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Zusammenfassung

Eine grosse Anzahl von Graph-Embedding-Methoden wurde bis dato vorgeschlagen, und
mehrere biomedizinische Netzwerke haben vielversprechende Ergebnisse mit der Verwen-
dung dieser Repräsentationen gezeigt. Mithilfe solcher Methoden kann jede Ontologie
oder graph-ähnliche Struktur in eine niederdimensionale Vektordarstellung umgewandelt
werden. Die Analyse von Graph-Embeddings über ein sich entwickelndes Netzwerk bleibt
jedoch noch unerforscht. Daher verwenden wir 17 Drug-Disease-Association (DDA)-
Graphen (Versionen) aus einem kontinuierlichen Netzwerk der gleichen Ontologie und
setzen drei etablierte Embedding-Methoden ein. Unser Ansatz liegt darin, die Robus-
theit jeder Embedding-Methode über die Entwicklung der Ontologie hinweg zu bestim-
men, indem wir die Ergebnisse aus zwei Anwendungsfällen analysieren und vergleichen.
Zunächst führen wir einen Local Neighborhood Vergleich von Embeddings innerhalb
derselben Version durch und vergleichen die Einheitlichkeit der Ergebnisse. In einem
zweiten Schritt versuchen wir potenzielle Zusammenhänge zwischen Medikamenten und
Krankheiten vorherzusagen. Hierzu vergleichen wir die Resultate der verschiedenen Ver-
sionen ebenfalls auf ihre Einheitlichkeit. Eine weitere Einschätzung zur Robustheit wird
durch minimale Anpassungen eines Anwendungsfalles und folglich deren Einfluss auf das
Ergebnis erzielt. Unsere Resultate zeigen, dass bestimmte Versionen in ihrer Entwick-
lung ein einheitliches Ergebnis liefern, und dass einige Embedding-Methoden stärker auf
Veränderungen reagieren als andere.





Abstract

Graph embedding methods can transform any ontology or graph-like structure into a
low-dimensional vector representation. An abundant amount of embedding methods
have been proposed to date, and several biomedical networks have shown promising
results with the use of such representations. However, the analysis of graph embeddings
over an evolving network still remains unexplored. Therefore, we use 17 drug-disease
association (DDA) graphs (versions) from an evolving network of the same ontology
and apply three established embedding methods. Our approach is to determine the
robustness of each embedding method across the evolution by analyzing and comparing
the results of two application tasks. We first conduct a local neighborhood comparison
of embeddings within the same version, then compare the results across the versions
for consistency. Secondly, we use link prediction to find potential associations between
drugs and diseases. Here, we compare the performance of each version to the others
in order to prove consistency. In addition, we modify the parameters in a task to
detect how sensitively the embeddings react to such a change and how it affects the
task’s result. This provides a further indication of the robustness of embeddings. Our
findings demonstrate that certain versions in the evolution yield a consistent result, and
some embedding methods react more strongly to parameter adjustments in a task than
others.
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Introduction

Ontologies and graph like structures are well established representations in biomedical
research. One example can be found in the field of drug-disease associations (DDA)
[1]. Associations between drugs and diseases are modeled as a graph and link prediction
is a common task to analyze and find potential new connections which can then be
explored further. To improve such predictions, a DDA network is embedded into a
vector space. Previous research shows the feasibility and potential impactful findings
using this method [32].

However, knowledge changes over time and so should the results of such down-stream
tasks [14]. Therefore, we want to investigate, how much the performance of a certain
task on a DDA data set changes over time. Or rather, how robust is the embedding and
prediction against the evolution of the data set? To answer this question, we generate an
evolving DDA data set from the National Drug File Reference Terminology (NDF-RT)1

using the extraction method presented by Yue et al. [32]. We apply three embedding
methods; two of them are included in the BioNEV2 package [32] and the third one
comprises an embedding method for bipartite graphs, introduced by Gao et al. [11].
We perform two tasks on the embeddings of each DDA network version and report
the results. The first task consists of a neighborhood similarity comparison where we
define multiple thresholds (distances) for the neighborhood. The second task is a link
prediction method to forecast possible associations between drugs and diseases. Here,
we strive to improve the prediction performance with logical inferences considering the
domain context. Improving the model with logical inference brings us closer to the real
world and reduces potential noise addition. We investigate the robustness of different
embedding methods by analyzing and comparing the results of each task. The analysis
of embeddings and link prediction over the evolution of the DDA network should answer
the following research questions:

RQ1. How robust or consistent are the established embedding methods for DDA networks
on a neighborhood similarity task with different distance (percentile) values across
the evolution?

RQ2. How stable is the link prediction performance using established embedding meth-
ods for DDA networks against the evolution of the data set?

1https:// evs.nci.nih.gov/ ftp1/NDF-RT/Archive/
2https:// github.com/ xiangyue9607/BioNEV
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To help answer the research questions above, we not only investigate the evolution of
the DDA network, but also perform an experiment where we label two versions from
the evolution as synthetic versions and define a third one as the ground-truth. We
apply the above-mentioned tasks to find how the addition of noise affects the results and
the robustness of the embeddings in this experiment. Hence, the introduced research
questions are also applicable to this experiment.

The thesis is structured as follows: Chapter 2 reviews existing research about ontology
evolution and embedded knowledge graphs. Chapter 3 covers a detailed explanation of
the DDA data set with a short introduction of the next generation of NDF-RT. This is
followed by Chapter 4, in which we introduce the embedding methods included in this
work, along with an explanation of our approach and the data set we used. In Chapter
5, we present an initial visualization of the embeddings with a dimension reduction
technique. In Chapters 6 and 7, we apply the embeddings on two tasks and present the
results. Finally, the report is concluded with limitations, future works and a conclusion
in Chapters 8, 9 and 10.

2
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Related Work

There exists a plethora of research regarding graph embeddings. Since our work focuses
on the performance of embeddings over an evolving ontology, we first study existing
research in terms of ontology evolution. This is followed by an overview of works related
to embeddings in the context of knowledge graphs (KG) and concluded by a review of
available tasks to compare embeddings.

2.1 Ontology Evolution

Ontology evolution is a well examined research area and an abundant amount of works
have been presented to date. Orme et al. [23] use several statistical metrics to analyze
the data quality of ontologies, focusing on complexity and cohesion. Their metrics are
inspired by object-oriented software metrics that measure design properties. They calcu-
late the metrics for over 30 independent ontologies and align their conclusions to those of
human evaluators. Further, they use several ontology instances from a single domain and
examine the stability and completeness of evolving ontologies with respect to said met-
rics. Flouris et al. [10] conduct a literature review regarding changes in ontologies over
several research disciplines and conclude that the boundaries between term usage/re-
search area remain unclear. Consequently, they analyze and provide an explanation
of terms as well as define the relationships between the research areas. They classify
ontology changes into four groups: heterogeneity resolution, ontology modification, a
combination of information from different ontologies, and ontology versioning. Gross et
al. [14] analyze the impact of an evolving ontology with regard to subsequent statisti-
cal analysis, e.g. functional enrichment analyses. They define stability by comparing
significant categories over two ontology instances. Two approaches are introduced; a ba-
sic approach, where categories are independently compared, and an advanced approach
where categories are clustered semantically by distance and the number of overlapping
category regions are matched. Pernischova et al. [25] take a step further where they
estimate the impact of ontology changes. The purpose of this research is that KG engi-
neers can estimate the impact of their actions beforehand, thus possibly preventing or
breaking down anticipated changes or the addition of new knowledge. One case study
involves the comparison of neighborhoods between two ontology instances, where they
use the mean to measure the impact. Their results are promising with an Area under
ROC curve (AUC) of 0.85 and therefore open another door for further research.
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2.2 Graph Embeddings

Wang et al. [30] provide a survey of KG embeddings, where they distinguish between
embeddings that rely on facts only and those that use additional attributes. By facts,
the minimal information about a network is understood and, in this case, the rela-
tion between nodes. They recommend to work with models based on the open-world
assumption (OWA) which states, that KGs contain facts and non-observed relations
are either wrong or missing. Additionally they introduce translational distance models
and semantic matching models. As the former already states, its scoring is based on
distance, whereas the latter focuses on similarity regardless of distance. Kulmanov et
al. [18] emphasize the limitations of graph embeddings and semantic similarity mea-
sures and therefore introduce EL embeddings, which are generated in Description Logics
EL++[22]. The added value of using model-theoretic languages lies in the fact that
semantic operators, e.g. conjunction or existential quantifiers, are also included. With
the protein-protein interaction data set, they demonstrate that predictions are improved
when using EL embeddings. Goyal et al. [13] state that most research related to graph
embeddings focuses on preserving the node’s characteristics in the graph, and little fo-
cus is given to evaluating the actual embeddings or comparison of different embedding
methods. The authors claim that the following attributes determine the performance
of graph embeddings: graph size, graph density, embedding dimension, and evaluation
metric. They analyze several biological networks and discover an almost uniform dis-
tribution of densities (0.005-0.0155) in the graphs. Moreover, these graphs usually have
small diameter ranges (8-12 or 16-18) and high clustering tendencies (clustering coef-
ficient 0.10). Yue et al. [32] use several biomedical networks and apply 11 different
embedding methods on them. Their research paper is especially important for our work
as they also use the DDA data set and run different embedding methods on it. They
perform a link prediction task with a Logistic Regression binary classifier, and achieve
competitive performance. GraRep [3] yields the best performance with an AUC of 0.963,
closely followed by struc2vec [27] and LINE [28]. Building on this, several computational
methods have been introduced in recent years to identify associations between drugs and
diseases. While traditional methods focus on including biological or chemical features in
the prediction task [12, 19], graph embedding methods are promising to circumvent the
possible lack of certain information. Dai et al. [7] propose a method based on matrix
factorization to learn low-dimensional representations for drugs and diseases. Zhang et
al. [35] use a similar approach, whereby they further introduce constraints such as simi-
larities between drugs or diseases that can be added during factorization. In a previous
study [34], the same authors proposed a neighborhood similarity method in order to find
similarities between drugs respectively diseases. With this information, they used a label
propagation process on a similarity-based graph to find associations between drugs and
diseases. Generally, neighborhood similarity tasks have been widely used to compare
embeddings [2, 15, 25]. Hamilton et al. [15] analyze different semantic shifts in two
languages where one method introduced compares the nearest semantic neighbors. In
[2], the authors compare the local neighborhoods of word embeddings and present an
interactive tool that visualizes the neighborhood of such embeddings.

