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Abstract

The goal for the open-set face recognition is to identify the unseen subjects and do not assign
them to any known subject with high confidence. There are two types of subjects involved in the
task: the ones that we are interested in and have labels, i.e. known subjects; the ones that we do
not care about and have no labels (we use −1 in the experiment instead), i.e. unknown subjects.
We build a complete face recognition pipeline through Bob. ArcFace R100 network, as a feature
extractor, has a good performance on the IJB-C dataset. Our goal is to add an extra network
after ArcFace to enhance its power on open-set face recognition tasks. We attempt three cases:
first, the unknown subjects have never appeared in the training; second, the unknown subjects
appear in both training and testing; third, the unknown subjects only appear in the testing, and
they are replaced by the adversarial samples generated from the knowns in the training. The
training unknowns have no overlap with the testing unknowns in case three. Plain softmax loss
and entropic open-set loss are applied to the first two cases, respectively, and objectosphere loss
is used for the second and third cases. We prove that those models create a high True Positive
Identification Rate especially when the False Positive Identification Rate is small. Replacing the
unknown subjects in case two to the adversarial samples as in case three is successful without
performance degradation. One flaw is that the magnitude separation property of the entropic
open-set loss and objectosphere loss is not apparent. When working with the adversarial samples,
the situation is worse.





Zusammenfassung

Das Ziel der open-set Gesichtserkennung ist es, die ungesehenen Personen zu identifizieren und
sie keiner bekannten Person mit hoher Konfidenz zuzuordnen. Es gibt zwei Arten von Perso-
nen, die an der Aufgabe beteiligt sind: diejenigen, an denen wir interessiert sind und die La-
bels haben, d.h. die bekannte Personen; diejenigen, die uns nicht interessieren und keine Labels
haben (wir verwenden stattdessen −1 im Experiment), d.h. die unbekannte Personen. Wir bauen
eine komplette Gesichtserkennungspipeline durch Bob auf. Das ArcFace R100 Netzwerk zeigt als
Merkmalsextraktor eine gute Leistung an dem IJB-C Datensatz. Unser Ziel ist es, ein zusätzliches
Netzwerk nach ArcFace hinzuzufügen, um seine Leistung bei Aufgaben der open-set Gesicht-
serkennung zu verbessern. Wir versuchen drei Fälle: Erstens, die unbekannten Personen sind
nie im Training aufgetreten; zweitens, die unbekannten Personen treten sowohl im Training als
auch in den Tests auf; drittens, die unbekannten Personen treten nur in den Tests auf und wer-
den durch die adversarial Proben ersetzt, die aus den bekannten Proben im Training generiert
wurden. Im dritten Fall überschneiden sich die Unbekannten im Training nicht mit den Un-
bekannten in den Tests. Für die ersten beiden Fälle werden der einfache softmax loss und der
entropic open-set loss verwendet, für den zweiten und dritten Fall der objectosphere loss. Wir
beweisen, dass diese Modelle eine hohe True Positive Identification Rate liefern, insbesondere
wenn die False Positive Identification Rate gering ist. Das Ersetzen der unbekannten Personen
durch die adversarial Proben in Fall zwei wie in Fall drei ist ohne Leistungseinbussen erfolgreich.
Eine Schwachstelle ist, dass die Eigenschaft der Grössentrennung des entropic open-set loss und
des objectosphere loss nicht offensichtlich ist. Bei der Arbeit mit den adversarial Proben ist die
Situation noch schlechter.
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Chapter 1

Introduction

Face recognition (FR) has been researched for a few decades. A general face recognition procedure
includes face detection and alignment, feature extraction, and score computation (Sáez-Trigueros
et al., 2018; Taigman et al., 2014). Over time, the focus of face recognition has shifted from hand-
crafted features and algorithms to the implementation of Deep Neural Network (DNN). Neural
Networks (NN) are end-to-end trainable systems, especially the Convolutional Neural Network
(CNN) which is the mainstay in the field of FR and can have human comparable performance on
FR tasks (Sáez-Trigueros et al., 2018; O’Toole et al., 2018). CNN is also widely used to construct
systems for face and object detection, (Liu et al., 2016; Redmon et al., 2016), and unconstrained
age and gender recognition (Levi and Hassner, 2015).

The face recognition tasks started at the restricted closed-set era, that is, every subject appear-
ing in testing (probe set) should have been seen and enrolled into the gallery, and the sample
image should be taken within a limited condition. There should not be any surprise in the valida-
tion and testing. As the techniques became more advanced, many studies could achieve > 99%
accuracy on the closed-set datasets, the focus turned out to be more unrestricted. Factors like face
size, expression, illumination, pose, etc. had more variations. There were also high failure rates in
automatic face recognition for several people in one image/video (uncontrolled case) (Beveridge
et al., 2013). Since the environment was not experimental anymore and close to real life, the sys-
tem failed when there were unseen subjects that appeared in the testing. The old models did not
learn how to deal with those unknowns and classify them as one of the enrolled subjects. Thus,
the research started to work in the open-set era. This system is more close to real-life scenarios
since it is unrealistic to get all the people in a general surveillance camera enrolled. There is al-
ways someone that we have seen before but are not interested in and someone that appears the
first time and we do not care about. The old closed-set FR needs to adapt to the unseen data and
be able to reject all uninterested subjects (de O. Cardoso et al., 2017; Günther et al., 2017a,b).

In closed-set identification, softmax solves the separable classification problem; but not enough
for discriminative power and generalization (Wen et al., 2016). There are also multiple loss func-
tions designed for the open-set case and we used two of them here. Dhamija et al. (2018) in-
troduced two loss functions, Entropic Open-Set Loss and Objectosphere Loss, and one evaluation
metric, Open-Set Classification Rate (OSCR) curve, for open-set object classification tasks to tackle
the problem brought by unknown subjects. Math and implementation details are explained later
in Chapter 3. The networks are trained with unknown samples. The goal is to magnify the sep-
aration of deep feature magnitudes between known and unknown classes. Günther et al. (2020)
implemented objectosphere loss in the watchlist problem, which requires the network to detect
the faces on the watchlist and ignore the innocents and background. Their work improved the
watchlist problem by adding an adapter network trained by the deep features extracted by the
VGG2 face recognition network with objectosphere loss. The experiments were established based
on a very challenging dataset, UnControlled College Students (UCCS) (Sapkota and Boult, 2013),
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which usually contains multiple subjects in one image, and images for one subject might be taken
in different weather conditions. It has been verified that the objectosphere loss can successfully
decrease the deep feature magnitude of innocents and background to 0 and push that of watchlist
subjects to the desired value, 5 in their experiment. In the case of the same false alarms per image,
adding the shallow network increases the detection and identification rate compared to the orig-
inal pre-trained model, i.e. performs better. The former is an adapted version of the false alarm
rate or false positive identification rate (called in this thesis), and the latter is called true positive
identification rate here. Those two quantities are explained in Chapter 3. This implementation
has low cost and is easy to generalize to different pre-trained networks and datasets, which leads
to the first half of this thesis.

Besides, the adversarial samples could also result in the low performance of the NNs in FR
tasks. Adversarial samples refer to inputs with the small but worst perturbations added on
(Goodfellow et al., 2015; Rozsa et al., 2016). Those perturbations are subtle to human eyes but
cause great damage to the network. So NNs do not assign the generated samples to the original
class nor the unknown but give it another label with high confidence. The adversarial samples
are usually used to increase the robustness of NNs. In this thesis, we do not use the adversarial
images but the generated adversarial deep features to train the models. Further, these adversarial
samples do not aim to increase the robustness of the model by classifying them into the known
classes but rather work as the unknown samples during the model training. The unknown sam-
ples used in the validation and testing are from the subjects that never appear in the training set,
that is, no overlapping in the unknown subjects. We want to test the combination of adversarial
samples and the introduced loss function in the second half.

In this Master’s Thesis, we achieved the following goals: (1) Train a shallow fully connected
neural network on the IJB-C dataset (Maze et al., 2018), with the deep feature of galleries as in-
puts and identity as outputs. (2) Evaluate the Plain Softmax Loss, Entropic Open-Set Loss, and
Objectosphere Loss (Dhamija et al., 2018) on the network. (3) Use adversarial samples (Goodfel-
low et al., 2015; Rozsa et al., 2016) as the unknown samples and evaluate their performance on
the Open-Set Face Recognition. (4) Import the trained models into Bob pipeline (Günther et al.,
2012) to perform a complete Face Recognition Experiment and evaluate with TPIR (True Positive
Identification Rate) vs. FPIR (False Positive Identification Rate) curve, or open-set ROC curve.

