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Zusammenfassung

Knowledge Graphs (KGs) haben in den letzten Jahren große Aufmerksamkeit in der
Forschung erregt, da sie es ermöglichen, halbstrukturierte Informationen auf einheitliche,
verbundene und organisierte Weise zu speichern. Die inhärenten Merkmale dieser Daten-
struktur werden bei vielen Aufgaben genutzt, z. B. bei der Informationsbeschaffung, bei
Empfehlungssystemen usw.

Gleichzeitig gibt es Herausforderungen beim Verstehen und Schlussfolgern auf einer
Teilmenge einer KG. Ein Szenario wäre die Beantwortung von Fragen über KGs. Fragen
in natürlicher Sprache können in ihren Ausdrücken flexibel sein, was bedeutet, dass es
für Maschinen schwierig ist, eine Antwort aus einem KG zu finden, wenn eine Frage von
einem Menschen gestellt wurde.

[Qiu et al., 2020] schlug einen auf Reinforcement Learning (RL) basierenden Ansatz
vor, der Antwortentitäten für Multi-Hop-Fragen durch schrittweises Schlussfolgern über
KGs findet. Inspiriert von dieser Arbeit, übernimmt diese Arbeit den Hauptteil des
Modells als Basisarchitektur und untersucht drei Forschungsfragen.

Die Prämisse des KG-Reasonings ist die genaue Auswahl von Themenentitäten. In
dieser Arbeit wird ein passiver Entity Linker angepasst, um Frageerwähnungen mit KG-
Knoten zu verknüpfen. In Schlussfolgerungsprozessen wird ein Aufmerksamkeitsmech-
anismus implementiert, um die Historie von Aktionen mit semantischen Informationen
aus Fragen zu verknüpfen, so dass ein Agent lernen kann, auf welchen Teil von Fragen
er sich konzentrieren muss.

Herkömmliche RL-basierte Argumentation gibt nach abgeschlossenen Argumentation-
sepisoden eine endgültige Belohnung zurück, was zu einem Mangel an Orientierung
im sequenziellen Entscheidungsprozess führt. Um dieses Problem zu beheben, verwen-
den wir stattdessen potenzialbasierte Shaping-Belohnungen. Die empirischen Ergebnisse
zeigen, dass die Reward-Shaping-Funktion die Leistung von hits@1 bei zwei Benchmarks
verbessert.





Abstract

Knowledge graphs (KGs) have drawn a wide research attention in recent years, since they
enable semi-structured information to be stored in an unified, connected and organized
way. The inherent features of this data structure are leveraged in many tasks, such as
information retrieval, recommendation systems, etc.

Meanwhile, there are challenges in understanding and reasoning on a subset of a KG.
One scenario would be question answering over KGs. Natural language questions can be
flexible in expressions, which means that it is difficult for machines to retrieve an answer
from a KG given a question posed by human.

[Qiu et al., 2020] proposed a reinforcement learning-based (RL-based) approach, which
finds answer entities for multi-hop questions via stepwise reasoning over KGs. Inspired
by its work, this thesis adopts the model’s main body as a baseline architecture and
investigates three research questions.

The premise of KG reasoning is the accurate selection of topic entities. This work
adapts a passive entity linker to link question mentions to KG nodes. In reasoning
processes, an attention mechanism is implemented to associate history of actions with
semantic information from questions, such that an agent can learn on which part of
questions to focus.

Conventional RL-based reasoning returns terminal rewards after complete reasoning
episodes, resulting in a lack of guidance in sequential decision process. To address this
problem, we use potential-based shaping rewards instead. The empirical results show
that the reward shaping function improves the hits@1 performances on two benchmarks.
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Introduction

Knowledge graphs (KGs) serve as an unique and vital form of data structure in knowledge
representation. KGs extract human knowledge into graph-structured datasets, which are
typically composed of fact triples consisting of entities and relations, e.g., (Bern, capital
of, Switzerland). In fact triples, entities can be real-world objects or abstract concepts,
and relations denote the relationships among entities.

Large-scale KGs have been developed to organize massive real-world information in
a consistent, structured, and connected manner. There are many widely known ap-
plications, including open KGs, such as DBPedia1, Freebase2, and YAGO3, as well as
proprietary KGs, such as Google’s knowledge graph4, which in fact has introduced the
term “Knowledge Graph” for the first time in 2012 [Fensel et al., 2020].

Over the past few years, emerging advanced techniques on KGs, e.g., KG embedding
models and KG reasoning, have promoted the development of various applications in
real world. The rich semantic information stored in KGs motivates people from both
academia and industry to explore how to utilize this type of structured knowledge and
how to further improve their own products or services. The tasks of KG applications fall
into several categories, e.g., recommendation systems, question answering, information
retrieval, etc.

Among those research areas, question answering on knowledge graphs (KGQA) refers
to a task, that answers are automatically extracted from KGs given natural language
questions [Fu et al., 2020]. For example, the question “who directed the film the Truman
Show?” expects for an entity name “Peter Weir”. In general, this kind of single-hop
questions can be resolved by matching with KG triples in one go. However, dealing
with other complex questions should be a way more troublesome work, because multi-
hop relations are involved in it, such as the query “what were the release dates of films
starred by actors in Rain Man?”.

In previous studies, efforts have been made on semantic parsing-based (SP-based)
methods and information retrieval-based (IR-based) methods. SP-based approaches
heavily rely on either manually defined templates and rules or neural networks, in order

1http:// dbpedia.org/
2http://www.freebase.com/
3https://www.mpi-inf.mpg.de/ departments/ databases-and-information-systems/ research/
yago-naga/ yago/ downloads/

4https:// developers.google.com/ knowledge-graph/
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to parse natural language questions and to get logical forms. IR-based approaches con-
strain query scopes to subgraphs surrounding topic entities, and leverage features from
questions as well as context information in the subgraph. One representative type of
IR-based methods is based upon representation learning mechanism, that maps ques-
tions and answer entities to vectors and calculates semantic similarities between them
[Fu et al., 2020].

Since SP-based solutions require sophisticated query parsing and high-quality logic
forms, which might be difficult to master for non-expert users, some researchers are
particularly interested in developing end-to-end IR-based systems through representa-
tion learning. To date, several state-of-the-art reinforcement leaning-based methods
[Qiu et al., 2020][Hildebrandt et al., 2020a] are proposed, making use of mutual infor-
mation between semantic features of questions and KG’s context, which are collected
from interactions between agents and environments. Based on the KGQA framework in
[Qiu et al., 2020], this work aims to investigate three research questions (RQs):
RQ1: Which entity linking method is appropriate for the KGQA task?
Starting nodes of KG reasoning are crucial to overall performance, because topic

entities directly determines whether it is possible that an agent can arrive at target
entities within limited steps. Though topic entities are labelled in questions explicitly
in some datasets, models trained on them will lack the ability to generalize to raw and
unprocessed questions.
RQ2: Does history-aware question representation matter in sequential de-

cision making?
Given a question, the representation of words remains static at each reasoning step

in the state-of-the-art model [Hildebrandt et al., 2020a], which omits the action history
when computing the mutual information between queries and candidate answers. The
work will investigate whether decision history provides useful insights in reasoning by
introducing an attention module.
RQ3: Does reward shaping mechanism affect agent’s performance?
In a policy-based RL procedure, a binary reward function is typically used to guide

an agent towards right learning direction. The rewards are only generated after long
reasoning episodes during which no feedback is available to agent. This results in weak
supervision [Qiu et al., 2020] and low quality rewards [Lin et al., 2018]. The potential-
based reward shaping mechanism [Ng et al., 1999] has been proven effective in addressing
this problem. The work will evaluate the effect of shaping rewards in the following
experiments.

