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Abstract

Tables are one of the most convenient ways to present complex, correlated, and structured in-
formation. While rule and heuristic based approaches have long dominated the table detection
and structure recognition, their usefulness has been confined to a subset of tables that follow
these rules. Significant research has been conducted to localize table structure, the majority of
which focuses on using heuristics and rules with the assistance of optical character recognition
(OCR) to manually select layout characteristics of the tables. With the rise of Deep Learning, new
models have shown to be applicable across multiple unseen domains by incorporating transfer
learning. This thesis presents an end-to-end object detection approach to detect tables and rec-
ognize their structures in a document and thus, help in table data extraction with the use of a
deep learning model namely, Faster R-CNN. This work will also introduce a new metric based
on Intersection over Union (IoU) for the task of table detection which does not penalize large
bounding box predictions up to a defined extent and reduces the dependency of the F1 score on
the chosen IoU threshold. A significant amount of experiments will be discussed on many pop-
ular publicly available datasets like ICDAR 2013, ICDAR 2019, ISRI-OCR, Marmot, TableBank,
and PubTables-1M to carefully adapt and design the parameters of the Faster R-CNN model and
demonstrate the robustness of the model across unseen datasets. The model present in this thesis
outperforms other models including a transformer-based model to establish the state-of-the-art
results on these datasets proving once again the superiority of the Faster R-CNN architecture.





Zusammenfassung

Tabellen sind eine der bequemsten Möglichkeiten zur Darstellung komplexer, korrelierter und
strukturierter Informationen. Während regelbasierte und heuristische Ansätze lange Zeit die
Erkennung von Tabellen und deren Struktur dominiert haben, ist ihr Nutzen auf eine Teilmenge
von Tabellen beschränkt, die diesen Regeln folgen. Es wurden umfangreiche Forschungsarbeiten
zur Lokalisierung von Tabellenstrukturen durchgeführt, die sich größtenteils auf die Verwendung
von Heuristiken und Regeln mit Hilfe von optischer Zeichenerkennung (OCR) zur manuellen
Auswahl von Layoutmerkmalen der Tabellen konzentrieren. Mit dem Aufkommen von Deep
Learning haben neue Modelle gezeigt, dass sie durch die Einbeziehung von Transferlernen auf
mehrere ungesehene Domänen anwendbar sind. In dieser Arbeit wird ein durchgängiger Ansatz
zur Objekterkennung vorgestellt, um Tabellen zu erkennen und ihre Strukturen in einem Doku-
ment zu erkennen und somit bei der Extraktion von Tabellendaten mit Hilfe eines Deep-Learning-
Modells, nämlich Faster R-CNN, zu helfen. In dieser Arbeit wird auch eine neue Metrik auf
der Grundlage von Intersection over Union (IoU) für die Aufgabe der Tabellenerkennung einge-
führt, die große Bounding-Box-Vorhersagen bis zu einem bestimmten Ausmaß nicht benachteiligt
und die Abhängigkeit des F1-Scores vom gewählten IoU-Schwellenwert reduziert. Eine Vielzahl
von Experimenten mit vielen beliebten öffentlich zugänglichen Datensätzen wie ICDAR 2013,
ICDAR 2019, ISRI-OCR, Marmot, TableBank und PubTables-1M werden diskutiert, um die Pa-
rameter des Faster R-CNN-Modells sorgfältig anzupassen und zu entwerfen und die Robustheit
des Modells bei unbekannten Datensätzen zu demonstrieren. Das in dieser Arbeit vorgestellte
Modell übertrifft andere Modelle, einschließlich eines auf Transformer basierenden Modells, um
die neuesten Ergebnisse dieser Datensätze zu ermitteln, was erneut die Überlegenheit der Faster
R-CNN-Architektur beweist.
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Chapter 1

Introduction

Two of the most significant parts of intelligent document processing for digitization and informa-
tion extraction are document structure analysis and parsing of information and tables are one of
the most essential parts of any document for structural analysis and extraction. In recent times,
table analysis has garnered the interest of researchers to extract the information out of the table
in a structured manner. Tables are a systematic means of portraying data that allows for the vi-
sual and logical arrangement of information in an easily understandable manner. A table is an
organized arrangement of rows and columns that is commonly used to convey a collection of
information in a concise manner (Khan et al., 2019). They are commonly used to convey vital
information in research articles, newspapers, invoices, and financial documents. With the advent
of mobile technology like scanning documents using mobile phones, the number of documents
being processed on a daily basis have increased by a significant number. Thus, there is also the
need to extract the information from the tables contained in these documents.

The terms table detection and structure recognition are often used interchangeably but there
is a fundamental difference between them. Table detection entails detecting the image pixel co-
ordinates comprising the tabular sub-image as in Figure 1.1(a), and table structure recognition
includes identification of the individual rows, columns, cells etc. in the detected table for layout
understanding as shown in Figure 1.1(b). Table data extraction is a difficult task as usually the
data is available as scanned document images that contain no structural information or meta-
data unlike in the case of native PDF documents. Tables contain a variety of layouts, making it
difficult for traditional feature engineering methodologies to decode table structures generally.
These systems often rely on visual cues such as ruling lines, column spacing, the kind of data
in table cells, their connections with overlapping neighbors, or color encoded cell blocks (Khan
et al., 2019). They function quite well on a certain layout of tables but fail to generalize over nu-
merous domains. Furthermore, tables spanning across multiple pages without page breaks or the
cells spanning multiple columns and rows with varying fonts, text alignment poses additional
challenges. One of the biggest problem with table structure recognition, especially with rows, are
the large number of objects in a relatively small space as well as the radical aspect ratios of the
structure elements. The inconsistent use of ruling lines for table or structure demarcation, as well
as scanning or digitization errors, complicates the identification process (Coüasnon and Lemaitre,
2014). In general, there are no handwritten rules to draw or create a table. The focus of this work
is to tackle these challenges and develop a pragmatic solution to table processing which gener-
alizes well to unseen documents also. It is worth noting that the variety of datasets available for
both the tasks is scarce and very limited in terms of annotations and the quality of annotations
and gives rise to additional problems for supervised learning approaches.

The existing approaches are not able to perform well on the unseen datasets because of the
domain gap. In this work, we try to bridge this gap by identifying the peculiarities of tables like
elongated rows, whitespace between columns, different aspect ratios of rows/columns etc. and
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(a) Table Detection (b) Table Structure Recognition

Figure 1.1: TABLE DETECTION VERSUS STRUCTURE RECOGNITION. This figure highlights the funda-
mental difference between the task (a) and task (b). In Figure (a), blue bounding boxes highlights the tables
in the image and in Figure (b), different annotated rows, columns, spanning cells etc. are detected in the task
of structure recognition.

this leads to modifications in standard convolutional kernels, anchors, region proposals etc. The
carefully chosen design parameters for the model helps in producing robust results across several
domains. Most often, researchers use a common objection metric like F1 score based on Intersec-
tion over Union (IoU) for all the tasks. This metric does not produce good quantitative results
even if the qualitative results are well qualified. It can happen due to the differing sizes of the
ground truth and predicted bounding box. We show that it is not a good idea to directly use
this metric out-of-the-box rather a suitable modification is done to the standard IoU to reduce the
dependency of F1 scores on the chosen IoU threshold.

Deep learning approaches have substantially alleviated the limitations of computer vision in
recent years. Convolutional Neural Network (CNN) is a useful deep learning technique for ex-
tracting meaningful features from visual data in practice. Because document images primarily
provide visual information, CNNs are becoming more useful for table detection and table struc-
ture recognition. State-of-the-art CNNs are efficient at extracting visual features from data. For
this reason, we rely on the CNN based model to achieve good results on this task.

In this thesis work, we present an end-to-end deep learning model for solving the problem of
table detection and structure recognition. The method described in this thesis is data-driven and
it does not rely on hand-crafted features or any rules and heuristics to detect the presence of the
table and dissect its structure. The model generalizes well to the unseen datasets especially for
the table detection task. The following are the contributions of this work:

• We introduce a deep learning based supervised solution for table detection and structure
recognition, in which the general-purpose object detector is tailored to the quite distinct
world of document, newspaper, article etc. images. Transfer learning is employed by fine-
tuning the pre-trained model on COCO dataset (Lin et al., 2014) using Faster R-CNN (Ren
et al., 2015) for detection and recognition. In comparison to the existing state-of-the-art mod-
els, this model is simpler to execute, adaptable to any dataset, faster to train and generates
better and robust results.

• This work introduces a tailored quantitative metric based on Intersection over Union (IoU)
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to not penalize the predicted bounding boxes bigger than the ground truth annotations by
a certain factor inspired from Günther et al. (2017).

• Furthermore, this works contributes towards the unification of different data sources into
a common annotation format. We also present an in-depth discussion with many different
models, parameters and comparison to other works. We show the effectiveness of carefully
fine-tuning the model on a rather small training dataset and adapt it to tables from unseen
and completely different domains.

The results present in this thesis are state-of-the-art. The idea to use simple-to-work model for
object detection once again prove its dominance.

Document Organization

The rest of this thesis is outlined as follows: The chapter 2 "Related work" gives a detailed timeline
of works done in the area of table detection and structure recognition from models trained on
hand-crafted features to data-driven models. We also draw comparison to the existing models in
this chapter. Chapter 3 "Datasets" describes all the available datasets and their different formats.
We also highlight on how the documents are collected and what their compositions are. In chapter
4 "Background and Proposed methodology", We explain the process followed to train the deep
neural network like data pre-processing, use of pre-trained models etc. and the different elements
that constitute the Faster R-CNN network. This chapter also gives a detailed overview of model
parameters and other implementation details. Chapter 5 "Experiments and Results" describes all
the experiments performed. We also introduce the quantitative metrics used for training and
evaluating and present the tailored Intersection over Union (IoU) metric for the task of table
detection and structure recognition. This chapter also details the results obtained from different
experiments and draw insights from them. We also compare our results with other state-of-the-art
methods and show the superiority of our results. In chapter 6 "Discussion", We present the in-
depth explanations of different model combinations and prove the choice for our model. We, also,
explain the choice of tuning different parameters and their effects on the prediction samples and
highlight the models limitations in this chapter. The last chapter 7 "Conclusion and Future work"
provides the summary of the work and describe the readers with the take-aways and concludes
with an outlook on potential future research directions.





Chapter 2

Related Work

We generate and handle documents almost every day and despite the progress made in Natural
Language Processing and Computer Vision, the domain of table data extraction is attracting more
attention from the research community recently. This is also confirmed by the limited availability
of highly annotated datasets.

Figure 2.1 highlights the major milestones achieved in the field of table data extraction. One
of the first contribution work was done by Kieninger and Dengel (1998), Kieninger and Dengel
(1999), Kieninger and Dengel (2001) using the rule-based approach in 1998. First successful use
of machine learning algorithm applied to table extraction was in 1999 by Ng et al. (1999) using
decision tree and artificial neural network. Then, in 2013, there was a considerable progress made
in this field with the advent of deep learning techniques like image transformations or gainful
use of machine learning models like support vector machines (SVM). With the introduction of
Faster R-CNN (Ren et al., 2015) in 2015, there was already a huge success in table detection as
described in DeepDeSRT (Schreiber et al., 2017). In the later years, there are many modifications
introduced in DeepDeSRT and there was a continuous improvement in this research. Researchers
also introduced the use of graph neural networks for the first time in Qasim et al. (2019b) to
reconstruct the inherent relation between different cells, rows and columns in a table. Researchers
also built a decent performing model based on Gated Recurrent Units (GRUs) (Cho et al., 2014)
in 2019 (Khan et al., 2019). What lacked throughout these researches though was the involvement
of the highly annotated, diverse datasets for table structure recognition. In this work, We make
use of the largest table extraction dataset, PubTables-1M (Smock et al., 2021), for table structure
recognition and present the state-of-the-art results on this dataset.

In this chapter, We will discuss the important works done in this field. First, We will describe
the methods which heavily rely on heuristics and rules and later we will focus the attention on
the methods that employ deep learning techniques. It is crucial to highlight that certain deep
learning methods rely on a few rules to correct predictions, and it is difficult to determine if the
approach should be categorized as rule-based or deep learning-based.

2.1 Heuristic and Rule-based methods
Tabular data extraction is a well-known topic with solutions that have evolved over the last two
decades. One of the first works in table detection in text files using heuristics was performed
by Tupaj et al. (1996) followed by Pyreddy and Croft (1997). During the next few years, a novel
heuristic-based approach of detecting tables in document images was demonstrated in Kieninger
and Dengel (1998), Kieninger and Dengel (1999) and Kieninger and Dengel (2001) forming a com-
bined table detection and recognition system named T-Recs. The input to the T-Recs is the bound-
ing boxes around the word. Depending on the vertical and horizontal overlaps, these boxes are
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T-Recs (heuristic based)
1998

First use of ML

Learning to Recognize Tables in Free 
Text 
1999

Image transformations, SVM
2013

Huge success

AutoMLP and Faster R-CNN

(DeepDeSRT)
2017

Modifications to DeepDeSRT, Use of Graph Neural 
Network
2019/2020

TableNet, use of GRUs 
2020..

Figure 2.1: TIMELINE OF TABLE RESEARCH. The figure represents a timeline of major milestones
achieved in table detection and structure recognition.

