
Stabilizing Non-
Maximum-Suppression

More Stable Replacement for
Non-Maximum-Suppression in Object and Face

Detectors

Master Thesis

Pascal Engeli
14-671-457

Submitted on
August 26, 2021

Thesis Supervisor
Prof. Dr. Manuel Günther

Ar
tifi

cia
l I

n
te

llig
e
n

c
e

M
A

C
H

I
N

E

Learning

Department of
Informatics

Master Thesis

Author: Pascal Engeli, pascal.engeli@uzh.ch

Project period: February 22, 2021 - August 26, 2021

Artificial Intelligence and Machine Learning Group
Department of Informatics, University of Zurich

Acknowledgements

At this point, I want to thank my parents Claudia and Markus, for their endless and unconditional
support throughout my education and every other life situation. You motivated me and acted as
role models to always strive for challenging goals. You did not doubt me when I did not make
it to secondary school. Here I am now, turning in my Master’s thesis at the University of Zürich
and still full of curiosity to learn more. I dedicate this work entirely to you since you anyway paid
for it.

I also want to sincerely thank Prof. Dr. Manuel Günther for allowing me to work on this
fascinating topic, his regular support, and time to advise me to achieve the best possible with this
thesis. You reached to spark my interest in object and face detection, which is still glowing after
countless hours invested in this topic.

Abstract

The predictions of object and face detectors suffer from unstable bounding boxes. The main rea-
son for this problem is the post-processing algorithm Non-Maximum Suppression. During the
suppression of redundant bounding boxes, only the most confident box does not get removed.
This behavior can be observed when inspecting video sequences. Even marginal change in pixel
values causes the detected bounding boxes to jitter. In this work, a method is proposed to further
inspect this problem by fabricating sequences of augmented static images to simulate moving ob-
jects and faces. Combining this approach with an evaluation metric from video detection lever-
ages the quantification of temporal and spatial stability of detected bounding boxes compared
to their associated ground truth annotations. Simultaneously, two alternative Non-Maximum
Suppression algorithms are proposed to solve the problem of jittering bounding boxes. The algo-
rithms are called Average and Average IoU Non-Maximum Suppression. Both alternatives con-
sider aggregating the overlapping bounding boxes and their detection scores using a weighted
average of the individual coordinates and class probabilities. An increase in stability can be ev-
idenced by implementing Average and Average IoU NMS into post-processing the multi-stage
detectors Faster R-CNN and MTCNN and comparing it to their default NMS function. By eval-
uating the object and face detectors on the MS COCO, PASCAL VOC, and WIDER Face datasets,
even an improvement in accuracy can be observed.

Zusammenfassung

Die Ergebnisse der Lokalisierung und Klassifizierung von Objekt- und Gesichtsdetektoren, die
mittels objekt- oder gesichtseingrenzenden Rechtecken erkenntlich gemacht werden, leiden unter
Instabilität. Das Hauptaugenmerk liegt dabei auf dem in den Detektoren nachgelagerten Algo-
rithmus Non-Maximum Suppression (NMS). Während dem Auswahlverfahren von NMS wer-
den alle Rechtecke eliminiert, die sich mit einem benachbarten Rechteck überschneiden und
welche über einen nicht maximalen Klassifikationswert verfügen. Auswirkungen dieses Selek-
tionsverfahrens können speziell in der Objekt und Gesichtserkennung in Videosequenzen fest-
gestellt werden. Noch so minimale Änderungen in den Pixelwerten eines einzelnen Ausschnittes
führen zu wackelnden Rechtecken. Zur zielgerichteten Untersuchung dieses Problems, wird in
der vorliegenden Arbeit eine neue Methode vorgeschlagen. Diese Methode beinhaltet das se-
quentielle Zusammenführen von augmentierten Einzelbildern, womit die Bewegung von Ob-
jekten und Gesichtern simuliert werden kann. Diese Methode ermöglicht die zielführende An-
wendung einer Bewertungsmetrik zur Messung von zeit- und raumbezogener Stabilität dieser
Rechtecke. Die Messung kann mittels vorhandener Annotationen mit einem Soll-Zustand ver-
glichen werden. Zeitgleich werden zwei alternative Selektionsverfahren vorgeschlagen, die zur
Lösung des Problems von wackelnden Rechtecken ihren Beitrag leisten. Dabei handelt es sich um
Average und Average IoU NMS. Beide Alternativen beziehen den gewichteten Mittelwert von
allen benachbarten Rechtecken bei, um daraus eine resultierende Vorhersage zu berechnen. Zu
der Vorhersage gehört ein objekt- oder gesichtseingrenzendes Rechteck und ein Klassifikation-
swert. Die gemeinsame Umsetzung des vorgeschlagenen Ansatzes zur Messung von Stabilität
in Einzelbildern kombiniert mit den alternativen Selektionsverfahren wird mittels vorhandener
Netzwerke realisiert. Zu den verwendeten Netzwerken gehören Faster R-CNN und MTCNN
unter Berücksichtigung der Datensätze von Microsoft COCO, PASCAL VOC und WIDER Face.
Anhand dieser Implementierung kann eine erhöhte Stabilität der Ergebnisse im Vergleich mit
herkömmlichen Methoden zur Selektion gemessen werden. Ausserdem kann den alternativen
Selektionsverfahren auch eine Verbesserung der Genauigkeit nachgelegt werden.

Contents

1 Introduction 1

2 Related Work & Background 3
2.1 Datasets . 3

2.1.1 Microsoft COCO . 3
2.1.2 PASCAL VOC . 4
2.1.3 WIDER Face . 5

2.2 Object & Face Detection . 6
2.2.1 Single-Stage Detectors . 6
2.2.2 Multi-Stage Detectors . 7

2.3 Non-Maximum Suppression . 11
2.3.1 Post Processing NMS Substitution . 11
2.3.2 Learning NMS . 13

2.4 Evaluation Metrics . 13
2.4.1 Object Detection . 14
2.4.2 Stability . 15

3 Stabilizing Bounding Boxes 19
3.1 Classic Greedy Non-Maximum Suppression . 19
3.2 Soft-Non-Maximum Suppression . 21
3.3 Average Non-Maximum Suppression . 23
3.4 Average IoU Non-Maximum Suppression . 24
3.5 Multi-Non-Maximum Suppression . 26

4 Measuring Stability 29
4.1 Sequence Construction . 29
4.2 Affine Transformations . 30

5 Experimental Framework 35
5.1 Data Preparation . 35
5.2 Object and Face Detection . 38

5.2.1 Faster R-CNN . 38
5.2.2 MTCNN . 42

5.3 Evaluation . 47
5.3.1 Accuracy Evaluation . 48
5.3.2 Stability Evaluation . 51

viii Contents

6 Results 55
6.1 Accuracy . 55
6.2 Stability . 58

7 Discussion 67
7.1 Non-Maximum Suppression Alternatives . 67
7.2 Measuring Stable Bounding Boxes . 68
7.3 Limitations . 68

8 Conclusion & Future Work 71
8.1 Conclusion . 71
8.2 Future Work . 73

A Further Information & Implementation Details 75
A.1 Non-Maximum Suppression Alternatives . 75
A.2 Data Preparation Implementation Details . 76
A.3 Faster R-CNN Post Processing . 78
A.4 Implementation Details of MTCNN . 79

B Code 81
B.1 Multi-NMS Implementation . 81
B.2 Stability Evaluation . 85

C Extended Analysis 95

D Extended Results 99

Chapter 1

Introduction

Object and face detection are fundamental tasks in computer vision, which enable many subse-
quent tasks, such as segmentation, pose estimation, object and face tracking, or action recognition.
Holistically viewing, computer vision empowers the technological realization of, for instance,
self-driving cars, reading hand-written characters, medical image analysis, video surveillance,
and autonomous disease detection by tracking honey bees.1 Computer vision even enables us to
unlock mobile phones using our faces. These achievements are due to significant improvements
in recent years concerning Deep Learning in general and convolutional neural networks (CNNs)
in particular (Bodla et al., 2017; Wu and Li, 2021; Zou et al., 2019; Tripathi et al., 2020).