In Chapter 2, we briefly review the related work for open-set face recognition. In Chapter 3,
we review the mature face recognition experiment tool, Bob, explain in detail the approach to use
entropic open-set loss and objectosphere loss in a shallow neural network, and implement the
adversarial images as unknown samples on top of that. Also, introduce the methods to apply Bob
with the self-trained model. In Chapter 4, we provide an overview of all the experiments and
their results. In Chapter 5, we discuss the results and foresee the future work.



Chapter 2

Related Work

2.1 Dataset
The performance of a FR system is highly related to the data. Though constrained FR has high
accuracy, as constraints are relaxed and more variations are introduced, accuracy decreases dras-
tically (Beveridge et al., 2013). After solving this problem, unknown subjects are introduced and
the accuracy drops again. The datasets summarized below are well-used in the current research.

Labeled Faces in the Wild (LFW) (Huang et al., 2007) dataset contains over 13,000 images and
is a popular dataset for experiment benchmark. Each image contains one biggest face with possi-
ble variations on views (frontal vs partial-frontal), locations, illuminations, occlusions, and facial
expressions. LFW became less challenging as the CNNs involved in the FR. Sapkota and Boult
(2013) designed an open-set dataset taken from the surveillance cameras, called UnControlled
College Students (UCCS), that currently contains <50,000 images for more than 1,500 subjects
(most are known subjects) with variations in pose, illumination, scale, expressions, occlusions,
and weathers. Point and Shoot Face Recognition Challenge (PaSC) (Beveridge et al., 2013, 2015)
contains still images with different distances to the camera, alternative sensors, frontal vs non-
frontal views, varying location, motion blur, and poor focus. It also includes video data and is
applied to video person recognition. UMDFaces (Bansal et al., 2017) is a face recognition dataset
with 367,888 annotated faces of 8,277 subjects from the unconstrained videos. It also contains
pose variations. Ms-Celeb-1M (Guo et al., 2016) is a dataset for large-scale face recognition, 100k
celebrities with 10 million images. These samples are grabbed automatically from the internet.
The benchmark (CNN model) performance for celebrity FR task has close to human behavior.
VGGFace2 (Cao et al., 2018) dataset contains 9,131 subjects and each subject has more than 300
samples on average. As the other large-scale FR dataset, though it contains variations in pose,
age, illumination, ethnicity, and profession, training with VGGFace2 improves the performance
on age and pose-related tasks.

Yi et al. (2014) built a large-scale dataset called CASIA-WebFace, which includes around 10,000
subjects with 500,000 samples taken in the wild. Although this dataset is collected from the Inter-
net, it is not overlapped with LFW. This is only for training CNNs purpose. Unconstrained face
recognition dataset IARPA Janus Benchmark A (IJB-A) (Klare et al., 2015) has a mix of images and
videos from 500 subjects with full pose and geographic variations. All faces have hand-labeled
bounding box information but only a few of them include locations of eyes. They are not fil-
tered by a commodity face detector. More importantly, IJB-A contains protocols for open-set face
identification and verification. CNN has been proved to perform better than traditional methods
on the IJB-A dataset (Chen et al., 2016). Bilinear CNN also has good performance on the IJB-A
(Lin et al., 2015; Chowdhury et al., 2016). CNN-based triplet probabilistic embedding shows the
robustness with IJB-A dataset (Sankaranarayanan et al., 2016). IARPA Janus Benchmark B (IJB-
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B) (Whitelam et al., 2017) dataset is a superset of IJB-A. It contains all variations mentioned in
IJB-A but more uniform geographic distribution subjects (1,845) and samples (21,798 still images
and 55,026 frames from 7,011 videos). Its test protocols are appropriate for open-set face identi-
fications in environments like an access point and surveillance video. This thesis is built on the
dataset IARPA Janus Benchmark C (IJB-C) (Maze et al., 2018), which is a superset of IJB-A and IJB-
B datasets. The details are explained in section 4.1. MegaFace (Kemelmacher-Shlizerman et al.,
2016) dataset includes 690k subjects and 1M samples with increasing numbers of "distractors" in
the gallery. It is a benchmark of a million faces, which is closer to the real situation. They discover
that the experiments on a large-scale dataset exhibit the discrepancy on algorithms easily. IJB’s
and MegaFace are designed for evaluation and building the benchmark for CNN models.

Besides, WIDER FACE (Yang et al., 2016) is a face detection dataset and 10 times larger than
existing face detection datasets. It creates a training environment that is close to the real-world
situation with annotation provided, variations in scale, extreme pose, and occlusions. Most face
detection models have a low performance with this dataset because of the above-mentioned vari-
ations.

2.2 Models and Algorithms
We specifically focus on face recognition with deep features. First, an end-to-end network is
trained on large datasets and the output layer uses the softmax activation. Combing with the
softmax outputs, we can use the cross-entropy loss function to calculate the loss for multiple
classes. Second, the last layer of the network is removed. Third, we pass the images from the
previously unseen people into the network and the updated output layer provides their deep
features. Then, those deep features are compared by some distance functions and we assign them
a label according to the scores. Thus, the dataset used for training the network has no overlap
with the one for the evaluation in step three. The evaluation datasets are split into two parts,
the deep features of the faces in the first part are enrolled into a gallery, and the images in the
second part work as the probe. Comparison happens between the gallery and probe. The probe
set without unseen subjects composes the close-set experiment, and the one with some unknown
people gives the open-set experiment.

2.2.1 Closed-Set Era
Since in the unconstrained cases, the intra-class variations of deep features increase and challenge
the models that are trained with limited variations, the goal is to minimize the intra-class varia-
tions as well as maximize the inter-class variations in the deep feature space. Deep IDentification-
verification features (DeepID2) is a CNN model designed to extract the deep features that strive to
achieve this goal (Sun et al., 2014). DeepFace (Taigman et al., 2014) uses explicit 3D face modeling
to align face and extract features and trains on a large dataset with enough samples per subject. It
achieves a human-level face verification performance on the LFW dataset. A single 11-layer CNN
built by Yi et al. (2014) and trained with CASIA-WebFace outperforms DeepFace and DeepID2.
Early supervision is implemented in DeepID2+ (Sun et al., 2015), which also increases the dimen-
sion of features to get a good performance on LFW and Youtube Face (YTF) Dataset (Wolf et al.,
2011). The hidden neurons of DeepID2+ are highly but selectively active for different identities,
which is similar to our goal for the deep feature responses on known and unknown identities.
DeepID2+ also reported a relatively good performance on the open-set face identification task,
but this net is not specifically designed to resolve the open-set problem.

PCANet (Chan et al., 2015) is a simple structure composed of cascaded principal component
analysis (PCA), binary hashing, and block-wise histograms. It builds a comparable result on FR
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tasks with different datasets, but PCANet is not able to deal with the difficult variations in Pascal
(Everingham et al., 2010) and ImageNet (Deng et al., 2009) due to its simplicity. FaceNet (Schroff
et al., 2015) does not use the representation created by the intermediate bottleneck layer (so-called
the deep features here) and rely on those representations to generalize the model. Instead, it
directly maps face embeddings for each image into Euclidean space for face recognition purposes
with the corresponding squared distance as the similarity score, a smaller score is preferable. This
embedding is applicable for large-scale datasets efficiently. The system uses triplet loss.

Residual Network (He et al., 2016) improves the performance of image recognition since it is
deeper but less complex and easy to optimize. It can also be adapted to the face image descriptor
for low-quality surveillance camera samples (Herrmann et al., 2016a). Combining CNN with
triplet probabilistic embedding (Sankaranarayanan et al., 2016) is robust for the extreme pose
variation and saves the training time. A CNN with a manifold-based track comparison strategy
is applied to the low-resolution problem from the surveillance camera (Herrmann et al., 2016b).
This approach makes the model to be noise-resistant and outperforms VGG-Face (Parkhi et al.,
2015). In addition to the network, a loss function called center loss (Wen et al., 2016) is introduced
to enhance the discriminative power of the model by updating the class centers and penalizing
the distance between deep features and the corresponding class centers.

2.2.2 Open-Set Era
Open-set recognition is more close to the real scenarios, where the system should be able to iden-
tify the subjects that we are interested in, as well as reject the uninteresting ones (de O. Cardoso
et al., 2017). Experiment shows that good algorithms perform poorly in open-set databases. Ben-
dale and Boult (2016) introduced a new layer called OpenMax to resolve the open-set problem in
the view of the model framework. It is an alternative to the softmax function, the last layer of the
network, and uses the values from the activation function of the penultimate layer and calculates
its probability to be an unknown.

