
Design and Implementation of a
Traffic Sinkhole for Cyberattack

Analysis

Kyrill Hux
Zürich, Switzerland

Student ID: 17-936-550

Supervisor: Jan von der Assen, Muriel Franco
Date of Submission: March 27, 2022

University of Zurich
Department of Informatics (IFI)
Binzmühlestrasse 14, CH-8050 Zürich, Switzerland ifi

B
A

C
H

E
LO

R
T

H
E

S
IS

–
C

om
m

un
ic

at
io

n
S

ys
te

m
s

G
ro

up
,P

ro
f.

D
r.

B
ur

kh
ar

d
S

til
le

r

Bachelor Thesis

Communication Systems Group (CSG)

Department of Informatics (IFI)

University of Zurich

Binzmühlestrasse 14, CH-8050 Zürich, Switzerland

URL: http://www.csg.uzh.ch/

3

Zusammenfassung

Diese Arbeit befasst sich mit dem Entwurf und der Implementierung eines Netzwerkverkehrs-
Sinkholes, das in die bestehende SecGrid-Plattform der Universität Zürich integriert ist.
Das Hauptziel dabei war eine einfache Erkennung und Umleitung von bösartigem, von
Malware stammendem Datenverkehr zu ermöglichen. Nach einem Überblick über beste-
hende Lösungen und Ansätze zur Verkehrserkennung und -umleitung wird DNS in Ver-
bindung mit einer Blacklist als Ansatz für diese beiden Probleme aufgrund seiner ge-
ringen Eingriffsintensität und einfachen Bereitstellung gewählt. Ein vollwertiges, leicht
vom Benutzer konfigurierbares DNS-Sinkhole wird dann als Teil dieser Arbeit implemen-
tiert. Es bietet eine grafische Benutzeroberfläche mit vielen Optionen für den Benutzer,
darunter die Möglichkeit, die Blacklist auf verschiedene Arten und Weisen zu konfigurie-
ren, einschliesslich dem automatischen Herunterladen von einer URL, sowie einen Über-
blick über die am häufigsten angeforderten Domains auf der Blacklist. Diese Implemen-
tierung wird anschliessend auf Leistung und Effektivität bei der Abwehr verschiedener
Malware-Familien getestet. Die Ergebnisse sind insgesamt positiv: Das Sinkhole führt nur
zu einer zusätzlichen Latenz von etwas mehr als 2ms, während es gleichzeitig Blacklist-
Erkennungsfunktionen bereitstellt. Die meisten getesteten Malware-Familien konnten er-
folgreich daran gehindert werden, ihre böswillige Absicht zu erfüllen, mit der bemerkens-
werten Ausnahme von Ransomware.

i

ii

Abstract

This thesis deals with the design and implementation of a network traffic sinkhole in-
tegrated into the existing SecGrid platform developed by the University of Zurich, with
the main goal of allowing easy detection and diversion of malicious traffic originating
from malware. After an overview of existing solutions and approaches for traffic detec-
tion and diversion, DNS in conjunction with a blacklist is chosen as the approach for
both of these issues for it’s low intrusiveness and easy deployability. A full-fledged, easily
user-configurable DNS sinkhole is then implemented as a part of this work. It offers a
graphical user interface with options for the user to configure the blacklist in various ways,
including automatic polling from an URL, as well as an overview of the most requested
blacklisted domains, among other features. This implementation is subsequently tested
for performance and effectiveness in mitigating various malware families. The results are
overall positive: the sinkhole only introduces an additional delay of just over 2ms while
providing blacklist detection capabilities, and most tested malware families could suc-
cessfully be prevented from fulfilling their malicious intent, with the notable exception of
ransomware.

iii

iv

Acknowledgments

I would like to thank my supervisor Jan von der Assen for his continuous support and
provided insights over the entire duration of the project. Jan’s feedback was always helpful
never failed to point me in the right direction.

Additionally, I want to thank Prof. Dr. Burkhard Stiller, who leads the Communication
Systems Group, for enabling me to write this thesis, but also for always offering his help
in times of need.

Lastly, I would like to thank Sina for her neverending support.

v

vi

Contents

Zusammenfassung i

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Motivation . 1

1.2 Description of Work . 2

1.3 Thesis Outline . 2

2 Background 3

2.1 Malware Types and Their Behavior . 3

2.2 SecGrid . 4

3 Related Work 5

3.1 Malicious Traffic Detection . 5

3.2 Malicious Traffic Diversion . 7

4 Architecture 11

vii

viii CONTENTS

5 Prototype and Implementation 13

5.1 DNS Module Proof of Concept . 13

5.2 Implementation of the DNS Module . 15

5.2.1 Back-End (Data Layer) . 16

5.2.2 Front-End (User Layer) . 18

5.3 Implementation of the Live Capture Module 23

6 Evaluation 25

6.1 Performance . 25

6.2 Malware Mitigation . 26

6.3 Case Studies . 29

6.3.1 Malware Attack . 29

6.3.2 Phishing Campaigns . 30

7 Summary, Conclusions and Future Work 33

7.1 Limitations and Future Work . 34

Bibliography 35

Abbreviations 39

Glossary 41

List of Figures 41

List of Tables 44

A Installation Guidelines 47

A.1 Development Environment . 47

A.1.1 Miner . 48

A.1.2 Backend (API) . 48

A.1.3 Frontend . 48

B Contents of the CD 51

Chapter 1

Introduction

Despite all efforts made by both the research community and industry, cyberattacks pose
significant threats to the operation of businesses. This issue is magnified at Small and
Medium-sized Enterprises (SME) and enterprises that strongly rely on technology [36]. For
example, the Computer Emergency Response Team of the Swiss Government (GovCERT)
estimates that 123,756 systems operating within the Swiss IP-address (Internet Protocol)
space are vulnerable to be exploited for DDoS (Distributed Denial-of-Service) attacks [42].

1.1 Motivation

Although motivating the need for businesses to understand the presence of vulnerable
and infected systems within their IT (Information Technology) landscape is simple, de-
riving actual insight remains a challenge. Related research considers that cyberattacks
such as DDoS attacks are best identified at the target [46]. However, identifying attacks
using this destination-based approach reveals only the tip of the iceberg. For example,
a DDoS attack may be launched from a number of previously infected servers forming a
botnet. While the DDoS attack, including underlying attack vectors, can be detected by
an Intrusion Detection System operated by the victim, the C&C (Command & Control)
traffic cannot be analyzed. Therefore, the proposal shall follow a visual approach to create
insights on infected systems using a source-based traffic analysis approach.

Visualization systems present an efficient approach to detect patterns in network traffic
[18]. Such a visualization system was targeted in the first implementation of DDoSGrid
by [7]. DDosGrid had the objective of helping the network operator detect DoS attacks
by providing a visualized data representation of the network. The detection of DoS
attacks still requires manual investigation of network data. DDosGrid 1.0 takes as input
the captured network data that has many dimensions so that it can visualize them to
the network operator for analysis. This tool also allows users to implement their own
visualization methods that can easily be integrated into the system to fulfill specific needs
of users.

1

2 CHAPTER 1. INTRODUCTION

The DDoSGrid system is agnostic to the location where data is collected. Further, since
the first iteration considered post-mortem attack analysis, full packet captures were used
as primary data source. This has the advantage that any aspect of a packet can be
analyzed programmatically. Hence, there is potential to implement a source-based traffic
analysis system that would be able to extract any property of network traffic. Given
the focus on post-mortem attack analysis, the platform does not provide any features to
divert and record traffic. Integrating these components in a way that allows fine-grained
traffic diversion toward analysis platform results in a fully integrated system that allows
source-based malware traffic analysis.

1.2 Description of Work

To close the gap in accessible integrated diversion and analysis tools, this work mainly
examines the design and implementation of a network traffic sinkhole designed to divert
and ultimately mitigate malicious network traffic. In order to lower deployment costs
and minimize intrusiveness, DNS (Domain Name Service) was chosen as the diversion
method over other approaches such as software-defined networks. After implementing a
standalone prototype application, this work covers its integration into the existing SecGrid
architecture on both the front- and the back-end of the platform. Originally, SecGrid was
developed to visualize existing network capture files to analyze attacks post-mortem. In
addition to the aforementioned sinkhole, this works also implements a direct capturing
functionality into SecGrid, allowing the two new components to work together seamlessly.
The new additions are finally tested for performance and effectiveness in their intended
use-cases.

1.3 Thesis Outline

This introductory chapter has outlined the motivation to build an integrated diversion
and analysis platform using SecGrid as a basis for this work. The rest of the chapters
that compose this work are arranged in the following way: Chapter 2 lays a foundation
for the rest of the paper by introducing a typology on malware types and SecGrid as a
platform, which the next Chapter then uses to give the reader an overview of related lit-
erature on the topic, split into Malicious Traffic Detection and Diversion. Chapter 4 then
describes the necessary changes in the existing SecGrid architecture, the implementation
of which is outlined in Chapter 5. Finally, the newly added systems are evaluated on their
effectiveness in Chapter 6, before Chapter 7 summarizes and concludes this work.

Chapter 2

Background

In modern times, cyberattacks come in diverse variations: From browser-based JavaScript
attacks to social engineering, the scope of attacks can be very broad. However, this work
only considers cyberattacks originating from malware installed on a device located inside
a local network.

2.1 Malware Types and Their Behavior

Even after narrowing the scope to only include malware attacks, there are many types of
malware that need to be considered. Malware variations can include types that do not
communicate over the network after infecting a host, such as an offline keylogger which
stores its information on the infected device’s disk. Due to the nature of this paper, only
malware that creates traffic on the network will be considered.

In existing literature, various classifications and taxonomies for malware have been pro-
posed over time, which include both malware that communicates over the network, and
malware which does not. Thus, the following sections will only examine families of mal-
ware described as Viruses, Worms, Spyware, Trojans, Ransomware and Botnets. These
categories of malware do not describe concrete instances of malware and do not have rigid
boundaries. Sometimes multiple categories can even apply to a single malware. Still,
these classifications are helpful to differentiate the intent, functions and distribution of
certain malware types and will thus be used in following sections.