Generally, the problem of detecting objects and faces in static images is conducted in three
interdependent steps: (I) Proposing hundreds of regions with various sizes where any object or
face might be located using bounding boxes. (II) Classifying these bounding boxes. (III) Sup-
press redundantly classified bounding boxes. Between steps I and II and especially in step III,
object and face detectors rely on an algorithm called Non-Maximum Suppression. This algorithm
takes overlapping bounding boxes into account and removes all redundant boxes but one. The
remaining bounding box survives this selection process by being the fittest in terms of being most
confident of surrounding an object among all other suppressed boxes. By relating to the initially
mentioned applications of computer vision, many of those include continuous video sequences.
The problem of detecting objects and faces in videos becomes dynamic. Object and face detectors
solve this problem by breaking down this dynamic object and face detection task in videos by re-
ducing it back to detecting these objects and faces in single frames. Consequently, the same three
general steps can be applied for every frame in the video sequence. The difference to the static
problem is that a subsequent frame might feature any change to the previous frame. This change
can be monumental in significant movements or minimal in slight camera noise, not recognizable
by human visual perception. Nevertheless, any change might cause the three general steps to
be performed on different pixel values of the frame. Hence, the selection process of overlapping
bounding boxes is performed with new confidences. This time, a neighboring bounding box of
the previously maximally scoring box might get selected as the fittest. Only the differently se-
lected, thereby jittering bounding box becomes evident for the observant by visually inspecting
this video sequence with such marginal changes (Bodla et al., 2017; Zhou et al., 2017; Wu and Li,
2021; Zhang and Wang, 2016).

The accuracy perspective often neglects these jittering bounding box detections when evalu-
ating the object and face detectors in their ability to localize and classify objects. The evaluation
process of such detectors relies exclusively on the comparison between detected bounding boxes
and ground truth annotations. A detection is accounted as successful and accurate as long as it
shares an overlap with its associated ground truth annotation. Slight deviations from the ground

1Beelivingsensor: https://en.beelivingsensor.org/

https://en.beelivingsensor.org/

2 Chapter 1. Introduction

truth are tolerated. There is not much evidence in the literature on using different evaluation pro-
cedures in image detection compared to video detection apart from treating single video frames
as static images. However, in direct comparison with the amount of literature available in object
and face detection accuracy, findings concerning the problem of jittering bounding boxes are rare.
Solving the problem of varying marginal yet noticeable deviations from the ground truth and the
previously detected bounding boxes has not come to recent research attention. This problem adds
a complementary perspective on evaluating object and face detectors in terms of stability to the
already well-established accuracy evaluation perspective (Zhang and Wang, 2016).

Concerning these two exhibited problems of unstable detections of objects and faces and the
limited measurability of this instability, this work intends to bridge the identified research gaps.
This thesis, therefore, aims to provide an alternative Non-Maximum Suppression algorithm to
stabilize bounding box detections during the selection process. A further goal is to make the
stability of bounding box detections compared to its associated ground truth annotations quan-
tifiable. Therefore, the following two research questions are addressed in this work:

• Research question 1: How does a weighted average approach of Non-Maximum Suppres-
sion influence the stability of bounding boxes in object and face detection?

• Research question 2: How can the stability of bounding box detections be quantified and
measured based on static images?

In order to find an answer to these two research questions, first, a thorough literature review
is conducted. The aim of this literature review is to identify potential image sources, capable
object and face detectors, recent trends in Non-Maximum Suppression optimization, and starting
points for extending the evaluation perspective. As a second step, alternative Non-Maximum
Suppression algorithms are proposed and a benchmark established. The third step represents a
proposition to turn static images into sequences to simulate object and face movements. The first,
second, and third steps are then combined in a fourth step and explained by implementation in
an experimental setup to answer the two research questions. The fifth step presents the results of
the experimental setup and delivers quantifiable evidence. These shreds of evidence are finally
summarized, discussed, and concluded to answer the two above-stated research questions.

The implementation of this work in Python can be found on Gitlab.2 Only the code regard-
ing the first research question is presented in its entirety in appendix B. One third of the code to
answer research question 2 is exemplarily shown also in appendix B. For the sake of environmen-
talism, no further pasting, and therefore, printing of computer code will be done.

2Stabilizing NMS on Gitlab: https://gitlab.ifi.uzh.ch/aiml/theses/engeli

https://gitlab.ifi.uzh.ch/aiml/theses/engeli

Chapter 2

Related Work & Background

2.1 Datasets
The very first step in object and face recognition is the selection of relevant data. Here, two
datasets are the most commonly analyzed and reported in object detection tasks: Microsoft COCO
and PASCAL VOC. Since these datasets are often used to compare either entire frameworks or
incremental changes in frameworks, such as replacing incremental parts, there are a reasonable
number of benchmarks against which one’s implementation can be measured. Therefore, for the
object detection task, both datasets are used. On the other hand, the focus of this work is also
on face detection. For the same reasons as object detection, there are datasets for face detection
commonly used in the literature. The dataset selected for the face detection task is the WIDER
Face dataset. In this section, the three selected datasets are presented in the following.

2.1.1 Microsoft COCO
The Microsoft COCO datasets consist of images in complex contexts; therefore, the name "Com-
mon Objects in Context" (COCO) (Lin et al., 2014). The Microsoft COCO datasets are referred to
plural because there are multiple versions available online for yearly challenges on object detec-
tion, keypoint detection, panoptic segmentation, and stuff segmentation.1 As seen in the related
work chapter, the most commonly used dataset for evaluating object detection is the Microsoft
COCO 2017 version, which is referred to as COCO going forward. Even though the submission
deadline for the 2017 object detection challenge lies in the past, the dataset is still commonly used
for benchmarking models in object detection tasks.

