

93 d[count][i] = val_count[key]

94 count +=1

95 df = pd.DataFrame(d[1:], columns=d[0])

96 mean = df.mean()

97 mean.name = ’{}’.format(hour)

98 df_hourWise = pd.concat ([df_hourWise , mean],

axis =1)

99 count = 1

• Mean
After the main loop is done processing all directories and sub-directories, the mean
of each system call on a per directory basis is concatenated onto the final data frame
as shown in Listing 5.3.

• Standard Deviation
Right after the mean has been computed and stored onto a mean data frame, the
standard deviation, as depicted in Listing 5.4 is also computed and stored onto a
standard deviation data frame.

• Output
Both the mean and standard deviation data frames are then saved to corresponding
comma separated value (CSV) files.

Listing 5.3: Frequency.py & Ngram.py Mean Section

105 mean = df_hourWise.mean()

106 mean.name = ’{}’.format(behavior)

107 if round == 1:

108 df1 = pd.DataFrame(mean)

109 else:

110 df1 = pd.concat ([df1 , mean], axis =1)

Listing 5.4: Frequency.py & Ngram.py Standard Deviation Section

115 std = df_hourWise.std(axis =1)

116 std.name = ’{}’.format(behavior)

117 df2 = pd.concat ([df2 , std], axis =1)

118 round +=1

At the same time, the sequence of the system calls was also examined. For the purpose of
this work, all possible 2-grams, also referred to as bigrams, were computed and thereafter
followed the same computing process as with the frequency of system calls. The script
ngram.py was created to accomplish this task. Ngram.py follows a similar pattern to
frequency.py and is arranged as follows.

Listing 5.5: Ngram.py Setup Section

29 parser.add_option(’-n’, ’--ngram ’, dest = ’n’,

30 type = ’int’,

31 help = ’specify n-gram length ’)

5.1. RESULTS 35

32 (options , args) = parser.parse_args ()

33 if(options.input == None):

34 print(parser.usage)

35 exit (0)

36 else:

37 dirs = options.input

38
39 if(options.n == None):

40 print(parser.usage)

41 exit (0)

42 else:

43 n = options.n

• Setup
A snipped of the source code is displayed in Listing 5.5. Although similar to the
frequency.py setup section, the ngram.py script takes an extra parameter ”n” which
the user needs to specify. This parameter dictates the size of the n-grams calculated.

• Main Loop
Is almost identical to the main loop of the frequency.py script. However lines 82
through 85, shown in Listing 5.6, creates the bigrams and calculates the frequency
of each.

Listing 5.6: Ngram.py Main Loop Section Snippet

82 words = (df.System_Call.str.split().

explode ())

83 n_gram = ngrams(words , n)

84 n_gram_df = pd.DataFrame(n_gram)

85 val_count = n_gram_df.value_counts(

normalize=True)

• Mean
Works analog to the mean section of frequency.py and Listing 5.3.

• Standard Deviation
This section, tasked with calculating the standard deviation of the mean frequencies
of all bigrams is the same as the one presented in Listing 5.4.

• Output
Outputs both the means and standard deviation data frames for the desired n-grams
onto CSV files.

After having used both scripts to compute multiple statistics, the next subsections below,
put each malware behavior into comparison with the normal behavior by first comparing
the means and standard deviation of system call frequencies. Thereafter, to provide a com-
plete comparison and a broader perspective, the mean frequency of the bigrams for each
behavior are compared to the normal behavior. Finally, a contrast between all anomalous

36 CHAPTER 5. EVALUATION

behaviors is drawn by comparing each malware’s behavior system call bigram frequency.
Furthermore, the system call nanosleep and the bigram nanosleep-nanosleep have been
omitted by all plots presented below. This, in order to have a clearer view of the finer
margins presented between all other system calls and bigrams below, as nanosleep and
nanosleep-nanosleep posses high frequency percentages, since it is the main system call
used by the ElectroSense sensors standard behavior.

5.1.1 Thetick

Figure 5.1: Mean Values between Normal and Thetick behavior

Thetick malware makes use of multiple system calls. Among them are recv, send,

write, close, getsockopt, clone and more. Figure 5.1 depicts the frequency means
of each system call found in normal and during Thetick attack behavior. The x-axis
corresponds to the system calls found in both behaviors and the y-axis shows the mean
frequency percentage. Most system calls have a similar frequency mean so not much can
be read into Figure 5.1, other than that at a first look both behavior operate similarly on
the device. However, considering the standard deviation of the system call frequencies,
portrayed in Figure taking a closer look to Figure 5.2, which instead of the mean of
the frequencies, portrays the standard deviation of them, a clearer difference between
behaviors can be distinguished. Looking at crucial system calls used by Thetick malware,
in particular send, set_robust_list, fnctl64 and getsockopt, they experience an
increase of 1434.45%, 1488.84%, 217.862% and 1360.88% respectively, which indicates a
higher scattering of the amount of times and the consistency with which these system
calls were summoned while the device was infected with Thetick malware.

5.1. RESULTS 37

Figure 5.2: Standard Deviation Frequency between Normal and Thetick behavior

In addition, Figure 5.3 outlines the mean frequency of various bigrams found in either the
normal behavior dataset, Thetick behavior dataset or both. It displays multiple bigrams
which are only present while the device is infected with thetick backdoor malware. A few
examples are (nanosleep-recv), (send-send) and (nanosleep-write). Also, some
bigrams have marginally higher means in Thetick behavior. For instance, (nanosleep-
execve), (nanosleep-recvmsg), (nanosleep-getpid) and (write-nanosleep) all have
higher frequency means in Thetick behavior, implying a higher usage of these system calls.

Figure 5.3: System Call Bigram Frequency: Normal and Thetick behavior

38 CHAPTER 5. EVALUATION

5.1.2 Bashlite

Figure 5.4: Mean Values between Normal and Bashlite behavior

Figure 5.4 displays the mean frequency values for each system call for both normal and
Bashlite behavior. A clear trend where the normal behavior has higher means for almost
each system call with some exceptions can be observed. Yet, evaluating a couple of key
system calls used by the Bashlite malware, the difference in behavior between the two sce-
narios is noticeable. For example chown32, getcwd, openat and readlinkat are all not
present during normal behavior. Thus, suggesting that these system calls are only used
when the device is under the attack of the bashlite botnet. Additionally, system calls
stat64 and geteuid32, both used by the Bashlite botnet, have higher usage frequen-
cies, 113.878% and 128.488% increase respectively, compared to the normal operational
behavior of the device.