The term of the computer virus has been (mis-)used by many members of both tech-
nical and non-technical communities to represent any malware one would come across.
Instead of using it as an umbrella term, existing literature suggests using the term for self-
replicating programs [26], with some literature requiring a virus to have a host-program
in order to run and/or replicate [38].

Worms are usually defined as a special variation of a virus, with the main difference being
that worms do not need a host-program in order to self-replicate or run [26][38], but other

3

4 CHAPTER 2. BACKGROUND

differences can also include the spread over the network to other devices instead of the
viruses’ spread on its host computer only [26].

Spyware is a broad term used to describe malware which is used to monitor victims or
extract information on them in a hidden manner. This information can stay local in the
case of a keylogger that stores the captured data in a file on the victim’s local storage, but
can also be exfiltrated over the network to a controlling or distributing attacker [13]. Such
malware can take on advanced forms such as all-encompassing surveillance tools, often
called RATs (Remote Administration Tools) which can be controlled in large numbers by
a single distributor and are usually spread as an invisible attachment in modified versions
of otherwise legitimate software [27]. In these cases, this classification may also intersect
with others, such as the classifications of Trojans and Botnets, as seen below.

Malware that is disguised as a legitimate program, but also fulfills actions unknown and
potentially unwanted by the user can be classified as a trojan. This may include the
deployment of a botnet client or advanced spyware without the user’s knowledge, which
will persist on the system even after usage of the original program is terminated [26].

Ransomware is a classification of malware that completely or partially blocks access to
certain resources on a victim’s system. This may be a form of data, hardware or any
other part of the victim’s device. Access to this resource is then held to ransom until a
certain amount of money is paid. If the ransom is not paid, ransomware may destroy the
resources it is holding after a set amount of time, or simply never return access [34].

Networks of compromised computers running the same malware fall under the classifica-
tion of botnets. Usually, these compromised computers unknowingly report to a single
operator often called the Botmaster and await commands. Depending on the complexity
of the malware running on these systems, the botmaster may command their victims to
bombard a target with traffic (often called a DDoS attack), download further files onto
the victim systems or execute arbitrary commands and/or code on them [14]. Botnets are
one of the most significant drivers of online crime by enabling the previously mentioned
DDoS attacks, serving as proxies and gateways, or even enabling the further distribution
of other malware such as spyware or ransomware onto the infected computers [22].

2.2 SecGrid

SecGrid is an advanced network traffic visualization tool developed by the Communication
Systems Group of the University of Zurich [17]. It allows users to upload their existing
packet capture files and easily analyze them using various visualization techniques on the
fly. While it was originally created with the main purpose being the analysis of DDoS
attack traffic data, in its current state, it presents an excellent tool for visual analysis of
any kind of malicious traffic and provides insight into potential patterns and connections
that would otherwise not be possible.

Chapter 3

Related Work

This work deals with the investigation, implementation and evaluation of DNS-based
malicious traffic detection and diversion. However, from a methodological perspective,
traffic diversion must be considered in a larger framework. Thus, we discuss existing work
as part of an overarching traffic analysis framework as presented in Figure 3.1.

Figure 3.1: Overview of related methodologies

In general, we only consider malicious traffic originating from malware-infected hosts.
The following section therefore provides a selection of relevant existing literature that
examines traffic detection and diversion approaches of such malicious traffic.

3.1 Malicious Traffic Detection

Most malicious software in modern days produces some kind of network traffic in order
to further spread itself, update or modify its current version, or to communicate to a
controlling instance. Recent literature has found various ways to detect and identify
such traffic and a selection of such approaches will follow in the section below and are
summarized in Table 3.1.

A popular, but also one of the most intrusive approaches is to analyze packets and their
contents coming through the network and is usually referred to as Deep Packet Inspection
(DPI). Other than basic signature detection, existing literature has developed advanced

5

6 CHAPTER 3. RELATED WORK

ways of detecting unwanted traffic. [24] propose a method of malware packet detection
from raw network packets using statistical analysis. They apply Naive Bayes in combina-
tion with known signatures to achieve stateless malware traffic detection.

Another approach is shown by [2], where Principal Component Analysis was applied in
combination with Artificial Neural Networks in order to classify malware network traffic.
The results of this research showed that this approach was able to classify malicious traffic
with close to the same accuracy as other state of the art methods of classification [2].

[29] developed a deep learning model which takes raw network data as input and is able
to detect and classify malicious traffic contained in it in real time. The paper proposes
two versions; one taking raw network packets as its input, and one taking raw network
flows as inputs, which would then better be described as network flow analysis.

Since DPI deployments need to scan the entirety of all packets coming through the net-
work, powerful professional-grade hardware is needed in order to not slow down the net-
work while maintaining a comparable level of throughput to regular networks, which
comes with substantial financial and (training-)time cost.

Network Flow Analysis presents an alternative, less intrusive approach that can be used
to analyze network traffic. In contrast to Deep Packet Inspection, no packet contents are
analyzed, but rather the describing information around them. This might be information
such as the source IP Address, destination IP address, the network interface, and more.
One might think of it as the equivalent of a phone bill, not containing the contents of the
call, but it can be used to prove who called whom [19].

[41] applied Recurrence Quantification Analysis combined with Machine Learning to net-
work flow data in order to identify malware traffic in the year 2020 and achieved very high
accuracy of detection while using fewer flow features than traditional statistical analysis
methods.

In their work, [12] used Long Short-Term Memory Recurrent Neural Networks in order
to detect botnet traffic originating from internet of things devices. The resulting model
scored very high accuracy rates in comparison to other existing models.

The last approach presented in this overview is malicious traffic detection via DNS. It
presents the least intrusive of all presented approaches and does not analyze any packet
contents directly. Instead, a custom DNS server controlled by the analyzing party is
installed and all participating hosts have their primary DNS server set to it. The resulting
detection techniques operate based exclusively on the DNS traffic coming through the
server.

One such detection technique was developed by [5], where a real-time malicious domain
detection system was proposed. To achieve this, DNS traffic was collected from a network
and then analyzed using 15 unique query features such as various characteristics of the
TTL (average, standard deviation and more) or the queried domain names (% of numerical
characters, length). According to the authors, this method achieved very positive results
and they were able to collect over 100 thousand malicious domain in a public 17 month
test-run.

3.2. MALICIOUS TRAFFIC DIVERSION 7

In the industry, the most common practice is to use blacklists comprised of known mali-
cious domains instead of trying to detect malicious domains based on their behaviour as
in the previously mentioned work. These blacklists can come in the form of domain block
lists such as [1] and [3], or in the form of IP block lists such as [39] or [15] and can be
compiled in many ways: some are compiled by hand via user submissions and some come
from automatic detection sources such as [5]. Once a machine sends requests to resolve
a blacklisted domain or IP, a detection is triggered and further steps can be initiated.
This practice is so common in the industry because it has the advantage of removing the
burden of detection from each network wanting to use a sinkhole (which would come with
its own prerequisites), but also allows for instant detection of already known threats as
soon as they appear on the deploying network.

Approach Analyzed Data Intrusiveness Prerequisites

DPI Entire packets
including contents

High (all
communication is
scanned)

High-power,
programmable
networking hardware

NetFlow Network traffic
metadata

Medium (only certain
network flow metrics
are scanned)

Specialized networking
equipment

DNS DNS queries Low (only domain
names are scanned)

Router with
configurable DNS
server

Table 3.1: Overview of Malicious Traffic Detection Approaches

3.2 Malicious Traffic Diversion

Once malicious traffic has been identified, it is usually desirable that it is diverted from its
originally intended path towards a new destination (or no destination at all) controlled by
the defending party, in order to prevent that traffic from fulfilling its malicious purpose.
Such diversions can be done in various ways, but most existing systems in the industry
and recent literature seem to focus on three approaches specifically, all of which are laid
out in the following section and summarized in Table 3.2.

The first well-known approach to traffic diversion is through usage of the Border Gateway
Protocol (BGP), which refers to a large-scale routing protocol that determines packet
routes between and within autonomous systems (AS). As such, it can be used to block
or redirect a number of attacks by diverting traffic to another destination than originally
intended, often mitigating damage that would be caused by attacks such as DDoS attacks
[43]. Using BGP to defend against such attacks is therefore well-documented [8], but
research has moved on to various extensions and variations of BGP due to security [10]
and granularity [21] concerns. It must be noted that there are a number of prerequisites
that must be met in order to use BGP, most notably an organization wishing to employ
BGP needs to be in possession of an AS Number which can only be obtained from one

8 CHAPTER 3. RELATED WORK

of the Regional Internet Registries. Currently in Europe, obtaining this number comes
with its own set of requirements such as the network being multi-homed (connected to
multiple ISPs) [11], effectively restricting access to larger organizations.

Software Defined Networks (SDN) pose the second approach for traffic diversion dis-
cussed in this section. Given special networking equipment and configuration, this tech-
nology allows to reroute packets traversing a network in real time based on any number of
properties they might have, such as their destination IP, port, the protocol they carry and
more, and redirecting them to a new destination instead of their originally intended tar-
get, or not continue routing them at all. While SDN can be effective for traffic diversion,
it is important to consider the cost that comes with it: Specialized (usually enterprise-
grade) SDN-compatible networking equipment must be acquired and configuration of such
networks requires special expertise in that area.

[4] implemented a simple dynamic traffic diversion algorithm and tested for performance
using SDN in a real network (instead of usually emulated networks). They found that
their SDN setup was able to reduce packet loss in a high-stress situation from 50% to
none by diverting the malicious traffic.