The contributions of this thesis are threefold: i) an RL-based QA framework is pro-
posed; ii) the model is tested on two benchmark datasets, which are PathQuetion
[Zhou et al., 2018] and MetaQA [Zhang et al., 2018]; iii) extensive experiments are de-
signed and conducted to investigate the aforementioned three research questions.

The rest of the thesis is organized as follows. Chapter 2 covers a holistic literature
review regarding KGQA methodologies and relevant techniques. Chapter 3 is the main
part that formally defines the KGQA problem and explains the proposed framework in
detail. Chapter 4 exhibits experiment settings, empirical results, and an investigation on
reasoning behaviors at different steps. Chapter 5 presents an interpretation on model’s

2
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performance and a limitation analysis. Finally, a conclusion is drawn in Chapter 6.
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2

Related Work

This chapter summarizes related studies, presents a holistic review on the background,
and elaborates how some of them have inspired this work. In the following, three topics
are covered, which are: (i) the related KGQA methods, (ii) reinforcement learning and
its applications on KGs, and (iii) a brief description on entity linking approaches.

2.1 Question Answering on Knowledge Graphs (KGQA)

KGQA aims to retrieve answers from knowledge graphs given natural language questions.
Current mainstream approaches can be classified into two categories, which are semantic
parsing-based (SP-based) methods and information retrieval-based (IR-based) methods.

2.1.1 Semantic Parsing-based Methods

Traditional Semantic Parsers

[Bast and Haussmann, 2015] proposes a system named Aqqu which automatically con-
verts a natural language question to a SPARQL 1 query. The core thoughts are casting
questions to one of three predefined templates and matching words in questions with
KG relations. After constructing a set of query candidates, a ranking procedure is ap-
plied to identify the optimal matching one by taking 23 predefined ranking features into
consideration, including features for entity matches, features for relation matches and
other combined features.

Query Graphs

In [Reddy et al., 2014], the authors introduce GraphParser to treat semantic parsing
as a graph matching problem. They first construct an ungrounded query graph out
of the output of a combinatory categorical grammar (CCG) parser based on a given
question and then map it to grounded subgraphs in Freebase [Bollacker et al., 2008].
The model is trained to identify the best grounded graph using weak supervision gained
from denotations of natural language questions.

1https://www.w3.org/TR/ rdf-sparql-query/
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Another approach implementing query graphs in KGQA is STAGG [Yih et al., 2015].
Query graphs constructed under this framework can show high resemblance with KG
subgraphs, and those query graphs can be mapped to lambda-calculus logical forms
[Wong and Mooney, 2007]. Given a quetion, the whole solution includes three steps:
identifying the question’s topic entity, extracting the main relation between the topic
entity and a possible answer entity, and enlarging the query graph based on other con-
straints described in that question. The three steps above also contribute as features
captured for the purpose of KG and question match. The returned entity linking score is
the first feature. Two convolutional neural networks (CNNs) are trained to indicate the
quality in the core inferential chain: PatChain, making comparison between pattern and
KG predicates, and QuesEP, comparing the question with the concatenation of topic
entity and predicates. STAGG reduces the semantic parsing process to the construction
of query graphs and the formation of staged problems.

A follow-up study [Bao et al., 2016] dedicates to extend the scalability of STAGG to
questions including multiple constraints. The authors bring a Multi-Constraint Query
Graph along with several types of constraints, e.g., entity constraint, type constraint,
and explicit/implicit temporal constraint. Those constraints would be extracted from
questions and added to query graphs of complex questions.

Encoder-Decoder Architectures

Some researchers find that encoder-decoder architectures can enable across-domain gen-
eralization without laborious human annotations. [Dong and Lapata, 2016] presents an
attention-enhanced sequence-to-sequence model which maps input questions to logical
form representations as depicted in 2.1. Furthermore, the authors upgrade the model to
a sequence-to-tree framework to reflect the hierarchical structure of outputs.

Figure 2.1: Input questions and logical representations are encoded and decoded end to
end. [Dong and Lapata, 2016]

[Liang et al., 2016] proposes Neural Symbolic Machine which is a Manager-Programmer-
Computer framework. The “programmer” converts language queries to programs as
token sequences using an encoder-decoder model. The “computer” is responsible for

6



2.1. QUESTION ANSWERING ON KNOWLEDGE GRAPHS (KGQA) 7

program execution based on a Lisp interpreter. And the “manager” collects rewards
returned and provides a weak supervision during the training procedure.

One recent research [Jin et al., 2021] observes that previous studies on multi-hop ques-
tion answering did not fully realize the impact of the relational chain order and relation
types on performances, and neglected the implicit relations between topic entities and
answers in KGs. Therefore, the authors proposed a Relational Chain based Embedded
KGQA (Rce-KGQA) which learns explicit relation chains implied by questions and ex-
tracts implicit relation chain from KGs. The architecture includes an answering filtering
module and a relational chain reasoning module. The former module aims to filter a set
of candidate answers by ranking their scores concerning questions together with topic
entities. A question semantic parser is implemented to provide vector representations of
relations between topic entities and answer entities. The latter module is responsible for
encoding shortest reasoning paths that lead to answer entities via a bidirectional long
short-term memory (LSTM) and computing the similarity scores between relational rea-
soning chains and questions. This method utilizes intermediate relation chain signals in
question answering which brings more reliable model reasoning.

In summary, semantic parsing-based approaches generally require deliberately de-
signed templates and extracted features to convert questions into machine interpretable
representations. Those methods can generate structured logical forms out of natural
language questions at the cost of usability and accessibility to those don’t possess lin-
guistic knowledge. Another aspect is that it is challenging to train a neural semantic
parser since gold logical forms are rare [Fu et al., 2020].

2.1.2 Information Retrieval-based Methods

This type KGQA methods follow two directions: feature engineering and representation
learning. Generally speaking, an IR-based method starts with entity linking and finds
answers in subgraphs around identified topic entities. Meanwhile, a scoring function is
used to measure the semantic similarity between questions and candidates. This type
of methods are capturing more and more attention for its template-free training process
and the end-to-end QA workflow.

Feature Engineering-based Methods

[Yao and Van Durme, 2014] proposes a model that utilizes four features of input ques-
tions to construct question feature graphs, which consist of question words (e.g., what,
where), question focuses (indicating answer types, e.g., name), question verbs (main
verbs of questions, e.g., play), and question topics (topic entities retrieved by a named
entity recognizer). A subset of entitiess within several hops from a topic entity is ex-
tracted as a topic graph, and it is combined with its question graph via a pairwise con-
catenation to capture association in their representations. From the observed aligned
pairs, the co-occurrence matrix between words and KG relations is computed. The an-
swer entity is judged by a binary classifier which takes question features and topic graphs
as input.

7
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Representation Learning Methods

Representation learning-based approaches leverage the neighborhood information of iden-
tified topic entities. All nodes within a certain subgraph are treated as candidate answers
and ranked by outputs of a scoring function that measures the similarity between ques-
tions and candidates.

