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Terézia Bucková
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Zusammenfassung

Knowledge Graphs (Knowledge Graphs, KGs) sind gerichtete Graphen welche real ex-
istierende Konzepte und Beziehungen dazwischen modellieren. KGs wurde in den letzten
Jahren viel Aufmerksamkeit geschenkt, und es wurden bedeutende Fortschritte bei deren
Konstruktion unter verschiedenen Bedingungen erzielt. Jedoch existiert aktuell kein KG
welcher jegliches Wissen enthält — um eine ganzheitliche Sicht auf ein Konzept von In-
teresse zu erhalten muss man daher Informationen aus mehreren KGs zusammenführen.

In der Regel bedeutet dies, dass man verschiedene KGs abgleichen muss um her-
auszufinden welche ihrer Entitäten sich auf dasselbe Konzepte beziehen. Algorithmen
die eine solche Alignierung (alignment) bestimmen können oft verbessert werden in dem
sie dafür eine Einbettung (embedding) nutzen welches jede Entität und jede Beziehung
durch einen Vektor repräsentiert.

In dieser Arbeit testen wir typische embedding-basierte Alignierungsmethoden für
Wörter auf ihre Anwendbarkeit auf KGs, in dem wir die KG embeddings als Eingabe
annehmen. Wir zeigen, dass diese Methoden mit typischen KG Alignierungsmethoden
in Bezug auf die Hits@k Metrik gleichauf sind, wie auch dass sie die Ergebnisse so aus-
balancieren, dass die Entitäten der KGs im embedding als nächste Nachbaren auftreten.

Des weiteren untersuchen wir die Auswirkungen verschiedener embedding-Modelle auf
die Alignierung von KGs und kommen zum Schluss, dass die Wahl des Modells das
Ergebnis stark beeinflusst. Gleichzeitig zeigen wir, dass die Alignierung um etwa 20
Prozentpunkte schlechtere Ergebnisse in Bezug auf Hits@k liefert wenn die KGs mit
unterschiedlichen Modellen eingebettet werden.





Abstract

Knowledge Graphs (KGs), directed graphs representing real-world objects and relations
between them, have gained significant attention in the past few years, and progress has
been made to construct such KGs in various contexts. However, no current KG holds
the complete knowledge and in order to obtain a holistic view about an entity of interest,
one must therefore gather data from multiple KGs.

This usually means to align different KGs and to figure out which entities refer to
the same real-world objects. The alignment algorithms often benefit from aligning a
KG embeddings, in which case every entity, and possibly relation, is represented by an
embedding vector.

The embedding methods and embedding-based word alignment techniques in language
processing have been researched for a longer period of time. This effort has led to more
accurate assumptions about embedding spaces and high performance in alignment tasks
in both supervised and unsupervised scenarios.

In our work, we test state-of-the-art word embedding alignment methods using KG
embedding spaces as input data. We show that typical word alignment methods are
on par with typical KG alignment methods in terms of their hits@k score. Moreover,
word alignment methods balance the results so that correctly aligned entities are mutual
nearest neighbours in the aligned embedding spaces.

In addition, we investigate the effect of various embedding models on KG alignment
and conclude that the choice of the embedding model has a large impact on the final
alignment results. At the same time, we challenge the assumption that both KGs have to
be embedded by two instances of the same embedding model and show that embedding
them with different models yields results up to 20 percentage points worse at hits@k.
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1

Introduction

A Knowledge Graph (KG) is a data structure that stores facts as triples of the form
(head entity, relation, tail entity). A multitude of facts about the same entity leads to a
directed graph whereas vertices represent real-world entities, and links between vertices
indicate the relationship between the entities. A number of such KGs has emerged in
the previous years, such as Wikidata1, DBpedia2, or YAGO3 [Heist et al., 2020]. These
KGs stand out in their versatility, size, and transgression of domains.

To date, no current KG holds the complete knowledge, and many KGs include facts
about the same entity. To get an holistic view about an entity, one must therefore
gather data from multiple KGs. Having two KGs, one must know which two vertices
represent the same entity. Finding such correspondences between two KGs is the goal of
KG alignment. This is a non-trivial task, since entities are often locally identified, and
entity attributes like human-readable labels might be missing or difficult to compare,
e.g. if they are in different languages.

Recent approaches to KG alignment employed KG embedding models. An embed-
ding model computes a numerical vector (embedding) for each entity (and possibly
relation) of a KG, such that related entities have similar embeddings. Such models
have been researched thoroughly in the previous years, and several distinctive em-
bedding models have emerged [Wang et al., 2017, Bordes et al., 2013, Sun et al., 2019,
Yang et al., 2014]. While embedding spaces from two different model instances may not
be readily comparable (e.g. they could be rotated), the core idea to use them for KG
alignment is to learn a mapping between them such that similarity between embeddings
implies a correspondence between the respective entities.

The main problem this thesis will investigate is: given two KGs, two embedding spaces
learned from them, and optionally a partial mapping function between entities and re-
lation, is it possible to infer the complete mapping function between the two knowledge
graphs?

One of the difficulties of this approach is that we align two previously trained, static
KG embedding spaces without any other information. Consider the following example

1https://www.wikidata.org
2https://www.dbpedia.org
3https://www.mpi-inf.mpg.de/ departments/ databases-and-information-systems/ research/
yago-naga/ yago

https://www.wikidata.org
https://www.dbpedia.org
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago
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from the medical domain: You want to align a KG about patients with a KG about
diseases. State-of-the-art KG alignment methods would use attributes like entity labels,
because they provide a simple means to find an initial mapping between the two KGs.
In the medical scenario, patients data are private and hence the entity labels will not
be available, rendering state-of-the-art approaches inapplicable. Another typical ap-
proach in the KG alignment is joint learning. In our situation, this approach is also not
applicable because the training again violates privacy concerns.

In the area of word embeddings, several works explored how to find such a mapping
between two previously computed embedding spaces, either in a supervised setting by
using a number of known alignments (anchors), or in a completely unsupervised fashion
[Alvarez-Melis and Jaakkola, 2018, Conneau et al., 2017]. A natural approach, there-
fore, is to evaluate these previously published embedding space alignment models in the
KG alignment setting.

In a realistic situation, our previous medical example has another caveat: The pre-
trained embedding spaces of different KGs could be trained by different embedding mod-
els. The KGs usually contain thousands of entities and hundreds of relations. Therefore,
the embedding training requires a lot of resources and time, which makes retraining for
the purpose of alignment costly.

In this thesis we identify two research questions:

1. Do the word alignment methods used on KGs have results in the same order of
magnitude as typical KG alignment methods?

2. Do the alignment between different KG embedding models yield results in the same
order of magnitude with alignment between the same embedding models?

We conduct number of experiments with various alignment methods and KG embed-
ding models to find answers to these questions. We try to keep our scenario realistic by
aligning two different KGs: fb15k-237 and wd15k-237.

The rest of this document is structured as follows: In Chapter 2 we will describe
state-of-the-art word and KG alignment methods. We also list surveys which summarize
KGs available on the web and typical KG embedding methods. In the Chapter 3 we
introduce preliminary knowledge about embeddings and alignment models used later
in the experiments. The Chapter 4 describes KGs used, technical details about KG
embedding training, and hyperparameter setting of alignment methods. At the end of the
chapter we introduce the evaluation metrics used to evaluate the alignment. In Chapter 5
we describe the motivation of our research questions, the underlying hypotheses, and the
experiments we conduct to verify them. The Chapter 6 describes the possible directions
of future research. In Chapter 7 we summarize the answers to our research questions
and the knowledge we gained during the process of this thesis.

2
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Related Work

In this chapter we discuss work that inspired this thesis and similar work in the field of
embedding space alignment.

2.1 Word embedding space alignment

2.1.1 Orthogonal Procrustes

Cosine similarity distance metric

[Chen et al., 2018] propose a supervised system for the visualization of embedding spaces.
This interactive analytical system is able to compare two spaces via different tasks: dis-
play of a word embedding space, display of clusters, display of the nearest semantic
neighbours of a word, and display of analogies. Therefore, it gives us an intuitive un-
derstanding of the differences and similarities between two vector spaces. To align these
two spaces the authors solved the orthogonal Procrustes problem on the set of common
prior aligned words. To measure the distance between the embeddings the authors used
cosine similarity.

Cross-domain similarity local scaling (CSLS) as distance metric

[Conneau et al., 2017] present a new way of aligning two word embedding spaces without
supervision. The authors introduce a new criterion to evaluate the alignment of words
between two domains, called Cross-domain similarity local scaling (CSLS). The CSLS
uses kNN in a bipartite graph scenario where all words from the source language are
connected with the k-nearest-neighbors from the target language and vice versa. The
decision if a source word is a translation of a target word is based on the computed
similarity of these neighbourhoods. This way the algorithm increases the similarity
between correct pairs of marginal vectors and decreases the similarity between incorrect
pairs with word hubs.

[Artetxe et al., 2018] present a new approach to align two monolingual embedding
spaces without supervision. The authors build on a hypothesis that given the similarity
matrices within the vocabularies of two languages the same word in both languages has
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very similar distributions of similarity values. The proposed method starts by normaliz-
ing the embeddings, so that the dot product of any two embeddings is the same as their
cosine distance. The next step is building an unsupervised initial alignment between two
spaces. The authors hypothesise that any two embedding spaces are perfectly isometric.
Thus the similarity matrices representing word embeddings are just permutations of one
another. The rows of matrices are word embeddings, the columns are embedding dimen-
sions. The algorithm finds the permutation of the j-th dimension by sorting every row of
the similarity matrices of the two languages. According to the isometry assumption, the
same word should have the same sorted vectors. After obtaining this initial alignment,
the authors continue with robust self-learning of embedding mappings. The first self-
learning step is to compute the optimal orthogonal mapping for the current dictionary
(containing entities which are used as anchors). The second self-learning step computes
the optimal dictionary given the similarity matrix of the languages. The authors pro-
pose four improvements to help the algorithm converge: stochastic dictionary induction,
frequency-based vocabulary cutoff, CSLS metric instead of kNN, and a bidirectional dic-
tionary induction. The last step is a symmetric re-weighting of the embedding matrices
based on cross-correlation in each component.

Wasserstein distance metric

[Alvarez-Melis and Jaakkola, 2018] suggest a new approach for aligning word embedding
spaces based on optimizing the Optimal Transport (OT) problem. The OT problem finds
a minimal cost mapping between two sets of discrete points. Further, the authors ap-
plied the Gromov-Wasserstein distance which generalizes OT. The Gromov-Wasserstein
distance couples embeddings across two embedding spaces without the linear trans-
formation. Across different languages, the Gromov-Wasserstein distance measures the
similarity of given pairs of languages.

[Grave et al., 2019] align two embedding spaces between two different models/lan-
guages using Procrustes with the Wasserstein distance. The Procrustes algorithm finds
a linear transformation between two spaces if some alignments are known already. The
Wasserstein distance finds an alignment between two spaces, given a linear transforma-
tion between them. The authors combine these two approaches into one single opti-
mization for unsupervised alignment learning. The authors use stochastic optimization
to solve the Procrustes problem with Wasserstein distance. During the training, the
model uses batches of data, computes the optimal permutation on them, and computes
the gradient of the orthogonal matrix. The orthogonal matrix is a solution to the given
optimization problem. This approach is not convex and very dependent on the initializa-
tion. Thus, the authors also propose the convex relaxation of the problem. The results
of the relaxation can be used as a good initialization setting for solving the stochastic
optimization.

