
Facial Video Recognition
via 3D Convolutional

Networks
Master Thesis

Xinyi Zhang
19-772-235

Submitted on
February 1, 2021

Thesis Supervisor
Prof. Dr. Manuel Günther

Ar
tifi

ci
al Intelligence M

A
C

H
IN

E

Learning

Department of
Informatics

1

Master Thesis

Author: Xinyi Zhang, xinyi.zhang@uzh.ch

Project period: August 9, 2021 - February 1, 2022

Artificial Intelligence and Machine Learning Group
Department of Informatics, University of Zurich

Acknowledgements

I thank Prof. Dr. Manuel Günther’s supervision on the entire project. He gave me lots of guidance
and feedback quickly and effectively during the process of my thesis.

Thank Dr. Tiago de Freitas Pereira and the resources given by the UZH to be able to complete
my code part of the thesis.

I thank my parents for the support of my master’s study in Zürich during the COVID-19
pandemic. Without them, I can not finish my master’s degree successfully.

Abstract

Face recognition has been popular in the video recently. As the development of deep learning,
various CNNs models are implemented into face recognition such as ResNet, MobileNet, Mo-
bileFaceNet. During this experiment, we verified that the light CNN model – Stacked2D, and
3D MobileFaceNet can extract features from several frames at the same time on the video dataset
(YoutubeFaces). First, the baseline model – the original 2D MobileFaceNet combined ArcFace
loss function model is trained from the face recognition task. Then, this model is implemented
as the feature extractor in bob framework, which can construct a face recognition pipeline easily.
Using the same process, the Stacked2D and 3D MobileFaceNet models with Arcface are trained
using YTF dataset. In the end, we run the video recognition pipeline in bob framework and com-
pare the results using different models. In this experiment, we verify that it is feasible to use 2D,
Stacked2D, and 3D MobileFaceNet models in video face recognition, and the model with larger
frames input can perform better because it can capture more spatial and temporal information
from video data.

Zusammenfassung

Die Gesichtserkennung war in letzter Zeit im Video beliebt. Mit der Entwicklung von Deep
Learning werden verschiedene CNNs Modelle in die Gesichtserkennung implementiert, wie zum
Beispiel ResNet, MobileNet und MobileFaceNet. Während dieses Experiments haben wir veri-
fiziert, dass das leichte CNN Modell wie Stacked2D und 3D MobileFaceNet die Merkmale aus
mehreren Frames gleichzeitig auf dem Videodatensatz (YoutubeFaces) extrahieren kann. Zuerst
wird das Basislinienmodell, die Kombination vom originalen 2D MobileFaceNet und ArcFace
Verlustfunktionsmodell, aus der Gesichtserkennungsaufgabe trainiert. Dann wird dieses Modell
als Merkmalsextrahierer im Bob Framework implementiert, das auf einfache Weise eine Gesicht-
serkennungspipeline erstellen kann. Mit dem gleichen Verfahren werden die Stacked2D und
3D MobileFaceNet Modelle mit Arcface unter Verwendung des YTF-Datensatzes trainiert. Am
Ende führen wir die Videoerkennungspipeline im bob Framework aus und vergleichen die Ergeb-
nisse mit verschiedenen Modellen. In diesem Experiment verifizieren wir, dass es möglich ist,
2D, Stacked2D und 3D MobileFaceNet Modelle in der Video-Gesichtserkennung zu verwenden.
Dieses Modell mit der Eingabe größerer Frames kann eine bessere Leistung erbringen, da es mehr
räumliche und zeitliche Informationen aus Videodaten erfassen kann.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Description of Work . 1
1.3 Thesis Outline . 2

2 Related work 3
2.1 Deep Architectures for Face Recognition . 3

2.1.1 Face Recognition for Image . 3
2.1.2 Face Recognition for Video . 4
2.1.3 Loss Function in Face Recognition . 5

2.2 Open source framework - bob . 5
2.3 Dataset for Face Recognition . 6

3 Approach 7
3.1 Model . 7

3.1.1 MobileFaceNet . 8
3.1.2 ArcFace . 9

3.2 Video dataset, Protocol . 10
3.2.1 YouTubeFaces dataset . 10
3.2.2 Protocol for YouTubeFaces dataset . 10

3.3 Methods for avoiding overfitting . 11
3.3.1 Dropout . 11
3.3.2 Batch Normalization . 11
3.3.3 Pretraining . 12
3.3.4 Data argumentation . 12

3.4 bob environment . 13
3.4.1 Face recognition pipeline in bob.bio.face . 13
3.4.2 bob.bio.video . 14

4 Experiments 17
4.1 Data Preprocessing . 17
4.2 Experiment 1 : 2D MobileFaceNet with ArcFace as baseline 18

4.2.1 Set up . 18
4.2.2 Results . 18

4.3 Experiment 2 : Stacked2D MobileFaceNet with ArcFace 19
4.3.1 Set up . 19
4.3.2 Results . 19

viii Contents

4.4 Experiment 3 : 3D MobileFaceNet with ArcFace . 20
4.4.1 Set up . 20
4.4.2 Results . 20

4.5 Experiment 4: Run pipeline in bob.bio.video . 22
4.5.1 Set up . 22
4.5.2 Results . 22
4.5.3 Comparison for models . 26

5 Discussion and Future work 27

6 Conclusion 31

A Attachements 33

Chapter 1

Introduction

Recently, face recognition is one of the most popular areas in computer vision, which has been
applied in a variety of domains. The purpose of face recognition is to extract features of a person
from the face image and use this to identify the person’s identity. There are many techniques and
algorithms applied in the face recognition area, especially as deep learning develops.

Based on the availability of large-scale training data and the rapid development of deep learn-
ing methods, face recognition from 2D images has achieved very good recognition results. Many
(surveillance) videos, however, do not feature high-resolution photos, and face sizes are modest.
Similarly, recognition performances on video datasets like YouTubeFaces (Martinez-Diaz et al.,
2018) or IJB-C (Maze et al., 2018) do not match still picture performance. Videos naturally provide
more information than a single image. And many 3D networks have been effectively applied to
Computer Vision applications such as human action recognition (Ji et al., 2013), object identifica-
tion (Singh et al., 2019), picture segmentation (Mashiko, 2020), and face recognition (Mishra and
Singh, 2021).

1.1 Motivation
As Mishra and Singh (2021) described, for face recognition in video, they represented the video
as a set of frames. They used a set of frames instead of the original video data and selected some
frames from a video as input. To use multiply frames of the video as input, Mishra and Singh
(2021) extended the 2D DenseNets model into 3D, which can process 16 frames images at the
same time.

Mishra and Singh (2021) think that compared with traditional 2D CNNs models, the 3D mod-
els can capture the spatial and temporal-domain information at the same time. In their experi-
ment, the 3D DenseNets designed for video recognition can achieve 97% accuracy on their dataset
(CVBL). It proves that it is possible to apply the 3D neural network to video face recognition.

