
Predicting Ride-Hailing Demand: A Potential

Solution For Decreasing the Income Inequality of

Drivers

Bachelor’s thesis in Informatics

Christian Skorski

Student ID Nr. 18-700-294

Completed at the Department of Informatics

of the University of Zurich

Prof. Dr. A. Hannák

Supervisor: Stefania Ionescu

Submission date: 29.03.2022

ABSTRACT

Ride-hailing services such as Uber and Lyft have become globally pervasive in

the last decade, revolutionizing the taxi sector for both customers and drivers. This

business model breaks many barriers of entry for new drivers and makes commuting

by taxi cheaper and more convenient for customers. Nevertheless, it is also affected by

drastic income inequalities and weak job security. The goal of this thesis is to investi-

gate whether we can reduce income inequalities by using ML-based demand prediction

to strategically dispatch drivers. As such, I first develop a machine learning model to

predict customer demand using a real-world ride-hailing dataset collected by the city

of Chicago. Secondly, I integrate the real-world data within an agent-based model to

make an initial exploration of the potential of using the predictions for decreasing the

income inequality of drivers. The results show that (a) the prediction model is able

to fairly accurately predict demand, and (b) one of the three implemented rule-based

naive dispatchers successfully used the predictions in order to increase the level of

fairness.

i

ABSTRAKT

Ride-Hailing-Dienste wie Uber und Lyft haben sich in den letzten zehn Jahren

weltweit durchgesetzt und das Taxigewerbe sowohl für Kunden als auch für Fahrer

revolutioniert. Dieses Geschäftsmodell beseitigt viele Einstiegshürden für neue Fahrer

und macht das Pendeln mit dem Taxi billiger und bequemer für die Kunden. Allerd-

ings ist es auch von drastischen Einkommensunterschieden und geringer Arbeitsplatz-

sicherheit betroffen. Ziel dieser Arbeit ist es, zu untersuchen, ob wir die Einkom-

mensungleichheit verringern können, indem wir ML-basierte Nachfragevorhersagen

nutzen, um die Fahrer strategisch einzusetzen. Zu diesem Zweck entwickle ich zunächst

ein Machine Learning Model zur Vorhersage der Kundennachfrage anhand eines realen

Ride-Hailing-Datensatzes, der von der Stadt Chicago gesammelt wurde. Zweitens in-

tegriere ich die realen Daten in ein agentenbasiertes Modell, um das Potenzial der

Vorhersagen zur Verringerung der Einkommensungleichheit von Fahrern zu unter-

suchen. Die Ergebnisse zeigen, dass (a) das Prognosemodell in der Lage ist, die

Nachfrage ziemlich genau vorherzusagen, und (b) einer der drei implementierten regel-

basierten naiven Dispatcher hat es erfolgreich geschafft, die Prognosen zu nutzen um

eine Fairnessverbesserung zu erreichen.

ii

ACKNOWLEDGEMENTS

Firstly, I would like to thank my professor, Dr. Prof. Anikó Hannák, for the oppor-

tunity to work on this project and build upon her research. Secondly I would like to

thank my supervisor Stefania Ionescu for her amazing support. It is only thanks to

our weekly, hour-long meetings and her invaluable inputs that I was able to tackle

such an ambitious project. Finally, I would also like to thank Dr. Nicolò Pagan for

his valuable insights regarding the inner workings of the agent-based taxi simulator I

worked on.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

2 Literature Review 5

2.1 Ride-hailing income inequality . 5

2.2 Ride matching optimization . 7

3 Methodology 10

3.1 Data sourcing, cleaning and preparation 10

3.2 Machine learning prediction model 11

3.2.1 Model features and labels . 12

3.2.2 Model selection . 15

iv

CONTENTS v

3.2.3 Hyperparameter tuning . 17

3.2.4 Generalization error . 20

3.3 Integrating the model into a taxi simulator 22

3.3.1 Adapting the simulator to use Chicago data 23

3.3.2 Fixing the initial placement of drivers 25

3.3.3 Using the ML-model to dispatch drivers 27

3.4 Simulation parameters . 29

4 Results 33

4.1 Dispatchers . 33

4.1.1 ml poorest . 33

4.1.2 ml neutral weighted . 36

4.1.3 ml poorest weighted . 38

5 Discussion and Limitations 43

6 Conclusion 47

A ml poorest and ml poorest weighted 55

B ml neutral weighted 57

CONTENTS vi

C Results table of all simulations 59

List of Figures

3.1 An example of the city divisions on a map of Chicago for different

division sizes α and number of divisions. Left: α = 0.07°, 36 divisions;

Right: α = 0.05°, 64 divisions . 14

3.2 Sample output of the grid search function coupled with some custom

print statements. The first value of each row is the mean squared error

(MSE), which serves only as a comparison measure at this stage. . . . 19

4.1 An overview of driver income distributions with all combinations of

tested matching algorithms and dispatchers. Simulation with 20’000

taxis over a week. The first term of the labels is the matching strategy,

the second the dispatcher or ”stay” for no dispatching. X axis: driver

income distribution . 34

4.2 Income distributions for ml poorest compared to dispatch-less runs,

with all matching algorithms. A flatter distribution means better in-

come equality, higher distributions (by volume) have higher total in-

come. Simulation from 2020-1-6 to 2020-1-13, 7.57 taxis/Km2, search

radius 50. 35

vii

LIST OF FIGURES viii

4.3 Income distributions for ml neutral weighted compared to dispatch-

less runs, with all matching algorithms. A flatter distribution means

better income equality, higher distributions (by volume) have higher

total income. Simulation from 2020-1-6 to 2020-1-13, 7.57 taxis/Km2,

search radius 50. 37

4.4 Scores of ml poorest weighted by simulation week, poorest matching,

15.13 taxis/Km2, search radius 50. The x axis is the starting day of

the 7-day week. Left: Gini, right: total income. 39

4.5 Gini coefficient with ml poorest weighted by matching algorithm,

simulation from 2020-1-6 to 2020-1-13 with 15.13 taxis/Km2 (left) and

18.92 taxis/km2 (right) . 41

List of Tables

3.1 Performance comparison of different machine learning models by cross-

validation on the training set, sorted by negative mean square error

(NMSE). Training time is in seconds, polynomial degree refers to new

features created by powers (of that degree) and combinations of the

existing features. 16

3.2 Generalization error andR2 scores of Random Forest regression, trained

on datasets with the same features set but differing multi-output gran-

ularity. 20

3.3 Adjusted and fixed simulation parameters 31

4.1 Income inequality scores for ml poorest compared to the scores with-

out dispatching, sorted by Gini score best to worst. Corresponds to

violin plot 4.2. Simulation from 2020-1-6 to 2020-1-13, 7.57 taxis/Km2,

search radius 50. 36

ix

LIST OF TABLES x

4.2 Income inequality scores for ml neutral weighted compared to the

scores without dispatching, sorted by Gini score best to worst. Total

utility is the cumulative income of all drivers. Corresponds to vio-

lin plot 4.3. Simulation from 2020-1-6 to 2020-1-13, 7.57 taxis/Km2,

search radius 50. 38

4.3 Scores of ml poorest weighted by simulation week, corresponding to

the grouped bar plots in figure 4.4. Poorest matching, 15.13 taxis/Km2,

search radius 50. 40

C.1 Results of all simulations, ordered by starting date and Gini coefficient.

Utility $M refers to the cumulative income in millions, missed % is the

percentage of missed customer requests, and idle % is the percentage

of completely idle drivers. 59

Chapter 1

Introduction

1.1 Background

Ride-hailing services such as Uber and Lyft have become pervasive in the last decade,

revolutionizing the taxi sector for both customers and drivers. To give a perspec-

tive on their relevance, only in Chicago there were more than 67’000 active Uber

and Lyft drivers before the Covid-19 pandemic, compared to only 6’999 licensed cabs

(Channick). Ride-hailing companies define themselves as tech companies, providing

a smartphone application to match people needing transportation with independent

individuals willing to provide it. This business model makes on-demand transporta-

tion very convenient and cheap for customers, while also breaking many barriers of

entry for new drivers and offering them complete flexibility over working hours.

Yet, ride-hailing services are also affected by important issues causing weak job

security and scarce economic reliability. This is in part due to the employment status

of the drivers which, according to ride-hailing companies, entails employing drivers

1

1.2. OBJECTIVES 2

as independent contractors instead of as formal employees (Scheiber [2021]). This

means that ride-hailing drivers are not by default protected by the same laws that

otherwise protect normal employees such as taxi drivers, barring exceptions where

drivers successfully pursued legal action to be recognized as employees in their state

(Conger and Scheiber [2019]). Especially problematic are the vast differences that can

arise in the incomes of drivers that work for similar amounts of time, which are mainly

due to algorithmic decisions of the ride-hailing companies’ matching algorithms as

analyzed by Bokányi and Hannák [2020]. Therefore, there exists a strong need to

protect the interests of drivers which, apart from legislation, can be tackled from the

perspective of algorithmic fairness.

Some previous literature tried to solve the latter issue for example by optimiz-

ing the driver-customer matching problem for the long term income equality (Sühr

et al. [2019]), or by developing a matching algorithm prioritizing poor drivers in a cer-

tain radius instead of assigning customer to the nearest driver (Bokányi and Hannák

[2020]). Nevertheless, the vast majority of literature, especially works studying ma-

chine learning approaches, focuses on optimizing the matching problem for the total

utility instead (Li et al. [2019], Syed et al. [2019], Stein et al. [2020]). To my knowl-

edge, there has been no attempt in the literature to optimize ride matching for income

fairness.

1.2 Objectives

In my thesis, I aim to close the aforementioned gap in the literature by investigat-

ing whether machine learning-supported demand prediction can be used to create a

fairness-focused driver dispatcher algorithm. The end goal is for the dispatcher to

1.2. OBJECTIVES 3

be able to increase income equality while maintaining the best possible total utility,

in an attempt to make working for ride-hailing companies economically stabler and

safer.

To this goal, after a data cleaning and preparation phase, many different regres-

sion models were trained and tested on the prepared training set. In the end, the

system was implemented using a multi-output supervised machine learning algorithm,

Random Forest regression, to predict real-time customer demand in each city division

in the form of concrete counts of probable customers. The divisions of the city do

not follow geopolitical boundaries, They are instead defined by an imaginary grid of

squares, which is defined either by (approximated) square length in degrees or by

the number of desired divisions on the latitude axis. This solution offers flexibility

over the trade-off between the geographical precision of the predictions and the re-

quired regression accuracy. In contrast, Carson-Bell et al. [2021] compared different

prediction models for customer demand on the same dataset, but their prediction

was limited to indicate the most likely Chicago community area in which the next

customer request will originate from.

In approaching this goal, my main contributions are:

• Developing a multi-output ride-hailing demand prediction model with customiz-

able output size (prediction granularity), with concrete predicted counts of prob-

able customers per city area as output;

• Integrating said model in an existing agent-based city model (or taxi simulator)

developed by Bokányi and Hannák [2020], including adapting the simulator to

use real-world data to generate demand;

• Developing three naive rule-based driver dispatchers making use of the pre-

1.2. OBJECTIVES 4

diction model into the simulator, one of which achieved a promising fairness

improvement of 8.35% (in Gini coefficient) over current fairness-focused algo-

rithms.

