
Protégé Plugin for
Change and Impact

Visualization

Mirko Serbak
of Gretzenbach SO, Switzerland

Student-ID: 15-701-147
mirko.serbak@uzh.ch

Master’s Thesis November 10, 2020

Advisor: Romana Pernischová

Prof. Abraham Bernstein, PhD
Institut für Informatik
Universität Zürich
http://www.ifi.uzh.ch/ddis

Acknowledgements

I would like to thank Prof. Abraham Bernstein and Romana Pernischovà for giving me
the opportunity to work on this thesis and supporting me throughout the whole process.
You have made this part of my studies very interesting and enjoyable for me. I extend
this to all other members of the DDIS since many of you have given input and some even
participated in my experiment. Of course, I give my thanks to the other participants of
my experiment as well.
In addition, I thank my family and friends for always supporting and believing in me.

All of you have made it possible for me to be successful on my path by giving me so
many opportunities in my life.
Last but not least, I used Protégé as a resource in this work, and Protégé is supported

by grant GM10331601 from the National Institute of General Medical Sciences of the
United States National Institutes of Health.

Zusammenfassung

Mit dem Aufkommen des Semantic Web hat die Anwendung von Ontologien in vie-
len verschiedenen Bereichen zugenommen. Damit einhergehend ist die Entwicklung von
Ontologien zu einem aktiven und vielfältigen Forschungsfeld geworden. Ein noch uner-
forschter Aspekt ist, dass sich viele Ontologieentwickler der Folgen ihrer Modifikationen
nicht bewusst sind (Pernischová et al., 2020). Um dieses Problem anzugehen, stellt diese
Arbeit ChImp vor. ChImp ist ein Protégé-Plugin, das Informationen über die Auswirkun-
gen von Veränderungen einer Ontologie anzeigt. Darüber hinaus umfasst die Arbeit auch
eine Evaluation dieses Plugins mit einer technischen Analyse und einem Nutzerexperi-
ment. Die technische Evaluierung führte zu der Schlussfolgerung, dass das Plugin im
Allgemeinen stabil ist und voraussichtlich auf grosse Ontologien skaliert. Das Benutzer-
experiment zeigte, dass den Entwicklern die Visualisierung des Plugins im Allgemeinen
gefällt. Ob das Plugin einen wahrgenommenen Informationsnutzen vermittelt, konnte im
Rahmen der Arbeit nicht festgestellt werden.

Abstract

With the emergence of the Semantic Web, the application of ontologies has increased
in many different fields. Along with that, the development of ontologies has become
an active and diverse research field. One yet unexplored aspect is that many ontology
developers are unaware of the consequences of their modifications (Pernischová et al.,
2020). To address this problem, this thesis presents ChImp, a Protégé plugin that displays
change impact information about an ontology. Furthermore, the thesis also covers an
evaluation with a technical analysis and a user experiment. The technical evaluation
resulted in the conclusion that the plugin is generally stable and expected to scale to large
ontologies. The user experiment showed that developers generally like the visualization
of the plugin. The thesis was not able to determine if the plugin conveys a perceived
information benefit.

Contents

1 Introduction 1

2 Related Work 3
2.1 Terminology . 3
2.2 Ontology Metrics . 4
2.3 Visualization Techniques . 5

2.3.1 Ontology Visualization . 5
2.3.2 Software Visualization . 6

3 Implementation 7
3.1 Design Phase . 7

3.1.1 Initial Designs . 7
3.1.2 Further Development . 9

3.2 Requirements Analysis . 9
3.3 Architecture . 10

3.3.1 Protégé Plugin . 10
3.3.2 Plugin Architecture . 10

3.4 Plugin Components . 12
3.4.1 Metrics . 12
3.4.2 Views . 13
3.4.3 Reasoner . 17
3.4.4 Testing . 17

4 Technical Evaluation 23
4.1 Performance . 23
4.2 Stability . 24

5 User Evaluation 27
5.1 Hypotheses . 27
5.2 Experiment Design . 28

5.2.1 Survey Structure . 28
5.2.2 Experiment Tasks . 30
5.2.3 Participant Demographics . 30

x Contents

5.3 Results . 31
5.3.1 Plugin Appeal . 32
5.3.2 Plugin Content . 32

5.4 Discussion . 35

6 Limitations and Future Work 37
6.1 Requirements . 37
6.2 Implementation . 37
6.3 Technical Evaluation . 38
6.4 User Evaluation . 38

7 Conclusions 41

A Appendix 49
A.1 Impact Metrics . 49
A.2 Designs . 51
A.3 About the Plugin . 51

A.3.1 Build Instructions . 51
A.3.2 Installation Instructions . 52
A.3.3 Usage Instructions . 52
A.3.4 Dependencies . 52

A.4 ChImp Survey . 54

x

1
Introduction

Knowledge graphs, ontologies, and the Semantic Web are the focus of an active and
diverse research community. They have their application in many fields such as linguis-
tics, chemistry, or biology (Navigli and Ponzetto, 2012; Hastings et al., 2011; Consortium,
2018). In addition, they are increasingly important for business systems as they can func-
tion as a conceptual backbone for IT systems. Their main role in all of these applications
is to provide a formalization of a common understanding of a domain. This ability to
capture a portion of the real world in a logical framework that is machine-processable lays
the foundation for the interoperability of applications and machine learning (Stojanovic,
2004). One area of interest is how ontologies change and evolve. In fact, there are already
studies that evaluate the evolution of large ontologies over long time spans and give a lot
of insight into how ontologies change (Goncalves et al., 2011). There are also studies that
investigate the impact changes have on an ontology. One example of this is the work by
Gross et al. (2012) that looks at the impact of changes on functional enrichment analy-
ses. Another example is Pernischová (2019) who proposes a methodology to predict the
impact of changes. Studies like these highlight the importance of knowing how changes
impact an ontology. Pernischová et al. (2020) observe that ontology engineers often do
not know what the consequences of their actions are when they are editing an ontology.
In an effort to address this problem, they conducted a user survey to elicit preferences
of how changes are displayed. With the help of these preferences, they derived require-
ments for a Protégé plugin that displays information about the impact of the changes in
an ontology. This thesis is a continuation of the work by Pernischová et al. (2020). It
describes the process that implemented the proposed requirements and resulted in the
ChImp (Change Impact) plugin. Since the implementation of software is always accom-
panied by requirements and expectations, this thesis also contains a technical analysis
and a user evaluation of the plugin.
The technical analysis evaluates the plugin on the dimensions of functionality and

stability by addressing the following technical research questions:

RQ1 How long does it take for the plugin to visualize a change?

RQ2 Does the plugin block while calculating metrics?

RQ3 How does the plugin perform with ontologies of different sizes?

2 CHAPTER 1. INTRODUCTION

The user evaluation consists of an experiment that aims to answer the following re-
search questions:

RQ4 Do developers like the plugin and its visualizations?

RQ5 Is the content useful and informative to developers?

The first chapter contains a deep dive into the related work pertaining to ontologies,
ontology change, and visualization techniques. Subsequently, Chapter 3 describes the
implementation of the plugin - from requirements to design, architecture, and the appli-
cation components. After that, the evaluation of the plugin is presented in two chapters.
Chapter 4 is devoted to the technical evaluation and Chapter 5 to the user evaluation.
Finally, chapters 6 and 7 outline the limitations, future work, and the contribution of
this thesis.

2

2
Related Work

2.1 Terminology
Depending on the field of study, the term "ontology" can refer to different concepts.
Guarino and Giaretta (1995) discuss this multiplicity and vagueness of meaning and
argue for clear terminological choices when discussing such terms. Often cited is Gruber
(1993) who uses the definition of a conceptualization by Genesereth and Nilsson (1987)
to define an ontology as an explicit specification of the objects, concepts, entities, and
relationships that are presumed to exist in an area of interest. While this definition is
very general, it is sufficient for the purpose of this thesis.
Since the plugin proposed in this thesis focuses on ontology change and change impact,

these terms also need to be defined. Flouris et al. (2008) survey the field of ontology
change and come to the conclusion that the terminology is not used consistently. They de-
fine the term ontology change as "the generic process of changing an ontology in response
to a certain need" (p. 118). While this definition might sound simple, the underlying
problem is very complex because it encompasses subfields such as heterogeneity resolu-
tion, the fusion of ontologies, and versioning. They define the subfield ontology evolution
as the modification of an ontology without data loss or the negation of its validity. In
contrast, they define ontology versioning as the same task, but over many versions of
an ontology. Expanding on that definition, ontology evolution can be seen as a process
that determines what needs to be changed, how the change is going to be resolved, and
how consistency is ensured (Stojanovic, 2004). In a process-centric view like this, the
distinction between ontology evolution and versioning can become blurred. Hence, some
authors argue for a broader view that encompasses both aspects (Zablith et al., 2015). An
example that investigates ontology evolution and versioning is COnto-Diff, an approach
to produce a mapping between versions of ontologies (Hartung et al., 2012).
In the context of ontologies, change impact can be categorized with various criteria to

enable the analysis from different angles: structural and semantic impact, addition and
deletion impact, ontology, annotation and content impact and Abox and Tbox impact
(Abgaz et al., 2011). Another approach by Gonçalves et al. (2011), classifies changes
into categories of effectual and categories of ineffectual changes. The idea behind this
approach is to distinguish between changes that have a logical impact and changes that do

4 CHAPTER 2. RELATED WORK

not. As mentioned in the introduction, there are also authors that try to capture impact
by analyzing their effect on statistical applications (Gross et al., 2012). In addition,
There are authors that attempt to capture the impact with the help of graph theory
(Pernischová et al., 2019; Pernischová, 2019).
The current implementation of the ChImp plugin is aimed at incremental ontology

modifications in the ontology editor Protégé. It is not concerned with the actual mod-
ification itself. Instead, it is attempting to display ontology changes in real-time. That
being said, it cannot always depict the whole change and therefore should be seen as a
visual summary of incremental modifications in Protégé.

2.2 Ontology Metrics
An important and non-trivial problem is the assessment of the quality of an ontology.
Inherent to the makeup of an ontology is the concept of consistency, which describes
the assessment of its logical correctness. While reasoners usually determine the consis-
tency, there are also other types of manually calculated logical indicators such as conflict
measures. Both the conflicts and the consistency can be used to assess the quality of
ontologies (Arpinar et al., 2006). The logic of an ontology reveals important information.
However, it only covers one viewpoint. To remedy this, researchers use metrics in their
evaluations. Metrics allow them to succinctly summarize a large range of viewpoints
about an ontology. One example for this is Orme et al. (2007) who propose several
metrics that reflect the complexity and cohesion of an ontology. Another example is
Duque-Ramos et al. (2013) who attempt to assess the general quality of an ontology
with a framework that includes metrics. Burton-Jones et al. (2004) draw inspiration
from semiotic theory and present a metrics suite focused on the syntactic, semantic,
pragmatic, and social aspects of an ontology. Others derive their metrics from e.g. soft-
ware quality standards (Duque-Ramos et al., 2011; Orme et al., 2007) or graph theory
(Zhang et al., 2010). The usefulness of such metrics may be limited to a specific area
of interest or purpose. For example, Manouselis et al. (2010) evaluate metrics in the
biomedical domain. As a result, many researchers propose metrics that are highly spe-
cialized to a specific use case. A special variant of this are metrics that depend on inputs
(Tartir and Arpinar, 2007) or metrics that can be weighed (Duque-Ramos et al., 2016).
In theory, metrics like these can be adjusted to certain use cases due to their dynamic
nature.
Since metrics can be calculated on any ontology, they can also be used for multiple

ontology versions. Duque-Ramos et al. (2016) show this by applying their quality frame-
work on multiple ontology versions. Closely related to this is the concept of semantic
drift, which is defined as the change in meaning that occurs over different versions of an
ontology (Stavropoulos et al., 2016). This means, that the understanding of a concept
can gradually change over time (Gulla et al., 2010). In this context, similarity measures
between two versions of a label in an ontology can be used to construct metrics that
capture semantic drift (Stavropoulos et al., 2019).
There are attempts to compare and assess the quality of metrics (Sicilia et al., 2012).

4

2.3. VISUALIZATION TECHNIQUES 5

However, there are no universally objective measures against which metrics can be tested.
For this reason, authors such as Duque-Ramos et al. (2013) consult expert opinions about
their metrics suite. Duque-Ramos et al. (2013) found that even though the experts pro-
vided them with improvement suggestions the experts also considered that some metrics
are only useful in a specific context.
To encompass a wide range of aspects, the current implementation of ChImp uses

metrics that are proposed in many different studies. The main criterion for the selection
is how many times the metrics are used in past research. However, the list is also a
reflection of personal preferences. For an overview of all the metrics that are used in the
plugin consult Section 3.4.1.

2.3 Visualization Techniques
The goal of the ChImp plugin is to support developers in understanding the impact of
their changes. One approach to better convey this information is visualizing the ontology
and the metrics. To find an appropriate visualization method, this thesis surveys research
in the fields of ontology visualization and software visualization. Pernischová et al. (2020)
also employ some of these aspects and techniques.