The 2017 MS COCO dataset is split into three parts: 118’000 training images, 5’000 validation
images, both with dedicated annotations, and 41’000 test images without annotations.2 In order
to evaluate the performance of a pre-trained model, only the validation set will be used since the
test set can only be evaluated on a limited frequency upon online submission.1 However, the
validation, as well as the training and testing set, follow the same class distribution with images
containing one or multiple instances of 80 different object classes.3 These 80 individual object
classes are grouped into 12 super categories such as person, vehicle, outdoor, animal, accessory,
sports, etc. The class distribution plot is depicted in figure 2.1

The images are publicly available in jpeg format within the validation set and refer to an an-
notation instance in a JSON file. In total, the MS COCO validation labels dispose of 36’781 ground
truth annotations, each referring to an object in one of the 5’000 validation images. Each ground

1COCO Guidelines: https://cocodataset.org/#guidelines
2COCO Download: https://cocodataset.org/#download
3COCO Detection: https://cocodataset.org/#detection-2017

https://cocodataset.org/#guidelines
https://cocodataset.org/#download
https://cocodataset.org/#detection-2017

4 Chapter 2. Related Work & Background

Figure 2.1: CLASS DISTRIBUTION COCO & PASCAL VOC DATASETS. The class distribution of
COCO and PASCAL VOC datasets. Objects of the PASCAL VOC dataset are a subset of the objects in the
COCO dataset. Source: (Lin et al., 2014)

Figure 2.2: BOUNDING BOX COORDINATES. An example how bounding box coordinates are annotated.
Source: (Gomaa et al., 2019)

truth instance has seven attributes. Among those attributes are identifiers such as a unique ob-
ject id and image id for cross-references between images and objects. There are also two types of
coordinate attributes in the form of segmentation and bounding box coordinates. The segmen-
tation coordinates indicate the detailed outer shape in the form of a mask of the object, and the
bounding box coordinates enclose all the segmentation coordinates in a rectangle. For the task
of object detection of this thesis, only the bounding box coordinates are relevant. An example of
such coordinates is displayed in figure 2.2.

2.1.2 PASCAL VOC
The second dataset utilized in this thesis not only shares the name with the author of this the-
sis but is also widely used in the literature for object detection. The Pattern Analysis, Statistical
Modelling, and Computer Learning (PASCAL) Visual Object Class (VOC) challenge also consists
of a publicly available dataset and an annual competition for classification, detection, segmenta-
tion, action classification, and person layout (Everingham et al., 2010). These competition series
held place between 2005 and 2012.4 For comparison purposes with existing research in object

4PASCAL VOC 2012: http://host.robots.ox.ac.uk/pascal/VOC/

http://host.robots.ox.ac.uk/pascal/VOC/

2.1 Datasets 5

detection and localization, the present thesis uses the dataset affiliated with the PASCAL VOC
challenge from 2007. Similar to the COCO dataset breakdown, the dataset from the PASCAL
VOC 2007 challenge disposes of a total of 9’963 annotated images and is divided into training,
validation, and testing data. However, unlike the COCO test dataset, after the submission dead-
line for the PASCAL VOC 2007 challenge, the annotations for the test data were made publicly
available. Therefore, the test set as the largest part has 4’952 images with 12’032 annotated ob-
jects.5 The training set contains 2’501 images and 6’301 objects.5 And lastly, the validation set
features 2’510 images with 6’307 objects located within these images.5 All of the three parts of
the PASCAL VOC 2007 challenge follow approximately the same object class distribution with
20 different objects and are grouped into four categories of person, animal, vehicle, and indoor
objects.6 5 The class distribution plot together with the COCO classes is shown in figure 2.1

Since the test dataset provides the most annotated data, this dataset is used for the thesis at
hand. Similar to the COCO images, the 4’952 PASCAL VOC test images can be downloaded
in jpeg format. Each image refers to one annotation file in XML format with the ground truth
objects located within the referenced image. The ground truth consists of five attributes: class
labels, bounding boxes, view angle, whether the whole object is visible or if it is truncated, and a
boolean value of difficulty to recognize the object.5 Compared to the ground truth annotations of
the COCO dataset, the bounding boxes differ concerning the coordinates of the width and height.

2.1.3 WIDER Face
The third dataset differentiates itself from the datasets as mentioned earlier in the singularity of
the object class. The WIDER Face dataset is a subset of the WIDER dataset but only features im-
ages with faces in it. WIDER Faces consists of 32’203 images which are evenly split into training
and testing sets with a total of 393’703 labeled face bounding boxes (Yang et al., 2016). The labeled
faces vary in scale, pose, and occlusion . Yang et al. (2016) proposes a random selection of 40% for
training, 10% for validation, and 50% of the total data as testing data. In contrast to COCO and
PASCAL VOC datasets, the WIDER Face dataset did not originate from a dedicated annual chal-
lenge. However, it was constructed for the sake of research to provide a benchmarking dataset.
Therefore, the availability of the dataset is established through the privately hosted website of
the author.7 Even though the WIDER Face benchmark does not follow a competition procedure
with a strict deadline, the annotation file to the test set (50% of the data) is not publicly available.
Therefore, only the validation set can be used for this thesis, which results in the availability of a
dataset containing 3’226 images with 39’697 annotated faces.

As seen with COCO and PASCAL VOC, the WIDER Face validation images are also provided
in jpeg format. The annotations to the images are stored in a single text file which can be parsed
line by line. The first line of the annotation file indicates the location of the associated image. A
single integer value is written in the second line with the number of annotations for this particular
image. The following lines contain the annotations themselves with ten integer values split by
white space. This sequence repeats for all the referenced images in the validation set. The first
four attributes of the annotation lines indicate the bounding box of the labeled face with the same
information provided by the COCO ground truth in figure 2.2.

The form of the annotated bounding box means that the minimum values for the bounding
box on the x and y axis come as indices 0 and 1. At indices 2 and 3, the width and height are de-
clared. The remaining six attributes give information about the visual context of the labeled face
in terms of blur, expression, illumination, occlusion, pose, and validity of the labeled face. Since

5PASCAL VOC Development: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/htmldoc/index.
html

6PASCAL VOC 2007: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
7WIDER Face: http://shuoyang1213.me/WIDERFACE/

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/htmldoc/index.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html
http://shuoyang1213.me/WIDERFACE/

6 Chapter 2. Related Work & Background

only faces are labeled, the annotations of WIDER Face do not come with a class affiliation. How-
ever, the images of WIDER Face are split into 60 event categories, such as traffic, riot, football,
interview, or family group (Yang et al., 2016). For each of these 60 event categories, the images
were characterized based on the factors of scale, occlusion, and pose (Yang et al., 2016). With the
help of these factors, the detection rate was determined, which led to partitioning into three differ-
ent difficulties: easy, medium, and hard (Yang et al., 2016). Intending to stabilize bounding boxes
and, for this particular dataset, the facial landmarks, it is more reasonable to focus on images that
are not small-scaled and not occluded. Therefore, only the images within the event categories
classified as easy are regarded for the analysis. With this restriction, the WIDER Face validation
set gets reduced to 985 images and 5’645 annotations. By inspecting the annotations it came clear
that one image is annotated with an invalid bounding box (xmin = 0, ymin = 0, w = 0, h = 0).
To prevent the invalid load of annotations, a check has to be implemented to ignore such bound-
ing box annotations. Because that invalid bounding box was the only annotation for this image,
also the image is ignored for this analysis. With this final reduction, the WIDER Face validation
dataset contains 984 images with 5’644 ground truth annotations.

Dataset Overview
Dataset Number of images Number of ground truth annotations
COCO 5’000 36’781
PASCAL VOC 4’952 12’032
WIDER FACE 984 5’644

Table 2.1: DATASET OVERVIEW. Number of images and annotations for each dataset

To sum up the overview of the different datasets used in this thesis, the number of images and
ground truth annotations are listed in table 2.1. These datasets are again a topic in a later chapter
when creating a data preparation pipeline to iterate through the data and apply different affine
transformations.