Moreover, taking a look at the standard deviation of the frequency of each system call
in Figure 5.5, other system calls used by both normal and bashlite behavior occupy a
higher standard deviation when the device is under attack compared to when it is not
under attack. Also, system calls that have the value zero for its frequency of one of both,
normal or bashlite behavior, in Figure 5.4 and have a standard deviation of zero in Figure
5.5, like for example recv, had a constant frequency value across the device’s monitoring
phase while under attack of the Bashlite botnet.

5.1. RESULTS 39

Figure 5.5: Standard Deviation Frequency between Normal and Bashlite behavior

Next, analyzing the 2-gram frequencies for both behaviors, the difference in behaviors
is more apprehensible. Figure 5.6 demonstrates the top 35 bigrams, ordered by mean
frequency percentage differential between both behaviors in ascending order. Numerous
bigrams, (gettimeofday-nanosleep), (write-nanosleep), (close-nanosleep) and
(nanosleep-close among others, have a higher frequency for when the device is under
control of the Bashlite botnet. Similarly, bigrams such as (futex-openat), (nanosleep-

wait4), (brk-openat), (uname-mmap), (stat64-nanosleep) and (sendmsg-openat)
to name a few, only exist for when the device is being used by the Bashlite malware. The
bigram figure further proves the asymmetry of system call usage between normal and
bashlite behavior.

40 CHAPTER 5. EVALUATION

Figure 5.6: System Call Bigram Frequency: Normal and Bashlite behavior

5.1.3 Bdvl

Moving on to the Bdvl rootkit, the means of each system call frequencies presented in
Figure 5.7 illustrates the disparity between both normal and Bdvl behavior. A careful
examination on a couple of key system calls that underline the influence of the Bdvl
rootkit malware on the device, for instance stat64 and send, which had a 266% and a
948.837% increase in average frequency respectively, highlights the differences in system
call invocation between both behaviors. Additionally, system calls such as chown32,

getcwd, readlink and openat are only present when the device is being attacked by the
rootkit.

5.1. RESULTS 41

Figure 5.7: Mean Values between Normal and Bdvl behavior

In parallel, some of the crucial system calls used by the rootkit such as, stat64, getuid32

and llseek, also display a higher standard deviation while the device is under a Bdvl
attack. This means that the execution of these system calls is scattered more widely across
the Bdvl dataset in comparison with the normal behavior dataset. Which is explained
through the fact that the rootkit is not invoking system calls synchronously, but instead
reacting to when for example new data is created on the system in order to steal it.

Figure 5.8: Standard Deviation Frequency between Normal and Bdvl behavior

The system calls gathered while the device was under the attack of the Bdvl malware

42 CHAPTER 5. EVALUATION

produced over 368 bigrams. When put in comparison with the bigrams from the nor-
mal behavior, the distinction between normal behavior and behavior under Bdvl rootkit
attack is unambiguous. Figure 5.9 shows the top 35 2-gram system calls sequences or-
dered by biggest frequency difference between normal and Bdvl behavior. Multiple bi-
grams such as (chown32-openat), (chown32-access), (openat-fstat64) and (access-

gettimeofday), are not present in the system call bigrams of the device under normal
behavior. These bigrams disparities further highlight the difference between normal and
Bdvl internal behavior of the device.

Figure 5.9: System Call Bigram Frequency: Normal and Bdvl behavior

5.1. RESULTS 43

5.1.4 RansomwarePoC

Figure 5.10: Mean Values between Normal and RansomwarePoC behavior

Figure 5.10 delivers a distinct distribution of the mean of system calls for both Ran-
somwarePoC malware and normal behavior. The RansomwarePoC malware introduces
multiple system calls that would not normally be solicited by the ElectroSense sensor’s
normal behavior. A couple of these system calls are capget, dup, kcmp, lstat64,

prctl, prlimit64, unmask, unlink and others. Also, the RansomwarePoC exploits
system calls used in the normal behavior substancially more, as almost all system call
means are higher for the RansomwarePoC behavior. Some of these system calls are
getdents64, rt_sigacation and munmap with an increase of 903.937%, 205.567% and
400.243% respectively over the normal behavior mean frequency.

Further, examining the standard deviation comparison between the two behaviors, Figure
5.11 shows a trend in which RansomwarePoC based system call frequencies have lower
standard deviations than the normal behavior counter parts. This could partially be
due to the fact that multiple files where encrypted constantly throughout the monitoring
phase. Thus, implying that the system call mean frequencies were stabler when the device
was infected with the RansomwarePoC malware.

44 CHAPTER 5. EVALUATION

Figure 5.11: Standard Deviation Frequency between Normal and RansomwarePoC be-
havior

Moreover, both datasets, normal and ransomware behavior, produced 541 system call
bigrams combined. Figure 5.12 displays the top 35 bigrams, ordered by absolute differ-
ence of a bigram between both datasets. Figure 5.12 emphasizes through bigrams such as
(openat-fstat64), (read, close), (fstat64-llseek), (fstat64-mmap2) and (mmap-
mprotect), the difference of the device’s internal behavior when operating normally com-
pared to when being attacked by RansomwarePoC malware.

Figure 5.12: System Call Bigram Frequency: Normal vs. RansomwarePoC behavior

5.1. RESULTS 45

5.1.5 Comparing Malware

Finally, there is also a meaningful difference between the malware behaviors executed
and discussed in this thesis. Figure 5.13 exemplifies 35 bigram mean frequencies across
all the different types of malware used in this thesis. Thetick for example, is the only
malware that contains the system call bigram trace (lseek-read). Bashlite for instance,
has the highest frequency in the bigrams (iotl-timerfd_settime), (poll-nanosleep

and (close-nanosleep). Moving on to the Bdvl malware device’s induced behavior, it
contains the highest frequency of the bigram (poll- ioctl), (nanosleep-poll) and
(nanosleep-ioctl). Finally, RansomwarePoC also has multiple bigrams for which the
frequency is the highest compared to other malware. Some examples are (read-close),
(read-read), (gettimeofday-write) and (fstat64-read).