An attempt to make SDN-based attack mitigation systems more accessible has been made
by [37], who propose an autonomic SDN-based attack mitigation framework. Their pro-
posed framework allows ship personnel without deep security expertise to create rule-sets
and policies for traffic diversion using an easy to understand high-level grammar.

The last diversion approach to be mentioned in this section is using DNS. In this approach,
a custom DNS server is set up to be used by all hosts in a network and subsequently
resolves all queries as usual. If a queried domain or IP is detected by any detection
mechanism such as the ones described in the above section, it can be resolved to a different,
special address instead. This might be the localhost address to completely prevent traffic
from leaving the source entirely, or a designated host in the network which can then record
the incoming malicious traffic for later analysis instead. Such a host would then be called
a DNS Sinkhole [9].

Approach Granularity Financial Cost Prerequisites

BGP Low (routes only) High (ASN,
multi-homing, and
more)

AS Number,
multi-homed network,
BGP-capable routers

SDN High (individual
packets)

Medium (special
networking hardware)

Specialized networking
equipment

DNS Low (domain-level) Low (single, relatively
low-power machine)

Network with
configurable DNS

Table 3.2: Overview of Malicious Traffic Diversion Approaches

[25] show a DNS Sinkhole based approach where they create a DNS Sinkhole server with a
configuration GUI that allows users to comfortably edit a blacklist that is used for traffic
diversion. Their system also collected the raw diverted traffic into files and stored them

3.2. MALICIOUS TRAFFIC DIVERSION 9

based on source addresses for later analysis. Overall, the authors report positive results
for their diversion and collection of malicious traffic, but leave the analysis and mitigation
to a future analysis.

10 CHAPTER 3. RELATED WORK

Chapter 4

Architecture

As laid out in Chapter 3, existing literature largely focuses on either detection, diversion or
analysis of malicious traffic, this work will take the opportunity to fill a gap and combine
detection, diversion and analysis in one convenient solution: as an addition to the already
existing SecGrid visualization tool (see Section 2.2). Due to the intrusiveness and high
prerequisites for the other malicious traffic detection approaches as summarized in Table
3.1, this work will leverage DNS in conjunction with a blacklist for its detection approach
of malicious traffic. This approach ensures a high detection rate of known up-to-date
threats when using a current and frequently updated public blacklist. The logical choice
for traffic diversion follows to be DNS as well, since the two approaches can easily be
combined and no new networking equipment needs to be acquired for either of them (see
Table 3.2). The end goal should then be a functioning DNS Sinkhole integrated into the
SecGrid interface, easily configurable by the user with automatic capturing abilities for
the redirected traffic for convenient analysis within the same SecGrid interface.

To achieve this goal, some changes and additions need to be made to the existing Sec-
Grid architecture, shown in green in Figure 4.1. Namely, two new modules need to be
added to the Data Layer, (i) a DNS Sinkhole Module and (ii) a Direct Capture Module.
Additionally, in the User Layer, the (iii) Web-based Interface will need to be adjusted to
reflect the new additions and serve the user with an easy-to-use overview of the sinkhole
configuration.

The DNS Sinkhole Module will serve as a DNS server, taking care of incoming requests
and resolving them using a real, pre-configured DNS server such as Google’s DNS servers.
However, it will also keep a blacklist of domains and IP-addresses. There are two ways
of triggering a blacklist entry: The first way is to simply query a blacklisted domain.
The second is to query a domain that will resolve (e.g. by being a CNAME entry) to a
blacklisted domain, or if the blacklisted domain resolves to a blacklisted IP address. If
such a trigger occurs, the DNS module will resolve it to a pre-defined sinkhole address
(usually the SecGrid host machine’s address) instead of the original result. This will result
in potentially malicious traffic being diverted from its original destination and towards
the newly created sinkhole.

This incoming traffic will then be captured by the Direct Capture Module. This module
will allow the user to enable capturing traffic directly from a network interface attached

11

12 CHAPTER 4. ARCHITECTURE

D
at

a
La

ye
r

File storage

File Upload
Module

Packet DecoderRESTful API Protocol Parser

Observer

Databases

Raw Attack

Traces

Extracted
Features

Metadata

Observer
ObserverFeature

Extractors

Direct Capture
Module

DNS Sinkhole
Module

U
se

r L
ay

er

Web-based
Interface

Visualization module

View
Transformation

Visual
Transformation

Visualizations

IDS
CLI tools (tcpdump)

Attack Trace DB (ddosdb.org)

Figure 4.1: Overview of the existing SecGrid architecture and the planned changes to it
in green.

to the machine running SecGrid and analyzing it right away. Once the capture is stopped,
it can then comfortably be analyzed in the SecGrid UI (User Interface).

Finally, the Web-based Interface SecGrid already possesses will be expanded to incorpo-
rate two new additions: Firstly, a new interface enabling a user-friendly configuration of
the DNS Sinkhole. There, the user will be able to start and stop the sinkhole, as well as
to edit the blacklist(s) currently in use. Secondly, a new direct capture interface will be
added, allowing users to start capturing from a network interface of their choice, as well
as seeing and stopping currently running captures.

Chapter 5

Prototype and Implementation

After the previous chapters defined the general architecture of the new modules, this chap-
ter outlines the implementation process on a technical level. First, the implementation of
a proof of concept of the DNS module is described, then the following sections proceed
with its integration into the existing systems of SecGrid.

5.1 DNS Module Proof of Concept

To demonstrate the feasibility of the DNS module presented in the previous chapters,
a proof of concept (PoC) was developed first. Since the existing SecGrid architecture
already used Node.js [16] for the back-end (see ”Data Layer” in Figure 4.1), the PoC was
also implemented in a standalone application using the same technology.

this line will be ignored!

evil.com

malicious.com

192.168.13.37

Figure 5.1: A simple three-entry example blacklist.

The first step in realizing the concept was to create a working, interceptable DNS server
using JavaScript. To achieve this goal, the node package dns2 [40] was used that is
well-suited for the purpose of this work, because it provides a low-level, dependency-free
hackable DNS client and server implementation. Using the provided building blocks, a
first, basic DNS server was implemented that would relay any request to an existing
external DNS server (such as Google’s 8.8.8.8) using the DNS client part of the package,
receive its response and send it back to the requesting client. Once that was implemented,
work on the blacklisting functionality could be started. For easier maintainability and to
allow for an easier future integration in the SecGrid architecture, the existing code was
first encapsulated in an ES6 (EcmaScript 6) class, which would take relevant parameters
such as the relayed external DNS server (henceforth called mainDNS) or the port the DNS

13

14 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

server should be listening on, but also other important information such as the blacklist
itself.

In the PoC, the blacklist was implemented using a simple text-based list, where each line
represents one entry of the blacklist in the form of a domain name, or an IPv4 address, as
shown in Figure 5.1. The PoC would parse this list into a JSON-array (JavaScript Object
Notation) on application startup and hold it in memory for further use. It was decided
to hold the entire blacklist in memory for two reasons. Firstly, performance: Searching
operations are the fastest when done in-memory, and DNS lookup performance may be an
important factor for potential users. Secondly, size: A DNS blacklist should not surpass
a size that could realistically be loaded into memory, since extremely large blacklists will
always lead to a slowdown of lookup operations and should thus be kept to a manageable
size. A similar approach can be seen in existing DNS Sinkhole solutions. For example,
one of the most popular existing open source DNS sinkholes, Pi-hole [35], by default uses
a crowd-sourced block-list that is just under 3 MB in size [6].

$ dig @192.168.13.46 -p5333 google.com

; <<>> DiG 9.16.23 <<>> @192.168.13.46 -p5333 google.com

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 44871

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 512

;; QUESTION SECTION:

;google.com. IN A

;; ANSWER SECTION:

google.com. 10 IN A 172.217.168.14

;; Query time: 13 msec

;; SERVER: 192.168.13.46#5333(192.168.13.46)

;; WHEN: Sat Jan 29 21:42:53 CET 2022

;; MSG SIZE rcvd: 65

Figure 5.2: Requesting a non-blacklisted domain (google.com) yields a real resolved re-
sponse.

Blacklist functionality in the PoC works as outlined in Figure 5.4 and is described in the
following section. When a client request is received, a quick lookup in the blacklist is
performed first. If the requested domain is contained in the blacklist, the request will be
answered as a DNS A record entry pointing to a previously set sinkhole address, such as
the address of the machine currently running the PoC, or an address like localhost. If the
requested domain does not fall in the blacklist, the entire request is relayed as-received

5.2. IMPLEMENTATION OF THE DNS MODULE 15

$ dig @192.168.13.46 -p5333 evil.com

; <<>> DiG 9.16.23 <<>> @192.168.13.46 -p5333 evil.com

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 1483

;; flags: qr rd ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; WARNING: recursion requested but not available

;; QUESTION SECTION:

;evil.com. IN A

;; ANSWER SECTION:

evil.com. 300 IN A 192.168.13.46

;; Query time: 3 msec

;; SERVER: 192.168.13.46#5333(192.168.13.46)

;; WHEN: Sat Jan 29 21:43:06 CET 2022

;; MSG SIZE rcvd: 50

Figure 5.3: Requesting a blacklisted domain (evil.com) returns the pre-configured sinkhole
address 192.168.13.46.

to mainDNS. When a reply is received, it is first checked for further domain matches,
such as in the case that the requested domain resolves as a CNAME-entry and points to
a different domain, which might in turn be blacklisted itself. This way, quick domain-
hopping can be prevented. Lastly, if the domain resolves to a blacklisted IP address, this
address will also be replaced with the sinkhole address. If none of the above applies, the
response is sent back as-received to the requesting client.

After implementation, this functionality was tested using the Linux command-line tool
dig to confirm everything worked as intended. These tests were concluded with positive
results as can be seen in Figures 5.2 and 5.3, showing the system working as intended.
It is also interesting to note that blacklist resolution was handled relatively quickly with
a low response time of only 3 milliseconds. Furthermore, real lookups that were sent to
mainDNS behind the scenes resolved in approximately 13 milliseconds, which equated to
only 4 added milliseconds of response time compared to requesting the same information
from mainDNS directly (9 milliseconds).