Chapter 2

Literature Review

In the first of the next two sections, I give an overview of existing literature studying

income fairness of ride-hailing drivers. In the section that follows, I look at some of

the state of the art solutions for the ride-hailing matching optimization problem.

2.1 Ride-hailing income inequality

A lot of research in the last few years focused on studying income inequality of

drivers and understanding its causes. For example, Zoepf et al. [2018] interviewed

over 1’100 Uber and Lyft drivers and discovered that (a) the median profit from

driving is $3.37/hour before taxes, and (b) 74% of drivers earnings fall under the

minimum wage in their state. Perhaps even more shockingly, 30% of drivers actually

lose money by working, after including vehicle expenses.

As an example of the impact of algorithmic design in the context of ride-hailing,

5

2.1. RIDE-HAILING INCOME INEQUALITY 6

Chen et al. [2015] emulated 43 Uber drivers in downtown San Francisco and midtown

Manhattan to understand the true impact of the surge pricing (noa [a]) algorithm on

passengers and drivers, working around the fact that Uber does not provide any data

about supply or demand. In my thesis I decided not to consider surge pricing, as its

timescale is relatively small compared to a whole 42 hour work week (noa [b]).

While the before-mentioned literature focuses on investigating whether or not

there are inequalities in the system, isolating the effects of each component of the

system on the producing income inequality is a separate question. The difficulty

of this question comes from the need of very detailed information and the means to

investigate counterfactual scenarios. To overcome this difficulty, Bokányi and Hannák

[2020] used agent-based modelling to analyze the effects of algorithm design decisions

on wage inequality. For this purpose, they created a taxi and ride-hailing simulator

in a simplified city model, which helped them conclude that even small changes to

the system parameters can lead to large short term differences in the drivers wage

distribution, which can then potentially escalate on the long term through algorithmic

feedback loops. The goal of this study was to demonstrate (1) the large consequences

that small changes in algorithmic design can cause in the context of ride-hailing, and

(2) the urgency of better information transparency towards drivers of ride-hailing

platforms, to enable them to make informed decisions while working. My work is

highly akin to this study: the simulations performed by Bokányi and Hannák [2020]

use synthetically generated data. I improve upon this technique by integrating real-

world data in the simulation and validating the results of the study. I then use

the simulator to test my demand prediction model and my three naive dispatchers

in combination with the ride matching algorithms developed by the authors of the

study.

2.2. RIDE MATCHING OPTIMIZATION 7

Sühr et al. [2019] also observed significant income inequality by analyzing job

assignments of a major taxi company. They proposed that income fairness should

be measured over a longer time period, arguing that by removing the requirement

that every matching should be as fair as possible individually, better overall benefit

can be achieved for both drivers and passengers. To achieve this two-sided fairness,

they experimented with various optimization problems. By balancing equality of

both drivers and customers they were able to increase equality while maintaining the

total utility volumes. They also showed that although letting worst-off drivers choose

their customers first could increase equality, it could also cause a worst average and

median total income. This work is also important to my thesis: I incorporated the

authors’ idea of measuring fairness over time by simulating driver-customer matches

over a week at a time, while at the same time diverging from their solution to increase

fairness by branching out into machine learning.

2.2 Ride matching optimization

There has been a lot more academic effort towards optimizing ride-hailing matching

efficiency, and thus total company profits. Due to the high complexity and the dy-

namic nature of the ride-hailing matching problem, state of the art solutions often

implement reinforcement learning algorithms. For example, Li et al. [2019] argued

that classic rule-based solutions are designed on a simplified vision of the problem,

and require sophisticated fine tuning to work. To effectively model the peer-to-peer

interactions between multiple drivers and customers, they proposed to use multi-agent

reinforcement learning (MARL) combined with mean field approximation to simplify

local interactions. Apart from closely matching the problem, an advantage of such

a system is the ability to be deployed as a fully distributed system, with the associ-

2.2. RIDE MATCHING OPTIMIZATION 8

ated resilience benefits. The authors were able to prove that their system performs

substantially better than three simple rule based systems, measuring a higher total

daily income and order response rate. It also outperformed the total daily income

of a combinatorial optimization method based on the Hungarian algorithm by Mills-

Tettey et al. [2007].

On the other hand, Syed et al. [2019] approached the problem differently: They

noted that it similar to the classic Dial a Ride Problem, which can be efficiently

solved using the Adaptive Large Neighborhood Search Algorithm (ALNS), with the

difference of the additional dynamic aspect (new requests are continuously incom-

ing). Therefore, they evaluated the performance of a rolling horizon ALNS in an

asynchronous real-time framework, i.e. with three separate processes to compute

time and vehicles movements, requests and ride management, and route computa-

tion. Similarly to my work, they used real-world New York taxi data for testing.

They were able to conclude that ALNS can be used for real-time applications and

gives better solutions than the Nearest Neighbor algorithm normally used by ride-

hailing platforms. They also remarked that the system could be further improved by

combining it with customer demand prediction.

Although not specifically with ride-hailing in mind, Stein et al. [2020] analyzed

the generic online (dynamic) resource allocation problem from the perspective of re-

silience to individuals’ strategies. In fact, they argued that many works implementing

reinforcement learning solutions neglect this aspect of human nature. Therefore, they

developed a novel reinforcement learning-based mechanism in which truthful report-

ing and participation are incentivized. Their algorithm was able to stay within 90%

of the optimal social welfare obtained by backwards induction and dynamic program-

ming, and outperformed all benchmark algorithms such as first-come-first-served.

2.2. RIDE MATCHING OPTIMIZATION 9

While all these papers focus on optimizing ride matching for the total utility (wel-

fare), they do not analyze the effects on fairness. Moreover, reinforcement learning

is very resource intensive and not yet extensively used in the industry. This thesis

diverges from these studies by developing a supervised prediction model and pairing it

with a dispatcher to optimize ride-matching for fairness, while maintaining the same

or the highest possible total utility.

Chapter 3

Methodology

The next sections present the methods used for this thesis, including the work per-

formed on the original data, the selection and training of the machine learning model,

the integration of the data and the model into an agent-based taxi simulator, and the

parameter configurations used for the simulations.

3.1 Data sourcing, cleaning and preparation

The data used for this work comes from the data portal of the city of Chicago, which

makes all kinds of statistical records of the city available to the public. The data

used in this thesis comes from a 60GB dataset with 240 millions anonymized trips

reported by transportation network providers (ride-hailing companies). The data

collection has started in November 2018, continuing at the time of writing this thesis

(March 2022). Out of the 21 columns of the dataset, I only use the timestamp and

the pick-up and drop-off centroid location coordinates in degrees.

10

3.2. MACHINE LEARNING PREDICTION MODEL 11

The dataset had missing values for the coordinates fields, so it had to be cleaned.

There were entries with a missing coordinate field, amounting for about 5% of the

dataset. Because this was a low percentage of such entries, I decided to drop them.

According to the dataset description, the missing coordinates are due to the pickup

or drop-off location being outside of Chicago. The data also had three invalid values

in the coordinates, which I removed with a regex. Finally, I separated ca. 95% of the

data for training and testing the prediction model, leaving 5% for the simulations.

Since the number and nature of request is dependent on the type of weather as

found by Liu et al. [2021], I added columns to the ride-hailing dataset to provide this

contextual data. More precisely, I sourced historical weather data from the National

Centers for Environmental Information website (NCEI). I also tried adding a column

stating if a day is a holiday even though I could not find conclusive studies supporting

this idea, sourcing federal/state holidays data from officeholidays.com.

3.2 Machine learning prediction model

For the purpose of this work, I view this problem as a supervised machine learning

problem, batch (offline) and model-based. On one hand, matching customers with

drivers is a typical online resource allocation problem, and state-of-the-art solutions

often approach it with reinforcement learning as mentioned in the literature review

section. Yet, such methods require a lot of computational power and are not yet as

commonly used in the industry as supervised learning (z ai [2021]). Therefore, the

scope of this thesis is to investigate if it is at all possible to decrease the income in-

equality using a relatively simpler, more business-proven supervised learning solution.

As I did not have the possibility of learning about supervised learning during

3.2. MACHINE LEARNING PREDICTION MODEL 12

my Bachelor’s studies, I prepared myself for this part of the thesis with the great

introductory course by Andrew Ng (Ng) from the University of Stanford. I have also

used the machine learning book by Géron [2019] as reference during the development

of the model and, as in the book, I implemented the model using Python and the

Scikit-learn library by Pedregosa et al. [2011]. The resulting code is publicly available

on GitHub 1.

3.2.1 Model features and labels

The goal of the ML-model is to predict demand in various zones in the city based

on data readily accessible by the drivers app or by the servers of the ride-hailing

service platform. To predict the total amount of customer (riders) requests for each

defined city division at any given time step, I chose to use features based on date,

time, weather and holidays.

I decided to use a multi-output regression model, because the dispatcher needs

to know demand in every division of the city for each decision. Instead of predicting

demand for each area of the city separately in a loop, multi-output regression returns

an array with the predicted customer counts for each area of the city at once. Both

methods are viable, but the latter seemed a better fit for this problem to me, and

might intuitively cause less overhead to the simulation or real-world application than

a big prediction loop.

The features set defines the inputs of the prediction model. As the main inputs

of my model are date and time, I chose to separate the time stamp into day, month,

week of the year, day of the week, hours, and minutes. The reasoning behind this

1GitHub link for the repository: https://github.com/ianskoo/ride-hailing-income-fairness.git

3.2. MACHINE LEARNING PREDICTION MODEL 13

is that supervised machine learning algorithms look for correlations and patterns

between the features (training input) and the labels (training output), but they are

often not able to infer correlations from combinations of inputs without manually

combining the features beforehand (e.g. by multiplying them together), or extract

implicit information from features such as the day of the month from dates. Moreover,

all features must be transformed and scaled to numerical values between 0 and 1 to

be understood and correctly interpreted by the algorithm. Therefore, extracting

for example the day of the month from a date string enables the algorithm to find

monthly patterns, whereas if only the date was kept and transformed to a numerical

value between 0 and 1, that useful implied information would have probably been

lost.

Other than the date and time features, I used the weather and holiday data:

these are pieces of information that are easily available to the drivers (or the ap-

plication/platform), and can provide useful correlations; For instance, more people

getting an Uber when it is raining, or a shift/reduction in high demand areas during

holidays. The three weather features are the daily high and low forecasted tempera-

tures in Fahrenheit, and inches of rain (all constant for a given day). Having weather

information for every single hour would create more useful variance, but I was not

able to find a dataset with such detailed information. For holidays I added a single

binary feature that equals 1 if the current day is a holiday, and 0 otherwise. Sur-

prisingly, the improvement achieved with the latter was marginal (+1% accuracy at

best), probably due to the relative scarcity of holidays with respect to normal work

days throughout the year.