2.2 Object & Face Detection
The detection of objects or faces in the image datasets presented above is performed, especially in
recent years, by object/face detection frameworks based on Deep Learning. Modern object/face
detectors primarily process the images in individual, interdependent, and sequentially combined
process steps. Such detectors are called multi-stage detectors. Frameworks belonging to this
category are R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al.,
2015), Feature Pyramid Network (Lin et al., 2017a), HyperFace (Ranjan et al., 2017) and MTCNN
(Zhang et al., 2016). On the other hand, frameworks aim to produce a comparable predictive
outcome within a single stage. These are called single-stage detectors. Examples of this category
are OverFeat (Sermanet et al., 2013), YOLO (Redmon et al., 2016) and RetinaNet (Lin et al., 2017b).
These single- and multi-stage detectors are explained in more detail in the following.

2.2.1 Single-Stage Detectors
OverFeat is one of the first single-stage frameworks that perform simultaneous classification, lo-
calization, and detection based on a single convolutional network (Sermanet et al., 2013). Within
this framework, features are extracted from a sliding window over a multi-scale pyramid of im-
ages. The region-wise features are then used for classification, localization, and detection. Hence,

2.2 Object & Face Detection 7

it represents an integrated pipeline for different tasks by sharing common features. Additionally,
part of that pipeline is an aggregating Non-Maximum Suppression method that leverages the
localization task of the integrated detector.

A straightforward method of detecting objects in images is proposed by Redmon et al. (2016)
with YOLO (You Only Look Once). YOLO consists of a single convolutional neural network that
predicts bounding box coordinates and class probabilities from input images. Thereby, features
from the whole image are used to predict multi-class bounding boxes simultaneously. The predic-
tion is made by dividing the input image into a grid. Multiple-sized bounding boxes are predicted
in each grid cell with a confidence score of generally containing an object. The grid cell contain-
ing the center of the object is responsible for its detection. The confidence score of an object is
the product of the probability that this bounding box contains an object and the ratio of overlap
between the predicted bounding box and the ground truth annotation from the training images.
The grid cell also predicts conditional class probabilities of the object belonging to one of the tar-
geted object classes, resulting in a class probability map with one set of class probabilities per
grid cell. By utilizing this grid cell approach, the resulting bounding box proposals are spatially
constrained, and in each image, only 98 bounding boxes can be produced. Nevertheless, for large
objects or objects close to the border of multiple cells, Non-Maximum Suppression is applied to
reduce the case of redundant bounding boxes.

Another single-stage object detector is presented in Lin et al. (2017b) with RetinaNet. It is a
unified network consisting of two sub-networks built on top of the output of a Feature Pyramid
Network based on a ResNet architecture as the backbone. This backbone produces multi-scale
feature maps and is introduced later in the section of multi-stage detectors. By using these multi-
scaled feature maps, multiple anchor boxes are added. The first sub-network uses the anchor
boxes from the multi-scale feature maps to classify objects using convolutional layers. In paral-
lel, the second sub-network is responsible to regresses bounding box coordinates. Additionally,
RetinaNet addresses the problem of the significant class imbalance during the training proce-
dure in such single-stage detectors. The class imbalance emerges when proposing regions. While
most regions do not contain an object of desire (background class), only a few of these regions
cover an object. Most of these background class proposals are considered as easy to determine
their background class membership. This imbalance leads to inadequate training, with the ma-
jority of proposals not contributing to the learning capability of the framework. Furthermore, the
amount of background class proposals can dominate the training with cross-entropy loss and lead
to model degeneration. Lin et al. (2017b) propose the focal loss to tackle this imbalance problem.
The focal loss is a dynamically scaled cross-entropy loss. During training, the dynamic compo-
nent of the loss function decays easy negatives and emphasizes the hard negatives. The focal loss
is employed in the classification sub-network. At the end of this single-stage framework, classic
greedy Non-Maximum Suppression is applied to produce the final set of detections. With this
proposed method, Lin et al. (2017b) achieve comparable results in terms of accuracy compared to
modern multi-stage detectors. This kind of detector framework is discussed in the next section.

2.2.2 Multi-Stage Detectors
R-CNN stands for combining region proposals with convolutional neural networks (CNNs) (Gir-
shick et al., 2014). This method bridges the gap between image classification and object detection
by localizing objects with a deep network. In order to classify objects within regions, features
of these regions are extracted and fed into the classification module. As a classifier for these
feature-enriched regions, a Support Vector Machine (SVM) is used. The class-specific detections
are then further processed by classic greedy Non-Maximum Suppression to eliminate redundant
class-specific detections. Even though R-CNN outperforms the single-stage framework OverFeat,
it has three significant drawbacks according to Girshick (2015). In order to train the multi-staged

8 Chapter 2. Related Work & Background

architecture of R-CNN, each of these stages has to be trained sequentially. This training procedure
is additionally time-consuming and expensive in storage space. Moreover, during test-time, the
features are extracted from each region proposal in each image. This procedure results in slow
overall object detection.

In order to circumvent the three mentioned drawbacks of R-CNN, Fast R-CNN is introduced.
Fast R-CNN is also a convolutional network framework to detect objects based on images and the
associated regional proposals within the images (Girshick, 2015). Compared to its predecessor
R-CNN, with Fast R-CNN detection, quality and speed can be increased. Fast R-CNN requires
an image and region proposals as input to a convolutional neural network. Multiple convolu-
tional and maximum pooling layers process the images to produce a convolutional feature map.
The region proposals are extracted from the feature map in a region of interest (RoI) pooling
layer. The segmented region proposals are then fed into a sequence of fully connected layers
to be regressed to bounding boxes and classified into class-specific probabilities. The training
is conducted single-stage using a multi-task loss for class probability prediction and bounding
box regression. The region proposals originate from a backbone CNN pre-trained on ImageNet
data to localize regions of interest in images. Experiments with Fast R-CNN utilize the output
of different backbones as the input to the classification stage. Parts of these backbones are also
fine-tuned to increase the localization of regions of interest. The reusability further leverages the
classification and regression ability combined in the Fast R-CNN object detector.

Faster R-CNN is a unified cascading network, consisting of a Regional Proposal Network
(RPN) to generate proposals and a Fast R-CNN object detector to detect objects based on those
proposals (Ren et al., 2015). Faster R-CNN follows a modular design with two main modules
and continues on the foundation of the Fast R-CNN, introduced above. Although it is modularly
structured, the object detection system is a unified network, which is trainable end-to-end. By
detecting objects within images, Faster R-CNN’s first module proposes class agnostic regions for
the second module to classify objects within these regions. The main goal of Faster R-CNN is to
share computation between region proposals and the Fast R-CNN object detection network in the
form of weights in the convolutional layers. The RPN is responsible for turning an input image
into class-agnostic regional proposals with the help of a fully convolutional network, which is also
called the backbone of the Faster R-CNN (Ren et al., 2015). One possible backbone choice of Faster
R-CNN is a ResNet-50 FPN that employs a Feature Pyramid Network (FPN) (Ren et al., 2015; He
et al., 2016; Lin et al., 2017a). ResNet-50 is a residual network with 50 layers (He et al., 2016). It
consists of a convolutional input layer (conv1), four convolutional blocks (conv2 - conv5), and one
fully connected dense output layer. The four convolutional blocks are built up by repeating the
structure of 3 stacked convolutional layers multiple times; for example, in conv2, the sequence of
3 stacked convolutional layers is repeated three times. The convolutional blocks are displayed in
context of the ResNet-50 architecture in figure 2.3.

