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Abstract

Open Set Recognition (OSR) is a promising field that aims to adapt deep neural models to a
real-world scenario, i.e., the presence of unknown data distributions at inference time. Recent
approaches address OSR by including into the training set negative classes that a classifier learns
to reject, expecting that these data increase the robustness of the classifier on unknown classes.
Furthermore, a critical question on OSR is how to select representative negative classes. In this
work, we study the performance an OSR approach, the Entropic open-set and Objectosphere, two
recently proposed loss functions to deal with unknowns. We show that these losses can be used
in complex custom scenarios that use natural images and several levels of similarity between the
negative classes. Additionally, we investigate a method to adapt adversarial training into OSR
scenarios. Our experimental results show that it is possible to use synthetic adversarial examples
to increase the robustness of a classifier in OSR.





Zusammenfassung

Open Set Recognition (OSR) ist ein vielversprechender Bereich, der darauf abzielt, tiefe neuronale
Modelle an ein reales Szenario anzupassen, d. h. an das Vorhandensein unbekannter Daten-
verteilungen zum Zeitpunkt der Inferenz. Neuere Ansätze befassen sich mit OSR, indem sie in
die Trainingsmenge negative Klassen aufnehmen, die ein Klassifikator abzulehnen lernt, in der
Erwartung, dass diese Daten die Robustheit des Klassifikators bei unbekannten Klassen erhöhen.
Eine wichtige Frage im Zusammenhang mit OSR ist, wie repräsentative negative Klassen aus-
gewählt werden können. In dieser Arbeit untersuchen wir die Leistung eines OSR-Ansatzes, der
Entropic open-set und Objectosphere, zwei kürzlich vorgeschlagene Verlustfunktionen für den
Umgang mit unbekannten Klassen. Wir zeigen, dass diese Verlustfunktionen in komplexen be-
nutzerdefinierten Szenarien verwendet werden können, die natürliche Bilder und verschiedene
Ähnlichkeitsgrade zwischen den Negativklassen verwenden. Darüber hinaus untersuchen wir
eine Methode, mit der sich das adversarische Training in OSR-Szenarien anpassen lässt. Unsere
experimentellen Ergebnisse zeigen, dass es möglich ist, synthetische Negativbeispiele zu verwen-
den, um die Robustheit eines Klassifikators in OSR zu erhöhen.
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Chapter 1

Introduction

1.1 Motivation and Description of Work
It seems truly impressive the progress achieved by deep learning algorithms. Since its early
stages (arguably) in the 1950s with the invention of Rosenblatt’s perceptron (Rosenblatt, 1958),
in only a few decades, deep learning methods enabled significant advances in several fields such
as robotics, health care and computer vision (Lenz et al., 2015; Punjani and Abbeel, 2015; Mariolis
et al., 2015; Miotto et al., 2018; Qayyum et al., 2020; Voulodimos et al., 2018). The outcomes of
these algorithms started to exceed human performance in some supervised classification tasks.
For example He et al. (2015) reports an ImageNet classification error rate of 3.57%, while the
human error rate is 5.1% (Russakovsky et al., 2015).

Most Deep Neural Networks (DNNs) work under the closed-set assumption, i.e., classifying a
finite set of known-classes assumes that the classes seen in training and inference have equivalent
distributions. However, this assumption is rarely fulfilled in real-world scenarios; A deployed
model could face data from unknown classes at inference time. The deployment of DNN-based
systems to critical applications like autonomous driving requires robust methods to unseen data
distributions, yet many systems do not have the strategies to handle unknown classes. In fact,
Dhamija et al. (2020) showed that DNNs might predict samples from unseen classes as knowns
with high confidence.

The presence of unknown classes changes the task’s nature from classification to recognition,
as the systems should be able to classify samples from known classes (positives) while rejecting
samples from unknown classes (negatives). This task is known as Open-Set Recognition (OSR). In
real-world applications, DNNs could face unknown classes from many sources and distributions.
Furthermore, the features of positive and negative samples might be mixed in unexpected ways.
For example, in object recognition, a system should reject a possibly infinite set of background
objects, combined in unpredictable ways inside an image. There exist approaches that attempt
to increase the capacity of DNNs to recognize positive classes and discard negatives, but han-
dling the unknown is still an open problem. Recent approaches extend the training data with
background classes (known-unknowns) (Yu et al., 2017; Neal et al., 2018; Dhamija et al., 2018),
so the DNN learns to discard them, expecting the model generalizes this behaviour at inference
time. However, it is challenging to select representative known-unknown classes to improve
the robustness to completely unknown samples. For example, Dhamija et al. (2018) proposed
two novel unknown-aware losses, the entropic open-set loss and objectosphere loss, and showed that
training with known-unknowns similar to known classes improves the DNN performance, yet
this implies that the task is extended to find optimal known-unknowns.

Recent approaches also consider finding good known-unknowns. For instance, Bhoumik
(2021) proposed three Imagenet-based protocols to simulate scenarios with varying similarities
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between known and unknown classes, providing the option to explore open-set approaches in
diverse and challenging scenarios. Other methods search for ’good’ known-unknowns producing
synthetic data, typically with Generative Adversarial Networks (GANs) Ge et al. (2017); Perera
et al. (2020). Alternatively, Schnyder (2021) included adversarial samples to improve the model’s
performance. Although this method is promising, it was tested only on the MNIST dataset, and
it requires further analysis (e.g. different DNNs and natural images).

In this work, we address two related topics. First, we elaborate on the work of Dhamija et al.
(2018) by evaluating the behaviour of their approach when facing the diverse and similarity-
varying scenarios proposed by (Bhoumik, 2021). Second, we extend the method proposed by
Schnyder (2021), studying the effect of adversarial training in the context of open set recognition
in complex scenarios. The major contributions of this work can be summarized as follows:

• We evaluate the entropic open-set and objectosphere approaches under diverse and similarity-
varying scenarios.

• We propose a training method to include adversarial samples into OSR scenarios.

• We show that training with adversarial samples under specific conditions helps to improve
the performance in OSR.

1.2 Thesis Outline
This document is organized as follows: Chapter 2 reviews the description of open-set scenar-
ios and the most relevant related approaches to this work. Chapter 3, describes our proposed
methodology to face open-set scenarios in detail. The findings of this work are presented in chap-
ter 4 and discussed in chapter 5. Finally, Chapter 6 presents the conclusions and future work.



Chapter 2

Background and Related Work

In this chapter, we briefly summarise relevant strategies to OSR and adversarial training. Sec-
tion 2.1 introduces the open set scenario definition. Section 2.2 presents approaches that address
OSR. Section 2.3 describes the main methods related to this work, the entropic open-set and ob-
jectosphere losses. Section 2.4 describes the ImageNet protocols, an approach to create OSR sce-
narios. The final two sections are dedicated to adversarial training. Section 2.5 describes methods
to generate adversarial samples, and section 2.6 describes adversarial training approaches.

2.1 The open set scenario
The excellent performance reported by DNNs-based systems is typically achieved under a static
environment or closed-set assumption, i.e., the classes are known and the samples drawn from
the same distributions in training and test time; no new unknown classes are present at inference
time. However, real data is dynamic and sometimes unpredictable, and DNNs need to cope with
unknown samples. The OSR approach aims to correctly classify samples from the known classes
while discarding samples from unknown classes. Dhamija et al. (2018) propose the following
notation:

• Set C = {c1, . . . , cC} of Known classes: Classes of interest, positive examples that the clas-
sifier shall identify. The training samples of known classes C are denoted Dc’ and the test
samples Dc.

• Set U of unknown classes: All classes the classifier needs to reject. This set is partitioned in:

– Set B of known-unknown classes: Negative examples or garbage classes present in
training. The training samples from known unknown classes B are denoted Db’ and
the test samples Db.

– Set A of unknown-unknown classes: The infinite set of classes not available during
training, only present at testing time. The samples from unknown unknown classes A
are represented by Da.

Figure 2.1 shows the feature space of a four-class classification example using Nearest Class
Mean. In figure 2.1a, the data is reasonably classified. Still, suppose more regions of feature
space are considered, like in figure 2.1b. In that case, the class boundaries will include faraway
unknown examples, possibly the “?” samples do not belong to any of the known classes. The
space that is far from C classes is named open space. Recent approaches model the open space with
B, where the classifier learns to reject them by thresholding a score. However, it is challenging
to find appropriate B classes to model the open space since U is infinite. Note that a trade-off
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can be created between strong dejection of unknown samples at the cost of accuracy in the C
classification. For example, in principle, a standard cross-entropy loss achieves high accuracy
rates by admitting all unknown samples.

(a) Closed-set approach (b) Open set approach

Figure 2.1: OPEN SPACE. (a) shows a closed-set approach using Nearest Class Mean. Region boundaries
and mean classes (stars) are innacurate when zooming out to the open space like in (b). The unknown
samples “?” will get a known label. Source Boult et al. (2019).

2.2 Open Set Recognition Approaches
The open set recognition task aims to correctly classify samples from the known classes while
discarding samples from unknown classes. However, the study of unknown instances is not new
in the literature. For example, Novelty Detection (ND) focus on identifying test instances that do
not belong to training classes. ND can be seen as a binary classification problem that determines if
an instance belongs to any of the training classes or not, but without exactly deciding which class
(Bodesheim et al., 2015). This method is also known as Out of Distribution Detection (OOD). OOD
includes approaches in supervised, semi-supervised and unsupervised learning (Jiang et al., 2018;
Ren et al., 2019; Golan and El-Yaniv, 2018). Additionally, the formulation of multiclass-OOD is
similar to OSR.

Since Scheirer et al. (2012) formalized OSR as a constrained risk optimization problem; re-
searchers have proposed several approaches for robust systems to unknown classes. The problem
consists on finding balance between known space and open space. Geng et al. (2021) conveniently
classifies the OSR approaches based on two perspectives: discriminative and generative models,
as depicted in figure 2.2. The discriminative models are divided into Traditional Tachine Learning
(TML) and DNNs. TML-based approaches include adaptations to the OSR scenario of methods
like SVM, sparse representation and nearest neighbour. Similarly, DNN-Based models use their
powerful learning representation and adapt it to the OSR scenario. Representative examples are
OpenMax (Bendale and Boult, 2016), Classification reconstruction for OSR (Yoshihashi et al., 2019)
and both the Entropic Open Set loss and Objectosphere loss proposed by Dhamija et al. (2018).

