Developing a Configuration System m
for a Simulation Game in the Domain Gt
of Urban CO; Emissions Reduction

Sarah Zurmiihle, Joao S.V. Gongalves, Patrick Wiger, Andreas Gerber,
and Lorenz M. Hilty

Abstract In order to help decision-makers find ways to reduce CO, emissions of
Swiss cities, a simulation game is being developed within the “Post-fossil cities”
project. During the game, participants take on different roles in which they together
explore pathways to a future, post-fossil city. An important requirement to the soft-
ware system of the game was to be easily configurable in order to keep the game
adaptive to different target groups of players. We describe a User Interface Manage-
ment System (UIMS) that has been designed and implemented to realise the flexi-
bility demanded from the game designers’ side. The system allows game facilitators
to configure the game and decide what kinds of visualisations are used during game
sessions. The paper describes how the configuration system was conceptualised,
implemented and integrated into the overall system architecture of the simulation
game.

Keywords Simulation game - User interface management system + Configuration
system - Greenhouse-gas emissions * Sustainable development

The original version of this chapter was revised: This chapter has been changed to open access
under the terms of the Creative Commons Attribution 4.0 International License. The correction to
this chapter is available at https://doi.org/10.1007/978-3-030-61969-5_19

S. Zurmiihle (<) - J. S.V. Gongalves - L. M. Hilty
University of Zurich, Zurich, Switzerland
e-mail: sarah.zurmuehle2 @uzh.ch

J. S.V. Gongalves
e-mail: goncalves @ifi.uzh.ch

J. S.V. Gongalves - P. Wiger - A. Gerber - L. M. Hilty
Empa Swiss Federal Laboratories for Materials Science and Technology, Diibendorf, Switzerland

© The Author(s) 2021, corrected publication 2021 165
A. Kamilaris et al. (eds.), Advances and New Trends in Environmental
Informatics, Progress in IS, https://doi.org/10.1007/978-3-030-61969-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61969-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-61969-5_19
mailto:sarah.zurmuehle2@uzh.ch
mailto:goncalves@ifi.uzh.ch
https://doi.org/10.1007/978-3-030-61969-5_12

166 S. Zurmiihle et al.

1 Introduction

The climate crisis is a major issue of this century. The domain of urban development
offers the potential for substantial reductions in CO, emissions and can therefore
contribute to reducing global warming. To support decision-makers, a simulation
game is being developed within the “Post-fossil cities” project,' focusing on sus-
tainable urban development in Switzerland. The players are given the opportunity
to simulate the development of a fictional Swiss city and thereby explore different
pathways to a post-fossil future. The project, which belongs to the Swiss National
Research Program “Sustainable Economy”, is positioned in the context of the Paris
Agreement [16] and the UN Agenda 2030 for Sustainable Development [15]. In
order to achieve the goals of reaching a post-fossil future and of complying with the
criteria of a good life, the players interact and cooperate in different roles.

Besides the role-play part, the simulation game includes a physical game board
equipped with sensors, a gameplay system that contains a set of simulation mod-
els, a simulation system controlling them and a Graphical User Interface (GUI) for
the gameplay system. During the game, the players use the game board to manifest
decisions, which are registered and evaluated by the gameplay system. Relevant infor-
mation is visualised to the players on the GUI. These visualisations are composed of
different visual components. The simulation game presents visual components on a
screen to inform the players about the game status. Different players will find differ-
ent visualisation types more or less effective. Furthermore, different visualisations
can get different messages across. Thus, additionally, a second GUI is needed for
the people who configure the software system before a game starts, i.e., the game
facilitators. Through this GUI, they can adapt the software to the requirements of the
actual game setup, which may vary in the number and type of participants, learning
goals, etc.

The applied configurations must be communicated to the gameplay system, which
then shows the selected visual components during the following game sessions.
The simulation game uses simulation models of different types. The models take
parameters, external variables and initial values for internal variables as input and
produce time series as output, which can be used in the visual components. Thus,
it was required to define a dynamic extraction mechanism for the available visual
components in order to flexibly use them in the simulation game system. If the design
of visual components changes, the simulation game should be able to easily adapt to
those new changes.