1.2 Description of Work
In this thesis, the main task is to use the YouTubeFaces dataset to train different CNNs struc-
tures of MobileFaceNet with ArcFace: 2D model, Stacked2D model, and 3D model in the face
recognition task. Then we compare the models for the loss and accuracy during training. Finally,
we propose to learn spatio-temporal features using deep Stacked2D and 3D Convolution Neural
Networks, implement these models as feature extractors, run the face recognition pipeline based
on the bob environment and compare their results.

2 Chapter 1. Introduction

1.3 Thesis Outline
The thesis is structured as follows:

In Chapter 2, we will give an overview of related work regarding the procedure and tech-
niques in face recognition including 2D and 3D.

In Chapter 3, there is some description of methods and approaches which are used during this
experiment, including the YouTubeFaces dataset and its protocol, theory of MobileFaceNet and
ArcFace, the pipeline in bob framework, and some optimization methods.

In Chapter 4, we would like to show the results of models for classification tasks and face
recognition pipeline in the bob framework. Besides, we compare these results and do an analysis.

In Chapter 5, we will discuss the results of this experiment, analysis the results, and provide
some insights into areas where my research can be further improved in the future.

In Chapter 6, we would like to give a total conclusion for this master’s experiment.

Chapter 2

Related work

2.1 Deep Architectures for Face Recognition

2.1.1 Face Recognition for Image
As we talked before, there are many neural networks have been effectively applied to Computer
Vision applications, for example, face recognition (Liu et al., 2021), object identification (Cai et al.,
2016), and image classification (Russakovsky et al., 2015). The popularity of Convolution Neural
Networks has sparked curiosity and optimism to solve face recognition problems which signifi-
cantly improve the state of the art in face recognition applications.

There are many efficient 2D CNNs architectures that have been proposed recently for the
common face recognition tasks. Krizhevsky et al. (2017) introduced the AlexNet in order to im-
prove the performance of the ImageNet challenge. In the 2012 ImageNet LSVRC2012 competition,
AlexNet achieved significant accuracy, with the top-5 accuracy of 84.7% compared to 73.8% for
the second-best, and it was one of the first deep learning convolution networks which used con-
volution layers and receptive fields to investigate spatial correlation in an image frame. In the
AlexNet architecture, there are 5 Convolution layers with three different sizes of kennels (11x11,
5x5, 3x3) and 3 Fully Connected levels. In addition, the activation function is Rectified Linear
Unit (ReLU). However, AlexNet has an enormous number of parameters, requiring a large mem-
ory and GPU resources for training. In 2014, the VGG (Simonyan and Zisserman, 2015) model
was created as a result of a requirement to reduce the parameters in the Convolution layers and
decrease training time. There are two variants of VGGNet: VGG16 and VGG19, with the different
sizes of layers in the models. All of the variable sizes convolution kernels used in Alexnet(11x11,
5x5, 3x3) are duplicated by using multiple 3x3 kernels. Typically, researchers stack more layers in
Deep Neural Networks to solve a challenging problem with the purpose of improving accuracy
and performance. However, it is found that there is a maximum depth threshold for a Convolu-
tion neural network model. In both training and testing steps, the 56-layer neural network does
not outperform the 20-layer network. This implies that the performance of the model worsens,
as the additional layers are added (He et al., 2016). ResNet is a deep residual learning framework
introduced by He et al. (2016). It overcomes the challenge of the vanishing gradient problem even
with extremely deep neural networks. ResNet comes in a variety of flavors, such as ResNet-50
and ResNet-101.

The popular CNNs, such as AlexNet, VGG, and ResNet, have a state of the art performance
on face recognition, but these models need a large number of parameters and memory resources.
So there is a lighter and faster CNN design – MobileNet (Howard et al., 2017). Depthwise separa-
ble convolutions were introduced in MobileNetV1 (Howard et al., 2017) as an efficient substitute
for standard convolution layers. Depthwise separable convolutions factor classic convolution by

4 Chapter 2. Related work

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called
Pointwise Convolution in the

context of Depthwise Separable
Convolution

Figure 2.1: The standard convolutional filters in (a) are replaced by two layers: depthwise convo-
lution in (b) and pointwise convolution in (c) to build a depthwise separable filter.(Howard et al.,
2017)

separating spatial filtering in terms of feature generating mechanism. A 3x3 depthwise convo-
lution for spatial filtering within each channel and a 1x1 pointwise convolution for exchanging
information across channels make up depthwise separable convolutions, which is shown in Fig-
ure 2.1. The majority of MobileNetV1’s computations and parameters are based on point-wise
convolutions, which are 31x and 70x faster in principle than depthwise convolutions. After that,
MobileNetV2 (Sandler et al., 2018) proposed a more efficient MBConv block and introduced the
linear bottleneck and inverted residual structure. A 1x1 expansion convolution is followed by
depthwise convolutions and a 1x1 projection layer in MBConv’s structure. If and only if the
input and output have the same number of channels, they are connected using a residual con-
nection. This structure keeps a compact representation at the input and output while internally
expanding to a higher-dimensional feature space, increasing the depthwise convolution’s share
of calculations and the expressiveness of spatial filtering (Chen et al., 2018).

However, if these CNNs models are applied into mobile devices, the models should have a
high accuracy and respond quickly. For these reasons, Chen et al. (2018) proposed a lightweight
CNNs model named MobileFaceNet, which implements residual bottlenecks part from MobileNetV2
(Sandler et al., 2018). MobileFaceNet obtains accuracy up to 99.28 % on labeled faces in the wild
(LFW) dataset, and a 93.05% accuracy on face recognition in the AgeDB dataset.

2.1.2 Face Recognition for Video
In the case of face recognition in video dataset, there are some main ideas: applying Recurrent
Neural Network directly, or using 3D convolution neural network to extract features from video
dataset. For using RNN model, Yue-Hei Ng et al. (2015) applied LSTM neural network to capture
the temporal information from videos for face recognition. There are some works showing that
3D CNNs can have a good performance for video dataset (Tran et al., 2015). Baccouche et al.
(2010) used 3D-convolution neural network to 9-frame videos. In Tran et al. (2015) ’s experiment,

2.2 Open source framework - bob 5

they used 3D CNNs to capture both spatial and temporal dimension features at the same time.
In 2021, Mishra and Singh (2021) extended 2D residual network into 3D CNNs model. With
this experiment, it is clear that according to change the CNNs from 2D to 3D structure, it can be
used to face recognition of video. However, in Mishra and Singh (2021) ’s experiment, they just
implemented the 3D residual network on their tiny dataset (CVBL) and they didn’t compare the
results with other facial video recognition techniques.