Generative models can be divided into two groups: instance and non-instance generation. The
first group uses adversarial learning techniques to account for B classes with samples generated
by a Generative Adversarial Network (GAN) or an autoencoder. A few representative exam-
ples are Generative OpenMax (Ge et al., 2017) and Open-Category Classification by Adversarial
Sample Generation (Yu et al., 2017). On the other hand, non-instance generation models are not
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widely studied, but they rely on Dirichlet processes to deal with the OSR scenario, for instance,
Collective Decision for Open Set Recognition (Geng and Chen, 2022).

O
SR

Discriminative 
Model

TML Based

DNN Based

Generative Model

Instance 
Generation

Non-Instance 
Generation

Figure 2.2: OSCR APPROACHES CLASSIFICATION. The approaches are classified by model type. Pro-
posed by Geng et al. (2021).

2.2.1 OpenMax
Bendale and Boult (2016) proposed OpenMax, a meta-recognition approach that is one of the first
attempts to adapt DNNs to OSR without B classes. This approach extends a pretrained softmax-
based DNN classifier with a score calibration module. Instead of using the softmax scores, it
captures the sample’s information from the activations that will be normalised by the softmax:
logits. The intuition is that the logits (here named Activation Vectors AV) are not class indepen-
dent, but instead, they reflect the similarity or the distance between classes. The author model
each class by the Mean of the Activation Vectors (MAV) of the correctly classified samples of such
class, expecting that samples from the same class will have a similar AV. Note that the distribution
of each class is represented by a single point in the AV space. Furthermore, the author showed
that samples from similar classes (like shark and shark wale) do indeed have similar activation
vectors.

The distance from a sample to its corresponding MAV is calculated during training. The dis-
tance function is a weighted sum of Euclidean and cosine distances, but several others can be
implemented. Additionally, the distances between samples and the MAV can be modelled as ran-
dom variables. In particular, using Extreme Value Theory (EVT), the maximum distance between
a correctly classified sample and its MAV is fitted using a Weibull distribution for each class.

Each resulting distribution uses a parameter pi that estimates the probability of a sample be-
ing an outlier for the corresponding class i. Every pi is used to calibrate the final class score.
Instead of using the maximum activation of an AV, the top−j activations are employed, assum-
ing the other activations do not carry meaningful information. The top−j activations are used
to recalibrate the distributions weights and class activations. Additionally, a pseudo-activation is
calculated and inserted in the first position of the calibrated AV. The pseudo-activation represents
the unknown class. Finally, softmax normalisation is applied over all the calibrated activations,
obtaining comparable scores over all classes.

OpenMax effectively handles OSR extending the softmax cross-entropy loss. The algorithm
was implemented using a pre-trained AlexNet network (Krizhevsky et al., 2012). OpenMx was
tested on ImageNet data, including sets of adversarial images (disturbed images that cause mis-
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classification), open set images (real images from unknown classes), fooling images (artificial im-
ages created to make a particular class have high activation). Figure 2.3 shows the AV represen-
tation of the model. Note that there is a strong correlation in natural image response patterns
(model, real image).

Figure 2.3: OSCR APPROACHES CLASSIFICATION. Activation vectors for 5 images, each one separated
for a black line. Each AV is depicted as a 10x450 color pixels, green means high activation values. For related
natural images AV have strong correlation patterns like in Hammerhead Shark and Great White Shark.
Range of 5 categories are identified at the bottom of the image. Source (Bendale and Boult, 2016).

OpenMax showed that the AV (logits) contain information about the class distribution and
can be used to estimate a rejection score. In our study we evaluate state-of-the-art approaches
that use the logits and the activations before the logits (deep features) to increase score separation
to discard unknown samples.

2.2.2 Generative OpenMax
Ge et al. (2017) proposed Generative OpenMax (G-OpenMax) as a natural extension of OpenMax.
Instead of calculating a pseudo activation for the unknown classes, G-OpenMax creates synthetic
images to directly calculate the probability of the unknown class. This approach creates synthetic
samples that are distinct from known samples and possibly good representatives of the open
space. These synthetic samples are processed as an extra training label.

Apart for creating unknown examples, this approach is very similar to OpenMax, as it keeps
the use of MAVs and Weibull distributions for score calibration. G-OpenMax provides explicit
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probability estimation of the synthetic class, thus the score calibration is done over C + 1 classes,
where the additional class represents the unknowns. The additional class enables the model to
find a threshold to separate C from synthetic B samples.

G-OpenMax assumes that the open space classes belong to a subspace of the universal space.
In this assumption, unknown classes share some patterns with the known classes. For example, if
a system is trained for gray-scale English character recognition, an open set class might be related
to characters of other alphabets. For instance, an RBG image is not expected in the character’s
trained system. The assumption allows treating the open space classification problem as closed
space (a very strong assumption). Consequently, to represent the open space, samples from the
known subspace are drawn. This artificial samples are generated from a mixture of the C distri-
butions in latent space. A generator is trained following the standard minimax optimization in
conditional GAN (Odena et al., 2017).

Figure 2.4 shows the diagram of the preprocessing and score calibration in OpenMax and
G-OpenMAX. The pretraining of G-OpenMax utilizes the synthetic sample as class C + 1 and
the score calibration follows the same process as OpenMax. G-OpenMax works well under small
datasets like MNIST (LeCun et al., 2010) and HASY (Thoma, 2017) but does not improve perfor-
mance with natural images (ImageNet).

(a) Network pretraining (b) Score Calibration

Figure 2.4: OPENMAX AND G-OPENMAX TRAINING. (a) OpenMax trains a DNN using the set of
known classes. In contrast, G-OpenMax uses a generative adversarial network DNNG to train the network
including a synthetic sample as the unknown class. (b) Both use EVT to fit Weibull activations; no pseudo
activation is required in G-OpenMax. Source Ge et al. (2017).

This is one of the first approaches that used GANs to fabricate B class samples, there are more
robust systems like Generative-Discriminative Feature Representation for OSR (GDFR) (Perera
et al., 2020), Open Set Learning with Counterfactual images (Neal et al., 2018) or Classification by
Adversarial Sample Generation (Yu et al., 2017).

In our study instead of using GANs, we fabricate adversarial samples of natural images to
represent samples from B.
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2.3 Loss Functions
This section presents the description of the classical softmax cross-entropy loss, and a recent ap-
proach that extends the softmax loss to include unknowns.

2.3.1 Softmax Loss
DNNs typically use the softmax cross-entropy loss to solve a classification task. The softmax is a
normalisation function applied to the logits activations. The raw non-normalized logits vector is
transformed into positive scores that sum to 1 across all input values (Bridle, 1990). Consider a set
of known classes C = {c1, . . . , cC}, the softmax value of a class c of an input sample x is defined
by:

Sc(x) =
elc(x)∑

c′∈C
elc′ (x)

(2.1)

Where lc(x) is the logit value for class c. Moreover, the cross-entropy loss for an input sample
is:

JS(x) = − logSc(x) (2.2)

The softmax cross-entropy loss has dominated the classification task approaches because its
outputs are considered class probabilities and have good differentiation properties. The softmax
outputs are also referred to as confidences or softmax scores. During training, the objective of
the softmax loss is to make the predicted probability of the target class larger than other classes.
Despite its great success, softmax has two main drawbacks. First, it tends to bias the probabilities
towards certain classes even when the differences between logit values are minimal (Matan et al.,
1990); consequently, DNN could predict with high confidence an incorrect class. Second, the
normalisation is inherent to the closed-set assumption, limited to C classes, making it unsuitable
for OSR scenarios.

2.3.2 Softmax with Garbage Class
Detection approaches use a modified version of cross-entropy loss to discard background objects
(Liu et al., 2016; Ren et al., 2016). All samples from uninteresting classes are grouped under a
common garbage or background class. In training, DNNs use samples from B to find boundaries
between C and B classes, hoping that the boundaries generalize well when facingA classes. Nev-
ertheless, this approach is limited in some real-world applications since it is a probable source of
dataset bias (Tommasi et al., 2017), and U can contain significantly diverse examples. Figure 2.5
shows the feature space of a bottleneck network for MNIST classification using a softmax with
garbage class, note that A samples overlap with regions of C classes.

2.3.3 Entropic Open-Set Loss
Dhamija et al. (2018) proposed a simple but elegant approach to OSR. Rather than directly creating
mechanisms to reject unknown samples, they proposed the Entropic Open-Set loss, a function that
aims to produce robust deep features against unknown classes and increase separability between
them. The entropic open-set requires known unknown samples during training (Db’) to learn
how to reject them. It contemplates two cases. First, it uses the traditional softmax loss in training
samples from C classes (Dc’), penalizing predictions of low scores for a target class. Second,
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Figure 2.5: FEATURE SPACE VISUALIZATION. Feature space of LeNet++ for MNIST classification with
garbage class. The unknownA samples (black) are pushed to the left side of the space. Source Dhamija et al.
(2018).

for unknown samples, it attempts to maximize the entropy of the softmax responses by making
them uniform over all C classes. As a result, the Entropic Open-Set loss increases the separability
between knowns and unknowns and is defined by:

JE(x) =

− logSc(x), if x ∈ D′c
− 1
C

∑
c∈C

logSc(x), if x ∈ D′b
(2.3)

This loss achieves its minimum value for Db’ samples when the softmax scores are identical.
Intuitively, since the softmax scores are interpreted as class probabilities, the maximum entropy is
achieved when all classes have the same predicted score. Note that equal softmax scores require
equal logit values for each class. In practice, one can use weights to balance the loss contribution
of Db’. For instance, if x ∈ D′b the loss can be calculated as:

JE(x) = −
ω

C

∑
c∈C

logSc(x) (2.4)

Where w influences the model’s behaviour between improving the accuracy of known classes
and the separability between the knowns and unknowns, ω = 0 is equivalent to the softmax loss.
This approach brings alternatives to the problem of predicting wrong classes with high confi-
dence. Ideally during inference, Db samples have low scores on all classes while target classes
of Dc have high scores. Therefore, thresholding the score would be a suitable option to discard
unknowns.

2.3.4 Objectosphere Loss
Dhamija et al. (2018) observed that on networks trained with Entropic open-set loss, the mag-
nitude of the deep features of unknown samples is, in general, smaller than the magnitude of
the known samples. Furthermore, in networks whose logit layer does not have a bias term, the
Entropic Open-Set loss is minimized if the deep features vector is ~0.