2.3.1 Ontology Visualization
Katifori et al. (2007) and Dudáš et al. (2018) are two important contributions that survey
the state of the art in ontology visualization methods. Even though they were published a
decade apart, they both observe that there is not one specific method that has established
itself as the de-facto standard. Moreover, they both reason that this is because specific
applications require custom-fit solutions and argue in favor of approaches that offer more
than one visualisation method. In addition, Dudáš et al. (2018) argue that there are not
many authors that adapt existing solutions. With that being said, their works are very
insightful because they present a large array of methods and explore areas such as the
temporal dimension used in versioning. Many methods, as well as the two surveys above
use requirements that are based on taxonomies like those of Shneiderman (1996) or user
studies like Kriglstein (2009). One prominent problem is the fact that a lot of these tools
are directed at domain experts. Some approaches attempt to address this by creating an
intuitive experience for their visualizations (Kuhar and Podgorelec, 2012).
The Protégé plugin library also already contains various plugins that use visualization

techniques to present their content (e.g. Lohmann et al., 2014; Sintek, 2003; Hussain
et al., 2014). In fact, there are already Protégé plugins that concern themselves with the
display of changes in ontologies. The Change Analysis Tab of the Change Management
plugin by Falconer et al. (2011) allows users to explore all changes that were stored with
Collaborative Protégé. Change View provides a list of all modifications that were per-
formed in a Protégé session (Drummond, 2011). Existing plugins such as these function
similarly to the ChImp plugin proposed in this thesis. However, no plugin that I am

5

6 CHAPTER 2. RELATED WORK

aware of displays change impact information about modifications in a Protégé session in
real-time.

2.3.2 Software Visualization
Another research area that employs techniques to visualize a type of evolution is software
visualization. One technique in this field are polymetric views. Lanza and Ducasse (2003)
introduce this concept, which is meant to enhance the users’ mental image of the software.
Concretely, software metrics are mapped to visualization attributes such as size, color, or
position. As a consequence, the visualization is able to indirectly display multiple aspects
of the software. Polymetric views can also be used to compare different software versions
(Lanza and Ducasse, 2005). The idea here is to visualize the difference in the metrics.
In a previous approach, Lanza and Ducasse (2002) focus solely on software evolution
by using matrices that display different versions in their columns. Other methods that
focus on software evolution employ the third dimension (Gall et al., 1999; Lanza et al.,
2009) or introduce new graphical elements such as Evo-clocks, which display versions as
sections in a pie (Alexandru et al., 2019). Another approach is the use of kiviat graphs
to visualize software evolution (Pinzger et al., 2005). With their help, it is possible to
display many different metrics over multiple versions that are represented by areas in the
graph.

6

3
Implementation

As stated in the introduction, Pernischová et al. (2020) already presented a version of the
ChImp plugin. The following sections will recapitulate certain elements from that paper
and present additional documentation about the implementation of the ChImp plugin.

3.1 Design Phase

3.1.1 Initial Designs
The research presented in Chapter 2 shows how metrics, graphs, and other elements are
used to display the state of ontologies. An initial design phase focused on how these
techniques can be adapted to ontology change impact. The following elements were the
result:

An element that shows the last changes that were made in the ontology:

This element is supposed to show the change by listing the specific axioms that Protégé
added or removed. The initial design phase did not focus on this element since it is
merely a list. However, the discussion of the element brought up the question of how
color is used in the plugin. If for nothing else, colors can be useful in order to separate two
different aspects. The discussion resulted in the decision that colors indicate additions
and removals throughout the plugin but do not impose a value judgement. This means
that the colors cannot have a positive or negative connotation - as would be the case with
red and green - because it is not trivial to judge the value of ontology changes. Ultimately,
Pernischová et al. (2020) use these deliberations to define their fourth requirement.

An element that shows ontology metrics:

This element is supposed to display metrics about the ontology and if possible about
the last change. Figures A.1-A.10 in the appendix contain initial designs of this element.
These designs are heavily influenced by Protégé’s ontology metrics view. Other influences
are stock market apps such as the yahoo finance mobile app (yah). Apps like that display
daily stock price changes behind the prices with red or green percentages. The same

8 CHAPTER 3. IMPLEMENTATION

principle was applied to ontology metrics. These change indicators were chosen for all
future designs since they are able to elegantly convey change information about a metric.
As an alternative, inspired by Lanza and Ducasse (2002), matrices that display multiple
metrics (see Figure A.4) were considered. However, they were ruled out due to space
constraints.

An element that shows the consistency of the ontology:

This element is also simple since its only purpose at that point was to display the consis-
tency of the ontology. However, it highlighted the importance of reasoners in the plugin.
Nevertheless, there are no early designs for it.

A graphical element that visualizes ontology change and impact

In the early stages of the design, a lot of effort went into the design of a graphical
element that could present change and impact information about an ontology. One such
approach was a node-link type diagram that put the changed node in the center of the
diagram and arranged all affected classes around it (see Figure A.7). This diagram
opened up many possibilities to display information about the change. The discussion
included, for example, polymetric views (see Section 2.3.2). Polymetric views can increase
the information density and expressiveness of a diagram by mapping metrics to nodes,
edges, and colors. Ultimately, complex approaches like this were dropped in favor of other
simpler ones that require less design and development effort. In addition, the goal of the
plugin is to visualize ontology changes independent of the subject area of the ontology.
As discussed in Section 2.3.1, this is not trivial as there is not a single approach that fits
all purposes.
The initial design does not contain any elements that use the third dimension. Such

elements would likely require a lot of design effort and be computationally expensive. It
is vital that the plugin does not contain anything that would slow down Protégé as a
whole. In addition, visually intensive elements would distract users and do not reduce
complexity in an already complex development environment.
As can be seen in Figures A.1-A.10 in the appendix, many early approaches are line

or area charts. A major advantage of such graphs is that they are easy to understand
and able to convey changes over time. One major challenge is the display of multiple
metrics in such a chart. Since primitive metrics are not on the same scale, a line chart
can at most display two of them at once. Area charts such as in Figure A.5 suffer from
the same problem. If drawn cumulatively, line and area charts are able to display slightly
more metrics. However, those metrics need to be on a similar scale. Otherwise the chart
will be too large. Inspired by Pinzger et al. (2005), Figure A.3 shows a Kiviat diagram.
As stated by the authors, it enables the display of many metrics over many versions.
Equipped with these early designs, Pernischová et al. (2020) derived prototypes that

they used in their survey. Even though the results did not paint a clear picture, they
were able to derive the requirements listed in Section 3.2.

8

3.2. REQUIREMENTS ANALYSIS 9

3.1.2 Further Development
After internal discussions about the existing designs, I decided that the main goal was to
make ChImp look like it is part of the Protégé development suite. Hence, designs such as
tiles that did not look similar were dropped. In fact, the design was adjusted to mirror
that of Protégé’s own ontology metrics view.
Initially, the ChImp plugin did not contain a graph of any kind. However, in a later

version, a line chart was added. Figures A.11-A.15 show a new design iteration for
this component. These designs are all similar and mainly revolve around the button
placement and chart arrangement. The results from Pernischová et al. (2020) do not
indicate that there is enthusiasm for a specific chart. Hence, the ChImp plugin includes
the most simple variant. Note that these designs already contain the other panels. For
a more detailed description of the current state of the design consult Section 3.4.2.

3.2 Requirements Analysis
One important contribution by Pernischová et al. (2020) is the elicitation of a list of
requirements for visualizing and conveying ontology changes. To investigate the visual
requirements, the authors conducted a user survey with 12 experienced semantic web
practitioners. The answers from that survey resulted either directly or indirectly in the
following 7 requirements.

R1 ChImp should list the applied changes.

R2 ChImp should inform the user about the consistency of the loaded ontology.

R3 ChImp should show primitive and composite measures in a table, visualizing the
new value and its difference to the old value based on the applied changes.

R4 ChImp should use colors to indicate changes.

R5 Ontology release notes should include the number and types of changes.

R6 Ontology release notes should include the result of a consistency check.

R7 Ontology release notes should report changes to the materialization

In addition, they also formulated three requirements that are based on experience and
general best practices.

R8 ChImp should allow the user to chose between the presentation of metrics either in
absolute values or as percentages.

R9 ChImp should let the user choose between using only the last change or all changes
for the calculation of primitive and composite measures.

R10 ChImp should be responsive.

9

10 CHAPTER 3. IMPLEMENTATION

3.3 Architecture

3.3.1 Protégé Plugin
Protégé is an OWL 2 ontology editor written in Java. The project was initially started
in the 1980s and Protégé has become the most widely used software for building and
maintaining ontologies (Musen, 2015). Closely connected to Protégé is the OWL API,
which enables the handling of OWL 2 ontologies (Horridge and Bechhofer, 2009).
Protégé uses OSGI, which is a Java framework for the implementation of modular

software systems. It consists of a set of specifications that define how modules should be
implemented and how they should interact (osg). The main problem that OSGI tackles
is complexity. The modular architecture breaks down software into modules. It also
implicitly enforces principles such as loose coupling and semantic versioning. Protégé
uses the Maven Bundle Plugin to create its OSGI architecture. In this architecture,
individual plugins represent the modular components. The goal is that all Protégé plugins
only expose interfaces with which they interact with their surroundings.
Protégé plugins are by definition inside an OSGI architecture. However, that does

not say anything about the inner workings of an individual plugin since a plugin could
theoretically try to defy the core principles. With that being said, the architecture of
ChImp plugin was set up to fit seamlessly into its environment.

3.3.2 Plugin Architecture
Figure 3.1 shows the class diagram of the ChImp plugin. It shows that the ChImp plugin
is a module of its own and that it is separated from the Protégé editor. The following
paragraphs highlight several design aspects.

Metric Strategy

All metrics inside the ChImp plugin extend the abstract Metric class. The metrics
themselves implement their individual calculation strategy by overriding the inherited
calculateMetric() function. This design pattern enables the usage of inheritance poly-
morphism throughout the application. Concretely, this means that all metrics can be
accessed through a common interface. In addition, it makes the plugin very extendable
to new metrics. If a new metric can be implemented as a child of Metric, it can be used
interchangeably with other metrics.

Protégé Interface

ChImp interacts with the Protégé editor by using the classes that Protégé exposes as
its interface. Specifically, ChImp extends the class AbstractOWLViewComponent through
which Protégé exposes its OWLWorkspace. With this, ChImp has access to the Pro-
tégé workspace, which includes ontologies, managers, and reasoners. The ChimpPlugin
class then injects the relevant attributes of the OWLWorkspace into the display panels
of the ChImp plugin. The injection of the reasoner and the active ontologies into the

10

3.3. ARCHITECTURE 11

Figure 3.1: ChImp Class Diagram

ChimpReasoner class follows the same principle: ImpactMetricsPanel has access to the
OWLReasonerManager, through which the OWLReasoner is accessed.

Listeners

The updates in ChImp are handled with the observer pattern by listening to the follow-
ing two OWL listeners: OWLModelManagerListener, OWLOntologyChangeListener. The
difference between these two listeners is that the OWLModelManagerListener fires events
pertaining to the status of the loaded ontology and the reasoner plugin whereas the
OWLOntologyChangeListener solely reports the concrete changes in the loaded ontology.

11

12 CHAPTER 3. IMPLEMENTATION

3.4 Plugin Components
The plugin is structured into several components. The section titles used in this section
correspond to the package names used in the codebase.

3.4.1 Metrics
As mentioned in Section 3.3.2, all metrics in the ChImp plugin inherit the abstract class
Metric. This class defines the fundamental attributes and methods that every metric
has. In the current implementation, every metric has a name, a description, a LATEX
formula, and a list of values. In addition, the class regulates all retrieval functions for
the metrics. The metrics themselves only override the calculateMetric() function to
define their individual calculation strategy.
The metrics inside the ChImp plugin are split into three groups: primitive metrics,

ratio metrics, and impact metrics. Table 3.1 shows the primitive and ratio metrics that
are part of the current version of the ChImp plugin. The metrics listed, are the ones that
I found to be the most widely used in research. To show where the metrics have been
used thus far, the table also contains references to the specific works. Primitive metrics
are metrics that present a count of elements in an ontology. These metrics do not in fact
perform calculations but count and sort axiom sets in the underlying ontology. Table 3.2
shows how the metrics are calculated with the OWL API. Note that this table as well as
the thesis thus far both use ontology in the singular. This is not necessarily the case since
an ontology can have an imports closure. In the current implementation of the ChImp
plugin, all metrics cover the whole imports closure for their calculations. However, the
current implementation only displays changes that are made in a single session. Hence,
the plugin does not display changes if they are performed in the imports closure.
Ratio metrics are closely connected to primitive metrics since they depend on them.

In fact, they all calculate ratios of primitive metrics. However, the ratio metrics do not
conform to a common scale. For example, the property class ratio can theoretically be a
decimal between zero and infinity. The bottom part of Table 3.2 shows the formula for
their calculation. All of these formulas exclusively reference primitive metrics. Hence,
they are completely dependent.
Impact metrics are a new form of metric. They are derived from the materializations

of ontologies. Concretely, most of them calculate ratios of materialization set measures.
The impact metrics used in the current version of ChImp are reproduced in Table 3.3
since they are not publicly available (see Appendix A.1). An additional impact metric
that is used in the plugin is the graph distance impact from Pernischová (2019). That
paper defines the measure as:

impact = 1− e
− I(Mi)−I(Mi+1)

|δi|

where I(M) is the topological index:

I(M) =
∑

u∈V (M)

1√
d(u)

12

3.4. PLUGIN COMPONENTS 13

V (M) are all nodes in the materialization and d(u) is the degree of node u. Consult
Pernischová (2019) for more information about this. For the materialization, all impact
metrics are dependent on a reasoner. A more detailed explanation of the reasoner in
ChImp can be found in Section 3.4.2 and Section 3.4.3. In contrast to the other metrics,
the impact metrics in the ChImp plugin can only be calculated cumulatively. The reason
for this is that incremental calculations would require the metrics to save the material-
izations for each modification step. Hence, for large ontologies, the plugin would require
a large amount of in-memory data storage. This could potentially be avoided by only
saving the change sets and recalculating the individual materializations on the fly. The
current implementation does not contain such a functionality due to time constraints.