4
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Exploratory Data Analysis

The NDF-RT published by the Veterans Health Administration (VHA) is an ontology
used for modeling drug characteristics, including ingredients, chemical structure, dose
form, physiologic effect, mechanism of action, pharmacokinetics, and related diseases.
The core of the data set are the drug entities, which are among others associated with
the related diseases. From 2009 until 2018, the VHA has periodically released new
versions of the data set, leading to 82 releases in total. In the first section, the data
set is introduced in detail, and the structure of the ontology is explained. In the second
section, the data is analyzed, utilizing plots to visualize how it changed over the years
since it first was published. Lastly, the continuation of NDF-RT is shortly introduced.

3.1 Data Description

The NDF-RT data set has its own ontological representation in XML format, derived
from RxNorm [33]. Terms are defined as concepts and are hierarchically structured.
Every concept is of a specific type and owns properties, roles, and associations. Fur-
thermore, a unique alphanumeric identifier (NUI) is assigned to each concept, which is
maintained across versions and can thus be used as a means for tracking and comparing.
There exist eight different types of concepts. However, our primary focus lies on the
following two: DRUG KIND and DISEASE KIND. Figure 3.1 illustrates the possible
relations these two types can be associated with. The relations within and between the
entities are very similar in their meaning; hence, we can presume a connection between
them such as e.g., may treat pairs overlap with may prevent, or may diagnose pairs.
However, as we have no medical background nor any biological knowledge, we will solely
focus on the may treat relations and omit the rest.

The NDF-RT versions are publicly available in XML, whereby 20 versions also provide
an OWL representation. For the extraction process, we use the logically inferred XML
versions published in the same archive as the original. The inferred versions include
the derived roles and associations of the concepts along the hierarchy. As a first step,
we create a parser for the XML files to convert all 82 versions into an OWL format for
better comprehension. The translation of the entities is inspired by the available OWL
files, and Figure 3.2 shows the mapping between the respective attributes. An example
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Figure 3.1: Drug-Disease relations (CI = contraindications)

Figure 3.2: Parser for XML to OWL

of a drug entity and its relation to a disease in OWL format can be found in Appendix
A.1.

After creating an OWL representation for each version, the next step is to extract the
may treat relationships between the drug and disease entities and save them into an edge
list. Each entity in the edge list is assigned to an integer (ID), which is further stored in
a crosswalk file with reference to the NUI, the type (drug or disease), and the category
(if available). Tables 3.1 and 3.2 provide an example of such mapping.

ID NUI Type Category

1 N0000020115 Drug [AM000] ANTIMICROBIALS
2 N0000020123 Drug [OP000] OPHTHALMIC AGENTS
3 N0000000007 Disease Eye Diseases [Disease/Finding]
4 N0000000265 Disease Infectious Diseases [Disease/Finding]

Table 3.1: Node list structure

6



3.2. DATA STATISTICS 7

Drug ID Disease ID

1 3
1 4
2 3
2 4

Table 3.2: Edge list with IDs from the node list

3.2 Data Statistics

For our research, we focus on drug and disease entities, and their may treat relationship.
The resulting DDA graph is of heterogeneous nature or more specifically bipartite. The
definition of a bipartite graph is that nodes can be grouped in two categories (C1 and C2)
such that no edge connects nodes from the same category. In formal language, a bipartite
graph is defined as G = C1∪C2, where C1 = {di | 1 ≤ i ≤ k} and C2 = {si | 1 ≤ i ≤ j}
with k =| C1 | and j =| C2 | [11] as shown in Figure 3.3.

Figure 3.3: Example of a bipartite graph

Figures 3.4 and 3.5 demonstrate how the number of drugs and diseases changes over
the years. The drug entities have been increasing steadily with peaks at the beginning
of 2009 and the end of 2017. In contrast, the disease entities have remained static until
the middle of 2017 at which point around 200 new diseases were added. This is expected
as we assume the drug development rate to be much higher than the probability of
discovering a new disease. Figure 3.6 depicts the number of links between drugs and
diseases, and we observe a continuous growth similar to the drug history. This correlation
is explainable since adding new drugs increases the number of links. Further, the peak
at the end of 2017 is more prominent than the other peaks since not only drugs, but
also disease entities were added to the ontology at that point. From this initial analysis,
we can infer that the ontology’s core content has grown continuously without any major
changes over approximately ten years.

Next, we will take a closer look at the graph features of the drug-disease associations.

7
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Figure 3.4: # Drugs across versions

Figure 3.5: # Diseases across versions

Figure 3.6: # Drug-Disease relations across versions

As already mentioned, biological graphs are known to be sparse, and the NDF-RT data
set is no exception. In Figure 3.7, the left-most plot shows the density measure across
versions. We notice a consistent decrease in density in the course of the evolution. This is
expected, as we have seen previously, that drug or disease nodes are continuously added
to the ontology, and with every new node, the number of possible links increases. The
values overall are relatively low, ranging between approximately 0.02 to 0.03. However,
this is not surprising as Goyal et al. [13] reported a density value of 0.005 to 0.0155 for
several biological networks. The right two plots display the average node degree of the
graph. We distinguish between node in-degree and out-degree values, and it is apparent
that the number of in-degrees is much higher than the out-degrees. In other words, when

8
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(a) Density in % (b) Average node in-degree (c) Average node out-degree

Figure 3.7: Graph statistics for NDF-RT

(a) Drugs (b) Diseases

Figure 3.8: Drugs and Diseases by categories

we start from the premise of a directed drug-disease graph, drug nodes have on average
approximately four outgoing links while disease nodes hold around 50 incoming links.
This difference in number can be explained by the higher amount of drug nodes than
disease nodes. The steady increase in the in-degree values confirms the addition of links,
and the stagnant out-degrees confirm the increase in the number of drugs.

Figure 3.8 shows the percentage of categories of drugs respectively diseases. In 3.8a,
the largest category is visible with 20 percent (Central Nervous System Medications).
The remaining lie around 10 percent or below and are evenly distributed over the avail-
able categories. The same applies to 3.8b; the largest category owns 16 percent, whereas
the rest stays around 10 percent or lower. In the drugs chart, 20 percent of the entities
are not included as these were incorporated from another source terminology, which did
not label the drugs by category. On the other hand, the disease chart is complete be-
cause only one source, namely the Medical Subject Headings (MeSH) [26], is used. In
total, there are 23 disease categories and 31 drug categories.

This initial analysis of the DDA data set gives an insight into the data structure and
the severity of the changes across the evolution. Simultaneously, it acts as a guidance
and auxiliary means when discovering unexpected behavior in the following chapters
that are otherwise not explicable.

9
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(a) # Drugs (b) # Diseases (c) # Drug-Disease relations

Figure 3.9: Changes in MED-RT across versions

3.3 MED-RT

In 2018, the NDF-RT data set was replaced by the Medication Reference Terminology
(MED-RT), which contains a much leaner data structure. Previously, concepts taken
from external terminologies were incorporated into the NDF-RT terminology. However,
in MED-RT they are newly referenced by a native unique identifier, their name, and the
respective namespace (e.g. MeSH or RxNorm). Concepts defined and owned by VHA
are further described in the MED-RT and labeled with NUI. Until now (October 2020),
there exist a total of 27 releases.

We extract the drug-disease associations by generating an edge list and a node list file
similar to the NDF-RT extraction. Due to time constraints, we are not able to build an
OWL representation of the ontology and leave it as future works.

Next, we analyze the drug-disease associations similar to Section 3.2. Figure 3.9
presents the number of drugs, diseases, and drug-disease relations across different ver-
sions, and we notice a similar trend as in NDF-RT. The number of drugs is increasing
faster than the diseases, and the drug-disease relations continue to grow. In all three
plots, a peak at the end of 2018 and 2019 is clearly visible.

We further calculate the density of the graph, as well as the node in-degree and out-
degree values, as presented in Figure 3.10. Here again, the density starts to drop as the
ontology evolves, and the range lies a bit higher than in NDF-RT. The in-degree values
initially increase up to 2 links but then remain static. The out-degree values remain
static as the deviation stays in a one-decimal range. For all three plots, the declines,
respectively peaks, occur at the end of 2018 and 2019, which coincides with the increase
in drugs, diseases, and drug-disease relations.

10
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(a) Density in % (b) Average node in-degree (c) Average node out-degree

Figure 3.10: Graph statistics for MED-RT

11
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Embeddings

First of all, we introduce the basic notation for embeddings. A graph can be described
as G = (V,E), where V are nodes and E are edges. N =| V | is equal to the number
of nodes. In addition, edges can be represented as an adjacency matrix of size NxN ,
where if there exists an edge between vi and vj , then eij = 1 with eij ∈ E, otherwise
eij = 0 with eij /∈ E. The DDA data set represents the graph in this work and serves
as the basis to create the embeddings. In this chapter, we present our approach on how
we carried out the embedding generation and the DDA versions we used. In addition,
we provide a short introduction of the applied embedding methods.

4.1 Approach

Since our focus lies in the evolution of an ontology, we select 17 DDA versions (every
5th from the 82 versions) and generate embeddings with dimension size 100 for 50 runs.
The reason for selecting only a limited number of versions is primarily because of the
embedding generation process. Creating embeddings is known to be computationally
expensive, and due to the restricted time frame, we decide not to include all versions.
Moreover, only minor updates were made in some consecutive versions, thus resulting in
a very similar embedding and, therefore, evaluation. We describe this as the evolution-
oriented approach, which we will refer to in the following chapters.

As an additional experiment, we determine the robustness of the embedding methods
by adding noise to an original graph. Therefore, we choose one version (2014.06.02) as
the ground truth and select two versions (2009.01.03 and 2018.01.02) as synthetic ones
with different noise levels. To compare them, we first remove all nodes that do not
appear in the ground-truth version. The same applies for the synthetic versions, where
we remove nodes that exist in the ground-truth but not in the synthetic versions. In
the end, the ground-truth and the synthetic versions comprise the same set of nodes but
with different edges. We generate ten embeddings of the ground-truth and the synthetic
versions. The noise addition for this experiment consists of validated edges that were
added/removed in the previous and later version. We define two noise levels where 3%
noise is added at level 1 and 10% at level 2. This experiment allows us to analyze how the
addition or removal of edges affect the embeddings’ performance in the two tasks. Table
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Ground-truth Noise L1 (2009.01.03) Noise L2 (2018.01.02)

Nodes 10’858 10’858 10’858
Edges 45’825 44’543 50’803
Noise (in edges) - 1’282 (+1’066 / -2’348) 4’978 (+5’861 / -883)

Table 4.1: Noise addition to version 2014.06.02

4.1 presents a short summary. Similar to above, we will refer to this as the noise-oriented
approach in the following chapters.

To summarize, we presented the evolution-oriented approach that consists of 17 DDA
versions with 50 runs and the noise-oriented approach with 10 runs. For the tasks in
Chapter 5 and 6, we proceed as follows: first, we take an evolution-oriented perspective,
where we analyze and report the results with an evolving ontology. Second, we convert
to a noise-oriented perspective, where we take one version and consider the previous and
future version as noise in the ontology.

