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Zusammenfassung

Eine grosse Anzahl von Graph-Embedding-Methoden wurde bis dato vorgeschlagen, und
mehrere biomedizinische Netzwerke haben vielversprechende Ergebnisse mit der Verwen-
dung dieser Reprasentationen gezeigt. Mithilfe solcher Methoden kann jede Ontologie
oder graph-ahnliche Struktur in eine niederdimensionale Vektordarstellung umgewandelt
werden. Die Analyse von Graph-Embeddings uber ein sich entwickelndes Netzwerk bleibt
jedoch noch unerforscht. Daher verwenden wir 17 Drug-Disease-Association (DDA)-
Graphen (Versionen) aus einem kontinuierlichen Netzwerk der gleichen Ontologie und
setzen drei etablierte Embedding-Methoden ein. Unser Ansatz liegt darin, die Robus-
theit jeder Embedding-Methode uber die Entwicklung der Ontologie hinweg zu bestim-
men, indem wir die Ergebnisse aus zwei Anwendungsfallen analysieren und vergleichen.
Zunachst fuhren wir einen Local Neighborhood Vergleich von Embeddings innerhalb
derselben Version durch und vergleichen die Einheitlichkeit der Ergebnisse. In einem
zweiten Schritt versuchen wir potenzielle Zusammenhange zwischen Medikamenten und
Krankheiten vorherzusagen. Hierzu vergleichen wir die Resultate der verschiedenen Ver-
sionen ebenfalls auf ihre Einheitlichkeit. Eine weitere Einschatzung zur Robustheit wird
durch minimale Anpassungen eines Anwendungsfalles und folglich deren Ein uss auf das
Ergebnis erzielt. Unsere Resultate zeigen, dass bestimmte Versionen in ihrer Entwick-
lung ein einheitliches Ergebnis liefern, und dass einige Embedding-Methoden starker auf
Veranderungen reagieren als andere.






Abstract

Graph embedding methods can transform any ontology or graph-like structure into a
low-dimensional vector representation. An abundant amount of embedding methods
have been proposed to date, and several biomedical networks have shown promising
results with the use of such representations. However, the analysis of graph embeddings
over an evolving network still remains unexplored. Therefore, we use 17 drug-disease
association (DDA) graphs (versions) from an evolving network of the same ontology
and apply three established embedding methods. Our approach is to determine the
robustness of each embedding method across the evolution by analyzing and comparing
the results of two application tasks. We rst conduct a local neighborhood comparison
of embeddings within the same version, then compare the results across the versions
for consistency. Secondly, we use link prediction to nd potential associations between
drugs and diseases. Here, we compare the performance of each version to the others
in order to prove consistency. In addition, we modify the parameters in a task to
detect how sensitively the embeddings react to such a change and how it a ects the
task’s result. This provides a further indication of the robustness of embeddings. Our

ndings demonstrate that certain versions in the evolution yield a consistent result, and
some embedding methods react more strongly to parameter adjustments in a task than
others.
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1

Introduction

Ontologies and graph like structures are well established representations in biomedical
research. One example can be found in the eld of drug-disease associations (DDA)
[1]. Associations between drugs and diseases are modeled as a graph and link prediction
is a common task to analyze and nd potential new connections which can then be
explored further. To improve such predictions, a DDA network is embedded into a
vector space. Previous research shows the feasibility and potential impactful ndings
using this method [32].

However, knowledge changes over time and so should the results of such down-stream
tasks [14]. Therefore, we want to investigate, how much the performance of a certain
task on a DDA data set changes over time. Or rather, how robust is the embedding and
prediction against the evolution of the data set? To answer this question, we generate an
evolving DDA data set from the National Drug File Reference Terminology (NDF-RT)*
using the extraction method presented by Yue et al. [32]. We apply three embedding
methods; two of them are included in the BioNEV? package [32] and the third one
comprises an embedding method for bipartite graphs, introduced by Gao et al. [11].
We perform two tasks on the embeddings of each DDA network version and report
the results. The rst task consists of a neighborhood similarity comparison where we
de ne multiple thresholds (distances) for the neighborhood. The second task is a link
prediction method to forecast possible associations between drugs and diseases. Here,
we strive to improve the prediction performance with logical inferences considering the
domain context. Improving the model with logical inference brings us closer to the real
world and reduces potential noise addition. We investigate the robustness of di erent
embedding methods by analyzing and comparing the results of each task. The analysis
of embeddings and link prediction over the evolution of the DDA network should answer
the following research questions:

RQ1. How robust or consistent are the established embedding methods for DDA networks
on a neighborhood similarity task with di erent distance (percentile) values across
the evolution?