3.4.2 Views
The main class of the ChImp plugin is called ChimpPlugin. Every Protégé plugin has an
xml file that determines its type, its layout, and the classes that are ultimately loaded into
the editor. In the main xml file inside ChImp, ChimpPlugin is defined as the main view
component. Consequently, ChimpPlugin initializes whenever the plugin is opened inside
Protégé. The class is relatively small since its only role is to initialize the other views
and inject the Protégé workspace into them. In addition, the class checks on startup
whether or not an ontology is loaded in Protégé. If this is not the case, the sentence "No
ontology loaded" is displayed instead of any of the views. To react to changes inside the
Protégé editor, it has an OWLModelManagerListener. If a new ontology is loaded, the
plugin is reinitialized.
The individual views inside ChImp are all in a JScrollPane to make them scrollable.

In addition, ChImp uses two JSplitPane classes to make the views adjustable.

Last Change Panel

The first view of the ChImp plugin is the last change panel. The purpose of this view is
to display the last changes that were made in a Protégé session as defined in R1 ChImp
should list the applied changes. Figure 3.2 shows the last change panel in its current
form. The actual last change is below the title. Under the subtitle "Previous Changes",
the view shows all previous changes.

Figure 3.2: Cutout of the last change panel

Any change in this view appears as a set of axioms. The reason for this is that

13

14 CHAPTER 3. IMPLEMENTATION

Protégé internally stores sets of axioms to represent changes. This makes changes very
expressive. However, one problem with it is that it is not trivial to determine which
axiom best summarizes a change. The fact that Protégé stores changes as sets of axioms
is relevant because sets do not have an order. The current approach simply chooses the
first one of these axioms to represent the rest.
The view is realized with a JTree. All changes are nodes in this tree. Their label is the

axiom that represents the change. All other axioms are added to the node as sub-nodes.
By clicking on the nodes of this tree, users can choose which nodes are collapsed or open
at any point. As a default, all of the nodes in the tree are collapsed.
To update the tree with new changes, the last change view uses an implementation of

the OWLOntologyChangeListener. The view accesses this listener via the OWLModelManager
that is injected in its constructor. The raw changes are then processed to display strings.
Specifically, the first part of the string describes if it was an addition or a removal op-
eration. The second part of the string contains the type of the axiom and its actual
name.
In both functionality and appearance, this view is very similar to the Change View by

Drummond (2011). However, a manual test showed that the current version of Change
View, which is installed by default in Protégé, displays change sets with random class
names when an axiom is deleted. The last change view presented in this section filters
out these classes.

Impact Metrics Panel

The impact metrics panel displays the impact metrics presented in Section 3.4.1 as well
as the reasoner status. With that, it fulfills R2 ChImp should inform the user about
the consistency of the loaded ontology. When the ChImp view is added to Protégé and
no reasoner is loaded, the ImpactMetricsPanel class opens a popup to inform the user
about this circumstance. When the plugin is open but no reasoner is running inside of
Protégé, the view displays an information string that informs the user how a reasoner can
be started. Figure 3.3 shows the view if a reasoner plugin is running inside of Protégé.

Figure 3.3: Cutout of the impact metrics panel

Right below the title, this view contains the reasoner status. Currently, the strings are
reasoner status messages defined by the Protégé editor package. The rest of the panel
displays a chosen impact metric. The metric name is printed in a dropdown panel, with
which other impact metrics can be chosen. However, only one of them can be shown at

14

3.4. PLUGIN COMPONENTS 15

any point in time. The metric itself is a number with five decimal places. Its description
is a short text and a LATEX formula printed with JLatexMath (see Section A.3.4).
To initialize the impact metrics, the ImpactMetricsPanel creates a ChimpReasoner

instance (see Section 3.4.3). Compared to the other panels, the change updates in the
impact view are more involved. Even though it listens to changes with an implementation
of the OWLModelManagerListener, these changes are not necessarily realized. The reason
for this is that the reasoner synchronization can be managed manually through the
Protégé editor. This option to synchronize the reasoner gives users the possibility to
regulate when the reasoner recalculates the materialization. For more information consult
Section 3.4.3.

Standard Metrics Panel

This panel is dedicated to the display of the primitive and ratio metrics listed in Sec-
tion 3.4.1 and with that fulfills R3 ChImp should show primitive and composite measures
in a table, visualizing the new value and its difference to the old value based on the ap-
plied changes. The panel is realized with a JTabbedPane to organize both the chart and
the metric list as tabs. Figure 3.4 shows the list view that lists the primitive and ratio
metrics.

Figure 3.4: Cutout of the list view in the standard metrics panel

The panel splits the metrics into two groups: primitive metrics and ratio metrics.
Both groups are listed similar to Protégé’s ontology metrics view. However, the differ-
ence between the last change is also shown next to each metric. This change display is
customizable with the dropdowns at the top of each group. The first dropdown regu-
lates if the change is displayed as a percentage or an absolute number. With the second

15

16 CHAPTER 3. IMPLEMENTATION

dropdown, a user can choose to either display the last change or the cumulative change
over all changes made in the session. With these functionalities, the view also fulfills R4
ChImp should use colors to indicate changes, R8 ChImp should allow the user to chose
between the presentation of metrics either in absolute values or as percentages and R9
ChImp should let the user choose between using only the last change or all changes for
the calculation of primitive and composite measures.
The second tab of the view displays a graph of a selected metric. Figure 3.5 shows the

panel with this tab in focus.

Figure 3.5: Cutout of the chart view in the standard metrics panel

At the top of the panel, there is a dropdown that regulates the metric that is displayed.
The graph only ever displays one metric at a time. The current change step in the
ontology is shown on the x-axis. The y-axis shows the value of the metric. The axis label
range adjusts itself to the type of number that is displayed.
The standard metrics panel updates all changes by listening to changes with an imple-

mentation of the OWLOntologyChangeListener. Since both its tabs use the same metrics,
this update only needs to be done once.

16

3.4. PLUGIN COMPONENTS 17

3.4.3 Reasoner
All of the impact metrics listed in Section 3.4.1 depend on a reasoner to calculate the
materialization of the underlying ontology. The ImpactMetricsPanel described in Sec-
tion 3.4.2 initializes the ChimpReasoner class to initialize the metrics. This class is
initialized with a reasoner that implements the OWLReasoner interface. All reasoner plu-
gins inside Protégé can be accessed through the OWLReasonerManager which is exposed
by the OWLModelManager. Inside of ChImp, ChimpReasoner acts as an interface to in-
teract with any reasoner that is loaded. In addition, since ChImp displays all impact
metrics cumulatively, it saves the first materialization. The OWLReasonerManager also
allows access to the reasoner status while the plugin is running.
The Protégé interface allows users to manually synchronize the current reasoner during

a session. With this, a user can choose when to perform large reasoner calculations and
potentially delay calculations to minimize the computational load. The synchronization
itself forces the reasoner to recalculate the current materialization.
In an early phase, the ChImp plugin used a fixed version of the Hermit reasoner

(see Hermit in Section A.3.4) However, I decided to work with the Protégé interface to
allow the plugin to be more flexible in the future. For this reason, the ChImp plugin
is independent of the reasoner and different users can satisfy their specific needs with
their own reasoner choice. To interact with the ChImp plugin, a reasoner only needs to
fulfill the requirement of implementing the OWLReasoner interface. Hence, this includes
incremental reasoners as well.

3.4.4 Testing
The current implementation of the metrics is supported by several tests. The following
sections present two different ways of testing. The first builds the tests manually and
the second compares the metrics to previously calculated values.

Standard Tests

Ontologies can be constructed programmatically with the OWL API. This is done by cre-
ating axioms with the OWLDataFactory and adding them to an empty ontology with the
OWLOntologyManager. Since the axioms are added manually, the result of the primitive
metrics and the ratio metrics can be determined.
Unfortunately, not all of the metrics in the current version of ChImp have tests due to

time constraints. There are 7 tests for the primitive metrics and 5 for the ratio metrics.
The primitive tests, evaluate the metrics with different numbers and types of axioms.
In addition, they have checks for empty ontologies. The ratio metrics have checks for
which the numerator and/or the denominator of their calculations is zero. They also
test extreme cases for the numerator and the denominator of their calculations. As an
example, the annotation richness is tested with an ontology that contains a single class
and 999 annotations. There are plans to test the impact metrics in this fashion as well.
However, the construction of the ontologies is more complicated in their case since they

17

18 CHAPTER 3. IMPLEMENTATION

only depend on the materializations.

Ontology Tests

In addition to the standard tests, the codebase includes ontology tests. These tests are
performed on ontologies for which previous calculations exist. These calculations were
performed with kbci_py, which is a library that can calculate various metrics. The code
for kbci_py as well as the precomputed results are available online1. Unfortunately,
kbci_py does not consider the imports closure for the calculation of what this thesis
describes as primitive and ratio metrics. Since the precomputed ontologies contain im-
ports, the results of the ChImp plugin differ by a lot. The same is not true for the impact
metrics. In fact, kbci_py offered results for 9 of the 11 impact metrics that are currently
part of ChImp. For the impact metrics, the library does include the imports closure.
Since the impact metrics depend on the reasoner implementation, a slight deviation is to
be expected. Most of the tested metrics deviate by less than 20%. Only the subsumption
impact deviates by approximately 40%.

1https://gitlab.ifi.uzh.ch/DDIS-Public/chimp-mat

18

3.4. PLUGIN COMPONENTS 19

Description References

c number of classes (Sicilia et al., 2012; Manouselis et al., 2010;
Tartir et al., 2010; Tomassen and Strasunskas,
2009)

i number of individuals (Sicilia et al., 2012; Manouselis et al., 2010;
Tartir et al., 2010; Tempich and Volz, 2003;
Tomassen and Strasunskas, 2009)

p number of properties (Sicilia et al., 2012; Manouselis et al., 2010;
Orme et al., 2007; Tartir et al., 2010; Tempich
and Volz, 2003; Tomassen and Strasunskas,
2009)

pO number of object properties (Lantow and Sandkuhl, 2015; Shen et al.,
2018; Tempich and Volz, 2003)

pD number of datatype properties (Tempich and Volz, 2003)
h number of subclasses (Shen et al., 2018)
a number of annotations (Shen et al., 2018)
eq number of equiv. classes (Shen et al., 2018; Tempich and Volz, 2003)
inv number of inverse relations (Osumi-Sutherland et al., 2018)

i/c average population (Sicilia et al., 2012; Manouselis et al., 2010;
Duque-Ramos et al., 2013; Gangemi et al.,
2006; Tartir et al., 2010)

h/c inheritance richness (Sicilia et al., 2012; Manouselis et al., 2010;
Djedidi and Aufaure, 2010; Lantow and
Sandkuhl, 2015; Tartir et al., 2010)

a/c annotation richness (Duque-Ramos et al., 2013; Tartir et al., 2010)
pD/c attribute richness (Tartir et al., 2010; Lantow and Sandkuhl,

2015; Djedidi and Aufaure, 2010)
p/p+h relationship richness (Sicilia et al., 2012; Manouselis et al., 2010;

Duque-Ramos et al., 2014; Tartir et al., 2010)
p/c property class ratio (Duque-Ramos et al., 2013; Tempich and

Volz, 2003; Gangemi et al., 2006; Tartir et al.,
2010)

inv/p inverse property ratio (Djedidi and Aufaure, 2010; Gangemi et al.,
2006; Tartir et al., 2010)

c/p class property ratio (Lantow and Sandkuhl, 2015; Gangemi et al.,
2006; Alm et al., 2013)

pD/p datatype property ratio (Tempich and Volz, 2003)
pO/p object property ratio (Tempich and Volz, 2003)

Table 3.1: Description and references of the primitive and ratio metrics in ChImp. The
top section contains the primitive metrics. The bottom section contains the
ratio metrics.

19

20 CHAPTER 3. IMPLEMENTATION

Description Implementation

c number of classes o.getClassesInSignature().size()

i number of individuals o.getIndividualsInSignature().size()

p number of properties o.getObjectPropertiesInSignature().size()
+ o.getDataPropertiesInSignature().size()

h number of subclasses o.getAxioms(AxiomType.SUBCLASS_OF).size()

a number of annotations o.getAnnotations().size()

eq number of equiv. classes o.getAxioms(AxiomType.
EQUIVALENT_CLASSES).size()

inv number of inverse relations
o.getAxioms(AxiomType.
INVERSE_FUNCTIONAL_OBJECT_PROPERTY).size()

+ o.getAxioms(AxiomType.
INVERSE_OBJECT_PROPERTIES).size()

Table 3.2: Description and implementation of the primitive metrics in ChImp. o is the
instance of the ontology within each metric implementation. The implemen-
tation is performed on all ontologies in the imports closure.