2.1.3 Loss Function in Face Recognition

In face recognition research, the pretrained CNNs such as ResNets, VGG, MobileNets can be used
as the powerful feature extractors. At the same time, the loss function is used as the final point
of the CNNs to perform the backpropagation and the training. A wise choice in the loss function
would result in high-performance models.

In DL face recognition, traditional softmax loss (Parkhi et al., 2015) is widely applied. How-
ever, for intraclass samples and diversity for inter-class samples, there are higher similarities that
the traditional softmax loss function can not handle. It can cause a different performance for deep
face recognition under large intraclass appearance variations.

Based on the softmax loss function, Liu et al. (2017) added margin-based method, which in-
troduced namely Angular-Softmax (A-Softmax)loss. It is used as a way for CNNs to learn an-
gularly discriminative features from input data. In the same year, Deng et al. (2017) proposed
the Marginal Loss function, which attempts to maximize inter-class distances while minimizing
intra-class variations, both desirable aspects of a loss function. The Margin Loss function focuses
on the marginal samples to accomplish this.

Wang et al. (2018) worked on an additive margin for softmax loss and gave a generic function
for large margin property to the target logit of softmax loss with feature and weights normalized,
motivated by the enhanced performance of SphereFace utilizing Angular-Softmax Loss. Then
Deng et al. (2019) proposed ArcFace, which is an additive margin of its own. And with the pro-
pose of learning more angle features, they added the margin to the angle instead of the cosine.

2.2 Open source framework - bob
Although face recognition has been very popular all over the world, the majority of facial recog-
nition studies are conducted for commercial purposes, making their findings non-reproducible.
However, reproducibility is an important feature of scientific research and is required for evalua-
tion. In order to change this situation, Bob (Anjos et al., 2012) was created by the Idiap Research
Institute’s biometric security and privacy section to meet this demand. It is a free and open-source
framework for signal processing and machine learning.1 The source codes are available on Git-
Lab easily.2 Bob covers a wide range of biometric research topics and is simple to use due to the
Python environment’s integration with the C++ library (Günther et al., 2012). Bob, in particu-
lar, is an ideal environment for comparing facial recognition algorithms for this study due to the
consistency of the results. There are 4 parts for the whole face recognition pipeline: Database,
Preprocessor, Extractor, and Algorithm. Researchers can define these parameters directly and
combine them into a pipeline easily, which we will discuss in more detail in Chapter 3.

1https://www.idiap.ch/software/bob/
2https://gitlab.idiap.ch/bob

6 Chapter 2. Related work

2.3 Dataset for Face Recognition
With the popularity of the face recognition area, there are a variety of datasets available for var-
ious applications. The Labeled Faces in the Wild (LFW) dataset (Huang et al., 2008) is the most
widely used dataset. It is a collection of face photos developed to investigate the topic of un-
constrained face verification. Face verification, also known as pair matching, is a public bench-
mark for labeled faces in the wild. Furthermore, the CelebFaces Attributes Collection (CelebA)
(Yang et al., 2015) is a large-scale face attributes dataset with over 200,000 celebrity photos and
40 attribute annotations. The images in this set contain a wide range of poses and backgrounds.
Microsoft Celeb (MS-Celeb-1M) (Guo et al., 2016) includes 10 million face pictures collected from
the Internet.

Above all are image datasets for face recognition. There are two popular video datasets: IJB-C
and YouTubeFaces. The IJB-C dataset is a face recognition dataset based on video (Maze et al.,
2018). It contains roughly 138,000 face photos, 11,000 face videos, and 10,000 non-face images,
and is an extension of the IJB-A dataset. The YouTubeFaces (YTF) dataset (Wolf et al., 2011) is
designed for unconstrained face recognition in videos, which we will discuss in detail in Chapter
3.2.

Chapter 3

Approach

In this section, we will describe our approach including which kind of dataset and neural network
we have used. Besides, in order to improve the model’s performance, we apply some popular
optimal methods. We also use bob.bio.face and bob.bio.video packages in open source library bob
so that we can construct a face recognition pipeline to test our models.

3.1 Model
There are one baseline model and two architectures of neural network used to process video
frames, all of them consisting of MobileFaceNet and ArcFace(Figure3.1).

Figure 3.1: Architectures for models.

8 Chapter 3. Approach

3.1.1 MobileFaceNet

MobileFaceNet (Chen et al., 2018) architecture is partly inspired by the MobileNetV2 (Sandler
et al., 2018) architecture. The residual bottlenecks that came from MobileNetV2 are used as the
main building blocks. They used PReLU as the non-linearity activation function instead of ReLU,
and after a linear global depthwise convolution layer, Chen et al. (2018) defined a linear 1×1
convolution layer as the feature output layer. At the beginning of the network, we also use a
linear 1×1 convolution layer following a linear global depthwise convolution layer as the feature
output layer. The input of the MobileFaceNet is a single RGB image in Figure 3.1. And the
detailed architecture is mentioned in Table 3.1.

The second model – Stacked2D MobileFaceNet model (Table 3.2) is a variant of 2D Mobile-
FaceNet3 with the input size of 12 x 112 x 112. The idea of the Stacked2D model is to apply the
2D Convolution neural network into a sequence of input images, like multiple frames in Figure
3.1. Here we can enlarge the kennel’s size from 3 to 12. And the number 12 means that there are 4
frames as the input at the same time, and each frame has 3 channels: RGB. Besides, we also used
8 frames as the input for the stacked2D model, which needs to change the red number 12 (Table
3.2)to 24.

However, the 2D CNNs model can be implemented to capture features from the spatial dimen-
sions only. Besides, in the Stacked2D MobileFaceNet model, we need to reshape the 3D input (4
x 3 x 112 x 112) to 2D input (12 x 112 x 112), which destroys the structure of the original 3-channel
image and combine the multiple frames.

We apply the 3D CNNs to compute features information from both spatial and temporal di-
mensions at the same time. In the 3D CNNs model, the 3D kernel is used to preprocess multiple
frames together. Based on the original MobileFaceNet model described above, we describe a 3D
MobileFaceNet model, shown in Table 3.3. We consider four frames of size 112 x 112 as input to
the 3D model and make sure the input format is 3 x 4 x 112 x 112. Here we use 3 x 4 instead of 4
x 3 because the 4 x 3 means that the model extract information based on different color channels,
while the model with the input of 3 x 4 size means capture the feature information according to
the single RGB image in Figure 3.1.

We design the first layer with a 3-dimensional (3D) kernel size of 3 x 3 x 3 instead of 3 x 3 in
the 2D model. At the same time, we fine-tune the size of padding and stride so that we can get a
similar architecture with 2D MobileFaceNet.