RQ2. How stable is the link prediction performance using established embedding meth-
ods for DDA networks against the evolution of the data set?

Yhttps: // evs.nci.nih.gov/ ftp1/ NDF-RT/ Archive/
2https: // github.com/ Tiangyue9607/ BioNEV
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To help answer the research questions above, we not only investigate the evolution of
the DDA network, but also perform an experiment where we label two versions from
the evolution as synthetic versions and de ne a third one as the ground-truth. We
apply the above-mentioned tasks to nd how the addition of noise a ects the results and
the robustness of the embeddings in this experiment. Hence, the introduced research
questions are also applicable to this experiment.

The thesis is structured as follows: Chapter 2 reviews existing research about ontology
evolution and embedded knowledge graphs. Chapter 3 covers a detailed explanation of
the DDA data set with a short introduction of the next generation of NDF-RT. This is
followed by Chapter 4, in which we introduce the embedding methods included in this
work, along with an explanation of our approach and the data set we used. In Chapter
5, we present an initial visualization of the embeddings with a dimension reduction
technique. In Chapters 6 and 7, we apply the embeddings on two tasks and present the
results. Finally, the report is concluded with limitations, future works and a conclusion
in Chapters 8, 9 and 10.



2
Related Work

There exists a plethora of research regarding graph embeddings. Since our work focuses
on the performance of embeddings over an evolving ontology, we rst study existing
research in terms of ontology evolution. This is followed by an overview of works related
to embeddings in the context of knowledge graphs (KG) and concluded by a review of
available tasks to compare embeddings.

2.1 Ontology Evolution

Ontology evolution is a well examined research area and an abundant amount of works
have been presented to date. Orme et al. [23] use several statistical metrics to analyze
the data quality of ontologies, focusing on complexity and cohesion. Their metrics are
inspired by object-oriented software metrics that measure design properties. They calcu-
late the metrics for over 30 independent ontologies and align their conclusions to those of
human evaluators. Further, they use several ontology instances from a single domain and
examine the stability and completeness of evolving ontologies with respect to said met-
rics. Flouris et al. [10] conduct a literature review regarding changes in ontologies over
several research disciplines and conclude that the boundaries between term usage/re-
search area remain unclear. Consequently, they analyze and provide an explanation
of terms as well as de ne the relationships between the research areas. They classify
ontology changes into four groups: heterogeneity resolution, ontology modi cation, a
combination of information from di erent ontologies, and ontology versioning. Gross et
al. [14] analyze the impact of an evolving ontology with regard to subsequent statisti-
cal analysis, e.g. functional enrichment analyses. They de ne stability by comparing
signi cant categories over two ontology instances. Two approaches are introduced; a ba-
sic approach, where categories are independently compared, and an advanced approach
where categories are clustered semantically by distance and the number of overlapping
category regions are matched. Pernischova et al. [25] take a step further where they
estimate the impact of ontology changes. The purpose of this research is that KG engi-
neers can estimate the impact of their actions beforehand, thus possibly preventing or
breaking down anticipated changes or the addition of new knowledge. One case study
involves the comparison of neighborhoods between two ontology instances, where they
use the mean to measure the impact. Their results are promising with an Area under
ROC curve (AUC) of 0.85 and therefore open another door for further research.
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2.2 Graph Embeddings

Wang et al. [30] provide a survey of KG embeddings, where they distinguish between
embeddings that rely on facts only and those that use additional attributes. By facts,
the minimal information about a network is understood and, in this case, the rela-
tion between nodes. They recommend to work with models based on the open-world
assumption (OWA) which states, that KGs contain facts and non-observed relations
are either wrong or missing. Additionally they introduce translational distance models
and semantic matching models. As the former already states, its scoring is based on
distance, whereas the latter focuses on similarity regardless of distance. Kulmanov et
al. [18] emphasize the limitations of graph embeddings and semantic similarity mea-
sures and therefore introduce EL embeddings, which are generated in Description Logics
EL++[22]. The added value of using model-theoretic languages lies in the fact that
semantic operators, e.g. conjunction or existential quanti ers, are also included. With
the protein-protein interaction data set, they demonstrate that predictions are improved
when using EL embeddings. Goyal et al. [13] state that most research related to graph
embeddings focuses on preserving the node’s characteristics in the graph, and little fo-
cus is given to evaluating the actual embeddings or comparison of di erent embedding
methods. The authors claim that the following attributes determine the performance
of graph embeddings: graph size, graph density, embedding dimension, and evaluation
metric. They analyze several biological networks and discover an almost uniform dis-
tribution of densities (0.005-0.0155) in the graphs. Moreover, these graphs usually have
small diameter ranges (8-12 or 16-18) and high clustering tendencies (clustering coef-