20

3.4. PLUGIN COMPONENTS 21

Formula Description

impact∆+,mi
=

∆+
i

mi
added inference old ratio

impact∆−,mi
=

∆−i
mi

removed inference old ratio

impact∆+,mi+1
=

∆+
i

mi+1
added inference new ratio

impact∆−,mi+1
=

∆−i
mi+1

removed inference new ratio

impact∆+,∩ =
∆+
i

mi,i+1
added inference impact

impact∆−,∩ =
∆−i

mi,i+1
removed inference impact

impact∆,a =
∆+
i +∆−i

max(mi,mi+1) change max impact

impact∆,∩ =
∆+
i +∆−i
mi,i+1

change impact

impact∆v,∩ =
h∆i

mi,i+1
subsumption change impact

impact∆v,∩v =
h∆i

mi+1−mi
subsumption impact

mi = |Mi| = |Gi\Oi| Materialized part of the graph at time i
mi,i+1 = |Mi ∩Mi+1| number of axioms shared between the

materialized versions
∆+

i = |Mi+1\Mi| New axioms part of Mi+1 but not in Mi

∆−i = |Mi\Mi+1| Old axioms part of Mi but not in Mi+1

h∆i = |SubClassOf(·, ·)m,i| Number of SubClassOf axioms in ∆+
i

and ∆−i

Table 3.3: Description of the impact metrics in ChImp. They are reproduced from an
internal document listed in Appendix A.1.

21

4
Technical Evaluation

Chapter 1 lists RQ1, RQ2, and RQ3 about the implementation of the ChImp plugin.
The following sections address these questions by looking at the implementation of the
plugin.

4.1 Performance
Before answering the research questions it is important to first identify their target.
RQ1 How long does it take for the plugin to visualize a change? is a good segue into the
topic of task separation in the Protégé environment. In the environment of the ChImp
plugin, it is important to distinguish between plugin tasks and Protégé tasks. Analyzing
the performance of Protégé tasks is not part of this thesis because it would be hard to
isolate the scope of such an assessment. Hence, the research question above is specifically
directed at the visualization performance of the plugin.
Before the plugin can show anything it has to perform its own internal tasks. Primitive

metrics use the OWL API to access the ontology that is loaded in the Protégé workspace
(see Section 3.4.1). Testing the performance of the OWL API is also not part of this
thesis. Nevertheless, the specific calls give insight into the computational complexity
behind the calculations. Therefore, for this evaluation, it is important to determine the
computational complexity of the function calls listed in Table 3.2. Looking at the in-
dividual calls in detail, it becomes clear that their computational complexity is in fact
linear. As an example, the call to the number of classes in the signature of an ontology
is returning the length of a precomputed set. The Protégé editor, stores all classes of an
ontology in such a set. The caller now only needs to calculate the length of that set to de-
termine the number of classes. The same logic applies to most primitive metrics because
the most complex operation they perform is a set count. Hence, their computational
complexity is linear. Exceptions are the metrics NumberOfEquivalentClassRelations,
NumberOfInheritanceRelations and NumberOfInverseRelations. For these metrics,
the sets have to be filtered to get a set that only contains the appropriate relation. Even
though this is different from the other primitive metrics, this filtering effort is linear as
well and therefore its effect is negligible.

24 CHAPTER 4. TECHNICAL EVALUATION

The ratio metrics are completely dependent on primitive metrics. In fact, all of their
calculations are divisions of primitive metrics, which means that they also solely depend
on set counts. Hence, their computational complexity is linear too. The actual division
operation is negligible.
In contrast to the primitive metrics, the computational complexity of the impact met-

rics depends on the OWL API as well as the reasoner. The calculations the reasoner
performs are very involved and go beyond the scope of this thesis. In addition, there is
already research that analyzes reasoner performance (e.g. Dentler et al., 2011; Abburu,
2012; Oesch, 2018). Therefore, they are not considered in the assessment of the compu-
tational complexity of the impact metrics. Once the impact metrics have obtained the
materializations from the reasoner, they also perform rather simple calculations, since
they only depend on the OWL API. In fact, their computational complexity is linear as
well. The reason for this is that most of the metrics calculate a ratio of the sizes of the
current and last materialization, which are also determined by set counts. A special case
is the calculation of the GraphDistanceImpact presented in Section 3.4.1. It requires the
computation of the topological indices of both the initial materialization and the current
materialization. This calculation is dependent on how the chosen reasoner stores the
underlying ontology. If a reasoner saves the underlying ontology as a graph of nodes, the
calculation of the degree of the individual nodes can be determined in linear time. Once
the topological indices are determined, the rest of the calculation runs in linear time as
well.
In conclusion, RQ1 mostly depends on Protégé and the chosen reasoner and not the

ChImp plugin. The calculations inside the plugin are trivial in comparison to the complex
tasks that Protégé performs for each change operation. The explanation above also
provides an answer to RQ3 How does the plugin perform with ontologies of different
sizes?. Since the computational complexity of the internal calculations of ChImp is linear,
the overall performance mainly depends on Protégé. Based on this linear computational
complexity, there is no reason to assume that the calculations do not scale to larger
ontologies.
For the same reason, it is very hard to improve the performance of the plugin. When-

ever it is possible, the metrics already save intermediate results to avoid unnecessary
calculations. This is, for example, the case for the impact metrics. Since all of them
compute their result cumulatively, they reuse the initial materialization in subsequent
calculations. In the ChImp plugin, this is handled by the ChimpReasoner class. It
calculates the first materialization so that the impact metrics can access it without an
additional computational effort.

4.2 Stability
RQ2 Does the plugin block while calculating metrics? inquires about possible blockages
during the calculation of the metrics. Considering the remarks in Section 4.1, I think it
is unlikely that the internal calculations run into problems. I think it is far more likely
that the reasoner or Protégé itself lock up during a change operation. With that said,

24

4.2. STABILITY 25

it is possible that ChImp contains bugs or other code-related issues that result in an
error. The testing mentioned in Section 3.4.4 does not extend to the visual components.
Therefore, errors are more likely to occur there. In addition, even though several metrics
have been tested, this is not a guarantee that bugs cannot occur.
While testing manually, I observed that on a normal computer Protégé can easily be

pushed to its limits by performing a large delete operation. If a reasoner is active during
this operation, the delay is even greater and may even result in a crash. In my experience,
Protégé also crashes whenever an ontology is inconsistent and a reasoner is active. This
scenario can be created by making any class the subclass of owl:Nothing. These crashes
are not related to the ChImp plugin since they also occur without it.

25

5
User Evaluation

This chapter presents an experiment conducted with the ChImp plugin to provide insight
into RQ4 and RQ5 from Chapter 1. These two research questions ask how developers
rate the appeal of the plugin and if they find its content useful and informative. The
chapter is structured as follows: First, Section 5.1 states the hypotheses of the exper-
iment. Subsequently, Section 5.2 presents the design of the experiment. After that,
Section 5.3 presents the results and Section 5.4 discusses them.

5.1 Hypotheses
The following paragraphs recapitulate the research questions that the experiment aims
to answer and, if applicable, derive corresponding hypotheses.

RQ4 Do developers like the plugin and its visualizations?

This research question aims to assess the perceived appeal developers have when they
have performed a task with the plugin. There are no hypotheses for this research ques-
tion since it will be answered with descriptive statistics.

RQ5 Is the content useful and informative to developers?

This research question aims to ascertain if the ChImp plugin in fact fulfills an actual
use case. It cannot be proven that there is not any use case for which the plugin is useful.
However, given a specific use case, users can be asked if they perceive the plugin to be
useful in that context. To obtain a sensible result, such a comparison needs to include
participants that use the plugin and participants that do not. Therefore, a concrete
experiment has two groups that both perform the same task. One group has the plugin
during this task and the other one does not. For this comparison to work, it is vital that
the participants do not know of the existence of the plugin beforehand, since this would
otherwise affect their expectations.

H10: It is unclear if developers that perform a task with the ChImp plugin
perceive to be better informed about the impact of their changes than their

28 CHAPTER 5. USER EVALUATION

contemporaries that completed the same task without the plugin.
H1: Developers that perform a task with the ChImp plugin perceive to be
better informed about the impact of their changes than their contemporaries
that completed the same task without the plugin.

In addition, the ChImp experiment also investigates if the participants’ perception of
how well informed they are depends on whether or not they have previously performed
a task with the plugin. The reason for this is that the results cannot be considered valid
if the participants simply learn to appreciate the plugin. To do this, the group that used
the plugin in the first task performs a second task without it, and vice versa for the other
group. The baseline comparison looks at the tasks that the groups performed without
the plugin. The goal of this is to determine if participants’ perceptions are influenced by
the previous task.

H20: Developers that have used the ChImp plugin and afterwards perform
a task without it have a different perception of how well informed they are
without it than developers that perform a task without having seen the plugin
beforehand.
H2: Developers that have used the ChImp plugin and afterwards perform
a task without it have the same perception of how well informed they are
without it than developers that perform a task without having seen the plugin
beforehand.

5.2 Experiment Design
The experiment was conducted remotely on the computers of the participants. A few days
before the experiment, all participants were asked to install Protégé on their computers.
This was done earlier to ensure that there would be enough time for troubleshooting.
15 minutes before the experiment, participants received an email with the survey and
two pizza ontologies1, one for each task. In addition, during the experiment participants
were allowed to ask questions via email or chat.

5.2.1 Survey Structure
In order to give insight into the stated research questions and hypotheses, the experiment
confronts the participants with tasks and inquires about their experience. Since the
experiment was conducted remotely, the survey is set up to guide participants throughout
its duration. For this to work, the survey explains every step of the process in great detail.
The whole survey can be found in Appendix A.4.
The participants of the ChImp experiment are split into two groups. Both groups have

two distinct surveys that differ in when they introduce the ChImp plugin. Figure 5.1
shows how the surveys are structured for the two groups. The start of both surveys

1https://protege.stanford.edu/ontologies/pizza/pizza.owl

28

5.2. EXPERIMENT DESIGN 29

Group 1
Participant
Questions

and Protégé
Overview

ChImp
Intro Task 1

ChImp
Questions Task 2

Closing
Questions

Group 2
Participant
Questions

and Protégé
Overview

Task 1 ChImp
Intro Task 2

ChImp
Questions

Closing
Questions

Figure 5.1: Steps in the experiment from left to right. The first group performed the first
task with ChImp and the second task without ChImp. The second group
performed the first task without ChImp and the second task with ChImp.

contains questions about the participants’ experience with ontologies and Protégé and
presents an overview of Protégé and its basic functionalities. After this first step, the
surveys present the tasks. Depending on the group, they introduce the ChImp plugin
at a different time and ask questions about it afterwards. It is important to note, that
the first group is asked to close the ChImp plugin after answering the ChImp questions
and not use it in the second task. In the end, both surveys contain the same closing
questions. These closing questions consist of general questions about ChImp and the
experiment and text fields for possible feedback.
To provide insight into RQ4 Do developers like the plugin and its visualizations?,

participants rate the design of the plugin and its views after they have used it in one of
the tasks. For the first group, this is after the first task and for the second group, this is
after the second task. Specifically, they are asked to rate the visualization of each view
(see Section 3.4.2) and the plugin as a whole on a scale from 1 to 5 with the following
instructions: "with 1 being you don’t like it at all and 5 being you like it very much".
As described in Section 5.1, the approach to investigate RQ5 Is the content useful and

informative to developers? is more involved since it is two-pronged. The first aspect is
the direct comparison between two groups that perform the same task but only one of
them has the plugin. In the experiment, the first task is identical and therefore ideal for
this comparison.
The second aspect revolves around whether or not participants learn and adapt dur-

ing the experiment. The goal of this aspect is to determine if participants are able to
correctly assess how well informed they are or if they change this assessment if they have
a situational comparison. If the participants are actually unbiased by the fact that they
have used the plugin before, the results from the second task can also be used to answer
the first aspect. Each group performs a task with and without the ChImp plugin to
answer this question. The first group starts the first task with the ChImp plugin and the
second group starts the same task without it. In the second task, the same situation is
in reverse. For each of the tasks, the participants respond to the same questions.

29

30 CHAPTER 5. USER EVALUATION

5.2.2 Experiment Tasks
The tasks in both surveys are the same. The only thing that is different is that the
ChImp plugin is introduced at a different point. Before each task, participants are asked
to open one of the ontologies that were sent before the experiment. Each task has two
parts, that do not depend on each other. In each part, participants are asked to alter
the ontology so that the ChImp plugin can display changes.
After each part, the survey reminds the participants that the experiment at hand

revolves around the impact their changes have on the ontology as a whole. Furthermore,
it asks participants to take a look at all the tabs and views that are currently open
in Protégé. Following that, the participants need to fill out a scale with the following
question: "Rate how well informed you are about the impact the previous changes had
on the ontology as a whole (with 1 being not informed at all and 5 being very well
informed)". In addition, they are asked to write down the view or element on the screen
that was most crucial for answering the previous question. To see the tasks consult
Appendix A.4.

Task 1

In the first part, the survey asks the participants to open the class hierarchy view in the
entities tab of Protégé and add a class "Drink" to the ontology. In addition, this class
has the subclasses "Coke", "Sprite" and "Ice Tea". The individual steps to add this
structure with Protégé are explicitly stated in a list. The resulting hierarchy is shown as
additional help.
In the second part, the survey again asks the participants to open the class hierarchy

view. However, in this part, the instruction for the participants is to delete the "Pizza"
class that is already in the ontology. The surveys show the participants which button
needs to be clicked for this deletion operation and which deletion option needs to be
selected.

Task 2

The first part of the second task mirrors the first part of task 1. However, instead of
adding "Drink", participants have to add the class "Burger" and the subclasses "Cheese-
burger", "Hamburger" and "Veggieburger".
The second part instructs participants to open the object property hierarchy view in

the entities tab of Protégé. The survey then instructs the participants to delete the
property "hasIngredient". The instructions are the same as in the second part of the
first task but adopted for object properties.