Let F (x) ∈ RD be a deep feature vector, L(x) ∈ RC the corresponding logit vector and W ∈
RC×D the weight matrix that connects F (x) to L(x). For networks with no bias in the logit layer
L(x) = W · F (x). If F (x) = ~0, then L(x) = ~0, and the softmax entropy is maximized with
probability of 1

C for all classes. The solution is not unique since there might be more vectors in the
nullspace of W .
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The Objectosphere loss attempts to push F of unknown samples to the center of the feature
space by penalizing its magnitude, ideally ‖F‖ = 0 if x ∈ D′b. In contrast, the loss penalizes small
‖F (X)‖ of known classes by setting a minimum threshold ξ. The trained network should produce
robust features to unknown classes, responding only to samples from C classes. The objectosphere
loss is formulated as follows:

JO(x) = JE(x) + α ∗

{
max(ξ − ‖F (x)‖, 0)2, if x ∈ D′c
nomenclature‖F (x)‖2 if x ∈ D′b

(2.5)

ξ sets a norm threshold but also scales the loss value. In practice, α and ξ must be chosen, so
the second term in 2.5 is comparable with JE .

The histograms in figure 2.6 show the effect over the deep feature’s magnitudes of the soft-
max, entropic open-set, and objectosphere losses. Although the objectoshpere loss best separates
known and unknown samples, it does not guarantee the best classification accuracy between
known classes. Section 4.1 will deepen on this topic and discuss appropriate evaluation methods
in the OSR scenario.

(a) Softmax (b) Entropic Open-Set (c) Objectosphere

Figure 2.6: DEEP FEATURES HISTOGRAMS. Normalized histogram of ‖F‖. Known samples (green)
correspond to the 10 classes in MNIST, unknown classes (red) come from the Devanagari dataset. In (a)
the unknown samples have in average smaller deep feature magnitudes. The separation is improved when
including unknown samples in the Entropic Open-Set loss (b) and Objectosphere loss (c). Source Dhamija
et al. (2018).

The previous approaches require training a DNN model with samples of B classes. Naturally,
it is challenging to choose representative known-unknown samples because the open space is
infinite. Dhamija et al. (2018) observed that samples from B classes distinctly different from C
classes do not provide robustness to unknown unknowns A, however, training with Db’ with
some similarity to Dc’ can increase the robustness of the model. In their experiments, the known
classes are restricted to CIFAR-10 (Krizhevsky and Hinton, 2009) or MNIST digits (LeCun et al.,
2010), and unknown-unknowns are sampled from small datasets such as SVHN (Netzer et al.,
2011), Devanagri (Acharya et al., 2015) or subsets of CIFAR100.

One of the objectives of this thesis is to evaluate the performance of the entropic open-set and
objectosphere approaches in more challenging OSR scenarios, including natural images of diverse
known and unknown classes.

The following section describes the Imagenet dataset and the Imagenet open-set protocols,
an approach to construct OSR scenarios with different levels of diversity and similarity between
known and unknown classes.

2.4 Imagenet Open Set Protocols
In this section, the ImageNet Open-Set protocols are described. Section 2.4.1 introduces the Ima-
genet dataset and section 2.4.2 describes the protocols.
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2.4.1 Imagenet Dataset

As the image processing research advances, more diverse and challenging datasets are needed to
feed state-of-the-art algorithms. Small datasets like MNIST, CIFAR or NIST have enabled signif-
icant progress in the ML community serving as training and evaluation benchmarks. However,
nowadays, new algorithms require more extensive and diverse datasets such as Imagenet (Deng
et al., 2009).

Imagenet is an extensive hierarchical image database that provides more than 14 million
human-annotated images. The critical property of Imagenet is its WordNet-based hierarchical
structure (Miller, 1998). WordNet is a lexical database of English nouns, verbs, adjectives and ad-
verbs grouped into sets of cognitive synonyms synsets 1. Words that denote the same concept are
grouped into the same synset. The synsets are linked using relations, which most relevant is the
“ISA” relation. For example, it links a synset of general meaning “vehicle” to increasingly specific
synsets like “craft” and “watercraft”, indicating that the synset “vehicle” contains “craft”, which
in turn contains “watercraft”. Figure 2.7 shows two examples from paths starting in “mammal”
and “vehicle” respectively. In this tree-like structure, we call superclass to any synset that con-
tains one or more synsets, a subclass to any synset contained by a superclass, and leaves to synsets
with no subclasses. To date, Imagenet provides between 500-1000 images per each of the 21’831
indexed synsets.

Figure 2.7: IMAGENET SNAPSHOT. Path examples from “mammal” and “vehicle” superclasses. In every
step the superclass is more specific until reaching leaves synsets. Soruce Deng et al. (2009).

Russakovsky et al. (2015) proposed the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), which included image classification, object localization, and object detection tasks.
ILSVRC provides training, validation and test sets which are subsets of Imagenet. The training
and validation labels are publicly available, however, the test labels are kept private. Further-
more, The data contains 1000 classes, including subclasses and leaf classes that do not overlap,
the training data contains 1.2 million images, the validation 50’000 and the testing 100’000.

ILSVRC was held between 2010 and 2017, becoming the standard benchmark for image clas-
sification, although the latest dataset update was released in 2012 (ILSVRC2012). The winners of
the challenge include well-known DNN architectures such as AlexNet (Krizhevsky et al., 2012),
GoogLeNet (Szegedy et al., 2015), VGG (Simonyan and Zisserman, 2015), ResNet (He et al., 2016)
and SeNet (Hu et al., 2018).

1https://wordnet.princeton.edu/
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2.4.2 Imagenet Open-Set Protocols
In order to create more general and challenging OSR scenarios, Bhoumik (2021) proposes three
Open-set protocols. Each protocol is a subset of ILSVRC2012, which exploits the WordNet hierar-
chical structure to sample classes to construct C, B, andA. Each protocol creates an artificial open
space with varying similarities between C, B, and A. Additionally, the protocols vary the simi-
larity inside C classes, increasing the difficulty to classify them while discarding B correctly. The
notions of similarity and difficulty are qualitative and determined mainly by visual inspection.

We denote Ci, Bi, and Ai as the knowns, known-unknowns and unknown-unknowns of pro-
tocol i respectively. Table 2.1 shows the criteria of the selected synsets for each protocol.

Class Type

Protocol C B A

1 All dog classes: Dog
(116 synsets)

4-legged animals exclud-
ing dogs: Fox, Wild dog,
Wolf, Feline, Bear, Muste-
line, mammal, Ungulate,
Primate (67 synsets)

Non-animals: Food, Mo-
tor vehicle, Device (166
synsets)

2 Subclasses of Hunting
dog (31 synsets)

Subclasses of Hunting dog
mutually exclusive with C2
(30 synsets)

Subclasses of dog, 4-
legged animals, mutually
exclusive with C2 and B2:
Toy dog, Fox, Wild dog,
Wolf, Feline, Bear, Muste-
line mammal, Ungulate
(55 synsets)

3 Subclasses of living-
beings and objects:
Subclasses of Dog,
Bird, Insect, Fur-
niture, Fish, Mon-
key,Car, Cat,Truck,
Fruit, Fungus, Boat,
Computer (159
synsets)

Subclasses of living-beings
and object classes mutu-
ally exclusive with C3: Sub-
classes of Dog, Bird, Insect,
Furniture, Fish, Monkey,
Car, Cat, Truck, Fruit, Fun-
gus, Boat, Computer (137
Synsets)

Subclasses of Super-
classes of C3 mutually
exclusive with C3: Rep-
tile, Clothing, Ungulate,
Vegetable,Aircraft (116
synsets)

Table 2.1: IMAGENET PROTOCOLS CLASSES OVERVIEW. The general description and count of the
synsets included in each protocol. Source Bhoumik (2021).

Protocol 1 (P1) has significantly different C1 and A1 classes, while C1 are similar to B1 classes.
In principle, it should be easy to separate knowns from unknowns. However, achieving high
accuracy in known classes can be challenging.

In Protocol 2 (P2), C2 and B2 samples should look very alike, as both are types of Hunting
dog. Furthermore A2 should also be similar as includes 4-legged animals and more subclasses of
dogs. Since all sets are similar, it can be difficult to classify C2 and separate A2. This is the most
specialized protocol.

Protocol 3 (P3) uses a broad spectrum of synsets. Subclasses and superclasses of selected



2.5 Adversarial Attacks 13

synsets combine living beings and objects in all C3, B3, and A3. The A3 can be similar to both
C3 and B3. In principle, it should be difficult to classify knowns and discard unknowns correctly.
This protocol should be the most challenging and it could indicate how well the models generalize
in broad open space and intermixed classes.

The protocols ensure that the data for known classes is balanced. Figure 2.8 shows randomly
sampled images from the three protocols. A1 examples (figure 2.8c) are clearly different from C1
(figure 2.8a) and B1 (figure 2.8b), but C1 and B 1 share some similarities, such as the fur and the
face features of four-legged animals. Moreover, in B1, some bears and foxes can be very similar
to dogs. The examples of C2 and B2 are very similar (figures 2.8d and 2.8e), although there are
differences between the dogs’ colors and shapes. Finally, given its design, P3 is complex and
diverse, so it is difficult to see a pattern in the small snapshot (figures 2.8g to 2.8i). We must be
cautious with these observations and with the intuition behind the protocols, as normally DNN
classifiers try to minimize a defined loss function, and tend to use any available pattern to do so,
including patterns that look incomprehensible to humans (Ilyas et al., 2019). So the presence of a
“tail” or “4-legged animals” is not more natural to a classifier than any other predictive feature in
the data.

In this work, we will evaluate the performance of a DNN model in the three protocols using
softmax, entropic open-set and objectosphere losses. Additionally, we will explore a method
to improve the classifier’s performance by including adversarial samples in training time. In
section 2.5 we describe the methods to generate adversarial samples. Finally, section 2.6 describes
the basic notion of adversarial training.

2.5 Adversarial Attacks

DNNs have supported significant progress in image classification and object detection tasks, be-
coming essential components in autonomous driving, face recognition, or biomedical image sys-
tems. Given the broad applications, concerns about the security and robustness of the DNN
algorithms have been raised. In particular, the study of robustness and performance of DNN
algorithms in the presence of adversarial samples is a topic of great interest.