Figure 2.2: T-RECS BOTTOM UP CLUSTERING APPROACH. A sample block and the area that contains
potential overlapping words (gray stripe over the initial word “consists”). The words (or bounding boxes)
that are “touched” by this virtual stripe will be clustered top the same block as the initial words. Source
Kieninger and Dengel (1998).

merged into rows and columns using a bottom-up method by forming a segmentation graph as
shown in Figure 2.2. The main issue with this technique is that the outcome is dependent on a
large number of rule-based defined parameters. Furthermore, the method fails if the OCR system
fails to accurately detect bounding boxes of the words.

Hu et al. (1999) developed an algorithm that accepts n lines as input and groups a number of
lines to construct a table by taking a measure of confidence into account. Merit, scores, and line
correlation are some of the indicators used to assess confidence. However, this method has the
disadvantage of not working with multi-column table layouts.

Ng et al. (1999) presented a rule based method involving a machine learning model for table
structure recognition in free text. Their method used decision trees and artificial neural network.
The learning method uses purely surface features like the proportion of the kinds of characters
and their relative locations in a line and across lines to recognize tables. They define a set of rules
to identify rows (hline), columns (vline) and hline, vline, special characters etc. are used to define
what constitutes a column and a row. The models fails to generalizes because of the number of
rules defined to create features for the learning model.

Wang et al. (2004) attempted to solve the table structure recognition problem using a data-
driven method like the X-Y cut algorithm in Shafait et al. (2008a) which is a probabilistic method.
The probabilities used in this statistical approach are generated from a huge training corpus. This
approach, which takes into consideration the distances between neighboring words, is suitable to
single column, double column, and mixed column layouts.

Kasar et al. (2013) trained a support vector machine (SVM) using the hand-crafted features.
Despite the fact that no heuristic rules or user-defined parameters are required, the method’s use
remains limited since it is largely reliant on the occurrence of ruling lines. The technique uses an



2.2 Deep Learning methods 7

algorithm to detect the presence of vertical and horizontal lines in the input image. A collection
of 26 low-level features are yielded by the set of intersecting vertical and horizontal lines. Their
systematic approach can be seen in the block diagram in Figure 2.3.

Figure 2.3: SCHEMATIC BLOCK DIAGRAM OF THE PROPOSED APPROACH IN (KASAR ET AL., 2013).
During pre-processing, horizontal and vertical lines are identified in the image, and an SVM classifier is
trained to detect tables based on the properties of the detected lines.

For table detection, Rashid et al. (2017) use a machine learning method. They used a bottom-
up method, extracting characteristics from each word as feature vectors, which are then used
to train an AutoMLP classifier. OCR is used to retrieve the word list and geometrical position
of each word for the identification of “table” or “non-table” words. The feature vectors include
characteristics such as the distance between each word and its neighbor, the width and height
of the word, white space between words etc. During post processing, nearby class labels of a
word are evaluated and the current word’s class label is updated to the majority count in the
neighborhood. If both, the right and the left neighbors are recognized as “table” then the label of
the word under consideration is also changed to “table”.

2.2 Deep Learning methods
From 2015 onward, Deep Learning models have been extensively used for tackling the table detec-
tion and structure recognition problem. Gilani et al. (2017), Schreiber et al. (2017), Arif and Shafait
(2018) and Siddiqui et al. (2018) made use of Faster R-CNN (Ren et al., 2015) (Section 4.2.1) each
with their own approach to extract hand-crafted features and employ pre-processing methodolo-
gies.

Schreiber et al. (2017) proposed a deep network and data-driven based approach, DeepDeSRT,
for table detection and structure recognition. DeepDeSRT detects rows and columns using a se-
mantic segmentation model which has skip pooling characteristics and FCN-8 architecture. Ad-
ditionally, during pre-processing, all the tables are stretched vertically to aid for the row separa-
tion and also expanded horizontally to emphasize the boundaries between columns. Gilani et al.
(2017) converted images of the documents to natural images by using distance transformation
techniques and then passed them to the Faster R-CNN network. This strategy does not take into
account the foreground and the background features of the tables. Arif and Shafait (2018) further
enhanced this work by pre-processing the document images in 2 stages. They color coded both
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types of data to aid the deep learning system after seeing that the tables include more numeric
data than textual data. In the second stage, they applied image modification technique from Gi-
lani et al. (2017) on document images and passed them to the Faster R-CNN network. On the
UNLV data-set, this technique yielded even better results.

For table detection, Shahzad et al. (2019) employed hand-crafted features and a deep neural
network (see Figure 2.4 and Figure 2.5). They utilize both background and foreground features.
The classic feature engineering technique (T-Recs) is used to encode foreground features, which
are then supplied as input to the deep learning module. As in Gilani et al. (2017), the background
information is encoded and added to all three channels. They employ the distance transform to
distinguish the background text from the foreground text. They improved the accuracy of Faster
R-CNN by adding external features, effectively combining hand engineering with deep learning
approaches.

Figure 2.4: FEATURE ENGINEERED IMAGES. Left: Feature Engineered Images without background.
Right: Feature Engineered Images with Background Transformation. Source Shahzad et al. (2019)

Another important work in table data extraction called TableNet was done by Paliwal et al.
(2019). The researchers presented an end-to-end deep learning model that has been trained to
extract table data from scanned document images. The model employs a pre-trained VGG-19
base network (Simonyan and Zisserman, 2015) which is used as encoding layers. Then there
are two decoder branches for: 1) Table region segmentation, and 2) Column segmentation inside
the table. Masks for table and column regions are generated to filter out these regions. All the
word coordinates are inferred using Tesseract OCR. A row is defined using few rules utilizing
these filtered words. Following that, a rule-based row extraction is used during post-processing
to extract data from table cells. They produce comparable results to DeepDeSRT. Their approach
can be seen in Figure 2.6.

One of the contrasting approaches in table data extraction is employed by Khan et al. (2019)
where the researchers make use of the bi-directional GRUs, see Figure 2.7, rather than the Faster
R-CNN as we saw above. In this work, researchers try to tackle the limitations of DeepDeSRT. In
DeepDeSRT, parts of input image is processed by an FCN (Fully Convolutional Network) filter to
convert it into the output information. As described by Khan et al. (2019), “this fails to capture
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Document Image
Feature Encoded

Image
Transformed

Image

CONV LAYERS
FINETUNED RESNET 101

Feature Map

Region Proposals 
from RPN

Table?
Yes

Bounding box 
from regression 

layer and 
confidence score

Figure 2.5: PROPOSED APPROACH BY SHAHZAD ET AL. (2019). The original image is subjected
to a distance transform. Both images are added, and the final image is passed into the feature extractor.
The feature map created by the feature extractor is then sent to the region proposal network (RPN), which
suggests regions where tables may exist. As input, the detection network analyses the suggested areas and
categorizes them as table or non-table regions. Source Shahzad et al. (2019)

Figure 2.6: TABLENET ARCHITECTURE. Pre-trained VGG-19 is used as base network. Common encod-
ing layers are from conv1 to pool5 for both table and column network. conv7 column and conv7 are the
two decoding networks to produce separate table predictions and column predictions. Source Paliwal et al.
(2019).

the fact that the rows and columns in a table follow a unique repetitive sequence of in-between
spacing and data length as the information of the next and the previous row-column elements is
not taken into account”. The essence of the strategy described in this paper is to use recurrent
neural networks to detect segmentation space between rows and columns. To tackle this chal-
lenge, they employ three modules: 1) Image processing: To begin, the images are cleaned up by
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eliminating the ruling lines and other non-text foreground items so that the structure of the ta-
ble is more evident. The images are then adaptively binarized (Shafait et al., 2008b) to make the
pixel intensities uniform and later images are run through a dilation kernel. The dilation assists
the model in learning the pattern of dividers of row and column. 2) Row-Column classifier: The
bi-directional GRU models rows and columns as timesteps and predicts future row/column com-
ponents using information from prior row/column components. The model is able to learn the
pattern of inter-row and inter-column gaps, as well as the sequence of recurrence of row-column
components. 3) Post processing: Finally, during the classification, the segmentation space is parsed
and the classifier predicts the rows and columns.

Figure 2.7: BI-GRU ARCHITECTURE FOR COLUMN CLASSIFICATION. The output vector of the net-
work is post-processed to get column segmentation boundaries. A similar network is used for row classifier.
Source Khan et al. (2019).

Qasim et al. (2019b) make use graph neural network for the first time to solve the task of
table structure recognition as shown in Figure 2.8. They mostly use synthetic data to work with.
They extract a feature map for an image using the CNN model and words’ positions are extracted
using an OCR engine. Then image features, corresponding to the words’ positions, are gathered
and concatenated with positional features to form the input features to an interaction network
to generate representative features. The interaction network used is the modified versions of
DGCNN and GravNet presented by Wang et al. (2019) and Qasim et al. (2019a) respectively. In the
interaction network, sampling for cells, rows, and columns is done independently for each vertex
(i.e. word). The representative characteristics for each sample pair are concatenated again and
fed into the three dense networks for classification (cell, row, and column network). In addition,
they use an unique Monte Carlo-based approach to improve the training routine.

The current researches also highlight the importance of data augmentation for enhanced recog-
nition. Khan et al. (2021) describe the data augmentation approach, which results in structural
changes in table images by replicating and deleting rows and columns. They also present a data-
driven probabilistic approach for producing parameters that influence the augmented data’s lay-
out. The leaders of the ICDAR 2019 table detection and recognition competition, TableRadar (Gao
et al., 2019) also use post-processing methods over the original output of the network. TableRadar
is a Faster R-CNN based model that merges regions with overlapping areas greater than the set
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threshold and detects lines in prospective table areas and if the detected lines continues beyond
the table border, the table bounding box is expanded accordingly. The runner-up, NLPR PAL
(Gao et al., 2019), employed some heuristics with a fully convolutional network to divide im-
age pixels into two categories: table and background, and subsequently table areas are recovered
using Connected Component Analysis (CCA)1.

Figure 2.8: PICTORIAL REPRESENTATION OF ARCHITECTURE FROM QASIM ET AL. (2019B). For an
image, a feature map is extracted using the CNN and the corresponding words’ positions are extracted using
an OCR and concatenated before passing to the interaction network. In the interaction network, sampling for
cells, rows, and columns is done independently for each vertex (i.e. word). The representative characteristics
for each sample pair are concatenated again and fed into the three dense networks for classification (cell, row,
and column network).

In this thesis, we draw inspiration from some of these works and compare the results obtained
for both the tasks.

1https://en.wikipedia.org/wiki/Connected-component_labeling

https://en.wikipedia.org/wiki/Connected-component_labeling




Chapter 3

Datasets

The works mentioned in the last chapter make use of only few of the publicly available datasets
published by the research community. The size of these datasets is very small to capture the
variety of tables existing in the real world. Thus, these small datasets fail to capture the variation
of tables and the models do not perform well on when tested on the unseen dataset. It risks
overfitting in deep neural networks and hence, poor generalization. Researchers have tried the
transfer learning approach to tackle this issue but this does not offset the requirement for a large-
scale diverse dataset.

In this work we make use of the small datasets - ICDAR 2013 (Göbel et al., 2013), ICDAR 2019
(Gao et al., 2019), ISRI-OCR (part of UNLV) (Shahab, 2010), Marmot (Fang et al., 2012) and large
datasets - TableBank (Li et al., 2020), PubTables-1M (Smock et al., 2021) for the table detection and
structure recognition.

ICDAR 2013 Dataset

ICDAR 2013 table dataset is a widely used small dataset for the problem of table detection and
structure recognition. The dataset (see sample in Figure 3.1) is made up of PDF files that have
been transformed into images for the purpose of performing an image-based table identification
approach. The dataset consists of 238 pages overall with 67 documents, with word-level annota-
tions provided. We use this dataset for table detection only but evaluation is performed on some
images for structure recognition.

ICDAR 2019 Dataset

ICDAR 2019 dataset contains two types of document images - historical and modern (see Fig-
ure 3.2 and Figure 3.3). Modern document images are mostly derived from scientific papers and
commercial publications, whereas historical document images are primarily derived from hand-
written historical documents. 600 images are set aside for training and 240 images are set aside
for testing when it comes to modern document images. For the historical portion, 600 images
are set aside for training and 199 images are set aside for testing. It should be highlighted that
there is no annotation for table structure detection in the modern images, therefore the historical
dataset is obsolete for current-day application. As a result, we solely utilize this dataset for the
table detection part.

ISRI-OCR Dataset

ISRI-OCR is a part of the UNLV dataset. This dataset has served its purpose to benchmark OCR
algorithms in the past and recently a part of it has also been used in the table detection task. The
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Figure 3.1: AN ANNOTATED IMAGE SAMPLE FROM ICDAR 2013. The annotation for the table can be
seen which is not very precise. ICDAR 2013 provides text bounding box annotations rather than row/col-
umn annotations.

Figure 3.2: AN ANNOTATED IMAGE SAMPLE FROM ICDAR 2019 HISTORICAL DATASET. The figure
shows annotations for the table itself and the cell annotations rather than text annotations like in ICDAR
2013. It does not include row/column annotations.

dataset contains documents of varying layouts and domains including research articles, maga-
zines, technical reports etc. There are total of 2889 images in this dataset and 427 of them contains
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Figure 3.3: AN ANNOTATED IMAGE SAMPLE FROM ICDAR 2019 MODERN DATASET. The blue
bounding box represents the tables in the image. The modern dataset does not include annotations for table
structure recognition.

at least one table. Sometimes it’s questionable if the bounding box covers a table or some other
document objects like figures, list etc. See the sample of an image in Figure 3.4.