5.2.3 Participant Demographics
In the first phase, I contacted university students that partook in the class Semantic Web
Engineering in the fall of 2019. With them having taken this class, it is fair to assume
that they are aware of the concept of an ontology. To expand the participant pool, I

30

5.3. RESULTS 31

extended the invitation to all members of the DDIS. In addition, I invited students that
took the seminar Current Trends of Dynamic and Distributed Information Systems in
the spring of 2020. Altogether, 30 people were invited to the experiment. 15 of these
replied and 13 eventually completed the experiment. The first group in the experiment
had seven participants and the second group had six participants.
Seven participants reported that they have had at least one course at university that

revolved around ontologies. However, only two participants replied that Protégé was
used in a university course they attended. Three of the participants stated that they
have used Protégé outside of university courses. One of them stated to have 4 months
of experience with the tool. Another stated to have 6 months. In addition, two said
that they have used Protégé in a professional setting. However, only the participant
that stated to have 4 months of experience with Protégé in the previous question, also
expressed to have used Protégé in a professional setting. The other participant that used
Protégé in a professional setting reportedly does not have any experience with Protégé.
Since this is a conflicting statement, it is not clear how much experience this participant
really has with Protégé. In summary, at least 10 of the 13 participants do not have any
experience with Protégé.

5.3 Results
The execution of the experiment spanned three weeks. On average, the participants took
42 minutes to complete the experiment. Five participants asked questions during the
experiment. Most of the asked questions were about issues with Protégé or the survey
itself, not the content of the tasks. Three of the participants had a technical issue during
the experiment. However, all of these issues occurred at the beginning of the experiment
and the participants were able to switch to a different computer or I was able to resolve
the issue. All of the answers in the experiment are either on a scale from one to five or
in text.
Figure 5.2 shows the results of the questions that were asked at the end of the exper-

iment. The specific questions are in the figure description. In general, the participants
liked the plugin and the experiment as a whole. However, the difficulty level was too
low for most participants. In addition, on average the participants did not feel strongly
about the validity of their assessment.
The textual feedback at the end of the study was mostly positive as well. Several

participants stated that they like the idea of presenting ontology change and that they
did not find other views in Protégé that did this. However, one person replied that the
last change view is too small. In addition, two people remarked that the impact metrics
were not explained well enough. One of them suggested adding further information in the
description such as concrete examples or a better explanation about the intuition behind
the formulas. One participant also replied that the chart view is currently limited to
the progress of change and therefore not able to display a summary of change. That
participant also suggested the use of a spider plot. Such a plot would show several
metrics in one figure, and with that summarize the change.

31

32 CHAPTER 5. USER EVALUATION

Figure 5.2: General feedback about the study and ChImp. The white circles represent
mean values. 1 is the lowest score and 5 is the highest. Study Usefulness:
How confident do you feel that your assessment of the usefulness of the plugin
would hold up in a real-life use case? ChImp Appeal: How did you like the
ChImp plugin? Study Appeal: How did you like the study overall? Difficulty
Level: The difficulty level for me was?

Participants felt that the instructions were, for the most part, clear and easy to follow.
One participant remarked that the changes in the experiment were really simple and
inquired if ChImp was also able to display more complex changes. That participant also
suggested testing ChImp in a code-review like situation, where one developer interprets
the ChImp view of another developer.

5.3.1 Plugin Appeal
After participants used the plugin in a task, they answered more detailed questions about
the plugin’s visualization. Figure 5.3 shows the results of the visualization rating. The
results suggest that people generally like the visualization of the list view and the chart
view. The scores for the visualization of the last change view and the impact view are
harder to interpret. Even though they show a slight positive trend, the whiskers show
that the underlying data has a larger variance. The visualization of the plugin overall
was also well received.

5.3.2 Plugin Content
As mentioned in Section 5.2.2, participants answered a question about how well informed
they felt after each part of each task. Figure 5.4 shows the results of each task and both
tasks combined. When looking at the chart for both tasks (Figure 5.4c), it seems clear

32

5.3. RESULTS 33

Figure 5.3: Visualization rating for the plugin and its views. The white circles represent
mean values. 1 is the lowest score and 5 is the highest.

that participants with the ChImp plugin perceived to be better informed than those
without it. A t-test confirms that the means of the two data sets are indeed significantly
apart (p = 0.00002). The same appears to be true for the individual tasks, even though
the difference in Figure 5.4a looks smaller. A t-test of the data sets of the first task
results in a p-value of 0.058. Hence, the mean difference in the first task is not significant
if a p-value of 0.05 is the threshold. A t-test of the data of the second task is more clear
with a p-value of 0.000002.
By looking at Figure 5.4a and Figure 5.4b it becomes apparent that the two groups

did not behave consistently for both tasks. The scores for group 1 in task 2 look like
they are lower than those of group 2 in task 1 even though both groups performed these
tasks without the plugin. Figure 5.5b shows a direct comparison of their results. A
t-test signals that the rating mean difference is significant (p = 0.0016). Hence, the
participants that had seen the plugin beforehand, had a different perception of how well
informed they were than the participants that had not yet seen the plugin. The same
cannot be said of the tasks performed with the ChImp plugin. The scores in Figure 5.5a
look very similar and their difference is not significant (p = 0.84).
After each part of each task, participants also needed to write down the element that

was most crucial for the score they gave for how well informed they were. For the tasks
that were completed with the plugin, most of the answers included either the plugin or a
component of it. However, the responses mentioned most views of the ChImp plugin with
the same frequency. There was not a single view that rose above the others. In addition,
three participants stated other views and one replied with ’none’. Like in the general
study feedback, some responses remarked that the impact metrics were not explained
well enough.
For the tasks that were completed without the plugin, most of the participants stated

33

34 CHAPTER 5. USER EVALUATION

(a) Task 1 (b) Task 2

(c) Both Tasks

Figure 5.4: Scores of how well informed participants felt during the tasks. The top
whiskers in all three plots are the tasks that were completed with the ChImp
plugin. The bottom whiskers correspond to those that were done without the
plugin. The white circles represent mean values. 1 is the lowest score and 5
is the highest.

34

5.4. DISCUSSION 35

(a) Tasks with the ChImp plugin (b) Tasks without the ChImp plugin

Figure 5.5: Comparison of similar tasks. (a) compares the tasks that were completed
with the ChImp plugin. (b) compares the tasks that were completed without
the ChImp plugin. The white circles represent mean values. 1 is the lowest
score and 5 is the highest.

one of the hierarchy views inside Protégé. Some of them mentioned that they were able to
see the difference inside of the hierarchy tree. Other answers included Protégé’s ontology
metrics view and again ’none’. This ’none’ was given by a different participant than the
one given as a response for the task with the plugin. One participant remarked that the
experiment never gave a definition of what impact is and inquired if the goal of the study
is to determine the participants’ definition of impact.
At the end of the experiment, all participants were asked to rate how informative

each panel and the plugin as a whole were for them. Figure 5.6 shows an overview
of these ratings. The scores indicate that the participants thought that the list view
was very informative. The rest of the views received scores that are harder to interpret.
Nevertheless, they indicate that the last change view and the chart view were perceived to
be moderately informative and that the impact view was perceived to be less informative.

5.4 Discussion
In general, the results of the study have to be taken with a grain of salt due to the small
sample size of 13. In addition, even though participants liked the plugin and the study,
they did not give a clear indication of whether or not they thought that their responses
were useful for a real-life use case (see Figure 5.2).
With these caveats in mind, the results seem to indicate that participants generally

liked the visualization of the plugin, albeit not equally for every view. Well-liked were
especially the list view and the chart view. Given these indications, RQ4 Do developers
like the plugin and its visualizations? can be answered as follows: The participants in
the study generally liked the ChImp plugin and its visualizations.
The results from Figure 5.4c suggest that there is also a very clear-cut answer for

RQ5 Is the content useful and informative to developers?. However, as demonstrated in
Figure 5.5b, the second task should not be considered for the comparison. The t-test for

35

36 CHAPTER 5. USER EVALUATION

Figure 5.6: Rating of how informative the plugin and its views are. The white circles
represent mean values. 1 is the lowest score and 5 is the highest.

this data shows that the fact that the participants had already seen the plugin affected
their perceptions in the second task. As a consequence, H20 cannot be rejected. Despite
this, the results from Figure 5.4a can still provide an answer since they are unaffected
by this bias. In the first task, neither group had another task that they could compare
it to. Nevertheless, these data are also do not allow for a meaningful conclusion since
the means are not significantly distinct with a p-value of 0.058. Hence, H10 cannot be
rejected either. It is noteworthy, that the threshold of a p-value of 0.05 is arbitrary. A
higher significance level would indicate that the difference is in fact significant. However,
considering the low number of participants and their lack of experience with Protégé,
a conclusion based on the current data is not meaningful. The data do not give a
significant indication of whether or not the participants perceive to be better informed
with the plugin. The only indicator that is left, is the participants’ own estimation of
how informative the ChImp plugin and its views were after they completed a task with it.
However, the results suggest that only the list view is clearly thought of as informative.
In conclusion, the answer to research question RQ5 is: The results do not provide a clear
indication that the content of the plugin was useful and informative to developers.

36

6
Limitations and Future Work

The thesis at hand has several limitations that deserve mention. The following para-
graphs cover the most important ones. In addition, the paragraphs outline possible
future work.

6.1 Requirements
The implementation of the ChImp plugin heavily relies on the work by Pernischová et al.
(2020). However, it is the only study that I could find that presents requirements for
ontology change impact visualization. The fact that there is not more research could
indicate that this particular niche is still in its infancy and more research is needed to
establish a consensus. In addition, research in the field of ontologies shows that it is not
likely that there is a visualization that fits all use cases (see Section 2.3.1). This aspect
can be analyzed in more detail by eliciting more specific requirements and adapting
ChImp to them.

6.2 Implementation
There are several concrete elements of the current implementation that need improve-
ments. As mentioned in Section 3.4.2, the last change view does not summarize the
change sets and simply chooses the first change in a set to represent it. However, sum-
marizing a change set is not trivial. Hence, more research in this area is needed. On
top of that, there is no limit to how long the strings inside the view can be. Therefore,
the plugin requires an approach to summarize single changes to short strings. These two
problems are underscored by the fact that several participants of the user experiment
stated that the last change view is too small. Better change summaries could improve
this perception. The feedback from the user experiment also shows that the other visual
elements that are part of ChImp have space for improvements. The participants espe-
cially did not understand the impact metrics. Hence, more work is needed to figure out
how their meaning can be better conveyed. All remarks like this should be considered in
a future version. In addition to these aspects, requirements 5 to 7 from Pernischová et al.

38 CHAPTER 6. LIMITATIONS AND FUTURE WORK

(2020) are currently not covered in ChImp. A future release should include an export
functionality that covers these three requirements.
Discussions during the implementation of Chimp also brought about several other ideas

for features that are not part of this thesis due to time constraints. This is evident by the
fact that many of the initial designs and concepts presented in Section 3.1 are not used
in the current implementation. I believe, that a node-link diagram that uses polymetric
views to display the last change and its dependencies, shows a lot of promise. One
participant of the user evaluation also suggested the use of a kiviat diagram. Despite the
fact that Pernischová et al. (2020) show that there is no indication that such a diagram is
particularly useful, I believe that it also offers promising possibilities. Another idea that is
not in the current implementation is to make ChImp more customizable. Concretely, this
could mean that the user can choose the metrics that are displayed in ChImp’s views or
display only certain information about them. Alternatively, this could mean that whole
views inside of ChImp are customizable or even interchangeable. In addition, the selection
of metrics is currently very limited. A newer iteration should include more metrics that
address aspects such as quality, semantics, or concept drift. Another proposed feature is
the use of machine learning. With enough data, a regression model could learn to predict
change impact or warn a user at a crucial editing step. Pernischová (2019) has already
laid the foundation for such an approach.

6.3 Technical Evaluation
The goal of the technical evaluation was to answer questions about the performance
and stability of the plugin. However, it became clear that the plugin itself does not
contain calculations with high computational complexity. Hence, the research questions
were largely answered by referring to Protégé’s own limitations. Proper answers to the
research questions would include Protégé in their considerations. Such a comprehensive
approach could determine exactly when and in which scenario a blockage or time delay
could occur.
In addition to such an approach, a future evaluation also needs to test the plugin’s

interaction with different reasoners. As of now, it is unclear how the plugin reacts to
different reasoners or even different types of reasoners, such as incremental reasoners.
This could be done by adding more tests to the implementation. Due to time constraints,
the current testing suite is also very limited in its scope. More tests for the metrics as
well as the components would lead to a more stable application in general.

6.4 User Evaluation
The experiment suffers from several shortcomings. First off, the sample selection was not
appropriate for the task. Most of the participants did not have any prior experience with
Protégé. On top of that, several of them only had one course about ontologies and were
therefore beginners in the field. It is to be expected that more experienced developers

38

6.4. USER EVALUATION 39

would have been able to better evaluate how useful the ChImp plugin is in providing
information about change impact. Next to the experience deficit, it also cannot be ruled
out that the sample suffered from a self-selection bias. In a worst-case scenario, only
people that think this thesis or theses in general are worthwhile participate in the study.
Participants like that will attempt to maximize positive feedback. This effect is worse
if there is an affiliation between the conductor and the participants of the experiment,
which was the case for several of the participants.
In addition to the sample selection, the sample size was also lacking. With only 13

participants it is hard to elicit a result that is generalizable. As a consequence, the
statistical tests that were made have very little validity. Welch’s t-test was used for
the determination of all the p-values. Even though this test is better at mitigating the
difference in sample variance, it cannot do so because of the small sample size.
As for the experiment design, there are also several issues that need to be mentioned.