An adversarial attack is a constructed sample designed to induce misclassification of a DNN
classifier. Szegedy et al. (2014) discovered that many models are vulnerable to adversarial sam-
ples, pointing out that it is possible to take a correctly classified sample and apply a small pertur-
bation (sometimes imperceptive to the human eye) to get a wrong classification. Figure 2.9 shows
examples of adversarial samples for three DNN architectures. Attacks with adversarial samples
have been studied extensively because DNN algorithms should perform well under varying lev-
els of uncertainty in the input space (Ben-Tal et al., 2009). For example, when faced with data
coming from slightly different distributions like adversarial samples or possibly very distinct
distributions, such as an OSR scenario. The phenomenon of adversarial samples is not fully un-
derstood. Ilyas et al. (2019) recently approached adversarial vulnerability as a consequence of
the supervised learning paradigm, claiming that adversarial vulnerability is a result of the DNN
sensitivity to well-generalizing features in the data. These features often look incomprehensible
to humans.

Szegedy et al. (2014) formally define an adversarial sample as follows: Given a classifier Hθ

where θ are the classifier parameters, an unperturbed (clean) image sample x with ground truth
label ĉ, an adversarial sample x′ is constructed by applying the minimal perturbation δ such that
x′ is classified with a different label c̃ : argmin

δ
Hθ(x + δ) = c̃. Finding the perturbation is an
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(a) Protocol 1: C1 (b) Protocol 1: B1 (c) Protocol 1: A1

(d) Protocol 2: C2 (e) Protocol 2: B2 (f) Protocol 2: A2

(g) Protocol 3: C3 (h) Protocol 3: B3 (i) Protocol 3: A3

Figure 2.8: IMAGENET OPEN-SET PROTOCOLS SNAPSHOT. Rows correspond to each protocol.

optimization problem:
min
x′
‖x′ − x‖p

s.t. Hθ(x
′) = c̃

(2.6)

Where ‖ · ‖p is a distance function between the image’s pixels:

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

(2.7)
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Typical choices are p = {0, 1, 2,∞}, denoted as Lp. In particular, L∞ measures the maximum
change in any element of x without restricting the number of pixels.

(a) CaffeNet (b) VGG-F (c) GoogLeNet

Figure 2.9: ADVERSARIAL SAMPLES FOR DNN MODELS. Examples for (a) CafeNet, (b) VGG-F and (c)
GoogLeNet architectures. Although the perturbation is visible, it does not change the content of the image.
However, all images are misclassified with confidence >80% Source Akhtar and Mian (2018).

There are many types of adversarial attacks, we will describe two methods that approximate
a solution to equation (2.6). The following section 2.5.1 describe types of adversarial attacks.
Section 2.5.2 presents the Fast Gradient Sign method and section 2.5.3 describes iterative methods.

2.5.1 Taxonomy of Adversarial Attacks
Serban et al. (2020) classifies the adversarial attacks based on three criteria: attack goal, attack
knowledge and attack strategy.

• Attack goal:

– Untargeted attack: The objective is to produce a sample classified to any incorrect class.

– Targeted attack: The sample is misclassified to a specific incorrect class.

• Attack knowledge:

– White box: the attack has complete knowledge of the model, i.e. an attacker has the
necessary information to replicate the model or learn the data-generation distribution.

– Black box: The attacker can only observe the labels assigned by the DNN for chosen
inputs.

• Attack strategy: An attack can be classified using the perturbation type and the algorithm
type.

– Perturbation type:
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* Noise-based: Adding white noise in specific image regions.

* Geometric-based: Use common geometric transformations like rotation or transla-
tion to induce classification error.

– Algorithm type:

* Optimization: Use optimization algorithms to find solutions for equation 2.6.

* Use sensitivity analysis algorithms to find sensitive features and perturb them.

* Generative: Learn distribution of perturbations using generative models.

We focus on two white-box untargeted attacks that are proven simple yet effective.

2.5.2 Fast Gradient Sign Attacks
Goodfellow et al. (2015) proposes the Fast Gradient Sign Method (FGSM), assuming DNN classifiers
have a linear behaviour in higher-dimensional space. The perturbation δ is computed as follows:

δFGSM = ε · sign (∇xJ(θ, x, ĉ)) (2.8)

Where ε is a small scalar that limits pixel perturbation under an L∞ constrain, J(θ, x, ĉ) is the
DNN cost function given the parameters θ, image x and target class ĉ. FGSM perturbs the image to
increase the loss of the classifier, the sign function ensures the magnitude of the loss is maximized.

Miyato et al. (2018) proposed a similar method, normalizing the variation of FGSM using L2

distance:

δFGL2
= ε · ∇xJ(θ, x, ĉ)

‖∇xJ(θ, x, ĉ)‖2
(2.9)

Rozsa et al. (2016) proposed the Fast Gradient Value (FGV), where instead of using the gradient
sign, the perturbation uses a scaled raw loss gradient. The objective is to find more diverse adver-
sarial samples by applying larger perturbations to pixels with bigger gradients, in contrast with
FGSM, that uses the same perturbation magnitude for all pixels. Compared to FGSM, this slight
modification leads to different directions where different adversarial examples exist. Figure 2.10
shows that samples produced by FGSM cover the entire image while FGV generates more focused
perturbations.

δFGV = ε · ∇xJ(θ, x, ĉ) (2.10)

(a) FGSM (b) FGV

Figure 2.10: FGSM EXAMPLE. In (a) the perturbation produced by FGSM. In (b) the perturbation by FGV.
Note that FGSM affects more regions of the image.

FGSM methods apply a one-step gradient ascent on the classifier’s loss, focusing on the effi-
ciency of perturbation computation rather than achieving high success rates.



2.6 Adversarial Training 17

2.5.3 Iterative Attacks
Many adversarial attacks find the perturbation through iterative methods. For example, Projected
Gradient Descent (Madry et al., 2019), Carlini-Wagner Attacks (Carlini and Wagner, 2017) and
DeepFool (Moosavi-Dezfooli et al., 2016). Instead of using ε for a single-step gradient ascent,
iterative methods utilize small steps while adjusting the direction after each step. Kurakin et al.
(2017) propose the Basic Iterative Method (BIM) to compute the adversarial sample as:

x′0 = x,

x′i+1 = clipε

{
x′i + β · sign

(
∇xJ(θ, x′i, ĉ)

)} (2.11)

Where x′i denotes the adversarial sample at iteration i, β is a small step size, clipε clips pixel
values of intermediate results after each iteration to ensure they are in an ε-neighborhood of the
initial image x, this method finds stronger adversaries at a higher computational cost. A natural
extension replaces ĉ for a target class ct in equation (2.11). For instance, the iterative least-likely
class method chooses ct to be the least probable class predicted by the classifier.

2.6 Adversarial Training
Given the facility of adversarial samples to fool a DNN classifier, many defence mechanisms have
been proposed to increase robustness, for example, Network distillation (Papernot et al., 2016),
Input transformation (Guo et al., 2017), Adversarial Detecting (Metzen et al., 2017) or Dynamic
Adversarial Training (Wang et al., 2021). Goodfellow et al. (2015) proposed the basic notion of
adversarial training, which consists in including adversarial samples in training time, keeping
the original class label ĉ of the clean image x, and modifying the loss function as follows:

x′ = x+ ε · sign(∇xJ(θ, x, ĉ))
J̃(θ, x, ĉ) = γJ(θ, x, ĉ) + (1− γ)J(θ, x′, ĉ))

(2.12)

Where γ is a hyperparameter that weights the contribution of each term. J̃ intends to make the
classifier robust against a modified x′. Note that the adversarial samples are continually updated
to face the current version of the model.

2.6.1 Adversarial Training in OSR
Recently Schnyder (2021) investigated a method to include adversarial training into OSR scenar-
ios. The approach consists of training a classifier using known C classes and including adversar-
ial samples as B. Hoping that the adversarial samples are good open-space representatives. The
model is trained using the entropic open set loss on data from the MNIST dataset. Furthermore,
several adversarial attacks were tested, including FGSM, Projected Gradient Descent, Carlini-
Wagner and LOTS. The adversarial samples are included after the network correctly learns to
classify the original clean sample.

The method is tested on LeNet++ (Wen et al., 2016). This convolutional network allows to
visualise the feature space, since the last layers reduce the dimensionality of the features to 2
dimensions. Additionally, training LeNet++ on MNIST data allowed to try several adversarial at-
tacks. Figure 2.11 shows an example of the feature space of 10 MINST known classes and EMNIST
unknown classes. The approach showed promising results since the reported performance of the
classifier improved when compared with the same classifier trained on only Dc data. Especially,
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training with projected gradient descent (PGD-attack) adversaries improved the classification ac-
curacy.

However, the tested datasets are small and do not include natural images. Inspired by this
approach, we implement adversarial training in a similar way. However, we extend the work to
more complex OSR scenarios, using natural images and the size of the dataset requires an efficient
training method, our approach will be discussed in section 3.2.

(a) Training without adversarial samples (b) Training with adversarial samples

Figure 2.11: LENET++ FEATURE SPACE. Feature space of the LeNet++ classifier when trained on MNIST.
In (a) the classifier was trained only with Dc samples, the colored points distinguish the class and the black
points are EMNIST samples used as Da. In (b) the classifier was trained with adversarial samples, the
unknown samples are pushed to the origin of the feature space. Source Schnyder (2021).
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Methods

This work has two main objectives:

• Investigate the performance of state-of-the-art approaches in complexity-varying OSR sce-
narios. We evaluate the performance of DNNs trained on the ImageNet Open-set protocols
using entropic open-set and objectosphere losses.

• Investigate the impact of training with adversarial samples as hard negatives applied to the
OSR scenario.

The significant difference between our approach and previous methods is that we evaluate
the performance on the ImageNet protocols instead of related work approaches that use smaller
and more uniform datasets such as MNIST and CIFAR. Similarly, we use more C and B classes.
The ImageNet protocols provide several similarity levels between known and unknown classes,
making this evaluation closer to real-world scenarios.

The intuition behind the second objective is to create synthetic data to represent B classes from
the open space. Our approach focuses to utilize strong negatives to improve a classifier’s robust-
ness to unseen classes A. Since the set A is infinite, the choice of hard B classes is crucial. Instead
of modelling the open space with predefined B classes, we will use adversarial images. Ideally,
the classifier should learn to recognise classes of interest while discarding adversarial samples,
which are very similar in pixel space; therefore, if the model can discard similar synthetic sam-
ples, it could be more robust to further samples from the open space. Finally, we also investigate
the effect of training a classifier with B classes and adversarial samples.