Marmot Dataset

Marmot (see sample in Figure 3.5) is one of the most used publicly available datasets for the task
of table detection and structure recognition. There are 2000 pages in PDF format in Chinese and
English language. Over 1500 conference and journal articles are crawled, spanning numerous
topics from 1970 to the most recent 2011 publications. The Chinese pages are extracted from
over 120 e-books with a variety of subjects and the English pages are crawled from the Citeseer
website1. The dataset shows a great variety in terms of layout and table styles. This dataset
is used for the table detection part only as it is impossible to expand the text bounding boxes
to row/column bounding boxes with no information on how text bounding boxes were created
unlike in ICDAR 2013 as described in Section 4.1.2.

TableBank Dataset

TableBank (see sample in Figure 3.6) is one of the largest datasets available with over 417,000 ta-
bles and 278,000 images. It has been created from business documents, official filings, research

1https://en.wikipedia.org/wiki/CiteSeerX

https://en.wikipedia.org/wiki/CiteSeerX


16 Chapter 3. Datasets

Figure 3.4: AN ANNOTATED IMAGE SAMPLE FROM ISRI-OCR. The bounding boxes represent the
ground truth tables and the cell annotations.

papers etc. We use this dataset for table detection due to the variety of tables it offers in a docu-
ment. However, the dataset format for table structure recognition is quite convoluted and gives
the HTML tag only without any bounding box coordinates like all the other datasets. It is difficult
to integrate this dataset format with the current row/column bounding box annotations and for
this purpose, we leave this dataset out of the structure recognition part and leave it for the future
to expand and improve the structure recognition dataset.

PubTables-1M Dataset

It is the largest dataset available for table detection and structure recognition with very high-
quality annotations. It has over 460,000 document pages for table detection and over 947,000
document pages for table structure recognition. We use this dataset for table structure recognition
because of the high-quality annotations it offers for identifying table, table row, table column, table
projected row header, table column header, table spanning cell in a table. The table class contains the
annotation for the bounding box around the table. The row/column class corresponds to the
rows/columns in the table. Table projected row header is also known as section headers (Pinto
et al., 2003) and these are in-between rows which contain header(s). The column header is the
top-most row in the table. The table spanning cell is the class of cells which span across multiple
rows or multiple columns. These classes can be observed in Figure 3.7. Each intersection of a
table column and a table row is considered to form a seventh implicit class, table grid cell (Smock
et al., 2021).
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Figure 3.5: AN ANNOTATED IMAGE SAMPLE FROM MARMOT. The figure represents the annotations
for a table and the text bounding box annotations. Moreover it can be questioned if this ground truth image
is actually a table or not. Such images are used during the training and testing for table detection.

The dataset also contains the content of the cells - words, numbers etc. with its bounding
box coordinates to facilitate further modeling using natural language processing techniques. Ad-
ditionally, cells in the headers are canonicalized as described in Appendix A.2 and the authors
implement multiple quality control steps to ensure the annotations are as free of noise as possi-
ble.
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Figure 3.6: AN ANNOTATED IMAGE SAMPLE FROM TABLEBANK. The blue bounding boxes indicates
the presence of tables in the ground truth image.

Figure 3.7: AN ANNOTATED IMAGE SAMPLE FROM PUBTABLES-1M. The annotations are added to
show the different classes in this dataset. Source Smock et al. (2021).



Chapter 4

Background and Proposed
Methodology

This chapter informs the readers about the data pre-processing steps, model architecture used in
this work, use of pre-trained models, and other crucial experimental set-up details. The readers
will get acquainted with the important advancements made in object detection and also learn
about the important sub-networks and parameters to consider when training a Faster R-CNN
network.

4.1 Data pre-processing

4.1.1 COCO Dataset format
The datasets, ICDAR 2013, ICDAR 2019, ISRI-OCR, TableBank, Marmot, PubTables-1M, come in
varying XML (Extensible Markup Language) formats according to the annotator’s working com-
fort. Since our model involves working with the mixture of datasets as input, there is a need
to convert all the formats to a common annotation format. For this purpose, we convert all the
existing datasets to the MS COCO (Common Objects in Context) format (Lin et al., 2014). The
COCO format is a JSON (JavaScript Object Notation) structure describing how labels, coordi-
nates of bounding boxes, metadata (like height, width, sources etc.) for each image samples are
saved. The XML annotations for above mentioned datasets are usually available for individual
page along with the image. The XML annotations are not uniform i.e. some datasets have infor-
mation for words like coordinates and content and some of the times there is an individual XML
annotation file for each table in a document. While processing all datasets requires different ap-
proaches, a general process to merge all the XML files into a single COCO file for table detection
is to iterate through each file and extract bounding box coordinates for tables and calculate its
area and add it to the COCO JSON file along with other available information like page width,
page height, path to the image etc. Each table in a page and each page in a document is given a
unique ID. Tables with incomplete information are left out.

This is also the contribution of this work to provide all the datasets in the common COCO
format and encourage the research community to make use of a single format for this task.

4.1.2 Bounding Box Expansion
For the task of table detection, we manipulate the bounding box coordinates to have the better
predictions. We increase the bounding box coordinates in the horizontal and vertical direction
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for tables by 5% relative to the page width and page height. This is done so that the predicted
bounding boxes fully contain the tables with some extra margin and, in most cases, it also solves
the issue where table captions are not included in the ground truth annotation as in Figure 3.6.
The incorrect ground truth annotations which have either no annotations or negative coordinates
(implying bounding box outside document) for left/right boundaries or top/bottom boundaries,
we set the bounding box boundary as the page width or the page height. Thus, creating more
correct data for training. A sample of such an incorrect ground truth file can be seen in Figure 4.1.

Figure 4.1: AN INCORRECT GROUND TRUTH SAMPLE. This ground truth sample from ICDAR 2019 has
incorrect/no table bounding box on the left boundary. Such examples are corrected before training.

For the task of table structure recognition, ICDAR 2013 provides word-level annotations (an-
notations around the text/text bounding box) for the tables but we predict rows, columns etc. for
the structure recognition task. Therefore, we use the information provided in the XML annota-
tion files to expand the text bounding box annotations to row, column annotations systematically
according to the given start/end - row/col tag. These tags have integer values and help
in identifying the row and column where the text bounding box belongs. Then the text bound-
ing boxes with the same row tag are merged into one row annotation and the same process is
followed for the columns. The intersection of a row and a column generates the cell annotation.
The reason to do this is that we use the data-driven approach to model the structure of the table
rather than relying on any post-processing methods to relate different text bounding boxes after
prediction with each other or to identify in which row/column they belong.

4.1.3 Dataset splits
The datasets are split in the ratio of 80-10-10 for the purpose of training, validation, and testing re-
spectively. For some datasets, we do not use all the samples available but rather a subset of them
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because of limited training resources and, also, the big dataset like TableBank fails to capture va-
riety of tables alone. This can also lead the model to over-fit on one large dataset i.e. model learns
the features dominant in the big dataset and fails to generalize well across different domains.

Table Detection

For the task of task of table detection, we use the following datasets with their mentioned number
of samples for the purpose of training: ICDAR 2013 - 114 samples; ICDAR 2019 - 1200 samples;
Marmot - 876 samples; ISRI-OCR - 308 samples; TableBank - 1000 samples.

As noted earlier, the TableBank dataset has more than 278K images. However, we use only
1000 images for training because of the aforementioned reasons. Training on the complete Table-
Bank dataset with current resources will take multiple weeks.

Table Structure Recognition

To tackle the problem of table structure recognition, we use the ICDAR 2013 and PubTables-1M
datasets. While 156K images of PubTables-1M are used in training with 6 annotations: table, row,
column, projected row header, column header, spanning cell, only 105 images of ICDAR 2013 are used
with 2 annotations: row, column. Initial experiments reveal that the results are dominated by the
PubTables-1M dataset. Hence, for the sake of brevity, we only use PubTables-1M for training.
Training on 156K images takes around 5 days. More on training time can be inferenced from
Section 4.3.

4.2 Model
This section discusses the details of the proposed approach with some background information
about different models as described by Girshick et al. (2013), Girshick (2015), Ren et al. (2015)
and Gad (2021). We refer to the aforementioned sources to present the model in a concise and
understandable manner. Because of how Convolutional Neural Network (CNNs) has impacted
the research in the computer vision domain, we use Faster R-CNN network to model the task
of table data extraction as an object detection problem. The detection of graphical objects like
figures, tables, equations etc. is essentially the localization of these objects in a document. This is
also called layout segmentation of a document (Zhong et al., 2019). It is easy to draw this analogy
to the detection of objects present in the natural environment or a scene. Like natural objects have
identifiable characteristics, the tables in a document also have certain identifiable traits. The CNN
can harness these characteristics of the table(s) in a document and can extract those features.

The extraordinary performance of Faster R-CNN (Ren et al., 2015) on the PASCAL VOC (Ever-
ingham et al., 2010) and COCO (Lin et al., 2014) datasets motivates us to adapt this framework for
the task of table data extraction. Since the training of deep neural networks requires vast amounts
of labeled data which is a recurring issue in table data extraction, we use domain adaptation and
transfer learning in this thesis. The original Faster R-CNN framework is initialized with Ima-
geNet (Russakovsky et al., 2015) pre-trained model and then trained further on the COCO dataset
by OpenMMLab (Chen et al., 2019) before making it available to the public.

It is also important to understand the main building blocks of a Faster R-CNN network since
it helps in tuning the performance of the model and affects the output significantly. R-CNN
(Region-based CNN) (Girshick et al., 2013) is one of the first works done towards object detection
by extracting features using a pre-trained CNN. In comparison to the general pipeline of the
object identification approach as shown in Figure 4.2 where proposal1 for prospective objects

1Proposal is the area of interest in the image which potentially contains the foreground object.
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are generated by the proposal generator and fed to the feature extractor for further extraction
of classifying features, R-CNN’s contribution is simply extracting features using a convolutional
neural network (CNN). Aside from that, everything is the same as in the general object detection
pipeline. The R-CNN model is depicted in Figure 4.3.

There are some drawbacks of using R-CNN like the large number of proposals i.e. 2000 gener-
ated takes an exceptional amount of time to train as the network needs to classify 2000 proposals
per image. Also, it cannot be implemented in real-time as it takes ~47s per image during eval-
uation since each region proposal is input separately to the CNN for feature extraction. R-CNN
relies on the selective search algorithm (Uijlings et al., 2013) to generate region proposals which
is a fixed algorithm. Hence, as a general purpose object detector, it leads to the generation of bad
proposals.

Region Proposal Generator

Feature Extraction

Classification

Figure 4.2: GENERAL OBJECT DETECTION PIPELINE. The diagram represents the general constituents of
the most object detection models. Proposal for prospective objects are generated by the proposal generator
and fed to the feature extractor for further extraction of classifying features.

The same authors address some of these drawbacks of R-CNN and introduce Fast R-CNN
(Girshick, 2015). As the name implies, Fast R-CNN is faster in speed than R-CNN. The method is
comparable to R-CNN. However, instead of passing the region proposals to the CNN as input, the
whole image is given to the CNN to build a convolutional feature map. The region of proposals
is determined using the convolutional feature map and by using the proposed RoI Pooling (Re-
gion of Interest Pooling) layer (Section 4.2.1), the features are reshaped into equal-length feature
vectors before being fed to the fully connected layer.

The reason why Fast R-CNN is faster than R-CNN is that it does not require all the 2000 region
proposals to be fed to the CNN independently rather a convolution operation is performed only
one time per image to generate the features. This also attributes to using the RoI Pooling layer.
The Fast R-CNN’s framework can be seen in Figure 4.4. The model is a single stage architecture
compared to the three stage architecture of R-CNN. It inputs an image and returns the class prob-
abilities and coordinates of bounding boxes of the detected objects as described in Girshick (2015).
Despite being faster, this model also has drawbacks. The generation of region proposals becomes
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Figure 4.3: OVERVIEW OF R-CNN FRAMEWORK. An image is fed to the system and 2000 region pro-
posals are extracted. For each proposal, features are generated by the CNN and then classified by the class-
specific linear SVMs. Source Girshick et al. (2013).

the bottleneck as this model also relies on the selective search algorithm to generate proposals.
Hence, it is also not able to detect all the target objects in some cases because of bad proposals.

Figure 4.4: OVERVIEW OF FAST R-CNN FRAMEWORK. A FCN is fed an input image and several
regions of interest (RoIs). Each RoI is pooled into a equal-length feature map, which is then mapped to a
feature vector using fully connected layers. Per RoI, the network produces two output vectors: softmax
probabilities for classification and per-class bounding box coordinates. The architecture is trained end-to-
end using a multi-task loss. Source Girshick (2015).