Input Operator Stride Padding Output Channel

3 x 112 x 112 Conv_block3 x 3 (2,2) (1,1) 64
64 x 56 x 56 Conv_block3 x 3 (1,1) (1,1) 64
64 x 56 x 56 Depth_Wise3 x 3 (2,2) (1,1) 64
64 x 56 x 56 Residual3 x 3 (1,1) (1,1) 64
64 x 56 x 56 Depth_Wise3 x 3 (2,2) (1,1) 128
128 x 28 x 28 Residual3 x 3 (1,1) (1,1) 128
128 x 28 x 28 Depth_Wise3 x 3 (2,2) (1,1) 128
128 x 14 x 14 Residual3 x 3 (1,1) (1,1) 128
128 x 14 x 14 Conv_block1 x 1 (1,1) (0,0) 512
512 x 7 x 7 Linear_block7 x 7 (1,1) (0,0) 512
512 x 1 x 1 Linear - - 512

Table 3.1: Architecture of 2D MobileFaceNet

3https://github.com/TreB1eN/InsightFace_Pytorch/blob/master/model.py

3.1 Model 9

Input Operator Stride Padding Output Channel

12 x 112 x 112 Conv_block3 x 3 (2,2) (1,1) 64
64 x 56 x 56 Conv_block3 x 3 (1,1) (1,1) 64
64 x 56 x 56 Depth_Wise3 x 3 (2,2) (1,1) 64
64 x 56 x 56 Residual3 x 3 (1,1) (1,1) 64
64 x 56 x 56 Depth_Wise3 x 3 (2,2) (1,1) 128
128 x 28 x 28 Residual3 x 3 (1,1) (1,1) 128
128 x 28 x 28 Depth_Wise3 x 3 (2,2) (1,1) 128
128 x 14 x 14 Residual3 x 3 (1,1) (1,1) 128
128 x 14 x 14 Conv_block1 x 1 (1,1) (0,0) 512
512 x 7 x 7 Linear_block7 x 7 (1,1) (0,0) 512
512 x 1 x 1 Linear - - 512

Table 3.2: Architecture of Stacked2D MobileFaceNet

Input Operator Stride Padding Output Channel

3 x 4 x 112 x 112 Conv_block3 x 3 x 3 (1,2,2) (1,1,1) 64
64 x 4 x 56 x 56 Conv_block3 x 3 x 3 (1,1,1) (1,1,1) 64
64 x 4 x 56 x 56 Depth_Wise3 x 3 x 3 (1,2,2) (1,1,1) 64
64 x 4 x 56 x 56 Residual3 x 3 x 3 (1,1,1) (1,1,1) 64
64 x 4 x 56 x 56 Depth_Wise3 x 3 x 3 (1,2,2) (1,1,1) 128
128 x 4 x 28 x 28 Residual3 x 3 x 3 (1,1,1) (1,1,1) 128
128 x 4 x 28 x 28 Depth_Wise3 x 3 x 3 (1,2,2) (1,1,1) 128
128 x 4 x 14 x 14 Residual3 x 3 x 3 (1,1,1) (1,1,1) 128
128 x 4 x 14 x 14 Conv_block1 x 1 x 1 (1,1,1) (0,0,0) 512
512 x 4 x 7 x 7 Linear_block4 x 7 x 7 (1,1,1) (0,0,0) 512
512 x 1 x 1 x 1 Linear - - 512

Table 3.3: Architecture of 3D MobileFaceNet

3.1.2 ArcFace

We have shown the idea of the different loss functions in face recognition experiments. In this
part, we would like to show the mathematical theories for the ArcFace loss function. As we
talked about before, ArcFace (Deng et al., 2019) loss function is modified by softmax loss as the
objective function. The traditional Softmax is as follows:

L1 = − 1

N

N∑
i=1

log
eW

T
yi

xi+byi∑n
j=1 e

WT
j
xi+bj

(3.1)

where x denotes the feature vector of the i th sample, W and b are the weight and bias. If here we
set the bias as 0 for simplicity and transform the function as:

WT
j xi = ∥Wj∥ ∥xi∥ cos θj (3.2)

where θ is the angle between the weight W and feature x (Deng et al., 2019). We can normalize
the weight to 1 using the L2 norm. The feature is normalized and re-scaled to s. And the normal-
ization steps make the predictions just depend on the angle θ between the feature and the weight.

10 Chapter 3. Approach

The learned embedding is distributed on hypersphere with radius s as(Deng et al., 2019):

L2 = − 1

N

N∑
i=1

log
es cos θyi

es cos θyi +
∑n

j=1,j ̸=yi
es cos θj

(3.3)

An additive angular margin penalty m is added between weight and feature to enhance the
intraclass compactness and interclass discrepancy. Since the proposed additive angular margin
penalty is equal to the geodesic distance margin penalty in the normalized hypersphere, it is
named ArcFace(Deng et al., 2019). The ArcFace loss function is defined as follows:

L3 = − 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j ̸=yi
es cos θj

(3.4)

where s is the the radius of the hyper-sphere, m is the additive angular margin penalty between
xi and Wyi

. θ is the angle between the weight W and feature x (Deng et al., 2019). And cos(θ+m)
is the margin and it makes the class-separations more strictly(Deng et al., 2019).

In this experiment, we use the ArcFace loss as the last layer of models, and the code is from
github–InsightFace.4

3.2 Video dataset, Protocol

3.2.1 YouTubeFaces dataset
We have discussed that there are several databases available for the evaluation of unconstrained
face recognition both for images and videos. In this experiment, we use the YouTubeFaces database
to train our models.

YouTubeFaces (YTF) database is a large video database designed for unconstrained face recog-
nition in videos (Wolf et al., 2011). It consists of 3,425 videos of 1,595 subjects with significant
variations in expression, illumination, pose, resolution, and background. In this database, each
subject has an average of 2.15 videos and an average length of a video clip is 181.3 frames.

3.2.2 Protocol for YouTubeFaces dataset
The construction of proper assessment protocols defined on acceptable databases is one of the
most important components in measuring the development of a research project. The protocols
for YouTubeFaces have been defined by Prof. Dr. Manuel Günther in 2015, so that we can use
it directly from bob.bio.video.database package. In this experiment, the subjects in YouTubeFaces
are divided into 10 folds, we use the 9 folds (2-10) for the training model. Then the models are
implemented into the face recognition pipeline and the pairs from the "fold0" are used for testing
models.

4https://github.com/TreB1eN/InsightFace_Pytorch/blob/master/model.py

3.3 Methods for avoiding overfitting 11

Figure 3.2: Example frames from the spectrum of videos available in the YouTube Faces data
set.(Wolf et al., 2011)

3.3 Methods for avoiding overfitting
As we said before, the YouTubeFaces database (Wolf et al., 2011) just consists of 1,595 subjects and
621,126 images in general, which means that YTF is a small dataset for training a deep convolution
neural network. To avoid overfitting problems, in this experiment, we also implement some
methods to avoid overfitting and improve the model’s performance.

Overfitting occurs when the model has a high variance. With the development of deep learn-
ing technologies, many functional solutions have been applied to deep learning networks, such
as dropout, batch normalization, pretraining and data argumentation, and so on (Shorten and
Khoshgoftaar, 2019).