According to question types and reasoning procedures, they can be classified into two
types: factoid QA and multi-hop QA.

Factoid Single-relation QA

Factoid single-relation QA task refers to a scenario that questions posed by users seek
for matching factual triples in underlying KGs to obtain answers and no multi-hop rea-
soning over KGs is required. A recent SimpleQuestions dataset [Bordes et al., 2015]
is commonly used as the benchmark in this thread of research.

[Yin et al., 2016] proposes a QA model that addresses single-relation factoid questions
via a two-step pipeline. The first step is an entity linking task and the second one is
a fact selection operation. Therefore, the authors introduce an architecture containing
a character-level convolutional neural network (CNN) and a word-level CNN to solve
these problems. At the first step, they utilize a BiLSTM-CRF (Bidirectional LSTM-
Conditional Random Field) model to detect a question mention then do matching with
entity candidates, and then they can find the topic entity of the question. As for the
second step, patterns extracted from questions are compared with KG predicates via a
Word-AMPCNN (Attentive MaxPooling Convolutional Neural Network), which adopts
an attentive maxpooling mechanism during the pattern-predicate match procedure.

[Mohammed et al., 2017] conducts a set of experiments to understand the contribution
of different neural network (NN) architectures in answering simple questions. Their work
consists of three subtasks, which are entity linking, relation prediction and end-to-end
QA based on SimpleQuestions dataset. Revealed by the experimental results, the
effectiveness of some over complicated NN models is not necessarily superior than a
baseline with simple heuristics. Even the baseline without NNs that combines logistic
regression (LR) with conditional random field (CRF) model still acquires fairly good
accuracy in entity linking for QA.

As proposed in [Sun et al., 2018], the model GRAFT-Net performs QA tasks by com-
bining knowledge graphs with questions, which is an early-fusion strategy. To answer a
natural language question, the model takes in a heterogeneous question graph formed
from both KG facts and the text of queries, which allows multiple information sources to
be considered. Therefore, the model is trained to classify whether node is answer entity
in the question graph containing text documents of question and entities from KGs.

Multi-hop QA

As for complicated questions that cannot be solved within one-hop reasoning on KGs,
methods have been raised to handle such multi-hop questions.

[Miller et al., 2016] proposes a Key-Value Memory Network (KV-MemNN) to assist
in answering general questions either within or out of the domain of KG via reading
documents directly. Because information in text can be far less structured than that
in KB, KV-MemNN first stores facts in memory which could be retrieved by keys in

8



2.1. QUESTION ANSWERING ON KNOWLEDGE GRAPHS (KGQA) 9

terms of questions. There are three steps involved in dealing with memory, key hashing
(to filter those memories that share words with the input question), key addressing (to
assign each candidate key a probability regarding the question) and value reading (to
compute the weighted sum of memory values with their addressing probabilities). The
framework allows prior knowledge to be stored in a structured way before reasoning, and
it bridges the gap between knowledge graph and text.

Considering the encoding of differences between questions and KG components, a
novel model is introduced in [Chen et al., 2019], namely Bidirectional Attentive Memory
networks (BAMnet). There are four components in the model: an input module, a
memory module, a reasoning module and an answer module. The input module encodes
question embeddings via a bidirectional LSTM. The memory module evaluates each
candidate around the topic entity through three types of information, which are answer
type, answer path and answer context. After that, the aforementioned knowledge will
be stored in a key-value memory module. In the reasoning module, a two bidirectional
attention network is applied during the interaction between KGs and questions. The
first network focuses on parts of a question given a KG and the components of a KG
regarding a question, and the secondary one aims to enhance representations of KGs
and questions. Unlike methods that encode questions and KGs separately, BAMnet is
capable of capturing two-way interactions between them, and the usage of attention
mechanism also brings better interpretability.

[Qiu et al., 2020] puts forward a stepwise multi-hop reasoning model based on rein-
forcement learning (RL). Input natural language questions are encoded by a bidirectional
gated recurrent unit (GRU) network, and an agent can traverse over KGs in a sequential
decision procedure, judging which action to take next. At each step, representations of
question are updated according to the present action spaces. A history encoder is also
implemented to incorporate actions taken in agent’s paths. Besides, the policy-based
RL agent takes not only the final reward after one reasoning episode, it can be guided
by the intermediate rewards during transitions from states to states.

In summary, IR-based methods do not require hand-crafted rules and annotations
which make model training expensive, but they are more concerned about feature simi-
larities between KG nodes and the questions. IR-based models can be efficiently trained
in an end-to-end fashion, but some of them might be unable to well handle rather com-
plex questions with multiple constraints.

2.1.3 Visual Question Answering (VQA) over KGs

VQA is a task that retrieves answers from images with respect to given questions. It
has been noticed that KGQA and VQA share common properties. They are obliged to
answer natural language questions, and KGQA often considers the semantic relational
context of KGs while VQA must use spatial context to locate the target objects implied
by questions. Therefore, researchers make a step towards enhancing VQA performance
by incorporating the advancements in KGQA.

One work among those is introduced in [Hildebrandt et al., 2020a]. It constitutes VQA
as a path-finding problem over scene graphs and trains an agent based on reinforcement

9
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learning to conduct random-walks to form reasoning paths leading to targets. The model
embeds KG relations and entities via a graph-attention-network (GAT) through which
the embeddings of entities are influenced by their neighbors in the graph, and generates
question vectors via a Transformer [Vaswani et al., 2017]. During the reasoning process,
an action taken at a time is encoded into a history encoder, and provides guidance to the
selection of next actions. In the end of a path, the agent receives a 0/1 reward depending
on whether answers are correct.

2.1.4 Entity Linking

Entity linking (EL) is an important step in KGQA, which correctly identifies the men-
tion in a question and link it to an entity in the KG [Sevgili et al., 2020]. Researches
on KGQA cannot circumvent this problem easily since its a preliminary stage before
starting a reasoning over a KG. For instance, in a natural language question “what is
the place of birth of Tesla?”, the mention “Tesla” is supposed to be linked with entity
“Nicola Tesla” the physicist with a higher probability than with entity “Tesla, Inc” the
company. According to the order of mention detection, there are two types of entity
linking methods: passive entity linker and active entity linker [Yin et al., 2016].

Passive Entity Linker

A passive entity linker refers to a mechanism that first search a set of candidate entities
based on question words and use candidates to detect the mention in question.

In [Yin et al., 2016], the authors introduce a simple passive EL solution, which takes
three factors to rank candidates based on strings. Though this method does not consider
semantic information, it is shown that the three factors are also necessary for a fairly
good entity linker. At first, the passive entity linker derive the longest consecutive
common subsequence (LCCS) between the natural language query and entities in the
KG and form a set of candidate entities that have a none-zero LCCS with the question.
Then three key metrics are defined, and they will be combined into a scoring function
to rank candidate entities. This approach is proved to be effective and easy to use in
simple question answering tasks.

Active Entity Linker

An active entity linker first retrieves the mention in the question, then finds candidates
given the mention span.

Inspired by [Golub and He, 2016], an active entity linking mechanism is proposed by
[Yin et al., 2016], which is a bidirectional LSTM-CRF model used to identify mention
in a question by sequential labeling. Afterwards, the detected mention is served as
a reference to search for entities from knowledge graph. Different from passive entity
linker, this kind of method only generates one mention for a question, and does not rely
on returned candidate entities. Nevertheless, it requires questions labeled with topic
entities for training model.