Therefore, in addition to the mentioned parts of the gameplay system, a config-
uration system is needed. This system receives the input of the game facilitators,
processes it and sends it to the gameplay system. This configuration system should
provide a visual interface that enables the game facilitators to decide which visual
components and decision cards (playcards used during the game, sensed by the
gameboard) can be used during the game session. It should also define dynamic data
extraction mechanisms used to communicate with the simulation system in order to

Uhttp://www.nfp73.ch/en/projects/cities- mobility/post-fossil-cities.

http://www.nfp73.ch/en/projects/cities-mobility/post-fossil-cities

Developing a Configuration System for a Simulation Game in the Domain ... 167

obtain the needed model output data. Furthermore, a storage for visual components
should be defined and used by the configuration system in order to dynamically load
the needed visual components into the system. The flexibility and configurability of
the gameplay system’s GUI should not be unnecessarily restricted by the interface
of the configuration system.

To meet these requirements, we decided to design a User Interface Management
System (UIMS). UIMS separate the visual GUI components from the application’s
logic, which not only reduces a systems complexity, but also allows these two compo-
nents to be modified separately from each other [12]. Therefore, it is easier to design
the application’s logic without having to think about the GUI design. A system with
a clear structure furthermore facilitates the construction of a robust and adaptable
system which is flexible to changes. This paper presents a UIMS in the form of
a configuration system for the game developed in the Post-fossil cities project. In
order to meet the requirements mentioned above, the UIMS must provide flexible
and dynamic interfaces to all connected system parts. Those interfaces should allow
the GUI of the game players to remain configurable? and flexible® with regard to
future project requirement changes. This leads to the following research questions:

RQ1: What is a possible structure of a configuration system that allows the game-
play GUI to remain configurable and flexible to simulation game requirement
changes?

RQ2: What is a feasible approach to link data streams of an exchangeable backend
system to interchangeable visual components, without generating code dependen-
cies in the simulation game software system?

The remaining part of this paper is structured as follows: Sect. 2 presents back-
ground information about simulation games and the Post-fossil cities project. Section
3 introduces and discusses related work. Section 4 elaborates on the approaches we
used to solve the problem. In Sect. 5, the results are discussed. Section 6 draws a
conclusion and presents some suggestions for future work.

2 Background

This section provides some background about the simulation game developed in the
Post-fossil cities project and the concept of UIMS.

The Post-Fossil Cities Project’s Simulation Game The goal of the “Post-fossil
cities” simulation game is to allow stakeholders involved in the development of
urban systems to explore possible pathways towards the post-fossil Swiss City in a
playful-but-serious manner, while trying to stay within the remaining carbon budget

2 The term “configurable” applies to the gameplay system. It means that the gameplay system should
not be restricted in changing its gameplay mechanics in the future.

3 The term “flexible” addresses requirements to the gameplay system. It means that the gameplay
system should not be restricted in adapting to evolving project requirements.

168 S. Zurmiihle et al.

and at the same time complying with criteria of a good life. The target audience of
the game are decision-makers who are committed to a climate-neutral future and
students as future decision-makers. The game is developed in an interdisciplinary
consortium of researchers and designers from the Technology and Society Labo-
ratory of Empa,* the Informatics and Sustainability Research Group at University
of Zurich,® the Department of Energy and Process Engineering of the Norwegian
University of Science and Technology,® UCS Ulrich Creative Simulations GmbH’
and the Institute for Building and Environment of the University of Applied Sci-
ences Rapperswil.® The simulation game provides the players with the opportunity
to simulate the future development of a fictional city that represents Switzerland.
Through interaction, the players try to reach goals related to the UN Agenda 2030
for Sustainable Development [15] and the specifications of the Paris Agreement [16].
By playing the game, participants with different backgrounds get the opportunity to
take on new perspectives and to learn about sustainable development in the context
of Switzerland. The simulation game allows the players to experiment with different
strategies in a “safe” environment. During the game, players take decisions that are
evaluated with simulation models, such as a dynamic stock-and-flow model of the
Swiss societal metabolism that accounts for the most relevant materials and energy
forms. The players get immediate feedback on the impact of their decisions, which
allows them to assess their decisions and possibly learn from “mistakes” [18].

Major areas where players can take decisions during the simulation game include
the building, transport and energy sectors. The building sector, for example, includes
technology-related decisions such as “more frequent renovations with higher stan-
dards”, “replacement of existing buildings with climate-friendly buildings”, “adap-
tation of heating systems” or “construction of buildings with carbon capture and
storage”, but also includes lifestyle-related decisions such as “reduction of living
space”. In a similar way, the transport sector includes decisions focusing on the elec-
trification of mobility and the decisions in the energy sector concentrate on different
sources of energy. The thereby created decision space allows players to understand
the impact of measures on greenhouse gas emissions as well as the relevant delays
involved and thus to understand the importance of timing and sequencing of mea-
sures.