I am not an expert user of Protégé and do not know what constitutes a change or impact
that normally occurs while editing an ontology. Therefore, I have to assume that the tasks
described in Section 5.2.2 might be too simplistic and do not actually simulate a realistic
use case. In addition, one participant stated that the survey never defined impact as it
is used in the questions. It also cannot be ruled out that the participants had a different
conception of what impact is in this context. Another aspect that introduces more
unknown variables is the fact that the study was conducted remotely. The participants’
actions outside of Protégé were not monitored during the experiment. However, since
the average completion time is rather close to my expectations, I assume that most
participants did not do much else during the experiment.
With the above limitations in mind, the insights presented in Section 5.4 lose credibility.

Even though participants liked the visualization of the plugin, it has to be assumed that
most of them did not have enough experience with Protégé to make an assessment that
is appropriate in this context. More experienced Protégé developers would have already
seen many Protégé plugins and could therefore better assess the visualizations of the
ChImp plugin. The same logic applies to the participants’ assessment of how informative
the ChImp plugin is. It is likely that most of them did not know what Protégé has to
offer and how informed they should feel about a change at any point in time. Specifically,
the experiment incorrectly assumed that they are able to find and compare other views
inside Protégé to answer the questions about change impact. Another issue with the
study itself was that it was not possible to ensure that the participants did not know
about the ChImp plugin before the experiment. Even though it was never mentioned
in any communication beforehand, several participants were aware of it due to their
affiliation with the DDIS group. In summary, to answer the research questions a new
study should be set up that has more expert users and more appropriate tasks to account
for the mentioned limitations.
Another aspect that arose from the user evaluation is that participants might have had

a different concept of what impact is in the context of ontology changes. More research
into what developers’ perceptions of change impact are could give more insight into the
problem of displaying change impact.

39

7
Conclusions

In their work Pernischová et al. (2020) point out that ontology engineers often are not
aware of the impact their changes have. Derived from requirements defined by them, this
thesis presents the implementation of the ChImp plugin, a Protégé plugin dedicated to
the display of change impact information. In addition, a technical and a user evaluation
provide an assessment of the ChImp plugin and its functionalities.
This thesis covers the whole design process as well as the implementation of the plugin

and provides insight into the intentions behind choices made during the development
process. The technical evaluation resulted in the conclusion that the calculations per-
formed inside the ChImp plugin are generally not computationally expensive. Hence, the
plugin is not expected to delay Protégé during a change operation. Testing covers the
calculation of several metrics. Calculation errors are therefore unlikely to occur. The
user evaluation that Pernischová et al. (2020) already hinted at, did give a weak indica-
tion that developers like the visualizations of the plugin. However, the results did not
provide an answer to the question of whether or not the content of the plugin is useful
and informative to developers. The user evaluation did show that the experiment needs
to be repeated with more participants that are experts with Protégé and tasks that are
more appropriate to such experts.
The plugin currently only implements seven of the ten requirements stated by Pernischová

et al. (2020). A planned future release covers the remaining three requirements by adding
the functionality to export the impact information for release purposes. This future re-
lease also includes the functionality to dynamically choose the metrics that are displayed
in the plugin. In addition, there is room for improvements and adjustments for the al-
ready implemented visualizations and the proposed designs and concepts provide a lot
of possibilities for future releases.
The ChImp plugin aims to help ontology developers better understand what the con-

sequences of their actions are, in order to improve the ontology evolution process as a
whole. Future studies will be able to use the plugin to investigate ontology change im-
pact. Hence, it might inspire more research in this area with the end goal of supporting
ontology engineers’ awareness and productivity.

References

What is osgi? – osgiTM alliance. https://www.osgi.org/ developer/what-is-osgi/ . Ac-
cessed: 2020-10-19.

Yahoo finance app. https://mobile.yahoo.com/finance. Accessed: 2020-10-19.

Sunitha Abburu. A survey on ontology reasoners and comparison. International Journal
of Computer Applications, 57:33–39, 2012.

Yalemisew Abgaz, Muhammad Javed, and Claus Pahl. A framework for change impact
analysis of ontology-driven content-based systems. pages 402–411, 01 2011. doi: 10.
1007/978-3-642-25126-9_52.

Carol V. Alexandru, Sebastian Proksch, Pooyan Behnamghader, and Harald C. Gall.
Evo-clocks: Software evolution at a glance. In 2019 Working Conference on Software
Visualization (VISSOFT), pages 12–22. IEEE, 2019. doi: 10.1109/VISSOFT.2019.
00010.

Rebekka Alm, Sven Kiehl, Birger Lantow, and Kurt Sandkuhl. Applicability of qual-
ity metrics for ontologies on ontology design patterns. In Proceedings of the In-
ternational Conference on Knowledge Engineering and Ontology Development - Vol-
ume 1: KEOD, (IC3K 2013), pages 48–57. INSTICC, SciTePress, 2013. doi:
10.5220/0004541400480057.

Ismailcem Arpinar, Karthikeyan Giriloganathan, and Boanerges Aleman-Meza. Ontology
quality by detection of conflicts in metadata. CEUR Workshop Proceedings, 179, 01
2006.

Andrew Burton-Jones, Veda C. Storey, Vijayan Sugumaran, and Punit Ahluwalia. A
semiotic metrics suite for assessing the quality of ontologies. 55(1):84–102, 2004. doi:
10.1016/j.datak.2004.11.010.

The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still Go-
ing strong. Nucleic Acids Research, 47(D1):D330–D338, 11 2018. doi: 10.1093/nar/
gky1055.

44 References

Kathrin Dentler, Ronald Cornet, Annette Teije, and Nicolette de Keizer. Comparison of
reasoners for large ontologies in the owl 2 el profile. Semantic Web, 2:71–87, 01 2011.
doi: 10.3233/SW-2011-0034.

Rim Djedidi and Marie-Aude Aufaure. ONTO-EVO A L an ontology evolution approach
guided by pattern modeling and quality evaluation. In International symposium on
foundations of information and knowledge systems, pages 286–305, 2010.

Nick Drummond. ChangeView, March 2011. URL https:// code.google.com/ archive/ p/
co-ode-owl-plugins/wikis/ChangeView.wiki .

Marek Dudáš, Steffen Lohmann, Vojtěch Svátek, and Dmitry Pavlov. Ontology visu-
alization methods and tools: a survey of the state of the art. 33:e10, 2018. doi:
10.1017/S0269888918000073.

Astrid Duque-Ramos, Jesualdo Tomás Fernández-Breis, Robert Stevens, and Nathalie
Aussenac-Gilles. OQuaRE: A SQuaRE-based approach for evaluating the quality of
ontologies. 43(2):18, 2011.

Astrid Duque-Ramos, Jesualdo Tomás Fernández-Breis, Miguela Iniesta, Michel Dumon-
tier, Mikel Egaña Aranguren, Stefan Schulz, Nathalie Aussenac-Gilles, and Robert
Stevens. Evaluation of the OQuaRE framework for ontology quality. 40(7):2696–2703,
2013. doi: 10.1016/j.eswa.2012.11.004.

Astrid Duque-Ramos, Martin Boeker, Ludger Jansen, Stefan Schulz, Miguela Iniesta,
and Jesualdo Fernandez-Breis. Evaluating the good ontology design guideline (goodod)
with the ontology quality requirements and evaluation method and metrics (oquare).
PloS one, 9:e104463, 08 2014. doi: 10.1371/journal.pone.0104463.

Astrid Duque-Ramos, Manuel Quesada-Martínez, Miguela Iniesta-Moreno, Jesu-
aldo Tomás Fernández-Breis, and Robert Stevens. Supporting the analysis of ontology
evolution processes through the combination of static and dynamic scaling functions
in OQuaRE. 7(1):63, 2016. doi: 10.1186/s13326-016-0091-z.

Sean M. Falconer, Tania Tudorache, and Natalya Fridman Noy. An analysis of collabo-
rative patterns in large-scale ontology development projects. In K-cap, pages 25–32.
ACM, 2011.

Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis, Dimitris Plexousakis,
and Grigoris Antoniou. Ontology change: classification and survey. 23(2):117–152,
2008. doi: 10.1017/S0269888908001367.

Harald Gall, Mehdi Jazayeri, and Claudio Riva. Visualizing software release histories:
the use of color and third dimension. In Proceedings IEEE International Conference on
Software Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’
(Cat. No.99CB36360), pages 99–108. IEEE, 1999. doi: 10.1109/ICSM.1999.792584.

44

References 45

Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann. Modelling
ontology evaluation and validation. In European semantic web conference, pages 140–
154, 2006.

Michael R. Genesereth and Nils J. Nilsson. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1987. ISBN 0934613311.

Rafael S. Goncalves, Bijan Parsia, and Uli Sattler. Analysing the evolution of the NCI
thesaurus. In 2011 24th International Symposium on Computer-Based Medical Systems
(CBMS), pages 1–6. IEEE, 2011. doi: 10.1109/CBMS.2011.5999163.

Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler. Categorising logical differences
between OWL ontologies. In CIKM, pages 1541–1546. ACM, 2011.

Anika Gross, Michael Hartung, Kay Prüfer, Janet Kelso, and Erhard Rahm. Impact of
ontology evolution on functional analyses. Bioinformatics, 28(20):2671–2677, 2012.

Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199 – 220, 1993. ISSN 1042-8143. doi: 10.1006/knac.1993.1008.

Nicola Guarino and Pierdaniele Giaretta. Ontologies and knowledge bases: Towards
a terminological clarification. In Towards very Large Knowledge bases: Knowledge
Building and Knowledge sharing, pages 25–32. IOS Press, 1995.

Jon Gulla, Geir Solskinnsbakk, Per Myrseth, Veronika Haderlein, and Olga Cerrato.
Semantic drift in ontologies. volume 2, pages 13–20, 01 2010.

Michael Hartung, Anika Groß, and Erhard Rahm. COnto–diff: generation of complex
evolution mappings for life science ontologies. 46(1):15–32, 2012. doi: 10.1016/j.jbi.
2012.04.009.

Janna Hastings, Nico Adams, Marcus Ennis, Duncan Hull, and Christoph Steinbeck.
Chemical ontologies: what are they, what are they for and what are the challenges.
Journal of Cheminformatics, 3:1–1, 04 2011. doi: 10.1186/1758-2946-3-S1-O4.

Matthew Horridge and Sean Bechhofer. The owl api: A java api for working with owl 2
ontologies. In Proceedings of the 6th International Conference on OWL: Experiences
and Directions - Volume 529, OWLED’09, page 49–58, Aachen, DEU, 2009. CEUR-
WS.org.

Ajaz Hussain, Khalid Latif, Aimal Rextin, Amir Hayat, and Masoon Alam. Scalable visu-
alization of semantic nets using power-law graphs. Applied Mathematics & Information
Sciences, 8:355–, 01 2014. doi: 10.12785/amis/080145.

Akrivi Katifori, Constantin Halatsis, George Lepouras, Costas Vassilakis, and Eugenia
Giannopoulou. Ontology visualization methods—a survey. 39(4):10, 2007. doi: 10.
1145/1287620.1287621.

45

46 References

Simone Kriglstein. User requirements analysis on ontology visualization. In 2009 In-
ternational Conference on Complex, Intelligent and Software Intensive Systems, pages
694–699. IEEE, 2009. doi: 10.1109/CISIS.2009.37.

Sasa Kuhar and Vili Podgorelec. Ontology visualization for domain experts: A new
solution. In 2012 16th International Conference on Information Visualisation, pages
363–369. IEEE, 2012. doi: 10.1109/IV.2012.67.

Birger Lantow and Kurt Sandkuhl. An analysis of applicability using quality metrics
for ontologies on ontology design patterns. Intelligent Systems in Accounting, Finance
and Management, 22(1):81–99, 2015.

Michele Lanza and Stéphane Ducasse. Understanding software evolution using a com-
bination of software visualization and software metrics. 8(1):135–149, 2002. doi:
10.3166/objet.8.1-2.135-149.

Michele Lanza and Stéphane Ducasse. Polymetric views - a lightweight visual approach
to reverse engineering. 29(9):782–795, 2003. doi: 10.1109/TSE.2003.1232284.

Michele Lanza and Stéphane Ducasse. Codecrawler - an information visualization tool
for program comprehension. In Proceedings. 27th International Conference on Software
Engineering, 2005. ICSE 2005., pages 672–673. IEEe, 2005. doi: 10.1109/ICSE.2005.
1553647.

Michele Lanza, Harald Gall, and Philippe Dugerdil. EvoSpaces: Multi-dimensional nav-
igation spaces for software evolution. In 2009 13th European Conference on Software
Maintenance and Reengineering, pages 293–296. IEEE, 2009. doi: 10.1109/CSMR.
2009.14.

Steffen Lohmann, Stefan Negru, and David Bold. The protégévowl plugin: Ontology vi-
sualization for everyone. In Valentina Presutti, Eva Blomqvist, Raphael Troncy, Harald
Sack, Ioannis Papadakis, and Anna Tordai, editors, The Semantic Web: ESWC 2014
Satellite Events, pages 395–400, Cham, 05 2014. Springer International Publishing.
doi: 10.1007/978-3-319-11955-7_55.

Nikos Manouselis, Miguel Ángel Sicilia, and Daniel Rodríguez. Exploring ontology met-
rics in the biomedical domain. 1(1):2319–2328, 2010. doi: 10.1016/j.procs.2010.04.260.