4.2 Methods

There exist countless methods for embedding generation, which can be roughly divided
into the following three categories: matrix factorization (MF), random walks, and neural
networks (NN). As previously mentioned, Yue et al. [32] conducted a comprehensive
analysis of several embedding methods. One of the used data sets is a DDA network
released in March 2017. They apply 11 embedding methods followed by a link prediction.
The best-performing methods for the prediction task are GraRep [3], LINE [28], and
struc2vec [27]. In this work, we choose GraRep and LINE from the BioNEV1 package
in order to compare an MF-based method with an NN-based method. As struc2vec is
computationally too expensive, we select an alternative embedding method named BiNE
[11], which is based on random walks and specifically constructed for bipartite graphs.
It is important to mention that the applied methods can only generate embeddings from
known nodes. To elaborate, these methods only allow an edge list containing nodes with
at least one edge as an input while nodes without edges are omitted. Therefore, we
have to keep in mind that the analyses and evaluations are performed in a controlled
environment, which does not allow any interference.

GraRep is an MF-based method that preserves global structural information of a
graph with the k-step algorithm. Every k-step model outputs a local representation
of a node, and by concatenating those, we obtain a global representation of a node.
Hence, this method focuses on the neighborhood structure of each node, such that nodes
close to each other have similar embeddings and vice versa. LINE is an NN-based
method that integrates both local and global network structures in an embedding. It
focuses on the first- and second-order proximity, and is therefore, similar to GraRep,
prioritizing the neighborhood when learning the embeddings. Both methods believe

1https://github.com/xiangyue9607/BioNEV

14
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that including neighborhood-related information in the embedding process will preserve
the global structural information of a graph. The hyperparameters are taken from Yue
et al. [32] as they already conducted an in-depth tuning.

BiNE is an embedding method explicitly built for bipartite graphs and is not pro-
vided in the BioNEV package. This method distinguishes between explicit and implicit
relations of a graph, in other words, between first- and second-order proximity. For
the latter, the bipartite graph is divided into two homogeneous graphs (drug-drug and
disease-disease graphs) and random walks with a biased, self-adaptive algorithm are
used. In Gao et al. [11], hyperparameter tuning is conducted by measuring the impact
on link prediction. They tune the parameters β and γ as these are crucial indicators for
how much of the explicit (γ) and the implicit (β) relations flow into the embeddings.
Starting from their proposed parameter settings, we tune γ and β and conclude that a
higher γ returns better performance for link prediction. This implies that the explicit
links are more important than the implicit links. Due to its high computational cost, we
compute 10 runs for the evolution-oriented approach and 5 runs for the noise-oriented
approach.

A detailed overview of the applied embedding methods and the corresponding hyper-
parameters can be found in Table A.1
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Visual Analysis with PCA

In this chapter, we provide an initial visual comparison of the different embedding meth-
ods across the evolution. This step is usually performed to examine how well the embed-
dings can describe the underlying data [3, 11, 28]. We utilize the Principal Component
Analysis (PCA) [24] to map the embeddings of drugs and diseases into a two-dimensional
space. We choose PCA over t-SNE [17] and UMAP [21], because the generation process
of the projections is deterministic. Also, PCA highlights the global structure of the em-
bedding space rather than distorting it [29]. We apply this technique on three different
versions from the ontology evolution and also run it for the noise-oriented approach.
Our initial assumption is that drug and disease embeddings form two clusters and are
visually distinctive. Furthermore, we expect the layout to stay more or less the same
across the evolution and despite the noise addition.

5.1 Evolution-oriented perspective

We select three versions (2009.01.13, 2014.01.06, and 2018.01.02) of the same seed and
compare their representations. Figure 5.1 depicts the representation of the embeddings
for each embedding method, where drug points are displayed in purple, and disease
points in red. In 5.1a, we observe that the drug and disease clusters cannot be fully
distinguished from each other as they overlap. Also, we notice that the diseases keep
their shape, whereas the drugs are scattered more as the ontology evolves. Nevertheless,
the structure of diseases being surrounded by drugs in a triangular shape is preserved.
The explained variance ratio of the principal components is in total 13%, which means
that PCA is unable to retain most of the embedding information on two dimensions.

In Figure 5.1b, the two-dimensional representation of the LINE embeddings are pre-
sented. The disease points stay close together and are surrounded by the drug points;
however, there is no clear shape visible as the ontology evolves. In addition, the ex-
plained variance ratio of the principal components adds up to 15%, which is still very
low. Therefore, we refrain from making any further statement.

The BiNE representations are displayed in Figure 5.1c. The overall circular shape
remains unchanged throughout evolution. Here again, the disease points stay dense and
are surrounded by the drug points. The explained variance ratio makes up less than
2% so that the drug points and disease points contain only little information about the
initial embeddings.
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(a) GraRep

(b) LINE

(c) BiNE

Figure 5.1: PCA projections on the evolution (seed=5). Drugs are purple and Diseases
are red.

18
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5.2 Noise-oriented perspective

In the noise experiment, we apply PCA on the ground-truth and the two synthetic
versions. Figure 5.2 presents the projections with different embedding methods, where
drug points are displayed in green, and diseases in red. We notice that the overall
structure is preserved despite the noise addition. However, noise level 1 is more similar
in shape to the ground-truth than to noise level 2. This can be nicely observed for
GraRep and LINE. Similar to the evolution-oriented perspective, we receive an explained
variance ratio of 13% for GraRep, 15% for LINE, and lastly, 2% for BiNE. However, this
time we notice that the shapes are preserved for all embedding methods despite the noise
addition. Especially for LINE, we now observe a consistent pattern between the ground-
truth version and the synthetic versions. In all projections, the diseases are concentrated
in the middle, whereas the drug points are scattered.

5.3 Summary

To conclude, we have observed several overlaps in the projections of the drugs and dis-
eases. However, the drug points respectively the disease points are clustered together and
region bound, thus revealing that the principal components can discriminate the two cat-
egories to a certain point. Nonetheless, PCA is unable to retain most of the information
(variance) from the initial embeddings for any of the embedding methods. Out of the
three methods, the GraRep embeddings return the best result with an explained variance
ratio of 13% and a maintained layout throughout the evolution. Although the embed-
dings from LINE preserve more of the information (15%), the shape across the evolution
is not explainable. In contrast, the BiNE embeddings retain the same shape; however,
they keep almost no information about the original embeddings, which is surprising, as
we expected BiNE to perform better and project two distinct clusters. However, we can
only assume that our embeddings cannot be fully linearly described with PCA, making
it a non-suitable method to project the DDA network. In Appendix A.3, we present the
visualizations of the embeddings with the dimension reduction techniques t-SNE and
UMAP.
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(a) GraRep

(b) LINE

(c) BiNE

Figure 5.2: PCA projections on the noise experiment (seed=1). Drugs are green and
Diseases are red.
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Local Neighborhood Similarity

While embeddings may hold important structural and semantic information of a node,
they are simply vectors in a multi-dimensional space. Therefore, we can measure the
distance between these vectors with common metrics such as the cosine or euclidean
distance. We utilize the local neighborhood (LN) similarity that is widely used to com-
pare embeddings [2, 15, 25]. To this end, we define several distance (percentile) values
for the neighborhood of two embeddings and report their similarity. The comparison
is performed on embeddings of the same version, comparing each one with the remain-
ing embeddings from different runs (10 out of 50 randomly selected runs). We do not
use a cross-version comparison, because each version has a different set of nodes. This
makes the comparison challenging, as we would have to first remove all the embeddings
(nodes) that do not appear in each of the two versions to be compared. Furthermore,
the existence about the removed nodes is still included in the remaining embeddings.
The results would be distorted, and we would not be able to distinguish if it is due to
the newly added edges or the inclusion of the removed nodes. Therefore, we conduct
all comparisons using embeddings of the same version. In this task, we will answer the
following two questions:

RQ1.1. Which distance (percentile) value reports the highest neighborhood similarity
across the evolution?

RQ1.2. Can the best performing distance (percentile) value for each embedding method
ensure a consistent neighborhood similarity across the evolution?

6.1 Approach

First, we calculate the euclidean and cosine distances between the embeddings of the
same version with different seeds. The euclidean distance can be defined as the relative
distance between two vectors from the zero point. Hence, if two vectors have a small
euclidean distance, it implies that they are close to each other in the multidimensional
space (i.e., in the same region) and thus similar in magnitude. In contrast, the cosine
distance is computed from the angle between two vectors. Vectors that point in the same
direction have a small cosine distance regardless of their magnitudes. In other words,
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the cosine distance would consider those embeddings that have a similar structure to
be close, even though they may be very far apart in the vector space. Therefore, it is
often used when comparing documents of varied lengths and containing different term
frequencies.

For both distance measures, we obtain a distance matrix for each version instance
and set a threshold for the neighborhood such that only embeddings with a distance of
less than r are included. The parameter r is defined by the percentiles of each distance
distribution. We use the following percentile values: radius = [0.05, 0.1, 1, 10, 20], where
r ∈ radius. With two sets of neighborhoods for each entity, we use the Jaccard index
and the overlap coefficient to evaluate their similarity. The Jaccard index is a widely
used metric that, given two sets A and B, calculates the intersection of A and B over
the union of A and B. In contrast, the overlap coefficient can be computed by the
intersection of A and B over the size of the smaller set between A and B, as shown in
Equation 6.1 and 6.2.

Jaccard =
| A ∩B |
| A ∪B |

(6.1)

Overlap =
| A ∩B |

min(| A |, | B |)
(6.2)

The overlap coefficient is a lesser known method, but its benefit is that it indicates
how much of the smaller set is contained within the larger. Therefore, it represents the
difference between the two sets. Since the embedding methods determine when embed-
dings are close to each other, we prioritize the euclidean rather than the cosine distance
for the evaluation. All the embedding methods that we use focus on the proximity of the
nodes. To give an example, LINE uses the first and second proximity when generating
embeddings, thus nodes sharing the same neighborhood have similar embeddings. For
these reasons, we put less weight on the cosine distance. Nevertheless, we present both
distance measures, as our embeddings consist of 100 dimensions, where the vector space
is bound to be sparse.