4.2.1 Faster R-CNN

The R-CNN and Fast R-CNN depends on the selective search algorithms to generate region pro-
posals. It is a costly and slow process. Hence, Ren et al. (2015) introduced Faster R-CNN where
the model does not require the selective search algorithm but rather the network learns and pre-
dicts the region proposals. It is able to do so because of another network called Region Proposal
Network (RPN). Some of the main building blocks of Faster R-CNN, as described in Gad (2021),
are explained in the sections below. The Faster R-CNN framework consists of two networks: 1)
RPN: To generate region proposals. 2) Fast R-CNN: To detect objects in the proposed region.
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Base Network

The base network or the backbone network in the original Faster R-CNN model is either the Zeiler
and Fergus model (ZF) (Zeiler and Fergus, 2014) or the VGG-16 model (Simonyan and Zisserman,
2015). The base network is a fully convolutional network. The ZF model has 5 shareable convo-
lutional layers and the VGG-16 has 13 shareable convolutional layers. The base networks help in
extracting the high level features of the object for further processing by the other networks. It is
the very first network to which the input image is sent. Other variations of backbone network
include using ResNet (He et al., 2016) as a backbone with a Feature Pyramid Network (FPN) (Lin
et al., 2017) before passing the features to the RPN network. As described in Ren et al. (2015),
in contrast to other methods like Fast R-CNN that use pyramids of images (see Figure 4.5(a)) or
pyramids of filters (see Figure 4.5(b)), Faster R-CNN introduce novel “anchor” boxes that serves
as references at multiple scales and aspect ratios. Their framework can be thought of as a pyramid
of reference boxes or pyramid of anchors (see Figure 4.5(c)), which avoids enumerating images or
filters of multiple scales or aspect ratios.

(a) Pyramids of images and feature maps (b) Pyramids of filters (c) Pyramids of reference boxes

Figure 4.5: DIFFERENT SCHEMES FOR ADDRESSING MULTIPLE SCALES AND SIZES. In (a), pyramids
of images and feature maps are functioned at different scales. In (b), pyramids of filters with multiple
scales/sizes are passed on the feature map. Pyramids of reference boxes are used in (c). Source Ren et al.
(2015).

ResNet (He et al., 2016), Appendix A.1, is one of the most studied architectures in deep learn-
ing. It has gained a lot of popularity in the computer vision research community. Consequently, a
lot of ResNet variants have been proposed in the last few years and one of which called ResNeXt
(Xie et al., 2017) has garnered a lot of attention. The name, ResNeXt, contains Next. It means the
next dimension, on top of the ResNet. This next dimension is called the “cardinality” dimension.
ResNeXt became the 1st Runner Up of ILSVRC classification task and showed improvements over
ResNet. A building block of ResNet and ResNeXt is shown in Figure 4.6.

To improve accuracy, more layers can be stacked or wide layers can be used but the problem
is more parameters are introduced as well. Eventually, more computational power is required.
ResNeXt deals with this problem. The principle of ResNeXt is stacking the same topology blocks.
The hyperparameters like width and filter sizes are shared within the residual blocks (Ma, 2020).
In summary: 1) ResNeXt has much more parallel stacking rather than sequential stacking. 2)
Cardinality is the number of independent paths, and it provides a new way of adjusting the
model capacity. Accuracy can be increased by increasing cardinality rather than going wide or
deep.

In this work, we make use of ResNet and ResNeXt architecture and describe their choices by
showing experiments in chapter 6.
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Figure 4.6: RESNET AND RESNEXT BLOCK. A building block of ResNet (left) and ResNeXt (right).
ResNeXt has cardinality = 32 with approximately the same complexity. Source Xie et al. (2017).

Region Proposal Network (RPN)

The RPN is a fully convolutional network that generates proposals of potential objects with dif-
ferent sizes and aspect ratios. The RPN uses the mechanism of attention2 to guide the detection
network (Fast R-NN) where to look. The visualization of Faster R-CNN’s framework can be seen
in Figure 4.7. The features generated by the base network and its computations are shared across
RPN and Fast R-CNN detection networks.

The main benefits of using the RPN is the generation of learnable region proposals which can
be adapted according to the detection task. To do so, it depends on assigning positive/negative
values to the anchors (see next Section 4.2.1). This generates better proposals compared to al-
gorithms like selective search. The RPN module is also translation-invariant and uses the same
convolutional layers as the detection (Fast R-CNN) network to process the image. As a result,
when compared to algorithms like selective search, RPN takes less time to generate proposals
and training is done only once.

The output feature map passed to the RPN from the convolutional layers (backbone network)
is operated on by a sliding window of size n x n followed by two sibling (or similar) 1 × 1
convolutional layers (for regression (reg) and classification (cls), respectively). Several candidate
region proposals are produced for each window and then filtered based on their objectness scores
depending if the region contains an object or not (Ren et al., 2015). This can be seen in Figure 4.8.

Anchor

As illustrated in Figure 4.8, several region proposals (maximum k) are predicted concurrently at
each sliding-window position. Each proposal is parameterized based on a reference box known
as an anchor box (or anchors). At default settings, the model employs 3 scales and 3 aspect ratios
for anchors which, in turn, generates k=9 anchors at each sliding position (Ren et al., 2015). As the
anchors are of different scales and ratios, this circumvents the need of using multiple images or
filters of different scales. The features are shared between the RPN and further detection network
due to the presence of multi-scale anchors without adding any extra cost related to varying image
scales.

For each n x n region proposal, a fixed size feature vector of lower dimension is extracted
depending on the base network by the RoI pooling layer as described later. Thus, the fixed-size
feature vector length is 256 for the ZF model and 512 for VGG-16 net. It is then fed to the 2
sibling fully-connected layers: 1) Box-classification layer: It is a binary classifier which provides an

2https://en.wikipedia.org/wiki/Attention_(machine_learning)

https://en.wikipedia.org/wiki/Attention_(machine_learning)
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Figure 4.7: OVERVIEW OF FASTER R-CNN FRAMEWORK. The base convolutional network generates
feature maps on which RPN operates using the attention mechanism. The generated proposals and the
corresponding feature maps are then passed through RoI pooling to convert it into a fixed-length vector and
for further classification. Source Ren et al. (2015).

objectness score for each region proposal. 2) Box-regression layer: This layer returns the 4D vector
which defines the bounding box coordinates of the object of interest. These 4 coordinates are
relative to the anchor box, and not in absolute image coordinates as defined in Equation (4.1) and
Ren et al. (2015).
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(4.1)

here x, y, w, h correspond to the (x, y) coordinates of the center of the box and the height, h
and width, w of the box. xa, x∗ denote the coordinates of the anchor box and its corresponding
ground truth bounding box respectively.

As described in Ren et al. (2015), based on Intersection over Union (IoU) with the ground
truth bounding box, each anchor is assigned a positive or negative objectness score (see Equation
(5.4)) for training the RPN. The anchor with the greatest IoU overlap with the ground truth box
or an anchor with IoU greater than 0.7, gets a positive label. Both of these conditions must be
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Figure 4.8: REGION PROPOSAL NETWORK (RPN). Multiple region proposals of different sizes are
predicted at each sliding window location which is then mapped to a lower-dimensional feature (256-d
for ZF model) and fed to two fully sibling connected layers: reg and cls for coordinates prediction and
classification score respectively. Source Ren et al. (2015).

satisfied in order to ensure that positive anchors are present in all situations. For all ground-truth
boxes, negative labels are assigned to a non-positive anchor with an IoU less than 0.3. Unlabeled
anchors are not considered in the training process. The objective function to train the RPN is the
multi-task loss for an image as described in Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren
et al., 2015). The loss function is defined as:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ) (4.2)

Where, index of an anchor is denoted by i in a mini-batch. The output of the classification,
cls layer is pi and that of the regression, reg layer is ti. pi is the anchor’s predicted probability of
being an object. If the anchor i is an object, p∗i is 1 otherwise 0. tiand t∗i are the four parametrized
coordinates and the ground truth coordinates respectively. The Lcls, classification loss, is a log
loss (or cross-entropy loss) over two classes (i.e. if it is an object or not an object) as defined in
Equation (4.3).

The equation Lreg(ti − t∗i ) = R(ti − t∗i ) is the regression loss where R is the smooth L1 loss
function. Smooth L1 loss in Equation (4.4) can be interpreted as a combination of L1 loss and L2
loss. It acts as L1 loss when the absolute value of the term is high i.e. it produces steady gradients
for high values, and it behaves like L2 loss i.e. low fluctuations for small values when the absolute
value of the term is close to zero. Thus, it offers the advantages of both loss functions together.
The term p∗iLreg represents the regression loss is available only for positive anchors (p∗i = 1) and
is inactive otherwise (p∗i = 0).

Lcls(pi, p
∗
i ) = −p∗i log(pi)− (1− p∗i )log(1− pi) (4.3)

L1;smooth =

{
|x|, if|x| ≥ α
1
|α|x

2, otherwise
(4.4)

where α is a hyperparameter and is generally set to 1.
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The coefficient λ = 10 is a balancing constant and the normalizing constants, Nreg and Ncls

are the number of mini-batch and the anchor boxes respectively. The default normalizing values
for Ncls is 256 and that for the Nreg is ~2400. It is important to note that the authors mention that
it is not necessary to follow this protocol for normalization and also performed experiments to
demonstrate that outcomes are insensitive to values of λ in a broad range.

Region of Interest Pooling (RoI) Layer

This type of layer is first introduced in the Fast R-CNN network (Girshick, 2015). There is a need
to convert all proposals from RPN to a fixed length vector before passing it to the fully connected
layers. The RoI pooling layer performs this function.

RoI pooling is used for utilizing a single feature map for all the proposals generated by the
RPN in a single pass. It generates equal-length feature maps from non-uniform inputs by doing
max-pooling on the inputs. RoI pooling layer takes two inputs as illustrated in Figure 4.7: 1)
Feature maps generated by the convolutional neural network in the backbone. 2) k proposals (or
regions of interest) from region proposal network.

RoI pooling takes every region of interest from the input, and selects a part of the input feature
map that corresponds to that RoI, and turns that feature map segment into a fixed dimension
map. The fixed dimension output of the RoI pooling for each RoI is independent of the input
feature map or the proposal sizes; it is purely determined by the layer parameters like spatial
scale, pooling height and width. Pooling height and width decide how to split the region proposal
into the grid of cells and it also indicates the output dimension of the layer. Spatial scale, as the
name suggests, is a scaling parameter to resize the proposals as per the feature map dimensions.
An interesting visualization of the forward pass in RoI pooling layer can be found at this website3.

4.2.2 Deformable Convolutions
Convolutional Neural Networks (CNNs) are excellent for visual recognition tasks but they are in-
herently invariant to large and unknown transformations and relies on data augmentation tech-
niques to learn geometric transformations. Few simple geometric transformations are scaling,
rotation, translation etc. CNN’s capability to represent geometric modifications is limited by the
fixed structure of the kernel used to sample from the feature map. Using a fixed rectangular win-
dow, a CNN kernel samples from the input feature map at a specified position. To overcome
this limitation and increase the capability of CNN, Microsoft researchers introduced Deformable
Convolutional Networks (Dai et al., 2017).

The deformable convolutions present a simple, efficient, and end-to-end technique for mod-
eling dense spatial variations, assisting CNN in learning numerous geometric transformations
based on the given data. In the standard convolution process, 2D offsets are added to the regular
grid sampling locations to account for the size of various objects and to create adaptable receptive
fields depending on the size of the object (as seen in Figure 4.9). This deforms the previous ac-
tivation unit’s constant receptive field. The offsets introduced are learned from the prior feature
maps using further convolutional layers. As a result, the deformation performed depends on the
input data in a local, dense, and adaptable manner.

The deformable convolution has dynamic and learnable receptive field. This can be observed
in Figure 4.10 from Dai et al. (2017) where the illustration is shown using two layers. On the top-
most feature map, two activation units on two objects of different scales and shapes are shown.
The activation is from a 3 X 3 filter. In the middle feature map, two activation units are high-
lighted again and the sampling location of the 3 X 3 filter is shown. The bottommost feature map
represents the sampling locations on the preceding feature maps for a 3 X 3 filter. Due to the

3https://deepsense.ai/region-of-interest-pooling-explained/

https://deepsense.ai/region-of-interest-pooling-explained/
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Figure 4.9: SAMPLING LOCATIONS IN 3 X 3 STANDARD AND DEFORMABLE CONVOLUTIONS. Reg-
ular grid sampling of standard convolution is shown in (a) with green dots and sampling with augmented
2D offsets of deformable convolutions is shown in (b),(c),(d) through blue arrows. Source Dai et al. (2017).

adaptability of the deformable convolutions, we use it in this work. We perform experiments to
compare the performance of different convolutions for the task of table data extraction and the
results of which are presented in chapter 6.

Figure 4.10: STANDARD AND DEFORMABLE CONVOLUTION. Left: Illustration of fixed receptive field
in standard convolution. Right: Illustration of adaptive receptive field in deformable convolution operation
using two layers. Source Dai et al. (2017).

4.2.3 Type of Regression Loss

It is always a discussion to select or modify the regression loss wisely for a perfect bounding box
prediction. In this section, we describe the three different loss functions: Smooth L1 (Equation
4.4), Generalized Intersection over Union (GIoU) (Equation (4.5), Rezatofighi et al. (2019)), and
Distance Intersection over Union loss (DIoU) (Equation (4.6), Zheng et al. (2020)) functions.
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GIoULoss =
|G ∩D|
|G ∪D|

− |C \ (G ∪D)|
|C|

= IoU − |C \ (G ∪D)|
|C|

(4.5)

where G and D are ground truth and predicted bounding box respectively. C is the smallest
convex hull that encloses both G and D.

DIoULoss = 1− IoU +
||d− g||

c2 (4.6)

where c is the diagonal length of the smallest enclosing box covering the two boxes and g and d
are the center points of the ground truth and predicted bounding boxes respectively.