The simulation game consists—inter alia—of a physical game board and a soft-
ware system that contains a heterogeneous set of simulation models. The software
system is connected with the game board to be able to read the game status provided
by sensors in the game board. The simulation models are used to simulate into the
future based on the general development and on the decisions taken by the players.
In order to display the results and for other game-relevant visualisations, the system

4 https://www.empa.ch/tsl.
3 https://www.ifi.uzh.ch/isr.
6 https://www.ntnu.edu/.

7 http://www.ucs.ch/.

8 http://www.ibu.hsr.ch/.

https://www.empa.ch/tsl
https://www.ifi.uzh.ch/isr
https://www.ntnu.edu/
http://www.ucs.ch/
http://www.ibu.hsr.ch/

Developing a Configuration System for a Simulation Game in the Domain ... 169

Fig. 1 Interaction between
player, game board, > Gameplay System
gameplay system and game
screen GUI |
Data Data

/ N Game Screen
X
‘(\ego'b
(Ca
Information

Game Input

has a GUL The players interact with the board and the GUI while playing the game.
This structure is shown in Fig. 1.
User Interface Management System (UIMS) It is typical for larger software
projects that many components have to interact with each other. For instance, if
a GUI exists for an application, the input given by the users to the GUI has to be col-
lected, processed and actions in response to the user’s input have to be computed. One
possible approach to design such a system is to combine the GUI with the mechanism
responsible for user input and the application logic methods. However, systems inte-
grating application mechanism and logic with GUI or User Interface (UI) elements
have a major drawback: because representation and implementation are tightly cou-
pled, the system is not flexible with regard to later changes. For instance, graphical
elements have to be implemented into the application’s source-code which increases
code complexity—which in turn results in more bugs or more difficult software test-
ing. Thus, having all the different components integrated into the application code
makes it hard to maintain the system flexible while in use of GUI applications [12].
To tackle this problem UIMS were developed. The aim of a UIMS is to separate
the logical system from the GUI code in a computer program and to maintain commu-
nication between them [12]. UIMS allow fast design prototype creation (even before
application code is written), enable interfaces to be flexible to changes during devel-
opment, allow people with different roles in a development team to work together
and reduce development time [11]. Hill [5] stated that the usefulness of UIMS is no
longer questionable. However, there are needed features that allow UIMS to unleash
their full potential. Hill [5] proposed a list of desirable UIMS features that focus
on the UI part: Allow the usage of multiple input devices simultaneously, enhance
communication between UI modules at run-time and allow the UI to be halted during
execution to implement changes. These features may enhance the quality of the UI
that the UIMS is managing. While designing a new UIMS, these features can be used
as a guideline. Another example of a UIMS guideline can be found elsewhere [10].

170 S. Zurmiihle et al.

3 Related Work

This section presents relevant related work in both UIMS and simulation game
research fields.

UIMS There are many implementations of UIMS with several different purposes.
Generally, they can be categorised into research-based and commercial products [6].
ProcSee is an example for a commercial product and focuses on the implementation
of dynamic GUI [7]. On the other hand, Serpent is one example of a research-based
UIMS product. It was developed at the Carnegie Mellon University and enhances
the incremental development of UI throughout the whole project phase. It provides
a layout editor which can be used for interactive prototyping and a dynamic specifi-
cation language used for production and also maintenance. Because the architecture
is designed in a general way, new interface features could be added even during the
development cycle [14].

This paper focuses on the construction of a UIMS in the context of a simulation
game and one of the project goals was the construction of a system that lets the GUI of
the players be flexible and configurable. Therefore, a general architecture is needed.
However, the use-case of this paper is simulation games and not UI development.
Therefore, the Serpent’s system could not be used for the configuration system UIMS
because simulation games depend on more components than the development of UL

After 1990, more enhanced UIMS were built. One of these UIMS was Alpha [8]
which is based on the ideas of the UIMS Serpent. It was designed to make a fast
implementation possible which was furthermore clean and powerful. Additionally,
Alpha’s developers tried to correct the deficiencies of Serpent and its successors [8].
In the research of Shaer [13], the author worked on building dynamically adapted
reality-based interfaces by combining a User Interface Description Language (UIDL)
and a UIMS to make the system flexible to all kinds of input and output-devices. The
UIDL was used to describe and implement the interfaces and keeping the system open
to various devices [13]. These kind of researches addressed the issue that modern
systems have to be adaptable to all kinds of input and output-devices. In this paper,
the configuration system needs to be kept as flexible as possible. Therefore, making it
adaptable to multiple different devices is required. However, because all the systems
above do not feature simulation games, they could not be used for this paper.