cient 0.10). Yue et al. [32] use several biomedical networks and apply 11 di erent
embedding methods on them. Their research paper is especially important for our work
as they also use the DDA data set and run di erent embedding methods on it. They
perform a link prediction task with a Logistic Regression binary classi er, and achieve
competitive performance. GraRep [3] yields the best performance with an AUC of 0.963,
closely followed by struc2vec [27] and LINE [28]. Building on this, several computational
methods have been introduced in recent years to identify associations between drugs and
diseases. While traditional methods focus on including biological or chemical features in
the prediction task [12, 19], graph embedding methods are promising to circumvent the
possible lack of certain information. Dai et al. [7] propose a method based on matrix
factorization to learn low-dimensional representations for drugs and diseases. Zhang et
al. [35] use a similar approach, whereby they further introduce constraints such as simi-
larities between drugs or diseases that can be added during factorization. In a previous
study [34], the same authors proposed a neighborhood similarity method in order to nd
similarities between drugs respectively diseases. With this information, they used a label
propagation process on a similarity-based graph to nd associations between drugs and
diseases. Generally, neighborhood similarity tasks have been widely used to compare
embeddings [2, 15, 25]. Hamilton et al. [15] analyze di erent semantic shifts in two
languages where one method introduced compares the nearest semantic neighbors. In
[2], the authors compare the local neighborhoods of word embeddings and present an
interactive tool that visualizes the neighborhood of such embeddings.
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Exploratory Data Analysis

The NDF-RT published by the Veterans Health Administration (VHA) is an ontology
used for modeling drug characteristics, including ingredients, chemical structure, dose
form, physiologic e ect, mechanism of action, pharmacokinetics, and related diseases.
The core of the data set are the drug entities, which are among others associated with
the related diseases. From 2009 until 2018, the VHA has periodically released new
versions of the data set, leading to 82 releases in total. In the rst section, the data
set is introduced in detail, and the structure of the ontology is explained. In the second
section, the data is analyzed, utilizing plots to visualize how it changed over the years
since it rst was published. Lastly, the continuation of NDF-RT is shortly introduced.

3.1 Data Description

The NDF-RT data set has its own ontological representation in XML format, derived
from RxNorm [33]. Terms are de ned as concepts and are hierarchically structured.
Every concept is of a speci ¢ type and owns properties, roles, and associations. Fur-
thermore, a unique alphanumeric identi er (NUI) is assigned to each concept, which is
maintained across versions and can thus be used as a means for tracking and comparing.
There exist eight di erent types of concepts. However, our primary focus lies on the
following two: DRUG_KIND and DISEASE _KIND. Figure 3.1 illustrates the possible
relations these two types can be associated with. The relations within and between the
entities are very similar in their meaning; hence, we can presume a connection between
them such as e.g., may treat pairs overlap with may prevent, or may diagnose pairs.
However, as we have no medical background nor any biological knowledge, we will solely
focus on the may treat relations and omit the rest.

The NDF-RT versions are publicly available in XML, whereby 20 versions also provide
an OWL representation. For the extraction process, we use the logically inferred XML
versions published in the same archive as the original. The inferred versions include
the derived roles and associations of the concepts along the hierarchy. As a rst step,
we create a parser for the XML les to convert all 82 versions into an OWL format for
better comprehension. The translation of the entities is inspired by the available OWL

les, and Figure 3.2 shows the mapping between the respective attributes. An example
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ejfifec tmay
be inhibited by
may treat
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Figure 3.1: Drug-Disease relations (Cl = contraindications)

terminol ogy

conceptDef / conceptinf
property Def owl:DatatypeProperty

Figure 3.2: Parser for XML to OWL

of a drug entity and its relation to a disease in OWL format can be found in Appendix
Al

After creating an OWL representation for each version, the next step is to extract the
may treat relationships between the drug and disease entities and save them into an edge
list. Each entity in the edge list is assigned to an integer (ID), which is further stored in
a crosswalk le with reference to the NUI, the type (drug or disease), and the category
(if available). Tables 3.1 and 3.2 provide an example of such mapping.