Authors of GIoU Loss (Rezatofighi et al., 2019) claim that it is not a good idea to train a network
by optimizing a loss function such as l1-norm or l2-norm and then evaluate the performance on
IoU function since ln-norm based losses are not scale invariant. Therefore, bounding boxes with
the same level of overlap, but different scales will give different values. In a case, where ground
truth and predicted bounding box does not overlap, the IoU will be 0 but GIoU will not necessarily
be 0 and GIoU value will increase as the predicted bounding box moves closer to the ground truth
bounding box indicating improvement in the performance while IoU will still remain 0. This is
the advantage of GIoU loss i.e. it is always differentiable. The readers are encouraged to visualize
the GIoU loss on the authors’ website4.

DIoU loss inherits some of the properties of IoU and GIoU and also alleviates the limitations
of both of them. It is a scale invariant function and converges much faster than the GIoU loss
especially in the non-overlapping case as it directly minimizes the normalized distance between
ground truth and predicted bounding box.

The results of the experiments involving these different loss functions are reported in chapter
6.

4.3 Implementation Details
The model is trained and tested on various datasets with fixed image sizes. The dataset splits
for both the tasks are described in Section 4.1. All the models are trained and tested using the
MMDetection framework developed by OpenMMLab (Chen et al., 2019). It is an open-source
object detection toolbox based on PyTorch. Here, we describe the implementation details for
table detection and table structure recognition separately to avoid any confusion.

4.3.1 Table Detection
For the purpose of training, we use a single Nvidia RTX 3090 GPU with 24GB memory with a
batch size of 1. The image is resized to a size of 1024 X 1536 while maintaining the aspect ratio
as expected by the convolutional neural network in the backbone. We are able to do so by resizing
the shorter side and adapting the longer side accordingly. The choice of this large size is discerned
from the related works and smaller image size with increased batch size can also be tried. The
backbone of the Faster R-CNN is a ResNeXt-101 which is 101 layers deep with a Feature Pyramid
Network (FPN). We use a model originally pre-trained on ImageNet (Russakovsky et al., 2015)
and later trained on COCO dataset (Lin et al., 2014) by OpenMMLab. ResNeXt architecture is a 4
stage architecture like ResNet (Appendix A.1) and since we are using the pre-trained model, we
freeze the first two stages of the ResNeXt to retain the high level features learnt by the pre-trained
model. This also assists in faster training. We use the deformable convolutions (Dai et al., 2017) in

4https://giou.stanford.edu/

https://giou.stanford.edu/
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the backbone network. The benefit of utilizing deformable convolutions is that the receptive field
adapts to the size of the object, allowing the CNN to model multiple spatial transformations.

The number of anchors generated is k = 3 at each feature point by using the anchor scale of
size 8 and aspect ratios of 0.5, 1 and 2. This lower number of anchors is suitable for the task of
table detection and is able to detect tables of any sizes, even very large or very small tables. In the
RPN, anchor with the greatest IoU overlap with the ground truth box, or an anchor with IoU >
0.7, gets a positive label. Both of these conditions must be satisfied in order to ensure that positive
anchors are present in all situations. For all ground-truth boxes, negative labels are assigned to a
non-positive anchor with an IoU less than 0.3.

The ratio of positive to negative samples is usually much smaller than 1. This often has the
consequence that in the case of unbalanced datasets, for example, where the number of negative
samples is much larger than the number of positive samples, the whole training process is often
dominated by negative samples, and the loss function is also influenced by negative samples. To
counter this issue, a RandomSampler strategy is followed to deal with the unbalanced number of
positive and negative samples. Many of the RPN proposals overlap with each other and to reduce
this redundancy, non-maximum suppression (NMS) is used on the proposal regions. Thus, the
network is trained with 2000 region proposals but at test time only 1000 region proposals are
evaluated.

After resizing the images while maintaining the aspect ratio, the images are randomly flipped,
normalized and padded as part of image augmentation in the training pipeline. During testing,
the images are not flipped. We use the stochastic gradient descent (SGD) as an optimizer with
learning rate = 0.00125, momentum = 0.9 and weight decay = 0.0001. A learning rate scheduler
and momentum policy are also defined. The network is trained for 30 epochs however, it is not
necessary to train it for 30 epochs to get the best accuracy. A total of 3500 samples from mixed
datasets are used to train the model as described in Section 4.1.3.

4.3.2 Table Structure Recognition
Most of the implementation details remain the same as in the table detection and only the changes
are discussed here. For this task, we use the ResNet-50 backbone model solely because of its speed
and due to a larger number of training samples compared to table detection task. The backbone
is initialized with a pre-trained model first trained on ImageNet and then trained and fine-tuned
on COCO dataset. The first stage (out of three) of the ResNet-50 is frozen while training. The
convolutions in the backbone are deformable convolutions.

The number of anchors generated in this task is k = 18 for each feature point. The model gener-
ates anchors in six different ratios [1/20, 1/10, 1/5, 1/2, 1, 2] which captures the different sizes and
scales of bounding boxes. The anchor scales are defined as [4, 8, 16]. These different sizes of an-
chors are necessary to capture shapes of predicted rows, columns, spanning cells, projected row
header and column header as described in Section 6.5.3. In the RPN, the IoU threshold is set as 0.5
(IoU > 0.5) to define the anchor as a positive sample and the threshold to define a negative sample
is set as 0.3 (IoU < 0.3). The network uses 2000 proposals during training and 1000 proposal while
testing. The R-CNN non-maximal suppression (NMS) IoU threshold is 0.2 from the default value
of 0.5 in the testing phase. It is the last stage NMS threshold for the R-CNN detection network
before the predictions. The threshold is a key value for the performance of the model. A higher
value results in many rows or cells not being detected which are very tightly spaced or closely
located in a confined region.

The images are resized to 1100 X 800while maintaining the aspect ratio as explained above.
The images are randomly flipped, randomly cropped, normalized and padded before passing
to the model for training. The model is trained with SGD optimizer with learning rate = 0.01,
momentum = 0.9 and weight decay = 0.0001. It is trained for 25 epochs with a batch size of 8. The



32 Chapter 4. Background and Proposed Methodology

initial learning rate of 0.01 is divided by 10 every 5 epochs. However, the model converges earlier
than 25 epochs. 156K samples from PubTables-1M are used for training, 18K for validation and
testing. During testing, samples from ICDAR 2013 are also tested to check the robustness of the
model on an unseen dataset.



Chapter 5

Experiments and Results

In this chapter, we will go through the numerous experiments performed for table detection and
structure recognition. First, we define the different metrics used for training and evaluating the
experiments.

5.1 Evaluation Metrics
Algorithms for table data extraction are evaluated through different measures. We have evaluated
our approach by precision, recall, F1 scores over different Intersection over Union. The model is
also evaluated using the wide-spread mean Average Precision (mAP) (Everingham et al., 2010) in
MS COCO style (Lin et al., 2014) which is an apt metric for object detection. An overview of all
metrics can be seen in Figure 5.1.

Intersection

Ground truth box

Detected box

Intersection

Ground truth box

Detected box

Intersection

Ground truth box

Detected box

Detected box Detected box

Precision = Recall = IoU = 

Ground truth box

Detected box

Figure 5.1: OVERVIEW OF OBJECT DETECTION METRICS. The more intuitive way to understand preci-
sion, recall and intersection-over-union (IoU) is shownn in the figure for table detection.

Precision

Precision measures how accurate are the predictions i.e. the percentage of the predictions that are
correct. For example, it computes the proportion of identified tables that belong to table regions
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of the ground truth table in the case of table detection. This is done by defining an IoU threshold
(explained later) for any bounding box to be counted as correctly detected. Secondly, a confidence
threshold is defined to decide whether the detection counts as correctly classified. Equation (5.1)
states the most commonly known definition of precision and the definition of precision used in
this work taken from Shahzad et al. (2019). True positive (TP) refers to a detected bounding
box which matches a ground truth box. It is determined based on the IoU of the two boxes.
False positive (FP) refers to a detected box which does not match any ground truth boxes. False
negative (FN) refers to a ground truth bounding box which is not matched by any detected boxes.
It can also be visualized in Figure 5.1 for better understanding of the terms in numerator and
denominator. For example, Area of ground truth regions in detected regions means the intersection
area of the ground truth and the predicted box.

Precision =
True Positive

True Positive+ False Positive

Precision =
Area of ground truth regions in detected regions

Area of all detected table regions

(5.1)

Recall

Recall measures how accurate are all the positives. It quantifies the number of correct positive
predictions made out of all positive predictions. For example, in table detection it is calculated
by identifying the correct table areas in the detected table areas. IoU threshold and confidence
threshold are defined to calculate the correctly detected and classified bounding boxes as in Pre-
cision. Recall is defined in Equation (5.2) in its most commonly used form and the more intuitive
form (Shahzad et al., 2019). It can also be visually understood from Figure 5.1.

Recall =
True Positive

True Positive+ False Negative

Recall =
Area of ground truth regions in detected regions

Area of all ground truth table regions

(5.2)

F1 Score

F1 score represents both Precision and Recall, making it an excellent aggregated indication; yet,
it obscures the source of the problem. It is usually reported at the confidence threshold that
maximizes F1 on a particular test set. This might lead to poor quantitative results on an unseen
dataset due to the same confidence threshold. Our adapted IoU metric, as explained later, better
aligns the qualitative findings and the quantitative outcome of table detection and reduces this
dependency of the F1 scores on the chosen IoU threshold. F1 score is the harmonic mean of
precision and recall defined as in Equation (5.3).

F1score = 2 ∗ Precision ∗ Recall

Precision + Recall
(5.3)

These metrics complement each other effectively when assessing a model at different confi-
dence levels, offering useful insight into how the model is doing and what values improve model
performance based on the design parameters. Typically, as the confidence threshold is increased,
the precision rises but the recall falls.
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Intersection over Union (IoU)

Intersection over Union (IoU) measures the overlap between the predicted area and the ground
truth area. It is basically the Jaccard index. In the most simplest form, IoU is formulated as seen
in Equation (5.4):

IoU =
G ∩D

G ∪D
=

G ∩D

|G|+ |D| − |G ∩D|
(5.4)

where G is the ground truth area and D is the area of the detected bounding box.
In our case, we adapt and modify the IoU metric inspired from Günther et al. (2017). The

reason to do so, as explained in detail in Section 4.1.2, is that we predict larger bounding box for
the table detection than the ground truth because of the stretching of bounding boxes in ground
truth during data pre-processing. The predicted bounding box area is approximately 15% bigger
than the ground truth bounding box area as visualized in Figure 5.2. Hence, we modify the
union term in Equation (5.4) to not penalize the 15% bigger detections. The new IoU metric (also
referred as aIoU) used for evaluation is defined in Equation (5.5). Please note that we did not test
the metric with a constant other than 1.15, and there might be a better constant.

aIoU =
|G ∩D|

(|G|+max
{ |D|

1.15 , |G ∩D|
}
− |G ∩D|)

(5.5)

Therefore, when the detected bounding box covers at most 15% more of the ground truth
bounding box area and the ground truth bounding box is entirely contained inside the detected
bounding box, then the IoU value is 1. For evaluation, we use IoU at different thresholds like 0.6,
0.7, 0.8 and 0.9 indicated by IoU@0.6, IoU@0.7 and so on. The further analysis on aIoU is shown
later in the Section 5.2 in Figure 5.5 and 5.6.

Mean Average Precision (mAP)

The general definition of Average Precision (AP) is the area under the precision-recall curve for
one class (Equation (5.6)). A perfect model will have the AP score = 1. Precision and recall are
always in the interval [0,1]. Therefore, AP is also within 0 and 1.

Average Precision (AP ) =

∫ 1

0

p(x) dx (5.6)

where dx is the difference between the current and next recall and multiplied by the current
precision p(x).

AP1 can also be understood as weighted sum of precisions at each threshold, with the weight
corresponding to the increase in recall. After defining AP, it is simple to measure mean average
precision (mAP). The mAP is the mean of the AP over all classes. In the case of table detection, we
have only one class and therefore, mAP is essentially AP. Sometimes mAP is reported as mAP@0.5
or mAP@0.9. This notation indicates the IoU threshold used to calculate the confusion matrix.

For the COCO dataset (Lin et al., 2014), mAP is calculated by averaging it over IoUs from
[0.5,0.95] with a step size of 0.05. As stated by COCO:

“AP is averaged over all categories. Traditionally, this is called "mean average pre-
cision" (mAP). We make no distinction between AP and mAP (and likewise AR and
mAR)2 and assume the difference is clear from context.”

1https://blog.paperspace.com/mean-average-precision/
2https://cocodataset.org/#detection-eval

https://blog.paperspace.com/mean-average-precision/
https://cocodataset.org/#detection-eval
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Figure 5.2: GROUND TRUTH BOX AND THE PREDICTED BOX. The image from ICDAR 2019 test set
represents the ground truth bounding box in blue and the predicted bounding box in orange which is ap-
proximately 15% bigger in area than the ground truth box. Please note that the predicted bounding box
contains the table much better than the ground truth which is too tight many times.

There are several factors to consider when providing unified mAP benchmarks that would
fit any object detection scenario, such as the number of classes, trade-off between precision and
recall, IoU threshold, and so on. Depending on the task, the same metric might be excellent
or poor. Hence, it is required to determine the desired value of threshold for the task at hand.
The current state-of-the-art mAP for the object detection task on the COCO dataset leaderboard
is 0.588 (by Noah CV Lab (Huawei)) followed by MMDetection (Chen et al., 2019) with mAP =
0.578. The developers of Faster R-CNN (Ren et al., 2015) report mAP = 21.9 on COCO standard
test dataset. This additionally promotes the reason for choosing MMDetection for the model
development which provides customizable framework.
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5.2 Experimental Setups and Results
Several experiments are performed to check for the generalization and robustness of the model.
It is important to note that it is difficult to compare the results quantitatively with other works
because of the metric modification and different combinations of the subset of the datasets as
mentioned in chapter 3 used for training by different models. However, visual differences are
drawn to prove the superiority of the results obtained in this thesis.