By proposing the ResNet-50 as a residual network, He et al. (2016) state the importance of the
increased depth of convolutional networks in visual recognition tasks in contrast to the satura-
tion and rapid degradation of accuracy of deep non-residual convolutional networks. Therefore,
skip connections are introduced by adding an identity function connecting in- and output of a
convolutional block to allow the training of deeper networks. The output of a backbone in the
RPN can be either a single-scale feature map or multi-scaled feature maps. The RPN slides a
small network in a sliding window approach over these feature maps to generate region propos-
als. The region proposals are then fed into a class-agnostic bounding box regression layer and a
classification layer. The classification layer only distinguishes between objects and non-objects.
These regions are then pruned by an application of the classic greedy Non-Maximum Suppres-
sion algorithm. The output of the Region Proposal Network of the Faster R-CNN is then utilized
by integrating the Fast R-CNN object detector described above. The advantage of integrating the
Fast R-CNN predictor into a unified network is to jointly train these two modules to leverage the

2.2 Object & Face Detection 9

Figure 2.3: RESNET ARCHITECTURES. Visual comprehension of the ResNet. The ResNet-50 is marked
with a red rectangle. The convolutional blocks are indicted in brackets Source: (He et al., 2016)

performance of Faster R-CNN. Moreover, since feature maps can already be extracted from the
RPN, computation between these two modules can be shared.

Feature Pyramid Networks (FPN) can be applied as part of the backbone of the above-introduced
approaches of RetinaNet, Fast R-CNN, and Faster R-CNN. FPN aims to produce multiple propor-
tionally sized feature maps at different levels for a given input image with the help of fully con-
volutional layers (Lin et al., 2017a). A pyramid gets constructed by laterally merging a bottom-up
and top-down pathway of intermediate feature maps of the backbone. A simplified example of
such is depicted in figure 2.4. The bottom-up pathway includes feature maps from the end of
the different stages from the forward computation of a given backbone convolutional network.
For example, with the ResNet-50 FPN, the bottom-up pathway extracts feature maps with their
respective scale at the end of each convolutional block (conv2 - conv5). The first convolutional
block (conv1) is not considered due to the large spatial resolution and memory footprint. Con-
volutional blocks from early levels in the network (i.e., conv2) produce feature maps higher in
spatial resolution but lower in semantic value. Lower semantic value because an input image has
not yet gone through many convolutional layers with subsampling resulting from subsampling
strides. However, deeper convolutional blocks (i.e., conv5) can detect more high-level features
that yield higher semantic values but lower spatial resolution. Therefore, the top-down pathway
starts at deeper convolutional blocks of the backbone to upsample feature maps to merge these
features via lateral connections from the same spatial size of the bottom-up pathway with a ker-
nel size of 1× 1 and the number of channels uniformly reduced to 256. With this procedure, FPN
produces four feature maps {P2, P3, P4, P5} from the output of the convolutional blocks conv2,
conv3, conv4 and conv5, which are denoted as {C2, C3, C4, C5}. Each merged map gets fed into a
separate convolutional layer with kernel size 3× 3 to generate the final feature maps to eliminate
the aliasing effect as a byproduct of upsampling. Additionally, a fifth feature map P6 can be cre-
ated with an even bigger scale by subsampling P5 with a stride of 2 in a maximum pooling layer
to cover a bigger anchor scale. The resulting feature maps (pyramid) of FPN are, on the one hand,
rich in high-level semantic value and, on the other hand, provided at different scales to enrich the
generic feature extraction in visual recognition tasks.

Another multi-stage convolutional neural network framework is HyperFace, which simul-
taneously detects faces, landmark locations, pose estimation, and gender classification (Ranjan
et al., 2017). HyperFace makes use of the AlexNet as the backbone. The authors also propose
a variant of HyperFace, called HyperFace-ResNet, which is based on the ResNet-101 backbone.
Generally, features resulting from selected intermediate layers of the backbone are fused. Lower
level features are used for landmarks localization and pose estimation. Features from higher

10 Chapter 2. Related Work & Background

Figure 2.4: FEATURE PROPOSAL NETWORK. The difference between predicting on the first level of a
feature pyramid versus using multiple levels of the top-down pathway Source: (Lin et al., 2017a)

layers of the backbone are used for detection and classification. Similar to Faster R-CNN, the
HyperFace framework also proposes class-agnostic region proposals in its first stage. Regions of
interest are proposed by initializing the weights of the backbone with weights from a version of
R-CNN, trained explicitly for face detection. The second stage takes up the proposals and feeds
the proposals into five different branches: detection, landmarks localization, visibility (to test
the presence of predicted landmarks), pose estimation, and gender classification. Each of these
branches consists of two fully connected layers to predict task-specific labels. In contrast to Faster
R-CNN, HyperFace employs the third stage of iterative region proposals (IRP) and landmarks-
based Non-Maximum Suppression. With IRP, new candidate boxes are proposed based on pre-
dicted landmark points if a face has not been detected due to illumination or small size. This
step increases the ability to localize faces. Landmarks-based NMS performs NMS based on a new
bounding box generated by landmark coordinates, which is expected to localize the candidate re-
gions precisely. The landmarks localization ability of HyperFace is evaluated on the normalized
mean distance between predicted coordinates and ground truth coordinates from the test data.

The multi-task cascaded CNNs based framework (MTCNN) is a unified framework with three
stages for face classification, bounding box regression, and facial landmark localization (Zhang
et al., 2016). This approach aims to combine the face detection method and the face alignment
method using the correlation between these two methods. Moreover, the MTCNN integrates face
detection and alignment with an online hard sample mining training method with a multi-task
learning procedure. The face detection and alignment are leveraged by the construction of the
framework with three stages in a multi-scale approach (Zhang et al., 2016). Similar to the RPN
module in the Faster R-CNN framework, MTCNN also utilizes a multi-scale approach to detect
faces in multiple sizes. However, MTCNN differs from FPN by building a multi-scale image
pyramid consisting of the input image resized to different scales instead of collecting multi-scale
feature maps from intermediate convolutional blocks of the backbone.8 The first stage of MTCNN
is a proposal network (P-Net) in the form of a fully convolutional network. The P-Net estimates
candidates by regressing bounding boxes on the multi-scale input image and suppresses highly
overlapping candidate boxes with Non-Maximum Suppression. The NMS function, thereby used,
is a classic greedy approach. All remaining candidate boxes are passed to the second stage – the
refine network (R-Net). In the second stage, CNN calibrates the candidates and applies NMS

8Facenet-PyTorch on Github: https://github.com/timesler/facenet-pytorch

https://github.com/timesler/facenet-pytorch

2.3 Non-Maximum Suppression 11

again. The third stage is the output network (O-Net), which produces the output in bounding
boxes and facial landmark positions. The O-Net is similar to the R-Net with the difference that
bounding boxes and probability estimates are produced, and five facial landmark positions are
detected within the bounding boxes. The training of the MTCNN is a multi-task learning process
based on binary face classification, bounding box regression, and facial landmark localization.
According to Zhang et al. (2016) each of the individual stages is trained on different data. P-Net is
trained on patches from WIDER Face training to present the net’s positive, negative, and partial
faces. R-Net is trained on the positive, negative, and partial faces from the P-Net training process
and on landmark faces from CelebA. In the last stage, O-Net is trained on data collected from
the first two stages and compared to the positive, negative, and partial faces from WIDER Face
training and the landmarks from CelebA.