10



2.2. REINFORCEMENT LEARNING (RL) 11

Neural Entity Linker

Recently, a class of neural approaches to solve the entity linking problem have been
developed, aiming to reduce burden of hand-crafted feature engineering and to bring
improvements on the EL task.

[Ganea and Hofmann, 2017] present a attentive neural model which uses local context
window, combines word and entity embeddings and enables mentions in a query to be
jointly resolved by a conditional random field (CRF). The whole system is differentiable
for inferring ambiguous entities.

An end-to-end neural model based passive entity linker is proposed in the work of
[Kolitsas et al., 2018], which can conditions the semantic similarity between mentions
and the strongest context support of its most matching candidate entity. In this ap-
proach, mention detection and entity disambiguation are conducted simultaneously by
the neural module, in other words, if the mention has at least one candidate entity, it
can still be judged as invalid and unlinkable to entities in the KG by the neural network.

2.2 Reinforcement Learning (RL)

Reinforcement learning (RL) learns how to map environment to action and to maximize
the numerical reward signal. RL considers a problem of a series of goal-directed agent
interactions with the environment [Sutton and Barto, 2018]. This inherent attribute
enables RL methodology to be adapted to a scenario of multi-hop KGQA, in which
there is a knowledge graph serving as the environment and the potential answer can
be retrieved in a sequential decision process by the RL agent. Such approaches bring
better interpretability in model behavior compared to other information retrieval-based
methods since all reasoning steps are explicitly recorded.

2.2.1 RL in Path Finding

[Xiong et al., 2017] first proposed a RL-based fact-prediction algorithm, namely Deep-
Path. For rules to be retrieved from KG, it trains a RL model to perform the reasoning.
There are two stages including pre-training and re-training on models, the former is a
supervised learning which tries to maximize the expected cumulative reward in using
BFS algorithm to find correct paths between entities, and the latter performs the RL
training procedure in order to solve the path-ranking problem.

Afterwards, [Das et al., 2017] combine RL mechanism into a novel algorithm, MIN-
ERVA, to address more complex link prediction problem, in which only start entity
and relation are provided, while the target entity is missing. The model involves a
LSTM-based history encoder and a two-layer policy network which maps the combined
information of history, query and observation to a probability distribution of actions.

Instead of implementing one RL agent, [Hildebrandt et al., 2020b] presents an inter-
esting debate system R2D2 which has two RL agents and one judge, the two agents are

11
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trained to constitute an argument and path to favor a thesis or antithesis, and the judge
works as a binary classifier to evaluate the argument extracted by two agents.

[Wang et al., 2019] summarizes techniques in previous work and brings graph atten-
tion mechanism (GAT) into their RL-based path reasoning algorithm, AttnPath, there-
fore the agent pays more attention to highly relevant relations and neighbors in selecting
actions. Considering the drawbacks in their previous work, the authors further improve
their model by incorporating a memory module in [Li et al., 2021] and apply several
tricks, including action dropout, reward shaping and force forward.

2.2.2 RL in KGQA

In addition to the SRN algorithm introduced in section 2.1.2 that formulates multi-
relation QA as a Markov decision process (MDP) via RL, progress has been made in
the extended KGQA field. Different from question answering problems involving single
question answer pair, [Kaiser et al., 2021] present a RL model CONQUER to deal with
question answering in conversations over KG. Questions in a conversation context can
be incomplete by itself since it may use information from previous utterances, therefore
users may rephrase their questions as reformulations if the answer to the last question
is incorrect until a correct answer is returned by the system. Given the current question
and previous questions, the model keeps a set of relevant entities based on the whole
conversation. Starting from these entities in turn, all end nodes reached by the RL
agent after a reasoning walk over KG will be candidates for this turn and be aggregated
to generate a final response. The policy network is trained by noisy rewards from the
reformulation likelihood provided by a BERT predictor.

2.3 Summary

KGQA has been exhaustively studied over the past few years, forming two main branches
including semantic parsing-based methods and information retrieval-based methods.

The SP-based approaches can handle complex questions with deliberately designed
templates and rules, parse natural language queries into machine interpretable logi-
cal forms. They can be divided into the traditional type and the neural-based type
[Fu et al., 2020]. The traditional ones rely on hand-crafeted tempaltes and require re-
searchers to be rather familiar with linguistic knowledge. The neural based SP methods
can construct parsers via neural models to enhance scalability, but it is still a challenge
to train a semantic parser due to its demand for a great amount of annotations and the
lack of gold logical forms.

The IR-based methods are more flexible in training compared with SP-based ap-
proaches. They locate the topic entity in the KG and define a subgraph around it to
search for the answer node. The semantic information extracted from the subgraph and
the question are combined to capture their relevance, and find the target entity. Most
of the IR approaches are not well interpretable, whereas the RL-based methods form

12
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the reasoning paths over KG step by step, and each decision is supported by collected
feature in the environment and queries.

One most important part in KGQA is entity linking, which identifies mentions in the
question and retrieves the most relevant node from the KG as the topic entity. Especially
for those reasoning models, a correct starting point is the preliminary for a correct path.
Mainstream approaches are classified into passive methods sand active ones according to
the order of mention detection. Passive entity linkers first segment questions into spans
and find all relevant candidate and rank them using a scoring function. While active
entity linkers determine the mention in a question first and then return candidates for
the mention.

The methodology developed in this project is motivated by reinforcement learning
mechanism, which will be illustrated in the next section.

13
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Methodology

In this section, the methodology and architecture design are described in detail.

3.1 Background and Problem Definition

This section introduces background knowledge relating to this work, including the formal
notation of a knowledge graph, and the definition of KGQA tasks. From there, the
proposed methodology is explained in detail.

A knowledge graph (KG) is a set of triples, let G = {(es, r, eo) | es, eo ∈ E, r ∈ R}
denotes a knowledge graph, where E is the set of entities and R is the set of relations
in the KG. (es, r, eo) represents a triple of subject-relation-object data entry, where the
subject and object come from E and the relation comes from R. A valid fact means that
for a subject node es and an object node eo, there exists one relation r that connects
these two entities in the KG.

A knowledge graph is not necessarily complete per se in most cases due to missing
information during construction, and this feature strongly motivates the advancement
of studies in path reasoning and relation predicting as introduced above. The task of
multi-hop knowledge graph question answering cannot circumvent this problem neither.
It would be ideal if a question can be answered by a triple from the KG. Even in a
limited specific domain of knowledge, however, the variety of natural language queries
cannot be enumerated, and it is often an impossible mission to answer a posed question
via a single triple. Therefore, learning to reason on multiple adjacent triples over KG to
form a proper answer is a promising research direction.

Given a knowledge graph G, and a natural language query Q = (w1, w2, ..., wn), which
is composed of n words, for an identified topic entity es according to the question, some
relations in R will be the best description for predicates in the question, and there exists
a retrieved answer entity eo that can be reached by a path starting from es up to a
restricted length, and the length is equal to the minimal number of hops between these
two nodes if the edges are not weighted.
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3.2 Proposed Framework

Overview. Inspired by previous researches in the field of KGQA, the proposed novel
framework is based on reinforcement learning, and the objective is dealing with multi-hop
question answering task on KGs.

Different from workflows in [Qiu et al., 2020], this work starts resolving a natural
language question from entity linking first. In real-world applications, topic entities
may not be explicitly labelled before reasoning, so it is one critical step to extract topic
entities from given questions.