It has been proved that thresholding similarity scores cannot reflect the performance of open-
set FR models, but the Extreme Value Machine (EVM) method, the one that is derived from sta-
tistical Extreme Value Theory and flexibly adapts to the feature space of unseen subjects (Rudd
et al., 2018), performs well in evaluations of both close- and open-set cases (Günther et al., 2017a;
Dhamija et al., 2018). Günther et al. (2017b) evaluated the performance of different face detec-
tors and recognition networks on the UCCS dataset and further proved that they have a good
performance on face verification or closed-set face identification, but not on the open-set face
identification. Entropic Open-set Loss and Objectosphere Loss are introduced to tackle the effects
from the unknown samples. Both loss functions can separate the deep feature magnitudes for
knowns and unknowns (Dhamija et al., 2018; Günther et al., 2020).

Angular softmax (A-Softmax) loss, introduced by Liu et al. (2017), is specifically designed for
open-set FR tasks. It learns angularly discriminative features and penalizes the angles so that the
intra-class distance is more compact than the inter-class distance. As an extension of increasing
discriminative power and using angular margin, large margin cosine loss (LMCL) (Wang et al.,
2018) is proposed. It utilizes the L2 normalization and cosine margin to remove radial variations
and maximize margin in the angular space. CosFace is the typical model trained with LMCL.
The research on loss function focuses on using margins into the general loss functions to obtain a
better performance on face recognition tasks. In this thesis, we utilize the model ArcFace (Deng
et al., 2019), a deep face recognition model with a novel Additive Angular Margin Loss. It is a
penalty term for the angle between deep features and target, where arc-cosine is used to calculate
the angle and an additive angular margin is added to the target angle before forwarding to the
cosine distance. This calculation only has a subtle extra cost but increases the discriminative
power efficiently.
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2.3 Adversarial Attacks
In this thesis, the generated adversarial samples involve in the model training as the unknown
samples. We usually make small modifications, or noises, to the original images to generate the
adversarial samples. Those differences are tiny but have a great impact on the classification results
for the neural networks. We use two fast methods, Fast Gradient Sign (FGS) (Goodfellow et al.,
2015) and Fast Gradient Value (FGV) (Rozsa et al., 2016). The former is introduced by Goodfellow
et al., who think that the neural networks are not robust to the adversarial samples because of their
linearity and emphasize the importance of perturbation direction. The latter is created by Rozsa et
al. and has similar mechanics to FGS but with an improvement in the quality of the samples. The
detailed math and application are explained in Chapter 3. Psychometric Perceptual Adversarial
Similarity Score (PASS) measure is introduced to quantify the imperceptible perturbations and
generating hard positives gives a new direction for adversarial images (Rozsa et al., 2016).



Chapter 3

Approach

The general face recognition experiment refers to a complete process: a dataset with a purpose-
specific protocol is sent into face detection, alignment, and feature extraction. The extracted fea-
tures of the gallery G are enrolled and the probe P is compared to the former and computes the
similarity score to decide the subject identity. This process is an extended version with the evalu-
ation procedure for the one in section 2.2 since it includes the details for preprocessing, skips the
model training, and uses the pre-trained model to extract features directly. Similarly, open-set FR
in this process refers to the unseen subjects in the probe. The enrolled gallery subjects are repre-
sented by "knowns" and we use K for the known class set, and unseen subjects are "unknowns"
and we use U to represent the unknown class set.

The performance of open-set FR highly depends on the face detection and feature extraction
steps. We focus on the latter and try to train a shallow fully connected neural network to enlarge
the difference between the knowns and unknowns, i.e. we use the deep features extracted by a
deep neural network as the input to train a shallow network that could split K and U better. Two
sources of known unknowns are applied in the model training, the subjects that never appear in
the knowns, and the generated adversarial samples for the knowns. The first source of known
unknowns is used as unknowns in the validation and testing. Thus, if training with the first
source, there is no unseen subject in the validation, and if the second source involves, then the
unknown subjects in the validation have no overlap with that in the training. This network is
added back as an extra feature extractor to the FR experiment for evaluation.

3.1 Face Recognition Pipeline
The face recognition experiments are built based on the framework provided by the open-source
toolbox Bob. As it is hard to reproduce the face recognition research with a business purpose, their
outcomes do not contribute to the improvement of the open-source scientific research (Günther
et al., 2012). The Biometric Security & Privacy Group at Idiap Research Institute built Bob for
the signal processing and machine learning researches (Anjos et al., 2012).1 bob.bio.base and
bob.bio.face are two packages contained in Bob and are mainly used here for the construction
of face recognition experiments. bob.bio.base is the base package that defines the structure
of the biometric recognition experiment and those structures are specified and adapted to the
specific purpose of use.2

1https://www.idiap.ch/software/bob/
2https://www.idiap.ch/software/bob/docs/bob/bob.bio.base/stable/index.html
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(a) Subject 2047, Sally Ride (b) Detected Face through MTCNN

(c) Magnified original face (d) Face Crop and Align the eye
location

(e) Adding Noise

Figure 3.1: Example Face Detection, FaceCrop, Alignment, and Adding Noise. The image is from
IJB-C (Maze et al., 2018) dataset and the female in (a) is Sally Ride, subject 2047. (b) to (e) are only
for illustration purposes and pass into the preprocessing steps separately.

Dataset Protocols & Annotations

bob.bio.face is designed for the face recognition experiments and it contains the multiple
face recognition tools, traditional or deep learning, for database, preprocessor (face detection and
alignment), feature extractor, and algorithm (score calculation).3 Each dataset has at least one
protocol defined in the bob.bio.face.database. According to their sources, each dataset has
different annotations, such as "eye-centers" or None. Face detection, or an annotator defined
in package bob.ip.facedetect,4 is applied when the default annotation is None or does not
satisfy our requirement for alignment. Our dataset is IJB-C (Maze et al., 2018), which is explained
in detail in Section 4.1, has default annotator "bounding-box", means it only provides the top-
left and bottom-right coordinates of the face.

Preprocessor

The protocols provide a bounding box for the faces we care about in each image. Assume there
is only one bounding box in each image, it is necessary to remove the noises caused by non-main
people and background. So the face is first cropped according to the bounding box. Then, we
choose to use Multi-task Cascaded Convolutional Networks (MTCNN) (Zhang et al., 2016)5 and
its implementation on Bob for face detection and each image, which returns the following coor-

3https://www.idiap.ch/software/bob/docs/bob/bob.bio.face/stable/index.html
4https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.ip.facedetect/doc/index.html
5https://kpzhang93.github.io/MTCNN_face_detection_alignment/index.html
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dinates for the face contained in the bounding box: topleft, bottomright, reye, leye,
nose, mouthright, mouthleft, quality.6 Figure 3.1(a) is an image from IJB-C and Fig-
ure 3.1(b) is the detected face with landmarks. Notice that this example is for illustration purposes
only and not involves in the normal workflow, i.e. the face is not cropped before the face detec-
tion.

The cropping is incapable to remove the noises caused by non-frontal pose, occlusion, and
facial expression, as shown in Figure 3.1(c). The detected landmarks from above are used to align
the face to the desired position, for instance, the eyes should be symmetric, before passing into
the models for extracting the features of each face. bob.bio.face.preprocessor.FaceCrop
is designed for this purpose.7

As shown in 3.1(c), if we crop the original image according to the bounding box, only the
lady’s face is left. If we define a standard face to be completely frontal and has symmetric eyes
in the same horizon, then Sally Ride’s face is not in a standard position, because her nose is
not perpendicular to the horizontal line, and if we use a line to connect her eyes, this line is
not parallel to the horizontal line. Our goal is to align her face so that the landmarks for eyes
are in a standard format and can be passed into the feature extraction step. Figure 3.1(d) is a
face crop example according to the detected landmarks shown in (b). We mainly rely on eye
positions. Given the desired positions (usually in the upper part) of eyes, the system aligns the
detected eyes into those positions which affect the other landmarks on her face. Now, her eyes
are horizontally symmetrical, same for her mouth, and her nose is perpendicular to the horizontal
line. Face cropping and alignment ensure that no image background is passed into the next step;
no unnecessary information is recognized as the feature of the face; and in all images, eyes are in
the same position.

Extractor

Bob imports many pre-trained face recognition neural networks in this step for the feature ex-
traction. The preprocessed images are forwarded into the neural network and the outputs are
the deep features in tensor format. The framework is flexible so that we can use our pre-trained
neural network here or apply multiple networks at the same time. We choose to use the MxNet
framework with the default ArcFace Resnet100 backbone model as the baseline model (Deng
et al., 2019).8 Further, we train a shallow fully connected neural network as mentioned above and
add it after implementing the ArcFace model. The outputs with dimension 512 from the ArcFace
model are the inputs for the shallow network, and the outputs of this network are the identities.
The penultimate layer of the network is the deep features that are passed into the score calculation
and evaluation. The details of this network are explained in Section 3.2.