6.2 Evolution-oriented perspective

Prior to reporting the similarity measures, we first present the neighborhood size taking
into account the embedding method and the percentiles. Figure 6.1 shows the average
size of the neighborhood computed with the euclidean distance across the evolution. We
notice that, with a larger percentile, the neighborhood sizes of the different embedding
methods become more similar. Only for r ≤ 1 do we observe different neighborhood
sizes. GraRep and LINE show no great variability with lower values of r. However, with
BiNE, we notice that around 200 neighbors are included at r = 0.1, whereas twice as
many are captured with r = 1. Nonetheless, we can compare the embedding methods
more easily with a larger percentile value, as the similarity measures can be seen as
equivalent at this point. All the graphs depict an increase in neighborhood size as
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(a) Higher r’ values

(b) Lower r values

Figure 6.1: Neighborhood sizes for GraRep, LINE and BiNE

the ontology evolves. This is expected, as the ontology becomes populated with new
nodes and edges, making the vector space denser. The neighborhood sizes for the cosine
distance are almost identical. The same figure can be therefore found in Appendix A.4.

Moving to the actual results of the neighborhood similarity, we present the values
in Figure 6.2, where each point in a plot represents a DDA version. The similarity
metrics of the embedding methods turn out be very different. Figure 6.2a presents
the Jaccard index and the overlap coefficient with the euclidean distance. The same
similarity metrics can be found in Figure 6.2b, which depicts the results with the cosine
distance. We initially notice no major differences between the results of the euclidean and
the cosine distance. In a few cases, we see a slightly lower similarity value for the cosine
distance (e.g., GraRep with r = 1). However, this minor difference can be neglected,
since the overall pattern of the results across the evolution is preserved. Therefore, we
focus on the similarity measures of the euclidean distance for the rest of this chapter.
We first notice that the values of the overlap coefficient are higher than the Jaccard
index. This is expected, since the denominator in the overlap coefficient is smaller than
that of the Jaccard index. Nonetheless, for GraRep and LINE, both similarity metrics
show an almost identical pattern in accordance with the different percentile values. In
contrast, with BiNE we observe a slightly different behavior, where, for example, the
Jaccard index is proportionally higher than the overlap coefficient at r = 0.05. However,
we refrain from examining this difference, since our focus is on the Jaccard index for
the rest of this chapter. We leave this exploration to future works. The terms similarity
and Jaccard index are henceforth used interchangeably.

Considering the Jaccard index, we can see no curve for GraRep at r = 0.05 and
r = 0.1. This occurs because it fails to return valid neighbors at a low percentile value.
With r ≥ 1, the Jaccard index curves are visible in the plot, and at r = 10, the highest
similarity value is reached at approximately 0.65. At this point, the neighborhood size
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consists of around 1’000 neighbors. The lowest similarity value of 0.45 is reached at
r = 1, where the neighborhood size accounts for around 100 neighbors. From this,
we can deduce that a higher percentile and thus a larger neighborhood returns better
similarities for GraRep. With LINE, the highest Jaccard index is reached at r = 1,
with around 100 neighbors. Anything below or above this reports a worse similarity
value; however, we notice that the similarity for higher r values differs less than those
for lower ones. Although the distance between the higher r values and r = 1 is much
larger, the Jaccard index deviates only around 0.2 from the highest similarity value.
Therefore, we can make the same conclusion as for GraRep, where higher percentiles
return better similarities. Finally, in the case of BiNE, the highest similarity is reached
with r = 0.1, which is the lowest percentile value out of the three embedding methods.
The neighborhood size at this point increases from 200 to 300 along the evolution. At
the same time, the Jaccard index demonstrates an evident increase of 0.1 across the
evolution. This means that the neighborhood similarity increases across the evolution
with a steadily growing neighborhood. We do not observe this evident behavior with
the other embedding methods. Although a slight increase along the evolution is visible
in some cases, the increase is not as apparent as in BiNE. In addition, higher or lower r
values show no distinct differences; thus, we can consider them to be equally poor. To
summarize, for GraRep and LINE, higher r values report better similarity as opposed to
BiNE, which returns a high similarity for a lower r. In general, the minor fluctuations in
the plots can be explained by the increase in neighborhood size as the ontology evolves.

To provide a conclusive picture of the above interpretations, Figure 6.3 presents the
average Jaccard index and neighborhood size computed from the different versions. In
Figure 6.3a, each embedding method reaches its peak at a different r value. GraRep
reports the highest similarity at r = 10, whereas the other two embedding methods hold
their peaks at a much lower value of r. LINE shows the highest similarity at r = 1
whereas BiNE depicts a slightly lower percentile at r = 0.1. Figure 6.3b demonstrates
that GraRep and LINE have an almost identical increase in neighborhood size across
percentile values. BiNE, on the other hand, reports larger neighborhood sizes for each
percentile. However, at higher r values, the neighborhood size of BiNE becomes closer to
that of GraRep and LINE. From these findings, we can derive that the BiNE embeddings
are slightly denser compared to the GraRep and LINE ones.

In order to analyze and interpret the respective distance values, we utilize Welch’s
t-test which is an adaption of the unpaired t-test, whereby an equal variance is usually
a prerequisite. Applying Levene’s test proved that the variances in several samples are
not equal for GraRep, LINE and BiNE (see Appendix A.4.1). We proceed with Welch’s
t-test and compare the mean of the Jaccard indexes from each version to every other
version. As we are running multiple hypothesis tests, we use the Bonferroni method
to correct the p values. We refrain from reporting the results of both distance metrics
since the similarity measures of the euclidean and cosine distance are almost identical.
Therefore we present the Welch’s t-test results along with the euclidean distance in
Figure 6.4. The results with the cosine distance can be found in the Appendix A.4.1.

For GraRep, most of the versions return no significant difference in the mean at
r = 1 with a few exceptions that predominantly reject the null hypothesis (2011.04.04
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(a) Euclidean distance

(b) Cosine distance

Figure 6.2: Similarity metrics for GraRep, LINE and BiNE

(a) Average Jaccard Index (b) Average neighborhood size

Figure 6.3: Averages across the evolution for different percentile values (x-axis) with
euclidean distance
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(a) GraRep r = 0.1 (b) GraRep r = 1 (c) GraRep r = 10 (d) GraRep r = 20

(e) LINE r = 0.1 (f) LINE r = 1 (g) LINE r = 10 (h) LINE r = 20

(i) BiNE r = 0.1 (j) BiNE r = 1 (k) BiNE r = 10 (l) BiNE r = 20

Figure 6.4: Welch’s t-test for LN similarity comparison with α = .05 (dark green stands
for rejected null hypothesis and light green for accepted null hypothesis)
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and 2018.01.02). For the version at 2018.01.02, we are aware, that at this point, the
largest changes occurred in the ontology; this can also be observed in Figure 6.2. In
the same figure (6.2), we notice a slight decrease at 2011.04.04 that later recovers in the
consecutive versions. This indicates a drop in the similarities, which explains the high
number of rejected null hypotheses at this point. For r = 10 and r = 20, the results show
a very similar pattern. Neighboring versions demonstrate no significant difference in the
mean, whereas farther versions reject the null hypothesis. Therefore, we can conclude
that at r = 1, GraRep outputs the most consistent Jaccard indexes across the evolution.
An exception is at r = 0.1, where we have previously seen that no valid neighbors were
selected, making a comparison impossible. Furthermore, the higher the r value, the more
inconsistent the results, especially for those versions that are farther apart. For LINE,
we notice no profound differences across different r values. At r = 0.1, we can observe
the most restricted behavior, whereby only a few neighboring versions accept the null
hypothesis. For higher r values, this restriction dissolves. At r = 1 in particular, we
find that several versions demonstrate no significant differences in the mean. Looking at
version 2014.06.02, we notice that all the prior versions report a significant difference,
whereas the consecutive ones prove to be non-significant. This constitutes the turning
point from which the ontology introduces a breaking change that shifts the mean such
that it shows significance. In general, we observe once more that neighboring versions
are more likely to accept the null hypotheses than those that are farther apart. With
BiNE, we notice a likely opposite behavior to GraRep. At r = 0.1 and r = 1, only the
closest neighboring versions accept the null hypothesis; however, with a higher r, the
Jaccard indexes start to converge along the evolution, proving an evident decrease in
significant differences. Nonetheless, we observe the turning point at 2014.06.02 again,
and most of the versions report a significant difference from version 2018.01.02.

6.3 Noise-oriented perspective

The same neighborhood similarity algorithm is applied to the ground-truth (GT) version
(2014.06.02) and the respective synthetic versions. In this perspective, we compare
the ground-truth with each synthetic version that comprises a different noise level. In
addition, we compare the ground-truth version with different seeds referred to as G′.
This provides an indication of how the noise addition affects the original Jaccard index.
Table 6.1 presents the similarity metrics computed with the euclidean distance. The
results with the cosine distance can be found in Appendix A.4.2.

Similar to the evolution-oriented perspective, GraRep only provides values with r ≥ 1.
From there, we observe that noise level 1 reports slightly higher values than noise level 2.
Additionally, compared to GT , the difference for noise level 2 is larger than for 1, even
though the neighborhood size does not seem to differ greatly. Observing the Jaccard
index over the different percentile values, we notice that the distance between GT and the
different noise levels remain more or less constant. For the LINE embeddings, the Jaccard
indexes for both noise levels show a marginal difference to GT for each percentile value.
Moreover, among the noise levels, the Jaccard index deviates by at most 0.04. Here as
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euc<0.05% euc<0.1% euc<1% euc<10% euc<20%

GraRep

GT - GT’ - - 0.46 [104] 0.67 [1’075] 0.63 [2’161]
GT - Noise L1 - - 0.42 [104] 0.60 [1’074] 0.56 [2’161]
GT - Noise L2 - - 0.40 [104] 0.57 [1’076] 0.53 [2’161]

LINE

GT - GT’ 0.18 [16] 0.27 [21] 0.65 [113] 0.43 [1’085] 0.36 [2’171]
GT - Noise L1 0.17 [16] 0.27 [21] 0.62 [113] 0.41 [1’085] 0.35 [2’171]
GT - Noise L2 0.17 [15] 0.26 [20] 0.58 [113] 0.40 [1’085] 0.34 [2’170]

BiNE

GT - GT’ 0.38 [106] 0.50 [203] 0.37 [410] 0.38 [1’331] 0.40 [2’333]
GT - Noise L1 0.36 [107] 0.48 [207] 0.36 [408] 0.37 [1’335] 0.39 [2’333]
GT - Noise L2 0.35 [108] 0.46 [204] 0.36 [422] 0.38 [1’336] 0.39 [2’331]

Table 6.1: Jaccard index for GraRep, LINE and BiNE with euclidean distance. Number
in brackets [·] is the neighborhood size.

well, the neighborhood size does not change much despite the different noise levels. The
BiNE embeddings behave similarly, and no major differences can be observed. In some
cases, the two noise levels report the same similarities, although it is not the exact same
value due to rounding differences. The Jaccard indexes between the noise levels deviate
by at most 0.02, which is the lowest among the embedding methods. Especially with
r ≥ 1, the values are almost identical, although the neighborhood sizes are not equal.
Overall, it is surprising how close the Jaccard indexes of the different noise levels are to
GT . Considering that we added five times more edges in level 2 than in 1, the difference
can be seen as minor. The marginal differences in the neighborhood size among the levels
are also unexpected. Here again, we can see that the neighborhood sizes for GraRep and
LINE are similar along the percentile values. However, BiNE at r = 0.05 starts off with
a much larger neighborhood size but the difference diminishes with higher percentiles.