In addition, attention mechanism is usually applied to learn contextual information
in previous researches. Specifically, the SRN model in [Qiu et al., 2020] utilizes ac-
tion candidates to update embedding representations of questions at each step via an
attention between relations and question words, and generates relation-aware question
representations, while the visual question answering model in [Hildebrandt et al., 2020a]
directly passes initialized entity embeddings of scene graphs to a Graph Attention Net-
work (GAT) with a self-attention mechanism to capture context information from neigh-
bors. In this framework, question answering is considered as an information retrieval
process in which question is resolved in steps. The decision history records which part
of the question has been covered, and the next step is supposed to pay more attention
to those question parts that have not been exploited according to the history.

In general cases, an RL agent learns from reward signals returned by a default 0/1
reward function after taking final actions of reasoning paths, and tries to maximize the
expected rewards. The drawback is that no intermediate feedback is available, so the
reward shaping technique is proposed to provide more supervision to the agent based on
potentials of states. RL agent training can benefit from such immediate rewards com-
pared to sparse terminal rewards, and this framework adopts a potential-based reward
function to supply additional state information.

Figure 3.1: The agent-environment interactions

16
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3.2.1 Reinforcement Learning Formulation

The RL system includes two main components: one is the environment that provides
the structure and semantic information of knowledge graphs, and the other is the agent
trained to learn from reward signals using the REINFORCE algorithm [Williams, 1992].
In a word, the functionalities of the framework are implemented by the agent which
interacts with and receives feedback from its environment to make decisions and take
actions.

The interactions can be interpreted as a finite Markov decision process (MDP) as
depicted in Figure 3.1, in which a finite set of states S, actions A and rewards R form
a sequential trajectory [Sutton and Barto, 2018]:

S0, A0, R1, S1, A1, R2, S2, ... (3.1)

State. The states in the environment represent the agent’s status at different time steps,
and encode the query, the topic entity, the current location and the trajectory history.
In the proposed RL framework, a state at step t is formulated as follows:

St = (q, es, et, ht) (3.2)

where q is the input query, es is the starting node, et reflects the entity on which the
agent locates at time t, and ht encodes the previous decisions in the trajectory.
Action. When the agent arrives at an entity et, it may face a set of action candidates
ASt composed of outgoing relation-entity pairs:

ASt = {(r, e) | r ∈ R, e ∈ E, (et, r, e) ∈ G} (3.3)

Since the original data sets only contain triples that allow the agent to move along the
same direction as indicated, reverse relations of original ones are added between entities
to bring more flexibility in reasoning, i.e., for a fact triple (e1, r, e2) in the knowledge base,
a reverse triple is generated as (e2, r

−1, e1) when constructing the KG. For example, the
relation written by has an inverse counterpart written by−1 which allows bidirectional
connections between two entities [Xiong et al., 2017] [Das et al., 2017].
Transition. Upon taking an action, the system updates current state via transition. A
transition function between two states is defined as

f : St × rt 7→ St+1. (3.4)

Reward. A reward signal indicates the objective of a reinforcement learning task.
Therefore, an RL agent is learnt by maximizing the expected reward after a run over a
KG. In a default policy-based RL process, the agent receives a terminal reward according
to a binary reward function,

R =

{
1, if et = etarget,

0, otherwise,
(3.5)

where et is the current entity at which the agent locates, and etarget is one answer entity
for the query.

17



18 CHAPTER 3. METHODOLOGY

3.2.2 Policy Network

This section explains implementation details of the policy network.
Embeddings. Entities and relations of the knowledge graph G are initialized by pre-
trained vector embeddings based on TransE, whose scoring function is shown below
[Bordes et al., 2013]:

fr(h, t) = −∥ h + r− t ∥1/2, (3.6)

where h and t denote the embeddings of head entity and tail entity respectively.
As for input natural language questions, words are represented by GloVe1 pretrained

word embeddings [Pennington et al., 2014]. Words out of the GloVe vocabulary are
assigned with an average of all word vectors as suggested by the author2. The initialized
embeddings as well as the input of the policy network are vectors in Rd.
Policy. The policy defined over states is a function πθ : S 7→ A that maps state S to
action A [Ng et al., 1999], where θ is the learned parameter of the policy. To provide
necessary state information, the network is composed of several modules as depicted in
Figure 3.2, including a question encoder, a history encoder, an attention module, and a
perceptron for decision making.

Given a question of length n, Q = (w1, w2, ..., wn), the initialized word vectors are
encoded by a bidirectional GRU (BiGRU) network sequentially. The mention of a topic
entity is extracted by the entity linker introduced in section 3.2.3 and is replaced by
a symbol “⟨e⟩” to let policy network focus on the predicates in the question. The
BiGRU network generates a context aware representation of the question in the form
Q = [w1,w2, ...,wm] ∈ Rd×m, where m is the length of the sequence after replaceing
the topic entity’s mention with “⟨e⟩”, and wi is a word vector that consists of forward
and backward outputs from the BiGRU network.

Figure 3.2: The overall model architecture

With an identified topic entity es, the agent starts from an initial state S0 = (Q, es, es,h0),
where the current entity is also located at the starting node, and a history h0 is updated

1https:// nlp.stanford.edu/ projects/ glove/
2https:// groups.google.com/ g/ globalvectors/ c/ 9w8ZADXJclA/m/hRdn4prm-XUJ
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via a history encoder in further steps. The history encoder is based on an LSTM net-
work, and the history ht is updated with previous history ht−1 and last action’s relation
taken by the agent rt,

ht = LSTM(ht−1, rt−1) ∈ Rd, (3.7)

where t starts from 1, h0 and r0 are initialized by zero vectors.
Having the encoded question and history, the attention layer learns a set of attention

weights over question words. This operation enables the policy network to pay more at-
tention to parts of the question in light of history. For a question Q = (w1,w2, ...,wm) ∈
Rd×m, and a history ht−1, the element-wise production of these two vectors is fed to the
attention module followed by a Softmax layer. The output will be a vector of attention
scores for words wi, i ∈ 1, 2, ...,m. By computing the weighted sum of question words,
a history aware question representation Qt is generated for producing a probability
distribution over candidate actions.

Qt =
m∑
i=1

αi,t ·wi, (3.8)

αi,t = Softmax(βi,t), (3.9)

βi,t = WAttn · (ht−1 ⊙wi) + bAttn, (3.10)

where wi is the i-th word’s embedding, WAttn ∈ Rd and bAttn ∈ R are the weights and
bias of the attention layer, αi,t ∈ R is the attention score of wi.

Finally, a two-layer perceptron is used as the policy module predicting a probability
distribution given the current state St, the history-aware question representation Qt

together with the action space ASt , and an action sampled from the distribution will
be absorbed into the trajectory history and used to update the state to St+1. To be
more specific, the module calculates the semantic similarity between actions and the
concatenation of history ht and question Qt through passing them into the attention
layers, whose first layer is followed by a ReLU activation function, and feed the outputs
to a Softmax layer, the distribution is computed as follows:

P (ASt) = Softmax(W2 ·ReLU(W1 · [ht; Qt]) ·ASt), (3.11)

where W1 and W2 are the weights of two perceptron layers, and ASt denotes the action
space of the state St.