Simulation Games Simulation games are applied in different settings and for differ-
ent purposes. A number of such games have been applied in the context of sustainable
development, amongst others to address environmental issues. For example, Van Pelt
et al. [17] investigated the role of simulation games in the context of the commu-
nication of climate change uncertainties. They created a simulation game called
“SustainableDelta” which was used in a workshop with students and water man-
agers. Like in the “Post-fossil cities” simulation game, the players got the chance to
discuss decisions and related consequences [17]. Another example for a simulation
game is Septris [4], an online mobile simulation game in the context of health that
features the detection and treatment of sepsis.

Developing a Configuration System for a Simulation Game in the Domain ... 171

4 Developing the Configuration System

The infrastructure of the “Post-fossil cities” simulation game, excluding the config-
uration system developed here, consists of an interactive game board, a gameplay
GUI application displaying information about the current game state, models used
to run simulation experiments (e.g. a stock-and-flow model to calculate stocks and
flows of materials and energy in Switzerland) and an agent-based simulation system
which handles all the tasks necessary to orchestrate the simulation.

The game board is a tangible object which lets the players physically interact with
it by playing cards. It includes sensors that recognise the players’ actions mediated
by so called decision cards via sensors and process them directly or send them to the
game’s backend system for further computation. For example, a decision card could
state that the player made an investment in solar energy. Playing this card triggers
an update of the current state of the game, to which the players will react again.

The gameplay GUI on a screen is designed to present visualisations in order
to inform all players about the game actions and states. Those visualisations are
composed of visual components. They can be common charts such as line charts or
more creative ones like a filling glass of water that represents a carbon budget. During
the game, the visualisations are updated according to the played decision cards of the
players. Thus, the players always see the impact of their actions. The gameplay GUI’s
coupled backend system manages which visual components and information are
shown and how they behave on the display during the game. The gameplay backend
gets its data from the simulation system, which selects the appropriate models to
use. For instance, a model could calculate data about yearly CO, emissions. The
output of those models are used as data source for the visual components shown on
the gameplay GUI and the configuration system’s GUI. The UIMS interacts with the
gameplay’s backend system and the simulation system.

The configuration system handles three interfaces: the configuration data transac-
tion to the gameplay system, the model’s data extraction from the simulation system
and the definition of the visual component storage. The transaction of the configura-
tion data is done by transferring a JavaScript Object Notation (JSON) file containing
the data. The configuration system communicates with the simulation system via
Application Programming Interface (API) calls. The visual components designed
for the simulation game are stored in a git repository and are dynamically loaded
into the configuration system.

The UIMS consists of a frontend GUI, a backend system, a database and an
external data storage. Figure 2 shows an overview of the overall simulation game’s
structure. All components which belong to the configuration system are indicated
with the colour orange. A git repository is used as a data storage for visual compo-
nents. This part is coloured in purple. The blue components are part of the gameplay
system and the green box represents the simulation system. The following sections
will elaborate on the separate system parts of the configuration system. The source
code of the configuration system can be found in a digital repository [19].

172 S. Zurmiihle et al.

Data
Configurations as S S

JSON-String
I
T API Response
i API Call
I

- ~.
<~ Gameboard > Screen ¢ Configurations > Configuration
N /;1 (GUI) System Database o Backend
=

-
) f . React ?
Files containing ’7 Components Dita

Visual C(fmponents

Git Repository Fi - Visual i i
s iles containing Configuration
containing all Game —— Visual Components —>» Component Display (GUI)
Components Parser
)
Ve N\
(\ Facili-
~ | Player | ~ m;
- \ N
[\ [\ Facili- Facili-
| Player | | Player tator tator

Fig. 2 Simulation game project structure

Frontend The configuration system is a web-application. A web-application is not
device bound, which means that every device that has access to the web server
of the simulation game has access to the configuration system’s application. The
frontend part consists of the GUI that the game facilitators interact with to set the
configurations. Its most important requirement was to enable the facilitators to make
all needed configurations and update the backend system about the made changes.
The following were the UIMS frontend’s requirements:

1. It must be possible to choose from which git repository to load the visual com-
ponents from.

2. Itshould be possible for the facilitators to decide which of those visual components
are then shown on the gameplay GUI screen.