Figure 5.13: System Call Bigram Frequency: Thetick vs. Bashlite vs. Bdvl vs. Ran-
somwarePoC

46 CHAPTER 5. EVALUATION

Chapter 6

Summary, Conclusions and Future Work

6.1 Summary and Conclusions

This chapter summarizes the intended goal of this thesis and provides a conclusion to the
achieved dataset.

The main goal of this thesis was to create a dataset that models the internal behavior of
an ElectroSense sensor while it is under attack of specific malware by gathering system
calls. This dataset was broken down into multiple datasets, each representing a different
type of behavior. Five datasets were created. Each representing one of the following four
behaviors: normal, under control of a Bashlite botnet, Thetick backdoor, Bdvl rootkit
and RansomwarePoC.

In order to generate these datasets, a monitoring script was created that gathered all
system calls of the target device. The target device in this thesis was an ElectroSense
sensor, based on a Raspberry Pi 4. After the device was set up and registered as part
of the ElectroSense network, the next step was to gather system calls of the normal
behavior of the embedded device. Thereafter, the task was to set up real life environments
for each malware and execute them on the Raspberry Pi and gather the system calls
simultaneously. Here, for the Bashlite malware, a remote C&C server and a designated
target device were initialized. After infecting the ElectroSense sensor with the Bashlite
malware and adding it to the botnet, the Raspberry Pi started executing flooding attacks
on the designated remote target. After the system call gathering process was done, the
next phase was to infect the device with Thetick backdoor and execute commands on the
Raspberry Pi through the backdoor. Because Thetick backdoor provides a C&C server,
this was also initialized to take full advantage of the capabilities of the malware. Next, the
device was infected with the Bdvl rootkit. Through the rootkit spawned backdoor multiple
commands were also executed on the device. Finally, the RansomwarePoc was installed
on the device and multiple directories were encrypted. The system call gathering process
took place for each malware and also the normal behavior of the sensor. Also important
to note, before transitioning to a new malware infection phase, the past malware was
completely removed from the device first. Once the data was gathered for each scenario,
the data was then cleaned to produce the finalized datasets. Each dataset contains 10

47

48 CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK

second interval files with system calls. These files are stored in a per-date and then per-
hour directories. The features found in all datasets are the absolute time at which a
specific system call was executed, the name of the process that initialized the system call,
the PID and the system call name itself.

The final step in this thesis was to evaluate the finalized datasets statistically. For this the
frequency and sequences of system calls were considered statistically. For the frequency
of system calls, the mean and standard deviation of each system call in each dataset
was computed. Theses statistical values were compared with the statistical values of
the normal behavior and the results plotted to be able to visualize the differences. In
conclusion, the changes in behavior were noticeable when comparing frequency mean
and standard deviation. Additionally, the statistical analysis of the sequences of system
calls, which was done by computing the mean of bigrams, delivered a richer and clearer
comparison between different infected behavior and normal behavior. Each of the four
behaviors under attack showcased a significant statistical difference when compared to the
normal behavior. Also when comparing the malware behaviors with each other, a notable
difference in system call invocation was identified when comparing their bigrams. Thus
showing the un-explored potential that can be taken advantage of by feeding the dataset
to ML or DL algorithms to better the accuracy of HIDSs.

6.2 Future Work

The focus of this thesis was laid on monitoring and gathering system calls one malware
attack vector per malware family. There are multiple other malware attack vectors af-
fecting IoT devices which can be used to construct an even more precise depiction of the
internal behavior of the ElectroSense sensor if also these other attack vectors are taken
into account. An example of another botnet that could be considered is the Mirai botnet,
which also has affected various IoT device in recent years. This thesis also utilized a
LD PRELOAD rootkit in Bdvl. Other LD PRELOAD rootkits such as Beurk and also
LKM rootkits including, Diamorphine could also be taken into account. The source code
of all these aforementioned attack vectors can be found online, are listed in Table 2.2 and
could be used in future work.

At the same time, future work could call for the monitoring of multiple ElectroSense
sensors at the same time, in order to create a bigger dataset, as this thesis focused on
capturing the internal behavior of a single ElectroSense sensor. Also, an interesting future
work scenario would be to employ the sensor as the target node of a DDoS attack initialized
through a botnet, in order to better understand the behavior of the device when it is being
flooded through TCP, UDP or other protocols, since in this thesis the ElectroSense sensor
was used as the attack bot in the botnet.

Bibliography

[1] Lu, Y., & Da Xu, L. (2018). Internet of things (iot) cybersecurity research: A review
of current research topics. IEEE Internet of Things Journal, 6(2), 2103-2115

[2] Pan, J. & Yang, Z. Cybersecurity challenges and opportunities in the new” edge
computing+ IoT”world. Proceedings Of The 2018 ACM International Workshop On
Security In Software Defined Networks Network Function Virtualization. pp. 29-32
(2018)

[3] What is a Raspberry Pi?, https://opensource.com/resources/raspberry-pi,
(Accessed on 03.04.2022)

[4] Malik, J. Cloud amp; IoT; Or, How I Learned To Stop Worrying About Security
amp; Love Innovation. (2017,3), https://cdn-cybersecurity.att.com/docs/analyst-
reports/rsa-2017-report.pdf

[5] Khraisat, A., Gondal, I., Vamplew, P. & Kamruzzaman, J. Survey of intrusion de-
tection systems: techniques, datasets and challenges. Cybersecurity. 2, 20 (2019,7),
https://doi.org/10.1186/s42400-019-0038-7

[6] Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I. & Ray, I. Behavioral Fin-
gerprinting of IoT Devices. Proceedings Of The 2018 Workshop On Attacks And Solu-
tions In Hardware Security. pp. 41-50 (2018), https://doi.org/10.1145/3266444.
3266452

[7] System calls: What are system calls and why are they necessary?, https:

//www.ionos.com/digitalguide/server/know-how/what-are-system-calls/,
(Accessed on 03.02.2022)

[8] Ngo, M.V., Chaouchi, H., Lou, T., & Quek, T. Q. (2020). Adaptive anomaly detection
for IoT data in hierarchical edge computing. arXiv prepint arXiv:2001.03314 Sources,
Techniques, Application Scenarios, and Datasets.