For further analysis, we turn to the evolution-oriented perspective, where we first apply
Levene’s test (see Appendix A.4.2) followed by the Welch’s t-test to find out if there
is a significant difference in the mean between the Jaccard indexes of the ground-truth
and the respective synthetic versions. We apply the statistical tests to four different r
values and present the results in Table 6.2.

Surprisingly, all the comparisons report a significant difference in the mean along the
different percentile values. Observing the t-statistic, we can see a consistent behavior for
GraRep and LINE, whereby noise level 1 reports a lower value than 2 across the board.
With an increasing r, we notice that the difference in the t-statistic increases much more
than for LINE. In contrast, BiNE shows the opposite behavior with r ≥ 1, whereby the
t-statistic for noise level 2 is lower than for 1. Moreover, noise level 2 displays a value
twice that of noise level 1. This is very unexpected and indicates that the mean of noise
level 2 is closer to the ground-truth than that of noise level 1.
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GraRep LINE BiNE
statistic p-value statistic p-value statistic p-value

cos<0.1%

GT − Noise L1 - - 7.7236 <.0001 6.5710 <.0001
GT − Noise L2 - - 15.6866 <.0001 13.0532 <.0001

cos<1%

GT − Noise L1 29.0419 <.0001 31.6608 <.0001 5.7017 <.0001
GT − Noise L2 42.0600 <.0001 77.9198 <.0001 3.9185 0.0010

cos<10%

GT − Noise L1 54.7415 <.0001 10.7561 <.0001 10.7527 <.0001
GT − Noise L2 81.2714 <.0001 16.6438 <.0001 5.5429 <.0001

cos<20%

GT − Noise L1 53.4194 <.0001 5.8066 <.0001 33.4405 <.0001
GT − Noise L2 89.0791 <.0001 11.4771 <.0001 16.0558 <.0001

Table 6.2: Welch’s t-test for the noise experiment with the euclidean distance

6.4 Discussion

In the evolution-oriented perspective, we found that the Jaccard index for neighboring
versions shows no significant difference in most cases. This was proven regardless of
whether we computed it with the euclidean or the cosine distance. Hence, we can infer
that the near-term evolution of an ontology has no significant effect on the neighborhood
similarity. Apart from this, we noticed that farther located versions reject the null
hypothesis in several cases. However, this is not guaranteed, as we also observed patterns
where a noticeable change in the ontology leads to a shift in the mean such that all the
previous versions show a significant difference to the subsequent ones. In addition, taking
the different percentile values into consideration, none of the embedding methods provide
a clear consistency over different r values.

In the noise-oriented perspective, both noise levels reported a significant difference in
the mean across percentile values. We also noticed that the difference in the t-statistic
between the noise levels is larger for GraRep than for LINE, which implies that the
addition of noise affects the former to a greater extent. In the case of BiNE, we found
that noise level 2 reports a lower t value than level 1 with r ≥ 1. This is very unexpected
and will be discussed in future works.

In both perspectives, we received consistent results regarding RQ1.1. BiNE reports
the best performing percentile value at r = 0.1, LINE at r = 1 and lastly GraRep at
r = 10. This was observed from the Jaccard index of both distance metrics, euclidean and
cosine. Regarding RQ1.2., we took the best percentile values and analyzed the results
of Welch’s t-test across the evolution. None of the embedding methods fully show a
consistent pattern across the evolution at their best performing r. It turns out that
several parameters in the task influence the similarities and consequently the number of
significant differences in the mean. Nevertheless, when focusing on the best performing
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distance value, we can clearly see that LINE rejects the fewest null hypotheses out of the
three embedding methods. GraRep and BiNE perform the worst in terms of consistency
at their best performing r values. Furthermore, across the different r values, LINE is
the closest to demonstrating a common pattern.

To conclude, the neighborhood similarity task shows that we can determine a per-
centile value that clearly indicates the highest Jaccard index. However, it should not
be assumed that the best performing percentile value also outputs the highest consis-
tency across the evolution. This is highly dependent on the embedding method, the
percentile value, the distribution of the embeddings in the vector space and the severity
of the changes across the ontology evolution. Consequently, there is also no guarantee
that embeddings will report consistent results across different percentiles. Although this
was anticipated, we did not expect such drastic pattern changes with different r values.
Nonetheless, dealing with parameter adjustments in the task tells us how sensitively the
embeddings respond to such events. This provides further evidence of the robustness of
an embedding. In addition, greater changes in the ontology very likely shift the mean
of the Jaccard indexes and thus report a significant difference. This is understandable,
as the addition or removal of multiple nodes is bound to change the neighborhood.
However, the neighboring versions are usually not concerned, as most of them do not
comprise major differences and therefore report no significance in the mean.
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Link Prediction

Link Prediction allows to find new relationships between entities, and it has been exten-
sively used as a down-stream task to evaluate embeddings [8, 32]. Similarly to Hasan et
al. [16], we define it as a supervised learning problem. The goal of the prediction model
is to differentiate between positive and negative links, which requires training data of
both types. However, as mentioned in the previous chapter, links are only predicted
for known nodes with respectively generated embeddings. Also, while we have access to
validated positive samples, in most cases, validated negative samples are unfortunately
not provided. Those are often randomly selected from not-linked edges, which enhances
the risk of adding unnecessary noise, consequently acting counterproductive. The in-
corporated link prediction from the BioNEV package does precisely this. The negative
samples are randomly selected with the same number of positive edges. Furthermore,
the edge selection is random on all existing nodes, allowing negative edges that include
drug-drug or disease-disease links. Such relations are not allowed in a bipartite graph.
Given these implications, we will answer the following two questions:

RQ2.1 How severely is the link prediction performance across the evolution affected
when one modifies the prediction algorithm?

RQ2.2 How does the contribution of domain-specific restrictions influence the link
prediction performance across the evolution?

7.1 Logical Restriction

We extend the link prediction from BioNEV with logical restrictions by (1) allowing
only drug-disease links for negative samples (2) providing a reduced selection of reliable
negative edges. The second restriction is inspired by Wu and Liu [31] - they introduce a
method that is called Reliable Negative Samples Selection. Their algorithm is based on
the widely used assumption that similar drugs may treat similar diseases. The idea is
simple: nodes with an (indirect) relation to each other are not included in the selection.
How far this boundary lies can be defined by k, which represents the number of steps
or rather the path length between two nodes. As a result, the k-step commuting matrix
captures the existence of a path between two nodes.
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Wu and Liu [31] use a 3-step algorithm in their research; however, the graph they are
working with is much smaller compared to the DDA network. Therefore, we apply the
3-step as well as the 7-step method in our work. An example for a 3-step algorithm
is presented in Equation 7.1, 7.2 and 7.3. The first equation (7.1) includes all 1-step
neighbors, where Ads is simply the drug-disease association matrix:

D1 = Ads (7.1)

Equation 7.2 contains the 3-step neighbors, such that all paths along Drug−Disease−
Drug −Disease are captured.

D3 = Ads ×AT
ds ×Ads (7.2)

Finally, all the commuting matrices are summed up as in Equation 7.3. The 2-step
commuting matrix can be omitted as these paths are already included in D3.

D = D1 +D3 (7.3)

Now with D, we can examine, if there exists any path up to length 3 between two
nodes. Nodes with no path in between them have the value zero. Therefore, when
selecting the negative edges, we first check whether the value between the proposed
nodes is 0. If yes, we include it in the negative samples from the selection. Apart from
this, we use the same link prediction settings as provided in the BioNEV package that
consists of a Logistic Regression binary classifier with an 80% training and 20% test set.

7.1.1 Evolution-oriented perspective

In Figure 7.1, we report the link prediction performance across the evolution where
column-wise: 1) no reliable negative samples exist, 2) 3-step neighbors are excluded
from the negative sample selection, and 3) 7-step neighbors are excluded. The perfor-
mance for 1) and 2) show no substantial difference at first glance with a shift of around
0.01. In contrast, the results with the 7-steps method demonstrate a major increase in
performance with an AUC ROC of approximately 0.96. Additionally, the results become
more distinct with an increase in the step size. This can be clearly seen at 2018.01.02
(last version), where the gap to the other values increases significantly. Comparing the
embedding methods, we observe that the LINE embeddings show slightly poorer per-
formance for the 0-step and 3-step method than the GraRep embeddings; however, the
results of LINE turn out higher in the 7-step method. BiNE reports similar results to
GraRep except for the 7-step method, where it is lower by approximately 0.03. The AUC
ROC for GraRep, LINE, and BiNE show minor fluctuations across the evolution, and
only in 2018.01.02, there is a significant increase visible. This can be explained by our
findings in Chapter 3, where we learnt that most of the nodes and edges were added at
this point. Besides that, the fluctuation pattern of different step sizes remains the same
for all embedding methods, which reveals that the prediction model stays unchanged for
all versions and is not affected by the restricted negative sample method.
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Figure 7.1: Link prediction performances (AUC ROC)

We additionally apply Welch’s t-test to examine if the mean of the AUC ROC values
across versions differs significantly. By running Levene’s test, we find that the variances
in several samples are not equal for GraRep, LINE and BiNE (see Appendix A.5.1).
Hence, we proceed with Welch’s t-test that does not require an equal variance but can
still be used to compare the means between two groups. We run the test for each version
comparing it to the remaining ones. Since we are testing multiple hypotheses, we again
use the Bonferroni method to correct the p values. The adjusted p values are presented
in Figure 7.2.

We observe that the results demonstrate very different patterns for GraRep, LINE, and
BiNE. In the 0-step and 3-step method, GraRep shows almost no significant differences
between the versions. BiNE reports no significance in the 0-step method (with one
exception), but this changes drastically with a larger step size. LINE differs considerably,
whereby the first half of the versions demonstrate no significance between the means,
but the other half rejects the null hypothesis. The version at 2014.06.02 acts as a
turning point from where the exact opposite behavior can be observed. All consecutive
versions report no significant difference, whereas the versions before 2014.06.02 reject
the null hypothesis. This indicates that there are two groups with significantly different
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(a) GraRep 0-step (b) GraRep 3-step (c) GraRep 7-step

(d) LINE 0-step (e) LINE 3-step (f) LINE 7-step

(g) BiNE 0-step (h) BiNE 3-step (i) BiNE 7-step

Figure 7.2: Welch’s t-test for Link prediction performance with α = .05 (dark blue stands
for rejected null hypothesis and light blue for accepted null hypothesis)
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means divided at the turning point. When comparing the GraRep and LINE results
of the 7-step method, the patterns resemble each other. The turning point remains at
2014.06.02 for both methods, with a few exceptions that reject the null hypothesis. For
all embedding methods, the last version (2018.01.03) remains an exception because it
behaves differently from the remaining versions. It rejects the null hypothesis regardless
of the other version’s proximity, and only in the 0-step results of LINE, does it show a
similar mean with the first half of the versions.