[Zhang et al., 2017] propose an unsupervised approach to aligning two monolingual
embedding spaces based on the Earth mover’s distance (EMD). The optimization task
can be formulated as minimization of the EMD between the source and target language
embedding distributions. The authors undertake two approaches. The first one is called

4
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Wasserstein Generative adversarial net (WGAN). The Wasserstein distance is the gen-
eralization of the EMD to continuous distributions. This model generates transformed
embeddings of a source language. Together with the original target embeddings, they
are passed to the discriminator which estimates the Wasserstein distance. The distance
is passed back to the generator which tries to minimize it. The second approach is called
EMDOT (OT stands for orthogonal transformation). This model repeatedly switches
between two minimization problems. One subproblem is the EMD minimization. The
second subproblem aims to find the transformation with the cross-lingual connection
from the first subproblem. This problem can be transformed into an extended orthogo-
nal Procrustes problem with a closed-form solution. Moreover, the authors show that the
EMD distance is a good approximation for language dissimilarity. It is clearly correlated
with the geographical distance between countries using different languages.

2.1.2 Canonical Correlation Analysis (CCA) as distance metric

[Beyer et al., 2020] propose to use the CCA algorithm from [Rastogi et al., 2015] to align
different embedding spaces in a supervised way and compare the correlation between
them. The authors use it to compare several corpora, always comparing two of them at
a time. The CCA algorithm aligns two embedding spaces by maximizing the dimension-
wise correlations. These correlations are further used to predict the overall similarity of
two embedding spaces, thus the overall similarity of two corpora. The algorithm is also
used in a cross-language setting.

[Ammar et al., 2016] propose two approaches to capture multilingual embeddings into
one space: MultiCluster and MultiCCA. The MultiCluster algorithm clusters similar
words and then trains one embedding per cluster. MultiCCA is based on the CCA
algorithm. Authors train embeddings for each language separately. Then, the English
embedding space is used as a common space and other embeddings are mapped to
English embeddings. English was chosen because it is a high resource language. The
authors also propose a new intrinsic evaluation method for multilingual embeddings
named multiQVEC-CCA, which better correlates with the evaluation of extrinsic tasks.
However, this evaluation method relies on a manually constructed linguistic matrix,
which is not appropriate for large KGs.

2.2 KG embedding space alignment

2.2.1 Linear Transformation

[Sun et al., 2018] train alignment-oriented KG embeddings. The proposed method re-
quires a prior alignment A’ for the set of entities. To calibrate alignment learning,
entities from A’ are used to generate new triples with entities and relations mixed from
both KG1 and KG2 respectively. For example, if an entity x is originally from KG1, then
one of the new triples is (x, r2, t2) with r2, t2 from KG2. Furthermore, the authors pro-
pose ε-Truncated Uniform Negative Sampling where they sample negative triples from

5
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the nearest neighbours of an entity instead of the whole entity set. To leverage the prior
alignment, authors use newly aligned entities in a subsequent training. To label new
entities, a bootstrapping method is used. Entities can be further relabeled or unlabeled
to solve labeling conflicts.

[Liu et al., 2018] propose the MGTransE model, which aligns embeddings of multiple
KGs by adopting the bootstrapping method. The proposed model has three parts: a
structure embedding model, a semantically smooth embedding model, and an iterative
smoothness model. The structure embedding model encodes entities and relations of
separate KGs into separate embedding spaces. TransE was used for this purpose. The
semantically smooth embedding model aligns these different embedding spaces into one
common space. Authors look at three different methods: distance-based (similar entities
from two KGs are close), translation-based (special relation between same entities from
two KGs), and linear projection (linear rotation and scaling). All the above-mentioned
methods use a prior alignment. The iterative smoothness model updates the seed set
of prior aligned entities and relations. The authors use a pipeline consisting of two
components: the first one searches for the closest neighbour of an unaligned entity, the
second one makes sure that entities denoting the same real-world object have common
relations.

[Trisedya et al., 2019] use attribute embeddings to enhance the performance of the
entity alignment task. The proposed model consists of two parts: Predicate alignment
and embedding learning. The predicate alignment part aligns relations from two different
KGs into a unified namespace. All the triples from the two KGs are transformed into a
unified relational space. The next step is to learn the structure and attribute embeddings.
The structure embeddings of entities from different KGs are in different embedding
spaces. They are learned using TransE, focused on already aligned entities. The attribute
embeddings are in the same space even though they are from two KGs because they
are trained by a character embedding model. So, every attribute is represented by its
character embedding. Similar words/phrases are close in the embedding space. The
attribute embeddings are later used to shift the structure embedding spaces to have
entity embeddings in the same space as attribute embeddings. All the closest pairs
of embeddings are aligned. The authors define a threshold on the cosine similarity of
learned embeddings to align only the probable pairs. Moreover, the authors propose to
enrich attribute triples with the usage of the transitivity rule.

[Zhu et al., 2017] solve the KG entity alignment problem via joint embedding learning.
The authors propose a model which consists of three parts: Knowledge embedding, joint
embedding, and iterative alignment. The knowledge embedding part encodes entities
using TransE or PTransE. The authors proposed three methods for joint embedding
learning: A translation-based Model, a linear transformation model, and a parameter
sharing model. The translation-based model assumes that a special relation exists be-
tween two aligned entities, so, it performs an alignment-specific translation to obtain
joint embeddings. The linear transformation model learns a transformation matrix that
translates one embedding space into another. The parameter sharing model forces the
aligned entities to have the same embeddings. Thus, the final embeddings are in the

6



2.2. KG EMBEDDING SPACE ALIGNMENT 7

same embedding space. The iterative alignment part calculates new entity pairs which
should be aligned using a seed alignment and one of the models described above. The
new pairs of entities could be aligned by hard or soft alignments. The hard alignment
method forces the embeddings of newly aligned pairs to be the same by averaging them
(used only with the parameter sharing model). The soft alignment assigns reliability
scores to pairs of newly aligned entities.

[Hao et al., 2016] propose an approach to learn joint embeddings of different KGs.
The authors took TransE as inspiration. The approach is supervised using a set of
seed entities. The seed entities have embeddings in the embedding space as similar as
possible. This way the embeddings are in a common vector space. Further, the other
entities to be aligned should be very close. The authors tried two objective functions.
In the first case, the transformation matrix is not used, in the second case is.

2.2.2 Graph Convolutional Networks

[Wang et al., 2018b] align multilingual entities from two KGs using Graph Convolutional
Networks (GCNs). The GCNs are trained on pre-aligned entities. The approach uses
relations as structural information and attributes as another source of information about
entities. Every KG is modeled by a single GCN. Every GCN produces two sets of
embeddings: structure and attribute.

[Xu et al., 2019] propose another supervised approach to cross-lingual KG alignment
using GCN and a topic entity graph. The topic entity graph is a graph structure that
consists of a chosen entity and its one-hop neighbours. Relations are preserved only as
directed edges without labels. The proposed model consists of four layers: An input
representation layer, a local matching layer, a global matching layer, and a prediction
layer. The input representation layer uses the GCN to embed the topic entity graphs.
The local (node-level) matching layer first calculates the attentive vector of all combi-
nations of entities based on the cosine similarity. Second, the attentive vector is used
to calculate matching vectors for all entities in both KGs. The global (graph-matching)
layer uses a second GCN to propagate local similarities into a global understanding of
the graph structure. This layer overcomes the problem of entities referring to the same
real-world object but having a small number of co-occurring neighbours. The prediction
layer is a feed-forward neural network that applies the softmax function in the output
layer.

[Zeng et al., 2021] propose an unsupervised approach to the entity alignment problem.
The model consists of three modules: side information leveraging, unmatchable entity
prediction, and progressive learning. The side information (entity names in this case)
is used to compute a textual distance matrix which is forwarded to the unmatchable
entity module to compute the basic entity alignment. The textual matrix combines a
semantic distance matrix (cosine distance between entity names’ averaged embeddings)
and a string-level feature matrix (Levenshtein distance between entity names). The
unmatchable entity module uses the thresholded bi-directional nearest neighbour search
(TBNNS) to compute the entity alignments between two KGs. The progressive learning

7
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framework repeats these steps as long as a number of newly aligned entities is above a
threshold: First, the model uses GCN to learn entity embeddings. Second, the model
uses TBNNS to align entities. The TBNNS threshold increases over time to allow an
alignment between more distant embeddings.

[Liu et al., 2020] propose a method for unsupervised entity alignment incorporating
images. The model trains joint multi-modal embeddings. The authors use graph struc-
ture embeddings, visual embeddings, relation and attribute embeddings. The graph
structure embeddings capture both entity and relation proximity. They are trained on
united entity and relation sets from KG1 and KG2 via a GCN. The visual embeddings
use pre-trained image embeddings to feed a simple feed-forward neural network (FFNN)
which outputs the final embeddings. The relation and attribute embeddings are the
output of a simple FFNN. All these modalities are combined into a multi-modal repre-
sentation via a trainable weighted concatenation. The alignment process computes the
embedding similarity based on the cosine distance. The cosine distance matrix (rows
are source entities, columns are target entities, values are cosine distances) is used by
the neighbourhood component analysis (NCA) loss function to align entities. The NCA
loss helps to cope with the hubness problem. The hubness problem is caused by enti-
ties which are very common and are nearest neighbours of many other entities, while
rare entities are nearest neighbours to no entities. Therefore, during the alignment the
”hubs” are preferred which lowers the final performance. The alignment process is done
iteratively, in every round some seed alignments are added into the training set. In
the unsupervised setting, the pseudo-seeds are generated based on the visual embedding
similarity.

2.2.3 Neural Networks

[Wang et al., 2018a] propose a rigorous and theory-based approach to compare two neu-
ral networks based on simple matches between neurons. The authors use the activation
function of a single neuron as a vector. Further, they try to find simple matches for
fine-grained comparison and a maximal match for the comparison of clusters of neurons.
This work can be seen as a comparison between two vector spaces. The authors use
the same neural network architecture with different initialization. Thus, they obtain
a one-to-one match between neurons. This is usually not true between two KGs. In
our approach, we want to align two embedding spaces that can contain similar but also
complementary information.

[Li et al., 2015] propose another approach to find similarities between neural networks.
In a one-to-one setting, the authors use within-net or between-net correlation to find
similar neurons. Their study shows that both networks learn the same core features,
but different rare features. To confirm their results, the authors also try the same
mapping with the mutual information measure which shows very similar results. In a
many-to-many mapping, authors use the hierarchical spectral clustering method. Again,
the authors find that every network contains similar core clusters (e.g. filters learning
magenta objects) but other rare features are unique. The authors use four similar

8



2.3. HYBRID SPACE ALIGNMENT 9

architectures with different initialization.