[9] Jeon, J., Park, J.H., & Jeong, Y.S. (2020). Dynamic Analysis for IoT Malware De-
tection with Convolution Neural Network model. IEEE Access

[10] Rhode, M., Burnap, P., & Jones, K. (2018). Early-stage malware prediction using
recurrent neural networks. computers security, 77, 578-594.

[11] Kerrisk, M., syscalls(2) â Linux manual page, https://man7.org/linux/

man-pages/man2/syscalls.2.html (Accessed on 10.12.2021)

49

https://opensource.com/resources/raspberry-pi
https://doi.org/10.1186/s42400-019-0038-7
https://doi.org/10.1145/3266444.3266452
https://doi.org/10.1145/3266444.3266452
https://www.ionos.com/digitalguide/server/know-how/what-are-system-calls/
https://www.ionos.com/digitalguide/server/know-how/what-are-system-calls/
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html

50 BIBLIOGRAPHY

[12] Shoemaker, A., How to Identify a Mirai-Style DDoS Attack, https://www.

imperva.com/blog/how-to-identify-a-mirai-style-ddos-attack (Accessed on
13.01.2022)

[13] Backdoor computing attacks, https://www.malwarebytes.com/backdoor (Accessed
on 04.04.2022)

[14] Hashemi, S. & Zarei, M. Internet of Things backdoors: resource management issues,
security challenges, and detection methods. Transactions On Emerging Telecommu-
nications Technologies. 32, e4142 (2021)

[15] Humayun, M., Jhanjhi, N., Alsayat, A. & Ponnusamy, V. Internet of things and
ransomware: Evolution, mitigation and prevention. Egyptian Informatics Jour-
nal. 22, 105-117 (2021), https://www.sciencedirect.com/science/article/pii/
S1110866520301304

[16] Yaqoob, I., Ahmed, E., Rehman, M., Ahmed, A., Al-garadi, M., Imran, M.
& Guizani, M. The rise of ransomware and emerging security challenges in the
Internet of Things. Computer Networks. 129 pp. 444-458 (2017), https://www.

sciencedirect.com/science/article/pii/S1389128617303468, Special Issue on
5G Wireless Networks for IoT and Body Sensors

[17] Nemeth, K., Buttyan, L. & Papp, D. Detection of persistent rootkit components on
embedded IoT devices. (2020)

[18] Thakur, A. Memory Malware Part 0x2 â Crafting LD PRELOAD Rootk-
its in Userland. Medium.com. (2020,5), https://compilepeace.medium.com/

memory-malware-part-0x2-writing-userland-rootkits-via-ld-preload-30121c8343d5

[19] Sanchez, P.M.S., Valero, J.M.J., Celdran, A. H., Bovet, G., Perez, M.G., & Perez,
G.M. (2020). A Survey on Device Behavior Fingerprinting: Data Sources, Techniques,
Application Scenarios, and Datasets.

[20] Zhou, L. & Makris, Y. Hardware-based on-line intrusion detection via system call
routine fingerprinting. Design, Automation Test In Europe Conference Exhibition
(DATE), 2017. pp. 1546-1551 (2017)

[21] Liao, Y. & Vemuri, R. Using Text Categorization Techniques for Intrusion Detection.
(2002,7)

[22] University of New Mexico Computer Science Department, Farris Engineering Center.
Computer immune systems - data sets and software. 1999, (https://www.cs.unm.
edu/~immsec/systemcalls.html) (Accessed on 19.03.2022)

[23] Kolias, C., Kambourakis, G., Stavrou, A. & Voas, J. DDoS in the IoT: Mirai and
other botnets. Computer. 50 pp. 80-84 (2017,1)

[24] Marzano, A., Alexander, D., Fonseca, O., Fazzion, E., Hoepers, C., Steding-Jessen,
K., Chaves, M., Cunha, Ã., Guedes, D. & Meira, W. The Evolution of Bashlite
and Mirai IoT Botnets. 2018 IEEE Symposium On Computers And Communications
(ISCC). pp. 00813-00818 (2018)

https://www.imperva.com/blog/how-to-identify-a-mirai-style-ddos-attack
https://www.imperva.com/blog/how-to-identify-a-mirai-style-ddos-attack
https://www.malwarebytes.com/backdoor
https://www.sciencedirect.com/science/article/pii/S1110866520301304
https://www.sciencedirect.com/science/article/pii/S1110866520301304
https://www.sciencedirect.com/science/article/pii/S1389128617303468
https://www.sciencedirect.com/science/article/pii/S1389128617303468
https://compilepeace.medium.com/memory-malware-part-0x2-writing-userland-rootkits-via-ld-preload-30121c8343d5
https://compilepeace.medium.com/memory-malware-part-0x2-writing-userland-rootkits-via-ld-preload-30121c8343d5
(https://www.cs.unm.edu/~immsec/systemcalls.html)
(https://www.cs.unm.edu/~immsec/systemcalls.html)

BIBLIOGRAPHY 51

[25] hammerzeit. Bashlite. 2016, https://github.com/hammerzeit/BASHLITE (Accessed
on 15.12.2021)

[26] unix-thrust. Beurk. 2017, https://github.com/unix-thrust/beurk (Accessed on
15.12.2021)

[27] Error996. Bdvl. 2020, https://github.com/Error996/bdvl (Accessed on
15.12.2021)

[28] m0nad. Diamorphine. 2013, https://github.com/m0nad/Diamorphine (Accessed
on 08.11.2021)

[29] jgamblin. Mirai. 2016, https://github.com/jgamblin/Mirai-Source-Code (Ac-
cessed on 15.12.2021)

[30] SkryptKiddie. httpBackdoor. 2020, https://github.com/SkryptKiddie/

httpbackdoor (Accessed on 20.12.2021)

[31] jakoritarleite. Backdoor. 2018, https://github.com/jakoritarleite/backdoor

(Accessed on 20.12.2021)

[32] nccgroup. The tick. 2020, https://github.com/nccgroup/thetick (Accessed on
15.12.2021)

[33] EKANS Ransomware and ICS Operations, https://www.dragos.com/blog/

industry-news/ekans-ransomware-and-ics-operations/ (Accessed on
07.12.2021)

[34] jimmy-ly00. Ransomware-PoC. 2020, https://github.com/jimmy-ly00/

Ransomware-PoC (Accessed on 15.12.2021)