3.2.3 Entity Linker

For the question answering task, entity linking is the step that detects mentions from
questions and matches with entities in the knowledge graph. Depending on the order of
mention detection and candidates search, the entity linker methods are divided into two
classes, passive EL and active EL. Considering the consistency of mentions and entity
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names of used dataset, a passive entity linking technique is employed as presented in
[Yin et al., 2016].

The preliminary is to derive the longest consecutive common subsequence (LCCS) in
word level between the input query and KG entities. For instance, given a question
“when was the New York University founded?” and an entity “New York State”, their
LCCS is the sequence “new york” of length 2. The EL procedure is described in the
following.

Step 1: The input question sequence and KG entity names are split into tokens and
converted to their lowercase for matching.

Step 2: For each entity, the algorithm is applied to calculate the longest consecutive
common subsequence σ between it and the question, and all those have a non-
empty LCCS are gathered into a set of candidate topic entities Ce.

Step 3: Regarding a candidate entity e, three factors are extracted for computing its
score, which are a =| σ | / | Q |, b =| σ | / | e |, and c = p/ | Q |, where | · |
denotes the sequence length of question or entity, p is the last token’s location
in the question Q.

Step 4: Ranking all candidates in e ∈ Ce by the function score(e) = αa+βb+(1−α−β)c,
where α, β, 1− α− β are the weights of three parameters.

In the above score function, the parameter a favors candidates that cover more tokens
in the question, parameter b prefers candidates having LCCS accounting for larger parts
of themselves, and parameter c supports candidates show up close to the end of question
Q, which coincides with a general phenomenon that mentions tend to be located at
positions far from the beginning.

The top ranked entity is considered to be the topic entity in terms of the question, and
the longest consecutive common subsequence is the identified mention for Q. The QA
datasets are preprocessed with this method before being fed into the policy network, and
it is proved that this algorithm works effectively in resolving the entity linking problem
here.

3.2.4 Reward Shaping

During the sequential decision process, the objective of the QA task is reflected by the
reward function, and the agent receives a terminal reward based on its final state. The
optimal policy is determined given a reward function and a policy model of a domain,
and a potential-based reward shaping function does not affect the policy invariance
[Ng et al., 1999].

This type of shaping rewards are supposed to be derived from state transitions, in
which each state is associated with a value of a potential function Φ(St). As illustrated
in [Ng et al., 1999], a general form of shaping rewards R′ looks like

R′ = R + F, (3.12)
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F (St, rt, St+1) = γΦ(St+1)− Φ(St), (3.13)

where γ is a discount factor, Φ(·) is a function that quantifies states with numeric values,
rt is the relation of action at = (rt, et), F is the potential-based shaping function, and
R is the default binary reward function. In this framework, the potential function is
defined as

Φ(St) =

{
ReLU(cos(Qt, ht)) if t > 1,

0 if t = 1,
(3.14)

where cosine similarity between history-aware question Qt and history ht is passed
through a ReLU layer.

Different from terminal rewards, the shaping rewards bring intermediate feedbacks
to RL processes. In addition to potential-based function, there are also other reward
functions, such as multiple reward criteria depicted in [Xiong et al., 2017], which includes
three factors: whether the agent reaches the target (global accuracy), the inverse of the
path length (path efficiency), and how much current path resembles previous ones (path
diversity).

3.3 Model Training

In practice, the parameters of the policy network πθ are learned through maximizing the
expected cumulative reward in each episode,

J(θ) = ED[EA1,A2,...,AT−1∼π[
T∑
t=1

γt−1R
′
(St, at, St+1)πθ(at | St)]], (3.15)

where D is the dataset of question-answer pairs, Ai and at are the action space and the
action taken at step t respectively, and γ is the discount factor as used in equation 3.13.
The expectation is approximated by empirical average results over training samples. The
objective function is optimized by the REINFORCE algorithm [Williams, 1992], which
uses the complete returned rewards of the whole episode [Sutton and Barto, 2018], and
works as a Markov decision process.
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Algorithm 1 Natural language question answering via knowledge graph reasoning

Require: Knowledge graph G = (E,R); question Q, denote {wi}mi=1; max steps T ;
discount factor η.

Ensure: The predicted sequential trajectory of states and actions maximize the ex-
pected cumulative rewards.

1: Apply the entity linker to the question Q and extract a topic entity es in G
2: Initialize the KG components and the question with embeddings
3: t← 1, et ← es
4: h0 ← 0, r0 ← 0,ht ← GRU(h0)
5: Q← BiGRU(Q)
6: Assign uniform weights to tokens, {αi,0}mi=1 ← 1

m
7: S1 ← (Q, es, et,ht)
8: R

′ ← 0
9: while t ≤ T do

10: βt ←WAttn · (ht ⊙Q) + bAttn

11: αt ← Softmax(βt)
12: Qt ←

∑m
i=1 αi,twi

13: Retrieve the action space ASt for current entity et
14: for at = (rt, et+1) in ASt do
15: S(at)← rt ·W2 ·ReLU(W1 · [ht : Qt])
16: P (at)← Softmax(S(at))
17: end for
18: Sample action (rt, et+1) from the distribution P (ASt)
19: ht+1 ← GRU(ht, rt)
20: St+1 ← (Q, es, et+1,ht+1)
21: R← I{et is an answer entity}
22: F ← γΦ(St+1)− Φ(St)
23: Calculate cumulative reward R

′ ← R
′
+ ηt−1(R + F )

24: t← t + 1
25: end while
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Experiments

This section presents the empirical implementation of the proposed framework on KGQA
datasets from various domains.

4.1 Datasets

Table 4.1 shows the statistics of two benchmarks on which the experiments were con-
ducted.

PathQuestion is a QA dataset first proposd by [Zhou et al., 2018], in which ques-
tions are created with templates. To construct PathQuestion, a subset of Freebase
[Bollacker et al., 2008], namely FB13, is adopted to extract 2-hop and 3-hop paths.
Those paths are used to generate corresponding natural language questions via hand-
crafted templates. In addition to question-answer pairs and the knowledge base, PathQues-
tions also provides a reference path for a given QA sample, which allows us to compare
the predicted path with the groundtruth.

MetaQA is a film domain dataset constructed by [Zhang et al., 2018], including 1-
hop, 2-hop and 3-hop training datasets. The 1-hop is directly derived from the original
WikiMovies 1, which is composed of QA pairs and a knowledge base [Miller et al., 2016],
and the 2-hop and 3-hop datasets are constructed by randomly sampling from a collection
of templates.

Dataset #Entities #Relations #Triples # Questions

PathQuestion 2215 14 4049 7106

MetaQA 43234 9 134741 407513

Table 4.1: Statistics of QA datasets used in experiments

1Available at https:// research.fb.com/downloads/ babi
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4.2 Compared Models

To evaluate the performance of this model, there are several models to be compared
with, including the state-of-the-art SP-based methods and IR-based methods:

• SRN [Qiu et al., 2020] is an IR-based model dealing with natural language ques-
tion answering tasks over KG. The proposed method initiates an RL reasoning
chain from a known topic entity and terminates when the maximum length is
reached.

• Rce-KGQA [Jin et al., 2021] is an SP-based SOTA architecture, which combines
the explicit semantic relational chain in a question and implicit relational chain
in the KG, and utilizes a relational chain reasoning module to prune candidate
entities.