5.2 Implementation of the DNS Module

After successful completion of the PoC, the next step to be taken was its integration into
the existing back-end architecture of SecGrid, in order to pave the way for communication
with a future front-end interface.

16 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

Input: A DNS request coming in from a client on the network.
Output: A DNS response returned to the requesting client.

domainBlacklist: list of domains

ipBlacklist: list of IPv4 addresses

handleDnsRequest(request) {

if (request.domain ∈ domainBlacklist) {

return response pointing to sinkhole address;

}

answers = request resolution for request from mainDNS;

for (answer a ∈ answers) {

if ((a.hasDomain and a.domain ∈ domainBlacklist) or

((a.hasAddress and a.address ∈ ipBlacklist))) {

return response pointing to sinkhole address;

}

}

return answers;

}

Figure 5.4: Filtering algorithm implemented by the DNS module to handle DNS requests.

5.2.1 Back-End (Data Layer)

Since the PoC was implemented in the form of a ES6 class with only two npm dependen-
cies, migrating it into a new codebase was a quick and simple task. Most of the PoC’s
implementation could be taken over directly, but some optimizations and additions were
made for production use. One such optimization was the switch from arrays holding the
blacklist data to JavaScript Sets, since they provide surpassingly better performance for
entry lookups. An addition had also been made in the form of basic statistical counting
of the current run: Every time a blacklist entry was triggered, this feature registers which
entry it was and how often it had been triggered by which source address. This statistic
can be retrieved using an additional REST (Representational State Transfer) endpoint
and is reset every time the sinkhole is restarted. The configuration and blacklist used
by the Sinkhole class was configured to be stored on disk and loaded into memory on
application startup. For this storage, since frequent updates are not required and both
the blacklist and current configuration are kept in-memory at runtime, simple JSON files
were decided on for persistent storage.

In order to control the newly added sinkhole module, new REST endpoints had to be in-
troduced to the data layer of SecGrid. Because the DNS sinkhole functionality should not
be accessible by the public, all endpoints described in this section require a valid, authenti-
cated user session in order to be accessed, using the same protection as existing endpoints
in SecGrid. New endpoints were implemented for getting and setting the sinkhole con-
figuration which includes settings such as the DNS port, sinkhole address and mainDNS,
as well as endpoints responsible for starting and stopping the sinkhole. Additionally, one
status endpoint which displays a summary of the current state of the Sinkhole was added.

5.2. IMPLEMENTATION OF THE DNS MODULE 17

Lastly, endpoints responsible for blacklist management were introduced, but presented
more of a challenge for implementation. While managing the blacklist directly by sending
a list of entries to be considered should be supported, another important feature to imple-
ment was the possibility to send a URL pointing to a blacklist file instead. This feature
should then have the option of the back-end polling the same URL automatically in reg-
ular time intervals, checking for updates to the list. This is especially important because
many public blacklists are crowd-sourced online or are being updated regularly to include
the most current threats. In order to fulfill this requirement, the endpoint responsible for
updating the blacklist was expanded in functionality. Instead of only accepting a blacklist
in the form of a JSON array, more complexity was added to the accepted body schema.

// schema A

{

"url": "https://example.list/blacklist.txt",

"continuous": false

}

// schema B

{

"data": ["evil.com", "malicious.com", "192.168.13.37"]

}

Figure 5.5: The two schemata accepted by the endpoint for updating the sinkhole blacklist.

As illustrated by Figure 5.5, two schemata have been introduced that are accepted by
the endpoint. If the blacklist is to be updated directly, a data property containing the
blacklist contents in form of a string array can be passed and will be used as the new
blacklist. Alternatively, an url property containing a direct link to a blacklist file can be
passed, which will cause the server to pull the contents and use them as the new blacklist
instead. With the latter an additional continuous flag can be passed, which will, if set to
true, enable the backend to issue a HTTP GET request to this URL every 60 minutes and
update the sinkhole blacklist according to the latest contents of the received file. When
a URL is retrieved using either of these methods, any lines starting with a # are ignored
since many publicly available lists use this format for comments inside of them.

Since client-side URL validation is impossible to do in a secure fashion due to CORS
(Cross-Origin Resource Sharing) restrictions (relying on CORS-proxies can open up the
application to open proxy or server-side request forgery vulnerabilities), a URL-validation
endpoint was also introduced. This endpoint allows clients to send a URL to be tested,
and returns whether this URL could successfully be retrieved as well as how many entries
could be parsed from it. It should be noted that this and the previously mentioned URL
both could pose a security risk by being abused to facilitate SSRF (Server-Side Request
Forgery) attacks, causing the server to send GET requests to arbitrary URLs, potentially
reaching vulnerable internal endpoints inaccessible to the public. But since, as previously
mentioned, all endpoints require valid authentication, the risk of external attacks can be
concluded to be relatively low.

18 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

5.2.2 Front-End (User Layer)

Figure 5.6: The newly implemented Sinkhole dashboard in the SecGrid frontend, with
the Sinkhole being in a stopped state.

The new interface for controlling the sinkhole integrated into SecGrid can be reached
via a fourth tab in the general navigation bar of SecGrid (see Figure 5.7), which is only
accessible once the user has logged in.

When a user clicks this tab, they are then presented with three material design style
cards and one floating action button as seen in Figure 5.6 (red). In order to maintain a
consistent user experience and design throughout the entire application, it was decided to
stick with the material design style and components that were previously used all around
the SecGrid front-end.

In addition to the cards, this tab also features a floating action button. This button serves

5.2. IMPLEMENTATION OF THE DNS MODULE 19

as the main control for the sinkhole, starting it when it’s stopped and vice-versa. To clarify
its purpose to users, the button shows a vortex icon and the tooltip start sinkhole when
the sinkhole is stopped, and a stop icon with the tooltip stop sinkhole when the sinkhole
is running.

Figure 5.7: The SecGrid navigation bar with the newly added DNS Sinkhole tab.

The Sinkhole Status Card

The topmost card visible in Figure 5.6 shows the general state of the DNS module using
the general status endpoint implemented in the back-end and is automatically refreshed
every 5 seconds. To make the current sinkhole state visible at a glance, a subtitle was
added to the header section of the status card which indicates the state using its text. It
also changes colors accordingly, turning green when the sinkhole is running, and turning
back to grey when the sinkhole is stopped. Because intial user feedback showed the status
to be small and sometimes hard to spot immediately, a large status icon was added on
the right side of the card’s header section. This icon visually represents the running state
of the sinkhole, showing a green vortex when running (see Figure 5.8) and a grey moon
when stopped.

Figure 5.8: The sinkhole status card when the DNS sinkhole is running, but the configu-
ration has been changed.

20 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

The card’s main body shows an overview of the currently running configuration, including
all relevant properties such as the DNS port the sinkhole is listening on, the sinkhole
address and the mainDNS. It also provides an additional piece of useful information in
the form of the amount of currently loaded blacklist entries. If the configuration is changed
while the sinkhole is running, a small text will appear under the aforementioned entries,
notifying the user to re-start the sinkhole in order to apply the changes (as seen in Figure
5.8).

On the bottom of this card, a single button with the caption Edit Configuration can
be found. When clicked, it will open a dialog allowing the user to adjust the sinkhole
configuration and subsequently saving it. If the sinkhole is running when the configuration
is changed, the configuration is only applied on the next start of the sinkhole.

The Blacklist Card

The second card shown in Figure 5.6 displays the currently used blacklist. The header
section is comprised of three important elements: Firstly, the title with a dynamic subtitle.
This subtitle indicates to the user the currently used blacklist mode. If the user manually
uploaded a blacklist, this subtitle will show the text manually configured. If a URL has
been used to retrieve the currently used blacklist - whether it be hourly or just once, it
will be shown accordingly including the URL used (as can be seen in Figure 5.9).

Figure 5.9: The blacklist card showing the first five entries of an automatically pulled
blacklist.

5.2. IMPLEMENTATION OF THE DNS MODULE 21

The other two elements housed inside of the card’s header are two buttons, both of which
only have the form of an icon, but show a tooltip explaining what they do upon hovering,
enabling discoverability. The first is a simple refresh button which retrieves a fresh version
of the current list for the main body section of the card. The decision to implement a
refresh button instead of auto-refreshing the blacklist card’s contents in the same fashion
as the sinkhole card has been made for two main reasons. Firstly, blacklist contents should
not change very often without user input, making frequent refreshes unnecessary. Sec-
ondly, blacklists can potentially reach larger file sizes, which could then lead to increased
network traffic and resource usage if an entire, very large list is being sent and received
every few seconds.

The second button allows the user to update the currently existing blacklist. When clicked,
it will show a dialog (shown in Figure 5.10) presenting the user with three different ways
of uploading a new blacklist, each contained in its own tab. The first option is to upload
a file containing the blacklist entries the user wants to use. The user can select any file
and upon selection, the dialog will try to read the file, split it into lines and filter them
into respective entries, also leaving out comment lines starting with # . If this process is
successful, the user is shown a tick mark and a confirmation of how many entries have
been found inside the uploaded file, also enabling the save button which will, when clicked,
upload the result to the back-end and use it as the new blacklist.

The second tab presents the user with a multi-line text box, allowing them to enter their
desired entries manually, or paste a prepared text from the clipboard. Once done, an apply
button can be clicked, which will initiate the same validation process as on file upload and
will confirm the user how many entries have been found in the entered data, thereafter
enabling the save button once again. If any text is changed after processing, the state is
reset and the processing must be re-done before saving the blacklist is possible again.