3. Facilitators should be able to decide which decision cards can be used during the
game session.

4. It should be possible to arrange the chosen visual components on screen.

5. The facilitators should be able to upload their configurations.

These requirements were collected by conducting interviews with the UIMS’s
stakeholders, i.e. the game’s current facilitators. To keep the system as flexible as
possible, facilitators must be able to configure from which git repository the visual
components are imported from. The storage of the visual components is therefore not
limited to one specific git repository. Thus, to fulfil the first requirement, a separate
webpage was created which enables the user to enter a link to the git repository of
the visual components. A screenshot of this webpage is shown in Fig. 3a. To fulfil
the second and third requirement, a separate webpage was created which is split into
two parts: the visual components settings, shown in Fig. 3b, and the decision cards
settings, presented in Fig. 3c. All available visual components and decision cards are
listed in a separate checkbox list from where they can be enabled or disabled. For each

Developing a Configuration System for a Simulation Game in the Domain ...

= Sotiings

(a) Settings webpage enabling the
game facilitator to enter a git reposi-
tory link

(b) Webpage enabling the game facil-
itator to decide which visual compo-
nents should be used during the game
session

m

Asrange Visual Components.

=

(c) Webpage enabling the game facil-
itator to decide which decision cards
should be used during the game session

(d) Webpage enabling the game facili-
tator to arrange visual components on
screen - here one of three components

173

is located in the toolbox

Fig. 3 Screenshots of the web-application of the configuration system

visual component or decision card their corresponding parameters can be modified
in a separate box. Parameters can be static, e.g. the colour of the visual component, or
dynamically linked, e.g. which model in the simulation system provides the data that
the visual component needs.’ Lastly, in order to fulfil the fourth and fifth requirement,
a third webpage was designed which focuses on the arrangement of the chosen visual
components. A screenshot of this webpage is shown in Fig. 3d. All previously chosen
visual components are shown on the screen. If there are too many components at
a time on the screen, individual components can be placed within a toolbox for
temporary storage. The size of the components can be adjusted and if the game
facilitator is satisfied with their arrangement, they can save the settings by pressing
a finish button. By pressing on a preview button, the facilitator can see how the
arrangement is going to look like on the gameplay system’s interface. By using those
webpages, the facilitators can modify all needed simulation game settings before
each game session starts.

9 Because the output of a model itself changes dynamically during a game session, these parameters
are called dynamic.

174 S. Zurmiihle et al.

Backend While the frontend of the configuration system is responsible for the GUI
display, the backend manages all application logic and interface connections of the
system. It is therefore responsible for managing the connection to the database
(including inserting or updating and extracting information), receiving from and
write data to the simulation system, defining API calls which are used to send to and
receive information from the frontend system and loading the visual components
from a git repository into the system.

The backend system follows the Model-View-Controller (MVC) design pattern
[9]. The application logic, e.g. extracting data from a data storage, is performed in the
Model part of the design pattern. The Controller part is responsible for preprocessing
the data and defining API calls between the backend and frontend. The View is
however implemented in the frontend and defines the GUI display.

Database The configurations made with the UIMS’s GUI are saved to a database.
A database can store data permanently in a separate place. It is also easy to extract
required data if the database is properly managed. The configurations done with the
configuration system can therefore be stored for a long period of time and can be
easily accessed. A relational database was used, which is based on a relational model
[2]. The database is only accessed by the backend system, which extracts and writes
data into it.

Interface Between UIMS and Gameplay System To communicate the configura-
tions made in the configuration system’s web interface to other system parts in the
simulation game, a JSON file is used. JSON files have a tree like structure, which
allows the information to be easily extracted. It is also quite simple to add additional
information, without changing the existing content [3]. Thus, using JSON format to
store information makes it easier for other system parts of the simulation game to
process the configuration data. Of course, the data can also be extracted from the
database directly. However, to do so multiple SQL queries have to be written as the
data is stored in multiple tables across the database. This approach would not be
flexible to future changes in the database. Furthermore, information in a JSON file
can be accessed with one call. Therefore, additionally storing the information in a
JSON file to communicate the configuration data keeps the system simpler and more
flexible.