7.1.2 Noise-oriented perspective

We apply the same prediction algorithm on the ground-truth (GT) and the synthetic
versions with different step sizes. Table 7.1 presents the AUC ROC for each step method.
Overall, there is only a small margin between the values of the ground-truth and those of
the synthetic versions. Nonetheless, the results at noise level 2 show a more considerable
difference compared to noise level 1. We also notice that the difference increases with
a larger step size. As an initial assessment, we can state that the results remain stable
despite the noise addition.

0-step 3-step 7-step

GraRep

GT 84.54 85.80 95.91
Noise L1 84.46 85.84 95.72
Noise L2 84.91 86.52 97.32

LINE

GT 83.71 85.15 96.30
Noise L1 83.85 85.22 96.05
Noise L2 83.75 85.58 97.57

BiNE

GT 84.46 84.49 92.92
Noise L1 84.46 84.62 92.86
Noise L2 84.35 84.74 94.27

Table 7.1: Link prediction performance (AUC ROC in %) for the noise experiment

Similar to the evolution-oriented perspective, we first run Levene’s test followed by
Welch’s t-test. Here, we compare the ground-truth version with the synthetic versions for
each step method, so that we can examine if the noise addition demonstrates a significant
effect on the link prediction performance. The results of Levene’s test (see Appendix
A.5.2) verify that the variance for the ground-truth and each synthetic version is the
same across all the embedding methods; thus, the null hypothesis can be accepted.
However, for consistency reasons, we proceed with Welch’s t-test and apply it to the
ground-truth and the synthetic versions. Table 7.2 presents the results. We notice
that, for GraRep, the results of the 0-step and 3-step methods only show a significant
difference at noise level 2. For the 7-step method, both noise levels show a significance
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in the mean compared to the ground-truth. Regarding the 0-step method of LINE, both
noise levels report p values above 0.05, which implies that the null hypothesis holds.
Noise level 2 shows a significant difference only in the 3-step method for LINE, and,
both noise levels reject the null hypothesis with the 7-step method. In contrast, BiNE
reports a significant difference only in the 7-step method at noise level 2. From these
results, we can infer that the prediction performance of BiNE is the least affected by
the noise addition, whereas GraRep demonstrates the largest changes in performance.
In general, the difference between the p values of the two noise levels is much larger for
GraRep than it is for LINE or BiNE.

GraRep LINE BiNE
statistic p-value statistic p-value statistic p-value

0-step
GT − Noise L1 -0.4922 0.6285 -0.8073 0.4301 -0.6774 0.5205
GT − Noise L2 -2.4509 0.0267 -0.2389 0.8141 0.2517 0.8077

3-step
GT − Noise L1 0.3657 0.7190 0.5238 0.6070 -0.6097 0.5606
GT − Noise L2 -6.8903 <.0001 -2.7339 0.0138 -1.0782 0.3125

7-step
GT − Noise L1 -2.6821 0.0169 -3.3006 0.0058 0.3779 0.7203
GT − Noise L2 -24.4994 <.0001 -21.7326 <.0001 -9.3775 0.0003

Table 7.2: Welch’s t-test (AUC ROC) for the noise experiment

7.1.3 Discussion

In the evolution-oriented perspective, we saw that the AUC ROC value for all embedding
methods remains similar across the evolution with minor fluctuations. The last version
(2018.01.02) is an exception, which reports a larger AUC ROC value for every step
size. This is not surprising as we expect larger changes in the ontology to impact the
performance of the prediction model. We initially stated that we consider the link
prediction performance to determine the robustness. However, this is not trivial, as
multiple factors can influence the performance of a prediction model. One of them is,
that we run the prediction task with different versions respectively different states of
knowledge. In addition, we are forced to include a randomness factor, as we do not have
access to any validated negative samples. We try to minimize this instability with the
logical restriction algorithm. By keeping these facts in mind, we compare the prediction
performances and consequently the robustness of the embeddings. We notice that the
number of significant differences between the versions increases with a larger step size.
Therefore the robustness across versions gets compromised, whereas at the same time
we receive a higher prediction performance by adding the logical restriction, This is an
unexpected trade-off, because we initially believed that reducing the randomness in the
negative selection process would output more consistent results. Only with LINE, we
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observe the least harm where the pattern of different step sizes is more or less preserved.

In the noise-oriented perspective, we found that the addition of noise does not affect
the prediction results very heavily. Still, the performance values of BiNE are less affected
by the noise than for LINE and GraRep. This is proven particularly by the 3-step method
for BiNE, where both noise levels accept the null hypothesis of an equal mean to the
ground-truth. Unlike GraRep and LINE that reject the null hypothesis at noise level 2
for this step size.

In both perspectives, we observed that a larger step size increases the prediction
results. Moreover, the variance becomes smaller, from which we can deduce that the
model is able to make more precise predictions. The prediction results of the LINE
embeddings have further shown a bigger performance boost when applying the logical
restriction compared to GraRep and BiNE.

To answer RQ2.1 , we have proven that the results of the prediction task changes
when adjusting the selection process of the negative sample. Using random selection not
only adds unnecessary noise, but we are also unable to confidently present and interpret
the results due to the randomness of the selection process. We do not know about the
structure/distribution of the negative samples, which might lead to possible performance
alternations that we are unable to explain. With the presented restriction algorithm, we
are aware of the selection process, and we can ensure that it complies with the domain
context. Regarding RQ2.2 , we have proven that the restricted negative sample selection
improves the performance of the prediction model. In addition, the logical restriction
leverages the model in making more precise predictions. However, in terms of robustness,
GraRep and BiNE show a consistent pattern across the evolution only in the 0-step and
3-step method. In contrast, LINE generally divides the versions into two groups with
different means; therefore, consistency is only guaranteed within the group. Nonetheless,
when taking a different perspective of robustness so that we consider a consistent result
over different step methods as robust, LINE clearly outperforms the other two methods.

7.2 Future Links

In this experiment, we train a model at a certain point in time and use future links in
the test set for evaluating the prediction. The goal is to assess the performance of the
prediction model for validated future links to find if the trained embeddings can predict
the links correctly within their current state of knowledge. We train two models with the
data available from 2009.01.13 and 2014.01.06, referenced as V 1 and V 2. The prediction
model for this experiment is built as follows: the training set consists of the whole edgelist
data available at t0 where t0 ∈ [2009.01.13, 2014.01.06]. The test set of the version at ti
includes the delta of t0 and ti, and only nodes that exist in both versions are covered. As
the test set consists of validated positive and negative cases, it is very likely to become
imbalanced. Taking this into account, we choose the appropriate evaluation metrics.
Prior to the evaluation, we first look at the distribution of the positive P and negative
N links at each ti. There are two use cases, either P >> N or P << N . The number
of positive and negative edges at the corresponding ti are presented in Figure 7.3. In
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(a) 2009.01.13 (b) 2014.01.06

Figure 7.3: Number of positive and negative edges

Figure 7.3a the test set in the first half consists predominantly of negative edges; however,
this changes in the other half where there are mainly positive edges. Figure 7.3b shows
that the positive edges dominate across all versions. Except for t4 (last version), the
negative edges are not clearly visible in the graph as they are located below 100. This
information is essential, since it influences how we evaluate the prediction model in the
following subsections.

7.2.1 State of knowledge at V1

Since both P >> N and P << N occur in this group of test set, we start by looking at
the performance of the first half (t1 and t2) and then move on to the second half (t3 and
t4). The first half contains more negative than positive edges; thus, we would intuitively
state that the model predicts the true negatives correctly and a certain amount of the
true positives as negative (false negative). Therefore, we focus on the positive cases and
study the precision and recall, also known as the true-positive rate (TPR). In addition,
we use another metric called Matthew’s correlation coefficient (MCC) [20], also known
as phi-coefficient, which takes into account all four values from the confusion matrix.
MCC returns a value between -1 and +1, where -1 represents a negative correlation and
+1 a perfect positive correlation. A high correlation value means that both classes, in
our case the positive and the negative edges, are predicted well. If the correlation value
is 0, it means that the prediction is similar to flipping a coin and in the case of a low
correlation value, we would get an inverse prediction, where positive edges are predicted
as negative and vice versa. Consequently, we aim for a high correlation value close to
+1 for our prediction model. The formula is shown in Equation 7.4.

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7.4)

All the evaluation metrics are presented in Figure 7.4. The vertical dashed line marks
the turning point where the number of positive edges becomes larger than the negative
ones.
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(a) Precision (b) Recall

(c) FPR (d) AUC ROC

(e) MCC

Figure 7.4: Performance metrics at 2009.01.13

39



40 CHAPTER 7. LINK PREDICTION

As mentioned above, we first focus on Figure 7.4a and 7.4b. The first half reports
a very low precision of approximately 0.1. This can be explained by the fact that the
model predicts a high number of false positives, thus labeling part of the negative edges as
positive. The recall values remain around 0.4 and 0.6, implying that the model predicts
roughly 50% of the true positives as negative. Since the number of negative edges is
disproportionally higher than the positive ones, we expect the model to predict more
negative cases. In comparison, the precision is lower than the recall in the first half;
we can therefore conclude that the model predicts proportionally more false positives
than false negatives. In other words, the prediction model makes more errors predicting
negative edges as positive than vice versa.

For the second half of the plots, precision and recall are not meaningful metrics for
evaluation due to the high number of true positives. We proceed by examining the false-
positive rate (FPR), AUC ROC and the MCC metric, which can be found in Figure 7.4c,
7.4d and 7.4e. In general, the FPR is very high, which implies that an increased number
of true negatives is wrongly predicted as positive. The negative edges are identified as
false positives with a probability of approximately 90%, which is a very poor prediction.
Moreover, the AUC ROC remains low at approximately 0.2 and 0.4, telling us that
the model is unable to separate the true positives and true negatives. MCC reports a
negative correlation with values between -0.5 and -0.2. This indicates that the model
has a tendency to make inverse predictions, which is expected due to the high FPR and
low TPR.