2.3 Hybrid space alignment

[Wang et al., 2014] propose a model based on TransE and word2vec which can learn a
joint embedding space of text and KG embeddings. The model has three parts: text
model, KG model, alignment model. The text model embeds words using an algorithm
similar to skip-gram. The authors look at word pairs as knowledge triples with unknown
relations. To make the computation feasible in sense of a number of relations, the
problem is defined as maximizing the concurrence of pairs of words in given text windows.
The KG model implements the probabilistic TransE. This model defines the conditional
probability of a triple based on a TransE-inspired triplet score. The alignment model
compares two approaches: the alignment by Wikipedia anchors and the alignment by
names of entities. The alignment by Wikipedia anchors leverage the knowledge that for
the most Wikipedia pages there is a unique entity in Freebase. Therefore, most of the
anchors in Wikipedia pages refer to a Freebase entity ev by their surface phrase v. This
enables us to crate the word-entity anchors (w,ev) by replacing v in the original anchor
pair (w,v). The alignment by name of entities uses a name graph. The name graph
copies a KG but substitutes entities of a KG by corresponding words. The authors use
negative sampling as a training strategy.

[Wu et al., 2018] present StarSpace, a general-purpose embedding model. This model
can be used to embed KGs as well as textual data. It learns embeddings of entities that
are described by a set of features, e.g. a sentence is described by BOW. These features
come from a dictionary with a fixed length. The model consists of a positive exam-
ple generator, a negative example generator, a similarity function, and a loss function.
The positive example generator is task-dependent. The negative example generator is
inspired by Mikolov’s negative sampling. The similarity function is either the cosine
similarity or inner product similarity. The loss function is either the margin ranking loss
or the negative log loss of softmax. StarSpace can be used in a multitask setting if tasks
share some features in the base dictionary. The authors experimented with a variety of
tasks such as link prediction for KG, text classification, or sentence matching.

[Toutanova and Chen, 2015] show that enhancing latent models with observed and
textual information yields better results in the KG completion task. The authors pro-
pose an observed feature model that captures more information from training data.
This model is implemented as a variant of path ranking for KG completion. Moreover,
the authors propose an approach in which textual relations can be treated the same
way as relations in triples, and the same models can be used to capture both types of
information.

[Fang et al., 2016] learns joint embeddings of KG entities and text, creates new fea-
tures based on learned joint embeddings, and proposes a two-layers entity disambiguation
model. The proposed system is named EDKate. The model used to learn aligned embed-
dings is based on a combination of three techniques, namely: Alignment by Wikipedia
anchors, alignment by names of entities, alignment by entities’ descriptions. Embeddings

9
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learned in the alignment model are used to produce further features: Global context re-
latedness, local context relatedness, and local entity coherence. Their last contribution
is a two-layer disambiguation model which balances the usage of mention-entity prior
and other proposed features.

2.4 Evaluation methods

[Schnabel et al., 2015] present an overview of different evaluation methods aimed at com-
parison of unsupervised word embeddings. Authors evaluate embedding models based on
four tasks: relatedness, analogy, categorization (clustering), and selectional preference.
Another contribution is the creation of a comparative intrinsic evaluation. A query
inventory for this task balances the frequency of the used word, part of speech, and
concreteness. Amazon Mechanical Turk was used to perform the experiment. Turkers
received one word and had to choose another one from the given options (different word
embeddings). Moreover, the authors presented the Coherence task. This task studies if a
local neighbourhood of words is semantically coherent. Turkers received four words and
had to choose which one is from a different cluster. This task is built on the hypothesis
that the intruder should be easy to spot because the close neighborhood is semantically
similar.

2.5 Surveys

[Wang et al., 2017] compose a survey that presents and explains the most used KG
embedding methods. The survey divides the embeddings based on the information used
by the models. Explained models includes TransE and its derivatives, RESCAL and its
extensions, HolE, ComplEx, SME, and others.

[Heist et al., 2020] compose an overview of knowledge graphs which are available on
the web. The mentioned knowledge graphs are Cyc, Freebase, Wikidata, DBpedia,
YAGO, CaLiGraph, BabelNet, and DbkWik. The survey contains a comparison of
the knowledge graphs on different levels such as the number of instances, the number of
edges, the average linkage degree, the number of classes and relations, overall complexity,
and the average depth and width of the graph. Also the survey shows what information
the graphs contain and how much overlap do they have.

[Ruder et al., 2019] present a survey on cross-lingual embedding models. The authors
emphasize the fact that many models proposed in the literature are equivalent in the core
approach and the only differences are hyper-parameter settings, optimization strategies,
and such. The authors also critically examine the evaluation procedures of embedding
models. The survey also contains description of multilingual extensions for cross-lingual
embedding models and point on the challenging and unexplored research areas in the
cross-lingual embedding domain.

10
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2.6 Summary

In our literature review, we covered a large part of the work done on word and KG
alignment. The aspects we focused on are the distance metric and the model used for
alignment. Table 2.1 summarizes our findings.

The word alignment methods we considered use separately trained embeddings from
two (or more) languages. The supervised approaches use the CCA distance measure or
cosine similarity. The unsupervised approaches use CSLS or Wasserstein distance, which
should prevent very common words from becoming hubs during the alignment. There are
also methods that learn an alignment during the joint learning of embeddings. We don’t
include such models in our experiments because such an approach is not in the scope
of this work. In the following, we will experiment with MUSE and Gromov-Wasserstein
OT models. Both of these models use only pre-trained embeddings as input.

The KG alignment models are more uniform in the distance metrics they use than
word alignment models. Two prevalent metrics are cosine similarity and energy function
based distances. There are some custom distance functions usually connected with the
use of GCNs. The models used for KG alignment in our review are either a linear
transformation or GCN.

In our work, we want to experiment with KG alignment using word alignment methods.
For the supervised methods, we want to exploit the orthogonal Procrustes method as
it is not present in typical KG alignment approaches. On the other hand, all of the
word alignment papers we considered uses orthogonal Procrustes instead of simple linear
transformation.

We will also experiment with unsupervised word alignment methods MUSE and
Gromov-Wasserstein OT. These methods use only embeddings as input. In contrast,
typical unsupervised KG alignment models take advantage of additional, usually textual
information such as entity labels, entity descriptions, or attributes. The textual infor-
mation makes the initialization of the unsupervised method simpler compared to the
initialization of the method based purely on embeddings. Moreover, these methods can-
not be used in scenarios where we do not possess such data. In all of these experiments,
we will exploit the use of different KG embedding models.

11
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3

Background

In this chapter we will describe concepts and chosen approaches in more detail.

3.1 Preliminaries

Knowledge Graph A Knowledge Graph consists of triples (h, r, t) where h, t ∈ E are
entities and r ∈ R are relations. A triple denotes some relation between head and tail
entities. Entities are real-world objects such as people, places, or movies. We denote the
source Knowledge Graph as GS and the target Knowledge Graph as GT .

Word embeddings Word embeddings encode words as dense vectors in a continuous
vector space. In general, embeddings can preserve contextual, linguistic, and structural
information.

Word embeddings embed every word into a single embedding vector. These vectors
have usually between 50 and 500 dimensions. The most used word embedding models
are CBOW and Skipgram [Mikolov et al., 2013].

KG embeddings KG embedding models are trained on KG triples, and model entities
and relations as dense vectors in the same vector space. We use four different KG
embedding models. Our first choice is TransE, as described in [Bordes et al., 2013].
This model embeds entities and relations into a single space. A relation is seen as
translation between the head and tail entities, e.g. h + r ≈ t holds if triple (h,r,t) is
correct, meaning the triple is part of the embedded KG.

Another embedding model is RotateE [Sun et al., 2019] which is build on the same
principle as TransE. The RotatE model assign every entity an embedding in a complex
space and model relations as rotations. The distance is computed as:

dr(h, t) = ‖h ◦ r− t‖ , (3.1)

where ◦ stands for element-wise product. This way RotatE can model also symmetric
relations, which can’t be modeled by TransE.
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The third used model is DistMult [Yang et al., 2014]. This model is built on the
RESCAL approach. RESCAL model entities as vectors and relations as matrices. Dist-
Mult forces relation matrices to be diagonal. The scoring function is:

fr(h, t) = h> diag(Mr)t, (3.2)

where Mr is a diagonal matrix of relation. This way the number of parameters is much
smaller compared to RESCAL, but the model can only deal with symmetric relations.

The last used model is RDF2vec [Ristoski and Paulheim, 2016]. It uses the hypothe-
sis of neural language models that words close in context are close in meaning. Thus the
model creates graph ”sentences” for an entity by random walks with the entity as root.
These sentences has the structure entity - relation - entity - relation - ... The Word2vec
algorithm is then used to compute dense vector representation for each entity.

3.2 Alignment methods

We implement three alignment methods. The GS is transformed using these methods
to vector space of GT . In this section A represents vector space of GS and B represents
vector space of GT .

Linear Transformation The benchmark method solves the supervised linear trans-
formation problem as described in [Grave et al., 2019]. We choose some entities as an-
chors and train the transformation matrix M on them. To obtain the transformation
matrix we solve the least squares problem:

minM‖ AM −B‖2. (3.3)

The linear transformation without any constraints generally is the simplest model.

Orthogonal Linear Transformation Constraining the transformation matrix to be
orthogonal is one way of potentially improving the alignment performance. An orthogo-
nal matrix ensures that distances between embeddings remain the same. This property
was shown to be important for alignment problems by [Xing et al., 2015]. We can restrict
the transformation matrix to be orthogonal during the training, this way we solve:

minQ‖ AQ−B‖2, (3.4)

where Q is orthogonal matrix. Alternatively, we can orthogonalize solution of the least
squares problem:

Q =M(MTM)−
1
2 . (3.5)

This way we obtain nearest orthogonal matrix to transformation matrix M . In our
algorithm, we orthogonalize the linear transformation matrix M .

14
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Procrustes Procrustes analysis finds the transformation matrix if the alignment is
known. Many alignment approaches use the solution of Procrustes analysis in supervised
methods, or after unsupervised initialization of the anchor points. The transformation
matrix is usually restricted to be orthogonal, the corresponding orthogonal Procrustes
solves the optimization problem given as:

min
Q∈Od

‖ AQ−B‖22,

where Od is set of orthogonal matrices. This optimization problem has a closed form so-
lution Q∗ = UV T , where UΣV T = ATB is an SVD decomposition [Schönemann, 1966].
Generally, the difference between the linear transformation and the Procrustes analysis
is that Procrustes searches the best solution in a wider solution space, using all pos-
sible linear transformations (rotation, translation, scaling). Therefore, the Procrustes
analysis is a technique to find the best linear transformation.

Optimal transport Optimal transport is an unsupervised approach for aligning two
sets of points. It assumes two discrete distributions µ and ν over two sets of embeddings,
with p and q as probability vectors. Probability vectors can be uniform or bring some
additional information, e.g. reflect word frequencies. The transportation map is the
alignment between the two sets of points. The original problem finds a transportation
map T:

inf
T

(
m∑
i=1

pi ‖ x− T (x) ‖ | T#µ = ν

)
(3.6)

where m is number of embeddings in two sets. T#µ = ν ensures that the source embed-
dings maps exactly on target embeddings. In reality, there might be no such mapping.
Therefore, the problem is relaxed to find a set of transportation plans {Γ} which are
defined as polytope Π dependent on p and q. The polytope is a convex closure above
all possible transportation plans. It can be specified as the set of solutions to a system
of linear inequalities. The transportation plan is a matrix Γ ∈ Rn×m+ . The solution of
discrete optimal transport problem then is:

min
Γ∈Π(p,q)

〈Γ,C〉, (3.7)

where 〈Γ,C〉 :=
∑

ij ΓijCij is the total cost. C is a matrix C ∈ Rn×m. Equation 3.7 can
be further regularized to yield strictly convex optimization problem [Cuturi, 2013].