[35] Gupta, B., Misra, M. & Joshi, R. An ISP level Solution to Combat DDoS attacks
using Combined Statistical Based Approach. International Journal Of Information
Assurance And Security (JIAS). 3 (2012,3)

[36] Gurkok, C. Chapter 41 - Cyber Forensics and Incidence Response. Computer And
Information Security Handbook (Third Edition). pp. 603-628 (2017), https://www.
sciencedirect.com/science/article/pii/B9780128038437000417

[37] Le, H., Ngo, Q. & Le, V. Iot Botnet Detection Using System Call Graphs and One-
Class CNN Classification. VOLUME-8 ISSUE-10, AUGUST 2019, REGULAR IS-
SUE. (2019)

[38] Dymshits, M., Myara, B. & Tolpin, D. Process monitoring on sequences of system call
count vectors. (2017,10), https://www.ijitee.org/wp-content/uploads/papers/
v8i10/J90910881019.pdf

[39] Phu, T., Dang, K., Quoc, D., Tho, N. & Binh, N. A Novel Framework to Classify
Malware in MIPS Architecture-Based IoT Devices. Security And Communication
Networks. 2019 pp. 1-13 (2019,12)

https://github.com/hammerzeit/BASHLITE
https://github.com/unix-thrust/beurk
https://github.com/Error996/bdvl
https://github.com/m0nad/Diamorphine
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/SkryptKiddie/httpbackdoor
https://github.com/SkryptKiddie/httpbackdoor
https://github.com/jakoritarleite/backdoor
https://github.com/nccgroup/thetick
https://www.dragos.com/blog/industry-news/ekans-ransomware-and-ics-operations/
https://www.dragos.com/blog/industry-news/ekans-ransomware-and-ics-operations/
https://github.com/jimmy-ly00/Ransomware-PoC
https://github.com/jimmy-ly00/Ransomware-PoC
https://www.sciencedirect.com/science/article/pii/B9780128038437000417
https://www.sciencedirect.com/science/article/pii/B9780128038437000417
https://www.ijitee.org/wp-content/uploads/papers/v8i10/J90910881019.pdf
https://www.ijitee.org/wp-content/uploads/papers/v8i10/J90910881019.pdf

52 BIBLIOGRAPHY

[40] Warrender, C., Forrest, S. & Pearlmutter, B. Detecting intrusions using system calls:
alternative data models. Proceedings Of The 1999 IEEE Symposium On Security And
Privacy (Cat. No.99CB36344). pp. 133-145 (1999)

[41] Mpanti, A., Nikolopoulos, S. & Polenakis, I. Malicious Software Detection and
Classification utilizing Temporal-Graphs of System-call Group Relations. CoRR.
abs/1812.10748 (2018), http://arxiv.org/abs/1812.10748

[42] Grimmer, M., RÃ¶hling, M., Kricke, M., Franczyk, B. & Rahm, E. Intrusion Detec-
tion on System Call Graphs. (2018,2)

[43] Hashemi, S. & Zarei, M. Internet of Things backdoors: Resource management issues,
security challenges, and detection methods. Transactions On Emerging Telecommu-
nications Technologies. pp. 25 (2021,2), https://onlinelibrary.wiley.com/doi/
epdf/10.1002/ett.4142

[44] Lippmann, R., Haines, J., Fried, D., Korba, J. & Das, K. The 1999 DARPA off-line
intrusion detection evaluation. Computer Networks. 34 pp. 579-595 (2000,10), https:
//archive.ll.mit.edu/ideval/files/1999Eval-ComputerNetworks2000.pdf

[45] Lincoln Laboratory, Massachussetts Institute of Technology: 1999 Darpa In-
trusion Detection Evaluation Dataset. https://www.ll.mit.edu/r-d/datasets/

1999-darpa-intrusion-detection-evaluation-dataset (Accessed 27.12.2021)

[46] Haines, J., Lippmann, R., Fried, D., Zissman, M. & Tran, E. 1999 DARPA Intrusion
Detection Evaluation: Design and Procedures. (2001,2), https://apps.dtic.mil/
sti/pdfs/ADA387747.pdf

[47] Brown, C., Cowperthwaite, A., Hijazi, A. & Somayaji, A. Analysis of the 1999
DARPA/Lincoln Laboratory IDS evaluation data with NetADHICT. (2009,8).https:
//www.ccsl.carleton.ca/paper-archive/brown-cisda-09.pdf

[48] Tavallaee, M., Bagheri, E., Lu, W. & Ghorbani, A. A detailed analysis of the KDD
CUP 99 data set. IEEE Symposium. Computational Intelligence For Security And
Defense Applications, CISDA. 2 (2009,7)

[49] Stolfo, S., Fan, W., Lee, W., Prodromidis, A. & Chan, P. Cost-based modeling for
fraud and intrusion detection: results from the JAM project. Proceedings DARPA
Information Survivability Conference And Exposition. DISCEX’00. 2 pp. 130-144
vol.2 (2000)

[50] KDD Cup 1999 dataset. 1999, http://kdd.ics.uci.edu/databases/kddcup99/

kddcup99.html (Accessed on 25.12.2021)

[51] University of New Brunswick. NSL-KDD dataset. 2009, https://www.unb.ca/cic/
datasets/nsl.html (Accessed on 29.12.2021)

[52] Sharafaldin, I., Habibi Lashkari, A. & Ghorbani, A. Toward Generating a New In-
trusion Detection Dataset and Intrusion Traffic Characterization. (2018,1), dx.doi.
org/10.5220/0006639801080116

http://arxiv.org/abs/1812.10748
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ett.4142
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ett.4142
https://archive.ll.mit.edu/ideval/files/1999Eval-ComputerNetworks2000.pdf
https://archive.ll.mit.edu/ideval/files/1999Eval-ComputerNetworks2000.pdf
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://www.ll.mit.edu/r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset
https://apps.dtic.mil/sti/pdfs/ADA387747.pdf
https://apps.dtic.mil/sti/pdfs/ADA387747.pdf
https://www.ccsl.carleton.ca/paper-archive/brown-cisda-09.pdf
https://www.ccsl.carleton.ca/paper-archive/brown-cisda-09.pdf
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
dx.doi.org/10.5220/0006639801080116
dx.doi.org/10.5220/0006639801080116