ID | NUI Type Category

1 | N0000020115 Drug [AMO000] ANTIMICROBIALS

2 | N0000020123 Drug [OP000] OPHTHALMIC AGENTS
3 | NO000000007 Disease Eye Diseases [Disease/Finding]

4 | N0000000265 Disease Infectious Diseases [Disease/Finding]

Table 3.1: Node list structure

[op}
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Drug ID Disease ID
1 3
1 4
2 3
2 4

Table 3.2: Edge list with IDs from the node list

3.2 Data Statistics

For our research, we focus on drug and disease entities, and their may treat relationship.
The resulting DDA graph is of heterogeneous nature or more speci cally bipartite. The
de nition of a bipartite graph is that nodes can be grouped in two categories (C1 and C2)
such that no edge connects nodes from the same category. In formal language, a bipartite
graphisde nedasG=C1[C2,whereCl=fd;j1 i kgandC2="fs;jl i jg
with k =jCljand j =) C2j [11] as shown in Figure 3.3.

c1 c2

52
3

L]

L]

Figure 3.3: Example of a bipartite graph

AT

o ohs

Figures 3.4 and 3.5 demonstrate how the number of drugs and diseases changes over
the years. The drug entities have been increasing steadily with peaks at the beginning
of 2009 and the end of 2017. In contrast, the disease entities have remained static until
the middle of 2017 at which point around 200 new diseases were added. This is expected
as we assume the drug development rate to be much higher than the probability of
discovering a new disease. Figure 3.6 depicts the number of links between drugs and
diseases, and we observe a continuous growth similar to the drug history. This correlation
is explainable since adding new drugs increases the number of links. Further, the peak
at the end of 2017 is more prominent than the other peaks since not only drugs, but
also disease entities were added to the ontology at that point. From this initial analysis,
we can infer that the ontology’s core content has grown continuously without any major
changes over approximately ten years.

Next, we will take a closer look at the graph features of the drug-disease associations.
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Figure 3.4: # Drugs across versions
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Figure 3.5: # Diseases across versions
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Figure 3.6: # Drug-Disease relations across versions

As already mentioned, biological graphs are known to be sparse, and the NDF-RT data
set is no exception. In Figure 3.7, the left-most plot shows the density measure across
versions. We notice a consistent decrease in density in the course of the evolution. This is
expected, as we have seen previously, that drug or disease nodes are continuously added
to the ontology, and with every new node, the number of possible links increases. The
values overall are relatively low, ranging between approximately 0.02 to 0.03. However,
this is not surprising as Goyal et al. [13] reported a density value of 0.005 to 0.0155 for
several biological networks. The right two plots display the average node degree of the
graph. We distinguish between node in-degree and out-degree values, and it is apparent
that the number of in-degrees is much higher than the out-degrees. In other words, when
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Figure 3.7: Graph statistics for NDF-RT

(a) Drugs (b) Diseases

Figure 3.8: Drugs and Diseases by categories

we start from the premise of a directed drug-disease graph, drug nodes have on average
approximately four outgoing links while disease nodes hold around 50 incoming links.
This di erence in number can be explained by the higher amount of drug nodes than
disease nodes. The steady increase in the in-degree values con rms the addition of links,
and the stagnant out-degrees con rm the increase in the number of drugs.

Figure 3.8 shows the percentage of categories of drugs respectively diseases. In 3.8a,
the largest category is visible with 20 percent (Central Nervous System Medications).
The remaining lie around 10 percent or below and are evenly distributed over the avail-
able categories. The same applies to 3.8b; the largest category owns 16 percent, whereas
the rest stays around 10 percent or lower. In the drugs chart, 20 percent of the entities
are not included as these were incorporated from another source terminology, which did
not label the drugs by category. On the other hand, the disease chart is complete be-
cause only one source, namely the Medical Subject Headings (MeSH) [26], is used. In
total, there are 23 disease categories and 31 drug categories.

This initial analysis of the DDA data set gives an insight into the data structure and
the severity of the changes across the evolution. Simultaneously, it acts as a guidance
and auxiliary means when discovering unexpected behavior in the following chapters
that are otherwise not explicable.
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Figure 3.9: Changes in MED-RT across versions

3.3 MED-RT

In 2018, the NDF-RT data set was replaced by the Medication Reference Terminology
(MED-RT), which contains a much leaner data structure. Previously, concepts taken
from external terminologies were incorporated into the NDF-RT terminology. However,
in MED-RT they are newly referenced by a native unique identi er, their name, and the
respective namespace (e.g. MeSH or RxNorm). Concepts de ned and owned by VHA
are further described in the MED-RT and labeled with NUI. Until now (October 2020),
there exist a total of 27 releases.