To have defined areas to dispatch drivers to, decrease the size of the output

space (labels) and ease prediction difficulty, I grouped locations by city divisions

3.2. MACHINE LEARNING PREDICTION MODEL 14

Figure 3.1: An example of the city divisions on a map of Chicago for different division

sizes α and number of divisions. Left: α = 0.07°, 36 divisions; Right: α = 0.05°, 64

divisions

(i.e., rectangular areas in the city). Therefore, the resulting grouped dataset had

for each timestep t and division d the number of requests at timestep t in division

d. Each label (column) is named by the bottom-right corner coordinates of the city

division square it represents.

The city divisions are rectangles determined by a parameter α, or alternatively

a number of divisions of the city latitude range lat divisions. The parameter α is

an angle (in degrees) of either longitude or latitude of the Earth, which determines

both the rectangle side lengths. At the latitude of Chicago (≈ 42), a change in

latitude (in degrees) covers much more distance (in Km) than the same change in

longitude, causing divisions defined by the same α to become rectangles. α can be

chosen beforehand (e.g. 0.01°) or alternatively computed by the program by passing

a divisor for the latitude range, i.e. the number of rows for the city grid. The smaller

3.2. MACHINE LEARNING PREDICTION MODEL 15

the size of α, the higher the number of city divisions, negatively impacting prediction

accuracy but positively impacting the overall usefulness of the model and of the final

dispatcher. Figure 3.1 shows two examples of how these divisions would look on a

map.

3.2.2 Model selection

As usual in ML-training, the goal will be to maximize the accuracy of the model.

However, please note that in this particular application, the model might still be

useful with lower levels of accuracy. For example, a model that always predicts at

least half of the actual number of requests is still useful for dispatching the poorest

drivers to get half of the total number of requests, and leave the other drivers to

satisfy the remaining half. I will expand on this later in the paper.

The model is selected by k-fold cross-validation (using the cross_val_score()

function of Scikit learn). Cross-validation is a technique used to compare the per-

formance of different machine learning algorithms on a given dataset, as well as for

tuning the hyper-parameters of a model after choosing it. It works by dividing the

training set into k folds, in my case five, training k − 1 models of the same kind

and parameters on the folds and using the last fold to test the predictions of the

models. This technique avoids that the models under scrutiny overfit the dataset, i.e.

exhibiting great training accuracy but sub-par generalization accuracy, meaning bad

prediction accuracy when presented with new input data.

A problem with this approach is that the models probably ca not find yearly

patterns, because the training dataset consists of less than two years of data which

is again divided in 5 subsets for the cross-validation. The yearly patterns in question

3.2. MACHINE LEARNING PREDICTION MODEL 16

could e.g. include holidays, which most probably have an impact on the amount and

location of pickup requests in the city. This is the reason why holidays were manually

added in the training dataset.

model polyn. degree training time NMSE std NMSE

RandomForestRegressor(max depth=10) 1 9.74 -17.21 0.78

RandomForestRegressor(max depth=10) 3 256.24 -17.84 0.40

ExtraTreesRegressor(max depth=10) 2 24.94 -18.51 1.04

RandomForestRegressor(max depth=10) 2 56.06 -18.55 1.55

ExtraTreesRegressor(max depth=10) 3 82.30 -18.61 0.98

ExtraTreesRegressor(max depth=10) 1 7.36 -24.71 1.18

LinearRegression() 5 78.93 -84.72 3.48

Ridge() 6 131.26 -84.72 3.48

Ridge() 5 13.27 -93.18 3.35

LinearRegression() 4 5.77 -107.98 4.40

Ridge() 4 3.05 -107.98 4.40

Ridge() 3 0.63 -137.44 6.75

Ridge() 2 0.47 -182.85 9.52

SVR(kernel=’poly’) 1 295.02 -187.31 9.14

SVR(kernel=’poly’) 2 342.88 -190.25 9.42

ElasticNet(alpha=0.1) 4 535.82 -190.96 8.94

ElasticNet(alpha=0.1) 3 103.88 -200.88 9.72

ElasticNet(alpha=0.1) 2 8.23 -222.50 11.67

Ridge() 1 0.20 -244.72 12.10

ElasticNet(alpha=0.1) 1 1.86 -273.33 16.43

ElasticNet(alpha=0.1, max iter=10000) 1 8.46 -273.33 16.43

Table 3.1: Performance comparison of different machine learning models by cross-

validation on the training set, sorted by negative mean square error (NMSE). Training

time is in seconds, polynomial degree refers to new features created by powers (of that

degree) and combinations of the existing features.

I compared multiple regression models for the task. Some did not support mul-

tiple output or were not working well with it, which was a deal-breaker due to the

requirement to predict demand in separate zones of the city at once mentioned before.

The first shortlist of regression models therefore included: linear, Ridge (regularized

3.2. MACHINE LEARNING PREDICTION MODEL 17

regression), decision tree, Random Forest, Extremely Randomized Trees, Support

Vector Machine, Ada Boost, and Elastic Net.

Table 3.1 shows a ranking of the shortlisted models in increasing order of negative

mean square error (NMSE). Ensemble methods such as random tree proved to be

among the best performing for this problem as also noted by Carson-Bell et al. [2021],

even though I am using a processed version of the Chicago data. Random Forest

regression is the clear winner, not even needing the features to be combined together

with a polynomial degree like linear or Ridge regression do, and taking an impressively

small amount of time to train compared to the latter two. Other options like support

vector machine regression or Elastic Net have not performed as well for this particular

problem. Extremely Randomized Trees, which are supposed to have lesser variance

at the cost of more bias compared to Random Forest, surprisingly performed slightly

worse than the latter. Based on these results, I decided to keep Random Forest

regression and Ridge regression for the next phase of the selection, as the latter could

still give interesting results with different parametrizations.

3.2.3 Hyperparameter tuning

The next step of the prediction model implementation is fine tuning the hyperparam-

eters. Hyperparameters are the parameters of a machine learning model that control

its learning process, such as the regularization factor of a regularized linear regression

model. As with the model selection, k-fold cross validation is very useful in this part

as well to avoid overfitting the training set and have poor generalization accuracy.

To find the best hyperparameters for each of my two final model candidates

automatically over a range of combinations, I use a grid search algorithm implemented

3.2. MACHINE LEARNING PREDICTION MODEL 18

in sklearn.model_selection.GridSearchCV(). As the name implies, this function

already includes cross validation built-in by default.

The choice of values to test out for the hyperparameters is usually a range of a

few multiples of ≈ 3 under and over a baseline value. For example, if the standard

hyperparameter used for a specific model is equal to 100, a good range of candidates

could be 10, 30, 100, 300, and 1000. Of course, the bigger the ranges of each hy-

perparameter to try out, the longest it takes to check every combination of them.

To solve this problem, there is another search algorithm based on randomly choosing

combinations of hyperparameters, but I decided the simpler grid search method was

enough for the scope of my thesis.

Random Forest regression

For Random Forest, the Scikit Learn documentation (noa [c]) recommends adjusting

the number of trees (n_estimators) and the size of the random subset of features

used to split a node of a tree (max_features).

Interestingly, it seems that also limiting the depth of the trees to a certain depth

with max_depth can positively impact the cross-validated performance of the model.

This could be intuitively attributed to the expected lower bias of such a limit.

The parameter with the strongest effect on accuracy was the number of estimators

(trees), which capped its ”return on investment” at around 300 trees, with 1000 trees

taking much longer to train and giving close to no accuracy improvement.

The final hyperparameters chosen for Random Forest are therefore a max tree

depth of 100, a max pool of features for splitting nodes of 8, and 300 estimators,

3.2. MACHINE LEARNING PREDICTION MODEL 19

44.247130183005766 {’max_depth’: 30, ’max_features’: 7, ’n_estimators’: 300}

44.222346577150965 {’max_depth’: 30, ’max_features’: 8, ’n_estimators’: 300}

44.23452364395394 {’max_depth’: 30, ’max_features’: 9, ’n_estimators’: 300}

44.7236298360614 {’max_depth’: 30, ’max_features’: 10, ’n_estimators’: 300}

45.58037374301642 {’max_depth’: 30, ’max_features’: 11, ’n_estimators’: 300}

44.13458527211603 {’max_depth’: 100, ’max_features’: 7, ’n_estimators’: 300}

44.049430471330055 {’max_depth’: 100, ’max_features’: 8, ’n_estimators’: 300}

44.27055976644326 {’max_depth’: 100, ’max_features’: 9, ’n_estimators’: 300}

44.64257553673474 {’max_depth’: 100, ’max_features’: 10, ’n_estimators’: 300}

45.47461065777984 {’max_depth’: 100, ’max_features’: 11, ’n_estimators’: 300}

Best parameters: {’max_depth’: 100, ’max_features’: 8, ’n_estimators’: 300}

Figure 3.2: Sample output of the grid search function coupled with some custom

print statements. The first value of each row is the mean squared error (MSE), which

serves only as a comparison measure at this stage.

giving a mean error (not squared) of ≈ 3.80.

Ridge regression

The hyperparameters of the Ridge regression algorithm selected for tuning are the

polynomial degree of features, and the regularization strength alpha (which is not to

be confused with the city division size α). As mentioned before, the polynomial degree

of features is not technically a parameter of the model itself, but a transformation

of the training set features. It allows linear regression to approximate a polynomial

function for fitting a non-linear prediction space, and it combines features together

by multiplication to allow the model to find relationships between them.

Ridge regression additionally uses regularization, which is a way to constrain

linear regression such that it does not overfit the data and allowing it to use higher

3.2. MACHINE LEARNING PREDICTION MODEL 20

polynomial degree features with minor bias increases. The higher alpha, the higher

the regularization strength, flattening out the approximated function.

The learning rate of Ridge regression seemed to cap out at a mean error of around

8.0, which is more than double the best mean error of Random Forest. This was to

be expected due to the higher complexity of an ensemble method, which combines

different machine learning models to cancel out different kinds of errors each of them

might make to reach a higher overall accuracy. Ridge regression is just one model, so

it is impressive that it came this close to an ensemble method anyways.

3.2.4 Generalization error

Taking the winning model (Random Forest regression) to the next phase, it was now

time to train it on the whole training set and measure the generalization error on the

test set. Table 3.2 presents the generalization scores for the Random Forest regressor

with the optimal hyperparameters found in the earlier step. Each row shows the

performance of the model trained on a different dataset having the same features set

but a different city division size, thus a differently sized labels set.

city division size divisions count MSE mean error accuracy (R2)

0.394° 1 37018.19 192.40 0.990

0.09° 25 565.64 23.78 0.855

0.07° 36 354.04 18.82 0.777

0.06° 49 261.69 16.18 0.855

0.05° 64 190.51 13.80 0.798

Table 3.2: Generalization error and R2 scores of Random Forest regression, trained

on datasets with the same features set but differing multi-output granularity.