3.3.1 Dropout
Srivastava et al. (2014) introduced dropout as the new regularization technology. Dropout is a
regularization approach that approximates concurrent training of a large number of neural nets
with various designs. During training, certain layer outputs are disregarded or "dropped out"
at random (Figure 3.3). This causes the layer to appear and behave as if it were a layer with a
different number of nodes and connections than the previous layer. During training, each update
to a layer is done using a new "view" of the configured layer, while no nodes are dropped during
testing (Shorten and Khoshgoftaar, 2019).

3.3.2 Batch Normalization
Batch normalization (Ioffe and Szegedy, 2015) is another regularization method that can normal-
ize the set of activations in the layer. Each activation is normalized by subtracting the batch mean
and dividing by the batch standard deviation (Shorten and Khoshgoftaar, 2019). Along with stan-
dardization, it is a standard approach for preprocessing pixel values. The procedure is following
by Table 3.4:

12 Chapter 3. Approach

Figure 3.3: Dropout

Input: Values of x over a mini-batch: B = {x1 . . . xm}

Output: {yi = BNγ,β (xi)}

µB ← 1
m

∑m

i=1
xi //mini− batch mean

σ2
B ← 1

m

∑m

i=1
(xi − µB)2 //mini− batch variance

x̂i ←
xi−µB√

σ2
B+ϵ

//normalize

yi ← γx̂i + β ≡ BNγ,β (xi) //scale and shift

Table 3.4: Batch Normalization

3.3.3 Pretraining
Transfer learning and pretraining are theoretically quite similar (Shorten and Khoshgoftaar, 2019).
The network architecture is designed in pretraining and then trained on a large dataset such as
ImageNet (Russakovsky et al., 2015). This differs from Transfer Learning in that the network
design, such as VGG-16 (Simonyan and Zisserman, 2015) or ResNet (He et al., 2016), as well as the
weights, must be transmitted in Transfer Learning. Pretraining can allow for the establishment of
weights with large datasets while maintaining network architectural flexibility, for example, we
can delete the specific layers, add more layers in the model, load pretrained weights for specific
layers, and so on.

In this experiment, we initialized all the models with the pretrained weight of the Mobile-
FaceNet model which was trained by insightface.5

3.3.4 Data argumentation
Data argumentation (Shorten and Khoshgoftaar, 2019) is a technique for avoiding overfitting at
its origin. It can be used to enhance the amount of a training dataset by transforming existing data
while keeping the label. Transform techniques for image collections include horizontal flipping,
color space augmentations, and random cropping.

In this experiment, we call the function from Pytorch and apply the geometric transformation
directly, like horizontal flip, affine, and RandomCrop transformation. horizontal flip transforma-
tion can horizontally flip the given image randomly with a given probability, and Random affine
transformation changes the image keeping center invariant. RandomCrop transformation can crop

5https://github.com/TreB1eN/InsightFace_Pytorch

3.4 bob environment 13

the image randomly using the fixed size. In Figure 3.4, some instances of Data Augmentations
are shown.

Figure 3.4: Image applied in Data Augmentation.

3.4 bob environment

3.4.1 Face recognition pipeline in bob.bio.face
After training in a face recognition task, the model can be applied to the face recognition pipeline
in bob framework as the feature extractor. The pipeline of face recognition is shown in Figure4.5:

Figure 3.5: Pipeline for face recognition

The vanilla_biometrics pipeline is designed for face recognition in bob.bio.face, which consists
of four parts:

Dataset We choose YTF dataset for face recognition pipeline. It has been defined and the
interface in Bob contains face recognition protocols for the YTF dataset.

database = YoutubeDatabase(protocol="fold0", frame_selector=frame_selector)

Preprocessing After we define the dataset, the input frames with annotation will be send to pre-
processing part. There are various preprocessors in bob.bio.face package. In this experiment, we

14 Chapter 3. Approach

fouces on FaceCrop in bob.bio.face.preprocessor.FaceCrop.

preprocessor_transformer = FaceCrop(cropped_image_size=(112,112),
cropped_positions={"topleft": (0, 0), "bottomright": (112, 112)},
color_channel="rgb")

transform_extra_arguments = (None if (cropped_positions is None
or fixed_positions is not None) else (("annotations", "annotations"),))

Extractor In previous master’s project work (Linghu and Zhang, 2021), we have implemented the
special extractor class for pretrained model of PyTorch. Here we use a class named mymodel(),
which has a similar architecture with Base Transformer using PyTorch models. In order to im-
plement the model which is trained using multiple frames, we need to define the _transform(X)
function specifically so that this extractor can process the multiple preprocessed frames.

class myModel(TransformerMixin, BaseEstimator):
def __init__(self, **kwargs):

Do some preprocessing before extracting features
def transform(self, X):

def _transform(X):
Define the input size for different models

def place_model_on_device(self, device=None):
def _load_model(self):

Load the pretrained model into pipeline
def __getstate__(self):
def _more_tags(self):

Algorithm After receiving the features of the frames, the algorithm should be implemented to
compute the score of the experiment, i.e. the similarities of the registered faces. In this experiment,
we use cosine_distance as the algorithm. It can be called directly from bob.bio.base.pipelines.vanilla_biometrics.Distance()
which enrolls the model, i.e. representation of identities, by storing their feature vectors and
scores the similarities by computing the distance of the model to the probe by the cosine distance
function.

algorithm = Distance(distance_function = scipy.spatial.distance.cosine,
is_distance_function = True)

Evaluation The system of bob uses a threshold value to decide whether a similarity score
could indicate that the two samples are from the same person. We use the Receiver Operation
Characteristic (ROC) plot to evaluate the results. It is a True Match Rate (TMR) by False Match
Rate (FMR) curve. So for each FMR, we pursue a higher corresponding TMR.

3.4.2 bob.bio.video
The package bob.bio.video is the part of bob.bio packages. It is a tool to run video face recognition
experiments. According to this package, researchers make usage of the video-wrapper entry-point

3.4 bob environment 15

so that they can apply vanilla_biometrics_pipeline from bob.bio.face into video FR. Here is the
definition of the video-wrapper:

Fetaching the pipeline from the chain-loading
pipeline = locals().get("pipeline")
pipeline.transformer = video_wrap_skpipeline(pipeline.transformer)

Chapter 4

Experiments

During the experiment, we preprocess the YouTubeFaces dataset first, so that the dataset can be
used as input to train the face classification models, which are 2D, stacked2D, and 3D Mobile-
FaceNet.

After that, these models will be implemented into the face recognition pipeline as a feature
extractor in the bob pipeline.

4.1 Data Preprocessing
We use frame_images_DB.tar.gz as the dataset, which consists of the file label.txt showing the posi-
tion’s value for the bounding box. The function Face_crop() from bob.bio.face can use these values
as annotation and return the required size. Because some data argumentation methods are ap-
plied to input frames, here the crop_size of Face_crop() is 160 x 160 instead of 112 x 112 (Figure 4.1
- 4.2).