We extract the drug-disease associations by generating an edge list and a node list le
similar to the NDF-RT extraction. Due to time constraints, we are not able to build an
OWL representation of the ontology and leave it as future works.

Next, we analyze the drug-disease associations similar to Section 3.2. Figure 3.9
presents the number of drugs, diseases, and drug-disease relations across di erent ver-
sions, and we notice a similar trend as in NDF-RT. The number of drugs is increasing
faster than the diseases, and the drug-disease relations continue to grow. In all three
plots, a peak at the end of 2018 and 2019 is clearly visible.

We further calculate the density of the graph, as well as the node in-degree and out-
degree values, as presented in Figure 3.10. Here again, the density starts to drop as the
ontology evolves, and the range lies a bit higher than in NDF-RT. The in-degree values
initially increase up to 2 links but then remain static. The out-degree values remain
static as the deviation stays in a one-decimal range. For all three plots, the declines,
respectively peaks, occur at the end of 2018 and 2019, which coincides with the increase
in drugs, diseases, and drug-disease relations.

10
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Figure 3.10: Graph statistics for MED-RT
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Embeddings

First of all, we introduce the basic notation for embeddings. A graph can be described
as G = (V;E), where V are nodes and E are edges. N =j V j is equal to the number
of nodes. In addition, edges can be represented as an adjacency matrix of size NxN,
where if there exists an edge between v; and vj, then ej; = 1 with ej; 2 E, otherwise
eij = 0 with ej; 2 E. The DDA data set represents the graph in this work and serves
as the basis to create the embeddings. In this chapter, we present our approach on how
we carried out the embedding generation and the DDA versions we used. In addition,
we provide a short introduction of the applied embedding methods.

4.1 Approach

Since our focus lies in the evolution of an ontology, we select 17 DDA versions (every
5th from the 82 versions) and generate embeddings with dimension size 100 for 50 runs.
The reason for selecting only a limited number of versions is primarily because of the
embedding generation process. Creating embeddings is known to be computationally
expensive, and due to the restricted time frame, we decide not to include all versions.
Moreover, only minor updates were made in some consecutive versions, thus resulting in
a very similar embedding and, therefore, evaluation. We describe this as the evolution-
oriented approach, which we will refer to in the following chapters.

As an additional experiment, we determine the robustness of the embedding methods
by adding noise to an original graph. Therefore, we choose one version (2014.06.02) as
the ground truth and select two versions (2009.01.03 and 2018.01.02) as synthetic ones
with di erent noise levels. To compare them, we rst remove all nodes that do not
appear in the ground-truth version. The same applies for the synthetic versions, where
we remove nodes that exist in the ground-truth but not in the synthetic versions. In
the end, the ground-truth and the synthetic versions comprise the same set of nodes but
with di erent edges. We generate ten embeddings of the ground-truth and the synthetic
versions. The noise addition for this experiment consists of validated edges that were
added/removed in the previous and later version. We de ne two noise levels where 3%
noise is added at level 1 and 10% at level 2. This experiment allows us to analyze how the
addition or removal of edges a ect the embeddings’ performance in the two tasks. Table
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Ground-truth  Noise L1 (2009.01.03) Noise L2 (2018.01.02)

Nodes 10’858 10’858 10’858
Edges 45’825 44’543 50’803
Noise (in edges) - 1’282 (+1°066 / -2’348) 4’978 (+5’861 / -883)

Table 4.1: Noise addition to version 2014.06.02

4.1 presents a short summary. Similar to above, we will refer to this as the noise-oriented
approach in the following chapters.

To summarize, we presented the evolution-oriented approach that consists of 17 DDA
versions with 50 runs and the noise-oriented approach with 10 runs. For the tasks in
Chapter 5 and 6, we proceed as follows: rst, we take an evolution-oriented perspective,
where we analyze and report the results with an evolving ontology. Second, we convert
to a noise-oriented perspective, where we take one version and consider the previous and
future version as noise in the ontology.