Algorithm & Evaluation

All of the above steps are applied on all the data, i.e. for both gallery set and probe set. The
separation of sets is only worth discussing in score calculation and result evaluation. Features of
samples from the gallery are enrolled with their corresponding subject ID, and then samples from
the probe set will be compared with the former by calculating their similarity scores. The scoring
function can be called in package bob.bio.base.pipelines.vanilla_biometrics.Distance.9

The default is to calculate cosine distance by scipy.spatial.distance.cosine. Those scores
are used to plot an evaluation curve.

6https://www.idiap.ch/software/bob/docs/bob/bob.ip.facedetect/stable/mtcnn.html
7https://www.idiap.ch/software/bob/docs/bob/bob.bio.face/stable/implemented.html#bob.bio.face.preprocessor.FaceCrop
8https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.bio.face/doc/implemented.html
9https://www.idiap.ch/software/bob/docs/bob/bob.bio.base/stable/py_api.html#bob.bio.base.algorithm.Distance
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We use the baseline configuration provided by Bob to run the FR experiment and modify it to
apply the new feature extractor in section 3.2 and similarity score function in section 3.3.3. The
baseline arcface-insightface uses MTCNN for face detection, FaceCrop for preprocessing,
MxNet framework with ArcFace Resnet100 backbone model for feature extraction, and cosine
distance for scoring.10

3.2 Network Training

3.2.1 Fully Connected Neural Network
We construct a shallow fully connected neural network. There are three fully connected layers,
with the first one followed by the activation function. As shown in Figure 3.2, the inputs (red)
linearly forward to the first hidden layer (blue), followed by an activation function (brown), then
linearly forward to the second hidden neurons (green), and then the outputs (pink). The inputs
are the deep feature of the face in each sample image extracted from the ArcFace Resnet100 (Deng
et al., 2019), and they have dimension 512. The outputs are the number of known subjects in K.
The second hidden layer is also the deep features extracted by this network.

Figure 3.2: Sketch of Shallow Neural Network.

3.2.2 Loss Function
We implement three loss functions in the shallow neural network training.

Plain Softmax Loss

Let k ∈ K represent the known class, ku ∈ U represents the known unknowns, uu ∈ U represents
the unknown unknowns. The output values from the shallow neural network are the predictions
by matrix multiplication of weights and the last hidden layer (green), i.e. logits. The logits, repre-
sent by zk for kth class, are used for calculating the Standard Softmax Score and the corresponding
Cross-Entropy Loss (Plain Softmax Loss)

Sk(x) =
ezk∑

k′∈K e
zk′
, (3.1)

10https://www.idiap.ch/software/bob/docs/bob/bob.bio.face/stable/baselines.html#deep-learning-baselines
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JCE(x) = −
∑
k∈K

1(x = k) logSk(x), (3.2)

where x is a sample. This is implemented in the PyTorch and can be called easily.

Entropic Open-Set Loss

The entropic open-set loss function JE is a derivation of plain softmax and aims to classify un-
knowns U from knowns K by maximizing the entropy of the unknown samples (Dhamija et al.,
2018). If the sample is in class k ∈ K, then JE will keep the plain softmax results; otherwise,
JE tries to equalize the logit value for samples in u ∈ U because unknowns should not have a
preference to any known subject.

JE(x) =

{
− logSk(x) if x ∈ k
− 1

|K|
∑
k∈K logSk(x) if x ∈ u

(3.3)

Objectosphere Loss

The objectosphere loss function JO is an improvement on the entropic open-set loss function to
magnify the feature magnitudes separation between known and unknown classes (Dhamija et al.,
2018). Both logit values and features are involved in the calculation, where the latter is used to
constrain the deep feature magnitudes. If the sample is from known class k ∈ K, then JO tries to
push the magnitude of the sample’s feature to be at least ξ; otherwise, JO penalizes the feature
magnitude and pushes it to be zero. Thus, for x ∈ k, we have lower entropy and larger features
around ξ, vice versa. In equation (3.4), α value represents the power of magnitude constrain to
JE .

JO(x) = JE + α

{
max(ξ − ‖Sk(x)‖, 0)2 if x ∈ k
(‖Sk(x)‖)2 if x ∈ u

(3.4)

The implementation of entropic open-set loss and objectosphere loss refers to the GitHub page
of Vision And Security Technology (VAST) Lab.11

3.2.3 Model Training
The models are trained with different training sets but the same validation and testing sets. All
experiments view subjects in gallery G1 from the IJB-C dataset (Maze et al., 2018) as the knowns
k ∈ K. In the case that using images from gallery G2 as unknown samples in the training, we
call them known unknowns ku ∈ U . When using adversarial samples as unknown samples
in the training but gallery G2 in the validation and testing, we call adversarial samples known
unknowns and subjects in gallery G2 as unknown unknowns uu ∈ U . The testing set contains
only the probe samples provided by the dataset IJB-C. Subjects from bothG1 andG2 are included
in the probe set. The validation set is composed of one sample per subject fromG1 andG2 if there
is more than one sample per subject. The validation and testing sets are fixed and shuffled before
implementation. The base model is trained only by the known samples x ∈ k with plain softmax
loss and tested by the probe set.

11https://github.com/Vastlab/vast/blob/main/vast/losses/losses.py
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Known Unknowns

We call subjects in G2 as known unknowns ku because these subjects are involved in model train-
ing, validation, and testing but with label −1 instead. They are randomly shuffled together with
the knowns k before being forwarded into the neural network. Thus, there are no unseen subjects
in validation and testing sets.

Adversarial Images

The second part of this thesis is to test the performance of different loss functions when there
are unknown unknowns. In this case, we use knowns k and the generated adversarial samples
in training instead. The adversarial samples do not appear in either validation or testing. Fig-
ure 3.1(e) is an example of generating the adversarial image. The following two approaches are
applied to generate the adversarial samples:

(a) Fast Gradient Sign (FGS)

X̂FGS = X + εsign(∇X), (3.5)

where∇X is the gradient of input X with respect to the loss J , the plain softmax loss, and ε is the
attack step size, the smaller ε means making fewer perturbations on the original X . FGS takes the
ε value as all perturbations, and the direction depends on the sign of ∇X , while the direction of
perturbation is the most important factor in generating adversarial samples. The perturbation is
a dense random noise but evenly spread among the entire image (Goodfellow et al., 2015).

(b) Fast Gradient Value (FGV)

X̂FGV = X + ε
∇X

max(‖∇X‖)
(3.6)

Instead of only relying on ε, FGV scales the gradient value by dividing by the maximum among
all of them. Thus, the magnitude of the gradient also affects the perturbations on the original
X . Compared with FGS, FGV creates more local perturbations but also efficiently affects the
classification performance (Rozsa et al., 2016).

The implementation of FGS and FGV refers to advertorch, which is a Python toolbox for adver-
sarial robustness research (Ding et al., 2019).12 In each training epoch, the model is first trained
on the known samples from k, and only when the softmax value of a sample is greater than a
threshold, the adversarial attacks are applied on that sample, which ensures that the model has a
great probability to identify that sample correctly before generating adversarial samples.

Since the input X in our experiments is not an image but its deep feature, it is necessary to
make some adaptations to the given implementation. Each batch of x ∈ k for training purposes
is forwarded into the network as usual. When using FGS, after the backpropagation, the sign of
the gradient is retained and multiplied by the step size ε, which is composed by the product of
two values, finally adds back to x to create the adversarial samples. For the FGV case, the entire
gradient is retained and divided by its maximum before multiplying ε. Compared with the setup
in the GitHub,12 we remove the re-computation of the gradient to not reset the gradient back to
the start point, and not clamp adversarial samples to the range [0, 1], since it is not appropriate
for the face features.

Fine-tuning ε is necessary to find a good separation and/or open-set ROC curve. ε is defined
to be a product of a value between 0 and 1 and the absolute maximum among each input, thus
a different ε is calculated for each sample. The absolute maximum among all inputs could be a
very large value and only appears a few times in the entire dataset. For a random input, if the

12https://github.com/BorealisAI/advertorch/blob/master/advertorch/attacks/one_step_gradient.py
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absolute maximum of the dataset is much larger than that of this input, then it is incapable to
grab the specialties for this sample. The product with the larger one brings too much change to
the original input, which deviates from our goal to make the model be able to identify the subtle
changes. Similarly, the first value in the product also determines the potential differences between
original and generated samples. A constant value or a decaying value as in Equation (3.7) can be
applied. A constant value like 0.9 is too large so that the product ε is large and results in an
adversarial sample that is too different from its original value. This is meaningless because the
network still cannot identify the small changes. Conversely, 0.001 is too small so it takes infinitely
many epochs to train the network. Decaying with epoch implies that the ε is close to the lower
bound 0.01 as the network keeps training, and thus the adversarial samples are closer to the true
input and harder to identify.