Figure 4.1: Example image of YTF Figure 4.2: After face-crop using bob

After the cropping part, we split all video data based on the protocol: there are 10 folds of ob-
jects totally. We choose the objects in folds 2-10 to train face classification models. And the frames
in each video of the object are divided with the ratio of 8:2 for the training set and validation set.
In order to reduce the memory requirement and loading data quickly, all the frames are converted
into the .hdf5 file and combined the frames from the same video cut of the object into one .hdf5
file. Based on the introduction documentation of Pytorch 6, the dataset classes MyTrainingdataset()

6https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

18 Chapter 4. Experiments

and MyValiddataset() are defined separately for this experiment, we also define that the transform
of data argumentation for training part.

class MyTrainingdataset(Dataset):
def __init__(self, data_dir,transform=None):

Iterate all the frames in training YTF dataset, store video label and start index.
def __len__(self):

Compute the size of dataset
def __getitem__(self, index):

Load data using its index.
Apply data augmentation and preprocess data.

4.2 Experiment 1 : 2D MobileFaceNet with ArcFace
as baseline

4.2.1 Set up
To compare the performance of the models, there is a baseline model established in this experi-
ment. From insightface5, we can download the pretrained weights of the MobileFaceNet, which is
trained using MS-Celeb-1M dataset(Guo et al., 2016).

4.2.2 Results

Figure 4.3: Accuracy for validation data during training 2D MobileFaceNet model.

Figure 4.3 shows that the accuracy of the validation dataset changes during training. The
baseline model is trained for 158 epochs totally and each epoch takes 8 minutes. It is clear that

5https://github.com/TreB1eN/InsightFace_Pytorch

4.3 Experiment 2 : Stacked2D MobileFaceNet with ArcFace 19

with the increasing number of iterations, the accuracy for the validation dataset improves as well,
and the highest accuracy for the baseline model has gone to 99.78% (Table 4.1).

4.3 Experiment 2 : Stacked2D MobileFaceNet with
ArcFace

4.3.1 Set up
Based on the original MobileFaceNet model, by modifying the input channel of the model’s first
layer, we modify the input size from 3 to 12, so that the model can pass 4 images as input at the
same time. Also, four images are combined (each image has three RGB channels) using function
numpy.array.reshape() and are converted into the input data. Besides, we still initialize the model
with the pretrained weight from insightface. In order to fit the shape of weights for the Stacked2D
model using the original model, we copy the weights of the first layer 4 times.

If the accuracy of validation within 20 epochs is not improved, the learning rate is reduced at
the same time to continue training. In addition, in this experiment, we also train with 8 frames
models with the same initial weight.

4.3.2 Results
The Stacked2D model with 4 frames is trained for 334 iterations in general, while the model with
8 frames is trained within 85 iterations. The different number of iterations is because we use the
fixed learning rate (0.001) instead of the adaptive learning rate in the 8-frames model.

From Figures 4.4 and 4.5, it is observed that compared with the original model, these two
Stacked2D models have a slower convergence speed and longer training time. When the learning
rate decreases, there is a sharp drop in the accuracy of the validation dataset. Also, in the training
process, both the 4-frames and 8-frames models can achieve 99.78% accuracy in the validation set.

Figure 4.4: Accuracy for validation data during training Stacked2D model (4 frames).

20 Chapter 4. Experiments

Figure 4.5: Accuracy for validation data during training Stacked2D model (8 frames).

4.4 Experiment 3 : 3D MobileFaceNet with ArcFace

4.4.1 Set up

According to the original MobileFaceNet model, we have the same initial parameters for learning
rate (lr=0.01), optimization methods (SGD), and early stopping (20 epochs). We define the 3D
MobileFaceNet model as constructed which shows in Chapter 3.4. We use 4 frames as input and
make sure the input size is 3 x 4 x 112 x 112. The function transpose() and reshape() are introduced
to adjust the input shape.

For initializing all the weights, we use the function torch.unsqueeze() first to extend a 1-element
dimension, then we apply the function torch.cat() so that we can copy the 2D model’s weight many
times and load it into 3D model.

4.4.2 Results

Figure 4.6 shows the accuracy of the validation dataset increases during training. There are 125
epochs total for training the 3D model. After 4 iterations, the accuracy achieves 99.16%, then it
fluctuates insignificantly within a small range, and in the end, the accuracy can reach 99.78%.

Meanwhile, the 3D model with an input of 8 frames achieves an accuracy 99.76% , which is
lower than the 4-frames model.

Model Highest accuracy Number of epoch

Baseline - 2D model 99.78% 158
Stacked 2D model (4 frames) 99.78% 344
Stacked 2D model (8 frames) 99.78% 85
3D model (4 frames) 99.80% 126
3D model (8 frames) 97.76% 63

Table 4.1: Accuracy when training for different models

4.4 Experiment 3 : 3D MobileFaceNet with ArcFace 21

Figure 4.6: Accuracy for validation data during training 3D model (4 frames).

Figure 4.7: Accuracy for validation data during training 3D model (8 frames).

22 Chapter 4. Experiments

4.5 Experiment 4: Run pipeline in bob.bio.video

4.5.1 Set up
We construct three extractors for the face recognition pipeline in the bob as we described in Chap-
ter 3.4.1. And in my previous work (Linghu and Zhang, 2021), the API of PyTorch extractors has
been defined, so we just need to change the method transform(self, X) for different dimensions of
three models.

def transform(self, X):
X is the set of preprocessed frames
Transform X into format tensor
Copy last frames to keep the sames output with labels
For loop to read the required size of data:

x = X[i:i+4] # x:torch.Size([4, 3, 112, 112])
Adjust the shape for different models
x = x[None, ...] # extend the dimension for batch size
Pass the data into pretrained model and return features
Add features into one set

Return the feature set

4.5.2 Results

10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0

1
- F

NM
R

Result_for2D_pipeline

lr_001
lr_0005
lr_0001

Figure 4.8: Results of 2D model with different learning rates in pipeline.

Figures 4.8– 4.10 show that models trained using different learning rates do not have a signif-
icant difference in performance in the bob pipeline.

For all the models trained when the learning rate equals to 0.001, 2D MobileFaceNet has the

4.5 Experiment 4: Run pipeline in bob.bio.video 23

10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0
1

- F
NM

R

Result_for_stacked2D_pipeline

lr_001
lr_0005
lr_0001

Figure 4.9: Results of stacked2D model with different learning rates in pipeline.

10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0

1
- F

NM
R

Result_for_3D_pipeline

lr_001
lr_0005
lr_0001

Figure 4.10: Results of 3D model with different learning rates in pipeline.