These results are better than those obtained through cross-validation, which is

3.2. MACHINE LEARNING PREDICTION MODEL 21

to be expected due to the model training on the whole training set as opposed to

k = 5 separate folds (subsets). It is interesting that the model predicting demand

for 49 divisions has counter-intuitively a much higher R2 score (≈ 0.855) than the

one predicting for 36 (≈ 0.777), which provides less prediction granularity. This phe-

nomenon may be explained by a more fortunate disposition of the smaller divisions

of the former model, better covering areas of high demand such as the Chicago down-

town. Intuitively, this would increase variance between the features and the labels

associated to those squares, allowing the model to better explain the data and have

a lower error.

On the other hand looking at the next row, a prediction granularity of 64 divisions

gives a score of 0.798, slightly lower than with 49 divisions. This may suggest the

inverse of the earlier reasoning, that 36 divisions is just a highly sub-optimal grid for

separating different demand zones in Chicago. Figure 3.1 could support this idea, as

the grid with 36 divisions has a division encompassing a chunk of the highly populated

downtown while being mostly on water, whereas the second grid has a square nicely

covering the entire downtown.

The high R2 scores may have alternative explanations linked to the limitations

of my work. For example, the scores of more granular prediction models may be

artificially boosted by a higher number of divisions completely overlapping the lake,

which always have a count of 0 requests and are trivial for the model to predict. This

may hold for very low demand areas as well, such as the outskirts or low income

districts. I regrettably did not have much time to further validate these results.

In addition, as mentioned before, I expected that even if the accuracy was actually

lower, the models could still be useful to dispatch drivers to high demand areas.

If a low-accuracy model gives some promising results, then a refined version with

3.3. INTEGRATING THE MODEL INTO A TAXI SIMULATOR 22

higher levels of accuracy could provide an additional increase in fairness. Therefore,

I proceeded with the straightforward delimitation of rectangular city divisions, and

left the development of models that use the city-level expertise for future work.

3.3 Integrating the model into a taxi simulator

In order to use the model to dispatch drivers, I chose the agent-based taxi simula-

tor developed by Bokányi and Hannák [2020]. A simulation environment makes it

possible to easily and quickly test different dispatching strategies, of which potential

positive results could perhaps warrant a more expensive and time consuming real life

experiment. The chosen simulator needed a number of adaptations to use real-life

data from the Chicago dataset and the prediction model with it, which I will explain

in the next sections. Most of the adaptations could be made without touching the

original code in a separate class, the Chicago class, which I will sometimes mention

in the explanations.

The simulator is an agent-based model of a simple rectangular city represented

by a mxn grid. Customer requests are randomly generated and positioned in the

city based on various included distribution functions. Drivers are initially either

positioned on a predefined base, or randomly throughout the city. There are four

driver-customer matching algorithms included: Random unlimited, random limited,

nearest first, and poorest first. If a queued request can be assigned to a driver, the

driver drives to the customer, picks them up and drives them to their destination.

Afterwards, the driver can either stay there and wait for another match, or move to

a predefined location. The simulator parameters and the matching algorithms are

explained more in detail in the next sections.

3.3. INTEGRATING THE MODEL INTO A TAXI SIMULATOR 23

3.3.1 Adapting the simulator to use Chicago data

The fundamental question to understand how to make a simulator use real data is:

Which previously modifiable parameters of the simulation will now depend on the

data, and how can they be adapted in the simulator to reflect that? The main

dependent parameters are the customer demand (request rate in the simulator) and

the position of the customer requests. On the other hand, the supply is still generated

by the simulator and can be adjusted to see the effects of different driver densities

and demand/supply ratios.

The first step was to map Chicago to the simulator city grid, which is a simple

grid of m×n squares with internal length equal to 100m. In order to avoid cascading

problems, I chose not to interfere with all the internal spatial and temporal parame-

ters. Hence, in my simulation they remain fixed at the values chosen by Bokányi and

Hannák [2020] based on real-life data. I therefore computed the distance in meters

of the highest and lowest latitudes and longitudes in the simulation set, either of a

trip pick-up or a drop-off, and divided these distances by the simulator distance unit

du = 100m to get the grid size. The city size, depending on the chosen subset of the

simulation dataset is around 32.0× 41.2 Km, translating into a grid size of 320× 413

blocks. Simulating only the space containing requests instead of the whole city using

official measures helps avoiding potential index errors if some requests were outside

of the official city limits, and lighten resource usage otherwise.

Then, I created a mapping for the time. In the simulator, a time unit tu is

equal to 10 seconds. Since the time steps in the dataset are 15 minutes, we have:

15′ = 900′′ = 90 · tu. The conversion is implemented in a simple method of the

Chicago class that takes the simulation time, computes the floored division by 90 and

3.3. INTEGRATING THE MODEL INTO A TAXI SIMULATOR 24

uses that result to access a time step from a list of all the distinct time steps in the

current simulation Chicago subset.

Next I substituted the simulator request generation, originally based on random

distributions, with a function taking requests from the Chicago dataset preassigned

to each time unit tu. This was difficult because the simulator used a request_rate

parameter to determine how many requests to generate per time unit tu by calling a

single request generating function request_rate times. This was incompatible with

the real-world data where the request rate should vary in time following the demand

fluctuations in the Chicago dataset.

The simplest and least invasive solution was for the Chicago class to randomly

assign all the requests of a Chicago time step (15’) to the individual 90tu that cover

that time step. This also avoids unnaturally inserting the requests in the city all

at once at the beginning of the 15’ time step. Since the simulator can only add one

request at a time, method computes how many requests are assigned to each single tu,

and feeds an approriate dynamic request rate to the simulation. To achieve all this, I

added a column to the simulation dataset and populated it with random integers from

1 to 90 (0-89 in the code). Then, I slightly modified the simulator to use a method in

the Chicago class to determine how many requests to pick from the dataset at a given

simulation time unit tu. For example, if the simulation is at tu′ = 183, we would get

a Chicago time step TS ′ = unique_timesteps[floor(183 / 90)], which could e.g.

be equal to ”2020-1-6 10:15:00” if the simulation data starts on that day at 10:00:00.

Then, all requests in the dataset with time step TS ′ and labeled with indextu’ = 183

mod 90 = 3 will have to be placed on the map. The simulation would thus receive a

request rate equal to how many requests in the data are labeled with the modulo of 90

of the current simulation time tu, and ask the Chicago class for that many requests.

3.3. INTEGRATING THE MODEL INTO A TAXI SIMULATOR 25

The following issue was determining the right amount of supply (drivers). In the

original simulator, supply and demand were fixed for the entire simulation, but now

we have a variable supply given by the Chicago class. For the sake of simplicity and

to make comparisons between my results and those found by Bokányi and Hannák

[2020] still possible, I decided to keep the number of drivers (supply) fixed and run

the simulation during daytime only, for a total time equivalent to a 42-hour work

week. To enable this, a new subset is taken out of the simulation dataset by choosing

a start and an end date, and the desired working hours during the days between those

dates. The demand to supply ratio is thus now given by the averaged demand of the

simulation subset, divided by the fixed supply.

3.3.2 Fixing the initial placement of drivers

A limitation of the simulator is that it does not offer the possibility of placing the

initial drivers using a normal distribution, similarly to how the customer requests are

generated and placed in the city (to my knowledge). In reality, cities have differ-

ently populated areas with different average income classes. Intuitively, more densely

populated areas with an average to low mean income would probably house a higher

density of people driving for a ride-hailing company. This assumption is reinforced

by the lower than average wages characterizing this job mentioned by Zoepf et al.

[2018].

The reason why this is important is that if customer requests follow a normal

distribution with one or more centers and the drivers are uniformly distributed over

the whole city, there will be drivers that most probably will not get assigned to

any request during the whole simulation. In fact, running a simulation using 5000

randomly and uniformly placed taxi drivers gives the following results:

3.3. INTEGRATING THE MODEL INTO A TAXI SIMULATOR 26

• Number and percentage of missed customer requests: (19442, 19.78%)

• Number and percentage of completely idle drivers: (2942, 58.84%)

Whereas by increasing the drivers to 10000:

• Number and percentage of missed customer requests: (301, 0.31%)

• Number and percentage of completely idle drivers: (5626, 56.26%)

The percentage of unanswered requests went down to nearly zero, but the amount

of taxi drivers without any completed trip is still more than half of all drivers, which is

clearly really detrimental to income equality. My solution to this problem is: instead

of placing the drivers randomly on the map at the start of the simulation, I can add

a function to my Chicago class that samples a single random customer request from

the data, returning its simulation grid coordinates. This way, the simulation can

use this helper function to generate home coordinates for drivers following the same

distribution of the customers. While alternative distributions could also make sense,

I use this as a more realistic alternative to the uniform random placement. Most

importantly, this new placement does not position drivers in uninhabited areas (e.g.,

on water). Below, I include the results with the new driver placement function:

• Number and percentage of missed customer requests: (713, 0.73%)

• Number and percentage of completely idle drivers: (26, 0.26%)

3.3. INTEGRATING THE MODEL INTO A TAXI SIMULATOR 27

3.3.3 Using the ML-model to dispatch drivers

Besides integrating the Chicago data in the simulator, I also developed and imple-

mented three basic dispatchers. A dispatcher is an algorithm which aims to use the

demand prediction model to strategically direct less well-off drivers to high-demand

areas of the city. It is important to note that positioning drivers efficiently is a non-

trivial optimization problem on its own. The best solution depends on a variety of

factors such as the current position of the drivers, the trust and accuracy of predic-

tions, the driving time between the current position of the diver and possible requests,

and the expected destinations of requests. In addition, depending on the size of the

city, solving the full optimization problem might be computationally infeasible, so one

could instead use approximations and simplified versions of the optimization problem.

Moreover, the problem formulation might need to account for competing objectives,

such as: (a) income equality, (b) revenue, (c) time and fuel efficiency. However, due

to lack of time, I did not explore all the complexities of this allocation problem. In-

stead, I only implemented three naive solutions in order to investigate the potential

of using a ML-based dispatcher to improve income fairness. If successful, this could

then serve as a proof of concept and as an invite for improvements in future work.

ml poorest

The dispatching algorithms come into play as soon as a driver has driven a customer

to their destination. The first dispatcher, ml_poorest, works as follow: (1) it gets

the date, time, weather and holiday information needed for the prediction from the

Chicago class, (2) it uses the ML-model to predict the demand in 30 minutes. I chose

this time offset by qualitatively checking on online maps services how long it takes to

3.3. INTEGRATING THE MODEL INTO A TAXI SIMULATOR 28

traverse the radius of the city for a few different routes without traffic, such as from

the business center to O’Hare Intl. Airport.

Next (3), the algorithm compares the driver’s income to the average income of all

drivers. It standardizes the driver’s income by subtracting the mean and dividing by

the standard deviation of the income of all drivers, and does the same for a copy of

the list of predicted demand for each city division. This operation facilitates inverse

mappings from low income drivers to high demand areas.

Finally (4), the algorithm dispatches drivers based on the level of their income

so far. First, it considers very poor drivers as having a standardized income of −0.5

or less, and dispatches them to the city division with the highest predicted demand.