BIBLIOGRAPHY 53

[53] Nagy, R., Nemeth, K., Papp, D. & Buttyan, L. Rootkit Detection on Embedded
IoT Devices. Acta Cybernetica. (2021,8), https://www.crysys.hu/publications/
files/setit/cpaper_bme_NagyB20cscs.pdf

[54] Saleem, D., Anwar, U., Khawar, M. & Naseer, S. Flow-Based Rules Generation for
Intrusion Detection System using Machine Learning Approach. (2021,1)

[55] Caida ”DDoS Attack 2007” Dataset. 2007, https://www.caida.org/catalog/

datasets/ddos-20070804_dataset/ (Accessed on 10.12.2021)

[56] Patil, N., Rama Krishna, C. & Kumar, K. Distributed frameworks for detecting
distributed denial of service attacks: A comprehensive review, challenges and fu-
ture directions. Concurrency And Computation: Practice And Experience. 33, e6197
(2021), https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6197

[57] Shiravi, A., Shiravi, H., Tavallaee, M. & Ghorbani, A. Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Computers
Security. 31, 357-374 (2012), https://www.sciencedirect.com/science/article/
pii/S0167404811001672

[58] Intrusion Detection Evaluation Dataset (CIC-IDS2017). 2017, https://www.unb.

ca/cic/datasets/ids-2017.html (Accessed on 05.01.2022)

[59] CSE-CIC-IDS2018 on AWS. 2018, https://www.unb.ca/cic/datasets/ids-2018.
html (Accessed on 05.01.2022)

[60] Intrusion detection evaluation dataset. 2012, https://www.unb.ca/cic/datasets/
ids.html (Accessed on 08.12.2021)

[61] Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D. & Nakao, K. Statistical Anal-
ysis of Honeypot Data and Building of Kyoto 2006+ Dataset for NIDS Evaluation.
Proceedings Of The First Workshop On Building Analysis Datasets And Gather-
ing Experience Returns For Security. pp. 29-36 (2011), https://doi.org/10.1145/
1978672.1978676

[62] Panigrahi, R. & Borah, S. A detailed analysis of CICIDS2017 dataset for designing
Intrusion Detection Systems. International Journal Of Engineering Technology. 7
pp. 479-482 (2018,1)

[63] Leevy, J. & Khoshgoftaar, T. A survey and analysis of intrusion detection models
based on CSE-CIC-IDS2018 Big Data. Journal Of Big Data. 7 (2020,11)

[64] ÃzgÃ¼r, A. & Erdem, H. A review of KDD99 dataset usage in intrusion detection
and machine learning between 2010 and 2015. (2016,4)

[65] Liu, M., Xue, Z., Xu, X., Zhong, C. & Chen, J. Host-Based Intrusion Detection
System with System Calls: Review and Future Trends. ACM Comput. Surv.. 51
(2018,11), https://doi.org/10.1145/3214304

https://www.crysys.hu/publications/files/setit/cpaper_bme_NagyB20cscs.pdf
https://www.crysys.hu/publications/files/setit/cpaper_bme_NagyB20cscs.pdf
https://www.caida.org/catalog/datasets/ddos-20070804_dataset/
https://www.caida.org/catalog/datasets/ddos-20070804_dataset/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6197
https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids.html
https://www.unb.ca/cic/datasets/ids.html
https://doi.org/10.1145/1978672.1978676
https://doi.org/10.1145/1978672.1978676
https://doi.org/10.1145/3214304

54 BIBLIOGRAPHY

[66] Thakkar, A. & Lohiya, R. A Review of the Advancement in Intrusion De-
tection Datasets. Procedia Computer Science. 167 pp. 636-645 (2020), https:

//www.sciencedirect.com/science/article/pii/S1877050920307961, Interna-
tional Conference on Computational Intelligence and Data Science

[67] Creech, G. Developing a high-accuracy cross platform Host-Based Intrusion Detection
System capable of reliably detecting zero-day attacks. (2014)

[68] Creech, G. & Hu, J. A Semantic Approach to Host-Based Intrusion Detection Systems
Using Contiguousand Discontiguous System Call Patterns. IEEE Transactions On
Computers. 63 pp. 807-819 (2014)

[69] Borisaniya, B. & Patel, D. Evaluation of Modified Vector Space Representation Using
ADFA-LD and ADFA-WD Datasets. Journal Of Information Security. 6 pp. 250
(2015,7)

[70] Haider, W., Creech, G., Xie, Y. & Hu, J. Windows Based Data Sets for Evaluation of
Robustness of Host Based Intrusion Detection Systems (IDS) to Zero-Day and Stealth
Attacks. Future Internet. 8 (2016), https://www.mdpi.com/1999-5903/8/3/29

[71] Haider, W., Hu, J., Slay, J., Turnbull, B. & Xie, Y. Generating realistic intrusion
detection system dataset based on fuzzy qualitative modeling. Journal Of Network
And Computer Applications. 87 pp. 185-192 (2017), https://www.sciencedirect.
com/science/article/pii/S1084804517301273

[72] Kerrisk, M., perf-trace(1) â Linux manual page, https://www.man7.org/linux/

man-pages/man1/perf-trace.1.html (Accessed on 10.11.2021)

[73] Kerrisk, M., strace(1) â Linux manual page, https://www.man7.org/linux/

man-pages/man1/strace.1.html (Accessed on 10.11.2021)

[74] Rajendran, S., Calvo-Palomino, R., Fuchs, M., Bergh, B., Cordobes, H., Giustiniano,
D., Pollin, S. & Lenders, V. Electrosense: Open and Big Spectrum Data. IEEE
Communications Magazine. 56, 210-217 (2018), 10.1109/MCOM.2017.1700200

[75] Bace, R. & Mell, P. NIST Special Publication on Intrusion Detection Systems. (2001)

[76] Xu, L., Zhang, D., Alvarez, M., Morales, J., Ma, X. & Cavazos, J. Dynamic Android
Malware Classification Using Graph-Based Representations. 2016 IEEE 3rd Interna-
tional Conference On Cyber Security And Cloud Computing (CSCloud). pp. 220-231
(2016)

[77] Tan, K. & Maxion, R. ”Why 6?”Defining the operational limits of stide, an anomaly-
based intrusion detector. Proceedings 2002 IEEE Symposium On Security And Pri-
vacy. pp. 188-201 (2002)

[78] Laszka, A., Abbas, W., Sastry, S., Vorobeychik, Y. & Koutsoukos, X. Optimal
Thresholds for Intrusion Detection Systems. Proceedings Of The Symposium And
Bootcamp On The Science Of Security. pp. 72-81 (2016), https://doi.org/10.