5.2.1 Table Detection
The results of the best performing model are shown in Table 5.1 with F1 scores calculated at dif-
ferent IoUs using the aIoU metric defined in this work. The model is trained for 30 epochs on the
image samples from ICDAR 2013, ICDAR 2019, TableBank, ISRI-OCR and Marmot. The model
is tested on the complete standard 240 test-set images from ICDAR 2019 dataset because ICDAR
2019 contains the most visually different and complex tables in terms of colors, the number of ta-
bles in a page, different styles etc. and a mixture of randomly selected 1000 images from all of the
above mentioned datasets. Table 5.1 highlights that with increasing IoU threshold the F1 scores
decrease but stay consistent i.e. does not decrease rapidly. This happens due to the fact 90% or
above overlapping is always difficult to achieve. The F1 score (at IoU = 0.9) of 0.945 on the ICDAR
2019 test set reveals the advantage of the approach on high precision table localization. The train-
ing mAP score achieved is 0.68. Figure 5.3 and Figure 5.4 displays the prediction result obtained
by this model on all the datasets. These predictions cover the tables perfectly. It is compelling to
note the predictions of the model on the ISRI-OCR dataset which are not the highest resolution
and best scanned images. The model is able to detect multiple tables on a single page, and is also
able to differentiate between the tables, figures and graphs. It can also predict correctly on the
tables with complex styles and varying color backgrounds.

F1 scores ICDAR 2019 Mix
IoU@0.6 0.969 0.970
IoU@0.7 0.960 0.960
IoU@0.8 0.954 0.950
IoU@0.9 0.945 0.918

Table 5.1: TABLE DETECTION RESULTS OF THE BEST PERFORMING MODEL. F1 scores are calculated
for different IoU thresholds using the aIoU metric.

Work IoU
0.6 0.7 0.8 0.9

TableRadar 0.969 0.957 0.951 0.897
NLPR-PAL 0.979 0.966 0.939 0.850
CascadeTabNet 0.943 0.966 0.939 0.850
This work (Iou) 0.962 0.955 0.919 0.750
This work (aIoU) 0.969 0.960 0.954 0.945

Table 5.2: COMPARISON WITH THE STATE-OF-THE-ART MODELS ON ICDAR 2019 TEST SET. F1
scores are calculated for different IoU thresholds with standard IoU and the aIoU described in this work.
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Figure 5.3: TABLE DETECTION RESULTS ON ICDAR 2019 AND TABLEBANK DATASET. The results
shown are obtained by the model represented in Table 5.1. The orange box represents the detected table. A
hand written table is also identified correctly as can be seen in bottom-rightmost image.

Table 5.2 presents the comparison of our results with other state-of-the-art methods on the
ICDAR 2019 test dataset. The results are compared to the leaders of the ICDAR 2019 table com-
petition TableRadar, NLPR-PAL (Gao et al., 2019) and CascadeTabNet (Prasad et al., 2020). While
the first two works use post-processing techniques as described in the chapter 2 to further refine
the results, CascadeTabNet and our work directly output the table regions in the images without
relying on any post-processing methods. CascadeTabNet is a cascade mask region-based CNN
High-Resolution Network (Cascade mask R-CNN HRNet) that identifies the table in a document.
Unlike the work performed in this thesis, the researchers of CascadeTabNet uses several image
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Figure 5.4: TABLE DETECTION RESULTS ON ICDAR 2013, ISRI-OCR AND MARMOT DATASET.
The results shown are obtained by the model represented in Table 5.1. The orange box represents the detected
table.



40 Chapter 5. Experiments and Results

augmentation techniques like dilation and smudging of images before passing them to the net-
work and manually correct the annotations in the Marmot dataset. The direct comparison of the
results in this thesis is greater than these methods. It is to be noted here that we use aIoU as the
metric for the results of our model and report the results of other researchers as mentioned in
their respective papers which is calculated using standard IoU. It is also important to know that
aIoU and standard IoU generates almost similar results for lower IoU thresholds like 0.6 or 0.7,
as shown in the Table 5.2 and Figure 5.5 and 5.6, because of how aIoU is defined to only penalize
bigger predictions than a certain threshold. Hence, it is viable to compare results in Table 5.2 for,
at least, IoU = 0.6 and 0.7 with other works. Hereon, we report the results using the aIoU metric
only.

(a) (b)

Figure 5.5: IOUS VISUALIZATION AT THRESHOLD = 0.6. (a) The blue box represents the ground truth
and various predictions in dashed lines. For an IoU threshold of 0.6, only the dark green predictions will
count in case of standard IoU metric, while all green and light green predictions will be included in the case
of aIoU. (b) The figure represents the sliding (off-set) predictions over the ground truth. While aIoU allows
more ‘bigger’ predictions that contain the ground truth entirely, it does penalize predictions that are offset
compared to the ground truth; however, not as much as the standard IoU.

We also compare our results on ICDAR 2013 with the best performing models like TableNet
(Paliwal et al., 2019) and DeepDeSRT (Schreiber et al., 2017) in Table 5.3. We calculate Precision,
Recall and F1 scores for IoU = 0.5 based on completeness and purity as stated in Paliwal et al.
(2019):

“A region is complete if it includes all sub-objects present in the ground-truth. A re-
gion is pure if it does not include any sub-objects which are not in the ground-truth.
Sub-objects are created by dividing the given region into meaningful parts like head-
ing of a table, body of a table etc. But these measures do not discriminate between
minor and major errors. So, individual characters in each region are treated as sub-
objects. Precision and recall measures are calculated on these sub-objects in each re-
gion and the average is taken across all the regions in a given document.”

Moreover, it is important to note that we use 124 images from ICDAR 2013 for testing and 114
images for training while DeepDeSRT and TableNet use 34 images for testing and the rest of the
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(a) (b)

Figure 5.6: IOUS VISUALIZATION AT THRESHOLD = 0.9. (a) The blue box represents the ground truth
and various predictions in dashed lines. For an IoU threshold of 0.9, only the dark green predictions will
count in case of standard IoU metric, while all green and light green predictions will be included in the case
of aIoU. (b) The figure represents the sliding (off-set) predictions over the ground truth. While aIoU allows
more ‘bigger’ predictions that contain the ground truth entirely, it does penalize predictions that are offset
compared to the ground truth; however, not as much as the standard IoU.

images for training the model. All the models mentioned in Table 5.3 use different combinations
of datasets for training for which results are less comparable. Our model achieves Precision,
Recall, and F1 score equal to 1 at IoU = 0.5. This further proves that our model is more robust and
scales well.

Work Precision Recall F1
TableNet 0.969 0.962 0.966
DeepDeSRT 0.961 0.974 0.967
This work 1.0 1.0 1.0

Table 5.3: COMPARISON WITH THE STATE-OF-THE-ART MODELS ON ICDAR 2013 DATASET. Scores
are calculated on completeness and purity as in (Paliwal et al., 2019) for IoU = 0.5.

The results are also benchmarked on the TableBank dataset (Li et al., 2020). While the authors
of TableBank use 415,234 samples for training, we only use 1000 samples for training the model.
The results are evaluated on 1000 test samples picked randomly from the dataset as can be seen
in Table 5.4. CascadeTabNet uses 3000 samples for training the model. To compare the results,
we calculate the Precision, Recall, F1 as described in TableBank and in Equation (5.1), (5.2), and
(5.3) for IoU = 0.5. Researchers in TableBank also use the Faster R-CNN model with ResNeXt-101
and ResNeXt-152 backbone. The good quality of results is attributed to the careful design choices
like deformable convolutions, anchor sizes and other parameters for this task as described before
compared to the default parameters used in other works. We are able to achieve competitive
results despite training on very few samples from the TableBank dataset.
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Model Precision Recall F1
ResNeXt-101 0.959 0.904 0.931
ResNeXt-152 0.967 0.8895 0.926
CascadeTabNet 0.929 0.957 0.943
This work 0.966 0.952 0.958

Table 5.4: COMPARISON WITH THE STATE-OF-THE-ART MODELS ON TABLEBANK DATASET. Scores
are calculated for IoU = 0.5.

Cross-testing Experiments

To prove the robustness of the table detection model described in this work, we also perform
cross-testing experiments on different datasets by training different models i.e. the model is
trained by leaving out one dataset and tested on the unseen (left out) dataset with complete
out-of-distribution samples. While other models do not perform at all (gives no prediction) or
perform on a few samples (predicts few tables out of many) from the unseen dataset, the model
in this thesis produces high quality results in quantitative and qualitative terms.

In the first experiment, we test our model on the 125 unseen samples from the TableBank
dataset. This means that the model is trained with TableBank dataset left out. The results are
described in the Table 5.5 and few of the predictions can be seen in Figure 5.7. The cross-testing
results for ICDAR 2019 on 240 images (Figure 5.8), Marmot (1900 images) (Figure 5.9), ISRI-OCR
(427 images) (Figure 5.10) are also presented in Table 5.5. The training mAP scores for all the 4
experiments are in the range 65-70%. As can be seen from the table, the F1 scores for IoU = 0.6 are
greater than 0.9 in each case.

Dataset
F1 scores TableBank ICDAR 2019 Marmot ISRI-OCR
IoU@0.6 0.949 0.927 0.966 0.92
IoU@0.7 0.94 0.92 0.956 0.913
IoU@0.8 0.928 0.913 0.934 0.902
IoU@0.9 0.918 0.901 0.91 0.89

Table 5.5: CROSS TESTING RESULTS. F1 scores are calculated for different IoU thresholds and scores are
shown for the four different datasets.

It is interesting to note that the results achieved in the Table 5.5 for Marmot dataset at IoU
= 0.6 is higher than the results achieved by researchers of DeCNT (Siddiqui et al., 2018) which
is a Faster R-CNN model for IoU = 0.5 in Table 5.6. They report the results for training on a
combination of datasets (like in this work) and testing on the unseen Marmot dataset. We also
compare the results to CDeC-Net (Agarwal et al., 2021) which is Mask R-CNN based model where
they train and test the model on the Marmot dataset (unlike in our case). Compared to both the
works, where in one work the dataset has been seen by the model and in other work, not; it can be
concluded that our model generalizes well to the Marmot dataset and always gives better results.
We achieved a significantly higher F1 score of 0.97 than that of DeCNT model.

To compare the results on unseen ISRI-OCR (UNLV) dataset, we choose the state-of-the-art
models: GOD (Saha et al., 2019), CDeC-Net (Agarwal et al., 2021), and Tesseract (Smith, 2007).
None of the models see any samples from the ISRI-OCR dataset during training. They are trained
on different subsets of datasets mentioned in chapter 3. The models are tested on 427 images
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Figure 5.7: TABLE DETECTION RESULTS ON UNSEEN TABLEBANK DATASET. The orange box depicts
the predicted tables correctly during cross-testing.

Figure 5.8: TABLE DETECTION RESULTS ON UNSEEN ICDAR 2019 DATASET. The orange box depicts
the predicted tables correctly during cross-testing.

Work F1
DeCNT 0.895
CDeC-Net 0.952
This work 0.97

Table 5.6: COMPARISON ON MARMOT DATASET. F1 scores are calculated for IoU = 0.5.

containing tables. To make our results more comparable to that of GOD, we train the model only
on Marmot dataset like in GOD and report the results. The results are calculated for IoU = 0.5 and
are described in Table 5.7. GOD (Saha et al., 2019) is a graphical object detection model similar to
the work presented in this thesis but it uses Mask R-CNN (He et al., 2017) for table detection. In
this experiment, CDeC-Net performs marginally better by an absolute margin of 0.005 on the F1
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Figure 5.9: TABLE DETECTION RESULTS ON UNSEEN MARMOT DATASET. The orange box depicts the
predicted tables correctly during cross-testing.

Figure 5.10: TABLE DETECTION RESULTS ON UNSEEN ISRI-OCR DATASET. The orange box depicts
the predicted tables correctly during cross-testing.

score. CDeC-Net is trained on the complete IIIT-AR-13K dataset (Mondal et al., 2020) in this case.

Work F1
Tesseract 0.761
GOD (Mask R-CNN) 0.928
CDeC-Net 0.938
This work 0.933

Table 5.7: COMPARISON ON ISRI-OCR DATASET. F1 scores are calculated for IoU = 0.5.

Another example to prove the robustness of the model is shown in Figure 5.11 where the
model correctly predicts two extra tables despite the incorrect ground truth annotation. From the
Figures 5.7, 5.8, 5.9, 5.10 where different kinds of documents, articles containing tables are present,
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we can say that our model generalizes very well on the unseen dataset and correctly identifies the
tables in the images. This is attributed to the carefully defined parameters of the Faster R-CNN
network (see chapter 6), which the competing works fail to address despite using similar object
detection models like Faster R-CNN (TableRadar, DeCNT), Mask R-CNN (GOD, CDeC-Net) etc.
in a cascaded (CascadeTabNet) or non-cascaded fashion.

Figure 5.11: TABLE DETECTION ON UNSEEN DATASET. The left image with blue box shows the incorrect
ground truth annotation while the image on the right with orange box shows the correctly detected tables.