• MemN2N [Sukhbaatar et al., 2015] is a memory network that stores all triples
in the memory units, which converts the memory and the questions into vectors
to compute their similarities. Moreover, MemN2N can handle with multiple-hop
operations via stacking memory layers.

4.3 Implementation Details

KG Initialization
Similar to previous approaches [Xiong et al., 2017], KGs are augmented by updating the
uni-directional relations between nodes with bidirectional relations. For a triple (es, r, eo)
existing in the knowledge graph, a reverse triple (eo, r

−1, es) is added to the graph
correspondingly. The KG components are initialized by pre-trained TransE embeddings
following the OpenKE framework2, with the training times = 500, number of batches =
100, and the output embedding dimension d = 100.

QA Data Preprocessing
The preprocessing of QA data is two-fold, first applying entity linking to plain natural
language questions, which returns a serial of question words and a topic entity, then
converting the tokenized question to a vector of GloVe embeddings in word level.

Since the benchmarks used in experiments have mentions explicitly labeled in ques-
tions, this work eliminates the symbols that specify mentions and tokenize question
sequences to lists of words, and all tokens are in lowercase, without lemmatization or
stemming. Afterwards, the processed questions and the KG components are fed into the
passive entity linker described in section 3.2.3. For each question, only one mention-topic
entity pair is kept according to score ranking of candidate entities.

Given the question sequence, words are mapped to GloVe embeddings of dimension
100. As for words not included in the GloVe dataset (out-of-vocabulary), an average
over all words vectors is used instead.

2Available at https:// github.com/ thunlp/OpenKE
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Hyperparameters
By conducting cross-validation over datasets, the model architecture’s hyperparameters
are initialized as follows:

The question encoder is a bidirectional GRU network including 2 layers, and the
hidden dimension is set to 50. The history encoder is a 4-layer GRU network, with a
hidden dimension = 100. A dropout rate = 0.2 is applied to all GRU layers. The
attention module is a single-layer perceptron followed by a Softmax. The policy module
is a two-layer preceptron, with a hidden dimension d = 100, and the output is passed
through a Softmax as well. For different subsets of training data, the maximum step
is set to their expected hops, e.g., max step = 2 for PQ 2-hop and MetaQA 2-hop.
The model is optimized by the Adam optimizer during training process with an initial
learning rate lr = 1e− 4.

4.4 Experimental Results and Analyses

Before conducting the experiments, the QA datasets are randomly split into three sub-
sets, with a portion of train : validation : test = 8 : 1 : 1. Each combination of dataset
and model settings is evaluated with experiments for at least 10 complete training pro-
cesses, and each process is trained until its performance has not been improved for more
than 5 consecutive epochs. The trainer traverse over the complete training set in each
epoch. Since the reference answers are not necessarily unique, that is, a question can
have a answer set {eans} containing more than one target entities. To evaluate the
model’s performance, the metric hits@1 is used to count the ratio of samples that has
a predicted target belonging to its answer entities in the test dataset.

Table 4.2 and 4.3 show hits@1 results on two benchmarks.

Model PQ 2-hop PQ 3-hop

Random 15.1 10.4

MemN2N (2015) 89.5 79.2

SRN (2020) 96.3 89.2

This Model 55.82 58.95

Table 4.2: Experimental results on two subsets of PathQuestion (% hits@1)

From the listed results on PathQuestion compared with three baselines and the random
case (no model is implemented and the predictions are made randomly), this model
performs much better than the random results, though lacks for competency when facing
the present state-of-the-art methods.

As for the MetaQA dataset, the proposed model outperforms the random case and
the MemN2N by a big margin in 1-hop and 2-hop subsets, but still falls behind the SRN
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Model MetaQA 1-hop MetaQA 2-hop MetaQA 3-hop

Random 13.1 9.8 1.3

MemN2N (2015) 78.5 30.5 19.0

SRN (2020) 97.0 95.1 75.2

Rce-KGQA (2021) 98.3 99.7 97.9

This Model 95.61 48.54 16.71

Table 4.3: Experimental results on three subsets of MetaQA dataset (% hits@1)

and the Rce-KGQA model especially in multi-hop tasks. That being said, the SRN has
a performance slightly superior than this model in the MetaQA 1-hop task.

The final results in the two tables can only provide a general performance of the RL
agent, lacking of deeper insights on reasoning behaviors. Therefore the statistics of inter-
mediate reasoning steps based on the validation dataset are further examined. To achieve
this goal, reference paths are in need for comparison with the predicted paths. The
PathQuestion dataset is consequently the most suitable choice for its additional attribute
“path”, which are strings in the form “topic entity#relation1#entity2#...#answer entity”.
In experiments, the relation names are extracted from the paths, and results of statistics
are presented in the following (from Figure 4.1 to Figure 4.5).

It is noteworthy that the reference paths are not necessarily the only right paths
for the natural language questions in the dataset, one reason is that there might be
multiple answer entities, and the other one is that a topic entity and its answer entity
can be connected by more than one path in some cases. The probabilities in Figure
4.1 and Figure 4.2 illustrate the behaviors of this model in comparison with the “gold”
reference path.

As shown in Figure 4.1, there are two groups represented by green and blue bars,
denoting the conditional probabilities of current prediction’s correctness. The green
bars are probabilities conditioned on that the previous action is correctly predicted, i.e.,
P (current step is correct | previous step is correct) and P (current step is not correct |
previous step is correct), while the blue bars are probabilities conditioned on a wrong
previous step. The term “correct” here means that the prediction of an action coincides
with the reference action at that step, and the term “wrong” indicates a divergence
between the prediction and the reference. Moreover, different relation types are not
distinguished in counting.

In Figure 4.2, a similar pattern is observed on probabilities conditioned on step 1 as in
Figure 4.1, meaning that a false action taken in step 1 results in a rather high likelihood
of a false prediction in step 2 (around 0.97). However, this is not the case for conditional
probabilities given step 2’s results in PQ 3-hop dataset. Correct predictions in step 2
enhance the possibility of correct subsequent actions, but wrong predictions in step 2,
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however, do not substantially weaken the correct ratio in step 3 as also shown in Figure
4.3.

Figure 4.1: Conditional probability of prediction behaviors on PQ 2-hop dataset

Figure 4.2: Conditional probabilities of prediction behaviors on PQ 3-hop dataset

One explanation is that more hops in reasoning trajectory allow higher variety in
potential paths and a larger KG subgraph around the topic entity to be searched, even
the agent chooses relations different from the reference ones in step 1 and step 2, it may
still figure out the correct relation based on the question.

Another possible reason may be related to the characteristics of the PQ 3-hop, that
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the questions are generated with crafted templates. Many queries require meaningless
multi-hop, take a question string from PQ dataset as an example, “what is the dad of
daughter of prince christian victor of schleswig-holstein’s dad?”, this question can be
addressed with a relational chain as “parent#children#parent”, or any other similar
paths involving circular structure.

Figure 4.3: The correct ratio in relation prediction on PQ dataset

4.5 Ablation Study

In the RL policy model above, there are two modules designed for investigating the
proposed research questions: the attention mechanism and the potential-based reward
shaping function. To evaluate the effects of them on model’s performance, an ablation
study is conducted by disabling the attention module and the reward shaping function
respectively.

Model PQ 2-hop PQ 3-hop

This Model 55.82 58.95

w/o Attention (Attn) 54.63 58.67

w/o Reward Shaping (RS) 55.68 57.91

w/o Attn and RS 52.97 56.38

Table 4.4: Experimental results on PathQuestion (% hits@1)
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RQ: Does history-aware question representation matter in sequential deci-
sion making?