ε = max((0.95)epoch, 0.01) ∗ |max(x)| (3.7)

3.3 Evaluation Metrics

3.3.1 Feature Magnitude Visualization
Training the shallow neural network with entropic open-set loss and objectosphere loss is aimed
to separate the feature magnitudes of knowns and unknowns. So we use the density plot of
the feature magnitudes to evaluate the separation performance of models, as shown in Figure
4.3. We expect that when using the original features, knowns and unknowns have very similar
distributions and large areas of overlap. The entropic open-set loss is able to shift the distribution
of unknowns to the left, that is, reducing the magnitude of unknowns and the overlapping area
with the knowns. Objectosphere loss strives to intensify this left shift and pushes the magnitude
of knowns to the size ξ that we want (Dhamija et al., 2018; Günther et al., 2020).

3.3.2 Confidence Measurement & Area Under the Curve (AUC)
The class number defined in the neural network output is |K|, and we do not include a class for
the unknowns. So accuracy measure does not perform well in this case because not all labels are
told in advance (Dhamija et al., 2018). Thus, the confidence measure is applied. Confidence is the
standard softmax value for the desired class if the sample is from known class k ∈ K; otherwise,

confidence = 1− Ŝk +
1

|K|
(3.8)

, where Sk(x) = ezk∑
k′∈K ezk′ is the softmax value for class k, and Ŝk stands for the maximum

softmax value among all classes and |K| stands for the number of known classes. Here, since the
maximum of Ŝk should be 1

|K| , the last component is added to offset its effect with the fact that
the maximum of confidence is 1.

When the adversarial samples are used to train the network, the situation is different. We
keep using the confidence measure in the training evaluation but it is not appropriate for the
validation. Schnyder (2021) investigated the feature space of MNIST handwritten digits database
(LeCun, 1998). Samples in the MNIST work as the known samples and samples of handwritten
letters from EMNIST (Cohen et al., 2017) as the unknowns. By setting the dimension of the deep
features, they can be plotted in a two-dimensional space, as shown in the illustration plot Figure
3.3. In this plot, each class of MNIST digits has a different color and looks like a petal of a flower.
But the deep features of unknown EMNIST letters are in black and overlap with the known petals
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(a) MNIST only (b) MNIST and EMNIST letters

Figure 3.3: Feature space of MNIST and EMNIST databases from Schnyder (2021). MNIST sam-
ples work as knowns and each class is colored differently. EMNIST samples are the unknowns
and depicted in black.

to a great extent. The deep features for the faces have higher dimensions but the overlapping of
unknowns and knowns are similar. When training with adversarial samples, the feature space
for unknowns is more spread than the known unknown case, and the feature space for knowns is
correspondingly shrunk. As a result, the confidence for an unknown sample is higher and causes
the unreliability of confidence measurement.

Using the Receiver Operating Characteristic (ROC) Curve and then computing the Area Under
the Curve (AUC) becomes the evaluation metric for the shallow neural network. ROC is used
when we want to evaluate the performance of binary classification. ROC is a true positive rate
(TPR) against false positive rate (FPR) plot. By comparing the softmax values for knowns and
unknowns against the real class labels, TPR is the rate that a known sample is classified correctly
and FPR is the rate that an unknown sample is incorrectly classified as the knowns. AUC score
is the area under the ROC curve. It expects to return a value between 0 and 1, the higher the
value, the better the prediction performance. We skip the plotting of the ROC curve but only
use the AUC to evaluate the network. We also attempt the ROC by comparing the deep feature
magnitudes for knowns and unknowns against the real class labels.

3.3.3 Similarity Score
The pre-trained shallow neural network is imported into the Bob pipeline, right after the ArcFace
model in the feature extraction step. Then for all extracted features, we calculate the similarity
score between features from the gallery and the probe. When there is no obvious magnitude sepa-
ration for knowns and unknowns, general cosine similarity (3.10) is applied; otherwise, weighted
cosine similarity (3.11) could significantly improve the evaluation results because the feature mag-
nitudes are modified through model training (Günther et al., 2020).

cdist = 1− aT b

‖a‖2‖b‖2
, (3.9)

Cos(Scores) = 2− cdist, (3.10)
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WCos(Scores) = (2− cdist) ∗ ‖F‖2, (3.11)

where a and b are the samples from the gallery and from the probe, respectively, and F is the
sample from the probe set (F is b here). Since cdist changes the original cosine similarity domain
[−1, 1], 1 for best, to [0, 2], 0 for best, 2 − cdist converts the domain to [0, 2] but 2 for best, which
is consistent to our commonsense. Furthermore, when there are multiple samples for the same
subject involved in the calculation, for instance, the IJB-C dataset makes the multi-image template
(Maze et al., 2018), we choose the default method to compute the weighted average of all samples
and forward it to the score calculation. No matter how many samples for each subject the template
provides, only the weighted average of them is used. This is also the default approach defined in
the IJB-C dataset and we stick to it. It might be different to not use the average over all samples
but calculate the scores for each sample then do some different averaging methods. This is just a
random guess and we will not further discuss it here.

3.3.4 Open-set Receiver Operating Characteristic (ROC) Curve
Given the cosine similarity scores, an open-set ROC curve (OSCR curve is an adaptation but
quite similar) is made to visualize the FR results, as shown in Figure 4.4. It is a True Positive
Identification Rate (TPIR) against False Positive Identification Rate (FPIR) plot. TPIR, equation
(3.13), is the number of samples that are correctly classified and their similarity score to that class
is equal or above a threshold θ over the total number of known samples. FPIR, equation (3.12),
is the number of unknown samples that are classified as one of the known class k over the total
number of unknown samples (Phillips et al., 2011). The implementation of open-set ROC plot is
given in package bob.bio.base.13

FPIR(θ) =
{x|x ∈ u ∧maxkP (k|x) ≥ θ}

|U |
(3.12)

TPIR(θ) =
{x|x ∈ k ∧ argmaxkP (k|x) = k̂ ∧ P (k̂|x) > θ}

|K|
(3.13)

13https://www.idiap.ch/software/bob/docs/bob/docs/master/bob/bob.bio.base/doc/biometrics_intro.html#evaluation





Chapter 4

Experiment

4.1 Datasets
The entire experiments and evaluations are based on the dataset IJB-C (Maze et al., 2018), which
is a superset of above mentioned IJB-A and IJB-B datasets. IJB-A, B, and C are designed for
unconstrained face recognition research. They include subjects that are more general and less
occupationally and geographically specific than the other datasets with full variation in pose and
occlusions. Faces are manually labeled. Although there might be multiple faces in one sample
image or frame, only the labeled face, given by the protocol, is viewed as the subject and used
for face detection alignment (Klare et al., 2015; Whitelam et al., 2017; Maze et al., 2018). IJB-C
extends IJB-B to 3,531 subjects, which split into two disjoint galleries G1 (1,772 subjects with 5,588
samples) and G2 (1,759 subjects with 6,011 samples). For enrollment purposes, the samples in
galleries are still images that have better resolution than frames. We utilize the 1:N end-to-end
mixed protocol with 31,415 probe samples, which are a mix of still images and frames. Given
different protocols, the IJB-C dataset generates different templates. The 1:N mixed recognition
protocol generates multi-image templates, that is, there are multiple subjects and each subject has
multiple samples contained in the template. These samples could either be still images or frames.
When we want to do the evaluation with the multi-image template, the deep features of each
subject are defined as the weighted average over all samples. Since the quality of frames is lower
than that of the still images, less weight is distributed to the frames and the combined weight of
all the frames is equal to the weight for one still image.

4.2 Basic Setup
The experiments aim to evaluate the performance of entropic open-set loss and objectosphere loss
(Dhamija et al., 2018) on the IJB-C dataset, and whether generating adversarial samples as known
unknowns (Schnyder, 2021) could be applied with those loss functions as well. We follow the
default open-set protocols for the IJB-C dataset. All the samples in this protocol, in gallery G1
and G2 and probe P , are put into the bob pipeline for face detection by MTCNN, alignment by
face crop, and feature extraction by ArcFace InsightFace R100 (Deng et al., 2019).1 Usually, the
next step is to separate the features and calculate the score.

We add one more step in between the feature extraction and the score calculation. A shallow
fully connected neural network, with the deep features as the inputs and their corresponding
identities as the outputs, is trained, first by using samples from G2 as known unknowns and

1https://github.com/deepinsight/insightface/tree/master/model_zoo
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employing entropic open-set loss and objectosphere loss and then using adversarial samples as
known unknowns with objectosphere loss. Besides, the adversarial case is also trained with en-
tropic open-set loss but eventually discarded. Because objectosphere loss is basically the extension
of open-set loss and expects to have better performance, we choose to jump to the objectosphere
loss directly. Finally, as shown in Figure 4.1, we run the complete FR procedure with the Arc-
Face extractor followed by a trained model, where the last layer of the trained network has been
removed so that it returns the deep features in the penultimate layer, as an extra extractor to
evaluate its performance and compare the results with the pure ArcFace results.