5.2.2 Table Structure Recognition
Unlike the case in Table Detection, there is not much prominent research work done in Table
Structure Recognition. Few of the different approaches like CascadeTabNet(Prasad et al., 2020)
or LGPMA (Qiao et al., 2021) predicts the bounding box around the text rather than rows and
columns. Therefore, they rely on post-processing techniques to assign text bounding boxes/cells
to rows, columns. Hence, this work is not directly comparable to them. Few of the other works
like RobusTabNet (Ma et al., 2022) and DeepDeSRT (Schreiber et al., 2017) use different datasets
to predict only the rows and columns and one of the most basic problems here is when the table
has multiple headers and some of it is between the rows.

A dataset, PubTables-1M (Smock et al., 2021) was recently released with high quality annota-
tions of table, row, column, projected row header, column header, spanning cell (Section 3). We use this
dataset for training and testing purpose and with the results in this thesis, we will also like to
promote the usage of this dataset for this task to unify the research direction by having a common
large benchmark dataset.

The results for this task are compared to the benchmark models presented in PubTables-1M
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one of which is based on Faster R-CNN and the other model is an attention-based model called
DETR (Detection Transformer) introduced in Carion et al. (2020). Both of their models use a
ResNet-18 backbone pre-trained on ImageNet with the first few layers frozen.

The original DETR model is trained for 500 epochs with a batch size of 1. It achieves the COCO
style mean Average Precision (mAP) score of 0.42 on the COCO 2017 validation set. As stated by
the authors:

“The main ingredients of the new framework, called DEtection TRansformer or DETR,
are a set-based global loss that forces unique predictions via bipartite matching, and a
transformer encoder-decoder architecture.”

The authors in PubTables-1M use 758,849 tables for training, 94,959 for validating and 93,834
for testing the Faster R-CNN and DETR model whereas we only use 150,000 randomly selected
samples out of original 758,849 samples for training, 18,000 (out of 94,959) for validating, and
the exactly same 93,834 images for testing the model. The COCO style mAP (or AP) scores are
presented in Table 5.8 to compare with the existing models. mAP is calculated by averaging it
over IoUs from [0.5,0.95] with a step size of 0.05. It is to be noted that we neither increase the
bounding box area in the training set nor use the new IoU metric for evaluation described in this
work in Equation (5.5) rather we use the original IoU metric defined in Equation 5.4.

Work AP AP50 AP75 AR
PubTables-1M (Faster R-CNN) 0.722 0.815 0.785 0.762
PubTables-1M (DETR) 0.912 0.971 0.948 0.942
This work 0.933 0.97 0.963 0.953

Table 5.8: COMPARISON ON PUBTABLES-1M DATASET FOR TABLE STRUCTURE RECOGNITION.
COCO style AP scores are reported for comparison which is calculated by averaging it over IoUs from
[0.5,0.95] with a step size of 0.05.

As can be inferred from Table 5.8, our model outperforms the DETR model establishing once
again the dominance of the Faster R-CNN model. Though the authors in PubTables-1M want to
have a data driven approach and because of which they mostly use default parameters for Faster
R-CNN and DETR, it is not a good approach to train the model for longer hours without giving
any attention to the design specifications and parameters of the model which can drastically re-
duce the need of much larger training set; one of the core problems in Table Structure Recognition
task. It is important to pay close attention while designing the parameters (see chapter 6) for the
model to perform robustly across domains. The models presented in PubTables-1M research pa-
per, Faster R-CNN and DETR, fails to produce meaningful predictions on unseen domains as we
will see in the next section.

While it is not pragmatic to have the training and testing set ratio to be 8:5, as in our case,
deviating from the usual 8:1 ratio, it is only done to draw the comparison to the DETR model.
Due to the availability of limited resources, we only train on a single GPU with a learning rate
of 0.01 compared to that of DETR which is trained with a much smaller learning rate of 5 * 10-5.
Also, training on the complete 758,000 images will alone take more than 20 days as in the case of
DETR model. The class-wise AP scores are presented in Table 5.9. The score for each class except
spanning cell is greater than 0.9. This is attributed to the fact that there are very few tables with
spanning cell annotations in the 150,000 training set compared to annotations for other classes. This
score is observed to increase with more annotations of spanning cell in the tables during training.
Confusion matrix for all the classes is shown in Figure 5.12. It can be seen that column header is
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confused with row sometimes as both are defined in the horizontal direction with column header
being the topmost row annotation in the table. The background is identified as spanning cell many
times leading to wrong predictions.

Figure 5.13 depicts the qualitative results of the Table Structure Recognition model presented
in this work. The predicted bounding boxes for all the classes match the ground truth exactly.
Another example with plain image, ground truth annotation and prediction result is shown in
Figure 5.14 which is a very complex table to identify the structure. But the model is able to
localize the table structures correctly.

The quantitative and qualitative results both agree to prove the robustness of the model. The
results obtained in the Table Structure Recognition task sets a new benchmark on the PubTables-
1M dataset.

Class-wise AP scores
Table Row Column Project Row Header Column Header Spanning Cell
0.99 0.9 0.976 0.943 0.944 0.848

Table 5.9: TABLE STRUCTURE RECOGNITION SCORES FOR EACH CLASS IN THE TEST SET. COCO
style AP scores are reported for each class which is calculated by averaging it over IoUs from [0.5,0.95] with
a step size of 0.05.

Cross-testing Experiments

As in the case of the table detection model to check its generalization power over an unseen
dataset sample, we also perform inference with the table structure recognition model and com-
pare the performance with the DETR model qualitatively due to the unavailability of the anno-
tated out-of-distribution sample to calculate quantitative metric. Figure 5.15 displays the predic-
tion results on a sample from ICDAR 2013. The prediction of our model is shown in the middle
and the bottom image shows the prediction from the DETR model. As can be seen from the fig-
ure, the model presented in this work successfully differentiates all rows and all columns and also
identifies the column header. However, the DETR model fails to deliver any kind of conclusive
result. A similar kind of inference can be drawn from Figure 5.16 which represents prediction on a
sample from the Marmot dataset. It is interesting to see from this example how our model is able
to detect spanning cell and column header both in an unseen sample. TableNet (Paliwal et al.,
2019) model is also used to perform inference on the unseen dataset and it failed to deliver any
results. It can be inferenced here that the DETR model overfits the single large domain on which
it is trained with 758,849 images and does not perform robustly across domains. The thoughtfully
chosen parameters of DETR might help the model to produce meaningful results.

More results from the Table Structure Recognition model on a random unseen sample col-
lected from the internet can be observed in Figure 5.17 and 5.18. It is particularly evident in the
Figure 5.18 how well the model performs in localizing all the three spanning cells.
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Figure 5.12: CONFUSION MATRIX FOR TABLE STRUCTURE RECOGNITION. The matrix shows all the
classes in the ground truth plus an additional background class to differentiate foreground objects (classes)
from the background.

5.3 Failure Cases
The table detection and structure recognition models perform very well but it is always important
to study the examples where models fail to overcome the limitations of the model. In this section,
we present such failure cases of both the models.

In Figure 5.19, the ground truth annotation is presented in the left image and the right image
contains the prediction of the detection model. From this example, it can be seen that the model
fails to output a single table as in the ground truth because of the presence of bold ruling lines
separating the two tables. However, some may reason that it is actually two tables. Such cases
leads to lower scores where it is a ground truth mislabeling rather than a failed prediction.

In the second example in Figure 5.20, we observe that one of the predictions is incorrect. In
these cases, where multi-line sentences are present abruptly without any ruling lines, it is hard
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Figure 5.13: TABLE STRUCTURE RECOGNITION RESULTS ON PUBTABLES-1M DATASET. The model
correctly identifies the different rows, columns, spanning cells, column header and the project row headers
drawn with different colors.

for the model to localize the table perfectly. More annotated samples of such cases will help this
issue.

Another example of a failure case on ISRI-OCR is shown in Figure 5.21. It is also debatable if
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Figure 5.14: TABLE STRUCTURE RECOGNITION RESULT ON PUBTABLES-1M SAMPLE. Left is the
plain image, middle is the plain image with ground truth annotations and on the right is the output of the
model shown with different colors.

Figure 5.15: COMPARISON WITH DETR ON ICDAR 2013 DATASET SAMPLE. The top image and the
bottom image correspond to our model’s and the DETR model’s prediction respectively.

it is a table or not or if these kinds of mislabeled examples hamper the feature set. This is also a
case where more of such training samples can help to locate the tables in the images correctly.

Figure 5.22 shows an example where two extra tables are detected. While one of those is not a
table at all, the other one has a table like characteristics. The model is seen to get confused with
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Figure 5.16: COMPARISON WITH DETR ON MARMOT DATASET SAMPLE. The left image and the right
image correspond to the DETR model’s and our model’s prediction respectively.

Figure 5.17: TABLE STRUCTURE RECOGNITION ON AN UNSEEN SAMPLE. The model is able to dissect
the table into its elements by classifying the table elements correctly.

such examples where it is difficult to differentiate a figure from a table.
Table Structure Recognition model also produces some erroneous outputs one of which is

shown in Figure 5.23. Here, the table contains the figures of organic compounds as well which
is a difficult sample for the model to analyze and predict. It is observed that the spanning cells
class had the highest false-positive cases amongst all the classes as also indicated by Table 5.9.
Scores are found to increase by incorporating more samples from the dataset during training. An
example where spanning cells localization fails is shown in Figure 5.24 where the image on the
left only shows spanning cells ground truth annotation to have a better visual comparison. It can
be noticed how the model misidentifies spanning cells with the projected row headers in some
occurrences. There is no conclusive evidence as to why spanning cells localization fails in such
cases.
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Figure 5.18: TABLE STRUCTURE RECOGNITION ON AN UNSEEN SAMPLE. The model localizes all
three spanning cells correctly along with other classes.

Figure 5.19: INCORRECT DETECTION OF TABLE. The left image corresponds to ground truth while right
image corresponds to the prediction.
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Figure 5.20: INCORRECT DETECTION OF TABLE. The left image corresponds to ground truth while right
image corresponds to the prediction.

Figure 5.21: INCORRECT DETECTION OF TABLE. The left image corresponds to ground truth while right
image corresponds to the prediction.
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Figure 5.22: INCORRECT DETECTION OF TABLE. The ground truth contains two tables, Table 3 and Table
4, in the image but the model predicts two extra tables with one of them having table like characteristics. It
is one of the exceptional cases where a figure has table like features.

Figure 5.23: INCORRECT DETECTION OF TABLE STRUCTURE. A sample from PubTables-1M where
ground truth is on the left and the predictions on the right. The model predicts more rows than the ground
truth and gets confused with the figures inside the table.
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Figure 5.24: INCORRECT DETECTION OF TABLE STRUCTURE. A sample for PubTables-1M where
ground truth of spanning cells is on the left and the predictions are on the right. The detection of span-
ning cells is quite inaccurate.





Chapter 6

Discussion

We conduct several experiments in table detection to define the choices and parameters for the
model development. It is important to understand the importance of the building blocks of the
Faster R-CNN model to compensate for the labeled data or, in general, resource requirements. The
default parameters are used for Faster R-CNN where ever possible keeping the rest of the run-
time settings like learning rate, momentum etc. same for each model to study the experiments.
The F1 scores are calculated using the aIoU metric.

6.1 Depth of the Backbone Network
In the first experiment, we use different depths of ResNet backbone with normal convolutions
(not deformable convolutions) to check for the detection quality. The quantitative results are
shown in Table 6.1 for IoU = 0.6. In this case, the predictions improve with the depth of the
ResNet backbone network. Also, the training time increases due to more number of layers in
ResNet-101 and ResNet-152. This experiment motivates us to use the backbone with 101 layers
which gives good accuracy without much expense of the training time.

Model F1 score
ResNet-50 0.89
ResNet-101 0.912
ResNet-152 0.931

Table 6.1: COMPARISON ON DIFFERENT DEPTHS OF THE RESNET BACKBONE. F1 scores are calcu-
lated at IoU = 0.6.

6.2 Variant of the ResNet Backbone Network
After deciding the depth of the backbone network, we experiment with the variant of the ResNet
backbone network, as explained in chapter 4, with normal convolutions. The results are described
in Table 6.2 and it demonstrate the expected higher scores for the ResNeXt model as compared to
the ResNet model which warrants the need to use ResNeXt-101 architecture.



58 Chapter 6. Discussion

Model F1 score
ResNet-101 0.912
ResNeXt-101 0.935

Table 6.2: COMPARISON ON DIFFERENT VARIANTS OF THE RESNET BACKBONE. F1 scores are calcu-
lated at IoU = 0.6.

6.3 Type of Convolutions
We perform experiments to compare the performance of the model with different type of convo-
lutions for the task of table data extraction and the results of which are shown in Table 6.3. The
best results are obtained when using ResNeXt-101 with deformable convolutions yielding a F1
score = 0.946 at IoU = 0.6. The gradual improvement in F1 scores is visible in Table 6.3 due to
the addition of ResNeXt and deformable convolution module. An example of a visual improve-
ment is shown in Figure 6.1 and 6.2 to distinguish between the performance of ResNet-101 (with
normal convolution) and ResNeXt-101 (with deformable convolution).

Model Convolution type F1 score
ResNet-50 Normal 0.89
ResNet-101 Normal 0.912
ResNet-101 Deformable 0.923
ResNeXt-101 Normal 0.935
ResNeXt-101 Deformable 0.946

Table 6.3: COMPARISON ON DIFFERENT TYPES OF CONVOLUTIONS FOR THE BACKBONE. F1 scores
are calculated at IoU = 0.6.