Gromov-Wasserstein Distance The Gromov-Wasserstein framework proposed by
[Alvarez-Melis and Jaakkola, 2018] operates on two sets of embeddings. The framework
does not require them to be in the same vector space. The vector spaces are captured in
within-domain similarity matrices (C,p) and (C′,q). The loss function is L ∈ R×R→ R
, where  Lijkl = L(Cik, C

′
jl). The loss can be seen as a cost of matching i to j and k to

15
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l.  Lijkl is a 4-th order tensor. We need to find a coupling Γ between two spaces. The
solution of Gromov-Wasserstein then is:

GW(C,C′,p,q) = min
Γ∈Π(p,q)

∑
i,j,k,l

 LijklΓijΓkl. (3.8)

However, this equation is very difficult to solve due to the non-linearity and non-
convexionality of the objective. The problem can be optimized by first-order methods
with solving the traditional optimal transport in every iteration. The optimal transport

coupling Γ∗ provides a likelihood that (w
(i)
src, w

(j)
trg) are translations of each other. Solving

equation 3.8 also yields distance between languages if L = L2.
This approach is suitable for small or medium sized datasets. For the large datasets,

this approach is used to compute an initial mapping on a subset of the embeddings. This
initial mapping is then used as the initialization for the OP as described above.

MUSE unsupervised In the thesis we further explore the unsupervised word align-
ment method called MUSE from [Conneau et al., 2017] in depth. In this paragraph
we introduce it in more detail. The source and target embedding spaces are denoted
X = {x1, ..., xn} and Y = {y1, ..., ym} respectively.

The unsupervised method has two parts: the domain-adversarial training and the
Procrustes refinement procedure. The domain-adversarial method contains a mapping
model and a discriminator. The mapping W tries to fool the discriminator from distin-
guishing between WX = {Wx1, ...,Wxn} and Y. The mapping is initialized as identity
matrix and further trained, with objective:

LW (W |θD) = − 1

n

n∑
i=1

logPθD
(
source = 0|Wxi)−

1

m

m∑
i=1

logPθD |(source = 1|yi), (3.9)

where θD are discriminator parameters, and PθD(source = 1|z) is the probability that a
vector z is the mapping of a source embedding. The mapping matrix W is orthogonalized
with the equation:

W =(1 + β)W − β(WW T )W. (3.10)

The discriminator try to predict correct origin of the embedding, distinguishing be-
tween WX and Y. The discriminator objective is:

LD(θD|W ) = − 1

n

n∑
i=1

logPθD
(
source = 1|Wxi

)
− 1

m

m∑
i=1

logPθD
(
source = 0|yi

)
. (3.11)

The output of domain-adversarial training is a one-to-one mapping between source
and target embedding spaces. This mapping creates an artificial dictionary between
source and target words. The dictionary can contain all words or the words with higher
frequency as in [Conneau et al., 2017] to then create the more accurate mapping.

The refinement procedure takes this dictionary as input for supervised Procrustes as
described above. The result of the Procrustes method can be used to generate a more
accurate dictionary and use it again as input for Procrustes. This way the refinement is
iterated.
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Experimental setup

In this chapter we describe the technical details of our work. The section 4.1 introduces
used datasets. We describe the embedding training procedure in Section 4.2. Further,
we describe technical details of supervised and unsupervised alignment methods we used
in Section 4.3. In Section 4.4 we describe metrics we use to evaluate our experiments.

4.1 Datasets

In our experiments we used two knowledge graphs:

1. fb15k-237,

2. wd15k-237.

fb15k-237 is a subgraph of a larger KG Freebase. The fb15k-237 version contains
14’541 entities and 237 relations. The number of training triples is 272’115. The inverse
relations were removed because a lot of test triples could be obtained by inverting training
triples [Toutanova and Chen, 2015, Bordes et al., 2013].

wd15k-237 is a subgraph of Wikidata KG. It contains 14’295 entities and 322 relations,
and 121’904 training triples. This version of Wikidata KG was created by Mattias Baum-
gartner. The ground-truth alignment between the entities of wd15k-237 and fb15k-237 is
from GitHub site ”Datasets for Knowledge Graph Completion with Textual Information
about Entities”1. We also created the alignment between relations of above mentioned
KGs.

4.2 Embedding training

We decided to use four different embedding models:

1. TransE,

2. RotatE,

1https:// github.com/ villmow/datasets knowledge embedding

https://github.com/villmow/datasets_knowledge_embedding
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3. DistMult,

4. RDF2vec.

The LibKGE2 library, which is described in [Ruffinelli et al., 2019], was used as a train-
ing framework for all embedding methods but RDF2vec. LibKGE uses configuration files
to specify the hyperparameters for the embedding training. The library also provides
finetuned configuration files for some KGs, fb15k-237 being one of them. We reused the
best configuration files for TransE, RotatE, and DistMult on fb15k-237 and used them
without further finetuning for both datasets. We endeavored to finetune the hyperpa-
rameters for wd15k-237, but this effort was abandoned because the procedure to obtain
the best hyperparameters was rather complex and required large amount of resources
and time. Therefore, we trained wd15k-237 embedding models with fb15k-237’s best
configuration files and after obtaining similar link prediction results as for fb15k-237 we
decided to keep these models.

The RDF2vec embeddings were trained using pyRDF2vec library3 introduced in the
paper by [Vandewiele et al., 2020]. We trained the fb15k-237 and wd15k-237 embeddings
with multiple configurations of hyperparameters.

TransE TransE gives us an intrinsically consistent embedding space. But every run
of the model on a dataset will output different embedding space. For the fb15k-237
dataset, LibKGE offers a pre-trained TransE model. Further, we trained one additional
embedding for fb15k-237 and two for wd15k-237. This results in two models per dataset
which can be perfectly aligned but occupy different embedding spaces. The configuration
file was the best configuration for fb15k-237 (which is the same as for the pre-trained
model). Our TransE models have 128 dimensions. The negative sampling is used during
the training, the batch size is 128 during the training and 256 during the validation. The
Adam optimizer is used with early stopping after ten epochs without improvement. We
trained on a CPUs, the pre-trained model was trained on GPUs.

In our experiment, we want to align TransE to other embedding models with a higher
number of dimensions. Therefore, we also trained a TransE model for fb15k-237 with
256 dimensions. Other hyperparameters remained the same as for the 128-dimensional
model.

For the scenario in which you can not train another embedding model but still want
to align models with various dimensionality, we append 128 random values close to
zero to the TransE model with 128 dimension. This way, we obtained 256-dimensional
embeddings without further training.

RotatE As for TransE, we reused the pre-trained model for fb15k-237 and further
trained one model for fb15k-237 and two models for wd15k-237 with the configuration
file from the pre-trained model. The RotatE embeddings have 256 dimensions. Negative
sampling is used during the training, the batch size is 128 during the training and 256

2https:// github.com/uma-pi1/ kge
3https:// github.com/ IBCNServices/ pyRDF2Vec
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max depth (d) max walks (w) max epochs (e)
setting 1 4 10 10
setting2 4 20 100
setting3 8 10 100

Table 4.1: RDF2vec hyperparameter settings used in the experiments.

during the validation. The embedder uses the L2 norm. Early stopping is used after ten
epochs without improvement. Our models were trained on CPUs, the pre-trained model
was trained on GPUs. The RotatE models required the most time to be trained.

DistMult The setting is similar to RotatE. We used one pre-trained model for fb15k-
237, further we trained one model for fb15k-237 and two models for wd15k-237 with
the same configuration as the pre-trained model. The DistMult embeddings have 256
dimensions. Negative sampling is used during the training, a batch size of 1024 was used
during the training, and 256 during the validation. The training algorithm uses early
stopping with a patience of ten epochs. We trained our models on CPUs, the pre-trained
model was trained on GPUs. DistMult was the fastest model to train.

RDF2vec RDF2vec embeddings have 100 dimensions. They were used only in the
MUSE unsupervised experiments to verify the hypothesis about preferred embedding
models. We used three different hyperparameter settings and trained two models with
each setting, one with fb15k-237 and one with wd15k-237. The hyperparameters we
changed between the trainings are the maximal depth of a walk (d), the maximal number
of random walks (w), and the maximal number of epochs (e). In our experiments we
use multiple runs of three different hyperparameter settings summarized in Table 4.1.

4.3 Alignment methods

The datasets are divided into a 20% test and 80% training set. The test set is common
for all experiments. The training set is common for all supervised experiments. The
unsupervised experiments required all entities E as input.

We also experimented with different sizes for the training set for supervised experi-
ments. Therefore, we chose random entities from the training set to be 10%, 30%, 50%,
60%, and 70% of the whole entity set E .

We were also curious if the more frequent entities would create better unsupervised
alignment. For these experiments we ordered entities by the number of triples they were
in and chose the most or least frequent 100, 200, 500 and 1’000 – 8’000 entities.

19
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4.3.1 Supervised alignment methods

Linear transformation (LT) Our implementation of linear transformation uses the
PyTorch least squares4 function to compute the transformation matrix M . Only the
training set is used for the computation. Then, all source embeddings are translated
into the target embedding space and compared to the original target embeddings.

Orthogonal linear transformation (OLT) The orthogonal linear transformation
implementation also uses the least squares function to compute the transformation ma-
trix. The obtained matrix is then orthogonalized, i.e. the closest orthogonal matrix is
computed using Equation 3.10. The procedure is otherwise the same as for the linear
transformation.

Orthogonal Procrustes (OP) The orthogonal Procrustes uses the scipy orthogo-
nal procrustes function 5. This function uses orthogonal transformations such as rota-
tion and reflection. The result is a square matrix with dimension n× n, where n is the
dimension of embedding.

MUSE supervised (MUSE-s) The supervised MUSE algorithm uses a set of anchor
points as the initial dictionary between two KGs. It then loops through computing or-
thogonal Procrustes on a given dictionary and enhancing the dictionary with the results.
Then, it uses the enhanced dictionary as input in the next loop. This is called iterative
Procrustes. The default setting runs five such loops. One very important hyperparam-
eter is the method used for computing alignment dictionaries. The default setting is
CSLS, which can be changed to nearest neighbour search or inverted softmax. Another
hyperparameter is the maximum size of vocabulary, which is set to 200’000.

4.3.2 Unsupervised alignment methods

MUSE unsupervised (MUSE-u) MUSE [Conneau et al., 2017] is one of the state-
of-the-art algorithms in unsupervised word embedding alignment. We adopted this ap-
proach and computed the alignment for KG entity embeddings without any changes.
MUSE unsupervised has two parts:

• adversarial training,

• Procrustes refinement procedure.

The ideas behind these parts are described in Section 3.2 in more depth. In this para-
graph, we will describe the hyperparameter settings.