The training method is fundamental, as using adversarial examples is computationally ex-
pensive and can lead to stability issues. Hence, we aim for efficient training methods, reusing
gradient calculations for sample generation and filtering the generation of adversarial samples.
All the implementation is done using the PyTorch framework 1.

This chapter is organised as follows: In section 3.1 we describe the DNN architecture and
section 3.2 describes in detail the training methods used in our approach.

3.1 DNN Classifier
In this work we use ResNet50, a DNN architecture that addresses a degradation problem shown by
previous models; when DNNs started converging, the accuracy was saturated and then rapidly
decayed, this condition was worsened in deeper networks (He et al., 2016). Moreover, ResNet
architectures allow deeper models to avoid degradation, using residual learning. If m(x) is the

1https://pytorch.org/docs/stable/index.html
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desired mapping that a DNN is supposed to learn, residual learning fits the residual mapping
f(x) := m(x) − x instead, and the original mapping is recast to f(x) + x. Optimising the resid-
ual map is more manageable than optimising the original map since the residual map avoids
vanishing gradient issues.

The residual mapping is implemented by adding shortcut connections between stacked layers
termed residual blocks. Figure 3.1 shows a ResNet50 residual block that comprises a shortcut
connection, convolutional layers, batch normalisation layers and activation layers. The shortcut
connection could also include convolutional layers to keep dimensions consistent.

ResNet architectures perform very well on object recognition and classification tasks, even
winning the 2015-ILSVRC. We will use ResNet50 because it achieves high classification accu-
racy with less complexity (about 0.85 billion parameters) than other state-of-the-art architectures.
Larger ResNet architectures like ResNet101 (1.7 billion) and ResNet152 (19.5 billion) only reduce
the top-1 classification error by 1.4% at a high parameters complexity cost.

Figure 3.1: RESIDUAL BLOCK. The first convolutional layer (yellow) consists of kernel size 1x1 and 64
channels, batch normalization (green) is applied before the activation layer (blue). Source He et al. (2016).

Figure 3.2 shows the architecture of ResNet models. Note that the last layer is a 1000-d fully
connected layer. For simplicity, we will reduce this layer dimension to fit the number of known
classes C, but other values (for example, to create a bottleneck) could impact the classifier perfor-
mance. We will extract the deep features from this layer’s activations. Lastly, we append a fully
connected layer to obtain the logits activations.

3.1.1 Batch Normalisation
The batch normalisation layers (BN) play an essential role in our experiments. BN layers proposed
by Ioffe and Szegedy (2015) make the training process converge faster and avoid exploding gra-
dient issues. The objective is to reduce changes in the distribution of the network activations due
to changes in the network parameters during training. Moreover, BN normalises the activations
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Figure 3.2: RESNET ARCHITECTURES. The architectures use only two types of stacked blocks, of two
and three convolutional layers. Although ResNet 152-layer has 11.3×109 FLOPs, still is a competitive value
For example VGG19 has 19.6× 109. Source He et al. (2016).

by estimating the mean and variance of each activation in the current batch. Consider a batch
S = {x1, . . . , xM} of size M , the mean µS and variance σS are calculated as follows:

µS =
1

M

∑
i∈S

xi ; σS =

√
1

M

∑
i∈S

(xi − µS)2 + r (3.1)

Where r is a small constant for numeric stability. Then a normalised activation is defined as:

x̂i = a · xi − µS
σS

+ b (3.2)

Where a and b are two learnable parameters. The activation values use a moving average
and variance that depend on both, the current sample and the other samples in the batch. Ad-
ditionally, the statistics are accumulated during the training process to get estimations over the
complete dataset. However, moving statistics are not desirable at inference time since the model’s
output should be deterministic. Hence, the BN-layer’s parameters and estimators are frozen dur-
ing inference, and the accumulated mean and variance during training are used at testing.

Note that BN assumes that the inference and training data follow the same distribution, as it
utilises the accumulated statistics. However, in an OSR scenario, the collected mean and variance
are incorrect, as data from new distributions are present at inference time. Furthermore, the issue
worsens when training with adversarial samples since µS and σS would include values from
purposely perturbed samples to change the data distribution. Hence, the shifts in µS and σS
generate performance degradation in both validation and testing. Figure A.3 shows an example
of the performance degradation caused by the accumulated statistics in BN layers.

We address this issue by stopping accumulating statistics from batches containing adversarial
images; if an adversarial image is present in the batch, BN layers use the accumulated statistics
up to the current iteration like in inference time. However, in mixed batches (containing clean
and adversarial samples), activations from some clean samples will be left out of the estima-
tion. Note that we do not freeze the learnable parameters. This can be efficiently done using the
mode.eval() and mode.train()2 functions in PyTorch.

2https://pytorch.org/docs/stable/generated/torch.nn.Module.html
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3.2 Adversarial Training for OSR
To include the adversarial samples, we adapt the adversarial loss proposed by Goodfellow et al.
(2015) (eq. 2.12). Let x be a clean image, ĉ the corresponding target label, θ the current network
parameters, x′ an adversarial sample fabricated from x, J(θ, x, ĉ) the loss function, for simplicity
we refer to the loss as J(x, ĉ) since the dependency on θ is clear. The loss for adversarial training
is calculated as follows:

J̃(x, c) = J(x, ĉ) + J(x′, c = −1) (3.3)
Note that for x′, we reserve c = −1 to define: x′ ∈ D′b. Objectosphere and entropic open-set are

not designed to produce an unknown class label. Instead, they procure to increase the separation
between C and U , so that it is possible to define threshold values for the softmax scores. Naturally,
the total gradient is the sum of the clean and adversarial loss gradients:

∇θJ̃(x, c) = ∇θJ(x, ĉ) +∇θJ(x′, c = −1) (3.4)
Recall that for FGSM in equation (2.8), x′ depends on the loss gradient with respect to the

input ∇xJ(x, ĉ) and the current network parameters θ. From an implementation perspective, the
adversarial sample x′ is obtained only after performing the forward pass and the backward pass
of x. Moreover, x′ should be used in the current iteration before the parameters θ are updated.

This approach increases the training time by calculating two losses in the same iteration with
sequential data. However, our implementation calculates ∇θ and ∇x in one backward pass us-
ing the Pytorch AutoGrad package 3, since the package allows to access multiple gradients on
the same backward pass. The adversarial samples should be produced on the fly in the current
iteration, and an additional forward pass is needed to compute J(x′, c = −1). AutoGrad automat-
ically accumulates the gradients. Finally, recall that we will stop collecting batch normalisation
statistics before using adversarial samples.

The approach can be applied to losses that consider unknowns and reserve unknown class
labels like entropic open set, objectosphere or softmax with garbage class, even mixtures between
different losses. Furthermore, this approach can also consider training cases with both B and ad-
versarial images. However, note that we are introducing more unknown samples to the training
data. For example, in a primary case, we can create one adversarial sample for every clean sam-
ple, which duplicates the actual size of the dataset, surely the loss hyperparameters will require
revision.

3.2.1 Sample Filtering
A classifier learns more from using an adversarial of a correctly classified sample than from a
misclassified one. In fact, an adversarial sample of a class that is not learned deviates from the
original adversarial purpose. Consequently, we add sample filtering, perturbing only correctly
classified clean samples. Sample filtering avoids duplicating the actual size of the dataset. From
equation (3.3), our intuition is that J(x, ĉ) ≥ J(x′, c = −1) when x is correctly classified; in this
case, the DNN could effectively learn to reject x′.

3.2.2 Waiting Epochs
Using a similar intuition as sample filtering, we consider including perturbed samples at different
training moments. The objective is to wait for certain epochs Nwait before including the adver-
saries, hoping that the model has already learned to classify some C classes. An edge case of this

3https://pytorch.org/docs/stable/autograd.html
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approach is to start using perturbations from the beginning of the training. However, we also
evaluate if letting the classifier train only with clean images for a certain epochs improves the
performance. Another edge case is to take a classifier fully trained and then include adversarial
samples in a fine-tuning fashion. For example, we take a fully trained DNN with softmax loss
and fine-tune it using an open-set loss with adversarial images.

We avoid using iterative methods like BIM (eq. 2.11) due to the intrinsic overhead of doing
iterations. However, doing an additional forward and backward pass is computationally expen-
sive. Algorithm 1 presents the pseudocode of our approach. It assumes filter() gets the indices
of correctly classified samples, and perturb() creates adversarial examples.

Algorithm 1 Adversarial Training for OSR using FGSM attacks

Require: Dataset, training epochs Nepochs, model Hθ, loss function J , filter() function, perturb()
function, optimiser, learning rate η.

1: for epoch = 1, Nepochs do
2: for batch B ⊂ Dataset do
3: Enable BN layers statistics collection
4: Get images and labels in B: xB , cB
5: Get model’s prediction: cB = Hθ(xB)
6: Calculate loss: l = J(ĉB , cB)
7: Do Backward pass on l to get: ∇θ,∇x
8: if epoch >= Nwait then
9: Filter samples: idx = filter(ĉB , cB)

10: if idx 6= ∅ then
11: xB_corr ← xB [idx], ∇x_corr ← ∇x[idx]
12: Disable BN layers statistics collection
13: Calculate adversarial samples: x′B = perturb(xB_corr,∇x_corr)
14: Get model’s prediction: c′B = Hθ(x

′
B)

15: Calculate loss: l′ = J(c′B , ~−1)
16: Do Backward pass on l′ to get: ∇′θ
17: Accumulate gradients: ∇θ ← ∇θ +∇′θ
18: end if
19: end if
20: Do optimiser step: optimiser(θ,∇θ, η)
21: end for
22: end for

Additionally, on top of algorithm 1, an early stopping method is implemented on the valida-
tion data. We can prioritise to obtain the maximum separation between C and B samples. For
example as a binary classifier. All known samples are treated as positives, and the unknown as
negatives.This way, we can find the maximum separation at the cost of classification accuracy.

3.2.3 Loss function
We use entropic open set, objectosphere and softmax cross-entropy losses. The softmax loss is
used as a benchmark, providing the closed-set reference point to all experiments. From the im-
plementation perspective, we use the default softmax cross-entropy loss from Pytorch 4. Given
that the known classes of the protocols are balanced, we do not add class weights. Entropic open

4https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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set loss and objectosphere loss implementations are based on the VAST library 5. These losses are
efficiently calculated in VAST, yet slight modifications are needed to fix issues in edge cases. For
example, when a batch contains only samples from B classes.