The last tab allows users to upload a blacklist using a URL. After entering a URL, the user
must click on an apply and test button, which will validate this URL using the validation
endpoint previously mentioned in Section 5.2.1, since retrieving data from cross-site URLs
is usually infeasible to do from browser-side JavaScript due to security restrictions (CORS
policies). Before saving the new blacklist, the user is also presented with a switch, allowing
them to decide whether the server should regularly visit the given URL and refresh the
blacklist using it’s contents. When the save button is clicked on any of the three available
tabs, the dialog is closed and the blacklist is sent to the server. When a response is
received, the blacklist card automatically refreshes its contents.

These contents are then shown in the main body part of the blacklist card in the form of
a searchable, paginated list of entries. Because the main visual components package used
in SecGrid, vue-material, as of the time of writing does not provide any paginated list or
table components, a custom solution was required. Therefore, the search and pagination
functionality visible in Figure 5.9 has been implemented from scratch, only using existing
components for displaying the current entries and buttons or text-boxes. The pagination
feature only shows a limited (but configurable) amount of entries at a time and divides
the list into pages with this amount of entries each. Users can then look through these
pages individually. For performance reasons, the pagination is done completely on the
client-side, meaning that on a refresh the entire blacklist is received and stored in browser

22 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

Figure 5.10: The update blacklist dialog’s text tab which allows the user to manually
enter the desired blacklist.

memory. This not only allows users to instantly flip through pages, but also greatly
increases search speeds in the search-bar available above the list contents. However,
the search does not update in real-time as users type to prevent possible performance
bottlenecks with large lists being searched in browsers running on less powerful hardware.
Instead, users need to either hit the enter key or click the magnifying glass icon on the
right side of the search bar.

Statistics Card

The third and last card which is barely visible in Figure 5.6 but shown in it’s entirety in
Figure 5.11 visualizes the simple statistics gathered in the back-end. It presents a contin-
uously updated list of blacklisted domains that have been requested, sorted descendingly
by occurrences (shown on the right end of each item). Reusing functionality implemented
in the blacklist card, this list is paginated and searchable in the same fashion. Addition-
ally, each of the list’s items is clickable and upon click will show a dialog detailing which
source IP addresses have tried accessing the blacklisted domains (shown on the right of
Figure 5.11). This card provides insight into the usage and effectiveness of the deployed
blacklist, and can help administrators find potential threats in their network in a quick

5.3. IMPLEMENTATION OF THE LIVE CAPTURE MODULE 23

and convenient fashion. For example, if the same source address keeps requesting one
blacklisted domain in regular intervals continuously over a longer timespan, it will be
shown in the statistics card and administrators could then initiate further investigations
into a potential infection of this source address.

Figure 5.11: The statistics card (left) showing the most requested blacklisted domains in
a sorted list, and the corresponding dialog (right) presenting these request’s sources for
one entry.

5.3 Implementation of the Live Capture Module

The live capture module allows SecGrid users to capture traffic directly from a network
interface instead of capturing it manually using an external tool and importing the cap-
ture file afterwards. A simple implementation of a live capture module already existed
in one branch of the SecGrid project, therefore this work focuses on improving usability
and functionality. The existing solution allows users to start a live capture on a manually
typed-in network interface and close it at a later point in time. During the capture, the
incoming data is continuously analyzed in order to minimize memory and disk usage and
when the capture is closed, the analysis is added as a new dataset to SecGrid. The im-
provements proposed in this work are twofold: (i) The interfaces should be automatically
detected and selectable, and (ii) since the underlying technology accepts pcap-filter [20]
strings, the user should have the possibility of entering a filter string when starting a live
capture.

The first improvement could be implemented in a relatively simple manner with a single
REST endpoint being added to the backend. This endpoint returns a list of network
interfaces and their corresponding IP addresses gathered using Node.js’ new convenient
networkInterfaces() method in the included os package, allowing the live capture cre-
ation dialog to retrieve this list upon being opened and loading it into a select component,
as seen in Figure 5.12. The selected interface is then simply sent as a string to the backend
when the live capture is started, just as in the previous versions and therefore no further
changes were needed in that part of the communication.

24 CHAPTER 5. PROTOTYPE AND IMPLEMENTATION

Figure 5.12: The new and improved live capture creation dialog with selectable interfaces
and a filter input field.

The second improvement adds a new input in the live capture creation dialog allowing
the user to specify a pcap-filter string, which can be used to limit the captured traffic in a
multitude of ways, for example only capturing incoming ICMP traffic, or only capturing
traffic from a certain originating address. This can be very useful for example if there is
a known infected machine and the sinkhole user wishes to only capture traffic from that
specific host. The underlying implementation in the backend uses a modified version of the
node pcap library [33] and calls the pcap.createSession(interface, options) method,
where the options argument can include a pcap-filter string that will be used for that
capture. But in order to successfully pass the filter string input by the user to the miner
that finally creates the live capturing session, multiple steps had to be taken. First, a new
field had to be implemented in the endpoint that starts the live capture, simply passing
the string that was input by the user. Then, a new CLI option had to be created for
the miner sub-application which does the capturing, passing the filter through to it. New
parsing code was added on the miner side to read the filter string and finally pass it to
the aforementioned method to start the capture. The result is a simple text field in the
live capture creation dialog that allows the user to freely configure a pcap-filter to exactly
fit their needs as they would using command-line tools like tcpdump. This improvement
is especially useful if a user needs to analyze traffic incoming from a specific source, for
example if there are suspicions of a sinkholed infection under a specific address in the
network.

Chapter 6

Evaluation

To test the quality and effectiveness of the features implemented in this work, this chapter
evaluates them in the following three ways: First, the features implemented in the previous
chapters are evaluated on their performance against a regular real-world DNS server.
Second, the effectiveness in mitigating various malware families is tested. Lastly, two case
studies investigate how this work’s malicious traffic detection and diversion solution could
be used in real-world scenarios.

6.1 Performance

While theoretical performance optimizations had been made during implementation of
the DNS module, real-world performance remained unknown. In order to determine the
latter, the following test was performed. First, a randomly generated blacklist of pre-
determined length was applied with every entry consisting of 10 random alphanumeric
characters with a .com ending (e.g. xVMMJcf9WF.com). Second, using a shell-script and the
command-line tool dig, 100 DNS requests for a domain not in the blacklist were sent to
a reference DNS server (e.g. Google’s 8.8.8.8) and to the DNS sinkhole running locally,
which in turn uses the same server as mainDNS. A non-blacklisted domain was chosen
for the reason that it represents the worst-case scenario from a performance standpoint:
The requested domain is checked with the blacklist, then needs to be requested from
mainDNS and the resulting response needs to be looked up in the blacklist again before
being returned to the requesting client. Thus, testing for this scenario will yield the worst
delays possible. The times it took both servers to respond was saved for each iteration and
this process was repeated for the blacklist sizes of 10, 100, 1 thousand, 10 thousand and
1 million entries. The results are shown in Figure 6.1 and are rather positive: with the
largest tested blacklist of 1 million entries, a relayed request only resolved with an average
added response time (delay) of 2.3ms. With these numbers it would be possible to deploy
this system to a real-world environment without users noticing any delay compared to
normal DNS requests they would perform. Additionally, a high number of requests could
be handled, allowing the system to be deployed in an SME network.

25

26 CHAPTER 6. EVALUATION

10 100 1k 10k 1mio

Blacklist length

5

6

7

8

9

10

11

12

13

A
ve

ra
ge

 r
es

po
ns

e
tim

e
[m

s]
relay

reference

Figure 6.1: The real-world performance achieved by the DNS module. reference shows
the response time of 8.8.8.8, while relay refers to the response time of the DNS module
with it’s mainDNS set to the same server.

6.2 Malware Mitigation

To test the effectiveness of the chosen detection and diversion approach, the behaviour
of a selection of real-world malware was tested in a network configured to use the DNS
sinkhole proposed in this paper. Before testing began, a fresh Windows 11 virtual machine
(VM A) was set up from [30] and all antivirus software on it was disabled, including
Windows Defender’s real-time protection. VM A was then placed in a specially created
LAN network with a separate virtual machine (VM B) already running SecGrid with the
DNS and Live Capture modules enabled. On VM A, the DNS settings were then set to
exclusively use the sinkhole address for all lookups. After this setup process, a snapshot of
this VM was created, which was then used as the starting point for every test conducted.
For each test, the corresponding sample was directly downloaded onto the virtual machine
and executed without higher privileges. All of these samples were chosen from [32] and
[45] such that each malware family was represented at least twice.

The aforementioned samples’ testing was then done in the following fashion: First, each
sample was executed in a control run with an empty blacklist, recording all domains
that were contacted during execution. A second run was subsequently made with all
previously recorded domains being blacklisted, with SecGrid’s newly added filtered live
capture feature being used on VM B to record all traffic incoming from VM A’s IP address
only. The testing environment was kept open for 10 minutes in each iteration of testing
to allow for as complete a picture as possible.

A general overview of the tested malware and the results is shown in Table 6.1. In this

6.2. MALWARE MITIGATION 27

Malware Family Instances Tested Result Notes

Worm Allaple Not Mitigated Does not use DNS, attacks
hardcoded targets

Worm Adylkuzz Mitigated Blocking crypto-pool domains
mitigated malicious activity

Spyware / Trojan GravityRAT Mitigated Blocking C&C domains
mitigates malicious activity

Spyware / Trojan ElectroRAT Mitigated Blocking C&C domains
mitigates malicious activity

Ransomware WannaCry Mitigated Killswitch domain mitigates
malicious activity

Ransomware RAASNet Not Mitigated Encryption takes place before
any network activity

Ransomware Ransom0 Not Mitigated Encryption takes place before
any network activity

Botnet RBot Mitigated Blocking C&C domains
mitigates malicious activity

Botnet SdBot Mitigated Blocking C&C domains
mitigates malicious activity

Botnet EternalRocks Mitigated Blocking C&C domains
mitigates malicious activity

Table 6.1: Overview of tested malware and the sinkhole’s mitigation effectiveness on them.

table, a malware was counted as mitigated when the sinkholing lead to the malware no
longer fully fulfilling its malicious intent, for example if a ransomware would no longer
encrypt the victim system.