6.4 Type of Regression Loss
In this experiment, we test the Faster R-CNN with ResNeXt-101 backbone by using three different
loss functions defined in Section 4.2.3: Smooth L1 (Equation 4.4), Generalized Intersection over
Union (GIoU) (Equation (4.5)), and Distance Intersection over Union loss (DIoU) (Equation (4.6))
function.

Model Convolution type Regression Loss F1 score
ResNeXt-101 Deformable GIoU 0.883
ResNext-101 Deformable DIoU 0.897
ResNeXt-101 Deformable Smooth L1 0.946

Table 6.4: COMPARISON ON DIFFERENT TYPES OF LOSSES FOR THE REGRESSION BRANCH. F1 scores
are calculated at IoU = 0.6.

The results of the experiments are shown in Table 6.4. While the DIoU loss is the fastest to
converge, it still did not yield better results than the smooth L1 loss function. The model trained
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Figure 6.1: PREDICTIONS FROM RESNET-101 MODEL (LEFT) AND RESNEXT-101 (RIGHT). ResNet-
101 is trained with normal convolution operation while ResNeXt-101 is trained with deformable convolu-
tions.

with GIoU yields poor quantitative and qualitative results. It fails to localize even a simple table in
a few of the cases. An example of the prediction results yielded by the model trained with GIoU
loss is shown in Figure 6.3. Model with GIoU loss need many additional epochs to converge
better. Because of these results, we use the smooth L1 loss as the regression loss for training the
Faster R-CNN.

6.5 Training Speed
Training the table detection model takes up quite a lot of time and it is important to optimize the
training time where ever possible. On default settings by Chen et al. (2019) and training from
scratch without using a pre-trained model for Faster R-CNN, it can take up to 20 hours for 30
epochs on 3500 samples. In the following series of experiments, we evaluate the effect of some
prominent parameters on training time.

6.5.1 Number of Frozen Stages of Backbone
ResNeXt is a 4 stage architecture. If all the 4 stages are frozen during the training, the model
trains the fastest as compared to when ResNeXt is partly frozen or not frozen at all. The results
are described in Table 6.5. It highlights the fact that it is not a good idea to completely freeze the
backbone network as the backbone network is not able to learn any new features and does not
pass relevant features to the Region Proposal Network (RPN). The difference in F1 scores is not
significant when 2 or none of the stages of the backbone are frozen but the difference in training
time is large. A partially frozen backbone is able to provide high-level features like the boundary
of tabular sub-regions to the RPN for further processing which helps in good detection. Hence,
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Figure 6.2: PREDICTIONS FROM RESNET-101 MODEL (TOP) AND RESNEXT-101 (BOTTOM).
ResNet-101 is trained with normal convolution operation while ResNeXt-101 is trained with deformable
convolutions.

this calls the need to freeze the first 2 stages of the ResNeXt backbone model. The complete frozen
backbone model produces similar results as shown in Figure 6.3. This happens because the base
network is not able to learn any new high-level features at all.
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Figure 6.3: PREDICTIONS FROM RESNEXT-101 MODEL TRAINED WITH GIOU LOSS.

Model Frozen stages Training time
(hours) F1 score

ResNeXt-101 4 (complete backbone
frozen) ~4.5 0.799

ResNext-101 2 (partially frozen) ~8 0.935
ResNeXt-101 0 (not frozen at all) ~20 0.94

Table 6.5: COMPARISON ON THE NUMBER OF FROZEN STAGES OF RESNEXT. F1 scores are calculated
at IoU = 0.6.

6.5.2 Number of Proposals
We have seen the usage of generating proposals in Faster R-CNN during prediction in the Sec-
tion 4.2.1. The number of proposals can be defined according to the task at hand. More proposals
will be required if there are many objects to be predicted in an image like cars in a traffic jam.
While more number of proposals does no unnecessary harm, it is important to study how the
number of proposals can influence the training time. The F1 scores with the different number of
proposals are shown in Table 6.6. It is observed that increasing the number of proposals to 5000
leads to a minor decrease in the F1 score. This is observed by the model predicting extraneous
tables in some images. A lower number of proposals misses the potential table elements in the
document. In the case of table structure recognition, where there are many rows, columns etc., the
lower number of proposals leads to model not being able to detect these elements. Thus, we use
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2000 proposals in the RPN.

Model Frozen stages Training time
(hours) Proposals F1 score

ResNeXt-101 2 (partially) ~6.5 500 0.911
ResNext-101 2 (partially) ~8 2000 0.935
ResNeXt-101 2 (partially) ~10.5 5000 0.924

Table 6.6: COMPARISON ON THE NUMBER OF PROPOSALS OF RPN. F1 scores are calculated at IoU =
0.6.

6.5.3 Scale of Anchors
Each region proposal is parametrized according to an anchor box (see Section 4.2.1). In this exper-
iment, we analyze the effect of varying the anchor scale on training time while keeping the aspect
ratios the same, [0.5, 1.0, 2.0]. This means that for every feature point 3 anchors are generated.
The results are summarized in the Table 6.7. A too small anchor size of 4 reduces the computation
time and hence, the training time. However, it is not able to detect wide and large tables. An
average scale of 8 for the anchors is found to be reasonable for table detection.

In the case of table structure recognition where rows, columns, cells are of varying scales,
multiple anchors scales [4, 8, 16] and ratios [0.05, 0.1, 0.2, 0.5, 1.0, 2.0] are used. This creates 18
anchor boxes at each feature point in the feature map generated by the backbone network. These
boxes are defined to capture the scale and aspect ratio of specific object classes and are usually
chosen based on object sizes in the training dataset. These different sizes of anchors are necessary
to detect shapes of different rows, columns, spanning cells, projected row headers and column
header. By using the same values as in table detection in which only 3 anchors are generated
at each feature point, it is observed that model is unable to capture rows, spanning cells in the
horizontal direction very well as shown in Figure 6.4. The number of anchors for each feature
point can be increased without adding much training time to capture much more varying sizes of
objects in the images.

Model Frozen stages Anchor scale Training time
(hours) Proposals F1 score

ResNeXt-101 2 (partially) 4 ~6 2000 0.89
ResNeXt-101 2 (partially) 8 ~8 2000 0.935
ResNeXt-101 2 (partially) 16 ~9 2000 0.93

Table 6.7: COMPARISON ON THE SCALE OF ANCHORS. F1 scores are calculated at IoU = 0.6.

These experiments helps in modeling the Faster R-CNN architecture for table detection and,
also, table structure recognition model.
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Figure 6.4: EFFECT OF ANCHOR SCALES. The left image shows predictions of the model with 3 anchors
only which is unable to capture rows etc. and the right image depicts the prediction of the model with 18
anchors of different shapes.





Chapter 7

Conclusion and Future Work

Table Detection and Table Structure Recognition is concerned with extracting data from a table
in an orderly manner whilst retaining the relations between different rows, columns, cells etc.. In
this thesis, we present an end-to-end Faster R-CNN model with ResNeXt backbone to perform
the task of table data extraction with limited access to resources. This model is simpler to exe-
cute, adaptable to any dataset, fast to train and generates comparable or even better results than
state-of-the-art models. The Faster R-CNN model is extensively studied and carefully designed
to eliminate the need for the huge annotated datasets by making use of pre-trained models on
ImageNet and MS COCO dataset. The model does not rely on any significant data pre-processing
or any post-processing methods to refine the output. This thesis work establishes the superiority
of Faster R-CNN once again in the task of object detection and yields state-of-the-art results for
table detection on ICDAR 2013, ICDAR 2019, TableBank, ISRI-OCR and Marmot datasets. The
cross-testing results on these datasets also yield great results as compared to other popular mod-
els. From the experiments, it is also concluded that the model is able to localize multiple tables in
a document.

In this work, we also demonstrate the state-of-the-art performance on PubTables-1M dataset
for the task of table structure recognition and encourage the usage of this dataset to further unify
the research direction. The results are explained in detail with the insights drawn from the pre-
diction results. Qualitative detection samples are provided for both table understanding tasks,
highlighting the method’s good performance. This work also presents a new quantitative metric,
aIoU, based on Intersection over Union (IoU) which is tailored for the task of table detection. All
the datasets in varying formats are converted into a common COCO format and with this, we also
promote the usage of a common annotation file for all the datasets and hence, saving extra time.
An in-depth discussion is provided in the chapter 6 on how the model parameters and design
choices are made.

Future Work

While a solid foundation for table detection and table structure recognition is laid, there are few
gaps that can be filled in future work or new directions which can be pursued. Table Detection
and Structure Recognition model produces high quality results. Even though our model general-
izes well to the unseen domains, there can always be tables with a completely different domain
because of the style and variety it offers and in such a scenario the model might fail to produce
good results on a sample. In this case, an unsupervised compound domain adaptation strategy
can be employed to overcome this limitation as in Panwar et al. (2021) and Liu et al. (2020) for
facial recognition problem. More in-depth analyses and experiments can be performed to un-
derstand failure cases better and tackle them. It will be advantageous to study why spanning
cells localization fails in certain cases. A probabilistic data-driven augmentation technique (Khan
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et al., 2021) can also be employed to expand the dataset by producing structural changes and
check if this method can offer samples from different data distributions. PubTables-1M offers
more information about the tables like text for all words appearing in each table. Maybe this in-
formation along with other semantic knowledge could be used to boost the performance of the
table structure recognition model. TableBank dataset also offers a variety of tables for the struc-
ture recognition task. However, it provides only HTML tags for individual files which is difficult
to relate and mix up with existing datasets in COCO format. This can be solved in the future and
the TableBank dataset can be mixed with PubTables-1M to increase the generalization power of
the dataset. New metrics for table structure recognition have been proposed like Grid Table Sim-
ilarity (GriTS) (Smock et al., 2022) and Tree-Edit-Distance-based Similarity (TEDS) (Zhong et al.,
2020) where the authors claim that it offers a more meaningful comparison between the ground
truth and the predicted structure of the table. It will be interesting to use these metrics to gain
more insights into the structure of the model and also compare the performance to other existing
models. Finally, Graph Neural Networks have also gained popularity in recent times. It can re-
construct the inherent relation between different cells, rows and columns in a table. It might be
insightful to use this completely different strategy on the PubTables-1M dataset to compare the
performance with our existing approach or to examine if graph neural network can be used as
post-processing of the detections from our network.



Appendix A

Attachments

A.1 ResNet Architecture Overview

ResNet, short for Residual Network (He et al., 2016) is a specific type of neural network which
utilizes skip connections to jump over some layers. The addition of more layers help the neural
network to learn more complex features but it can also increase the parameters of the models
significantly leading to increased training time. Increasing the depth of the network can also
lead to poor quantitative results beyond certain threshold. ResNet mitigates the training issues
by allowing to add more layers with skip connections i.e. there is a direct connection between
two layers separated by some layers. There are two major reasons to add skip connections: 1)
To prevent the problem of vanishing gradients 2) To alleviate the accuracy saturation problem,
which occurs when adding additional layers to a sufficiently deep model results in increased
training error. The architecture of ResNet-50 is shown in the Figure A.1. It has 48 convolution
layers along with 1 max pooling and 1 average pooling layer. The architecture consists of 4 stages
and these stages can be frozen during training when using a pre-trained model. In this work, we
freeze the first two stages in the case of table detection and first stage in the case of table structure
recognition.
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Figure A.1: RESNET-50 ARCHITECTURE. The architecture of ResNet consists of four stages which can
be frozen depending on the task and pre-trained model.
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A.2 PubTables-1M Dataset Canonicalization
The canonicalization algorithm described in Smock et al. (2021) rectifies the oversegmentation
in a table’s structural annotations. To do so, the authors make assumptions about the intended
structure of the table i.e. canonicalization is the merging of neighboring cells under particular
conditions. An example of such canonicalization can be seen in Figure A.2.

Figure A.2: AN ANNOTATED IMAGE SAMPLE FROM PUBTABLES-1M. Left: over-segmented structural
annotation, resulting in unnecessary blank cells in the headers. Right: The canonical structure annotation
combines these cells and represents their true logical structure. Source Smock et al. (2021).

The algorithm for canonicalization of the tables, as stated in Smock et al. (2021), is given in
Algorithm 1.

Algorithm 1 PubTables-1M Canonicalization
1: ADD CELLS TO THE COLUMN AND ROW HEADERS
2: Split every blank spanning cell into blank grid cells
3: if the first row starts with a blank cell then add the first row to the column header
4: if there is at least one row labeled as part of the column header then
5: while every column in the column header does not have at least one complete cell that only spans that

column do: add the next row to the column header
6: end if
7: for each row do: if the row is not in the column header and has exactly one non-blank cell that occupies

the first column then label it a projected row header
8: if any cell in the first column below the column header is a spanning cell or blank then add the column

(below the column header) to the row header
9: MERGE CELLS

10: for each cell in the column header do recursively merge the cell with any adjacent cells above and below
in the column header that span the exact same columns

11: for each cell in the column header do recursively merge the cell with any adjacent blank cells below it if
every adjacent cell below it is blank and in the column header

12: for each cell in the column header do recursively merge the cell with any adjacent blank cells above it if
every adjacent cell above it is blank

13: for each projected row header do merge all of the cells in the row into a single cell
14: for each cell in the row header do recursively merge the cell with any adjacent blank cells below it
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