In case of an unbalanced dataset with respect to the B classes, the parameter w of the entropic
loss (eq. 2.4) needs to be tuned. Grid search can be implemented to find the best parameter to
obtain balance between classification accuracy and rejection of unknowns.

For objectosphere (eq. 2.5) ξ and α affect the loss value. Note that ξ could be seen as a threshold
that scales the deep feature’s magnitude. Still, we believe α is more important to increase sepa-
rability between C and U because it regularises the contribution of the deep feature’s magnitudes
to the loss. For simplicity, we variate α and keep a fix ξ. Moreover, in objectosphere, the JE term
enforces correct classifications intra C classes and separation from B, but the deep features term
only enforces unknowns separability. Hence, large α values could overshadow JE and decrease
the classifier performance.

5https://github.com/Vastlab/vast



Chapter 4

Experiments and Performance

This chapter describes the experiments and performance. Section 4.1 present the evaluation met-
rics used across all experiments. Section 4.2 describes the datasets and transformations used in
the images. Finally, section 4.3 presents a description of the experiments and the performance
achieved in each one.

4.1 Evaluation Metrics

4.1.1 Open-Set Classification Rate
Good evaluation metrics in OSR scenarios should address two requirements: the classifier’s ca-
pacity to reject samples from unknown classes and the correct classification of known classes.
Typical classification metrics only attend the second requirement. Recently Dhamija et al. (2018)
proposed the Open-Set Classification Rate Curve (OSCR), which addresses the two fronts. OSCR
utilises an operating threshold τ to calculate the Correct Classification Rate (CCR) and the False
Positive Rate (FPR). CCR is the ratio of Dc samples in which the target class ĉ has the maximum
probability, and it is greater than τ . FPR calculates the ratio of Du samples that are classified as
any of the known classes, with a probability greater than τ .

FPR(τ) =

∣∣{x | x ∈ Da ∧maxcP (c|x) ≥ τ}∣∣
|Da|

CCR(τ) =

∣∣{x | x ∈ Dc ∧ argmaxcP (c|x) = ĉ ∧ P (c|x) ≥ τ}
∣∣

|Dc|

(4.1)

Note that when τ is the smallest P (c|x) on Dc’, CCR is equivalent to the close-set accuracy.
Furthermore, CCR is calculated only on samples from Dc, avoiding dataset bias issues.

4.1.2 Confidence Score
We are interested in evaluating the capacity of the classifier to separate between samples from C
and U . For instance, the softmax score of a correctly classified sample should be as close to 1 as
possible, and unknown samples should have maximum entropy, i.e., the softmax score of every
class is 1

|C| . The confidence score resumes these observations as follows:

conf(x) =

{
Sĉ(x), if x ∈ Dc
1−max

c∈C
Sc(x) +

1
|C| , if x ∈ Da

(4.2)
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Where Sĉ(x) is the softmax score of the correct class. An unknown sample has high confidence
score if the maximum softmax score among the class predictions is low, ideally 1

|C| .

4.2 Data preprocessing
Table 4.1 shows the dataset size of each protocol. The biggest training dataset is from P3 contain-
ing 202’138 images, the smallest one is P2 with 60’684. Table 4.2 shows the samples per class dis-
tribution. All training sets are balanced as they contain approximately 1000 samples per known
class. P2 has only 31 classes, all corresponding to subclasses of dogs. Given its size, P2 is used as
a test scenario during algorithm development and parameter tuning.

Train Validation Test

Protocol D′c D′b D′a D′c D′b D′a Dc Db Da

1 116’212 69’680 - 29’061 17’420 - 5’800 3’350 8’300

2 30’629 30’055 - 7’661 7’517 - 1’550 1’500 2’750

3 161’661 140’477 - 40’425 35’122 - 7’950 6’850 5’800

Table 4.1: IMAGENET PROTOCOLS SIZE. The data size of each protocol. P1 and P3 have in total more
known samples than unknowns. However, P2 has a similar total number of known and unknown samples.
Source Bhoumik (2021)

All images from the ImageNet ILSVRC2012 dataset are stored as JPEG files, distributed on
several directories that define the class label, i.e., all images on the same directory are from the
same synset. A picture is in a particular category ck if it contains a ck entity, but an image might
contain different entities in the background. Each ImageNet protocol provides the class labels
and the corresponding paths to the images of such class. The class label −2 is reserved for all
Da samples, class label −1 is assigned to all samples from B classes, and the labels of samples
of C classes are integer values {0, . . . , |Ci|}, where |Ci| represents the number of known classes in
protocol i.

Train Validation Test

Protocol |C| Mean Std Mean Std Mean Std

1 116 1’001.8 108.1 250.5 26.9 50.0 0.0

2 31 1’001.7 120.2 250.5 29.9 50.0 0.0

3 152 1’027.9 56.2 257.0 14.0 50.0 0.0

Table 4.2: KNOWN CLASSES DISTRIBUTION. Distribution of the known classes over the dataset splits.
All protocols are constructed to have aprox. 1000 samples per known class in the training set.

The images have different sizes and resolutions. To standardise the input to the classifier, we
apply standard transformations like Krizhevsky et al. (2012). A raw JPEG image is transformed
to RGB format; then, the image is scaled, so the smaller dimension is resized to 256 pixels. We
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use bilinear interpolation in this transformation. Next, a 224x224 random crop is extracted. Ad-
ditionally, we use basic data augmentation, i.e. a random horizontal flip with probability p = 0.5.
However, we do not modify the colour intensities suggested by Krizhevsky et al. (2012). Finally,
the image is transformed into a normalised tensor with pixel values between [0,1] and shape (3,
224, 224). It is a common practice to normalise the images with pre-calculated mean and stan-
dard deviation of the ImageNet dataset (improves training stability and in some casses accuracy)
Nevertheless, we will keep a [0,1] range since we add L∞-bounded perturbations and clip values
to [0,1] range when using adversarial samples. This process is handled by a custom class that
inherits the Pytorch Dataset class 1.

Finally, the data is shuffled and segmented into batches using a standard Pytorch data loader
before sending it to the classifier. Typically, data pre-processing is a bottleneck, so we use several
workers to prepare the data, usually 4 per GPU. Moreover, we explored Nvidia Dali 2, a library
that accelerates preprocessing by using CPU cores and GPUs to prepare the data. The data is han-
dled using pipelines, where several transformations are available such as reading files, scaling,
cropping and colour transformations. The main difference is that a pipeline can execute transfor-
mations in a GPU, internally DALI perform transformations using CUDA tensors. Additionally,
DALI uses an iterator similar to the Pytorch data loader. Equivalent transformations were created
with Dali; although there is an improvement in the training speed, it is not significant for the scale
of this data. Nevertheless, the library can be convenient for larger-scale datasets.

4.3 Experiments
We divided our experiments into two phases; that are closely related to our main objectives.
The first phase evaluates the performance of entropic open-set and objectosphere losses on each
protocol. The findings of this phase are used as benchmarks for the second phase. Finally, the
second phase tests our adversarial training for OSR approach. This phase includes generating
adversarial samples, assessing performance for fixed and varying perturbation magnitudes, and
varying the training epoch at which the adversarial images are formed.

P2 is the smallest protocol and due to the computation cost, we reduced the number of ex-
periments for P1 and P3. Initially, an experiment is tested in P2, considering evaluation metrics,
stability and training time. In particular, training with adversarial samples might cause diver-
gence problems. Finally, if the P2 experiment is successfully finished and the evaluation metrics
indicate a promising approach, we replicate it to other protocols.

4.3.1 Phase 1: Training with clean images
This phase presents the experiments for training with softmax, entropic open-set and objecto-
sphere losses. The validation dataset is used to evaluate the training progress, and it requires a
defined threshold τ . We use τ = 0.5 on all experiments. However, the OSCR curve evaluates
the τ on the range [0,1]. Furtermore, we denote Si, as the classifier trained with softmax loss in
protocol i, similarly Ei for entropic open-set and Oi for objectosphere losses trained in protocol i.
Common hyperparameters over all experiments are:

• Epochs: 100

• Optimiser ADAM: (default parameters)

• Learning rate: 1e-3

1https://pytorch.org/docs/stable/data.html
2https://docs.nvidia.com/deeplearning/dali/user-guide/docs/pipeline.html
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• Batch size: 64

• Seed: 343443 (Same in all sources of randomness)

• Validation τ : 0.5

Table 4.3 shows the loss hyperparameters for every protocol. These parameters are found
using grid search, an example is presented in the supplementary figures A.1 and A.2.

Protocol Entropic Objectosphere
w α ξ

P1 1 1 10
P2 1 0.01 10
P3 0.1 0.1 10

Table 4.3: LOSS HYPERPARAMETERS. In the objectosphere loss ξ as fixed to 10.

Table 4.4 shows the results of phase 1. The confidence of every entropic open-set and objecto-
sphere classifier is greater than the corresponding softmax. However, for FPR = 1, the CCR of
softmax classifiers is higher in every protocol. Figure 4.1 shows the OSCR curves of the trained
classifiers. These models are used as benchmarks in the second phase. To determine the generali-
sation capacity of the models, in this phase, we depict the curves of validation and test sets. In the
validation set, we use samples from B to calculate FPR. While in the test set, only A samples are
employed, excluding possible samples from B classes. This compares the model’s performance
on unseen samples from the open space.

Figure 4.2 shows the normalised histograms of the score and deep features magnitude of the C
samples and theA. In the histograms is possible to determine the separation between the samples.