Generally, the sinkhole was very successful in mitigating malware that relied on network
communication to receive commands such as botnets and spyware. Here it can generally
be said that if the command & control server of the malware was blacklisted, the malware
was usually successfully mitigated. This was the case with all tested spyware, which
simply idled and periodically tried reconnecting when sinkholed, as shown for the case of
ElectroRAT in Figure 6.2. Here it should be noted that both GravityRAT and ElectroRAT
still moved their executables into directories hidden from plain sight of the user before
attempting any connection and added themselves to the autostart applications on the
victim machine. Similar results were achieved with the RBot and SdBot botnets: If their
C&C domains were sinkholed, both did not execute any actions besides periodically trying
to reconnect using a list of pre-configured target domains. However, this did not apply
to the EternalRocks botnet: the latter relies on the Tor project [23] for communication,
which it tries to download on startup. If the domain torproject.org was sinkholed, no

28 CHAPTER 6. EVALUATION

Figure 6.2: A SecGrid visual representation of captured traffic from a sinkholed Electro-
RAT test run. It is clearly visible that the malware regularly tried reconnecting to the
HTTPS port 443, totaling 175 times over the span of the 432 captured seconds.

further actions would be taken by the malware.

The tested instances of worms yielded mixed results. The first of the tested worms,
Allaple, did not rely on any DNS at all and instead spreads over the local network using
various exploits such as the Windows SMB vulnerability dubbed EternalBlue [31] while
targeting hardcoded IP addresses with denial-of-service attacks. The second tested worm,
Adylkuzz, also spreads over the local network, but contrary to Allaple, its purpose is not
running DoS attacks, instead it attempts using the victim’s computational resources to
mine cryptocurrency. In order to achieve this, it must contact cryptocurrency-mining
related domains, this being xmr.crypto-pool.fr in the tested case. Sinkholing this domain
effectively blocked the worm from doing anything except for trying to spread itself further
to other machines on the local network.

The worst results were achieved in the mitigation of ransomware. Most tested products
start encryption immediately after completing infection of the target machine, not relying
on any kind of communication or confirmation beforehand. Both RAASNet and Ransom0
start encryption of user data before any other actions that rely on network communication
are taken. In addition to observing this behaviour, its intention and correctness can
be confirmed in the source code since both RAASNet and Ransom0 are open-source
ransomware [44] [28]. In all tested ransomware, the only exception to the aforementioned
behavior was presented by WannaCry. This ransomware famously includes a kill-switch in
the form of a special domain, which prevents it from taking any further action. While the
kill-switch domain for this specific malware is globally registered which therefore makes
WannaCry ineffective in real-world use, it should still be noted that sinkholing kill-switch
domains will lead to malware being made ineffective and should thus be counted as being
mitigated.

6.3. CASE STUDIES 29

6.3 Case Studies

In this section, multiple scenarios will be constructed to better demonstrate the real-world
use and effectiveness of this paper’s contribution to the existing SecGrid architecture.
The first scenario shows a typical use-case where a company uses the sinkhole to identify
and prevent the further spread of a threat emerging in their network with the help of
an external blacklist. The second scenario describes how the sinkhole can be used in
an unexpected way to prevent phishing attacks targeting employees of a company in a
country under attack.

6.3.1 Malware Attack

Let us consider an SME (small to medium-sized enterprise) Alice Corp. which aims to
improve its operational security inside the company network. Since Alice Corp. does not
possess enough resources to invest in solutions such as SDN-based security systems, it
opts to employ a DNS sinkhole instead. Bob Corp., another close-by SME with more
resources is running an instance of the SecGrid sinkhole, and maintains its own public
blacklist based on open-source lists as well as its own findings inside the network. Alice
Corp. also decides to deploy the same system, but opts for using Bob Corp.’s public
blacklist. The corporate network is subsequently configured to exclusively allow DNS
requests through the SecGrid sinkhole and using the DNS module’s automatic blacklist
pulling functionality, Bob Corp.’s public blacklist is set to be used and updated hourly.

Figure 6.3: The statistics card of the ficticious Alice Corp. shows one IP address regularly
trying to access a known malicious domain, prompting suspicion.

After the system has been established, some time goes by uneventfully. However, soon Bob
Corp.’s security team detects a new botnet variation spreading through their networks.
After analyzing samples they collected from infected machines, they isolate the domain
cone.msoftupdates.com as the main Command & Control endpoint. Shortly, it is added to
their publicly available blacklist. Alice Corp.’s SecGrid instance then updates the blacklist
within one hour to include the latest malicious domain, without requiring any action.

The next day, Alice Corp.’s technical team will notice a high number of DNS requests
coming through for this newly blacklisted domain from a specific IP address within their

30 CHAPTER 6. EVALUATION

network, which would look similar to Figure 6.3. This will prompt suspicion, and warrant
a capture of incoming traffic from this address. Using SecGrid’s newly integrated live
capturing capabilities, the team starts a live capture on the relevant interface and uses
the filtering function to only capture incoming traffic from the suspicious source IP using
a filter such as src 172.16.32.91.

Figure 6.4: A SecGrid visualization of a live capture of a malware infected host.

When the live capture concludes, the team uses SecGrid to visualize the data (as shown
in Figure 6.4 and finds 15 connection attempts on two ports not assigned to any usual
services, confirming the suspicion. After collecting the infected machine from its user, a
further digital forensics investigation shows an infection with the same malware as Bob
Corp. recently identified. Thus, the malware can safely be removed from the machine
and prevented from spreading any further through the network.

This case study shows that the new DNS sinkhole capabilities implemented in SecGrid
can help prevent possible cyberattacks while also allowing for easy detection of possible
breaches and infections without heavy investments into high-tech networking infrastruc-
ture or software. Additionally, shared or centralised lists can be used in order to lower
the load on technical staff while keeping up to date with the newest threats.

6.3.2 Phishing Campaigns

In this scenario, we will consider Carol Corp., an SME focusing on producing local print
media. This corporation does not focus on or put considerable resources into information
security and security training of their employees, but is using SecGrid’s DNS sinkhole
feature as an easy preventative measure for a surface-level security improvement. Carol
Corp.’s configuration of the SecGrid sinkhole uses a publicly available blacklist which
is partly crowd-sourced, partly maintained by a security researcher and is updated every

6.3. CASE STUDIES 31

hour to include the latest threats. The deployed SecGrid configuration then polls a current
version of this list at every hour from a publicly exposed URL.

Figure 6.5: Carol Corp.’s dashboard showing a suspicious entry.

Due to external circumstances, the country Carol Corp. is located in finds itself under
an increased amount of cyber-attacks recently, most of which are carried out by nation-
state adversaries. Many of these attacks take the form of phishing campaigns targeted
towards media companies in order to gain control of local information spread. Since
these attacks often target a large amount of victims, information on these attacks quickly
spreads and users of the public blacklist quickly identify and collect domains connected
to phishing attempts observed around the country. Soon these domains are pulled into
the local blacklist of Carol Corp.’s SecGrid instance through the continuous URL polling
feature. During a routine dashboard inspection a few days later, admins of Carol Corp.
find suspicious entries in their statistics card, as shown in Figure 6.5.

After inspecting the domains in question, they are identified as malicious phishing-related
domains originating from the same nation-state adversary as many of the recent attacks
against other media companies around the country. Quickly, Carol Corp. decides to
implement measures for mitigation. First, using the sources function of the statistics
card, the user that was targeted in the attack is identified and an investigation into the
potential damage achieved by the attack is launched. To prevent damage from unaware
users, preventative measures are put in place: An http server is installed on the sinkhole
machine, showing a warning page (as shown in Figure 6.6) for potentially visiting users,
deterring them from engaging any further. At the same time, the company launches an
awareness campaign to decrease the probability of users even engaging with potential
phishing.

Using this strategy in combination with SecGrid’s DNS sinkholing capabilities, Carol
Corp. is able to successfully withstand the phishing attacks in the following months and
prevent any larger damage from occurring to the corporation.

Even though this work’s initial goals are centered around preventing cyberattacks orig-
inating from malware, this case study shows that SecGrid’s new sinkholing capabilities

32 CHAPTER 6. EVALUATION

Figure 6.6: Carol Corp.’s warning site that is shown when trying to visit a blacklisted
domain.

can also be applied outside of this scope to prevent other kinds of cyberattacks such as
phishing successfully as well.

Chapter 7

Summary, Conclusions and Future Work

This thesis was mainly concerned with the design and implementation of a network traffic
sinkhole integrated into the SecGrid platform to allow for easy diversion and subsequent
analysis of malicious traffic. After introducing the reader to the motivation and description
of this work in the first chapter, the necessary background and related works such as
alternative solution approaches were laid out in the following two chapters. Using the
knowledge gained in these chapters, DNS in conjunction with a blacklist is chosen as the
traffic detection and diversion approach for its low intrusiveness and easy deployability.
The following chapter details the necessary changes in the existing SecGrid architecture,
namely the addition of two new modules: the live capture module and the DNS module,
as well as corresponding additions in the user interface. The implementation of these two
modules and changes are documented in the next chapter. The completed implementation
features a full-fledged DNS-sinkhole with a configurable blacklist, either manually by
sending entries directly, or via URL, which can be used once or set to be polled in regular
intervals. A new part in SecGrid ’s user interface allows control of all of the aforementioned
settings as well as monitoring and controlling the state of the sinkhole itself. While
the sinkhole is running, operators also have access to an overview that shows the most
requested blacklisted domains during the current run and the sources of these requests.