Secondly, it considers drivers with higher but still negative normalized income (i.e.,

between 0 and −0.5), and dispatches them to a randomly chosen city division between

all of those that have a positive normalized predicted demand. Every other driver,

meaning those richer than the average, are not dispatched in any way. In my case,

this means using the post-ride behavior "stay" as defined in the simulator.

ml neutral weighted

This is a simplified version of the dispatcher above. It positions each driver which

have just finished a ride in the same way. More precisely, it randomly chooses a city

division within a chance proportional to the predicted demand at that city division.

As before, I also account for the time to travel to that specific location and take the

predictions 30 minutes later than the current time.

3.4. SIMULATION PARAMETERS 29

ml poorest weighted

Finally, this is another variation of the first dispatcher which skips dispatching the

very poorest drivers to the best area, instead dispatching all poor drivers with normal-

ized income < 0 to a randomly chosen city division weighted by its predicted demand

in 30’. This means that this dispatcher combines features of both ml_poorest and

ml_neutral_weighted.

An issue concerning all three of the dispatchers is that unscaled predictions could

have been used for a more fine-grained mapping of a certain number of less well-

off drivers to certain high-demand city areas, taking into consideration how many

drivers are in said areas already. The problem is that this feature would require

major modifications to how the simulator works and I could not do it due to time

constraints. More on this in the discussion chapter.

3.4 Simulation parameters

The simulations have some parameters I chose to keep fixed, some given by the

Chicago data, and some manually adjusted to achieve results for different scenarios.

An overview of the simulation parameters used can be seen in table 3.3.

For consistency, I ran simulations using the same data from the second week of

2020 (06.01.2020 - 13.01.2020), with the same working hours for all drivers between

08:00 - 12:00 and 17:00 - 21:00, for a total of 42 working hours per week. Every

simulation uses the same prices and costs as those used by Bokányi and Hannák [2020],

i.e. an income of 2$/trip and 1$/km, and costs amounting to 0.08$/Km. Admittedly,

3.4. SIMULATION PARAMETERS 30

prices of ride-hailing services change from city to city due to different incomes and

taxes, so these values have a generic representative purpose. The maximum customer

waiting time is fixed at 10 minutes, after which requests are canceled. Drivers always

move at a speed of 36 Km/h.

The simulator includes four basic matching algorithms to match drivers with

customer requests: random, random limited, nearest and poorest. Random matches

a request with a random available driver in the whole city, which in my case did not

make much sense to use as nearly all requests would be cancelled due to the waiting

time. Random limited does the same, but limiting the choice of available drivers to

a radius around the request. Nearest chooses the nearest driver in a radius around

the request, and poorest is an income equality-focused algorithm designed by Bokányi

and Hannák [2020] which matches a request with the poorest driver in a fixed radius

around it.

The radius itself used in the random limited, nearest and poorest matching algo-

rithms is internally called hard_limit, and it is the maximal radius from a request in

du at which drivers are searched for to be matched with that request. I used substan-

tially larger radius limits than Bokányi and Hannák [2020] used in their simulations

(3.5Km and 5Km compared to 1Km). I decided to do so due to the much bigger

city size in my simulations (around 10 times bigger), and because of an issue in the

simulator tied to this radius found by Dr. Nicolò Pagan, which I will explain in the

discussion chapter.

As explained in the previous section, customer demand is given by the Chicago

data, while the supply can be changed to simulate different driver densities. According

to an article by Molina [2021], there were 65’689 Uber drivers working in April 2019

in total. As a safe guess for the more limited work hours chosen for the simulation,

3.4. SIMULATION PARAMETERS 31

Parameters Values taken

Adjusted

”start date” ”2020-1-6”, ”2020-1-13”, ”2020-1-20”, ”2020-1-27”

”end date” ”2020-1-13”, ”2020-1-20”, ”2020-1-27”, ”2020-2-3”

”num taxis” 10000, 20000, 25000

”matching” ”nearest”, ”poorest”, ”random limited”

”behaviour” ”stay”, ”ml dispatcher v2”, ”ml dispatcher distributor”

”ml weighted” True, False

”hard limit” 35, 50

Fixed

”use chicago” True

”chicago grid size” 49

”ml model path” ”data/random forest 8 300 100 squares 49.pkl”

”working hrs 1” [8, 10]

”working hrs 2” [17, 21]

”max time” 15120

”batch size” 15120

”initial conditions” ”home”

”price fixed” 2

”price per dist” 1

”cost per unit” 0.008

”log” False

”show map labels” False

”show pending” False

”show plot” False

”max request waiting time” 60

”avg request lengths” 22.7

”request rate” 1

”reset” ”false”

”geom” 0

”request origin distributions” [”location”: [20, 20], ”strength”: 1, ”sigma”: 10]

Table 3.3: Adjusted and fixed simulation parameters

3.4. SIMULATION PARAMETERS 32

I ran simulations with 10’000 and 20’000 drivers mainly, for a driver density of 7.57

and 15.13 respectively (taxis/Km2). These densities are also in the range of those

found by Bokányi and Hannák [2020] for big cities like Chicago. To validate the

promising results of one of the dispatchers, I finally also ran some simulations with

25’000 drivers for a density of 18.92 taxis/Km2 and with data from the remaining

weeks of January 2020 and the first week of March 2020. In the next chapter I will

go over the results of these simulations.

Chapter 4

Results

This chapter presents the final results of the simulations ran with the parameters

explained in the previous section. Figure 4.1 shows an overview of the income dis-

tributions with all tested combinations of matching algorithms and dispatchers, in

a simulation with 10’000 taxis over a week. The slimmer the curve, the better the

income equality, as more drivers are situated in a closer range of total earnings. In the

next sections, I will take a closer look at the performance of each of my dispatchers.

4.1 Dispatchers

4.1.1 ml poorest

ml_poorest is the first of the three dispatchers. Although it does not have a poor

performance, it is not really able to prove any tangible improvement in equality

or total utility (figures in table 4.1). Without the poorest matching algorithm, it

33

4.1. DISPATCHERS 34

Figure 4.1: An overview of driver income distributions with all combinations of tested

matching algorithms and dispatchers. Simulation with 20’000 taxis over a week. The

first term of the labels is the matching strategy, the second the dispatcher or ”stay”

for no dispatching. X axis: driver income distribution

4.1. DISPATCHERS 35

Figure 4.2: Income distributions for ml poorest compared to dispatch-less runs, with

all matching algorithms. A flatter distribution means better income equality, higher

distributions (by volume) have higher total income. Simulation from 2020-1-6 to

2020-1-13, 7.57 taxis/Km2, search radius 50.

performs slightly worse than without using a dispatcher due to driving costs and the

dispatched poorest drivers not being prioritized in the queue for matches.

Table 4.1 shows the data corresponding to the violin plot in figure 4.2. The poorest

matching algorithm without dispatcher performs the best in terms of fairness (Gini

coefficient 0.08), although its counterpart using ml_poorest performs only slightly

worse (Gini 0.10). Notice that the latter has a fatter lower tail in 4.2, meaning that

this dispatcher causes a group of drivers to earn a bit less than the vast majority. I

4.1. DISPATCHERS 36

matching dispatching gini atkinson 20/20 total utility

poorest stay 0.08 0.01 1.26 6378326.86

poorest ml poorest 0.1 0.01 1.26 6343721.64

random stay 0.29 0.07 1.57 6373486.47

random ml poorest 0.32 0.08 1.65 6330295.62

nearest stay 0.34 0.1 1.69 6380972.12

nearest ml poorest 0.64 0.39 2.52 6368770.79

Table 4.1: Income inequality scores for ml poorest compared to the scores without

dispatching, sorted by Gini score best to worst. Corresponds to violin plot 4.2. Sim-

ulation from 2020-1-6 to 2020-1-13, 7.57 taxis/Km2, search radius 50.

suppose that this may be due to ml_poorest not giving a sufficient edge to poorer

drivers, while also making them lose money through the driving costs of reaching

the dispatch area, as opposed to better-off drivers remaining stationary after a ride.

This tail is also the probable cause of the lower total income (total utility) of poorest

matching + ml_poorest.

Moreover, ml_poorest flattens out when used with the nearest matching algo-

rithm. This is also mirrored in the lower associated Gini of 0.64; as a compression, the

run without dispatcher has a much lower Gini, namely 0.34. The total utility is lower

as well. The relationships between these results are similar in other simulations, such

as with double the amount of drivers (20’000). These additional results are available

in the aggregated results table C.1.

4.1.2 ml neutral weighted

ml neutral weighted dispatches drivers in the same way, irrespective to their current

level of income. Surprisingly, results in simulations are not better than those without

4.1. DISPATCHERS 37

Figure 4.3: Income distributions for ml neutral weighted compared to dispatch-

less runs, with all matching algorithms. A flatter distribution means better income

equality, higher distributions (by volume) have higher total income. Simulation from

2020-1-6 to 2020-1-13, 7.57 taxis/Km2, search radius 50.

it, behaving similarly to ml poorest. Interestingly, both figure 4.3 and figure 4.1

show that ml neutral weighted has some extreme outliers with nearest matching

compared to the other two dispatchers and runs without dispatchers. Apart from

the fact that nearest matching consistently has much higher outliers than random

limited and poorest, the additional boost by this dispatcher might be explained by

some drivers already starting in a good spot with high demand, and luckily being

dispatched in good spots again a few times, as the number of completed trips per

driver are not very high in these simulations at a mere average of 4.9 trips per driver.

The other two dispatchers never dispatch drivers with positive standardized income.

4.1. DISPATCHERS 38

matching dispatching gini atkinson 20/20 total utility

poorest stay 0.08 0.01 1.26 6378326.86

poorest ml neutral weighted 0.1 0.01 1.26 6339908.65

random stay 0.29 0.07 1.57 6373486.47

random ml neutral weighted 0.33 0.09 1.63 6377436.81

nearest stay 0.34 0.1 1.69 6380972.12

nearest ml neutral weighted 0.63 0.34 2.57 6220723.33

Table 4.2: Income inequality scores for ml neutral weighted compared to the scores

without dispatching, sorted by Gini score best to worst. Total utility is the cumulative

income of all drivers. Corresponds to violin plot 4.3. Simulation from 2020-1-6 to

2020-1-13, 7.57 taxis/Km2, search radius 50.

4.1.3 ml poorest weighted

In short, it appears that my first two ML-based naive dispatchers, namely ml poorest

and ml neutral weighted, are too simplistic to show any improvement over not using

a dispatcher at all. However, this last variation, namely ml poorest weighted, was

finally able to achieve some promising results.

As shown in 4.5, ml poorest weighted + poorest matching consistently beats

poorest matching with no dispatching by a small margin, as long as the taxi density

is high enough. With 10’000 taxis (7.57 taxis/Km2) they have basically the same

Gini, the former having 0.086 and the latter 0.085, although the dispatcher had a

1.5% higher total utility. With 20’000 taxis (15.13 taxis/Km2), which is a closer

estimate of the true number of ride-hailing drivers in Chicago that week, we start

seeing some interesting and consistent results.