2.3 Non-Maximum Suppression
Non-Maximum-Suppression (NMS) is considered an essential algorithm in the post-processing
of the detection frameworks described sections 2.2.1 and 2.2.2 in terms of selecting the final detec-
tion result (Zou et al., 2019). Both single and multi-stage detection frameworks produce numerous
neighboring proposals for the same object. NMS generally contributes to the final selection by re-
ducing the number of overlapping bounding boxes with different techniques. The most common
approach of performing NMS is the classic greedy selection. It is called greedy because the se-
lection process is carried out in each spatial location, overlapping more than one bounding box.
For all bounding boxes, which overlap with a certain threshold, only the one with the highest
probability estimate of enclosing an object, is selected and the other ones are suppressed. In a
multi-class setting, the bounding boxes of different classes are offset to not interfere with differ-
ently classified bounding boxes. The overlap for two bounding boxes B1 and B2 is calculated
using the Intersection over Union (IoU), also known as the Jaccard index (Padilla et al., 2020;
Jaccard, 1901):

IoU = J(B1, B2) =
area(B1 ∩B2)

area(B1 ∪B2)
(2.1)

If B1 and B2 perfectly overlap, their IoU score is 1. The classic greedy NMS would select in
this simple example of B1 and B2 with an IoU above a threshold, only with a higher detection
score. The other bounding box gets suppressed by setting the detection score to 0. Hence, classic
greedy NMS applies a discontinuous binary weighting function to suppress overlapping but non-
maximally scoring bounding boxes (Bodla et al., 2017).

There have been several proposals to replace the prevailing method of classic greedy NMS
in the past years. Nevertheless, many of the previously mentioned frameworks use this same
approach in their post-processing steps to arrive at the final result of object and face detection. On
closer examination, these recent developments can be clustered into two groups; post-processing
NMS substitution and learning NMS.

2.3.1 Post Processing NMS Substitution
The group of post-processing Non-Maximum-Suppression techniques aims to directly replace the
classic greedy approach by using another method for the selection process. These methods can be
considered for substitution because they work similarly and can be implemented instead of clas-
sic greedy NMS. Therefore, these techniques benefit from a low cost of change in the detection
pipeline. Such methods are Soft-NMS (Bodla et al., 2017), the OverFeat method of bounding box
accumulation (Sermanet et al., 2013), Non-Maximum Weighting (Zhou et al., 2017; Ning et al.,

12 Chapter 2. Related Work & Background

2017) and Weighted Boxes Fusion Solovyev et al. (2021). Additional NMS alternatives are de-
scribed in the appendix A with ASAP-NMS (Tripathi et al., 2020) and Chaotic Whale-NMS (Wu
and Li, 2021). These two methods are considered representatives of either increasing the speed
of NMS or interpreting NMS as a combinatorial optimization problem. These methods are only
indirectly related to the methods discussed in this section and not further specified throughout
the thesis and therefore not detailed in this section.

In addition to the classic method, Soft-NMS focuses on not directly suppressing overlapping
non-maximal detections. Instead of directly suppressing these detections, Soft-NMS reduces the
scores of the bounding box as the overlap with the bounding box associated with the local maxi-
mum classification score increases (Bodla et al., 2017), which means that probability estimates of
overlapping detections are not set to 0 but somewhat decayed. The decay is performed to reduce
the likelihood of these neighboring bounding boxes being false positives. The higher the over-
lap between the maximally scoring detection and a neighboring bounding box, the higher the
chance that the latter is a false positive detection. On the other hand, suppressing all neighboring
detections would increase the false negatives drastically. In contrast to the discontinuous binary
weighting function of the suppression in classic greedy NMS, Soft-NMS works as a greedy rescor-
ing procedure with a continuous function. It penalizes neighboring detections with a high overlap
more to reduce their classification score than neighboring bounding boxes with low overlap by
considering non-maximally scoring detections with lower scores instead of suppressing them.
Softer-NMS implemented in Faster R-CNN increases accuracy on the PASCAL VOC dataset of
1.7% and 1.1% on the COCO dataset. These results only consider the accuracy aspect without the
consideration of the bounding box stability.

The single-stage framework OverFeat, introduced in section 2.2.1 by Sermanet et al. (2013),
uses a method of accumulating predicted bounding boxes to increase localization and detection
performance. More specifically, the method is a greedy merge strategy, which is applied to the
regressed bounding boxes to combine a multitude of regressed bounding boxes into a final pre-
diction. A match between boxes is made by iterating over all regressed bounding boxes if the
sum of the distance between the box centers and their IoU score is above a certain threshold.
All matched boxes then get merged by computing the average of the bounding box coordinates.
The single merged bounding box gets the single maximal detection score of all matched boxes
assigned. The experiments conducted to evaluate the entire network only indicate the accuracy
of predicted bounding boxes without considering the stability.

With Convolutional network, Adapters and Detector (CAD), and Inception Single Shot Multi-
box Detector (I-SSD), two frameworks for fast and accurate object detection are proposed by
utilizing Non-Maximum Weighting (NMW) (Zhou et al., 2017; Ning et al., 2017). NMW is the
bounding box selection method that considers all non-maximum boxes’ object information that
overlaps the maximally scoring bounding box with a given threshold. All bounding boxes above
this threshold contribute to one finally predicted weighted bounding box. Every bounding box
gets related confidence, which is the product of its detection score and the IoU between the box
and the maximally scoring bounding box. The final prediction consists of the sum of all overlap-
ping bounding boxes multiplied by their related confidence and scaled by the sum of all related
confidences. Concerning the further processing downstream, it is only stated that the combined
bounding box is used. It is assumed that comparably to OverFeat, the corresponding detection
score of the combined bounding box results from the maximum score of all considered detections.
Aside from the original goal of proposing an efficient network, it was evaluated about the accu-
racy of its predictions without any focus on the stability of the newly proposed Non-Maximum
Weighting method.

A similar combination of bounding boxes is proposed by Solovyev et al. (2021) and is based
on the predictions of different object detection models by applying weighted boxes fusion (WBF).
Different object detection models are considered as multiple frameworks or the same framework

2.4 Evaluation Metrics 13

predicting on differently augmented images. All predictions from different models are unified in
a single list. Like classic greedy NMS, the maximally scoring detection and all bounding boxes
with an overlap above a certain threshold are selected. The combination of the maximally scoring
bounding box and all overlapping bounding boxes to the threshold are fused. This fusion results
in an averaged classification score. This score is also considered for the weighted sum of the
bounding boxes. The detection score is then re-scaled to reflect the inequality of the number of
predictions made by the different models. With this method, the quality of combined bounding
boxes is significantly increased. However, this improved quality is only measured in terms of
accuracy. No statements regarding the size or scale of the newly produced bounding boxes in
contrast to the ground truth or the baseline methods are made. Additionally, the primary purpose
stated for this method is to combine the final predictions of multiple models in an ensemble.
Therefore, the improved quality reported is also based on the combination of predictions of an
ensemble of models. When WBF in a single model replaces classic greedy NMS, it even decreases
the model performance.