As is shown in the evaluation chapter of this work, the software was first tested for
performance. These tests could be concluded with positive results: The relaying of the
requests and checking in the blacklist introduced an additional delay of only 2.3ms. This
low overhead would allow for deployment of the system without users noticing any delay
in real-world networks. The sinkhole was then tested for each malware type previously
established with varying results: While the sinkhole was less effective in mitigating ran-
somware and worm attacks since these malware types relied on hard-coded behaviour and
target addresses, tests with real-world samples of spyware, trojans and botnets showed
that malware relying on DNS-based C&C servers could not only be prevented from fulfill-
ing its malicious intent, but the attempted malicious connections could also successfully
be recorded for further analysis with the direct capture module. It can thus be concluded
that the initial goal of integrating easily configurable DNS sinkhole and direct capture
capabilities was successfully reached, with generally positive effectiveness results being
achieved on relevant malware samples.

33

34 CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE WORK

7.1 Limitations and Future Work

Though this work’s goals have been reached, some limitations arise from the nature of the
chosen approach. One such limitation arises from relying purely on DNS and blacklists
for malware detection. This approach limits this work to detecting previously known
threats only. Additionally, manually detecting suspicious behaviour without the help of a
blacklist is not possible using the current interface. Lastly, if threats are detected, users
of the system are not notified and need to regularly navigate to the statistics card in order
to stay up to date.

To address these shortcomings, future work could explore additions to the system and
interface that were outside of the scope set for this paper. One such addition could be the
sending of alerts to users of SecGrid: instead of only displaying triggers of the blacklist,
such breaches could also be sent via e-mail or other channels to responsible users.

Another addition could be an improved statistics card. Instead of only showing which
source triggered which address, more comprehensive statistics of DNS requests could
be gathered and composed. Such statistics could include: most active sources, most re-
quested domains (even non-blacklisted ones), request frequency over time and more. Such
statistics could provide a deeper insight into the network’s activity and could help admin-
istrators spot potential undetected threats faster (e.g. if an infected machine repeatedly
and consistently requests the same C&C domain).

Using these statistics, suspicious activity could also potentially be automatically detected,
perhaps leveraging modern machine-learning technology for pattern-recognition. Detected
suspicious activity could then be highlighted in the user-interface, or on sufficient confi-
dence even be sent via the aforementioned alert channels.

Bibliography

[1] Abuse.ch. URLhaus. Accessed 14.01.2022. url: https://urlhaus.abuse.ch/.
[2] D Arivudainambi, Varun Kumar KA, P Visu, et al. “Malware traffic classification

using principal component analysis and artificial neural network for extreme surveil-
lance”. In: Computer Communications 147 (2019), pp. 50–57.

[3] Davide Baglieri. DigitalSide Threat-Intel. Accessed 14.01.2022. url: https : / /

osint.digitalside.it/Threat-Intel/lists/latestdomains.txt.
[4] Robert Barrett et al. “Dynamic traffic diversion in SDN: testbed vs mininet”. In:

2017 International Conference on Computing, Networking and Communications
(ICNC). IEEE. 2017, pp. 167–171.

[5] Leyla Bilge et al. “Exposure: A passive dns analysis service to detect and report
malicious domains”. In: ACM Transactions on Information and System Security
(TISSEC) 16.4 (2014), pp. 1–28.

[6] Steven Black. Unified hosts file with base extensions. Accessed 01.02.2022. url:
https://github.com/StevenBlack/hosts.

[7] Luc Boillat et al. “A Tool for Visualization and Analysis of Distributed Denial-of-
Service (DDoS) Attacks”. In: Communication Systems Group, Department of Infor-
matics, Universität Zürich (2020).

[8] Wouter Borremans and Ruben Valke. “BGP (D)DoS Diversion”. In: (2005).
[9] Guy Bruneau and Rick Wanner. “DNS Sinkhole”. In: SANS Institute InfoSec Read-

ing Room, Aug 7 (2010).
[10] Kevin Butler et al. “A survey of BGP security issues and solutions”. In: Proceedings

of the IEEE 98.1 (2009), pp. 100–122.
[11] RIPE Network Coordination Centre. What is an AS Number? Accessed 16.01.2022.

Nov. 2019. url: https://www.ripe.net/manage-ips-and-asns/as-numbers.
[12] Jenny Costa et al.“IoT-Botnet Detection using Long Short-Term Memory Recurrent

Neural Network”. In: International Journal of Engineering Research & Technology
9.8 (2020).

[13] Manuel Egele et al. “Dynamic spyware analysis”. In: (2007).
[14] Maryam Feily, Alireza Shahrestani, and Sureswaran Ramadass. “A survey of bot-

net and botnet detection”. In: 2009 Third International Conference on Emerging
Security Information, Systems and Technologies. IEEE. 2009, pp. 268–273.

[15] FireHOL. firehol level1. Accessed 14.01.2022. url: https://iplists.firehol.
org/?ipset=firehol_level1.

[16] OpenJS Foundation. Node.js. url: https://nodejs.org/en/.

35

https://urlhaus.abuse.ch/
https://osint.digitalside.it/Threat-Intel/lists/latestdomains.txt
https://osint.digitalside.it/Threat-Intel/lists/latestdomains.txt
https://github.com/StevenBlack/hosts
https://www.ripe.net/manage-ips-and-asns/as-numbers
https://iplists.firehol.org/?ipset=firehol_level1
https://iplists.firehol.org/?ipset=firehol_level1
https://nodejs.org/en/

36 BIBLIOGRAPHY

[17] Muriel Franco et al. “SecGrid: a Visual System for the Analysis and ML-based Clas-
sification of Cyberattack Traffic”. In: 2021 IEEE 46th Conference on Local Computer
Networks (LCN). IEEE. 2021, pp. 140–147.

[18] David Freet and Rajeev Agrawal. A Statistical Comparison of Security Visualization
Efficiency Compared to Manual Analysis of IDS Log Data. IEEE, 2018.

[19] Keving Gennuso. Shedding light on security incidents using network flows. 2012.
[20] The Tcpdump Group. pcap-filter(7) man page. Accessed 03.02.2022. url: https:

//www.tcpdump.org/manpages/pcap-filter.7.html.
[21] Nico Hinze et al. “On the potential of BGP flowspec for DDoS mitigation at two

sources: ISP and IXP”. In: Proceedings of the ACM SIGCOMM 2018 Conference on
Posters and Demos. 2018, pp. 57–59.

[22] Nicholas Ianelli and Aaron Hackworth. “Botnets as a vehicle for online crime”. In:
CERT Coordination Center 1.1 (2005), p. 28.

[23] The Tor Project Inc. The Tor Project. Accessed 23.02.2022. url: https://www.
torproject.org/.

[24] Ismahani Ismail, Sulaiman Mohd Nor, and Muhammad Nadzir Marsono. “Stateless
malware packet detection by incorporating naive bayes with known malware signa-
tures”. In: Applied Computational Intelligence and Soft Computing 2014 (2014).

[25] Hyun Mi Jung, Haeng Gon Lee, and Jang Won Choi. “Efficient malicious packet
capture through advanced DNS sinkhole”. In: Wireless Personal Communications
93.1 (2017), pp. 21–34.

[26] Martin Karresand. “Separating Trojan horses, viruses, and worms-a proposed tax-
onomy of software weapons”. In: IEEE Systems, Man and Cybernetics SocietyInfor-
mation Assurance Workshop, 2003. IEEE. 2003, pp. 127–134.

[27] Manjeri N Kondalwar and CJ Shelke.“Remote Administrative Trojan/Tool (RAT)”.
In: Int. J. Comput. Sci. Mob. Comput 3333.3 (2014), pp. 482–487.

[28] Hugo Lebelzic. Ransom0. Accessed 21.03.2022. url: https://github.com/HugoLB0/
Ransom0.

[29] Gonzalo Maŕın, Pedro Caasas, and Germán Capdehourat. “Deepmal-deep learning
models for malware traffic detection and classification”. In: Data Science–Analytics
and Applications. Springer, 2021, pp. 105–112.

[30] Microsoft. Get a Windows 11 development environment. Accessed 23.02.2022. url:
https://developer.microsoft.com/en- us/windows/downloads/virtual-

machines/.
[31] Microsoft. Microsoft Security Bulletin MS17-010. Accessed 21.03.2022. url: https:

//docs.microsoft.com/en-us/security-updates/securitybulletins/2017/

ms17-010.
[32] Fabrizio Monaco. malware-samples. Accessed 23.02.2022. url: https://github.

com/fabrimagic72/malware-samples.
[33] node-pcap. Accessed 03.02.2022. url: https://github.com/node-pcap/node_

pcap.
[34] Harun Oz et al. “A Survey on Ransomware: Evolution, Taxonomy, and Defense

Solutions”. In: arXiv preprint arXiv:2102.06249 (2021).
[35] Pi-hole®. Accessed 01.02.2022. url: https://pi-hole.net/.
[36] Carlo Pugnetti and Carlos Casián. “Cyberrisiken und Schweizer KMU: eine Un-

tersuchung der Einstellungen von Mitarbeitenden und verhaltensbedingter Anfäl-
ligkeiten”. In: (2021).

https://www.tcpdump.org/manpages/pcap-filter.7.html
https://www.tcpdump.org/manpages/pcap-filter.7.html
https://www.torproject.org/
https://www.torproject.org/
https://github.com/HugoLB0/Ransom0
https://github.com/HugoLB0/Ransom0
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://developer.microsoft.com/en-us/windows/downloads/virtual-machines/
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010
https://github.com/fabrimagic72/malware-samples
https://github.com/fabrimagic72/malware-samples
https://github.com/node-pcap/node_pcap
https://github.com/node-pcap/node_pcap
https://pi-hole.net/

BIBLIOGRAPHY 37

[37] Rishikesh Sahay et al. “Cybership: An SDN-based autonomic attack mitigation
framework for ship systems”. In: International Conference on Science of Cyber Se-
curity. Springer. 2018, pp. 191–198.

[38] Praghat Kumar Singh.“A physiological decomposition of virus and worm programs”.
PhD thesis. Citeseer, 2002.