CCR at FPR of

Experiment Conf 10−3 10−2 10−1 0.5 1

Protocol 1
S1 0.5283 0.2848 0.4798 0.6378 0.7284 0.7329
E1 0.7867 0.1040 0.1040 0.6659 0.7067 0.7086
O1 0.8088 0.1064 0.4488 0.6212 0.6250 0.6260

Protocol 2
S2 0.3732 - - 0.4477 0.6645 0.7458
E2 0.7195 - 0.2265 0.4335 0.6065 0.6497
O2 0.6507 - 0.2684 0.5135 0.6994 0.7361

Protocol 3
S3 0.4151 - - 0.5507 0.7422 0.7989
E3 0.7063 - 0.1729 0.5925 0.7536 0.7884
O3 0.6947 - 0.2514 0.5829 0.7309 0.7676

Table 4.4: RESULTS OF PHASE 1 IN TEST SET. The last column FPR = 1 is equivalent to closed set
classification. All values are calculated on the test set. Moreover, the maximum CCR at a FPR of each
protocol is highlighted in bold. P1 is the only protocol that reaches FPR = 10−3.
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Figure 4.1: OSCR BENCHMARK. OSCR curve for every protocol (row) for validation and test sets
(columns). Validation Sets: E1 and O1 get quickly saturated, and the classifiers achieve high CCR values
at low FPRs. E2, O2, E3 and O3 have similar behaviours, showing better performance than the traditional
softmax in every protocol. At FPR = 1 all entropic and objectosphere losses achieve close values to the
softmax loss (Excepting O1). Test Sets: The performance of all entropic and objectosphere losses are similar
to the softmax. This implies that forA samples, entropic open-set and objectosphere drop rejection capacity.
However, noteE1 performs better than S1 at FPR ≤ 0.2. Similarly,E2 andO2 perform better at FPR ≤ 0.6.
Note that in P1 all losses are saturated at FPR ≥ 0.2, this means in P1 it is easy to reject samples from A
classes. Finally, note that at FPR = 1 the losses have slightly bigger CCR values. This might be caused by
the sampling process of the protocols.
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Figure 4.2: NORMALISED HISTOGRAMS. (a) Score Histogram: In blue is the score of the predicted class
of theDc samples. In red is the maximum class score of theDa. In P1, the S1 classifier assigns lower scores to
the unknowns, E1 and O1 improve this behaviour. P2 is more challenging, S2 gives high scores to unknown
values,E2 andO2 can reduce the scores ofDa samples. However, there still are overlaps for scores close to 1.
The classifiers in P3 have similar behaviour. (b) Features magnitudes histogram: The classifiers for P1 show
separation between the samples. Note that E1 pushes the norms of the unknowns to values close to 0. O1

increases the separation, but there is a slight overlap for magnitudes around the xi value. The distributions
for P2 show more overlap between the samples. For example, E2 reduces the magnitudes of both Dc and
Da, O2 corrects this behaviour by increasing the magnitudes of Dc. In P3, the magnitudes overlap in S3 and
E3. However, O3 can increase the magnitudes of Dc.
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4.3.2 Phase 2: Adversarial Training
In this phase we include adversarial samples using the adversarial training in algorithm 1. We
investigated three main cases:

• Case 1: Determine if adversarial samples can increase the robustness of a classifier to un-
known samples. We train an entropic open-set or objectosphere classifier with only adver-
sarial samples as unknowns. No other samples from B are used. Since the training dataset
includes only samples from C classes, the results are compared with a softmax benchmark.
We call these experiments basic adversarial.

• Case 2: Determine if adversarial samples can increase the performance of a previously
trained model. We use the softmax classifier of phase 1 and fine-tune it using the perturbed
images. We use either entropic open-set or objectosphere losses with only adversarial sam-
ples as unknowns to fine-tune the network. We refer to these experiments as fine-tune closed
set. In this case, the performance is compared with the original pre-trained classifier.

• Case 3: Determine if adversarial samples plus B samples increase the robustness of an open-
set classifier. In this case, we take an open-set trained classifier of phase 1 as the pre-trained
network and add only adversarial samples as unknowns for fine-tunning. We refer to this
experiment as fine-tune open-set.

In the experiments, we test different adversarial perturbation magnitudes. Additionally, we
use random noise perturbations as reference. Figure 4.3a shows examples of perturbed images
for distinct ε values. Similarly, we explore the progressive increase of the difficulty of the attack;
for this, we use an epsilon decaying strategy. The value of epsilon depends on µ, the decay factor,
and the current epoch. Additionally, as mentioned in the description of algorithm 1, we modify
the start epoch ep on which the perturbed images are generated. The list of hyperparameters is
extended as follows:

• Attacker:

– FGSM : Fast Gradient Sign.

– RN : Random Noise.

• Filtering type:

– filter: Perturb corrected classified images.

– full: Perturb all images.

• ε: Magnitude of the perturbation, applies for FGSM and RN

• µ: Decaying factor

• ep: Starting epoch of adversarial samples generation.

We denote the experiments as follows: Ei, ε = e, µ = u, ep = n, attacker(type). For example,
E1, ε = 0.5, ep = 33, FGSM(full) is a classifier trained in P1 with entropic loss, using ε = 0.5, the
image perturbation starts from epoch 33, the samples are disturbed by FGSM without filtering
the images (full). Additionally, to reduce the nomenclature, assume that µ = 1, attacker=FGSM ,
ep = 0 and type=filter unless another value is explicitly written.

Section 4.3.3 shows the results of P2. We present this protocol first as our approaches were
tested in P2 before replicating them in P1 or P3. Next, section 4.3.4 present the results of P1 and
section 4.3.5 the results of P3.
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(a) FGSM Perturbations

(b) Random Noise Perturbations

Figure 4.3: IMAGE PERTURBATIONS. In (a), the FGSM perturbations have a pattern. At ε = 0.01 is
challenging to distinguish the perturbations. In ε = 0.1, the perturbations are observable. In (b), the random
perturbations do not follow a pattern; from ε = 0.1, the image is blurred.
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4.3.3 Protocol 2

The results of P2 are presented in table 4.5. We report our results for each experimental case. Ad-
ditionally, the results are compare with the explicitly indicated benchmark, the best performing
classifier is highlighted in bold.

CCR at FPR

Experiment Conf 10−3 10−2 10−1 0.5 1

Basic Adversarial
Benchmark: S2 0.3485 - - 0.4477 0.6645 0.7458
E2, ε = 0.1, ep = 0 0.3712 0.1071 0.2303 0.4355 0.6142 0.6671
E2, ε = 0.5, ep = 0 0.3555 - - 0.4903 0.6761 0.7206
E2, ε = 0.5, ep = 33 0.3560 - - 0.4910 0.6716 0.7271
O2, ε = 0.5, ep = 0 0.3473 - - 0.4716 0.6542 0.7019
O2, ε = 0.5, ep = 33 0.3482 - 0.1826 0.5045 0.6923 0.7516

Fine-tune Closed-Set
Benchmark: S2 0.3485 - - 0.4477 0.6645 0.7458
E2, ε = 0.5, FGSMfull 0.3230 - - 0.5471 0.7323 0.7832
E2, ε = 0.5, µ = 0.96, FGSMfilter 0.7411 - - 0.0026 0.0252 0.0329
E2, ε = 0.5, RNfilter 0.3368 - 0.2581 0.5116 0.7110 0.7665
O2, ε = 0.5, FGSMfull 0.3228 - - 0.5445 0.7310 0.7794
O2, ε = 0.5, µ = 0.96, FGSMfilter 0.7395 - 0.0013 0.0077 0.0245 0.0368
O2, ε = 0.5, RNfilter 0.3295 - - 0.5561 0.7439 0.7910

Finte-tune Open-Set
Benchmark: E2 0.6424 - 0.2587 0.5187 0.6994 0.7368
E2, ε = 0.2, FGSMfilter 0.3784 - 0.3523 0.5587 0.7323 0.7755
E2, ε = 0.5, FGSMfilter 0.3818 - - 0.5639 0.7323 0.7794
E2, ε = 0.5, RNfilter 0.3368 - 0.2581 0.5116 0.7110 0.7665
Benchmark: O2 0.5690 0.1084 0.2684 0.5135 0.6994 0.7361
O2, ε = 0.2, FGSMfilter 0.3651 - 0.3174 0.5594 0.7394 0.7852
O2, ε = 0.5, FGSMfilter 0.3689 - 0.3026 0.5503 0.7303 0.7748
O2, ε = 0.5, RNfull 0.3792 - - 0.4839 0.6723 0.7213

Table 4.5: P2 RESULTS. Confidence and CCR for each experiment. Every set of experiments has a bench-
mark on top of the block. The highest value per experiment type is marked in bold.

The basic adversarial experiment in the first row of figure 4.4 shows that including the adver-
sarial samples helps to improve the performance of the classifier. The improvement using entropic
loss is clear when FPR ≤ 0.2, for bigger FPRs the difference is smaller, even S2 overperforms at
FPR ≥ 0.6. There is no significant difference between including the samples at epochs 0 and 33.
However, the difference is notorious for the objectosphere since the classifier (O2, ε = 0.5, ep = 33)
performs better than the softmax in all FPR values.

The second experiment shows that fine-tunning the softmax pre-trained classifier with adver-
sarial samples increases the performance in the OSR scenario. Note that in both cases, entropic
and objectosphere, the random noise has a similar effect as the FGSM perturbations. This similar
behaviour can be due to the considerable epsilon value since the distortion at ε = 0.5 hides the
original image. Note that the classifiers with decaying epsilon reduce the CCR values to almost 0.
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However, table 4.5 showed the confidence of the classifier is higher than the others in the exper-
iment. This increased confidence is explained by small epsilon values, as training with ε <= 0.1
reduces the network’s classification power. The adversarial images are too similar to the origi-
nal, and the model only learns to assign low scores to every sample, since the P2 test dataset has
almost three times more unknowns than knowns, the confidence is high.

Similarly, the third experiment shows a marginal increase in the performance of entropic and
objectosphere classifiers with respect to the E2 and O2 references. Note that the benchmarks
have been trained with known and unknown samples, and they can reject certain classes. In this
experiment, the FGSM perturbation is superior to the random noise (RNfilter and RNfull).
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Figure 4.4: P2 RESULTS. Results are depicted for entropic (left) and objectosphere (right) classifiers and
for all three experimental cases (rows).
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4.3.4 Protocol 1
The results of P1 experiments are presented in table 4.6 and figure 4.5. In this protocol, entropic
classifiers are mainly evaluated.