1145/2898375.2898399

https://www.sciencedirect.com/science/article/pii/S1877050920307961
https://www.sciencedirect.com/science/article/pii/S1877050920307961
https://www.sciencedirect.com/science/article/pii/S1084804517301273
https://www.sciencedirect.com/science/article/pii/S1084804517301273
https://www.man7.org/linux/man-pages/man1/perf-trace.1.html
https://www.man7.org/linux/man-pages/man1/perf-trace.1.html
https://www.man7.org/linux/man-pages/man1/strace.1.html
https://www.man7.org/linux/man-pages/man1/strace.1.html
10.1109/MCOM.2017.1700200
https://doi.org/10.1145/2898375.2898399
https://doi.org/10.1145/2898375.2898399

BIBLIOGRAPHY 55

[79] Varghese, S. & Jacob, K. Anomaly Detection Using System Call Sequence Sets. JSW.
2 pp. 14-21 (2007,1)

[80] Marteau, P. Sequence Covering for Efficient Host-Based Intrusion Detection. IEEE
Transactions On Information Forensics And Security. 14, 994-1006 (2019)

[81] Liu, M., Xue, Z., Xu, X., Zhong, C. & Chen, J. Host-Based Intrusion Detection
System with System Calls: Review and Future Trends. ACM Comput. Surv.. 51
(2018,11), https://doi.org/10.1145/3214304

[82] Murtaza, S., Khreich, W., Hamou-Lhadj, A. & Couture, M. A host-based anomaly
detection approach by representing system calls as states of kernel modules. 2013
IEEE 24th International Symposium On Software Reliability Engineering, ISSRE
2013. pp. 431-440 (2013,11)

[83] University of New Mexico Computer Science Department, Farris Engineering Center.
Computer immune systems - UNMSendmail dataset, 1999, https://www.cs.unm.
edu/~immsec/data/live-sendmail.html (Accessed on 19.03.2022)

[84] University of New Mexico Computer Science Department, Farris Engineering Cen-
ter. Computer immune systems - UNMLoginps dataset, 1999, https://www.cs.unm.
edu/~immsec/data/login-ps.html (Accessed on 19.03.2022)

[85] University of New Mexico Computer Science Department, Farris Engineering Center.
Computer immune systems - UNMXlock dataset, 1999, https://www.cs.unm.edu/
~immsec/data/xlock.html (Accessed on 22.03.2022)

[86] UiPath.com. 2022, https://www.uipath.com/

https://doi.org/10.1145/3214304
https://www.cs.unm.edu/~immsec/data/live-sendmail.html
https://www.cs.unm.edu/~immsec/data/live-sendmail.html
https://www.cs.unm.edu/~immsec/data/login-ps.html
https://www.cs.unm.edu/~immsec/data/login-ps.html
https://www.cs.unm.edu/~immsec/data/xlock.html
https://www.cs.unm.edu/~immsec/data/xlock.html
https://www.uipath.com/

56 BIBLIOGRAPHY

Abbreviations

ADFA-LD Australian Defence Force Academy Linux Dataset
ADFA-WD Australian Defence Force Academy Windows Dataset
ADFA-WD:SAAAustralian Defence Force Academy Windows Dataset:Stealth Attack Addendum
AES Advanced Encryption Standard
API Application Programming Interface
CAIDA Center of Applied Internet Data Analysis
CIC Canadian Institute for Cybersecurity
CSE Communications Security Establishment
CC Command Control
DARPA Defense Advanced Research Agency
DDoS Distributed Denial of Service
DL Deep Learning
DLL Dynamic Link Libraries
DNS Domain Name System
DOM Document Object Model
DoS Denial of Service
FTP File Transfer Protocol
GID Group Identifier
HIDS Host Based Intrusion Detection System
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDS Intrusion Detection System
IoT Internet of Things
IMAP Internet Message Access Protocol
IRC Internet Relay Chat
ISCX Information Security Center of Excellence
KDD Knowledge Discovery and Data Mining
LKM Loadable Kernel Module
ML Machine Learning
NIDS Network Based Intrusion Detection System
NSL Network Security Laboratory
PAM Privileged Access Management
PID Process Identification Number
POP3 Post Office Protocol version 3
RSA RivestâShamirâAdleman
SDR Software Defined Radio

57

58 ABBREVIATONS

SMTP Simple Mail Transfer Protocol
SSH Secure Shell Protocol
stide sequence time-delay embedding
TCP Transmission Control Protocol
UDP User Datagram Protocol
UNB University of Brunswick
UNM University of New Mexico
UPnP Universal Plug and Play
UUID Universal Unique Identifier

Glossary

Authentication

Authorization Authorization is the decision whether an entity is allowed to perform a
particular action or not, e.g. whether a user is allowed to attach to a network or
not.