2.3.2 Learning NMS
The second cluster of Non-Maximum-Suppression alternatives proposes a more integrated im-
plementation of the selection process into the learning process of an object detector. The methods
of this group cannot simply replace the classic greedy NMS in the post-processing but need to
be considered during the end-to-end learning process of the whole network. As the prominent
member of this group of methods, only Softer-NMS (He et al., 2018) is discussed in this section
due to its further reference throughout this thesis. Further methods are shortly elaborated in the
attachments, including Learning-to-Rank Tan et al. (2019), and Fitness NMS Tychsen-Smith and
Petersson (2018).

He et al. (2018) combine object localization through embedding a bounding box regression loss
function into the learning procedure of the detection framework and applying a weighted aver-
age during Non-Maximum Suppression. Softer-NMS is an improvement of the post-processing
substitution method Soft-NMS described above. The localization confidence of Softer-NMS is
achieved by regressing not only the bounding box coordinates but instead predicting a probabil-
ity distribution of the bounding box location. It further improves Soft-NMS by advancing with
high-scoring candidate bounding boxes, improving overall performance, and refining those se-
lected bounding boxes with a weighted average based on confidence from the Gaussian distribu-
tion. The findings conclude that the classification confidence is not firmly related to localization
confidence. The findings justify improving classic greedy NMS, which only relies on the classifi-
cation confidence to select the final predictions. Even though the implementation of Softer-NMS
focuses on the accurate localization of bounding boxes, there is no distinct evaluation of local-
ization or stability compared to a benchmark. The principal metric to draw the final results of
the publication is in line with the evaluation metrics used by the discussed methods mentioned
above. Thereby, mAP is used to measure the performance of Softer-NMS compared to Soft-NMS
and classic greedy NMS. However, the authors attribute the improvement in mAP to the more
accurate localization of bounding boxes.

2.4 Evaluation Metrics
According to Zou et al. (2019), the increasing dissemination of the data sets mentioned at the be-
ginning of this chapter leads in the same step to the dissemination of the evaluation metrics used
therein. For example, average precision began to gain traction with the release of the PASCAL
VOC challenge 2007. With the introduction of the MS-COCO challenge, researchers emphasized

14 Chapter 2. Related Work & Background

the localization accuracy of the predicted bounding boxes. To this end, an adaption of the metric
was proposed to be used in a complementary manner. These two metrics, driven by the PAS-
CAL VOC and COCO challenges, were frequently reported by researchers using these datasets to
train and validate their object detectors. For datasets other than these two, these metrics are also
used to provide a comparison between different frameworks. In this section, the essential com-
ponents of the above evaluation metrics are explained in detail. Later, an alternative perspective
on evaluation will be introduced by considering the related field of evaluating video detection
results.

2.4.1 Object Detection
The assessment of object detection accuracy is established by comparing the annotated ground
truth objects of a given dataset with the predictions made by an object detection framework based
on the respective image (Padilla et al., 2020). The ground truth annotations consist in many cases
of human-labeled bounding boxes that enclose an object. Each of these bounding boxes possesses
a label indicating the class membership of the respective enclosed object. An object detector aims
to localize the objects present in an image with a detection bounding box close to the ground truth
bounding box. In addition, the object detector outputs a probability for each of the class labels,
including a background class. Each bounding box has four coordinates encoding the corners of
a box, which closely surrounds the object. Three different scenarios are possible by detecting
objects and comparing them to the ground truth: (I) An object detector detects an object in an
input image with a certain probability. This object is also labeled as such in the ground truth
annotation. If the probability estimate of the object detector surpasses a predefined threshold, the
prediction is a true positive (FP). (II) If the object detector detects an object where according to the
ground truth, no object is located, then it is a false positive (FP). (III) Suppose the object detector
misses detecting an object where it is supposed to be, or the estimated probability of being such an
object is too low. In that case, it is a false negative (FN) detection. There is also a fourth detection
scenario, which is not relevant for object detection evaluation, a true negative (TN) detection. A
true negative detection is when the object detector correctly does not detect a non-existing object
of the ground truth annotations. TN is not relevant because there is an infinite number of possible
true negative detections in an image. There are two main criteria to determine the correctness of
object detection: first, to only look at bounding boxes with a high enough probability of enclosing
a particular object (Padilla et al., 2020). Second, to compare the detected bounding box with the
ground truth bounding box and measure their overlap (Padilla et al., 2020). To measure their
overlap, the IoU score, according to equation (2.1) is calculated. With the notation of IoU, it is
possible to calculate the overlap between a detected and ground truth bounding box. Then to
determine with a threshold t whether the overlap is sufficient to account for detection for being
true positive (IoU ≥ t) or not sufficient and therefore being false positive (IoU < t) (Padilla
et al., 2020). There also exist different types of false positives about duplicate detection errors if
multiple detections overlap with the ground truth with an IoU ≥ t (Hoiem et al., 2012). However,
this section does not cover distinguishing this kind of error but rather summarizes these errors as
false positive detections.

By combining the three object detection scenarios mentioned earlier, it is possible to compute
precision P and recall R, according to Padilla et al. (2020), as followed:

Precision = P =
TP

TP + FP
=

TP
all detections

(2.2)

Recall = R =
TP

TP + FN
=

TP
all ground truths

. (2.3)

2.4 Evaluation Metrics 15

The precision indicates how well the object detector can detect the correct objects among all de-
tections (Padilla et al., 2020). On the other hand, recall measures the fraction of the correctly
identified objects among all ground truth annotations. There is a trade-off between precision and
recall, which is influenced by the confidence values of the detections (Padilla et al., 2020). By
lowering the allowed confidence of the object detector to predict bounding boxes, it is likely that
with a more significant number of predicted bounding boxes that more true positives and fewer
false negatives can be achieved, and the recall will increase (Padilla et al., 2020). Simultaneously,
by predicting more bounding boxes, it is also likely that there are more false-positive detections,
which leads to a decrease in precision (Padilla et al., 2020).

The most commonly used metric to capture accuracy is the Average Precision (AP), which
summarizes the precision and recall trade-off (Padilla et al., 2020). One popular way to calculate
AP based on precision and recall is the 11-point interpolation (Padilla et al., 2020). This method
obtains 11 equally spaced recall levels at [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] and summarizes
the maximum precision Pinterp(R) at each of these levels (Padilla et al., 2020). If there is no exact
recall value equal to the level, then Pinterp(R) is taken from the next higher recall value R (Padilla
et al., 2020). According to Padilla et al. 2020 and Everingham et al. (2010) the sum is then averaged
over all 11 levels as in

AP11 =
1

11

!