Git Repository Data Storage On the configuration webpage, the game facilitators
can view all available visual components and arrange them on screen, as to set how
the final gameplay GUI should present them. It makes most sense to directly show
the visual components as they are going to look like when they are used during
the game session. Thus, the configuration system needs access to all visual com-
ponents’s source code in order to visualise them directly on the configuration GUIL
Furthermore, the visual components are bound to change, which means that the con-
figuration system should always have access to their updated version. Storing the
visual components in an external repository, such as git, makes for a clean solution
in the context of the configuration system. Git is a distributed version control system
used to store source code and track its development [1]. The features of git are perfect

Developing a Configuration System for a Simulation Game in the Domain ... 175

for the configuration system’s use-case. Storing the visual components elsewhere and
loading them on-demand into the system keeps the system flexible to changes. The
designers of the visual components can upload them into a git repository. Whenever
the visualisations change or are updated, the designers simply need to push their
new version onto the repository. The configuration system on the other hand only
needs the URL to the git repository that stores the visual components and, by cloning
it, gets immediate access to the source code of all visual components. Their code
can then furthermore be used in the UIMS’s frontend system to visualise the visual
components on screen.

Because hardcoding the link to the git repository into the configuration system
is inflexible to changes, the facilitators can update the repository URL by using
the system’s GUI. Thus, the facilitators do not need to know about how the visual
components are stored or updated. They only need to know that they need to provide
the link to the right repository to the configuration system. After submitting the
link, the frontend system transfers it to the backend system by using API calls. The
backend then checks the URL, clones the corresponding git repository and updates
the database with the new git repository link. Thus, when the git repository link
was once submitted through the configuration GUI, it does not need to be re-entered
again. The visual components from the entered git repository are then available for
usage in the configuration system.

However, there is one major issue when using a git repository as a visual com-
ponents storage: How can the configuration system detect if a file on a given git
repository contains one or multiple visual components? It is not a flexible approach
to assume that all files in the repository only contain one visual component. This
assumption restricts the designers of the visual components too much because they
would lose the possibility to write multiple classes or methods into one file. There-
fore, a simple annotation language was created to detect visual components. These
annotations are placed within the documentation strings (docstring) of given objects,
such as classes, methods or functions. Furthermore, the annotations define which
model data the visual components need. In order to define the model output data,
static values or dynamic paths to the location of the datastreams can be used. To read
the annotations, a parser was implemented which walks through all files in a given
folder and checks if a file contains any visual components. It furthermore extracts all
needed information stated in the annotations which is needed to include the visual
components in the configuration system.

By using these annotations, all visual components can be integrated into the con-
figuration system. Even when the location of the git repository changes, the process
of extracting the visual components stays the same which makes the system flexible
to newly defined or updated visual components.

UIMS and Game GUI Integration To integrate the configuration system into the
simulation game architecture, the connection between the gameplay GUI and UIMS
must be established. The gameplay GUI has to be extended in order to successfully
combine those two system parts. The following additional components have to be
created: a configuration data extractor, API calls between the gameplay system and

176 S. Zurmiihle et al.

the simulation system and a visual components loader as well as parser. In order
to get access to the configuration data of the UIMS, the gameplay system has to
extract the configuration data from the configuration system’s database. Because all
configuration data is available as a JSON structure within the database, only this
file has to be extracted using a single SQL call. JSON allows easy access to its
stored data, therefore extracting the configuration data can be established by using
existing methods. The gameplay system then knows which visual components it
should visualise, what their size is and where on the screen they are located. The
system also knows which data the visual components need in order to be visualised
correctly. Static data can directly be used. However, if data paths are given, the
system has to extract the data from the given path inside the simulation system. API
calls are used to exchange this data. The extracted data has then to be passed to the
visual components. In order to extract the source code of the visual components,
the gameplay system has to use the same mechanism as in the configuration system
to clone the given git repository. The link to the repository is also given in the
configuration JSON. Because the visual components contain the annotation language
described above, the parser of the configuration system can be used in order to check
which files in the repository contain visual components. As a result, the gameplay
system knows which classes or methods it has to import in order to visualise the
visual components on screen. Because the dynamic data is extracted directly from
the simulation system, the visual components data is always up to date. By completing
those steps, the configuration system can be integrated with the gameplay GUI of
the simulation game. Of course, this procedure is not limited to this specific use-case
but can be used for various other simulation games with similar system components.