MIPS Microprocessor without Interlocked Pipelined Stages

59

60 GLOSSARY

List of Figures

1.1 ElectroSense Network . 2

2.1 Botnet DDoS Attack . 9

2.2 User mode rootkit. Source: Adapted from [18] 10

2.3 Crypto Ransomware attack. Source: Adapted from [15] 11

4.1 System Call Monitoring and Analytics Process High Level 20

4.2 Bashlite change management port & password 24

4.3 Bashlite set IP address to C&C . 24

4.4 Bashlite commands . 25

4.5 Bdvl commands . 26

4.6 TheTick Command & Control console . 28

4.7 RansomwarePoC Encryption . 29

5.1 Mean Values between Normal and Thetick behavior 36

5.2 Standard Deviation Frequency between Normal and Thetick behavior . . . 37

5.3 System Call Bigram Frequency: Normal and Thetick behavior 37

5.4 Mean Values between Normal and Bashlite behavior 38

5.5 Standard Deviation Frequency between Normal and Bashlite behavior . . . 39

5.6 System Call Bigram Frequency: Normal and Bashlite behavior 40

5.7 Mean Values between Normal and Bdvl behavior 41

5.8 Standard Deviation Frequency between Normal and Bdvl behavior 41

5.9 System Call Bigram Frequency: Normal and Bdvl behavior 42

61

62 LIST OF FIGURES

5.10 Mean Values between Normal and RansomwarePoC behavior 43

5.11 Standard Deviation Frequency between Normal and RansomwarePoC be-
havior . 44

5.12 System Call Bigram Frequency: Normal vs. RansomwarePoC behavior . . 44

5.13 System Call Bigram Frequency: Thetick vs. Bashlite vs. Bdvl vs. Ran-
somwarePoC . 45

List of Tables

2.1 System call Pre-Processing & Classifiers 7

2.2 Malware types and specific vectors . 11

3.1 Existing Datasets . 17

4.1 Datasets with their corresponding behavior 30

63

64 LIST OF TABLES

Appendix A

Installation Guidelines

A.1 Botnets

A.1.1 Bashlite

Server

First, clone the repository from https://github.com/hammerzeit/BASHLITE onto your
machine. Open server.c and change MY_MGM_PASS and MY_MGM_PORT to your liking.
Save and close the file. Next, compile the server.c file with gcc. After compiling the
file execute the executable with port number 6667 regardless of what your MY_MGM_PORT
is (the client.c is programmed to connect to this port so best to keep it this way) and
number of threads as parameters. An example is shown below.

Listing A.1: Initializing the C&C

$ gcc server.c -o server

$./ server 6667 5

In another command line, run the following command to connect to the initialized C&C.
Here it is important to use the MY_MGM_PORT that was specified in server.c and the IP
address from the device from which the command ./server 8889 5 was started.

Listing A.2: Telnet into C&C

$ telnet <ip_address > <MY_MGM_PORT >

Next, if prompted, enter the management password to log into the C&C.

Client

For the client also clone the repository onto the clients machine. Change the IP address
on line 72 to reflect the IP address of the C&C. Save and exit and execute the compiled
file. An example is provided below.

65

https://github.com/hammerzeit/BASHLITE

66 APPENDIX A. INSTALLATION GUIDELINES

Listing A.3: Connect bot to the C&C

$ gcc client.c -o client

$./ client

A.2 Rootkits

A.2.1 Bedevil (bdvl)

As usual, clone the github repository, this time only on the target device. Navigate to
setup.py, open the file and change the settings as you see fit. Next, execute the command

$ sh etc/depinstall.sh && make

This will create the build/ directory that will contain <PAM_UNAME>.b64 and bdvl.so.*.
Execute etc/auto.sh bash script and provide it with the file location of <PAM_UNAME>.b64,
like in the example below.

$ sh etc/auto.sh <path_to_PAM_UNAME.b64 >

A.3 Backdoors

A.3.1 theTick

Client

To compile the binary file that needs to be executed on the target device, run the command

$ sudo apt -get install libcurl4 -openssl -dev

After the dependency has been installed, the binary file needs to be created using the
following commands:

$ cd thetick/src

$ make clean

$ make

After this process is done, you will find the executable in the bin folder in the root directory
of the repository. Run the executable using the following command

$./ ticksvc ADDR PORT

where ADDR refers to the IP Address of the server machine and PORT the port on which
the server will be listening on.

A.4. RANSOMWARE 67

Server

On the server we need python to install the necessary dependencies and to execute the
malware. Use Python 2.7 preferably to run into less issues. Navigate to the repository
root folder and execute the command:

$ pip install --upgrade -r requirements.txt

This will install all the necessary dependencies. Once this is done the server can be started
with the execution of the following command:

$ python server.py -b ADDR -p PORT

Here the same applies as mentioned above, replace ADDR with the IP Address of the
server machine and PORT with the port that the server will be listening on.

A.4 Ransomware

A.4.1 RansomwarePoC

To install this malware, git clone the repository [34], open a command line and navigate
to the directory where the newly cloned folder is located. To install the dependencies
necessary to run this malware execute:

$ pip3 install pycryptodome

Once the dependencies have installed the malware is ready to use. The default commands
to encrypt and decrypt a device are:

$ python3 main.py -e or python3 main.py -e <path >

to encrypt and the following to decrypt the device:

$ python3 main.py -d or python3 main.py -d <path >

Additionally to only encrypt a specific directory on a windows target device specify the
directory like for example:

$ python3 main.py -p "C:\ users\user\desktop\test_ransomware" -e

and the same for decrypting the directory:

$ python3 main.py -p "C:\ users\user\desktop\test_ransomware" -d

For encrypting specific directories on Linux devices specify the directory like in the ex-
ample below:

$ python3 main.py -p "/home/user/test_ransomware" -e

and likewise to decrypt the directory:

$ python3 main.py -p "/home/user/test_ransomware" -d

68 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the ZIP file

This section specifies which files are present in the zip file.

• BA_Ramon_SolodeZaldivar.pdf the final version of the thesis as .pdf.

• BA_Ramon_SolodeZaldivar.zip containing the latex source code of the thesis.

• ba_thesis_scripts.zip the source code of the scripts used in this thesis.

• midterm.pptx slides of the midterm presentation held on the 30th of January 2022.

The slides for the final presentation are not included at this stage. The presentation is
scheduled for the 20th of April and will be ready for this date.

69

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Background
	Device Fingerprinting
	System Calls
	System call Pre-Processing
	Malware
	Botnet
	Rootkits
	Backdoors
	Ransomware

	Related Work
	Datasets modeling device behaviour
	Network Datasets
	Host Datasets

	Intrusion Detection Systems

	Creation of a System Call based Dataset
	ElectroSense Scenario
	System Call Monitoring Process
	Architecture

	Malware affecting ElectroSense
	Bashlite
	Bdvl
	Thetick
	RansomwarePoC

	Datasets creation

	Evaluation
	Results
	Thetick
	Bashlite
	Bdvl
	RansomwarePoC
	Comparing Malware

	Summary, Conclusions and Future Work
	Summary and Conclusions
	Future Work

	Bibliography
	Abbreviations
	Glossary
	List of Figures
	List of Tables
	Installation Guidelines
	Botnets
	Bashlite

	Rootkits
	Bedevil (bdvl)

	Backdoors
	theTick

	Ransomware
	RansomwarePoC

	Contents of the ZIP file