The adversarial part tries to find a mapping between GS and GT . This mapping is
initialized as an identity matrix. The matrix is orthogonalized after every epoch with

4https:// pytorch.org/ docs/ stable/ generated/ torch.lstsq.htmal
5https:// docs.scipy.org/ doc/ scipy/ reference/ generated/ scipy.linalg.orthogonal procrustes.html
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β = 0.001 as default. The optimizer of the mapping is the stochastic gradient descent
with a learning rate of 0.1.

The discriminator is a small neural network with two layers with 2048 hidden dimen-
sions. The default optimizer is the stochastic gradient descent with a learning rate of
0.1. The input dropout is 0.1. The discriminator runs five steps every epoch. The dis-
criminator loss feedback coefficient is set to 1 which means that the loss is not changed
at all before the backward run, if it would be less than 1 the loss would be smaller than
original loss. For our purposes, we disabled choosing of the most frequent words by the
discriminator, because we did not provide such information in embedding order. The
discriminator smooths predictions by default by 0.1.

Overall, the adversarial training runs for five epochs with one million iterations in each
epoch. The batch size is 32. The learning rate decay is 0.98 with a minimum learning
rate of 1E−6. If the validation metric decreases, the learning rate is shrunk by a 0.5
ratio.

The refinement procedure has five iterations as a default setting. Other hyperparam-
eters of iterative Procrustes are the same as for supervised MUSE – CSLS as dictionary
creation method, 20’000 maximum size of the vocabulary.

OTalign (OT) The OTalign6 algorithm implements the Gromov-Wasserstein distance
with optimal transport as described in Section 3.2. The algorithm transforms both source
and target embedding spaces into some other common vector space. The default metric
is cosine similarity. Otherwise, OTalign has only one scalable parameter, the sinkhorn
entropy regularization λ. The Sinkhorn-Knopp algorithm is a matrix-scaling procedure
that is used in a loop after computing a pseudo cost matrix ĈΓ. The larger the λ, the
denser the optimal coupling Γ∗. Weaker regularization leads to sparser solutions but the
optimization problem becomes more non-convex thus harder to solve.

4.4 Evaluation

In our setting, we are trying to measure how well the alignment method works between
two knowledge graphs GS and GT . Common metrics used in KG evaluation are Hits@k,
Mean Rank, Mean Reciprocal Rank, and Adjusted Mean Rank [Ruffinelli et al., 2019,
Ali et al., 2020].

At the beginning of every evaluation method, we transform an entity embedding from
the GS embedding space into the GT embedding space. Then, we measure the distance
between the transformed embedding from GS to all of GT ’s original embeddings. In the
following we will discuss the above mentioned metrics in detail:

• Hits@k – The original GT embeddings are sorted by their distance to a GS em-
bedding and the k closest embeddings are chosen. If the real alignment of the GS
embedding is within the k closest GT embeddings the model earns a point. This

6https:// github.com/dmelis/ otalign
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process is done for all the GS embeddings from the test set. This metric tells us
the probability that the true target entity of an embedding is in the k nearest
neighbours of the transformed source embedding. The higher the better.

• Mean Rank (MR) – GT embeddings are sorted by the distance from the transformed
embedding. The rank (position) of the real translation of the original GS embedding
is gathered and is summed for all the test embeddings from GS . The sum of all the
ranks is divided by the number of test entities from GS . The result is the average
rank of the correct translation from GS to GT . The lower the better.

• Mean reciprocal rank (MRR) – the procedure is the same as for MR, but we sum
the reciprocal ranks. The reciprocal rank is one divided by the actual rank of an
embedding. If the real translation is always first, then the result is one. If the real
translation is always last, the result is close to zero.

• Adjusted Mean Rank (AMR) – is adjusted to the number of entities in the different
KGs. AMR makes the results comparable between different datasets. In MR, every
single transformed entity is compared with all the entities from GT . If we sum
the number of entities every single transformed embedding is compared to, and
divide MR by this number, we get the AMR. The equation is AMR = MR

1
2

∑
t∈Ktest

E .

Therefore, we can compare alignment results between different KGs.

Some of the experiments are evaluated in two directions:

• transformed GS to GT ,

• GT to transformed GS .

This way we can see if the performance of the algorithm is balanced, if it is similar for
both evaluation directions, or not.
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Results

In this chapter we present our research questions about KG alignment and describe the
hypothesis and experimental results that offer an answer to these questions.

We identified two research questions:

1. Do the word alignment methods used on KGs have results in the same order of
magnitude as typical KG alignment methods?

2. Do the alignment between different KG embedding models yield results in the same
order of magnitude with alignment between the same embedding models?

The motivation behind the first question is that the area of word alignment is older
than for KG alignment. During our related work research, we noticed that e.g. LT is
common for KG alignment but for word alignment, the orthogonal constraint is typically
applied. Seeing such behaviour, we decided to apply some text alignment methods to
KG alignment and evaluate their usefulness.

The second question is motivated by a real-life scenario. For large KGs, it is pricey
to compute an embedding model with good performance. But at the same time, it is
unlikely that two different KGs are embedded by the same embedding model. Therefore,
we test whether the performance decreases dramatically when aligning two different
embedding models.

We report the performance in terms of hits@{1,10} and mean rank (MR). The hits
scores show if the entities are aligned in the correct neighbourhoods. The MR shows if
the algorithm aligns all of the entities well, or just some subset of them.

5.1 RQ1: Word alignment methods on KG data

In this section, we describe our hypotheses about the performance of word alignment
methods on the KG embedding spaces. In Subsection 5.1.1 we compare LT as typical
KG alignment method with OLT and OP as typical supervised word alignment methods,
and MUSE-s as state-of-the-art supervised word alignment method. In Subsection 5.1.2
we discuss the effect of the size of a training set on performance. In Subsection 5.1.3 we
compare unsupervised methods MUSE-u and OT with the supervised ones, and we dive
a little bit deeper into the MUSE-u algorithm.
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Figure 5.1: The performance of alignment between fb15k-237 to wd15k-237 both embed-
ded by TransE. The reported results are average of the evaluation directions.

5.1.1 Orthogonality restriction

The orthogonalization of the transformation matrix causes an increase in
the alignment performance. According to the literature, orthogonality in the word
alignment approaches helps the alignment method to achieve higher hits@k than LT. The
orthogonality of the transformation matrix M keeps the distances between the embed-
dings the same even after the transformation. Then, the distribution of the embeddings
in the space stays the same. This helps the alignment to be more accurate if the two
word embedding spaces have a similar distribution. We want to verify if KG alignment
has the same behaviour.

To test this hypothesis we compare the LT to OLT, OP, and MUSE-s. We experiment
with aligning fb15k-237 to wd15k-237 using the TransE embedding model. We measure
hits@1, hits@10, and MR to see if the method is trying to align all of the entities or if
it just chooses some entities easier to align and ignores the others.

Figure 5.1 shows the average hits@{1,10} and mean rank of fb15k-237 to wd15k-237
alignment with TransE embeddings. The average refers to the average between source
to target and target to source evaluation directions. All the methods are supervised and
trained with the same 50% training set and evaluated with the same 20% test set.

Figure 5.1a shows that the LT is on par with the orthogonal alignment methods in
terms of hits. All of the methods have the average hits@10 around 50% and average
hits@1 around 20%. Figure 5.1b shows the mean rank results. The LT has the best
performance in terms of mean rank. The difference between LT and OLT is 6 ranks, it
is the same as between LT and OP. The MUSE-s has the worst MR of 170. MUSE-s
chooses a subset of entities that are easier to align and focuses on them while training
the alignment and ignores the entities that are more difficult to align. This results in
a lower MR score but similar hits@10 when compared with other orthogonal alignment
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methods.

However, the average results are not always the same for all alignment methods (com-
pare Figure 5.1 and Figure 5.2). The results depend on the embedding model used for
the alignment.

The orthogonality did not bring expected improvement in the performance of the
alignment methods. This can be caused by different distributions of entities in embedding
spaces. The main idea why orthogonalization improves the performance in the word
alignment is that the distributions of two languages are similar. The proof of such an
assumption for KG embedding spaces requires further experimentation.

An iterative orthogonal Procrustes of MUSE-s improves results. Our imple-
mentation of KG alignment uses a very simple OP algorithm. We expect MUSE-s to
perform better because of the iterative approach, where the alignment dictionary is en-
hanced in every iteration. Also, the CSLS metric used to compile the dictionaries uses
only mutual nearest neighbours which causes the dictionaries to be more reliable.

We compare all orthogonalized methods in terms of hits@{1,10} and MR. The reported
results are the average of both evaluation directions. Figure 5.1 shows that the MUSE-s
algorithm performed worst in our setting in both measured metrics, being even worse
than LT. The difference between hits of MUSE-s, OP, and OLT is not substantial. On
the other hand, the difference in MR is 13 ranks (from 157 to 170) between LT and
MUSE-s.

The KGs are probably very sensitive to the wrong alignment and mistakes from one
iteration propagate through the whole refinement procedure. The worst performance
in mean rank is caused by the CSLS metric. This metric chooses the mutual nearest
neighbours into the alignment dictionary. Therefore, some entities are never added
which causes the alignment to be shifted towards the entities in the dictionary. The
more common or easier to align entities are preferred while the marginal entities are not
considered.

The orthogonal alignment methods have similar performance for both eval-
uation directions, the LT does not. Because the nearest neighbour metric is not
symmetric, we want to see if the transformed source embeddings are unambiguous for
both evaluation directions or not. If the alignment is balanced, meaning that the hits@10
is almost the same for both evaluation directions, then the correctly aligned source en-
tities are mutual nearest neighbours of the true target entities.

We align wd15k-237 to fb15k-237 embedded by the RotatE model. To compute the
alignment we use all supervised embedding methods. For the training, we use a 50%
training set and for evaluating our common 20% test set. The hits@10 and MR are
measured for both evaluation directions, from transformed source to target (S2T) and
from target to transformed source (T2S). We also report the average between these
evaluation directions (AVG).

In Figure 5.2a we show the hits@10 score of the different evaluation directions of all
supervised alignment methods. We observe that the direction of evaluation changes

25



26 CHAPTER 5. RESULTS

LT

O
LT O

P

M
U

S
E

-s

Method

30

40

50

60

70

80
H

it
s@

10
(%

)
a) S2T T2S AVG

(a) Hits@10 results

LT

O
LT O

P

M
U

S
E

-s

Method

40

60

80

100

120

140

M
ea

n
R

an
k

b)

(b) Mean Rank results

Figure 5.2: Comparison of evaluation directions of LT, OLT, OP, and MUSE-s. The
aligned datasets are wd15k-237 to fb15k-237 embedded by RotatE. We use
a 50% training set. The S2T stands for the evaluation direction from trans-
formed source to target, T2S stands for the evaluation from target to trans-
formed source, AVG is the average of these two directions.

results substantially for LT. LT performs better when evaluated from transformed GS
to GT . OLT, OP, and MUSE-s have similar results for both directions with differences
of about one percentage point. The average between the evaluation directions has the
lowest performance for LT caused by the imbalance.

Figure 5.2b shows the mean rank results. LT has the best S2T results. MUSE-s
has the worst average results. It is the only method that has better hits@10 for S2T
evaluation but worse MR. Overall, the difference in mean rank is more visible than for
hits@10 for all methods.