Mark A. Musen. The protégé project: a look back and a look forward. AI Matters, 1(4):
4–12, 2015. doi: 10.1145/2757001.2757003.

Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic network. Artif.
Intell., 193:217–250, December 2012. ISSN 0004-3702. doi: 10.1016/j.artint.2012.07.
001.

Jérôme Oesch. Benchmarking incremental reasoner systems. Master’s thesis, University
of Zürich, 2018.

46

References 47

Anthony M. Orme, Haining Yao, and Letha H. Etzkorn. Indicating ontology data quality,
stability, and completeness throughout ontology evolution. 19(1):49–75, 2007. doi:
10.1002/smr.341.

David Osumi-Sutherland, Enrico Ponta, Mélanie Courtot, Helen Parkinson, and Laura
Badi. Using owl reasoning to support the generation of novel gene sets for enrichment
analysis. Journal of Biomedical Semantics, 9, 12 2018. doi: 10.1186/s13326-018-0175-z.

Romana Pernischová. The butterfly effect in knowledge graphs: Predicting the impact
of changes in the evolving web of data. In Doctoral Consortium at ISWC 2019, 2019.

Romana Pernischová, Mirko Serbak, Dell’Aglio Daniele, and Abraham Bernstein. Chimp:
Visualizing ontology changes and their impact in protégé. In Proceedings of the Fourth
International Workshop on Visualization and Interaction for Ontologies and Linked
Data co-located with the 18th International Semantic Web Conference, VOILA@ISWC
2020. CEUR-WS.org, 2020.

Romana Pernischová, Daniele Dell’Aglio, Matthew Horridge, Matthias Baumgartner,
and Abraham Bernstein. Toward predicting impact of changes in evolving knowledge
graphs. In ISWC satellites, volume 2456 of CEUR workshop proceedings, pages 137–
140, Aukland, NZ, October 2019. CEUR-WS.org.

Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing multiple
evolution metrics. In Proceedings of the 2005 ACM symposium on Software visualiza-
tion - SoftVis ’05, page 67. ACM Press, 2005. doi: 10.1145/1056018.1056027.

Ying Shen, Daoyuan Chen, Buzhou Tang, Min Yang, and Kai Lei. Eapb: Entropy-aware
path-based metric for ontology quality. Journal of Biomedical Semantics, 9, 12 2018.
doi: 10.1186/s13326-018-0188-7.

Ben Shneiderman. The eyes have it: a task by data type taxonomy for information
visualizations. In Proceedings 1996 IEEE Symposium on Visual Languages, pages 336–
343, 1996.

Miguel Ángel Sicilia, Daniel Rodríguez, Elena García-Barriocanal, and Salvador Sánchez-
Alonso. Empirical findings on ontology metrics. 39(8):6706–6711, 2012. doi: 10.1016/
j.eswa.2011.11.094.

Michaell Sintek. Ontoviz tab: Visualizing protege ontologies. 2003.

Thanos Stavropoulos, Stelios Andreadis, Efstratios Kontopoulos, Marina Riga, Panagio-
tis Mitzias, and Ioannis Kompatsiaris. Semadrift: A protégé plugin for measuring se-
mantic drift in ontologies. In 1st International Workshop on Detection, Representation
and Management of Concept Drift in Linked Open Data (Drift-a-LOD) in Conjunc-
tion with the 20th International Conference on Knowledge Engineering and Knowledge
Management (EKAW), volume CEUR Vol-1799, pages 34–41, Bologna, Italy, 11 2016.
CEUR Workshop Proceedings.

47

48 References

Thanos G. Stavropoulos, Stelios Andreadis, Efstratios Kontopoulos, and Ioannis Kompat-
siaris. Semadrift: A hybrid method and visual tools to measure semantic drift in ontolo-
gies. Journal of Web Semantics, 54:87 – 106, 2019. doi: 10.1016/j.websem.2018.05.001.
Managing the Evolution and Preservation of the Data Web.

Ljiljana Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, Universität
Fridericiana zu Karlsruhe, 2004.

Samir Tartir and I. Budak Arpinar. Ontology evaluation and ranking using OntoQA. In
International Conference on Semantic Computing (ICSC 2007), pages 185–192. IEEE,
2007. doi: 10.1109/ICSC.2007.19.

Samir Tartir, I Budak Arpinar, and Amit P Sheth. Ontological evaluation and valida-
tion. In Theory and applications of ontology: Computer applications, pages 115–130.
Springer, 2010.

Christoph Tempich and Raphael Volz. Towards a benchmark for Semantic Web reasoners-
an analysis of the DAML ontology library. In EON, volume 87, 2003.

Stein L. Tomassen and Darijus Strasunskas. An ontology-driven approach to web search:
Analysis of its sensitivity to ontology quality and search tasks. In Proceedings of the
11th International Conference on Information Integration and Web-Based Applications
amp; Services, iiWAS ’09, page 130–138, New York, NY, USA, 2009. Association for
Computing Machinery. doi: 10.1145/1806338.1806368.

Fouad Zablith, Grigoris Antoniou, Mathieu d’Aquin, Giorgos Flouris, Haridimos Kondy-
lakis, Enrico Motta, Dimitris Plexousakis, and Marta Sabou. Ontology evolution: A
process-centric survey. The Knowledge Engineering Review, 30:45–75, 01 2015. doi:
10.1017/S0269888913000349.

Hongyu Zhang, Yuan-Fang Li, and Hee Beng Kuan Tan. Measuring design complexity
of semantic web ontologies. 83(5):803–814, 2010. doi: 10.1016/j.jss.2009.11.735.

48

A
Appendix

A.1 Impact Metrics

Department of Informatics

Definition of Impact Measures for Materializa-
tion over Evolving Ontologies
Romana Pernisch, Daniele Dell’Aglio

5. February 2020

This document defines and describes measures for the quantification of impact over the materializa-
tion of evolving ontologies O = {O1, O2, ...Oi, Oi+1, ...}. The materialization is a function executed with
an ontology as input Mi = materialization(Oi). The impact is calculated between two materializations
Mi and Mi+1. Some variables and basic concepts are introduced below:

Formula Description

mi = |Mi| = |Gi\Oi| Materialized part of the graph at time i

mi,i+1 = |Mi ∩ Mi+1| number of axioms shared between the materialized versions

∆+
i = |Mi+1\Mi| New axioms part of Mi+1 but not in Mi

∆−
i = |Mi\Mi+1| Old axioms part of Mi but not in Mi+1

h∆i = |SubClassO f (·, ·)m,i| Number of SubClassO f axioms in ∆+
i and ∆−

i

Below, the different impact measures are defined:

Formula Name

impact∆+ ,mi
=

∆+
i

mi
added inference old ratio

impact∆− ,mi
=

∆−
i

mi
removed inference old ratio

impact∆+ ,mi+1
=

∆+
i

mi+1
added inference new ratio

impact∆− ,mi+1
=

∆−
i

mi+1
removed inference new ratio

impact∆+ ,∩ =
∆+

i
mi,i+1

added inference impact

impact∆− ,∩ =
∆−

i
mi,i+1

removed inference impact

impact∆,a =
∆+

i +∆−
i

max(mi ,mi+1)
change max impact

impact∆,∩ =
∆+

i +∆−
i

mi,i+1
change impact

impact∆v ,∩ =
h∆i

mi,i+1
subsumption change impact

impact∆v ,∩v =
h∆i

mi+1−mi
subsumption impact

Page 1

A.2. DESIGNS 51

A.2 Designs

Figure A.1: Prototype 1

A.3 About the Plugin
The plugin is available on the following repositories: public1, private2.

A.3.1 Build Instructions
Prerequisites

To build and run the plugin, the following items must be installed:

• Apache’s Maven

• A Protégé distribution (5.0.0 or higher)

Build

In the chimp-plugin directory: mvn clean package

1https://gitlab.ifi.uzh.ch/DDIS-Public/chimp-protege-plugin
2https://gitlab.ifi.uzh.ch/ddis/Students/Theses/2020-mirko-serbak

51

52 APPENDIX A. APPENDIX

Figure A.2: Prototype 21

On build completion, the "target" directory will contain a chimp-plugin${version}.jar
file. Copy the JAR file from the target directory to the "plugins" sub directory of your
Protege distribution

A.3.2 Installation Instructions
• Download the plugin from the link provided above.

• Launch your Protege distribution.

• Open from menu: Window > Views > Ontology views > ChImp (Change Impact).

• Select About from the Help menu to verify successful installation

A.3.3 Usage Instructions
Once you have opened the plugin view in a Protégé tab, you can start using it. You need
to start a reasoner to see content in the impact view.

A.3.4 Dependencies
The plugin uses several frameworks in the individual components. The following is a list
of all dependencies for the compile scope. Thus, these are all dependencies that support
the core functionalities of the plugin.
In order for the plugin to compile, the following libraries need to be added:

52

A.3. ABOUT THE PLUGIN 53

Figure A.3: Prototype 3

• protege-editor-owl 5.5.03

Every Protégé plugin needs to access the Protégé editor package in order to access
Protégé.

• miglayout 3.7.44

Miglayout is a layout manager for Java applications. ChImp uses it to manage the
Java Swing panels.

• jlatexmath 1.0.75

The metrics inside of the ChImp plugin have an optional String parameter with
which a LATEX formula can be added to its description. JLatexMath is used to
print these formulas as images so that the plugin can display them.

• xchart 3.6.56

The graph inside of the chart view is implemented with XChart.

In addition, several libraries are used to test the plugin. They are necessary for com-
pilation but are not part of the final code package.

• junit-jupiter 5.6.27

The tests listed in Section 3.4.4 are all written with JUnit.
3https://mvnrepository.com/artifact/edu.stanford.protege/protege-editor-owl
4https://mvnrepository.com/artifact/com.miglayout/miglayout
5https://mvnrepository.com/artifact/org.scilab.forge/jlatexmath
6https://mvnrepository.com/artifact/org.knowm.xchart/xchart
7https://mvnrepository.com/artifact/org.junit.jupiter/junit-jupiter-api

53

54 APPENDIX A. APPENDIX

• assertj-core 3.17.08

AssertJ supports the testing with JUnit.

• org.semanticweb.hermit 1.4.5.4569

The Hermit reasoner is used to test the impact metrics.

• commons-csv 1.810

A.4 ChImp Survey

8https://mvnrepository.com/artifact/org.assertj/assertj-core
9https://mvnrepository.com/artifact/net.sourceforge.owlapi/org.semanticweb.hermit

10https://mvnrepository.com/artifact/org.apache.commons/commons-csv

54

ChImp Survey
Ontology Change Impact Survey

Thank you for taking part in this survey. The survey guides you through a small experiment and is meant to be kept open during the whole process. Please
follow the instructions carefully and answer all questions to the best of your ability.

There are 35 questions in this survey.

Participant Information
The following questions are about how proficient you are with ontologies.

In university, how many courses did you take that revolved around ontologies? *
� Only numbers may be entered in this field.
Please write your answer here:

In university, how many courses did you participate in that used Protégé as a development tool? *
� Only numbers may be entered in this field.
Please write your answer here:

Have you ever used Protégé outside of these courses? *
Please choose only one of the following:

 Yes

 No

How many years of experience do you have with Protégé?
Only answer this question if the following conditions are met: Answer was 'Yes' at question '3 [participantinfo3]' (Have you ever used Protégé
outside of these courses?)

� Only numbers may be entered in this field.
Please write your answer here:

Have you ever used Protégé in a professional setting?
Only answer this question if the following conditions are met: Answer was 'Yes' at question '3 [participantinfo3]' (Have you ever used Protégé
outside of these courses?)

Please choose only one of the following:

 Yes

 No

Introduction
This experiment uses Protégé as an ontology editing tool. Please execute the steps on this page. In the end you should have a Protégé window with an opened
ontology.

Preparation
Before the experiment you should have received a link to download Protégé as well as a sample ontology. If you have not done this and do not have
access to the download links that were provided, please contact the survey instructor. Do not download Protégé from the official website.

Startup
If you have already completed the downloads proceed as follows:

1. Unzip the Protégé distribution and place the extracted folder where you can easily find it (e.g. on your Desktop. You can delete the folder after the
experiment).

2. Place the dowloaded ontology next to the extracted folder.
3. Open Protégé

- Windows / Mac users can click on the application file inside the extracted folder
- Linux users need to start Protégé by executing ./run.sh from the command line.

You will be presented with an update screen popup when you open Protégé. Close this popup.

Protégé Overview
The following gives a very brief overview of the most basic functionalities Protégé has to offer. If you have already worked with Protégé you may skip to
the end of the page.

You should now have an open Protégé window. By default, you will be presented with the following screen:

On top, you can see the tabs Active ontology, Entities, Individuals by class and DL Query. These tabs contain various views that show information about
the underlying ontology. In the tab Active ontology, you will see the views Ontology header, Ontology metrics and Imported ontologies.

Please close the views at the bottom of the page by clicking on the close sign three times:

You should now only be able to see the Ontology header and the Ontology metrics. Please leave the other views as they are.

To see some real data in Protégé we can open an ontology file. Do this by clicking on File > Open... and then select the ontology file that you
downloaded before the experiment.

You should now see that the views in the Active ontology tab are showing information about the ontology. e.g. Ontology Metrics displays several metrics
such as the axiom and the class count of the ontology:

Open up the Class hierarchy view on the tab Entities. Among other things, it allows you to edit the class hierarchy:

By selecting a class in the hierarchy, you can use the buttons above the hierarchy to edit it. These are the buttons from left to right:

Add a subclass Add a class on the same level Delete a class

Protégé usually also offers the all these options by rightclicking on an element.