Figure 4.4 demonstrates the promising results of ml poorest weighted + poorest

4.1. DISPATCHERS 39

Figure 4.4: Scores of ml poorest weighted by simulation week, poorest matching,

15.13 taxis/Km2, search radius 50. The x axis is the starting day of the 7-day week.

Left: Gini, right: total income.

4.1. DISPATCHERS 40

start dispatching gini atkinson 20/20 tot income $M missed req % idle %

2020-1-13 ml poorest weighted 0.132 0.017 1.376 6.992 0.23 0.0

2020-1-13 stay 0.142 0.02 1.44 7.004 0.36 0.0

2020-1-20 ml poorest weighted 0.138 0.018 1.397 6.878 0.17 0.0

2020-1-20 stay 0.149 0.022 1.463 6.897 0.24 0.0

2020-1-27 ml poorest weighted 0.128 0.016 1.362 6.841 0.16 0.0

2020-1-27 stay 0.145 0.021 1.443 6.875 0.18 0.0

2020-1-6 ml poorest weighted 0.14 0.02 1.407 6.48 0.14 0.0

2020-1-6 stay 0.151 0.023 1.461 6.444 0.45 0.0

Table 4.3: Scores of ml poorest weighted by simulation week, corresponding to the

grouped bar plots in figure 4.4. Poorest matching, 15.13 taxis/Km2, search radius

50.

matching, consistent in simulations over different weeks in the dataset. The average

income equality improvement over dispatch-less poorest matching is measured in a

8.35% decrease in the Gini coefficient, a 17.44% lower Atkinson, and a 4.56% lower

20/20 ratio.

Of course, these results hold only for the combination ml poorest weighted +

poorest matching algorithm. Figure 4.5 shows that with random limited matching,

ml poorest weighted causes a slightly worse Gini than dispatch-less, while with

nearest matching the Gini is very high at ≈ 0.6. The figure also shows how the income

equality gains achieved with the dispatcher increase with a higher taxi density, from

15.13 taxis/Km2 (left plot) to 18.92 taxis/km2 (right plot).

In conclusion, it seems that ml poorest weighted is able to exploit the de-

cent basic idea behind ml poorest, namely what in figure 4.2 seems like a bet-

ter income equality, while also getting rid of the ”fat tail” of poor drivers in 4.2

mentioned before. I speculate that the reason behind this higher economic effi-

ciency is the dispatching of poorer drivers with the weighted probability technique

introduced in ml neutral weighted, as poor drivers are much better distributed in

4.1. DISPATCHERS 41

Figure 4.5: Gini coefficient with ml poorest weighted by matching algorithm, sim-

ulation from 2020-1-6 to 2020-1-13 with 15.13 taxis/Km2 (left) and 18.92 taxis/km2

(right)

4.1. DISPATCHERS 42

the high-demand areas in relation to the predicted demands. At the same time,

ml poorest weighted gains an edge in income equality over ml neutral weighted

by only dispatching poor drivers instead of all of them equally, giving an advantage

to the poor ones. Based on the consistent results in 4.3 and 4.4, this gained edge is

sufficient for ml poorest weighted to noticeably overtake the dispatch-less poorest

matching algorithm, which in my opinion shows great promise for the technique.

Chapter 5

Discussion and Limitations

The supervised learning prediction-based dispatchers ml poorest and

ml neutral weighted have failed to show any advantage in combination with all

driver-customer matching algorithms (except random unlimited, which was not tested).

I think that the main reason for this is that dispatching drivers to high-demand areas,

while at the same time not relieving those areas of better-off drivers, has very slim

margins of income fairness improvement that can be exploited without detracting

from the total utility. As it is not possible to dispatch drivers to clearly less busy

areas than those they find themselves in, due to them self-strategizing and not fol-

lowing the dispatching order, there is a limit to how many drivers can be dispatched

to high demand areas before other areas run out of supply and economic inefficiencies

arise.

Looking at the first overview distribution in 4.1, it is clear that the largest de-

viations in income fairness come from the choice of matching algorithm, and my

simulations using real-world data can only attest to how good the poorest matching

43

44

algorithm by Bokányi and Hannák [2020] is for income equality, while achieving to

maintain virtually the same total utility.

On the other hand, my ml poorest weighted dispatcher has shown promising

results when combined with the poorest matching algorithm, with an 8.35% better

Gini coefficient on average than without it. This result suggests that it may in fact

be possible to exploit that slim improvement margin, and use a business-proven and

efficient supervised learning approach to increase driver income equality in ride-hailing

platforms. Of course, the number of simulations with different parameters and data

could have been much higher to better validate this result, but I was limited by the

hardware and by time, as a single simulation over one week of data (42 hours) could

take as long as 2-3 hours to complete.

As mentioned before in my thesis, there are some significant limitations in my

work. Perhaps the most important, is the simplicity of the dispatcher. More precisely,

in my work I only use dispatchers that are based on the distributions of requests rather

than the actual counts. As a result, the ML-model provides more information than it

is used by the naive dispatchers. This additional information could be key in making

sure we only dispatch the right amount of drivers; using it could ensure that we do

not create competition in the areas we dispatch drivers. In fact, this is a complex op-

timization problem on its own, especially considering that a dispatching decision also

entails running costs for the driver and a lower total utility. Even more complexity is

added by the online character of the matching problem, with requests continuously

coming in and getting assigned to drivers. This complexity of the optimization prob-

lem explains why the recent literature often looks at reinforcement learning to find a

solution, a technique that is particularly suited for these online allocation problems.

A second limitation is the behavior of non-dispatched drivers in the simulations. I

45

think that the third ML dispatcher could have an even bigger equality or total utility

advantage if it was tested in simulations where the non-dispatched drivers cruise

randomly, or roughly towards important areas like the city center or the airport: in

fact, in my simulations they just wait on the spot. In the former scenario every

driver loses money due to driving costs, but the poorer dispatched drivers are more

strategically dispatched to high-demand zones, with the poorest matching algorithm

giving them priority for customers over non-dispatched drivers cruising around and

burning fuel. The lack of such simulations is a limitation of this study, as I could

not run another whole set of simulations. Moreover, although minor, continuous

cruising is yet to be implemented in the simulator: The only current possibility is to

dispatch drivers to a specific location in the city with no further planned movements

afterwards, which is a bit unrealistic if the drivers cruise to high-demand, congested

areas with no parking spots.

A third limitation is that dispatching and matching are still separated in my

solution, creating a concern about whether the poorer dispatched drivers would trust

that they would get assigned to a customer once reaching their dispatch area. On

one hand, my results show that they would statistically be better off following the

dispatcher suggestions, but on the other it is always hard to predict end-user behavior

with respect to a software. And this is all assuming a ride-hailing company would be

willing to take a risk and implement not only a different matching algorithm, but a

dispatcher as well for no added monetary gain. By combining the dispatching with

the matching, it would probably be slightly easier to convince both drivers and the

ride-hailing companies to adopt the solution.

A fourth limitation is the single design of the ML model. It is possible that a

classic single-output solution would have performed better, although probably at a

46

cost of some performance in the dispatching phase of the solution. It is also possible

that another regression model outside of those under scrutiny would have performed

better than the Random Forest regression, as I logistically could not test every algo-

rithm in existence.

There is one additional limitation tied to the simulator. This is a relatively hard

to solve issue that was found by Nicolò Pagan: the search radius for the matching

algorithms, defined as ”hard limit” in the simulator, makes it so that the nearest

algorithm does not continue looking for a driver outside of the radius when no drivers

are found within. Based on the definitions in the study by Bokányi and Hannák [2020],

the hard limit was designed for the poorest matching algorithm to avoid looking for

the poorest driver in the entire city. Yet, the radius is limiting also the nearest

matching algorithm, which could cause problematic results with either a small driver

density or a small radius.

A further important issue caused by dispatching in general is the ecological impact

of drivers driving without passengers to reach their assigned zones, and the additional

congestion caused to the city, which is already a big problem as stated by the Chicago

mayor Lightfoot. A possible solution could be given by limiting the number of drivers

to a fixed and sustainable quota. The slow switch to hybrid and electric cars can help

as well. Finally, further incentives for actual ride-sharing can be of help too. From the

perspective of the dispatcher, maybe one that could plan for tactical waiting times

and traffic conditions could help offsetting pollution and congestion as well.

Chapter 6

Conclusion

To reiterate, the goal of this thesis was to attempt increasing income equality for

drivers of ride-hailing services using a machine learning based driver dispatcher. In

trying to achieve this, after comparing the performance of different ML algorithms for

the problem I successfully implemented an accurate supervised learning model based

on Random Forest regression to predict customer demand in customizable divisions

of a city - Chicago in this case. I then adapted a taxi simulator developed by Bokányi

and Hannák [2020] to use real-world anonymized ride-hailing (or taxi) trip data to

generate customer demand, instead of using random distributions to do so. In the

process, I was able to find and correct a bug in said simulator which entailed some

coordinates being stored ”upside down” in a data structure, potentially causing a

failure in simulations of non-squared cities. All the code developed and used for this

thesis is publicly available online, making this work reproducible and enabling other

interested researchers to implement variations of my work. 1

1The code is available on GitHub at https://github.com/ianskoo/ride-hailing-income-fairness.git

47

48

Finally, I developed three naive rule-based dispatchers that could use the predic-

tions of the ML model to redistribute drivers in the city. The first two, ml poorest

and ml neutral weighted, have failed to reach any meaningful result. The third,

ml poorest weighted, has achieved an average improvement of 8.35% in the Gini

coefficient when combined with the poorest matching algorithm developed by Bokányi

and Hannák [2020], as compared said matching algorithm without dispatching. The

total utility was also conserved. While testing the dispatchers against the three

matching algorithms without dispatching, I could also validate the effectiveness of

the poorest matching algorithm found by Bokányi and Hannák [2020] with real-life

data by plotting virtually identical income distributions comparing nearest, random

and poorest matching strategies as in their study. At a higher level, this confirms the

usefulness of agent-based modelling to understand and anticipate real-world effects.

All this work would not have been possible without the diverse and thorough

literature review. As motioned in the respective chapter, this branched over (a)

fairness, (b) machine learning, (c) optimization, and (d) domain-specific ride-hailing

work. Key to the direction of this thesis was the work of Sühr et al. [2019] who argued

that fairness of matches should be measured over a longer time period as opposed to

trying to make every match individually fair. I followed this idea by simulating driver-

customer matches over a week, while at the same time diverging from their methods

of finding a solution to increase fairness, branching out into machine learning.

Currently, a lot of work is being done to optimize ride matching with the overall

utility as main goal. As the optimization problem is online, meaning that new requests

come in continuously, many of these attempts use solutions based on reinforcement

learning. Though I initially considered the idea of following this lead, reinforcement

learning is very resource intensive and hardly used outside of research, at least for

49

now. Coupled with the fact that I had already learned supervised learning from

scratch for this work and learning reinforcement learning on top of that was logistically

near-impossible, I decided to attempt reaching a more business-ready and lightweight

solution with a supervised learning based solution.