5 Discussion

Research Question 1 In order to answer the question “What is a possible structure
of a configuration system that allows the gameplay GUI to remain configurable
and flexible to simulation game requirement changes?”, the configurations made in
the configuration system have to be flexible to changes. The communication channel
between the UIMS and the gameplay system consists of a single JSON file. The JSON
syntax is in itself flexible to new content because it is structured like a tree. New
content can simply be added without changing the whole structure [3]. Therefore,
even when the gameplay system changes in structure and requires more information,
the JSON output file can still be used because the new content can easily be added.
If configuration requirements change in the future, the gameplay system is still able
to change its architecture. The JSON output file of the UIMS remains flexible to
newly defined requirements as well as to changes in the configuration process. Thus,
the gameplay system remains flexible in its definition and structure. Therefore, the
answer to RQI is to design a UIMS with the properties stated above.

Developing a Configuration System for a Simulation Game in the Domain ... 177

Research Question 2 To answer the question “What is a feasible approach to link
data streams of an exchangeable backend system to interchangeable visual com-
ponents, without generating code dependencies in the simulation game software
system?”, designing a dynamic loading of visual components and their correspond-
ing model data was essential. Given that it is possible that the gameplay system
uses other types of visual components than the ones designed, a dynamic visual
component extraction mechanism is important for the simulation game. Because the
configuration UIMS allows to point to a location where the visual components are
defined (in the form of a git repository link), the visual components can simply be
swapped out by others. Furthermore, the annotation language enables the system
to recognise visual components in a given collection of code files. This annotation
language makes it possible to extract all needed information used to load the visual
components in the system. Thus, visual components can be dynamically loaded into
the system without having to include any additional code in the UIMS’s source code.
This procedure has the advantage that the gameplay system can use other visual
components in the future and the configuration system does not need to be adapted.
The game facilitators simply have to input a new link in the settings page of the web-
application which loads the new components automatically. Additionally, the defined
annotation language and its corresponding parser are not limited to the defined con-
figuration UIMS, but can also be used in other simulation game system parts that use
visual components, such as the gameplay system’s GUI.

The data used in the visual components are extracted from the simulation system.
However, this data processing system might also change. If the gameplay system
needs other information for the visual components in the future, the configuration
system’s structure also does not need to be changed. The only thing that needs
to be adapted is the data’s location in the visual components annotations and the
API between the configuration system and the simulation system. Therefore, the
extraction of the model data is not limited to one source which makes the system
flexible to changes and provides a dynamic structure. Thus, the answer to RQ2 is to
design a UIMS with the interface properties stated above.

6 Conclusion

We showed the design and implementation of a UIMS in the specific form of a
configuration system for the simulation game of the Post-fossil cities project. The
UIMS enables the gameplay system of the simulation game to remain flexible and
configurable even when project requirements evolve in the future. It allows the game
facilitators to decide which visual components and decision cards will be used dur-
ing the game session and to decide which dataset these components will use. The
UIMS consists of a web-application with a frontend, backend and database part. To
communicate the configurations of the configuration system to the gameplay system,
the JSON format is used which has a very flexible structure that is easily extendable.
To dynamically load the visual components into the system in order to let the facil-

178 S. Zurmiihle et al.

itators modify them, the UIMS contains a git loader and parser that clones a given
git repository, which contains the visual components, and extracts the corresponding
files by using an annotation language. This structure allows the visual components
to be independently designed as they do not need to be added directly as source-code
into the configuration system. The data used for the visual components is stored
externally in the simulation system. Overall, the configuration system lets the game
facilitators define where the visual components are stored, allows them to define
which components are used and let them specify the used model data. The final con-
figuration is then stored into a database, where it can easily be extracted for further
usage in the gameplay system. Due to the flexible structure of the UIMS, the game-
play system’s flexibility and configurability is still provided when integrating the
UIMS into the overall simulation game architecture of the Post-fossil cities project.
However, the configuration system is not limited to be integrated with the presented
simulation game, but could also be integrated with other kinds of simulation games.
The flexible structure of the configuration system allows such a use-case extension.

In a future version it should be possible to store multiple configurations in the
UIMS. Only one configuration can be edited and stored at a time so far. Further-
more, the configuration can only be stored in one language. For the future, it would
be beneficial to enable the creation of different language versions of the same con-
figuration. This feature would allow to use the settings made by the game facilitators
for different groups of users who have similar interests but speak different languages.

To sum up, by using the configuration system in the simulation game, the game
can be adapted to various types of target groups, enabling the game to unleash its
fullest potential. By adapting how the simulation game represents information, the
simulation game can bring across several messages to the players, making the game
experience as effective as possible and helping players finding ways to reduce CO,
emissions in future urban development.