The results show that for LT the transformed source embeddings are nearest neigh-
bours of correct target embeddings. Therefore, the correct pairs are easily found. In
contrast, the target embeddings are not mutual nearest neighbours with correct source
embeddings.

For the orthogonal alignment methods, the alignment neighbourhoods are more simi-
lar. The correctly aligned entities are mutual nearest neighbours with their target entity
pairs. Therefore, there is no significant difference between evaluation directions in means
of hist@10.

OLT has an interesting behaviour. The method computes the transformation matrix
M in the same way as LT and then finds the nearest orthogonal matrix of M . Even
this simple constraint balances the overall performance. However, it pays the price of a
small performance decrease.
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5.1.2 Hyperparameters changing performance

The performance increases with the number of anchor points. It is laborious
to obtain ground truth alignment between two KGs. Therefore, we want to know how
the performance depends on the number of anchor points, i.e. if there is some boundary
after which the results won’t get significantly better, or if there is linear-like relation
between the performance and the number of anchors.

To test this hypothesis we create training sets of 10%, 30%, 50%, 60%, 70%, and
80% of the anchors between fb15k-237 and wd15k-237 (further called training sets).
Both datasets are embedded with TransE. The entities for the training sets are chosen
randomly. The remaining 20% is used as a test set for all of the experiments. The
training sets are disjoint with the test set. We measure average hits@10 and hits@1.
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Figure 5.3: Comparison of 10%, 30%, 50%, 60%, 70%, and 80% training sets of fb15k-
237 to wd15k-237 alignment. Both KGs are embedded with TransE. OP is
used as the alignment method. The size of the training set is the percentage
part of the whole entity set E .

Figure 5.3 shows that with more anchor points the results are always better. But, with
50% and more, there is not a big difference in hits@10 (the difference is one percentage
point between 50% and 80%). This means that in a real-world scenario after having 50%
of the entity set E as anchor points, the results won’t improve much. However, for large
KGs 50% is already a substantial number of anchor points. The results show that the
difference between 10% and 50% training set is nine percentage points (42% vs 51%).
Therefore, even for the small training sets the performance remains in the same order
of magnitude.
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5.1.3 Unsupervised text alignment algorithms

First, we quickly summarize the unsupervised algorithms. MUSE-u applies adversar-
ial training to train a preliminary mapping between two spaces and then continues as
MUSE-s with the iterative orthogonal Procrustes refinement procedure. The OT al-
gorithm first computes intra-language similarities. Then in the loop, the algorithm
computes a pseudo cost matrix (the loss of the mapping). The matrix is used as input
to the Sinkhorn algorithm which outputs a transportation map Γ (the mapping between
two spaces) which is again used to compute the pseudo cost matrix. This loop stops
when Γ converges to the optimal mapping. For large datasets, the optimal mapping is
learned for a smaller subset of the entities. Then this optimal mapping is used as the
initial dictionary for the Procrustes-like algorithm.
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Figure 5.4: The hits@10 results of wd15k-237 to wd15k-237 TransE alignment. The
embedding models are two separate runs of TransE. In this figure we compare
all alignment methods.

When applied on KGs, unsupervised methods for text alignment have a
performance at least on par with OP. The unsupervised methods are very useful
in real-world scenarios. The KGs on the internet are changing quickly and to have current
alignment between them is very costly and requires human resources if the alignment
should be correct. It is very convenient to have an unsupervised algorithm to align two
different KGs without having ground-truth data. The MUSE-u and OT perform on par
with supervised methods for word alignment. Likewise, we expect the performance to be
at least as good as for OP when aligning KGs. This is because both of the unsupervised
methods use OP as a refinement procedure after finding initial mapping.
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Figure 5.5: The performance of unsupervised methods varied from random baseline
(hits@10 below one percent) to results on par with OP (wd2wd TransE
hits@10 90%). The x-axis shows which two KGs are aligned. The color
of the bar shows which embedding models are used to embed both of the
datasets.

We experiment with two unsupervised algorithms MUSE-u and OT. Both of these
algorithms take the whole entity sets of GS and GT as an input. It is important to note
that in this experiment we align the same dataset, embedded by two different runs of the
same embedding model, i.e. wd15k-237 to wd15k-237 embedded by two different TransE
model instances. The test set is the same 20% of the entity pairs as for the supervised
experiments. In our experiments, we measure the average hits@10 and MR to compare
unsupervised algorithms with supervised ones.

We observe very interesting behaviour. In some cases when we use the same KG and
the same embedding method the results of unsupervised alignment methods are on par
with supervised results as is shown in Figure 5.4. The MUSE-u has the worst hits@10
but it is still above 83%. OT is on par with LT with hits@10 slightly above 90%. OT MR
is 8.63 what is the best average score obtained in wd15k-237 to wd15k-237 alignment.

In Figure 5.5 we show results of unsupervised methods on different KG pairings em-
bedded by the same embedding model. The TransE embedding models performed best
for both datasets and for both unsupervised alignment methods. The MUSE-u alignment
between fb15k-237 RotatE embedding models (hits@10 37%) yields similar performance
to alignment between fb15k-237 DistMult models (hits@10 34%). The OT alignment of
fb15k-237 RotatE models results in hits@10 78%, similar performance to TransE models
with 82% hits@10.

The alignment between wd15k-237 DistMult models yields better results than between
wd15k-237 RotatE for both MUSE-u and OT. The only embedding model which yields
results above 1% for alignment between fb15k-237 and wd15k-237 is TransE with a
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performance of about 19% hits@10 for both methods.

The results show that two different KGs are not trivially aligned by the unsupervised
methods. This points out that it is not a simple task to obtain initial mapping with only
embedding spaces.

A deep dive into unsupervised MUSE

In the following, we chose to further experiment with MUSE unsupervised and poten-
tially find the reason why the alignment is not working as well as the word alignment
results stated in [Conneau et al., 2017]. We chose MUSE-u because it also has a super-
vised mode against which we can compare the results. We observed that the supervised
part of the unsupervised setting (after obtaining pseudo anchors from the unsupervised
adversarial training) which implements orthogonal Procrustes enhances results even from
a small set of anchors. Therefore, we decided to further only test the adversarial part
(see Section 3.2) to find the reason why the unsupervised alignment is unable to align
at least 10% of entities correctly (which is enough for results around 40% hits@10 as we
know from previous experiments, as seen in Subsection 5.1.2).

The hits@10 and MR stated in the experiments described in this section are the results
of the adversarial part of MUSE unsupervised if not stated otherwise.

Unsupervised alignment of two pre-aligned embedding spaces has a perfor-
mance on par with a supervised method. We hypothesize that the different KGs
might have too dissimilar spaces. So, it is too difficult for the MUSE-u to find an initial
alignment passed to the iterative OP. Therefore, already aligned spaces should pose a
much simpler problem and the results should be similar to the MUSE-s from which we
take the already aligned embedding spaces.

MUSE-s outputs the source embedding space transformed into the target space. The
target space remains the same. We used these two spaces (transformed source space and
target space) as input to MUSE-u. Since we are interested in the ”different KG, same
embedding” scenario we will focus on fb15k-237 to wd15k-237 alignment. TransE was
used as an embedding method for both KGs.

We measured hits@10 and MR. In this case, the results are after the whole MUSE-u
training including Procrustes refinement. The reported numbers are the average of both
evaluation directions.

In Figure 5.6 we see that the difference between the supervised results and the un-
supervised with initialized embeddings is substantial. The results of the initialized ex-
periments are similar to the results of MUSE-u without transformed source embedding
space.

The hypothesis is rejected. A reason for this might be that the input spaces were too
close to each other so the problem was too simple for MUSE-u adversarial training. The
MUSE-u transformation matrix is initialized as an identity matrix. If it remained the
same through the whole training the results would be the same as for MUSE-s. But the
adversarial training changed the identity matrix to some other linear transformation. In
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Figure 5.6: Results of MUSE-u with input from MUSE-s compared with original MUSE-
s 50% training set and MUSE-u results, alignment between fb15k-237 to
wd15k-237 embedded by TransE.

the end, the entities which should be aligned were further from each other than at the
beginning of the training.

An alignment trained with the entities that occur most frequently in KG
triples have higher performance than the alignment trained on the entities
with the rarest occurrence. In [Conneau et al., 2017] the authors remove the least
frequent words from the dictionary during the training because they are lowering the
performance. We want to test this setting. The number of occurrences of the entity in
the training triples, further denoted as entity frequency, reflects how many connections
with other entities it has. More frequent entities capture the structure of the KG better.
Also, embeddings of more frequent entities are iterated more often in the embedding
training. Therefore, they are trained better than embeddings of less frequent entities.

To validate this hypothesis we experiment with wd15k-237 to wd15k-237 alignment.
We used two separate runs of TransE. We chose to experiment with the alignment
between the same KG because the results are about 70% hits@10 for the 50% training
set, so we have a wider range of possible performances.

We select the 100, 200, 500, 1’000 – 8’000 most frequent and also the same numbers
of the least frequent entities. We measure hits@10 of the same test set as for other

31



32 CHAPTER 5. RESULTS

10
0

20
0

50
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Number of chosen least frequent entities

0

10

20

30

40

50

60

70
H

it
s@

10
(%

)
a)

(a) Least frequent entities

10
0

20
0

50
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

Number of chosen most frequent entities

0

10

20

30

40

50

60

70

H
it

s@
10

(%
)

b)

(b) Most frequent entities

Figure 5.7: The x axis shows the number of training entities of MUSE-u. We align
wd15k-237 to wd15k-237 embedded by TransE. We report average hits@10.

experiments. In this setting the entities from test set might occur in the training set.
In Figure 5.7a we see that including the least frequent entities in the training set is

beneficial for the alignment. The performance jumps from random to 60% hits@10 for
as little as 1’000 least frequent entities. The performance of least frequent entities with
1’000 and more anchors varies from 48% to 60% hits@10. The performance of the most
frequent entities with 2’000 and more anchors varies from 34% to 62% hits@10.

In the Figures 5.8 and 5.9, we see the TSNE plot of transformed source wd15k-237
embedding space and target wd15k-237 embedding space. The grey dots represent the
target space. The red dots represent the correctly aligned entities in terms of hits@10,
and the blue dots represent the wrongly aligned entities in terms of hits@10.

There are three main clusters and multiple smaller ones. In Figure 5.8 with M trained
on the 8’000 most frequent entities, the correctly aligned entities (red dots) form visible
small clusters. While in the Figure 5.9 with M trained on 8’000 least frequent entities,
the correctly aligned entities are distributed more evenly.

The hypothesis is rejected. When using the least frequent entities in the training set
we generalize the margin areas better, so the transformation fits the target space better.
While with the most frequent entities the margin areas are not taken into account during
the training and the correctly aligned entities form small clusters.

The RDF2vec embedding model performs better than other KG embed-
ding models when using MUSE-u. MUSE-u originally used fastText1 embeddings.
RDF2vec creates random graph walks which are represented as strings, then trains

1https:// github.com/ facebookresearch/ fastText
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Figure 5.8: Alignment of two full wd15k-237 TransE embedding spaces with mapping
computed on 8000 most frequent entities. Source correct refers to the cor-
rectly aligned source entities, source wrong refers to the wrongly aligned
source entities, target refers to the entities from original target space.

word2vec embeddings on these strings. We expect the RDF2vec embedding spaces to
be more similar to fastText embedding spaces than TransE or RotatE ones. Therefore,
we expect the results for fb15k-237 to wd15k-237 alignment to be better than for other
embedding methods.