7.2.2 State of knowledge at V2

Taking the version at 2014.01.06 as the starting point of the prediction model, we end
up with a disproportionally high number of positive edges. For this reason, we omit the
evaluation of precision and recall and focus on the FPR, AUC ROC, and MCC metrics
similar to above.

In Figure 7.5a, we notice that the FPR at t1, t2 and t3 stays relatively low considering
the very small number of negative edges (1-2% of total edges). However, at t4, the
FPR rises to 0.8, which implies that approximately 80% of the actual true negatives are
predicted as positive. The negative edges at this point of time constitute around 10% of
the total edges. This is significantly more than at the previous ti, and from the high FPR,
we can only deduce that the prediction model is unable to identify the true negatives
correctly. The AUC ROC remains below 0.5, therefore we conclude that the model fails
to predict the true positives and true negatives correctly. In Figure 7.5c, MCC is located
between -0.2 and 0, which implies a weak correlation of inverse predictions. However,
the closer it approaches 0, the more the predictions behave similarly to flipping a coin.

7.2.3 Discussion

Comparing the performance of the two prediction models, we can confidently state that
the version at 2014.01.06 performs better than at 2009.01.13. Taking the context of the
domain into account, it is certainly beneficial to aim for a low FPR for the prediction
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(a) FPR (b) AUC ROC

(c) MCC

Figure 7.5: Performance metrics at 2014.01.06

model. Predicting an incorrect link between a drug and disease could be very detrimen-
tal compared with predicting a false negative that could have minor to no damage. The
approximate average of the FPR at V 1 is 0.86, whereas in V 2 it decreases to 0.5. This
means that the prediction of negative edges improves with V 2, although they remain a
minority. The AUC ROC value is also higher in V2 than in V1 moving up from approxi-
mately 0.3 to 0.4 and higher. However, everything below 0.5 is usually considered worse
as this indicates an opposite behavior of what is expected. The same can be said about
MCC, where we still observe a weak negative correlation that implies inverse predictions.
Nevertheless, V1 reports a higher negative correlation than V2, and although the MCC
value is now closer to 0, meaning that the prediction probability is similar to flipping a
coin, it is better than having a higher possibility for inverse predictions. From this, we
can infer that the prediction of future links improves with the evolution of the ontology.
We observed further that the predictions of the LINE embeddings report better values
and remain more stable compared to those of the GraRep and BiNE embeddings. In
all the presented metrics, LINE outperforms the other two embedding methods, except
for the FPR, where GraRep reports lower values than LINE. Nonetheless, the values of
GraRep show more fluctuations, which is a sign of instability.

In this experiment, we are dealing with validated positive and negative samples; con-
sequently, it differs from the link prediction task we presented in Section 7.1. This
prediction task incorporates future links from a real-world setting. The predicted links
are very likely to be imbalanced and may contain unforeseen relations between drugs
and diseases. We have previously stated that similar drugs may treat similar diseases.
Such an assumption might work in a small context in the real world, but we should
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not restrict ourselves with this statement. The above arguments inevitably affect the
prediction task’s performance, which explains the overall low performance compared to
Section 7.1.
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Limitations

The published versions of the NDF-RT data set start from 2008 until the beginning of
2018, which in total adds up to 92 versions. However, with the introduction of a new
generation named ”NDF-RT2” in 2009, that includes a fundamental revision of the core
concepts, we decided to omit the versions from 2008. The VHA restored several concepts
and removed over 100’000 concepts with the new generation. Therefore, comparing
the two different generations would not be beneficial due to the profound difference in
content.

In terms of embedding methods, all of the used methods only require an edge list of
known nodes as an input. The edge list and the meaning of a link between nodes can be
defined by the user. This provides some freedom to decide on what we want to focus.
However, it is also a restriction that brings along several limitations, two most crucial
points being:

1. An embedding is only created for nodes that have at least one edge.

2. An embedding contains only neighborhood-related (one-dimensional) information.

To elaborate, (1) leads to the fact that one can conduct down-stream tasks such as
link prediction only on known nodes. This means that e.g., a possible link can only be
predicted between known nodes. Nodes without any edges are ignored in the prediction
model as they have no embedding representation. This is quite a severe limitation
and certainly not applicable in the real world. With (2), any additional node-related
properties are not included in the embedding, which therefore restricts their usage for
further tasks. The embeddings simply consist of neighborhood-related information. How
the neighborhood is defined, depends on the edge context, which is given as input to the
embedding method. In our case, the edges between the nodes stand for the may treat
relation but it could for instance also represent subclass of or parent of relations.

In the neighborhood similarity task, we did not receive any results in lower percentiles
(r < 1) for GraRep, which prevents us from making an absolute comparison of the
embedding methods. Further, the distance metrics euclidean and cosine did not show
a considerable difference in the results. We were thus unable to point out how the
neighborhood similarity algorithm behaves with a different distance metric.

Regarding the link prediction task, the lack of validated negative samples restricted
us from making more precise evaluations and statements regarding the performance.
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With the current state, we can only assume that the logical restriction method filters
out edges that are more likely to occur. There is no additional evaluation about the
negative samples available.

To conclude, the neighborhood similarity and the link prediction task we conducted to
determine an embedding’s robustness should be regarded as a relative evaluation. Not
only because of the prerequisites such a task involves but also because we are dealing
with an evolving network.
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Future Work

MED-RT is the continuation of NDF-RT; therefore, it is only a logical step to further
analyze this data set and conduct experiments. As mentioned in Chapter 3 it would
be beneficial to convert the XML structure of MED-RT into an OWL representation
similar to what we did for the NDF-RT data set. Having the ontology in an OWL format
makes it easier to analyze and observe the changes that are otherwise rather difficult to
extract. In the same chapter we presented the categories of the drugs, respectively the
diseases. With this additional information, we could examine how well the embeddings
are clustered into the categories. Any (un)supervised clustering algorithm could be used
to implement this further task.

In terms of embeddings, there are several ways to proceed. Intuitively, one could ex-
tend our work by using other embedding methods such as e.g., struc2vec [27] that focuses
on the structural equivalence of nodes. There also exist several embedding methods for
heterogeneous graphs [4, 6, 9], which could be beneficial to compare with BiNE. Another
option would be to apply embedding methods that include node properties or hierarchi-
cal information such as owl2vec [5] which requires an OWL file as input. Utilizing any
of these methods would certainly provide us with another perspective of the DDA net-
work since the embedding methods we used heavily rely on the neighborhood. Another
direction would be to focus on the bipartite nature of the DDA network primarily. For
instance, adjusting the tasks to make them better applicable for bipartite graphs or even
running separate tasks for the two node groups. Besides, the BiNE embeddings remain
an unexplained subject, where we have seen several inconsistencies in the result of the
neighborhood similarity task. On the one hand, we noticed a different pattern between
the jaccard indexes and the overlap coefficients. On the other we received contrasting
results for the two noise levels in the noise experiment. It would therefore be helpful to
determine the cause of these inconsistencies to get a better understanding.

Furthermore, we defined robustness as receiving a consistent result of the tasks across
the evolution. Consistency is determined by a non-significant mean difference between
the results of two DDA versions. However, this definition of consistency should not be
seen as complete. One could extend it by taking other metrics such as the median, the
kurtosis, or the skewness of a distribution and compare it to another version’s metric.
To verify the significance of these metrics, we could perform a permutation test over
the two distributions. Another perspective for robustness mentioned in our work is to
analyze how the embeddings perform when adjusting a task’s settings. In both tasks
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we saw that certain embeddings react strongly to changes in the task, whereas others
react little. Therefore, one could run the same tasks on another biomedical network
with the respective embedding methods to verify if our observations can be confirmed.
In general, it would be interesting to determine if we can reach the same conclusions
with a different biomedical network.
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Conclusion

Ontologies are essential in today’s world, where data has become an indispensable com-
modity. Transforming their content into embeddings makes it possible to analyze and
run prediction models. This helps us to simplify or solve tasks in the real-world that
would otherwise be very expensive when done manually. For instance, link prediction
saves a lot of time when having to find associations between two entities. Although it is
not feasible to fully replace a human evaluator, it would still reduce preliminary work so
that in the best-case scenario, a human evaluator has to go through the prediction re-
sults only to confirm their validity. This is just one of the countless application methods
embeddings can be used for.

In this thesis, we chose several versions of an evolving DDA network and transformed
them into embeddings. After that, we applied three different embedding methods and
ran several tasks with them. Comparing the results of these tasks across the evolution
helped us to determine the robustness of an embedding. Two major tasks performed
were the local neighborhood similarity and link prediction. The first research question
concerns the neighborhood similarity task, where we wanted to investigate how consistent
the result of the embeddings are in terms of evolution. To answer this question, we have
computed the similarities within the versions with different distance (percentile) values,
which imply a threshold for the neighborhood. This was followed by a comparison with
the other versions’ results. The neighborhood similarity showed that the embeddings
report an overall low similarity of approximately 0.6 when comparing one version with
different seeds. While matching the similarity metrics with those of the other versions,
we found that only the neighboring versions show no significant difference in the mean.
The remaining versions report significance due to the inherent nature of the embeddings
or larger changes in the ontology. We further noticed a turning point (2014.06.02) for
certain percentile values that coincides with a larger change in the ontology dividing the
versions into two groups. In general, the different percentile values on any embedding
method showed an inconsistent behavior where at certain percentiles, several versions
proved no significance, and at others, a majority of significantly different means emerged.
Among the three embedding methods, LINE proved to be the most consistent where we
were able to observe a more or less consistent pattern across the percentile values. To
answer RQ1 , the results showed that the embedding methods could not guarantee a
consistent result across the evolution with the different percentile values. Only with
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respect to near-term evolution, the embedding methods were able to output a stable
result.

The second research question involves the link prediction task. We wanted to find
how the evolution influences the prediction’s performance. To answer this question, we
performed the task on each version of the evolution and then compared the AUC ROC
value with the other versions’ AUC ROC. The baseline was approximately 0.85 and with
the logical restriction method for the negative sample selection we were able to achieve
an AUC ROC of around 0.95. For this, we changed the settings of the link prediction
algorithm which as a result exerted an influence on the results’ consistency across the
evolution. GraRep and BiNE showed a more consistent performance metric across the
evolution with the 0-step and 3-step method; however, this changes drastically when
considering the 7-step method, where especially for GraRep, most of the versions got
rejected. For LINE, we identified the same turning point as seen in the neighborhood
similarity, thus the consistency across the evolution is only ensured for neighboring
versions. Nonetheless, we still observed a consistent pattern over the different step sizes
from which we can conclude that LINE is more stable against modifications in both
tasks. Again, it was proven that a larger change in the ontology leads to a shift in
the mean where two groups with different mean can be determined. With the above-
mentioned turning point, we could argue that LINE is more sensitive to changes in the
ontology than GraRep or BiNE. However, larger changes in the ontology inevitably have
an impact on the subsequent tasks and thus are not avoidable. To answer RQ2 , only
the neighboring versions ensure a consistent performance across the evolution for any
embedding method. However, when considering the performances across the different
step sizes, LINE outperforms the other two methods.