Experiment
It is vital for the experiment that you do not add any third party plugins. Please use the views that Protégé already provides.

ChImp Introduction
In this experiment the ChImp plugin is used. The ChImp view presents changes and various metrics to visualize change impact. The following is a brief
overview.

Adding the Plugin to Protégé
First, close Protégé.

Please download the plugin with the following link. It is a jar file:
Plugin Download (https://drive.switch.ch/index.php/s/Pxq4j55vIUqIfep)

Once you have the file, go to your Protégé directory and add it to the plugin subdirectory:

On Windows and Linux:

On Mac:
Rightclick on the Protégé app and select "Show Package Contents"

Then put the file in the following directory (It's not the first Plugin directory, it's the one under Java):

Once you have done this, you can open Protégé again.

Open the Pizza Ontology
Please open a new pizza ontology to proceed.

Open the pizza.owl file by selecting File and Open... and then choosing the file on your computer.

If the following dialog pops up, make sure to click No.

Adding the ChImp View
To add the ChImp view to a tab of Protégé, we select it from the top menu:

You are then given a pointer with which you can drag the view to a place of your choosing. Place it on top of the Ontology metrics view (this is the view
on the right side of the Active ontology tab) so that the Ontology metrics view becomes a tab. You can also close the ontology metrics view.

Click OK if a warning message appears.

Your screen should now look similar to the following image:

The ChImp Plugin
The ChImp Plugin is split into three panels:

Last Change

This view presents you with the last changes that were made. Protégé stores ontologies as sets of axioms. Hence, the changes here are also
displayed in that way.

Impact

The impact panel displays impact metrics. These are complex metrics calculated with the materializations of the ontologies.

Standard Metrics

The standard metrics view is similar to the Ontology metrics view by Protégé. It lists simple count and ratio metrics. However, it also shows change.
With two dropdowns it can be adjusted to either display absolute or relative changes and all changes since the beginning or just the last change.
On top of the panel you can also switch to the chart view, which displays a single metric over time:

Reasoner Initialization
ChImp's Impact panel requires a reasoner. This is an algorithm that computes materializations. What is meant by that is that it tries to compute all logical
inferences that can be made from the current ontology (Example: if A is a subclass of B and C is equivalent to B, then A is a subclass of C). The impact
metrics that are displayed in the Impact panel are calculated with these inferences.

Make sure that you have an open view of ChImp. To start the reasoner, select Reasoner and then HermiT from the menu (HermiT comes preinstalled
with Protégé. If you do not have it contact the survey instructor):

Once you have selected it, select Reasoner and then Start Reasoner from the same menu.

Please note that during the task, you have to synchronize the Reasoner to see changes in the Panel. To do this, select Reasoner and then Synchronize
reasoner:

Task Addition
Your task is to alter the pizza ontology. Please ensure that you have it open in Protégé. Perform all of the steps listed below.

First Part
Open up the Class hierarchy view on the tab Entities.
The pizza ontology contains the classes "Country" and "Food" to define its domain:

Add an additonal class "Drink" to the ontology. "Drink" is on the same level as "Country" and "Food" and has the subclasses "Coke", "Sprite" and "Ice
Tea".

Hint:

1. Rightclick on Domain Thing and select Add subclass...
2. Write "Drink" into the name field and press Enter.
3. Rightclick on Drink and select Add subclass...
4. Write "Coke" into the name field and press Enter.
5. repeat for the other two drinks

After this process, you should end up with the following hierarchy:

The experiment at hand revolves around the impact your changes have on the ontology as a whole.
Now for the evaluation, please take a look at all the views that are currently open in Protege (do not
open new ones). Please also take a look at other tabs such as the Active ontology. *
Please choose the appropriate response for each item:

1 2 3 4 5

Rate how well informed you are about the
impact the previous changes had on the
ontology as a whole (with 1 being not
informed at all and 5 being very well
informed)

Write down the view / element on the screen that was most crucial for you for the previous question.
*
Please write your answer here:

Second Part
Now again open up the Class hierarchy view on the tab Entities.
For the second part, select the class Pizza in the domain Food and click the rightmost button in the view to delete the class.

You will be prompted with a delete prompt. Make sure that you have Delete Pizza only enabled:

Please note, a lot of subclasses of Pizza now do not have a superclass anymore and are therefore moved to the upper hierarchy level. Your
hierarchy might look a bit crowded.

Now again to evaluate the impact the last change had on the ontology as a whole, please take a look
at all the views that are currently open in Protege (do not open new ones). Please also take a look at
other tabs such as the Active ontology.
*
Please choose the appropriate response for each item:

1 2 3 4 5

Rate how well informed you are about the
impact the previous changes had on the
ontology as a whole (with 1 being not
informed at all and 5 being very well
informed)

Write down the view / element on the screen that was most crucial for you for the previous question.
*
Please write your answer here:

ChImp Plugin Questions
In the previous task you had the Chimp plugin view opened in Protégé. The following you are asked to answer several questions about it.

As a reminder, the plugin contains the following panels:

Last Change

Impact

Standard Metrics which contains the subpanels Listview and Chartview

Content *
Please choose the appropriate response for each item:

1 2 3 4 5

Rate how informative the Last Change panel
was for you (with 1 being not informative at
all and 5 being very informative)

Rate how informative the Impact panel was
for you (with 1 being not informative at all
and 5 being very informative)

Rate how informative the Listview panel was
for you (with 1 being not informative at all
and 5 being very informative)

Rate how informative the Chartview panel
was for you (with 1 being not informative at
all and 5 being very informative)

Rate how informative the whole plugin was
for you (with 1 being not informative at all
and 5 being very informative)

Visualization *
Please choose the appropriate response for each item:

1 2 3 4 5

Rate the visualization of the Last Change
panel (with 1 being you don't like it at all and
5 being you like it very much)

Rate the visualization of the Impact panel
(with 1 being you don't like it at all and 5
being you like it very much)

Rate the visualization of the Listview panel
(with 1 being you don't like it at all and 5
being you like it very much)

Rate the visualization of the Chartview panel
(with 1 being you don't like it at all and 5
being you like it very much)

Rate the visualization of the plugin overall
(with 1 being you don't like it at all and 5
being you like it very much)

Close the ChImp plugin
Close the ChImp plugin and do not use it for the rest of the experiment. To do this, click on the close button on the top right of the view:

Make sure that you have the Ontology metrics view open in its stead. If you closed it, open it again by selecting:

If the plugin shows up again when you open a new window, close the plugin view and continue with the task. Do not use it for the next task.

Task Deletion

Your task is to alter the pizza ontology. Please ensure that you have it open in Protégé. Perform all of the steps listed below.

Open the Pizza ontology.
Please open a new pizza ontology.

Open the pizza.owl file by selecting File and Open... and then choosing the file on your computer.

If the following dialog pops up, make sure to click No.

First Part
Open up the Class hierarchy view on the tab Entities.
The pizza ontology contains the class "Food" with several subclasses:

Add an additonal class "Burger" to the ontology. "Burger" is a type of "Food" and therefore on the same level as e.g. "PizzaTopping". It has the
subclasses "Cheeseburger", "Hamburger" and "Veggieburger".

Hint:

1. Rightclick on "Food" and select Add subclass...
2. Write "Burger" into the name field and press Enter.
3. Rightclick on "Burger" and select Add subclass...
4. Write "Hamburger" into the name field and press Enter.
5. repeat for the other two drinks

After this process, you should end up with the following hierarchy:

The experiment at hand revolves around the impact your changes have on the ontology as a whole.
Now for the evaluation, please take a look at all the views that are currently open in Protege (do not
open new ones). Please also take a look at other tabs such as the Active ontology.
*
Please choose the appropriate response for each item:

1 2 3 4 5

Rate how well informed you are about the
impact the previous changes had on the
ontology as a whole (with 1 being not
informed at all and 5 being very well
informed)

Write down the view / element on the screen that was most crucial for you for the previous question.
*
Please write your answer here:

Second Part
For the second part of the task, open up the Object property hierarchy in the Entities tab:

Your task now is to delete the "hasIngredient" object property. You do this by clicking on the rightmost button of the view:

You will again see a delete prompt. This time, make sure that you have Delete hasIngredient only selected:

Once you click on OK, you should not be able to see the property anymore.

Now again to evaluate the impact the last change had on the ontology as a whole, please take a look
at all the views that are currently open in Protege (do not open new ones). Please also take a look at
other tabs such as the Active ontology.
*
Please choose the appropriate response for each item:

1 2 3 4 5

Rate how well informed you are about the
impact the previous changes had on the
ontology as a whole (with 1 being not
informed at all and 5 being very well
informed)

*
Please write your answer here:

Logfile Upload

Write down the view / element on the screen that was most crucial for you for the previous
question.

To complete the experiment, please upload the Protégé log file. It contains the actions you performed inside Protégé during the experiment.

1. Open the log file view as follows with the button on the bottom right of the Protégé window:

2. Then click on Show log file, which should then open the location of the log file in your file explorer. Copy the file to your desktop.

3. Upload the file with the button below.

Upload a file
� Please upload at most one file
Kindly attach the aforementioned documents along with the survey

select the log file

Closing Questions

General questions about the ChImp plugin *
Please choose the appropriate response for each item:

1 2 3 4 5

How confident do you feel that your
assessment of the usefulness of the plugin
would hold up in a real life use case? (with 1
being not confident at all and 5 being very
confident)

How did you like the ChImp plugin? (with 1
being not at all and 5 being very much)

If you have any comments about what you liked or disliked about the ChImp plugin, please write them
down here.
Please write your answer here:

General questions about the experiment *
Please choose the appropriate response for each item:

1 2 3 4 5

How did you like the study overall? (1 being
not at all and 5 being very much)

The difficulty level for me was (1 being too
easy and 5 being too difficult)

If you have any other comments about the experiment in general, please write them down here.
Please write your answer here:

Thank you very much for participating!

Submit your survey.
Thank you for completing this survey.

A.4. CHIMP SURVEY 73

Figure A.4: Prototype 4

73

74 APPENDIX A. APPENDIX

Figure A.5: Prototype 5

Figure A.6: Prototype 6

74

A.4. CHIMP SURVEY 75

Figure A.7: Prototype 7

75

76 APPENDIX A. APPENDIX

Figure A.8: Prototype 8

76

A.4. CHIMP SURVEY 77

Figure A.9: Prototype 9

77

78 APPENDIX A. APPENDIX

Figure A.10: Prototype 10

Figure A.11: Chart Prototype 1

78

A.4. CHIMP SURVEY 79

Figure A.12: Chart Prototype 2

Figure A.13: Chart Prototype 3

79

80 APPENDIX A. APPENDIX

Figure A.14: Chart Prototype 4

Figure A.15: Chart Prototype 5

80

List of Figures

3.1 ChImp Class Diagram . 11
3.2 Cutout of the last change panel . 13
3.3 Cutout of the impact metrics panel . 14
3.4 Cutout of the list view in the standard metrics panel 15
3.5 Cutout of the chart view in the standard metrics panel 16

5.1 Steps in the experiment from left to right. The first group performed the
first task with ChImp and the second task without ChImp. The second
group performed the first task without ChImp and the second task with
ChImp. 29

5.2 General feedback about the study and ChImp. The white circles represent
mean values. 1 is the lowest score and 5 is the highest. Study Usefulness:
How confident do you feel that your assessment of the usefulness of the
plugin would hold up in a real-life use case? ChImp Appeal: How did
you like the ChImp plugin? Study Appeal: How did you like the study
overall? Difficulty Level: The difficulty level for me was? 32

5.3 Visualization rating for the plugin and its views. The white circles repre-
sent mean values. 1 is the lowest score and 5 is the highest. 33

5.4 Scores of how well informed participants felt during the tasks. The top
whiskers in all three plots are the tasks that were completed with the
ChImp plugin. The bottom whiskers correspond to those that were done
without the plugin. The white circles represent mean values. 1 is the
lowest score and 5 is the highest. 34

5.5 Comparison of similar tasks. (a) compares the tasks that were completed
with the ChImp plugin. (b) compares the tasks that were completed with-
out the ChImp plugin. The white circles represent mean values. 1 is the
lowest score and 5 is the highest. 35

5.6 Rating of how informative the plugin and its views are. The white circles
represent mean values. 1 is the lowest score and 5 is the highest. 36

A.1 Prototype 1 . 51
A.2 Prototype 21 . 52
A.3 Prototype 3 . 53

82 List of Figures

A.4 Prototype 4 . 73
A.5 Prototype 5 . 74
A.6 Prototype 6 . 74
A.7 Prototype 7 . 75
A.8 Prototype 8 . 76
A.9 Prototype 9 . 77
A.10 Prototype 10 . 78
A.11 Chart Prototype 1 . 78
A.12 Chart Prototype 2 . 79
A.13 Chart Prototype 3 . 79
A.14 Chart Prototype 4 . 80
A.15 Chart Prototype 5 . 80

82

List of Tables

3.1 Description and references of the primitive and ratio metrics in ChImp.
The top section contains the primitive metrics. The bottom section con-
tains the ratio metrics. 19

3.2 Description and implementation of the primitive metrics in ChImp. o
is the instance of the ontology within each metric implementation. The
implementation is performed on all ontologies in the imports closure. . . . 20

3.3 Description of the impact metrics in ChImp. They are reproduced from
an internal document listed in Appendix A.1. 21