Figure 4.1: Illustration for a complete FR experiment.

4.3 Shallow Model
Only gallery G1 is labeled as the known sample set, G1 = K, and we define subject k in G1 as the
known subject. The known unknowns differ for each experiment. The model outputs are cho-
sen to be the number of logits that equals the number of known subjects, in this case, 1,772. The
training set, validation set, and testing set are set up as defined above. Early stopping is applied
to train most of the networks, we point out cases where it is not used. The training will stop if
no improvement has been made for more than 1,000 epochs. Only the samples used in the base
model training are balanced and for the rest, we do not attribute any weight to the samples, so
both known samples and unknown samples have the same weight. We have a summary table, Ta-
ble 4.2, for the best version of all four models with the corresponding parameters and evaluation
measurement listed.

Base Model

We define the base model by not using known unknowns in the model training and validation.
Thus, G1 is split into training and validation. As described above, the network has three fully
connected layers with one activation tanh and is trained by softmax entropy loss. In Table 4.1, our
possible model parameters are listed. The first two columns are one-to-one corresponded since we
separate each model by the known unknowns and its loss function. Columns 3 to 6 are the choices
for each parameter. We cross multiply columns 3 to 6 and select a subset of all combinations.
Some parameters like network layer size 64by32, are proved to be useless regardless of other
parameters. This is discussed in Chapter 5.

The confidence for recognizing the identities is shown in Figure 4.2(a). Classes are balanced
before training. When choosing SGD as an optimizer with a learning rate of 0.02, the confidence
approaches the plateau fast, while we only get about 0.6987 in the validation. As a comparison,
another splitting method is applied. For each known class, if it contains more than five samples,
then 20% of them are moved to the validation set and the rest stay in the training set; if the
number of samples is greater than one, then one of them belongs to the validation; otherwise, this
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subject is not in the validation set. This splitting reaches a 0.7983 confidence. This is expected
since the model is evaluated more often on a subject that has more samples in the validation set,
and thus results in higher confidence. Figure 4.3(a)-4.3(c) exhibit the feature magnitude for the
original inputs and 4.3(d)-4.3(f) for the base model case with the best combination of parameters
listed in Table 4.2 column 2. They are all normalized to have a standard height. Our goal is
to compare the magnitude for knowns and unknowns when no or different unknowns join the
model training. Complete overlapping happens if we do nothing on the original features, and
softmax entropy loss only contributes to the separation slightly. But the base model also pushes
the dominant proportion of magnitude to the 50-60 range, instead of falling in the 20-25 range as
for the original features.

Model Loss Function Network Layer
Size fc1&fc2 Optimizer w/ lr Normalization Dropout

Base Model Softmax Cross Entropy 2048by1024,
1024by512,
128by64,
64by32

SGD(0.02),
Adam(0.0001) YES, NO YES, NOKnown UnknownsG2 Case1 Entropic Open-set Loss

Known UnknownsG2 Case2 Objectosphere Loss
Adversarial Samples Objectosphere Loss

Table 4.1: Common parameters to choose for all the models. Model and Loss Function is 1-1
corresponded, columns 3 to 6 are the options for each parameter that we use to train the model.
Network Layer Size fc1&fc2 stands for the number of neurons in the first and second hidden layers.
Normalization is YES when the inputs are normalized before forwarding into fc1. Dropout is YES
when dropout is applied in between fc1 and fc2.

Base Model Known Un-
knownsG2 Case1

Known Un-
knownsG2 Case2 Adversarial

Training Unknown Source No Unknown Gallery G2 Gallery G2 Adversarial Sam-
ples

Loss Plain Softmax
Loss

Entropic Open-set
Loss

Objectosphere
Loss

Objectosphere
Loss

Network Layer Size 2048by1024 1024by512 2048by1024 1024by512
Weight YES NO NO NO
Normalization NO NO YES YES
Dropout (After fc1 & activa-
tion) NO NO NO NO

Optimizer SGD SGD Adam Adam
Learning Rate 0.02 0.02 0.00001 0.00001
Minimum Known Magni-
tude (if available) 5 5

Alpha (if available) 0.000001 0.000001
Adversarial Method (if
available) FGS

eps (if available) 0.1 * abs(max(xi))
Average Validation Confi-
dence (AUC in Adversarial
Case)

0.6987 0.6925 0.7069 0.7781

Known Validation Confi-
dence (if available) 0.6987 0.3923 0.4158

Epoch Taken 24934 65096 24638 10360

Table 4.2: Combination of parameters that reaches the highest evaluation scores for four models.
The first three models are evaluated on the confidence of the validation set, and the last one relies
on the AUC score. A blank cell means such a condition does not apply to this model.
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(a) Base Model with Softmax (b) Known Unknowns G2 with Entropic

(c) Known Unknowns G2 with Objectosphere (d) Adversarial samples with Objectosphere

Figure 4.2: Confidence plot for four shallow networks, with the parameters listed in Table 4.2.
(a) Only knowns from G1 are involved in the training and validation of the base model. (b)-
(c) Knowns from G1 and unknowns from G2 are involved in the training and validation. (d)
Knowns from G1 and generated adversarial samples as unknowns are involved in the training.
AUC-Probability and AUC-Magnitude are calculated as the evaluation metrics for validation set.
AUC-Probability is the same as the AUC score calculated by the softmax values. eps-coef times
|max(x)| equals to ε.
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(a) Original - Training (b) Original - Validation (c) Original - Testing

(d) BaseModel - Training (e) BaseModel - Validation (f) BaseModel - Testing

(g) Entropic - Training (h) Entropic - Validation (i) Entropic - Testing

(j) Objectosphere - Training (k) Objectosphere - Validation (l) Objectosphere - Testing

(m) Adversarial - Training (n) Adversarial - Validation (o) Adversarial - Testing

Figure 4.3: Extracted feature magnitude for known and unknown samples. (a)-(c) are the original
features. (d)-(f) are the features extracted from the base model, with the parameters listed in Table
4.2. (g)-(i) are from the model trained by G2 with entropic loss. (j)-(l) are from the model trained
by G2 with objectosphere loss. (m)-(o) are from the model trained by adversarial samples with
objectosphere loss and evaluated by the AUC scores for softmax value (AUC-Probability in Figure
4.2(d)).
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Known Unknowns G2

Known unknowns from G2 are then involved in the model training and the loss function is re-
placed by the entropic open-set loss. Similarly to the base model, we adjust the parameters shown
in Table 4.1 and find that the setup listed in Table 4.2 leads to the best average validation confi-
dence (0.7). In Figure 4.2(b), the unknowns have a close to 1 confidence but only 0.4 for knowns.
This is discussed in Chapter 5. The entropic open-set loss creates some separation in Figure 4.3(g)-
4.3(i), i.e. pushes the unknown magnitude to below 23 and mainly falls in the range 15-20, while
known magnitude has a similar range with the original sample features.

When applying the objectosphere loss, two more parameters should be considered, MinimumKnownMagnitude
and α, as shown in Table 4.3. We choose to use 5 and 1e− 6, respectively. The effect of the former
could be observed in the feature magnitude plots 4.3(j)-4.3(l), where the separation is similar to
the entropic case, but the known magnitude is reduced to about 4 (not exactly 5) and about 3
for unknowns. So the objectosphere loss works in the way that we expect but does not push all
knowns to above 5 and unknowns to 0. Further, in Table 4.2, our optimizer is changed to Adam
and the normalization is applied to the inputs before forwarding to the first hidden layer. The
validation confidence is close to the entropic case above.

Special Parameters Choices
Minimum Known Magnitude 5, 50
α 0.01, 0.001, 0.0001, 0.000001
Generating adversarial technique FGS, FGV
ε (Part I) 0.05, 0.1, 0.9, max((0.95)epoch, 0.01)
ε (Part II) Absolute Maximum for each x or for all data

Table 4.3: Special parameters to choose in objectosphere loss and generating adversarial samples.
The first two rows are the choices for objectosphere loss, and the last three rows are for generating
the adversarial samples.

Adversarial Images

The known unknowns from G2 are replaced by the adversarial samples generated through FGS
and/or FGV. Through the experiments, FGS works better than FGV and the latter is discussed in
Chapter 5. The last column in Table 4.2 lists the parameters that achieve the best AUC score. The
AUC score for comparing the softmax value (probability) and real label is used to evaluate the
performance, while AUC for the feature magnitude method is not able to capture the improve-
ment and overfitting of the network, which is discussed below as well. Normalization of inputs,
optimizer Adam, and other parameters for objectosphere loss are the same as above. Though we
consider the multiple versions of the first value in ε, constant value 0.1 is the most appropriate
quantity.