Our work shows that the comparison of embeddings is non-trivial and highly depen-
dent on the embedding method and the parameter settings of a task. It also depends
on how disparate the compared embeddings are, as we found that neighboring versions
usually report no significant difference, unlike farther apart versions. We redefined our
understanding of robustness as it not only refers to how stable the embeddings perform
across the evolution but also how they react to certain changes in the task. Nonethe-
less, these conclusions remain in the context of the DDA network and should be further
applied to other ontologies for confirmation.
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Appendix

A.1 Extract from OWL file

Figure A.1 shows an extract of the NDF-RT data set’s OWL representation. In A.1a, a
drug entity is depicted where we can see several information such as the name and the
NUI as well as relations to the parent drug and to a disease. In A.1b, the disease entity
is shown with several information such as the name, NUI and description.

A.2 Hyperparameters

We introduce the hyperparameters used for the embedding generation in Table A.1. The
parameters for GraRep and LINE were taken from Yue et al. [32], where they conducted
an in-depth tuning. Similarly, the parameters for BiNE were tuned in by Gao et al. [11]
by measuring the link prediction performance. The default parameters were taken for
those not mentioned in A.1.

Method Dimensions Parameters

GraRep 100 kstep = 4, weight-decay = 5e-4, lr = 0.01
LINE 100 epochs = 10, lr = 0.01, negative-ratio = 5, order = 2
BiNE 100 α = 0.01, β = 0.01, γ = 10

Table A.1: Hyperparameters for embedding methods

A.3 Dimension Reduction Techniques

The two-dimensional projections of the embeddings with t-SNE and UMAP are pre-
sented in this section. Figure A.2 and A.3 depict the respective embeddings and we
notice that for the GraRep embeddings the cluster tendency increases along the evolu-
tion or rather is preserved. In contrast, the drug points and disease points for LINE
show no cluster tendency in t-SNE and only in UMAP we can observe that the drugs
are centralized in the middle. BiNE demonstrates with t-SNE a similar pattern to PCA.
In UMAP, there are no clusters visible as the points are scattered miscellaneously.
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(a) Drug entity in OWL

(b) Disease entity in OWL

Figure A.1: OWL Representation

(a) GraRep

(b) LINE

(c) BiNE

Figure A.2: t-SNE on the evolution (seed=5). Drugs are purple and Diseases are red.
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(a) GraRep

(b) LINE

(c) BiNE

Figure A.3: UMAP on the evolution (seed=5). Drugs are purple and Diseases are red.
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A.4 Neighborhood Similarity

As we have observed in several cases, the euclidean and cosine distance behave similarly
and thus output similar results. We present here the results of the cosine distance, which
were omitted in the actual report.

A.4.1 Evolution-oriented

Figure A.4 presents the neighborhood sizes with the cosine distance of the three embed-
ding methods with different percentile values. Here as well, we notice that with a higher
percentile value, the neighborhood sizes become more similar. We can also observe an
increase in the neighborhood as the ontology evolves.

Figure A.4: Neighborhood sizes with cosine distance

In Figure A.5, the result of Levene’s t-test with the euclidean distance is presented.
This test was conducted to determine which statistical test for mean comparison suits
the data set. Figure A.6 and A.7 demonstrate the result of Levene’s test and Welch’s
t-test with the cosine distance. Welch’s t-test was used as this test does not require equal
variance between two samples. The pattern and consequently the results show almost
no difference to the one presented in the report; thus, we can treat this as a duplicate.

A.4.2 Noise-oriented

Similar to above, we first present the results of Levene’s test for the euclidean and the
cosine distance in Table A.2 and A.3. The results of the two distance metrics show a
significant different variance for a few cases. Nonetheless, the values for the euclidean
and cosine distance are very similar. We proceed with using Welch’s t-test in order to
compare the means between two groups. The result for the cosine distance can be found
in Table A.4. All comparisons report a significant difference in the mean of the ground-
truth to the synthetic versions. This is once again similar to the results we received for
the euclidean distance.
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(a) GraRep r = 0.1 (b) GraRep r = 1 (c) GraRep r = 10 (d) GraRep r = 20

(e) LINE r = 0.1 (f) LINE r = 1 (g) LINE r = 10 (h) LINE r = 20

(i) BiNE r = 0.1 (j) BiNE r = 1 (k) BiNE r = 10 (l) BiNE r = 20

Figure A.5: Levene’s test for LN similarity comparison with euclidean distance (dark
green stands for rejected null hypothesis and light green for accepted null
hypothesis)
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(a) GraRep r = 0.1 (b) GraRep r = 1 (c) GraRep r = 10 (d) GraRep r = 20

(e) LINE r = 0.1 (f) LINE r = 1 (g) LINE r = 10 (h) LINE r = 20

(i) BiNE r = 0.1 (j) BiNE r = 1 (k) BiNE r = 10 (l) BiNE r = 20

Figure A.6: Levene’s test for LN similarity comparison with cosine distance (dark green
stands for rejected null hypothesis and light green for accepted null hypoth-
esis)
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(a) GraRep r = 0.1 (b) GraRep r = 1 (c) GraRep r = 10 (d) GraRep r = 20

(e) LINE r = 0.1 (f) LINE r = 1 (g) LINE r = 10 (h) LINE r = 20

(i) BiNE r = 0.1 (j) BiNE r = 1 (k) BiNE r = 10 (l) BiNE r = 20

Figure A.7: Welch’s t-test for LN similarity comparison with cosine distance (dark green
stands for rejected null hypothesis and light green for accepted null hypoth-
esis)
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GraRep LINE BiNE
statistic p-value statistic p-value statistic p-value

cos<0.1%

GT − Noise L1 - - 1.5698 <.0001 1.8047 0.1958
GT − Noise L2 - - 0.2144 <.0001 0.5480 0.4687

cos<1%

GT − Noise L1 1.1853 0.2800 1.6487 0.2034 0.1767 0.6792
GT − Noise L2 1.4791 0.2280 5.9352 0.0174 <.0001 0.9943

cos<10%

GT − Noise L1 1.8960 0.1729 0.0149 0.9032 0.0035 0.9535
GT − Noise L2 4.5685 0.0361 5.0789 <.0001 1.1974 0.2882

cos<20%

GT − Noise L1 0.0038 0.9513 <.0001 0.9963 3.1164 0.0945
GT − Noise L2 0.8330 0.3646 2.0306 0.1586 0.1785 0.6777

Table A.2: Levene’s test for the noise experiment with the euclidean distance.

GraRep LINE BiNE
statistic p-value statistic p-value statistic p-value

cos<0.1%

GT − Noise L1 - - 1.5977 0.2104 2.0282 0.1715
GT − Noise L2 - - 0.0253 0.8742 0.3897 0.5403

cos<1%

GT − Noise L1 0.5149 0.4754 1.6056 0.2093 0.1900 0.6682
GT − Noise L2 0.0492 0.8251 5.9138 0.0176 0.0001 0.9919

cos<10%

GT − Noise L1 2.3803 0.1274 0.0153 0.9020 0.0037 0.9520
GT − Noise L2 5.3123 0.0241 5.0714 0.0275 1.1831 0.2911

cos<20%

GT − Noise L1 0.0176 0.8948 <.0001 0.9972 3.1623 0.0923
GT − Noise L2 1.1079 0.2962 2.0326 0.1584 0.1825 0.6743

Table A.3: Levene’s test for the noise experiment with the cosine distance.

A.5 Link Prediction Results

We present the results of Levene’s test for the evolution-oriented and the noise-oriented
approach that were omitted in the report.

A.5.1 Evolution-oriented

In Figure A.8, the results of Levene’s test are depicted. This test was conducted to
determine which statistical test for mean comparison suits the data set. GraRep shows
only in few cases a significant difference in variance. In contrast, LINE rejects the null
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GraRep LINE BiNE
statistic p-value statistic p-value statistic p-value

cos<0.1%

GT − Noise L1 - - 7.7662 <.0001 6.5333 <.0001
GT − Noise L2 - - 15.7306 <.0001 13.2793 <.0001

cos<1%

GT − Noise L1 32.6752 <.0001 31.6711 <.0001 5.7264 <.0001
GT − Noise L2 44.0721 <.0001 77.9432 <.0001 3.9293 0.0009

cos<10%

GT − Noise L1 55.1386 <.0001 10.7482 <.0001 10.7555 <.0001
GT − Noise L2 81.5746 <.0001 16.6312 <.0001 5.5428 <.0001

cos<20%

GT − Noise L1 53.4176 <.0001 5.8053 <.0001 33.4305 <.0001
GT − Noise L2 89.2832 <.0001 11.4750 <.0001 16.0497 <.0001

Table A.4: Welch’s t-test for the noise experiment with the cosine distance.

hypothesis for all versions with the 0-step and 3-step method. Only in the 7-step method,
a few versions are rejected. BiNE reports only few cases of rejection in 3-step and 7-step
method. However, in the 0-step method, all versions reject the null hypothesis. Due to
the inconsistent results, we have decided to use the Welch’s t-test that does not require
equal variance between two samples.

A.5.2 Noise-oriented

Table A.5 presents the result of the Levene’s test for the noise experiment. For all
embedding methods and step sizes, the test reported an equal variance. This means
that despite the noise addition and the different step size the variance of the results
remains the same.

GraRep LINE BiNE
statistic p-value statistic p-value statistic p-value

0-step
GT − Noise L1 0.1330 0.7196 0.0541 0.8187 0.3855 0.5520
GT − Noise L2 2.4551 0.1346 1.2115 0.2855 0.0782 0.7869

3-step
GT − Noise L1 0.1365 0.7161 0.1366 0.7160 0.4823 0.5071
GT − Noise L2 3.2331 0.0890 0.0035 0.9538 0.0099 0.9229

7-step
GT − Noise L1 1.0322 0.3231 2.4107 0.1379 2.3399 0.1646
GT − Noise L2 0.1075 0.7467 2.0383 0.1705 2.6038 0.1453

Table A.5: Levene’s test (AUC ROC) for the noise experiment
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(a) GraRep 0-step (b) GraRep 3-step (c) GraRep 7-step

(d) LINE 0-step (e) LINE 3-step (f) LINE 7-step

(g) BiNE 0-step (h) BiNE 3-step (i) BiNE 7-step

Figure A.8: Levene’s test with AUC ROC.
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