CCR at FPR

Experiment Conf 10−3 10−2 10−1 0.5 1

Basic Adversarial
Benchmark S1 0.5283 - 0.4802 0.6378 0.7284 0.7329
E1, ε = 0.5, pe = 20 0.6950 0.1278 0.4386 0.6740 0.6936 0.6936
O1, ε = 0.5, pe = 20 0.6914 0.2057 0.4714 0.6803 0.7000 0.7000

Fine-tune Closed-Set
Benchmark S1 0.5283 - 0.4802 0.6378 0.7284 0.7329
E1, ε = 0.2, FGSMfilter 0.5210 - 0.4597 0.6234 0.7095 0.7155
E1, ε = 0.5, FGSMfilter 0.5182 - 0.4724 0.6434 0.7224 0.7274

Finte-tune Open-Set
Benchmark E1 0.7867 - 0.1040 0.6659 0.7067 0.7086
E1, ε = 0.5, FGSMfull 0.6196 0.2055 0.4916 0.6500 0.7255 0.7283

Table 4.6: P1 RESULTS. Results of selected experiments

0.0 0.2 0.5 0.8 1.0

0.2

0.4

0.6

0.8

1.0 Basic Adversarial

S1
E1, = 0.5, ep = 20
O1, = 0.5, ep = 20

0.0 0.2 0.5 0.8 1.0

Fine-tune close-set

S1
E1, = 0.2, FGSMfilter

E1, = 0.5, FGSMfilter

0.0 0.2 0.5 0.8 1.0

Fine-tune open-set

E1
E1, = 0.5, FGSMfull

FPR

CC
R

Figure 4.5: P1 RESULTS. Left: Basic adversarial case, both classifiers E1 and O1 included. Middle:Fine-
tune close-set tested with entropic and large epsilons (ε = 0.2, 0.5). Right: fine-tune open-set tested with
ε = 0.5.
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4.3.5 Protocol 3
The results of the selected experiments are presented in table 4.7 and figure 4.6.

CCR at FPR

Experiment Conf 10−3 10−2 10−1 0.5 1

Basic Adversarial
S3 0.4151 - - 0.5517 0.7422 0.7989
O3, ε = 0.5, pe = 50 0.4280 - 0.2216 0.5142 0.7093 0.7662

Fine-tune closed-set
S3 0.4151 - - 0.5517 0.7422 0.7989
E3, ε = 0.5, FGSMfull 0.4405 - - 0.5524 0.7349 0.7855
E3, ε = 0.5, RN(full) 0.5347 - - 0.5820 0.7582 0.7933

Fine-tune open-set
E3 0.7063 - 0.1729 0.5925 0.7536 0.7884
O3, ε = 0.2, FGSMfull 0.5679 - - 0.5717 0.7428 0.7778
E3, ε = 0.5, FGSMfull 0.4405 - - 0.5524 0.7349 0.7855

Table 4.7: P3 RESULTS. Note that in fine-tune closed-set and fine-tune open-set, the tested classifiers do
not reach FPR= 10−2. It is challenging to discard unknowns in this protocol.
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Figure 4.6: P3 RESULTS. Left: Basic adversarial tested with objectosphere classifier. Middle: Fine-tune
close-set tested with entropic classifier. There is no significant improvement to the benchmark. However,
surprisingly, the random noise is making minor improvements. Right: Fine-tune open-set tested with objec-
tosphere and entropic classifiers.
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Discussion

In this chapter, we discuss the results of our experiments.
In the first phase, we can check that it is not challenging for a classifier trained on entropic

and objectosphere losses to reject images that are dissimilar to the known classes. For example,
figure 4.1 shows the case where E1 and O1 quickly saturate the CCR value in the validation set.
Similarly, in P2 and P3, the classifiers have similar behaviour, but the saturation of the CCR is not
as fast as in P1. That is expected, as the unknown values are more similar to the target images,
these classifiers would need a lower threshold τ to operate at their top CCR. Note that in the test
set, the entropic and objectosphere classifiers perform very similar to the softmax classifier in all
protocols, indicating that the classifiers learned to reject B but do not generalise to A.

Note that the CCRs of S1 and E1 are higher in the test set than in the validation set. Especially
the performance of S1 is improved in the test dataset. This behaviour can be due to a bias in the
test dataset or weigth parameters specific to the S1 classifier. Naturally, a way to corroborate the
S1 performance is to cross-validate. However, cross-validation is not recommended since it is
computationally expensive.

The histograms in figure 4.2a suggest that in P1 it is easy even for the softmax to separate
the unknown samples. Note that the score and features magnitude histograms showed clear
separation in S1. This behaviour is exaggerated in E1 and O1. Additionally, in figure 4.2b, the O1

feature’s magnitudes are pushed close to 0 to improve separation. However, note that O1 shows
a high number of unknown samples around magnitudes=10 (our chosen ξ) . This might explain
why E1 reaches higher CCR values than O1.

One reason for this might be that the hyperparameters are not optimal. The hyperparameters
were selected using grid search as depicted in figure A.1. I hypothesise that forcing the magni-
tudes restriction works very well in small datasets and a small number of classes, but it might
not generalise well to natural images. Another reason for the objectosphere classifier’s behaviour
is that it does not limit the magnitude of the features of the known samples so that the features
can be infinitely large. Nevertheless, the feature’s norms do not improve the correct classification
rate, it is meant to better separate knowns from unknowns.

In the objectosphere loss, JE learns to correctly classify C and discard B, while JO enforces
that behaviour by penalising the features magnitudes. This behaviour might occur when optimal
hyperparameters are chosen. It is challenging to find optimal parameters in practice, as both α
and ξ scale the loss. In the total loss, JE and JO should have comparable values. Yet, the two
represent two different conceptual quantities as JE accounts for the cross-entropy while JO for
vectors magnitudes. As Dhamija et al. (2018) suggested, the objectosphere is more challenging to
optimise.

In experiments with epsilon decay, model training with ε ≤ 0.12 caused stability issues. Fig-
ure 5.1 shows an example of the training progress for 150 epochs. The validation AUC and con-
fidence have high variability. In general, when ε ≤ 0.12, the classifier performance dramatically



38 Chapter 5. Discussion

reduces. This might be because the adversarial sample is still very similar to the clean image,
as experiments with bigger epsilons are more stable. The figure also shows that the optimiser
balances the entropic and adversarial losses.

50
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Figure 5.1: ADVERSARIAL TRAINING IN P2. Adversarial training with decaying epsilon. In this
example, the classifier was trained for 150 epochs with a decaying epsilon, adding adversarial samples from
the start of the training. The training reaches a loss balance between JE and Jadv . This might be because,
after certain epochs, the model learned to classify specific classes and the number of correctly classified
samples is the same for a small number of epochs. Furthermore, the validation metrics are, on average,
increasing until reaching values equal or below 0.12

The experiments of phase 2 show that adversarial samples are helpful in OSR scenarios. For
example, in P2, the fine-tuning close-set with entropic loss improves up to 22% the CCR at
FPR=0.1 and 10% at FPR=0.5. The remaining experiments reach similar improvements in P2. Ad-
ditionally, random noise perturbations also increase the performance for some cases in P2. This is
interesting since this perturbation does not require any gradient and can be efficiently calculated,
it might be a cost-effective approach to improve a classifier.

The fine-tune experiments in P2 show that it is possible to increase the CCR even when FPR=1.
For example, in fine-tune open-set, the objectosphere classifier increases the CCR 6% from the
benchmark. The reason can be that training to reject adversarial enforces better knowledge of the
C classes, the classifier might learn better the differentiating features of each class.

Finally, the limitations of this work include:

• As seen in phase 2, it is difficult to replicate the results from P2 to P1 and P3. We cannot
guarantee improvements on other datasets. However, P2 has very specialised and similar
known and unknown classes, this might be a good starting point to design more scenarios
to test this approach.

• During training, stability issues were generated. For some hyperparameters combinations,
the loss diverges after a few epochs. The quick fix is to reduce the learning rate, which
helps to mitigate the problem. However, using small learning rates have drawbacks, for
example, staying in local minimum. One may explore simple strategies to reduce the loss
when adversarial samples are present, like randomly sampling candidates to be perturbed
on the batch.
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• The batch normalisation layers are a problem for adversarial training. Diverging issues
were generated when the model froze accumulating statistics. Moreover, freezing the statis-
tics collection depending on the presence of adversarial samples can raise reproducibility
problems.

• Training first a model in P2 and then trying to replicate it in P1 and P3 helped in the devel-
opment of the pipeline and early tests. Nevertheless, this method can bias the approach to
P1 and P3 by assuming similar parameters. Given computational restrictions, we decided
to work on this way, but the classifiers for P1 and P3 might be suboptimal.





Chapter 6

Conclusions

In this work, we evaluated the performance of entropic open-set and objectosphere losses in com-
plexity varying open set scenarios. Using the ImageNet protocols designed by Bhoumik (2021),
we showed that the approach of Dhamija et al. (2018) outperforms the typical softmax cross-
entropy loss by large margins in the validation set. However, our analysis also indicates the
margins are reduced when the metric is obtained for only unknown unknown classes. Our exper-
iments confirm that it is easy for the classifiers to reject very different samples from the known
examples; even the softmax loss has acceptable behaviour. However generalising the models and
making them robust to unknown distributions is challenging, mostly because the set of unknowns
is infinite.

We attempted to improve the classifier’s performance using adversarial samples as known un-
knowns, motivated by the work of Schnyder (2021). We defined a training method and designed
three types of experiments. The results suggest that FGSM adversarial samples help to increase
the robustness of the classifiers, as well as modified samples with random noise. The results indi-
cate that the magnitude of the perturbation should not be small. In our case, a value of 0.1 started
degrading the performance in the classifiers. Moreover, we improved the classifier’s performance
in protocol 2, where the known and unknown samples are very similar, showing our approach’s
potential.

It would be interesting to continue this work with the other FGSM attacks since they are fast to
calculate. Moreover, other attacks like PGD should be practical to evaluate, but the computation
time should be assessed.

Random noise perturbations improved the results in P2, suggesting that more attacks can be
implemented. In particular, one can use data augmentations techniques to perturb the images
and train the models with this augmented data as unknowns. On the other hand, to reduce the
computation time, one could try approaches like re-utilizing the adversarial samples from epoch
to epoch. We use the adversarial samples for the current parameters of the network. Nevertheless,
reusing a batch of precalculated samples might save training time.

Including weights to the adversarial loss can be a tool to regularize the adversarial loss. Fi-
nally, the creation of more protocols can be helpful to understand the response of the losses to
different data similarities.
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Hyperparameter Tunning
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Figure A.1: P2 HYPERPARAMETERS TUNNING. The effect of modifying the hyperparameters in valida-
tion set for entropic open-set loss (left) and objectosphere (right).
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Figure A.2: P1 HYPERPARAMETERS TUNNING. Effect of w and α in the objectosphere loss.The CCR is
saturated at low FPRs, meaning it is easy for the classifier to discard unknowns. However the CCR values
are reduced by sub-optimal parameters



44 Appendix A. Attachments

Batch Normalisation Effect
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Figure A.3: BATCH NORMALISATION EFFECT. The undesired effect of the BN layer shifting statistics
when training with adversarial samples.
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