Confidence is kept for the training set evaluation, where the confidence for unknowns is the
confidence of classifying the adversarial samples as class −1, but the validation set implements
AUC instead. AUC is computed for two scores against the real labels, softmax value and feature
magnitude. We observe that time to train with those two values differ, i.e. epochs took to reach
the maximum point for AUC-Probability and AUC-Magnitude are different in Figure 4.2(d), and
when normalization is not applied before forwarding, magnitude AUC always requires more
epochs, vice versa. This also results in a good separation for the training set but weakens the face
recognition experiment. Thus with normalization and ε = 0.1 ∗ |max(x)|, we rely on the AUC
for softmax value and reach 0.7781. Unfortunately, the separation in Figure 4.3(m)-4.3(o) does
not improve from the original and base model. We can find the proof in Figure 4.2(d). The AUC
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for magnitude reaches the maximum fast, then falls below 0.5, which indicates that the known
magnitude and unknown magnitude cannot be differentiated.

4.4 Face Recognition Experiments
The above-trained models follow the ArcFace R100 network in the extractor to further detail the
features as illustrated in Figure 4.1. Then the features extracted by two networks are forwarded
to similarity score computation.

Figure 4.4: Open-set ROC plots for 5 models: baseline without the extra trained network; baseModel
as the extra extractor trained only with known samples; entropic as the extra extractor trained by
unknowns G2 and entropic open-set loss; objecto as the extra extractor trained by unknowns G2
and objectosphere loss; adver as the extra extractor trained by generated adversarial samples and
objectosphere loss.

Figure 4.4 shows the open-set ROC curve composed of the cosine similarity score (Cos). The
trained models, including the base model, have a higher TPIR value when the FPIR is below 0.01.
The baseline outperforms most of them as FPIR increases. Base model and known unknowns G2
model with objectosphere loss end below baseline, and only unknown G2 model with entropic
loss successively improves baseline thoroughly. Two models trained with objectosphere loss have
a similar trend, are highly overlapping, and have a starting point lower than baseline. The first
model objecto is trained with G2 as unknowns and the second model adver is trained with the
generated adversarial samples as unknowns. But only G2 appears in the validation and testing,
as well as in the FR experiments. SoG2 is the known unknowns in the first case, but the unknown
unknowns in the second case. Since they have similar performance in the FR experiments, our
basic assumption that we can replace known unknowns G2 for training with adversarial samples
works as expected. Also, our trained models bring some benefits to the baseline, and training
with the unknown adversarial samples does not break up those benefits.

We suppose that the weighted cosine similarity (WCos) improves the performance when the
feature magnitudes of probe samples could be better separated (Günther et al., 2020). In the last
column of Figure 4.3, the feature magnitude plots for the testing set, the complete overlap is
exhibited, except for a small moving of unknowns for two known unknowns G2 models. Thus, it
is reasonable to assume that with the same FPIR, the weighted cosine similarity could not achieve
a higher TPIR value than the unweighted case. Putting 10 curves in one plot makes it hard to
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(a) Base Model with Softmax Cross Entropy
Loss

(b) Known Unknowns G2 with Entropic
Open-set Loss

(c) Known Unknowns G2 with Objectosphere
Loss

(d) Adversarial Samples with Objectosphere
Loss

Figure 4.5: Compare WCos and Cos with respect to the baseline case. Each plot contains four
curves: baseline experiment with cosine similarity score and weighted cosine similarity; Cosine
and weighted cosine similarity scores for experiments with a trained network as an extra extrac-
tor.

separate each line, thus we create the single comparison for WCos and Cos of each model as in
Figure 4.5. Only the WCos score for the base model is lower than for baseline, the rest more
or less have better WCos than baseline. In 4.5(a), both WCos curves are worse than Cos due to
the full overlap of magnitude. 4.5(c) and 4.5(d) do not have similar WCos, though they are both
trained by objectosphere loss and have close Cos’s in Figure 4.4. This discrepancy is probably
due to the existence of adversarial samples. Although the cosine distance is similar for features
extracted from two models and probably the relative magnitude of deep features are also similar,
the absolute magnitude might differ. Therefore, we get similar Cos curves but different WCos
curves. In 4.5(b), WCos is closer but still worse than Cos, this also proves that the separation of
the testing set is not well enough.
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Discussion

IJB-C Dataset Size

This thesis is built based on the paper ’Watchlist Adaptation: Protecting the Innocent’ from Gün-
ther et al. (2020), where the UCCS dataset and VGG2 face recognition network are used instead.
Their training set contains 11,299 of 11,315 knowns and 15,792 of 15,551 unknowns (and back-
ground as well) and is twice larger than the IJB-C galleries. They achieve a good separation on
the magnitude of deep features from the testing set by a three-layer fully-connected network.
The performance of the WCos curve is also better than that of the Cos curve. According to that
paper, the network layer size is 128by64. In Figure 5.1, the same number of neurons provides
under-fitting confidence and good separation in training magnitude but a weird large known
magnitude.

The combinations 1024by512 and 2048by1024 perform better in the IJB-C case. Also, in the
above-mentioned paper, the feature magnitude separation of probe samples is more powerful,
i.e. unknowns are approaching 0 and knowns are more spread but less overlapping with un-
knowns. In our experiments, the overlapping in the probe set is always severe. We attribute this
phenomenon to the different nature of the dataset, the resolution and face size are different, and
IJB-C does not even introduce the background factor. It is also probable that some key parameters
need to be fine-tuned to fit different datasets, which we do not figure out here.

Weighing the Training Samples

Except for the base model, we do not assign weights to the training samples. We do not expect
the balancing in the base model will affect the results as apparent as in the other models, since
none of the known classes can have a weight as large as the unknowns. When we use G2 as the
known unknowns, then there are 6,011 samples with label −1, and 5,588 samples are distributed
into 1,772 classes. That is, the number of unknown samples is much larger than the number of
samples in a single known class. It is not surprising that the ability to identify the unknowns from
knowns is better trained than that of classifying between each known class. This phenomenon
can be found in the confidence plots for four models in Figure 4.2. The validation confidence for
knowns can reach 0.7 when only knowns are involved in the network training. However, it is
around 0.4 when unknowns join the training process in Figure 4.2(b) and 4.2(c), and both training
and validation confidence for unknowns is approaching 1. It seems that the known samples are
underrepresented which indicates that the weight for the unknown samples in the loss function
is too high. Thus, we attribute the severe drop in the validation confidence to the heavy weights
on the unknown samples, and adding the weight may also improve the performance the WCos
curves. It is interesting to investigate the effects of weighing the known and unknown samples
on the confidence plot, feature magnitude plot, and the WCos curve performance in future work.
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(a) Confidence Plot (b) Training Magnitude

(c) Validation Magnitude (d) Testing Magnitude

Figure 5.1: Known unknowns G2 model trained with objectosphere loss with 128by64 layer size.
The other parameters are the same as the model in Figure 4.2(c).



27

(a) Base model with optimizer SGD and Adam (b) Adversarial model different α

Figure 5.2: Open-set ROC plots for different optimizer or different α. (a) is the open-set ROC
curve (Cos) for the baseline and base models with optimizer SGD and Adam. (b) is open-set ROC
curve (Cos) for the baseline and models trained by adversarial samples with objectosphere loss
with different α.

Optimizer and α effects on open-set ROC curve

One observation is regarding the optimizer. In the base model training, while using Adam with
learning rate 1e − 4, the model reaches similar confidence with 10 times fewer epochs, but a
horrible open-set ROC curve when joining the FR process, as shown in Figure 5.2(a), where the
endpoint for Adam is 5% lower than SGD. The open-set ROC situation reverses in the known
unknowns G2 with objectosphere loss model training. In both cases, confidence for Adam is
higher than for SGD by 3% to 6%. The evaluation metrics (confidence) we use in model training
have no apparent relationship with the evaluation for the face recognition experiment (Cosine
Similarity) since the confidence uses the softmax value of prediction, and the cosine similarity
computes the distance between features instead. This is further discussed below. The choice of
optimizer should depend on the network structure as well as the dataset, though Adam usually
takes less time to train as in Table 4.2.

Another observation happens in both the known unknowns G2 with the objectosphere loss
model and the adversarial model. Normalization is applied to all the models trained here. Re-
call that the objectosphere loss (3.4) is the summation of the entropic loss and a weighted feature
magnitude. Theoretically, the value of α should depend on the squared magnitude of the deep
features and make sure the entropic loss is still dominating the entire loss function. In Figure 5.3,
the adversarial model magnitude separation of the training set, decreasing α from 0.01 to 0.0001
and 0.000001 makes the separation more unobtrusive (though the separation is subtle even in 0.01
case), but increases the AUC scores for softmax values by 30% and 2%, respectively. Similarly, in
the known unknown model, this change increases the validation confidence by > 10%. But de-
creasing α has an obvious improvement in cosine similarity, where 0.01 and 0.0001 even could
not reach the endpoint of the baseline as shown in Figure 5.2(b). The change in separation is
expected since if we put more loss weight on the magnitude, then the model will learn the mag-
nitude better. But the clip fall of the open-set ROC Curve is not, which is explained in the next
paragraph.
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(a) α = 0.01 (b) α = 0.0001 (c) α = 0.000001

Figure 5.3: Confidence Plot for FGS adversarial samples with different feature magnitude α. Only
the feature magnitudes for the samples in the training set are exhibited.