As described in the section 3.2.2, the attention layer updates weights of question
words in light of action history, and allows the policy network to generate a weighted
representation for decision making. The weights themselves are initialized with a uniform
distribution. Now the weights updating before each step are neglected, and the hits@1
scores are shown in Table 4.4 and Table 4.5, with the model title “w/o Attention”.

Compared with the model setting “w/o Attention and Reward Shaping”, employ-
ing attention mechanism augments the hits@1 scores by 1 to 2 points generally, which
proves that this attention module is beneficial to question representation updating and
sequential decision making in resolving the KGQA tasks.

Model MetaQA 1-hop MetaQA 2-hop MetaQA 3-hop

This Model 95.61 48.54 16.71

w/o Attention (Attn) 95.52 46.22 16.33

w/o Reward Shaping (RS) 95.51 47.49 16.12

w/o Attn and RS 93.92 44.45 15.39

Table 4.5: Experimental results on MetaQA (% hits@1)

RQ: Does potential-based reward shaping mechanism affect agent’s perfor-
mance?

The agent receives intermediate shaping rewards generated during state transitions
instead of a terminal reward after an episode. To make clear of the effect of potential-
based reward shaping on the reinforcement learning process, the shaping rewards are
replaced with binary rewards at the end of reasoning paths. The empirical results can
be found in Table 4.4 and 4.5 with a setting “w/o Reward Shaping”.

Likewise, absorbing potential-based shaping rewards improves the prediction accuracy
in two benchmarks. Furthermore, the reward shaping and the attention mechanism are
of about the same effectiveness in enhancing the model’s performance.

To sum up, the framework presented in section 3 is implemented on two benchmark
datasets which are PathQuestions and MetaQA, and the experimental results are listed
together with other state-of-the-art architectures previously. The proposed model is an-
alyzed from external and internal aspects, i.e., the final hits@1 scores are compared with
the above SOTA frameworks, and the statistics of intermediate actions are visualized and
analyzed based on reference gold paths. Based on observations that question mentions
tend to have same appearances as their topic entities in general, a passive entity linker is
enough to complete the EL subtask in this case. In addition, a series of ablation studies
with respects to two research questions were designed and performed, which prove that
both two mechanisms have positive impacts on the model’s overall performance.
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Figure 4.4: The mapping ratios (%) between groundtruth relations (horizontal) and pre-
dicted relations (vertical) on PQ 2-hop

30



4.5. ABLATION STUDY 31

Figure 4.5: The mapping ratios (%) between groundtruth relations (horizontal) and pre-
dicted relations (vertical) on PQ 3-hop
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5

Limitation Analysis

This section provides a discussion about limitations of the proposed framework based
on experimental results.

First, studies above have investigated the effects of the history attention module and
potential-based reward shaping on the policy network and proved their contributions
on the enhancement of model’s performance. One observation from results is that the
overall hits@1 performances fall behind the state-of-the-art frameworks by great margins
especially on 2-hop and 3-hop QA tasks.

Figure 5.1: An example subgraph for a question from PQ 3-hop: what is the dad of
daughter of prince christian victor of schleswig-holstein’s dad? The
orange area denotes the topic entity; the green area represents the corre-
sponding answer entity regarding the question; the bold lines indicate the
relations involved in the reference path.

Though the proposed model shows a comparable accuracy over MetaQA 1-hop subset,
it does not handle multi-hop questions well, since the accuracy scores drop off drastically
on 2-hop and 3-hop subsets compared with that on 1-hop subset. After reviewing the
whole model architecture and used datasets, several factors are identified as potentional
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reasons why the performance does not live up to the expectations. In the following, the
possible influence factors are discussed from two perspectives.
Data Quality
The first argument is that the quality of raw QA datasets can have a deterministic impact
on the model’s training and testing results, and source data’s quality is considered as an
external factor.

Though all questions in the QA datasets can be addressed by chains of relations from
KGs, the queries are automatically generated with hand-crafted templates, which can
result in ambiguities and mistakes in expression. An instance is illustrate in Figure 5.1,
where a subgraph from PQ 3-hop knowlegde graph is shown. According to the question,
it should be resolved by a sequence of relations as “parent#children#parent”, which has
a circular path in it. In other words, such circular patterns may mislead the agent in
path reasoning over KGs.

Another problem is that the provided answer entities do not always satisfy the condi-
tions in the questions. In the above example, the answer entity has a “gender” relation
leading to “female”, while the question asks for a “dad” person. Even if a relation type
does not make discrimination between entity nodes, e.g., the relation “parent” can con-
nect with either “father” or “mother” entities, the agent has to make a decision based
on the query no matter how the predicate “parent” expressed in the question since no
further information is available. Hence, it is not rare to observe a mismatch between the
question and the predicted relation trajectory by an agent.
Model Competency
The second thought is that the baseline model (without attention and reward shaping)
is not good enough. Improvements are observed after applying two mechanisms on the
baseline model, which proves their effectiveness to some extend, but the baseline itself
does not provide a strong basis.

With the baseline, an input question is tokenized and encoded by a question encoder,
and words are weighted by uniform scores in decision making processes, meaning that
the agent cannot distinguish between predicates and assign different priorities. Even
with the attention mechanism, it can happen that the attentions on different predicates
in one question do not vary much at the first step, and a wrong first step tends to cause a
wrong second step with a great probability as illustrated in Figure 4.1 and Figure 4.2. In
a word, when multiple predicates occur in the same question, the proposed method
is weak in making right first steps in multi-hop tasks, and this assumption is
verified by observations in comparing the predicted paths and the reference paths.
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Conclusion

This work presents a policy-based reinforcement learning framework in addressing the
KGQA problem. Given a question, the RL agent conducts a Markov decision process,
which generates a reasoning path leading to a target entity. The model is trained in an
end-to-end fashion, that takes natural language questions as inputs and yields answer
nodes from the knowledge graph as outputs.

The work evaluates the proposed model on two benchmarks in the experimental stud-
ies. The proposed research questions are thoroughly investigated and answered with
empirical results. To associate history information with semantic context of questions,
a history-aware attention module is implemented to learn to which parts of questions
the agent should pay more attention. Furthermore, this work introduces shaping re-
wards that are proportional to the differences of state potentials, which provides more
supervision to RL agent in sequential decison making processes.

The empirical results show that the proposed model has acceptable performances in
handling multi-hop questions from two benchmarks, and overall performances benefit
from the employment of the attention module and reward shaping mechanism.
Future Perspective
Through an analysis on the model and experimental results, the writer has identified two
problems to be further studied. (i) How to assign the attention weights before the initial
step? The history-aware attention layer in this model functions after taking encoded
history into consideration. However, before history being updated, the agent perceives
the question words equally. (ii) How can we leverage beam search in path reasoning?
To retrieve a path that most matches with a question, it might be beneficial to keep
top-N candidates during extending paths. This strategy compares semantic similarities
between a question and a chain of relations instead of a single relation. The two questions
have not been investigated in this work, but the author is rather interested in studying
the two problems in the future.
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Appendix

The complete code, datasets, results of the experiments, and implementation descriptions
are available at https:// gitlab.ifi.uzh.ch/ ddis/ Students/Theses/ 2021-fan-feng .
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