24 Chapter 4. Experiments

10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0
1

- F
NM

R
Result_for_pipeline_when_lr_001

2D
stacked2D
3D

Figure 4.11: Results for different models when learning rate=0.001 in pipeline.

best performance 20% TMR at 102 FMR, while Stacked2D and 3D have 17% TMR nearly (Figure
4.11).

10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0

1
- F

NM
R

Result_for_stacked2D_different_frames

4_frames
8_frames

Figure 4.12: Results for stacked2D models with different frame sizes in pipeline.

In addition, by improving the size of input frame from 4 to 8, the Stacked2D model can have
a obvious increase from 17.5% to 19.5% TMR with FMR = 10−1(Figure 4.3).

From Figure 4.13, the 3D model whose input is 8 frames has higher accuracy than the same
model with input image is 4 when FMR = 10−1.

4.5 Experiment 4: Run pipeline in bob.bio.video 25

10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0

1
- F

NM
R

Result_for_3D_different_frames

4_frames
8_frames

Figure 4.13: Results for 3D models with different frame sizes in pipeline.

Model Parameter Size Total Size (MB) Time per epoch (Minute)

Baseline - 2D model 1,200,512 103.18 8
Stacked 2D model (4 frames) 1,205,696 103.63 16
Stacked 2D model (8 frames) 1,212,608 104.23 28
3D model (4 frames) 1,342,592 399.45 33
3D model (8 frames) 1,442,944 794.13 67

Table 4.2: Information of training for different models

26 Chapter 4. Experiments

4.5.3 Comparison for models
Table 4.2 shows the required sources and sizes of different MobileFaceNet models. It is observed
that as the size of input increases, the requirements of memory and time to train the model are
more significant. Besides, the more complex the model, the more parameters of the model are
needed for the device. From Table 4.2, the training time for the 3D model using 4 as input size is
8 times that of the original model.

Besides, although in the classification task, the 3D model performs better than Stacked2D and
baseline model, it has the lowest accuracy TMR = 17%.

From Table 4.3, the baseline model (the original 2D MobileFaceNet) has the highest accuracy
TMR = 21%. Both for Stacked2D and 3D models, the increasing number of frames has a positive
effect on TMR (from 17.5% to 19.5% and 17.0% to 17.5%).

Model TMR

Baseline - 2D model 21%
Stacked 2D model (4 frames) 17.5%
Stacked 2D model (8 frames) 19.5%
3D model (4 frames) 17%
3D model (8 frames) 17.5%

Table 4.3: Result of TMR when FMR = 10−1

Chapter 5

Discussion and Future work

We can find that there is a sharp decrease after we implement the pertained weight in the Stacked2D
model in Figures 4.4 and 4.5. In that case, the pertained weights may have no effects on the train-
ing models, so here we change the iteration part: at the beginning of each epoch, we test the
model on validation data firstly, save the model when it has a better performance than before,
then train the model.

for i in iterations:
computer the accuracy of validation data:

save the pretrained weights
train model using pretrained weights in training data

The result can be seen in Figure 5.1: after adjusting the order of training and validation parts,
we can get a similar training procedure for the Stacked2D model. And because the time and
resources are limited, we don’t try the same code in the 8-frame Stacked2D model. We hope that
in the future, we can try to use the different methods to initialize weights of models and compare
initializing models randomly with initializing models using pretrained weights.

Figure 5.1: Compare the results using diffenert iteration methods for Stack2D model.

From the results of Chapter 4.4.2, although the 8-frame 3D MobileFaceNet model performs

28 Chapter 5. Discussion and Future work

better than the 4-frame 3D MobileFaceNet model, these two models have different sizes of train-
ing data: 434,522 in the 4-frame model and 422,098 in the 8-frame model, which causes a tiny
difference in accuracy. To a certain extent, the accuracy of the two models is identical.

In the face recognition pipeline, we can get the conclusion that the input frame size is bigger,
the model has a higher TMR. It is obvious that the models can capture more temporal information
from videos if the input consists of more frames. Because of the limitations of resources, we just
run the 4-frame models and 8-frames models. Later, we hope we can run the multiple frames size
models in the video dataset and verify whether frames size has an important influence on face
recognition for video.

The result in the bob pipeline is not good as we expected, we want to confirm whether the
architecture of the model and training procedure is correct. Here we use a trick method: training
model using all the data in YFT dataset (10 folds) on Stacked2D and 3D models. Same as the
previous training process, we train the model first and then apply the pretrained model into the
face recognition pipeline in the bob. The results are shown in Figures 5.2 and 5.3. Compared
with the models trained using 9-folds data, the TMR in both Stacked2D model and 3D model can
achieve 100%, it is obvious that all the procedure in our experiment is correct and there are other
reasons causes the poor performance in bob pipeline.

We guess the reason is that the YTF dataset we use to train the model is too small. In the future,
we plan to use other large biometric videos datasets like IJB-C for video recognition experiments.
Besides, the MobileFaceNet is still too complex for the YTF dataset. The models are overfitting
during training. We also plan to extend other CNNs models like VGG and ResNet into video
datasets. Meanwhile, there are lots of complex 3D neural networks applied in Human Action
Recognition tasks (Stergiou and Poppe, 2019), like the FAST 3D model and Pseudo Convolutions
model. We would like to implement these spatial-temporal 3D models into the video recognition
area later. In addition, the method we split the training and validation data is not the optimal
method, because we use a fixed index. Randomly splitting data for training and validation would
be a better choice. In the future, we will try to use more various Stacked2D and 3D models for
face recognition in video.

10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0

1
- F

NM
R

Result_for_different_size_of_labels_in_stacked2D

9_folds
all_labels

Figure 5.2: Results for different sizes of training data in Stacked2D model.

29

10 3 10 2 10 1 100

FMR

0.0

0.2

0.4

0.6

0.8

1.0

1
- F

NM
R

Result_for_different_size_of_labels_in_3D

9_folds
all_labels

Figure 5.3: Results for different sizes of training data in 3D model.

Chapter 6

Conclusion

In this experiment, we implement three kinds of MobileFaceNet: the original, Stacked2D, and 3D
MobileFaceNet. And we add the models with ArcFace loss function. We train these models in
video face recognition using the YouTubeFaces dataset. Then we apply these models as feature
extractors into the face recognition pipeline in the bob framework. Although the results in the
face recognition pipeline are not good as we expected, we have proved that it is feasible to run
Stacked2D and 3D MobileFaceNet models for face recognition in video, and both of them can
preprocess a sequence of images data as input and extract the feature information from multiply
frames.