[39] Snort. Snort IP Block List. Accessed 14.01.2022. url: https : / / snort . org /

downloads/ip-block-list.
[40] Liu Song. dns2. url: https://www.npmjs.com/package/dns2.
[41] Zheng-Zhi Tang et al. “Malware Traffic Classification Based on Recurrence Quan-

tification Analysis.” In: Int. J. Netw. Secur. 22.3 (2020), pp. 449–459.
[42] Swiss Government Computer Emergency Response Team. Vulnerable Systems Time-

line. Accessed 28.02.2022. url: https://www.govcert.admin.ch/statistics/
timeline/.

[43] D Turk.“Configuring BGP to block Denial-of-Service attacks”. In: RFC 3882 (2004).
[44] Leon Voerman. RAASNet. Accessed 21.03.2022. url: https : / / github . com /

leonv024/RAASNet.
[45] ytisf. theZoo - A Live Malware Repository. Accessed 23.02.2022. url: https://

github.com/ytisf/theZoo.
[46] Saman Taghavi Zargar, James Joshi, and David Tipper. “A survey of defense mech-

anisms against distributed denial of service (DDoS) flooding attacks”. In: IEEE
communications surveys & tutorials 15.4 (2013), pp. 2046–2069.

https://snort.org/downloads/ip-block-list
https://snort.org/downloads/ip-block-list
https://www.npmjs.com/package/dns2
https://www.govcert.admin.ch/statistics/timeline/
https://www.govcert.admin.ch/statistics/timeline/
https://github.com/leonv024/RAASNet
https://github.com/leonv024/RAASNet
https://github.com/ytisf/theZoo
https://github.com/ytisf/theZoo

38 BIBLIOGRAPHY

Abbreviations

AS Autonomous Systems
BGP Border Gateway Protocol
C&C Command & Control
CORS Cross-Origin Resource Sharing
DDoS Distributed Denial of Service
DNS Domain Name System
DPI Deep Packet Inspection
ES6 EcmaScript 6
GovCERT Computer Emergency Response Team of the Swiss Government
IT Information Technology
IP Internet Protocol
JSON JavaScript Object Notation
PoC Proof of Concept
RAT Remote Administration Tool
REST Representational State Transfer
SDN Software Defined Networks
SME Small to Medium-Sized Enterprise
SSRF Server-Side Request Forgery
VM Virtual Machine
UI User Interface

39

40 ABBREVIATONS

Glossary

Authentication describes the process of verifying an entity has the identity that it claims
it has.

Authorization is the decision whether an entity is allowed to perform a particular action
or not, e.g. whether a user is allowed to attach to a network or not.

Autonomous Systems are large computer networks or even groups of networks that share
a single routing policy. Usually AS are assigned a unique number by a local author-
ity, which is then called their Autonomous System Number (ASN).

Botmaster refers to an individual in control of a number of infected machines, able to
control them and issue commands of many kinds.

Diversion in the context of this work describes to the act of redirecting traffic away from
it’s originally intended destination to an alternative one.

polling is the act of asking a server for certain information.

pulling describes the act of using a certain amount of force in order to move data towards
the client.

41

42 GLOSSARY

List of Figures

3.1 Overview of related methodologies . 5

4.1 Overview of the existing SecGrid architecture and the planned changes to
it in green. 12

5.1 A simple three-entry example blacklist. 13

5.2 Requesting a non-blacklisted domain (google.com) yields a real resolved
response. 14

5.3 Requesting a blacklisted domain (evil.com) returns the pre-configured sink-
hole address 192.168.13.46. 15

5.4 Filtering algorithm implemented by the DNS module to handle DNS requests. 16

5.5 The two schemata accepted by the endpoint for updating the sinkhole
blacklist. 17

5.6 The newly implemented Sinkhole dashboard in the SecGrid frontend, with
the Sinkhole being in a stopped state. 18

5.7 The SecGrid navigation bar with the newly added DNS Sinkhole tab. . . . 19

5.8 The sinkhole status card when the DNS sinkhole is running, but the con-
figuration has been changed. 19

5.9 The blacklist card showing the first five entries of an automatically pulled
blacklist. 20

5.10 The update blacklist dialog’s text tab which allows the user to manually
enter the desired blacklist. 22

5.11 The statistics card (left) showing the most requested blacklisted domains in
a sorted list, and the corresponding dialog (right) presenting these request’s
sources for one entry. 23

5.12 The new and improved live capture creation dialog with selectable interfaces
and a filter input field. 24

43

44 LIST OF FIGURES

6.1 The real-world performance achieved by the DNS module. reference shows
the response time of 8.8.8.8, while relay refers to the response time of the
DNS module with it’s mainDNS set to the same server. 26

6.2 A SecGrid visual representation of captured traffic from a sinkholed Elec-
troRAT test run. It is clearly visible that the malware regularly tried
reconnecting to the HTTPS port 443, totaling 175 times over the span of
the 432 captured seconds. 28

6.3 The statistics card of the ficticious Alice Corp. shows one IP address reg-
ularly trying to access a known malicious domain, prompting suspicion. . . 29

6.4 A SecGrid visualization of a live capture of a malware infected host. 30

6.5 Carol Corp.’s dashboard showing a suspicious entry. 31

6.6 Carol Corp.’s warning site that is shown when trying to visit a blacklisted
domain. 32

List of Tables

3.1 Overview of Malicious Traffic Detection Approaches 7

3.2 Overview of Malicious Traffic Diversion Approaches 8

6.1 Overview of tested malware and the sinkhole’s mitigation effectiveness on
them. 27

45

46 LIST OF TABLES

Appendix A

Installation Guidelines

Since this work focused on adding functionality to the existing SecGrid platform and no
dependencies requiring special care have been added, the installation instructions remain
identical to those of SecGrid. The installation instructions presented in this section assume
the user intends on using the default DDosGrid-provided OAuth authorization scheme.
For detailed instructions on using third-party providers see Appendix A in [17].

A.1 Development Environment

As a prerequisite for all the components, the user needs to have the repository that home
the three major components. This can be done using the contents of the CD or by
cloning from the SecGrid GitHub repository and checking out the newly added branch
sinkhole-integration which contains this paper’s work:

git clone https://github.com/ddosgrid/ddosgrid-v2.git

cd ddosgrid-v2

git checkout sinkhole-integration

Additionally, the user needs to have the libraries and tools installed for which we refer
the user to the official documentation:

1. Node.js

2. npm

3. git

4. SSH agent

5. Python 3.6 or higher

6. libpcap

47

48 APPENDIX A. INSTALLATION GUIDELINES

A.1.1 Miner

Even though no major changes have been made to the miner sub-project, the necessary
dependencies still need to be installed in order for the backend to work properly. This
installation can easily be done using the following commands:

cd miner

npm i

A.1.2 Backend (API)

The backend houses the DNS and live capture module introduced with this work. Before
starting the backend, some dependencies must be installed using the following commands:

cd api

npm i

In order to run the backend, it is necessary to be situated in the ./api folder of the
project, and run the start_dev_server.sh script without changing the working directory:

cd api

sudo scripts/start_dev_server.sh

Note that if intentions exist to run the DNS sinkhole on the default DNS port 53, the
backend must be started with root permissions, thus the usage of sudo in the above
instructions.

A.1.3 Frontend

The last part of the application is the SecGrid frontend. For that, we navigate to ./fron-
tend and fetch the dependencies using npm i. After that, we can run the development web
server using npm run serve which brings up a server that automatically restarts when the
codebase changes:

DONE Compiled successfully in 6698ms

App running at:

- Local: http://localhost:8081/ddosgrid/

- Network: http://192.168.13.46:8081/ddosgrid/

A.1. DEVELOPMENT ENVIRONMENT 49

As we can see, the server is listening on port 8081.

Finally, for the full application to work properly, both the backend and the frontend should
be running at the same time.

50 APPENDIX A. INSTALLATION GUIDELINES

Appendix B

Contents of the CD

The CD supplied with this paper contains a number of important resources tied to its
contents. The following folder structure can be found on it:

evaluation/

performance/

paper/

project/

ddosgrid-v2/

slides/

midterm/

evaluation/performance/ contains all materials used to execute the performance tests
described in Section 6.1. This includes the script used to generate the blacklists of
all sizes (generate-blacklist.js), as well as the shell script used to evaluate them
(dns-benchmark.sh). Additionally, all raw data generated from these tests is included
in the files of the naming format results-<BLACKLIST_SIZE>.csv. Lastly, the python
jupyter notebook used to generate the graphs and reported results is also included in this
directory (bsc-evaluation.ipynb).
For security reasons, the malware samples used in mitigation testing are not included on
this CD, however they can easily be downloaded from the source GitHub repositories ([32]
and [45]).

paper/ is the directory where all LATEXsource files used for this paper have been deposited.

project/ddosgrid-v2/ contains all relevant source code used for this work. Alternatively,
these same contents can be cloned from GitHub using the instructions seen in Appendix
A.

slides/midterm/ accomodates both the source and PDF files of the slides used in the
midterm presentation of this work.

51

	Zusammenfassung
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Description of Work
	Thesis Outline

	Background
	Malware Types and Their Behavior
	SecGrid

	Related Work
	Malicious Traffic Detection
	Malicious Traffic Diversion

	Architecture
	Prototype and Implementation
	DNS Module Proof of Concept
	Implementation of the DNS Module
	Back-End (Data Layer)
	Front-End (User Layer)

	Implementation of the Live Capture Module

	Evaluation
	Performance
	Malware Mitigation
	Case Studies
	Malware Attack
	Phishing Campaigns

	Summary, Conclusions and Future Work
	Limitations and Future Work

	Bibliography
	Abbreviations
	Glossary
	List of Figures
	List of Tables
	Installation Guidelines
	Development Environment
	Miner
	Backend (API)
	Frontend

	Contents of the CD