Acknowledgements This work was supported by the Swiss National Science Foundation (SNSF)
within the framework of the National Research Program “Sustainable Economy: resource-friendly,
future-oriented, innovative” (NRP 73) Grant-N° 407340_172402/1. Aside from the authors, the
following team members were involved: Markus Ulrich, Marta Roca Puigros and Daniel Miiller.

References

1. Chacon, S., Straub, B.: Pro Git, 2nd edn. Apress (2014)

2. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),
377-387 (1970). https://doi.org/10.1145/362384.362685

3. Crockford, D.: The application/json Media Type for JavaScript Object Notation (JSON). https://
tools.ietf.org/html/rfc4627 (2006). Last visited: 13 April 2020

4. Evans, K.H., Daines, W., Tsui, J., Strehlow, M., Maggio, P., Shieh, L.: Septris: a novel, mobile,
online, simulation game that improves sepsis recognition and management. Acad. Med. 90(2),
180 (2015)

5. Hill, R.D.: Some important features and issues in user interface management systems. SIG-
GRAPH Comput. Graph. 21(2), 116120 (1987). https://doi.org/10.1145/24919.24928

https://doi.org/10.1145/362384.362685
https://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc4627
https://doi.org/10.1145/24919.24928

Developing a Configuration System for a Simulation Game in the Domain ... 179

6. Iannella, R.: A graphical user interface reference model for messaging systems with directory
integration. Ph.D. thesis, Bond University (1994)

7. IFE Institute for Energy Technology: Procsee graphical user management system technical
overview. https://ife.no/wp-content/uploads/2018/12/ProcseeTechOverview.pdf (2018). Last
visited 13 April 2020

8. Klein, D.: Developing applications with a uims. In: Proceedings of USENIX Applications
Development Symposium, pp. 37-56 (1994)

9. Krasner, G.E., Pope, S.T., et al.: A description of the model-view-controller user interface
paradigm in the smalltalk-80 system. J. Object Orient. Program. 1(3), 2649 (1988)

10. Lane, T.G.: A design space and design rules for user interface software architecture. Technical
report , Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA (1990)

11. Myers, B.A.: Creating User Interfaces by Demonstration. Academic Press Professional Inc.,
San Diego (1988)

12. Olsen, D.: User Interface Management Systems: Models and Algorithms. Morgan Kaufmann
Publishers Inc., San Francisco (1992)

13. Shaer, O.: A framework for building reality-based interfaces for wireless-grid applications.
In: CHI ’05 Extended Abstracts on Human Factors in Computing Systems (CHI EA’05), pp.
1128-1129. ACM, New York, NY, USA (2005). https://doi.org/10.1145/1056808.1056845

14. Software Engineering Institute: Serpent overview. Tech. Rep. CMU/SEI-89-UG-2, Carnegie
Mellon University (1989)

15. UN General Assembly: Transforming our world: The 2030 agenda for sustainable development
(2015). A/RES/70/1

16. UNFCCC: Adoption of the Paris agreement. In: United Nations Framework Convention on
Climate Change. Report No. FCCC/CP/2015/L.9/Rev.1 (2015)

17. Van Pelt, S., Haasnoot, M., Arts, B., Ludwig, F., Swart, R., Biesbroek, R.: Communicating
climate (change) uncertainties: simulation games as boundary objects. Environ. Sci. Policy 45,
41-52 (2015)

18. Wiger, P.: Post-fossil cities. http://www.nfp73.ch/en/projects/cities-mobility/post-fossil-cities
(2018). Last visited 13 April 2020

19. Zurmiihle, S.: isr-ifi/pfc-uims: Pfc-uims v1.0.0 (2020). https://doi.org/10.5281/zenodo.
3690735

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://ife.no/wp-content/uploads/2018/12/ProcseeTechOverview.pdf
https://doi.org/10.1145/1056808.1056845
http://www.nfp73.ch/en/projects/cities-mobility/post-fossil-cities
https://doi.org/10.5281/zenodo.3690735
https://doi.org/10.5281/zenodo.3690735
http://creativecommons.org/licenses/by/4.0/

	 Developing a Configuration System for a Simulation Game in the Domain of Urban CO2 Emissions Reduction
	1 Introduction
	2 Background
	3 Related Work
	4 Developing the Configuration System
	5 Discussion
	6 Conclusion
	References