Appendix A

Attachements

34 Appendix A. Attachements

35

List of Figures
2.1 The standard convolutional filters in (a) are replaced by two layers: depthwise

convolution in (b) and pointwise convolution in (c) to build a depthwise separable
filter.(Howard et al., 2017) . 4

3.1 Architectures for models. 7
3.2 Example frames from the spectrum of videos available in the YouTube Faces data

set.(Wolf et al., 2011) . 11
3.3 Dropout . 12
3.4 Image applied in Data Augmentation. 13
3.5 Pipeline for face recognition . 13

4.1 Example image of YTF . 17
4.2 After face-crop using bob . 17
4.3 Accuracy for validation data during training 2D MobileFaceNet model. 18
4.4 Accuracy for validation data during training Stacked2D model (4 frames). 19
4.5 Accuracy for validation data during training Stacked2D model (8 frames). 20
4.6 Accuracy for validation data during training 3D model (4 frames). 21
4.7 Accuracy for validation data during training 3D model (8 frames). 21
4.8 Results of 2D model with different learning rates in pipeline. 22
4.9 Results of stacked2D model with different learning rates in pipeline. 23
4.10 Results of 3D model with different learning rates in pipeline. 23
4.11 Results for different models when learning rate=0.001 in pipeline. 24
4.12 Results for stacked2D models with different frame sizes in pipeline. 24
4.13 Results for 3D models with different frame sizes in pipeline. 25

5.1 Compare the results using diffenert iteration methods for Stack2D model. 27
5.2 Results for different sizes of training data in Stacked2D model. 28
5.3 Results for different sizes of training data in 3D model. 29

36 Appendix A. Attachements

List of Tables
3.1 Architecture of 2D MobileFaceNet . 8
3.2 Architecture of Stacked2D MobileFaceNet . 9
3.3 Architecture of 3D MobileFaceNet . 9
3.4 Batch Normalization . 12

4.1 Accuracy when training for different models . 20
4.2 Information of training for different models . 25
4.3 Result of TMR when FMR = 10−1 . 26

Bibliography

Anjos, A., El-Shafey, L., Wallace, R., Günther, M., McCool, C., and Marcel, S. (2012). Bob: a free
signal processing and machine learning toolbox for researchers. In Proceedings of the 20th ACM
international conference on Multimedia, pages 1449–1452.

Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., and Baskurt, A. (2010). Action classification in
soccer videos with long short-term memory recurrent neural networks. In ICANN’10 Proceed-
ings of the 20th international conference on Artificial neural networks: Part II, pages 154–159.

Cai, Z., Fan, Q., Feris, R. S., and Vasconcelos, N. (2016). A Unified Multi-scale Deep Convolutional
Neural Network for Fast Object Detection. In Leibe, B., Matas, J., Sebe, N., and Welling, M.,
editors, Computer Vision – ECCV 2016, pages 354–370, Cham. Springer International Publishing.

Chen, S., Liu, Y., Gao, X., and Han, Z. (2018). Mobilefacenets: Efficient CNNs for accurate real-
time face verification on mobile devices. In Chinese Conference on Biometric Recognition, pages
428–438.

Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). Arcface: Additive Angular Margin Loss for
deep face recognition. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4690–4699.

Deng, J., Zhou, Y., and Zafeiriou, S. (2017). Marginal Loss for Deep Face Recognition. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 2006–2014.

Guo, Y., Zhang, L., Hu, Y., He, X., and Gao, J. (2016). Ms-celeb-1m: A dataset and benchmark for
large-scale face recognition. In European Conference on Computer Vision, pages 87–102.

Günther, M., Wallace, R., and Marcel, S. (2012). An open source framework for standardized
comparisons of face recognition algorithms. In ECCV’12 Proceedings of the 12th international
conference on Computer Vision - Volume Part III, pages 547–556.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and
Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv preprint arXiv:1704.04861.

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller, E. (2008). Labeled Faces in the Wild: A
Database for Studying Face Recognition in Unconstrained Environments. In Workshop on Faces
in ’Real-Life’ Images: Detection, Alignment, and Recognition.

38 BIBLIOGRAPHY

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In Proceedings of The 32nd International Conference on Machine
Learning, volume 1, pages 448–456.

Ji, S., Xu, W., Yang, M., and Yu, K. (2013). 3D Convolutional Neural Networks for Human Action
Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):221–231.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep convo-
lutional neural networks. Communications of The ACM, 60(6):84–90.

Linghu, Y. and Zhang, X. (2021). Open-source package for generic deep-network-based face de-
tection and recognition in bob. Master’s project, University of Zurich.

Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., and Song, L. (2017). SphereFace: Deep Hypersphere Em-
bedding for Face Recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6738–6746.

Liu, W., Zhou, L., and Chen, J. (2021). Face Recognition Based on Lightweight Convolutional
Neural Networks. Information-an International Interdisciplinary Journal, 12(5):191.

Martinez-Diaz, Y., Mendez-Vazquez, H., Lopez-Avila, L., Chang, L., Sucar, L. E., and Tistarelli,
M. (2018). Toward More Realistic Face Recognition Evaluation Protocols for the YouTube Faces
Database. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 413–421.

Mashiko, D. (2020). 3D convolutional neural networks-based segmentation to acquire quantita-
tive criteria of the nucleus during mouse embryogenesis. npj Systems Biology and Applications,
6.

Maze, B., Adams, J., Duncan, J. A., Kalka, N., Miller, T., Otto, C., Jain, A. K., Niggel, W. T., An-
derson, J., Cheney, J., and Grother, P. (2018). IARPA Janus Benchmark - C: Face dataset and
protocol. In 2018 International Conference on Biometrics (ICB), pages 158–165.

Mishra, N. and Singh, S. (2021). Face Recognition using 3D CNNs.
https://www.springerprofessional.de/face-recognition-using-3d-cnns/19583950.

Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. In British Machine
Vision Conference 2015.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision, 115(3):211–252.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4510–4520.

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep
Learning. Journal of Big Data, 6(1):1–48.

Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Im-
age Recognition. In ICLR 2015 : International Conference on Learning Representations 2015.

Singh, R., Mittal, A., and Bhatia, R. (2019). 3D convolutional neural network for object recognition:
a review. Multimedia Tools and Applications, 78.

BIBLIOGRAPHY 39

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958.

Stergiou, A. and Poppe, R. (2019). Spatio-Temporal FAST 3D Convolutions for Human Action
Recognition. In 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), pages 183–190.

Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). Learning spatiotemporal
features with 3D convolutional networks. In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 4489–4497.

Wang, F., Cheng, J., Liu, W., and Liu, H. (2018). Additive Margin Softmax for face verification.
IEEE Signal Processing Letters, 25(7):926–930.

Wolf, L., Hassner, T., and Maoz, I. (2011). Face recognition in unconstrained videos with matched
background similarity. In CVPR 2011, pages 529–534.

Yang, S., Luo, P., Loy, C.-C., and Tang, X. (2015). From Facial Parts Responses to Face Detection:
A Deep Learning Approach. In 2015 IEEE International Conference on Computer Vision (ICCV),
pages 3676–3684.

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., and Toderici, G.
(2015). Beyond short snippets: Deep networks for video classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