Magnitude Separation vs. open-set ROC Curve

We once wanted to build a proportional relationship to feature magnitude separation and open-
set ROC curve performance. This is not exactly true even in Dhamija et al. (2018) though they
obtained a good separation in the probe set. The second half of the objectosphere loss focuses
on the magnitude of features, but not on the separation of feature space, which is required for
calculating the cosine distance. We are not able to conclude our observation in the same way. As in
Figure 4.3(i), 4.3(l), and 4.3(o), known unknownsG2 models with either entropic or objectosphere
loss have similar but small separation, and the adversarial model is neglectable, but in Figure 4.4,
the advantage of known unknowns does not completely overcome that of adversarial samples.
This should again attribute to the non-separable problem that happens on dataset IJB-C because
samples we trained with are images but we have frames in the probe/testing set. The quality of
the probe set is supposed to influence the feature grabbing and recognition severely.

Thanks to Mr. Rafael Henrique Vareto, who figured out an implementation error on the en-
tropic loss, and makes it possible to explain the bad open-set ROC Curve when the weight α is
large. The entropic loss used throughout this thesis is taking the mean of loss for each sample,
instead of the summation shown in equation (3.3), which makes the entropic loss smaller than
we expect. This affects more on the models trained by the objectosphere loss since the squared
magnitude with a large weight α is dominant the loss and thus the model focuses on learning the
magnitude but not the feature space. Thus, a higher α could result in a good magnitude sepa-
ration and bad open-set ROC Curve simultaneously. We draw our conclusions based on the old
implementation since α = 0.000001 balanced the loss, but the performance might be different
from the new one and it is worth investigating further.

FGS with Decaying ε

As mentioned in the last chapter, decaying ε is applied to generate the adversarial samples. The
real decaying happens on eps-coef, but ε decays with it as well. Since 0.95epoch decays to 0.001
after 134 epochs, the changes to the inputs become too small before the network is trained well
to identify them. We try to slow the decay rate to change once per 10 or 20 epochs, but none of
them works well and results in the unstable unknown training confidence. The pattern becomes
better when we set the rate to change per 30 epochs. We set up the early stopping criterion for
1,000 no improvement epochs on the validation metrics, and have the corresponding confidence
plot in Figure 5.4(a). If we free that restriction and leave the training run for 50,000 epoch, we
get Figure 5.4(b) and an improvement of AUC scores for softmax value (AUC-Probability) from
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(a) Zoom in to first 10,000 epochs (b) 50,000 epochs (c) Open-set ROC Curves Comparison

Figure 5.4: Performance of using a decaying ε. (a) is the confidence plot for the first 10,000 epochs
training. (b) elongates the training to 50,000 epochs. (c) includes the open-set ROC plots for
baseline, fixed eps-coef, and decaying eps-coef /ε.

(a) eps-coef = 0.1 (b) eps-coef = 0.9 (c) Decaying eps-coef

Figure 5.5: Confidence Plot for adversarial samples generated by FGV. (a) has a eps-coef = 0.1,
which is the same as the one that has the best performance in FGS above. (b) has eps-coef = 0.9,
which is quite large. (c) has a decaying eps-coef /ε.

0.74 to about 0.8. The ε in this experiment has a lower base value 0.5. As we expect, given
ε = max(0.5epoch//30, 0.01), the initial adversarial samples are distinct from the knowns, so that
easy to classify and the confidence jumps up suddenly. It is followed by a drastic drop because eps-
coef falls to 0.01 fast and the difficulty to identify the unknowns is raised. Then, with the minimum
eps-coef= 0.01, we zoom out the scale to 5.4(b). The model starts to learn the unknowns similar to
Figure 4.2(d) and finally approaches 1 again. Though the model obtains a small increase in AUC
than the eps-coef = 0.1 case, it gets a worse open-set ROC curve in 5.4(c). We expect a similar
pattern will appear in the experiments with a higher base value like 0.99 since it will decay to 0.01
fast as well. Keeping slower the decay rate might be able to improve the performance.

FGV

FGV is tested for adversarial training. It takes less than 1,000 epochs to finish training for both
AUCs. The training confidence for adversarial samples is highly fluctuating. Changing the first
part of ε (eps-coef ) as we discussed above does not help, shown in Figure 5.5. When eps-coef = 0.1,
confidence fluctuates around 0.1 but with a slight uptrend. eps-coef = 0.9 results in random-noise-
like confidence but with an increasing trend. Decaying eps-coef makes the confidence approximate
to 0.1 after 500 epochs. In addition, when we train the model through the AUC scores calcu-
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(a) Base model Normalization (b) Known unknowns G2 model with
entropic loss Normalization

(c) Open-set ROC for Normalization
effects

Figure 5.6: Normalization of inputs for the base model and known unknowns G2 entropic model
training. (a) is the deep feature magnitudes for the training set samples extracted by the base
model training by the normalized inputs. (b) is by the known unknowns G2 model with entropic
loss and normalized inputs. (c) is the open-set ROC curves for baseline, the base model with or
without normalization, known unknowns G2 entropic model with or without normalization.

lated by the softmax value (AUC-Probability), the training feature magnitudes for knowns and
unknowns are close to 5 but heavily overlapped, and close to 10 for the model training through
the AUC calculated by the feature magnitudes (AUC-Magnitude). Considering those models are
not well-trained before the validation AUC decreases, we conclude that FGV is not appropriate
for the FR task with the IJB-C dataset.

Normalization on Features

Some of the experiments, known unknowns G2 and adversarial models with objectosphere loss,
introduce the normalization of inputs in the network, i.e. normalization becomes the first layer
and then followed by the first fully-connected layer. It shortens the training time and is expected
to perform better. We also test the effects of normalization for the base model and the known
unknowns G2 model with entropic loss, but the above conclusion and ideas for those two models
are drawn without the normalization, and they might be different when normalization is involved
in the training. When normalization is involved, it takes 60k epochs for the model trained with
entropic loss and pushes the feature magnitude to a smaller range, 3.0-3.6, as in Figure 5.6(b).
But it has a worse separation which looks like the situation happens on the training set features
extracted by the base model without normalization as in Figure 4.3(d). The base model requires
> 450k epochs for training and results in a better separation and magnitude range of 30-40 as in
Figure 5.6(a). Figure 5.6(c) exhibits that normalization is not helpful in the open-set ROC curve for
those two models, especially the base model with normalization results in a drastic decrease in the
TPIR performance. Therefore, the normalization does not bring benefits to these two models in
training speed, feature magnitude separation, and the cosine similarity curve performance. There
might be some related coefficients that require to be fine-tuned caused by the normalization. We
still expect the normalization could make better separations and open-set ROC curves in the base
model and known unknowns G2 entropic model.
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Conclusion

We deal with the open-set face recognition tasks with different loss functions and different sources
of unknown samples. There are three situations: first, a model is only trained and validated with
the samples that we care about and no unknown sample involved; second, a model is trained
with both knowns and unknowns and the subjects appear in validation exist in the training set;
third, a model is trained with knowns and the corresponding generated adversarial samples, i.e.
as unknown samples, but the model has never seen the unknown subjects in the training. In a
general face recognition task, we are supposed to extend the feature extraction step by adding the
previous trained shallow network to the end of the ArcFace R100 network so that the resulting
open-set ROC curve should perform better. The first one is trained by plain softmax loss, the
second one experiences entropic open-set loss and objectosphere loss, and the third one uses
objectosphere loss. We prove that all four situations have a positive effect on recognizing the deep
feature of each face, especially for a small FPIR. When comparing the open-set ROC curves for the
second case with objectosphere loss and the third case, we prove that known unknowns from G2
can be replaced by the adversarial samples without losing performance. Unfortunately, our work
does not reflect the feature magnitude separation advantage of the entropic open-set loss and
objectosphere loss. The separations are successful only for the training set, and the effects decrease
when facing the probe set. The difference between the UCCS dataset and IJB-C may contribute
to the magnitude problem. Also, objectosphere loss does not successfully differentiate the known
samples and adversarial samples generated from them. In addition to what we mentioned in the
discussion, it is worth applying some other adversarial generating techniques, looking for the
possible relationship between parameters of FGS and FGV and the dataset, and using different
networks for base feature extraction.
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