We experiment with four combinations of datasets: fb15k-237 to fb15k-237, wd15k-
237 to wd15k-237, fb15k-237 to wd15k-237, and wd15k-237 to fb15k-237. We embed the
source and target KG by the two instances of RDF2vec with the same hyperparameter
setting. The hyperparameters we change are: d – the max depth of a walk, w – the max
number of walks, and e – the max number of epochs.

Figure 5.10 shows hits@10 results for three different RDF2vec settings. For the indi-
vidual alignment, we used two RDF2vec models trained with the same hyperparameter
setting. The results show that the alignment behaviour is the same as with other em-
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Figure 5.9: Alignment of two full wd15k-237 TransE embedding spaces with mapping
computed on 8000 least frequent entities. Source correct refers to the cor-
rectly aligned source entities, source wrong refers to the wrongly aligned
source entities, target refers to the entities from original target space.

bedding methods (Figure 5.5). The alignment for two different KGs remains on par with
the random baseline.

Inspecting the KGs, we found that relations differ between them: they have different
names, there are generalizations and specifications of each other in both directions. In
light of this knowledge, we explain our findings. The difference between relations reflects
in the different connectivity of nodes. The same entities in both KGs have different in-
coming and out-going edges. Therefore, the random walks generated by RDF2vec create
very different embedding spaces what leads to random-like performance for fb15k-237 to
wd15k-237 alignment.

The removal of some relations from fb15k-237 and alignment to full fb15k-237
leads to lower hits@10 than full fb15k-237 to full fb15k-237 alignment. We
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Figure 5.10: Alignment between two instance of the same RDF2vec setting. The hyper-
parameters are: d – max depth of random walk, w – max number of random
walks, e – number of epochs. The x axis shows which two KGs are aligned.

are curious about the role relations play in the alignment of different embedding spaces.
After seeing the difference between fb15k-237 and wd15k-237 relations we anticipated
that their role is very important in shaping the embedding space.

Therefore, we experiment with the alignment of two TransE runs of fb15k-237. One
run is trained on a full fb15k-237 training set. The other run has the same number of
entities, but n relations are chosen and triples that contain these relations are removed
from the triple set (training, validation, and test set). The removed relations are chosen
from the middle of the relation’s degree distribution with an average number of triples
around 300. The results in Figure 5.11 are the state of the MUSE-u after the adversarial
training.

The results for a different number of removed relations do not differ that much from
each other. However, the performance with five and ten removed relations is surprisingly
high. The number of relations removed might be too small to affect the alignment in
terms of falling into random-like performance. Also, the structure of the other relations
is still the same because we are aligning the same KG. This might be the reason why
are the results still similar to the baseline or even better (full fb15k-237 to full fb15k-237
alignment).

5.1.4 Discussion

The answer to the first research question, if LT performs comparably to the word align-
ment methods, is yes for supervised methods, but not entirely for unsupervised methods.

Word alignment across languages is probably simpler because, for example, European
languages have similar behaviour, similar dependencies, or similar relations between
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Figure 5.11: MUSE-u alignment of fb15k-237 pre-trained TransE to fb15k-237 TransE
without one, three, five, and ten relations. The removed relations were
chosen from the middle of relation’s degree distribution by random choice.
The reported results are average of both evaluation directions.

words. Moreover, relations between words are not defined and there is no strict number
of them so the embedding model can model very different aspects of language. Then, the
distributions of word embedding spaces are very similar. After finding correct anchors
the alignment is some ”simple” orthogonal linear transformation.

Whereas for KGs the two knowledge graphs could be very different in terms of rela-
tions, contained entities, knowledge about entities, or in-going vs. out-going relations.
The relations are strictly defined and the model has more restrictions on modeling some
other dependencies between entities and relations than word embedding models. This
results in very different embedding spaces of two KGs which could be aligned if some
anchor points are known but it is very difficult to find these anchors without supervision.

The majority of word alignment methods use an orthogonal transformation matrix.
This results in a more balanced performance in the price of lower hits@10. The useful-
ness of balanced transformation depends on the use case of the alignment. If we want
to be able to find the correct nearest neighbour from both directions, then the orthog-
onalization helps. If we are interested only in the source to target alignment then the
simple LT is a better choice. The summary of hypotheses and their outcome is in the
Table 5.1.
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Hypothesis Outcome

The orthogonalization of transformation matrix
cause an increase in the alignment performance.

7

An iterative orthogonal Procrustes of MUSE-s
improves results.

7

The orthogonal alignment methods have similar
performance for both evaluation directions, the
LT does not.

3

The performance increases with the number of
anchor points

3

When applied on KGs, unsupervised methods
for text alignment have a performance at least
on par with OP.

7

Unsupervised alignment of two pre-aligned em-
bedding spaces has a performance on par with
a supervised method.

7

An alignment trained with the entities that oc-
cur most frequently in KG triples have higher
performance than the alignment trained on the
entities with the rarest occurrence.

7

The RDF2vec embedding model performs better
than other KG embedding models when using
MUSE-u.

7

The removal of some relations from fb15k-237
and alignment to full fb15k-237 leads to lower
hits@10 than full fb15k-237 to full fb15k-237
alignment.

3

Table 5.1: The summary of hypotheses behind the RQ1 and their outcome (accepted,
rejected).
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5.2 RQ2: Alignment of different KG embedding models

The second research question asks if the alignment between two different KG embedding
models yield worse results than alignment between two instances of the same embedding
model. Our motivation is that training an embedding model for large KG requires a lot
of resources and time. We test if it is needed to obtain results comparable with the same
model alignment.

In this section we compare the performance of TransE, RotatE, and DistMult em-
bedding models in the alignment setting. We also compare different alignment methods
and their performance when aligning two different embedding models. In the rest of the
section, we experiment with the correlation between the alignment performance of two
embedding models and their internal link prediction score.

Aligning embedding models trained by different embedding methods for the
same KG yield lower hits@10 than aligning embedding models trained by the
same embedding method. In the real world, we want to align two separately trained
embedding spaces of two KGs. These embedding spaces are not necessarily trained by
the same embedding model. For large KGs it is very pricey and time-consuming to
retrain the embedding model, e.g. RotatE for our small fb15k-237 dataset took six days
to be fully trained. Therefore, we want to know if the decrease in the performance makes
it infeasible to align different KG embedding models or not.

We perform a series of experiments with fb15k-237 embedded by the pre-trained Ro-
tatE embedding model as source embedding space. As target space, we use fb15k-
237 embedded by four different embedding models: RotatE, DistMult, TransE256, and
TransE0. The training procedure of the embedding models is described in Section 4.2.
Quick recapitulation: RotatE and DistMult are trained with LibKGE’s best configu-
ration. TransE256 is trained with 256 dimensions instead of 128 reported as the best
hyperparameter. TransE0 is the pre-trained 128-dimensional TransE model appended
with close to zero values to get 256 dimensions to match the dimensions of the other
models. We want to test the performance of such an embedding to find if it can be a
cheap way to change the embedding dimensionality without loss of the performance.

In the experiments, we align the fb15k-237 RotatE model to other embedding models
(RotatE, DistMult, TransE256, TransE0). We experimented with all of the alignment
methods but report only OP performance because it yields the best balanced results.
The RotatE to RotatE alignment is considered the upper bound. We measured hits@10
and MR. The results show the average between evaluation directions.

Figure 5.12 shows that the alignment of the embedding models created by the same
embedding method has the highest hits@10 score. The second highest score has RotatE
to DistMult alignment. The alignment between models that have the same number of
dimensions originally, as the best hyperparameter setting, performs better than align-
ment to a model in which a number of dimensions are artificially changed (like TransE0).
The mean rank reflects the same behaviour. However, the difference between the target
embedding models is much greater, ranging from an MR of 11 for RotatE to an MR of
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Figure 5.12: Alignment of fb15k-237 pre-trained RotatE to fb15k-237 embedded by all
different models. Report average hits@10 and MR by OP 50% training set.

110 for TransE256. TransE0 has the worst hits@10 but the mean rank is a bit better
than for TransE256.

Our experiment confirms the hypothesis. Aligning KGs embedded by the same em-
bedding model yields the best results. However, if the dimensionality of the target
embedding model (best hyperparameter setting) is the same as for the source embed-
ding model the alignment might be still in the same order of magnitude. This holds for
an alignment of two very similar KGs.

Orthogonal alignment methods have similar performance for both evalua-
tion directions. LT perform the best in the setting where the same embedding model
is applied on different KGs when evaluated from transformed source to target (see Sec-
tion 5.1.1). The performance of orthogonal methods is more balanced in both evaluation
directions. Therefore, we assume the same behaviour also for the setting where every
KG is embedded by a different embedding model. The different embedding models cap-
ture different properties of KGs. We want to investigate if e.g. wd15k-237 embedded by
DistMult is more similar to fb15k-237 embedded by TransE than to fb15k-237 embedded
by DistMult.

In the following, we describe the experiment with the alignment of wd15k-237 embed-
ded by DistMult to fb15k-237 embedded by TransE with 256 dimensions. We retrain the
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Figure 5.13: Comparison of LT, OLT, OP, and MUSE-s. The aligned datasets are
wd15k-237 embedded by DistMult to fb15k-237 embedded by TransE256.
The S2T stands for the evaluation direction from transformed source to
target, T2S stands for the evaluation from target to transformed source,
AVG is the average of these two directions. The unsupervised methods for
this setting yield random results.

fb15k-237 TransE model to have 256 dimensions because the best hyperparameter set-
ting for fb15k-237 DistMult has 256 dimensions. We rather increase the dimensionality
of TransE than decrease the dimensionality of DistMult. More dimensions can capture
more properties but fewer dimensions capture fewer properties which might negatively
affect the alignment.

Figure 5.13 shows that the average performance of both evaluation directions is similar
for all of the alignment methods. LT is the least balanced alignment method. It performs
the best in the evaluation direction transformed from source to target and the worst the
other way around. In this scenario, the most balanced method is the OP. MUSE-s has
a higher hits@10 and lower MR when evaluated from target to transformed source. The
unsupervised models are not included in the plot because their performance is below one
percent hits@10.

The alignment of different KGs embedded by different embedding models is the most
difficult alignment scenario. This is also visible on the results in Figure 5.13. The
orthogonal methods are again more balanced than LT but less balanced than in align-
ment of the same embedding models in Figure 5.2. The LT has the best performance
in transformed source to target evaluation direction. The experiments show that the
orthogonalization of the transformation matrix during the training helps to balance the
results, however, at the cost of lowering hits@10.

40



5.2. RQ2: ALIGNMENT OF DIFFERENT KG EMBEDDING MODELS 41

T
ra

ns
E

D
is

tM
ul

t

R
ot

at
E

T
ra

ns
E

25
6

fb15k-237

40

45

50

55

H
it

s@
10

(%
)

a) Hits@10 MRR

0.24

0.28

0.32

0.36

M
ea

n
R

ec
ip

ro
ca

l
R

an
k

(a) fb15k-237 models

T
ra

ns
E

D
is

tM
ul

t

R
ot

at
E

wd15k-237

40

45

50

55

H
it

s@
10

(%
)

b)

0.24

0.28

0.32

0.36

M
ea

n
R

ec
ip

ro
ca

l
R

an
k

(b) wd15k-237 models

Figure 5.14: Difference between models used in the experiments in link prediction
hits@10 and MRR.