The previous chapter also listed the main limitations of this work. The most

important is the simplicity of the dispatcher, which is based on the distributions of

requests rather than the actual counts. As a result, the dispatcher doesn’t exploit

all of the information provided by the ML model. Secondly, the simulations could

span more data and more diverse non-dispatched driver behavior outside of waiting

in place. Other valid options for the demand prediction could be explored as well.

In conclusion, as mentioned before I was able to show an improvement in driver

income fairness. Nonetheless, although the demand prediction model seems solid,

the ml poorest weighted dispatcher was just a naive and perhaps lucky attempt at

reaching some results. Having proved that the potential exists, with some further

small interventions to the simulator in which the dispatcher is integrated, and by

taking into consideration the counts of drivers in each area of the city and the actual

counts of predicted requests into an equation to optimize, I am sure that further im-

provements could be scraped towards income equality and total utility. Secondarily,

the results reached with ml poorest weighted could be further validated with dif-

ferently parametrized simulations, provided the time and more appropriate hardware

resources.

Bibliography

Robert Channick. Too many Uber drivers? Chicago cab-

bies and ride-share workers join forces, urge cap on Uber and

Lyft cars. URL https://www.chicagotribune.com/business/

ct-biz-chicago-taxi-ride-share-drivers-limit-20181030-story.html.

Section: , Business.

Noam Scheiber. Uber and Lyft Ramp Up Legislative Efforts to Shield Business Model.

The New York Times, June 2021. ISSN 0362-4331. URL https://www.nytimes.

com/2021/06/09/business/economy/uber-lyft-gig-workers-new-york.html.

Kate Conger and Noam Scheiber. California Bill Makes App-Based Compa-

nies Treat Workers as Employees. The New York Times, September 2019.

ISSN 0362-4331. URL https://www.nytimes.com/2019/09/11/technology/

california-gig-economy-bill.html.

Eszter Bokányi and Anikó Hannák. Understanding Inequalities in Ride-Hailing Ser-

vices Through Simulations. Scientific Reports, 10(1):6500, April 2020. ISSN

2045-2322. doi: 10.1038/s41598-020-63171-9. URL https://www.nature.com/

articles/s41598-020-63171-9. Bandiera abtest: a Cc license type: cc by

Cg type: Nature Research Journals Number: 1 Primary atype: Research Publisher:

50

https://www.chicagotribune.com/business/ct-biz-chicago-taxi-ride-share-drivers-limit-20181030-story.html
https://www.chicagotribune.com/business/ct-biz-chicago-taxi-ride-share-drivers-limit-20181030-story.html
https://www.nytimes.com/2021/06/09/business/economy/uber-lyft-gig-workers-new-york.html
https://www.nytimes.com/2021/06/09/business/economy/uber-lyft-gig-workers-new-york.html
https://www.nytimes.com/2019/09/11/technology/california-gig-economy-bill.html
https://www.nytimes.com/2019/09/11/technology/california-gig-economy-bill.html
https://www.nature.com/articles/s41598-020-63171-9
https://www.nature.com/articles/s41598-020-63171-9

BIBLIOGRAPHY 51

Nature Publishing Group Subject term: Computational science;Socioeconomic sce-

narios Subject term id: computational-science;socioeconomic-scenarios.

Tom Sühr, Asia J. Biega, Meike Zehlike, Krishna P. Gummadi, and Abhijnan

Chakraborty. Two-Sided Fairness for Repeated Matchings in Two-Sided Markets:

A Case Study of a Ride-Hailing Platform. In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 3082–

3092, Anchorage AK USA, July 2019. ACM. ISBN 978-1-4503-6201-6. doi: 10.1145/

3292500.3330793. URL https://dl.acm.org/doi/10.1145/3292500.3330793.

Minne Li, Zhiwei Qin, Yan Jiao, Yaodong Yang, Jun Wang, Chenxi Wang, Guobin

Wu, and Jieping Ye. Efficient Ridesharing Order Dispatching with Mean Field

Multi-Agent Reinforcement Learning. In The World Wide Web Conference, WWW

’19, pages 983–994, New York, NY, USA, May 2019. Association for Computing

Machinery. ISBN 978-1-4503-6674-8. doi: 10.1145/3308558.3313433. URL https:

//doi.org/10.1145/3308558.3313433.

Arslan Ali Syed, Bernd Kaltenhaeuser, Irina Gaponova, and Klaus Bogenberger.

Asynchronous Adaptive Large Neighborhood Search Algorithm for Dynamic

Matching Problem in Ride Hailing Services. In 2019 IEEE Intelligent Trans-

portation Systems Conference (ITSC), pages 3006–3012, October 2019. doi:

10.1109/ITSC.2019.8916943.

Sebastian Stein, Mateusz Ochal, Ioana-Adriana Moisoiu, Enrico Gerding, Raghu

Ganti, Ting He, and Tom La Porta. Strategyproof reinforcement learning for on-

line resource allocation. pages 1296–1304. University of Auckland, May 2020. doi:

10.5555/3398761.3398911. URL https://eprints.soton.ac.uk/438382/. Num

Pages: 9.

https://dl.acm.org/doi/10.1145/3292500.3330793
https://doi.org/10.1145/3308558.3313433
https://doi.org/10.1145/3308558.3313433
https://eprints.soton.ac.uk/438382/

BIBLIOGRAPHY 52

Divine Carson-Bell, Mawutor Adadevoh-Beckley, and Kendra Kaitoo. Demand Pre-

diction of Ride-Hailing Pick-Up Location Using Ensemble Learning Methods. Jour-

nal of Transportation Technologies, 11(02):250–264, 2021. ISSN 2160-0473, 2160-

0481. doi: 10.4236/jtts.2021.112016. URL https://www.scirp.org/journal/

doi.aspx?doi=10.4236/jtts.2021.112016.

Stephen M Zoepf, Stella Chen, Paa Adu, and Gonzalo Pozo. The economics of ride-

hailing: Driver revenue, expenses and taxes. CEEPR WP, 5:1–38, 2018.

Le Chen, Alan Mislove, and Christo Wilson. Peeking Beneath the Hood of Uber.

In Proceedings of the 2015 Internet Measurement Conference, IMC ’15, pages 495–

508, New York, NY, USA, October 2015. Association for Computing Machinery.

ISBN 978-1-4503-3848-6. doi: 10.1145/2815675.2815681. URL https://doi.org/

10.1145/2815675.2815681.

Uber, a. URL https://www.uber.com/us/en/marketplace/pricing/

surge-pricing/.

How Uber surge pricing really works. Washington Post, b. ISSN 0190-

8286. URL https://www.washingtonpost.com/news/wonk/wp/2015/04/17/

how-uber-surge-pricing-really-works/.

G Ayorkor Mills-Tettey, Anthony Stentz, and M Bernardine Dias. The dynamic

hungarian algorithm for the assignment problem with changing costs. Robotics

Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-07-27, 2007.

City of Chicago. Transportation Network Providers - Trips | City of Chicago

| Data Portal. URL https://data.cityofchicago.org/Transportation/

Transportation-Network-Providers-Trips/m6dm-c72p.

https://www.scirp.org/journal/doi.aspx?doi=10.4236/jtts.2021.112016
https://www.scirp.org/journal/doi.aspx?doi=10.4236/jtts.2021.112016
https://doi.org/10.1145/2815675.2815681
https://doi.org/10.1145/2815675.2815681
https://www.uber.com/us/en/marketplace/pricing/surge-pricing/
https://www.uber.com/us/en/marketplace/pricing/surge-pricing/
https://www.washingtonpost.com/news/wonk/wp/2015/04/17/how-uber-surge-pricing-really-works/
https://www.washingtonpost.com/news/wonk/wp/2015/04/17/how-uber-surge-pricing-really-works/
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p

BIBLIOGRAPHY 53

Shan Liu, Hai Jiang, and Zhe Chen. Quantifying the impact of weather on ride-

hailing ridership: Evidence from Haikou, China. Travel Behaviour and Society,

24:257–269, July 2021. ISSN 2214-367X. doi: 10.1016/j.tbs.2021.04.002. URL

https://www.sciencedirect.com/science/article/pii/S2214367X21000302.

NCEI. Past Weather | National Centers for Environmental Information (NCEI). URL

https://www.ncei.noaa.gov/access/past-weather/chicago.

officeholidays.com. Federal Holidays in Illinois in 2022. URL https://www.

officeholidays.com/countries/usa/illinois/2022.

z ai. The Good, the Bad, and the Ugly: Supervised, Unsupervised and Re-

inforcement Learning, March 2021. URL https://towardsdatascience.com/

the-good-the-bad-and-the-ugly-supervised-unsupervised-and-reinforcement-learning-2ccf814c6bab.

Andrew Ng. Machine Learning. URL https://www.coursera.org/learn/

machine-learning.

Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-

sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly

Media, Beijing China ; Sebastopol, CA, 2nd edition edition, October 2019. ISBN

978-1-4920-3264-9.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning

in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

1.11. Ensemble methods, c. URL https://scikit-learn/stable/modules/

ensemble.html.

https://www.sciencedirect.com/science/article/pii/S2214367X21000302
https://www.ncei.noaa.gov/access/past-weather/chicago
https://www.officeholidays.com/countries/usa/illinois/2022
https://www.officeholidays.com/countries/usa/illinois/2022
https://towardsdatascience.com/the-good-the-bad-and-the-ugly-supervised-unsupervised-and-reinforcement-learning-2ccf814c6bab
https://towardsdatascience.com/the-good-the-bad-and-the-ugly-supervised-unsupervised-and-reinforcement-learning-2ccf814c6bab
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://scikit-learn/stable/modules/ensemble.html
https://scikit-learn/stable/modules/ensemble.html

BIBLIOGRAPHY 54

Nina Molina. Uber, Lyft riders are paying more and waiting longer,

June 2021. URL https://chicago.suntimes.com/2021/6/22/22465111/

uber-lyft-drivers-down-users-face-higher-prices-longer-wait-times.

Section: Transportation.

Lori E Lightfoot. TRANSPORTATION NETWORK PROVIDERS AND CONGES-

TION IN THE CITY OF CHICAGO. page 20.

https://chicago.suntimes.com/2021/6/22/22465111/uber-lyft-drivers-down-users-face-higher-prices-longer-wait-times
https://chicago.suntimes.com/2021/6/22/22465111/uber-lyft-drivers-down-users-face-higher-prices-longer-wait-times

Appendix A

ml poorest and ml poorest weighted

def ml_dispatcher_poorest(self, curr_taxi_id, weighted: bool):

"""Redistribute poor drivers to high demand city areas."""