4.2 Methods

There exist countless methods for embedding generation, which can be roughly divided
into the following three categories: matrix factorization (MF), random walks, and neural
networks (NN). As previously mentioned, Yue et al. [32] conducted a comprehensive
analysis of several embedding methods. One of the used data sets is a DDA network
released in March 2017. They apply 11 embedding methods followed by a link prediction.
The best-performing methods for the prediction task are GraRep [3], LINE [28], and
struc2vec [27]. In this work, we choose GraRep and LINE from the BioNEV! package
in order to compare an MF-based method with an NN-based method. As struc2vec is
computationally too expensive, we select an alternative embedding method named BiNE
[11], which is based on random walks and speci cally constructed for bipartite graphs.
It is important to mention that the applied methods can only generate embeddings from
known nodes. To elaborate, these methods only allow an edge list containing nodes with
at least one edge as an input while nodes without edges are omitted. Therefore, we
have to keep in mind that the analyses and evaluations are performed in a controlled
environment, which does not allow any interference.

GraRep is an MF-based method that preserves global structural information of a
graph with the k-step algorithm. Every k-step model outputs a local representation
of a node, and by concatenating those, we obtain a global representation of a node.
Hence, this method focuses on the neighborhood structure of each node, such that nodes
close to each other have similar embeddings and vice versa. LINE is an NN-based
method that integrates both local and global network structures in an embedding. It
focuses on the rst- and second-order proximity, and is therefore, similar to GraRep,
prioritizing the neighborhood when learning the embeddings. Both methods believe

Thttps://github.com/xiangyue9607/BioNEV
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that including neighborhood-related information in the embedding process will preserve
the global structural information of a graph. The hyperparameters are taken from Yue
et al. [32] as they already conducted an in-depth tuning.

BINE is an embedding method explicitly built for bipartite graphs and is not pro-
vided in the BioNEV package. This method distinguishes between explicit and implicit
relations of a graph, in other words, between rst- and second-order proximity. For
the latter, the bipartite graph is divided into two homogeneous graphs (drug-drug and
disease-disease graphs) and random walks with a biased, self-adaptive algorithm are
used. In Gao et al. [11], hyperparameter tuning is conducted by measuring the impact
on link prediction. They tune the parameters and as these are crucial indicators for
how much of the explicit ( ) and the implicit ( ) relations ow into the embeddings.
Starting from their proposed parameter settings, we tune and and conclude that a
higher  returns better performance for link prediction. This implies that the explicit
links are more important than the implicit links. Due to its high computational cost, we
compute 10 runs for the evolution-oriented approach and 5 runs for the noise-oriented
approach.

A detailed overview of the applied embedding methods and the corresponding hyper-
parameters can be found in Table A.1
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5
Visual Analysis with PCA

In this chapter, we provide an initial visual comparison of the di erent embedding meth-
ods across the evolution. This step is usually performed to examine how well the embed-
dings can describe the underlying data [3, 11, 28]. We utilize the Principal Component
Analysis (PCA) [24] to map the embeddings of drugs and diseases into a two-dimensional
space. We choose PCA over t-SNE [17] and UMAP [21], because the generation process
of the projections is deterministic. Also, PCA highlights the global structure of the em-
bedding space rather than distorting it [29]. We apply this technique on three di erent
versions from the ontology evolution and also run it for the noise-oriented approach.
Our initial assumption is that drug and disease embeddings form two clusters and are
visually distinctive. Furthermore, we expect the layout to stay more or less the same
across the evolution and despite the noise addition.

5.1 Evolution-oriented perspective

We select three versions (2009.01.13, 2014.01.06, and 2018.01.02) of the same seed and
compare their representations. Figure 5.1 depicts the representation of the embeddings
for each embedding method, where drug points are displayed in purple, and disease
points in red. In 5.1a, we observe that the drug and disease clusters cannot be fully
distinguished from each other as they overlap. Also, we notice that the diseases keep
their shape, whereas the drugs are scattered more as the ontology evolves. Nevertheless,
the structure of diseases being surrounded by drugs in a triangular shape is preserved.
The explained variance ratio of the principal components is in total 13%, which means
that PCA is unable to retain most of the embedding information on two dimensions.

In Figure 5.1b, the two-dimensional representation of the LINE embeddings are pre-
sented. The disease points stay close together and are surrounded by the drug points;
however, there is no clear shape visible as the ontology evolves. In addition, the ex-
plained variance ratio of the principal components adds up to 15%, which is still very
low. Therefore, we refrain from making any further statement.

The BINE representations are displayed in Figure 5.1c. The overall circular shape
remains unchanged throughout evolution. Here again, the disease points stay dense and
are surrounded by the drug points. The explained variance ratio makes up less than
2% so that the drug points and disease points contain only little information about the
initial embeddings.