The higher the link prediction performance of the respective KG embedding
models, the higher their alignment performance. We have two embedding mod-
els that are accurate in the link prediction task. Meaning that they capture the features
of a KG properly. In contrast, we have two models which have lower hits@10 in the link
prediction task. We expect the alignment hits@10 to be better for the two models with
higher hits@10 in the link prediction task.

To create a baseline for further experiments with different embedding models, we con-
duct experiments where we compare the alignment of fb15k-237 to wd15k-237 embedded
by the same embedding model. We conduct three experiments in which the datasets are
embedded by TransE, RotatE, and DistMult. We also measure the hits@10 and MRR
of the link prediction task of respective embedding models.

In Figure 5.14 we compare the link prediction hits@10 and MRR of embedding models
used in these experiments. Figure 5.14a shows that the highest hits@10 for fb15k-237
embedding model is obtained by the DistMult model, the second is the RotatE model,
and the third is the TransE model.

For the wd15k-237 models in Figure 5.14b is the situation a little bit different. The best
model in terms of MRR is DistMult, the second is RotatE and the third place belongs to
TransE. In terms of hits@10, the best model is again DistMult. The difference between
RotatE and TransE is about one percentage point hits@10.

In Figure 5.15 we compare the performance of the alignment between fb15k-237 and
wd15k-237 embedded by the same embedding model. The alignment method is OP with
50% training set. The best performing alignment is between RotatE embedding models,
the second-best is between TransE embedding models and the worst is between DistMult
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Figure 5.15: Comparison of alignment from fb15k-237 to wd15k-237 embedded by the
same embedding method. The figure shows average hits@10 of OP 50%
training set.

models.

The intrinsic link prediction task is not correlated with the alignment performance of
the embedding models, implying that other factors affect the alignment performance.
In link prediction hits@10 varies from 47% to 53%. The difference between aligned
fb15k-237 RotatE and wd15k-237 RotatE models is three percentage points for the link
prediction task. For DistMult models, there is no difference (both 49%), for TransE
models there is a difference of two percentage points. The models are on par with each
other in means of link prediction hits@10.

However, the difference in alignment performance is much greater. We argue that the
link prediction score reflects how well is the KG represented by the embedding model for
intrinsic tasks. The alignment shows if we can compare the different embedding models
to each other. It might be that KG embedding models have enough degrees of freedom
in the embedding space so that they can represent the same KG differently.

Aligning an embedding model with high hits@10 in link prediction to a model
with low hits@10 in link prediction yields worse results than an alignment
the other way around. The question is if the results of aligning two embedding
models depend on the choice of source and target model and dataset. We expect the
link prediction to be a good intrinsic task to evaluate the ability of an embedding model
to reflect important properties of KG. We expect the alignment between two models
with high link prediction results to be better than alignment between a model with high
link prediction results and a model with low link prediction results.

We experiment with alignment between TransE256 on fb15k-237 (low link prediction
hits@10 score) and DistMult on wd15k-237 (high link prediction hits@10 score).
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Figures 5.16a and 5.16b show the results of an alignment from fb15k-237 to wd15k-237.
Figures 5.16c and 5.16c show the results of the alignment from wd15k-237 to fb15k-237.
We computed the alignment between the given two models with all of the alignment
methods.

We observe that the choice of the source embedding model affects the results. The
method with the most consistent alignment performance is OP. LT shows the highest
difference between the two settings. The fb15k-237 TransE256 to wd15k-237 DistMult
case has a hits@10 score of about 4% when evaluated from target to transformed source.
However, for alignment wd15k-237 to fb15k-237, the score is about 34%.

The hypothesis is rejected. The high to low case yields better results than low to
high. This shows that results depend on the choice of source and target embedding
space, but the link prediction task is not correlated with the alignment performance.
The properties of embedding spaces that affect the alignment should be studied further.

5.2.1 Discussion

Finding alignment between two KGs embedded by two different embedding models is the
most complicated scenario. The different embedding spaces capture different properties
of KGs which affects the performance of an alignment.

Our experiments show that the supervised algorithms have hits@10 still about 40%.
On the contrary, the unsupervised algorithms are not able to find the initial alignment,
so, the final results are below one percent.

The embedding spaces of the two KGs are very different. Even if the two KGs contain
the same entities, the relations, the in-coming, and out-going edges might be very unalike
what creates two embedding spaces that cannot be trivially aligned. The usage of two
different embedding models just adds to the complexity of this task.

Further, our experiments show that for the supervised models the performance relies
on choosing the correct source and target embedding model. The reason why some em-
bedding models are more suitable to embed source spaces and some are more suitable
to embed target spaces during the training is still unclear and requires further experi-
mentation.

We also compare the alignment performance between two runs of RotatE, DistMult,
and TransE respectively. We conduct these experiments to obtain the upper bound on
the performance of alignment between different embedding models. The RotatE model
works the best when aligned with itself yielding the hits@10 about 60%. TransE works
comparably well with hits@10 about 50%. On the other hand, the DistMult model when
aligned to itself has performance only about 30% hits@10.

It is interesting that when we align DistMult to TransE the performance is still about
50% average hits@10, but the alignment of TransE to DistMult yields average hits@10
only about 30%. This suggests that the target model is more important than the source
model because it defines the space in which we are looking for the alignment.

Our final observation is that the link prediction metric is not suitable for the prediction
of the alignment performance of the models. To find such a metric remains the task for
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Hypothesis Outcome

Aligning embedding models trained by differ-
ent embedding methods for the same KG yield
lower hits@10 than aligning embedding models
trained by the same embedding method.

3

Orthogonal alignment methods have similar per-
formance for both evaluation directions.

3

The higher the link prediction performance of
the respective KG embedding models, the higher
their alignment performance.

7

Aligning an embedding model with high hits@10
in link prediction to a model with low hits@10
in link prediction yields worse results than an
alignment the other way around.

7

Table 5.2: The summary of hypotheses for RQ2 and their outcome.

future research. Table 5.2 summarizes the hypotheses for RQ2, if they are rejected or
accepted.
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Figure 5.16: Comparison of alignment from fb15k-237 TransE256 to wd15k-237 Dist-
Mult and the other way round. On the x axis are all supervised alignment
methods. The figures show the different directions of evaluation together
with the average of these directions.
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6

Future Work

This work presents a broad study of KG alignment using word alignment methods and
shows results for alignment between different embedding models. The more experiments
we conducted the more interesting questions popped up.

The interesting and understudied area is the behaviour of KG embedding spaces. Our
hypothesis is that unlike the word embedding spaces of two languages the embedding
spaces of two KGs do not have a similar distribution of embeddings. The correct as-
sumptions about the embedding spaces could help to improve the alignment algorithms.

Another research area might be finding the correct embedding model to embed a
concrete KG for the alignment task. Some KG embedding models might be easier to
align, enhancing the whole performance of an alignment. As we observed, the choice
of the source and target embedding model makes a difference of about 20 percentage
points.

For now, we have no means how to measure if a concrete KG embedding model is
suitable for the alignment task or not. We observe that the link prediction task is not
correlated with the alignment performance. It would be nice to have some indication if
a model is suitable for an alignment or not. Therefore, we propose to investigate if there
are some correlations between intrinsic and extrinsic tasks for KGs which can point this
out.

Unsupervised alignment remains an open issue. In MUSE-u, the reason why the
adversarial part of the algorithm does not work for some setups is not clear. We incline
to the idea that two KGs are transformed into two not trivially matchable spaces which
pose too hard a problem for the unsupervised initialization algorithms.

If we want to stick to the adversarial training, then we could try to enhance the results
by adjusting the data. We would further experiment with adding the relation embed-
dings. For example, the relation embeddings might be added into the training set to
have more training points. We can also try to align entities and relations separately, then
combine the transformation matrix in some sophisticated way to obtain more accurate
alignment.

On the other hand, we can try to replace the adversarial training and find some unsu-
pervised initialization that is able to find necessary anchor points for iterative Procrustes
alignment. But for this case, we would need to find the reason why the adversarial train-
ing does not work.
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We can also investigate the importance of relations in shaping the KG embedding
space. For example, we could create new KGs by choosing relations that can be un-
ambiguously aligned between fb15k-237 and wd15k-237. The entity set would contain
the entities which are connected by these relations. We would then experiment with an
alignment of these new KGs to see if the results of an alignment can be better compared
to KGs that contain relations that can not be aligned.
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7

Conclusions

In this thesis we answer two research questions:

1. Do the word alignment methods used on KGs have results in the same order of
magnitude as typical KG alignment methods?

2. Do the alignment between different KG embedding models yield results in the same
order of magnitude with alignment between the same embedding models?

The answer to the first question is yes for the supervised alignment methods and
not entirely for the unsupervised alignment methods. The supervised word alignment
methods yield a performance in the same order of magnitude as LT which we consider
the typical KG alignment method according to our literature review.

The unsupervised alignment methods are on par with the supervised alignment meth-
ods for a specific case: alignment between the same KG embedded by two runs of the
same embedding model. This is the simplest alignment scenario which resembles the
word alignment scenario the most. The embedding spaces have the same distribution
because they embed the same KG. The reason why the initial mapping cannot be found
for other scenarios (alignment between different KGs or different embedding models)
remains a question for future research.

Our hypothesis is that two different KGs are more different than two different lan-
guages in terms of relations and dependencies between entities or words. This causes
the KG embedding space we want to align to be not trivially matchable.

The answer to the second research question is no. The performance of the best align-
ment of two different embedding models is about 20 percentage points worse compared
to the best alignment between the same embedding models. The scenario in which we
want to align two different KGs each embedded by a different embedding model poses
a hard problem even for supervised alignment. Therefore, the results are not on par
with the alignment between the same embedding models. The unsupervised algorithms
perform randomly (hits@10 below 1%) in this scenario.

In the following, we summarize the key findings of this thesis:

1. Word alignment methods (orthogonal methods) yields the same average results as
LT.
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2. The orthogonalization balances the KG alignment in terms of direction of evalua-
tion.

3. Embedding spaces of two different KGs are not trivially matchable by the unsu-
pervised alignment algorithms.

4. The adversarial part of the MUSE-u cannot find suitable anchor points between
two different KGs.

5. The alignment between two different embedding models works in a supervised way,
but the results are lower than with the same embed models.

6. The choice of source and target embedding spaces in the alignment of two different
KG embedding models changes the results.

7. The link prediction performance of KG embedding models is not correlated with
the alignment results.
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Appendix

The results of the experiments conducted during this thesis together with the alignment
codes and descriptions of the evaluation pipelines are available at https:// gitlab.ifi.uzh.
ch/ ddis/ Students/ Theses/ 2020-embedding-space-alignment .

https://gitlab.ifi.uzh.ch/ddis/Students/Theses/2020-embedding-space-alignment
https://gitlab.ifi.uzh.ch/ddis/Students/Theses/2020-embedding-space-alignment
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