Get predicted demand

predictions = self.city.chicago.predict_demand(self.time)

if predictions is None:

return None

else:

predictions = predictions[0]

Get mean and std dev of all drivers incomes

taxis_list_snapshot = self.taxis

curr_incomes = [self.eval_taxi_income(taxi_id) for taxi_id in taxis_list_snapshot]

mean_tot_income = np.mean(curr_incomes)

std_dev_tot_income = np.std(curr_incomes)

Standardize current idle driver’s income

curr_taxi_income = self.eval_taxi_income(curr_taxi_id)

curr_stdized_taxi_income = (curr_taxi_income - mean_tot_income) / std_dev_tot_income

Compute mean and std dev of prediction vector, then standardize its values

mean_pred_demand = np.mean(predictions)

std_dev_pred_demand = np.std(predictions)

55

56

stdized_predictions = [(pred - mean_pred_demand) / std_dev_pred_demand for pred in predictions]

Dispatch drivers

dispatch_district_idx = None

if curr_stdized_taxi_income >= 0:

Leave all drivers richer than the average where they are

return None

if not weighted:

if curr_stdized_taxi_income < -0.5:

Very poor, dispatch to district with most demand (best district)

dispatch_district_idx = np.where(stdized_predictions == max(stdized_predictions))[0][0]

elif curr_stdized_taxi_income < 0:

Poorer than average, randomly dispatch to better than mean districts

next_best_demands = [demand for demand in stdized_predictions if demand > 0]

chosen_demand = random.choice(next_best_demands)

dispatch_district_idx = np.where(stdized_predictions == chosen_demand)[0][0]

else:

if curr_stdized_taxi_income < 0:

Send poorer than average drivers randomly to areas weighted by their predicted demand

predictions_sum = sum(predictions)

dispatch_weights = [pred / predictions_sum for pred in predictions]

dispatch_district_idx = np.where(

predictions == np.random.choice(predictions, p=dispatch_weights))[0][0]

Get coordinates and dispatch driver

long, lat = self.city.centered_districts_coords[dispatch_district_idx]

dispatch_coords = self.city.chicago.coord_to_grid(lat, long)

self.go_to_base(curr_taxi_id, dispatch_coords)

Appendix B

ml neutral weighted

def ml_dispatcher_weighted_distributor(self, curr_taxi_id: int):

"""Redistribute drivers to city areas based on predicted future demand, independently of

their current income. Dispatch a driver having curr_taxi_id to an area with a probability

based on predicted demand in 30’. """

Get predicted demand

predictions = self.city.chicago.predict_demand(self.time)

if predictions is None:

return None

else:

predictions = predictions[0]

Compute mean and std dev of prediction array, then standardize its values

predictions_sum = sum(predictions)

dispatch_weights = [pred / predictions_sum for pred in predictions]

Choose one of the predictions based on their distribution

dispatch_district_idx = predictions.index(np.random.choice(predictions, p=dispatch_weights))

dispatch_district_idx = np.where(

predictions == np.random.choice(predictions, p=dispatch_weights))[0][0]

Get coordinates and dispatch driver

long, lat = self.city.centered_districts_coords[dispatch_district_idx]

57

58

dispatch_coords = self.city.chicago.coord_to_grid(lat, long)

self.go_to_base(curr_taxi_id, dispatch_coords)

Appendix C

Results table of all simulations

Table C.1: Results of all simulations, ordered by starting

date and Gini coefficient. Utility $M refers to the cumu-

lative income in millions, missed % is the percentage of

missed customer requests, and idle % is the percentage

of completely idle drivers.

start matching dispatching gini atkinson 20/20 utility $M missed % idle %

2020-1-13 poorest ml poorest weighted 0.132 0.017 1.376 6.992 0.23 0.0

2020-1-13 poorest stay 0.142 0.02 1.44 7.004 0.36 0.0

2020-1-13 random stay 0.371 0.111 1.789 7.007 0.33 1.03

2020-1-13 random ml poorest weighted 0.391 0.123 1.81 7.014 0.24 1.08

2020-1-13 nearest stay 0.397 0.125 1.853 7.044 0.13 1.2

2020-1-13 nearest ml poorest weighted 0.624 0.349 2.515 7.066 0.04 0.15

2020-1-20 poorest ml poorest weighted 0.138 0.018 1.397 6.878 0.17 0.0

2020-1-20 poorest stay 0.149 0.022 1.463 6.897 0.24 0.0

2020-1-20 random stay 0.383 0.117 1.813 6.878 0.3 1.26

2020-1-20 random ml poorest weighted 0.397 0.127 1.815 6.899 0.13 1.41

2020-1-20 nearest stay 0.398 0.126 1.857 6.921 0.17 1.25

2020-1-20 nearest ml poorest weighted 0.626 0.353 2.51 6.95 0.02 0.17

2020-1-27 poorest ml poorest weighted 0.128 0.016 1.362 6.841 0.16 0.0

59

60

start matching dispatching gini atkinson 20/20 utility $M missed % idle %

2020-1-27 poorest stay 0.145 0.021 1.443 6.875 0.18 0.0

2020-1-27 random stay 0.375 0.111 1.789 6.86 0.24 1.4

2020-1-27 random ml poorest weighted 0.383 0.118 1.787 6.861 0.13 1.24

2020-1-27 nearest stay 0.394 0.124 1.841 6.9 0.12 1.21

2020-1-27 nearest ml poorest weighted 0.613 0.337 2.455 6.913 0.02 0.18

2020-1-6 poorest stay 0.051 0.003 1.157 6.347 0.81 0.0

2020-1-6 poorest stay 0.085 0.008 1.264 6.378 0.7 0.0

2020-1-6 poorest ml poorest weighted 0.086 0.009 1.237 6.479 0.15 0.0

2020-1-6 poorest stay 0.09 0.008 1.276 6.37 0.77 0.0

2020-1-6 poorest stay 0.091 0.008 1.272 6.327 0.98 0.0

2020-1-6 poorest ml neutral weighted 0.096 0.011 1.259 6.34 0.63 0.0

2020-1-6 poorest ml poorest weighted 0.099 0.012 1.26 6.458 0.31 0.0

2020-1-6 poorest ml poorest 0.104 0.011 1.261 6.344 0.71 0.0

2020-1-6 poorest ml poorest weighted 0.14 0.02 1.407 6.48 0.14 0.0

2020-1-6 poorest stay 0.151 0.023 1.461 6.444 0.45 0.0

2020-1-6 poorest ml neutral weighted 0.153 0.023 1.407 6.4 0.39 0.0

2020-1-6 poorest ml poorest weighted 0.167 0.026 1.481 6.483 0.13 0.0

2020-1-6 poorest ml poorest 0.167 0.027 1.46 6.416 0.43 0.0

2020-1-6 poorest stay 0.181 0.032 1.538 6.488 0.29 0.0

2020-1-6 random stay 0.206 0.035 1.39 6.319 1.05 0.0

2020-1-6 nearest stay 0.287 0.07 1.534 6.344 0.87 0.02

2020-1-6 random stay 0.288 0.067 1.587 6.324 1.01 0.07

2020-1-6 random stay 0.288 0.068 1.57 6.373 0.72 0.18

2020-1-6 random stay 0.288 0.068 1.584 6.359 0.82 0.04

2020-1-6 random ml poorest weighted 0.313 0.082 1.61 6.441 0.38 0.17

2020-1-6 random ml poorest 0.323 0.084 1.648 6.33 0.81 0.09

2020-1-6 random ml neutral weighted 0.33 0.093 1.634 6.377 0.52 0.31

2020-1-6 nearest stay 0.342 0.096 1.688 6.335 1.01 0.26

2020-1-6 nearest stay 0.342 0.096 1.686 6.361 0.85 0.2

2020-1-6 nearest stay 0.344 0.098 1.691 6.381 0.73 0.21

2020-1-6 random ml poorest weighted 0.375 0.116 1.743 6.435 0.43 0.26

2020-1-6 random stay 0.383 0.117 1.81 6.437 0.47 1.42

2020-1-6 random ml poorest weighted 0.39 0.122 1.807 6.497 0.14 1.48

2020-1-6 random ml neutral weighted 0.391 0.122 1.789 6.424 0.3 1.65

2020-1-6 random ml poorest 0.401 0.127 1.866 6.408 0.51 1.39

2020-1-6 nearest stay 0.404 0.13 1.871 6.457 0.43 1.32

2020-1-6 random stay 0.417 0.133 1.895 6.484 0.32 3.0

2020-1-6 random ml poorest weighted 0.421 0.137 1.882 6.498 0.14 2.74

2020-1-6 nearest stay 0.433 0.144 1.949 6.495 0.29 2.65

61

start matching dispatching gini atkinson 20/20 utility $M missed % idle %

2020-1-6 nearest ml poorest weighted 0.6 0.311 2.435 6.542 0.03 0.58

2020-1-6 nearest ml poorest weighted 0.613 0.334 2.47 6.499 0.24 0.26

2020-1-6 nearest ml poorest weighted 0.623 0.371 2.425 6.388 0.7 0.02

2020-1-6 nearest ml poorest 0.624 0.346 2.524 6.441 0.46 0.2

2020-1-6 nearest ml poorest weighted 0.625 0.372 2.437 6.401 0.63 0.0

2020-1-6 nearest ml neutral weighted 0.626 0.34 2.574 6.221 1.95 0.0

2020-1-6 nearest ml poorest 0.642 0.394 2.522 6.369 0.75 0.0

2020-1-6 nearest ml neutral weighted 0.668 0.371 2.867 6.366 0.71 0.0

2020-5-4 poorest stay 0.816 0.197 1.492 0.249 0.15 66.14

2020-5-4 poorest ml poorest weighted 0.816 0.193 1.463 0.248 0.09 66.78

2020-5-4 poorest ml neutral weighted 0.818 0.198 1.468 0.245 0.2 66.67

2020-5-4 nearest ml neutral weighted 0.822 0.202 1.457 0.246 0.0 66.66

2020-5-4 random ml neutral weighted 0.84 0.193 1.355 0.245 0.2 69.92

2020-5-4 nearest ml poorest 0.843 0.205 1.364 0.249 0.0 70.14

2020-5-4 nearest ml poorest weighted 0.843 0.206 1.376 0.249 0.0 70.21

2020-5-4 nearest stay 0.844 0.203 1.372 0.25 0.0 70.68

2020-5-4 random stay 0.848 0.199 1.342 0.249 0.23 71.35

2020-5-4 random ml poorest weighted 0.85 0.202 1.323 0.248 0.26 71.33

	Introduction
	Background
	Objectives

	Literature Review
	Ride-hailing income inequality
	Ride matching optimization

	Methodology
	Data sourcing, cleaning and preparation
	Machine learning prediction model
	Model features and labels
	Model selection
	Hyperparameter tuning
	Generalization error

	Integrating the model into a taxi simulator
	Adapting the simulator to use Chicago data
	Fixing the initial placement of drivers
	Using the ML-model to dispatch drivers

	Simulation parameters

	Results
	Dispatchers
	ml_poorest
	ml_neutral_weighted
	ml_poorest_weighted

	Discussion and Limitations
	Conclusion
	ml_poorest and ml_poorest_weighted
	ml_neutral_weighted
	Results table of all simulations