R∈{0,0.1,...,0.9,1}

Pinterp(R), (2.4)

with

Pinterp(R) = max
!R: !R≥R

P ("R). (2.5)

The 11-point interpolation AP is known for being the base metric of the PASCAL VOC challenge,
as well as for the WIDER Face benchmark (Everingham et al., 2010; Yang et al., 2016). In a multi-
class dataset such as PASCAL VOC, it is also possible to utilize the 11-point interpolation about
the different classes (Padilla et al., 2020). Therefore, mean Average Precision (mAP) is introduced,
which averages the class-specific APi over all classes N (Padilla et al., 2020). The Mean Average
Precision, as stated in Padilla et al. (2020), is defined as

mAP =
1

N

N!

i=1

APi. (2.6)

Mean Average Precision and multiple variants of it are the base metric for the COCO chal-
lenge.9 The main challenge metric for COCO however, differs from the approach described above.
First, COCO evaluation does not differentiate between AP and mAP. Thereby, mean Average Pre-
cision over all classes is applied but stated as AP.9 Moreover, the mAP is not measured at a single
IoU score, which is often at 0.5 but rather averaged over ten different IoU thresholds.9 These
thresholds are taken from a range between 0.5 and 0.95 with a step size of 0.05.9 Next to the pri-
mary challenge metric, the evaluation of predictions using the COCO dataset employs 11 more
metrics.9 The totally 12 evaluation metrics are divided into 4 groups of 3 metrics as displayed
in table 2.2. The first group measures mean Average Precision by applying the aforementioned
primary challenge metric over 10 IoU thresholds, over a single 0.5 IoU threshold, and a single 0.75
IoU threshold (Padilla et al., 2020). The second metric, APIoU=0.5 is the main metric of the PASCAL
VOC challenge and therefore also for the WIDER Face benchmark (Everingham et al., 2010; Yang
et al., 2016; Padilla et al., 2020).9 The COCO challenge also differentiates between scales because
the majority (41%) of objects in the COCO dataset are of small area (< 322), 34% are medium-sized

9COCO Validation: https://cocodataset.org/#detection-eval

https://cocodataset.org/#detection-eval

16 Chapter 2. Related Work & Background

(between 322 and 962), and 24% belong to the large category (> 962).9 This distinction is made for
both Average Precision and Average Recall. Average Recall is, according to Hosang et al. (2015)
comparable to the COCO definition of Average Precision at ten different IoU levels between 0.5
and 1 and also refers to the mean Average Recall as AR across all classes (Padilla et al., 2020).
Average Recall is also calculated by limiting the number of detections as displayed in table 2.2 in
the third section. AR per fixed number of detections is the maximum Average Recall given this
limitation and then averaged over all classes and IoU levels.9

COCO challenge metrics
Metric Name Metric Description
Average Precision (AP)
AP mAP at IoU = 0.5:0.05:0.95
APIoU=0.5 mAP at IoU = 0.5 (PASCAL VOC metric)
APIoU=0.75 mAP at IoU = 0.75
AP Across Scales
APsmall mAP for small objects with area < 322

APmedium mAP for small objects with area between 322 and 962

APlarge mAP for small objects with area > 962

Average Recall (AR)
ARmax=1 AR with 1 detection per image
ARmax=10 AR with 10 detections per image
ARmax=100 AR with 100 detections per image
AR Across Scales
ARsmall AR for small objects with area < 322

ARmedium AR for small objects with area between 322 and 962

ARlarge AR for small objects with area > 962

Table 2.2: COCO CHALLENGE METRICS. An Overview of the extensive COCO challenge metrics.9

2.4.2 Stability
The bounding box stability is a metic proposed to shift the evaluation paradigm in video detec-
tion (VID) and multi-object tracking (MOT) (Zhang and Wang, 2016). However, the predominant
evaluation metrics for VID and MOT challenges and benchmarks are still based on precision, re-
call, and their summarization in mean Average Precision (Zhu et al., 2020; Sundararaman et al.,
2021). Additionally, there is an imbalance of labeled data available for videos and images. Since
an evaluation metric requires ground truth annotations, it is a limiting factor for VID and MOT.
The main difference between detecting objects or faces in videos compared to images is the ac-
cumulation of these metrics over consecutive frames with highly correlated features instead of
independent images (Zhu et al., 2020). Since these metrics are fundamentally based on the over-
lap between predicted and ground-truth bounding boxes, there can be multiple overlap scenarios
resulting in the exact accuracy measurement. This means that predicted bounding boxes might
jitter around the ground truth annotation, which might not be accounted for in the traditional
accuracy metrics. Moreover, Zhang and Wang (2016) show that these accuracy metrics have a low
correlation with the stability metric, which means that both metrics should be considered when
evaluating object detection with moving objects.

The stability metric proposed by Zhang and Wang (2016) consists of 3 components. The first

2.4 Evaluation Metrics 17

component is the fragment error EF, which measures the consistency of the detections along all
trajectories of the targeted objects. The consistency indicates whether the object detector reports
the exact status of an object over all the frames in a trajectory or if it changes the status frequently.
The status of an object is the state of being detected or not. The fragment error is negligible when
an object has never been detected or the detector consistently produces detections that align with
the ground truth trajectory. On the other hand, the fragment error is large when the detector has
alternating detections and non-detections regarding a targeted object. The fragment error of a
video sequence is defined as

EF =
1

N

N!

k=1

fk
tk − 1

, (2.7)

where N is the total number trajectories, tk as the length of the kth trajectory and fk the number
of changes between true positives and false negatives (Zhang and Wang, 2016).

The second component of the stability metric is the center position error EC, which measures
the stability of the center position of a bounding box along a trajectory with regard to the hori-
zontal and vertical direction. The detected bounding boxes of the f th frame and the kth trajectory
are considered to have the form Bk,f

p = (xk,f
p , yk,fp , wk,f

p , hk,f
p), which correspond to the box cen-

ter x and y coordinates, width and height. Analogously, the ground truth annotation has the
form Bk,f

g = (xk,f
g , yk,fg , wk,f

g , hk,f
g). By obtaining these values from a predicted and ground truth

bounding box, Zhang and Wang (2016) define the center position error as stated in equation (2.8).
EC is the average of the summed horizontal and vertical standard deviations from the trajectories
center positions over multiple frames.

ek,fx =
xk,f
p − xk,f

g

wk,f
g

, σk
x = std(ekx),

ek,fy =
yk,fp − yk,fg

hk,f
g

, σk
y = std(eky), (2.8)

EC =
1

N

N!

k=1

(σk
x + σk

y)

The third component contributing to the stability metric measures the scale and aspect ratio of
the bounding boxes along a trajectory. The bounding boxes shapes of the detections and ground
truth are the same as stated above. According to equation (2.9) from Zhang and Wang (2016), ER is
the average of the summed scale and aspect ratio standard deviations of the trajectories. The scale
errors are held in the same magnitude as the ratio errors by applying the square root; otherwise,
this error term would proportionally contribute more to the overall scale and ratio error ER.

ek,fs =

#
wk,f

p hk,f
p

wk,f
g hk,f

g

, σk
s = std(eks),

ek,fr =
wk,f

p hk,f
g

hk,f
p wk,f

g

σk
r = std(ekr), (2.9)

18 Chapter 2. Related Work & Background

!! !" !# !$

Figure 2.5: TRAJECTORIES OF SEQUENCE OF FRAMES. An example of four trajectories. The top row
shows the ground truth annotation. The second row shows fragment errors, where f1 is detected, f2 is
missing, f3 is detected and f4 is missing again in the trajectory. There are 3 status changes. This would
result in the maximum fragment error of 3/(4 − 1) = 1. The third row indicates deviations in the center
position of the trajectory. The bottom row indicates deviations in scale and ratio of the trajectory. Own
illustration, based on (Zhang and Wang, 2016)

ER =
1

N

N!

k=1

(σk
s + σk

r)

By having introduced all three components of the stability metric, these terms can then be
added together to obtain the overall stability error Φ (equation (2.10)). However, some funda-
mental assumptions must be made before calculating Φ or one of its components. First, each
detection in a frame has to be assigned to one trajectory. Since EC and ER measure the standard
deviation of the errors on the horizontal and vertical axis for one trajectory over all frames, the
objects must be matched between the frames. Second, the stability metric only considers detec-
tions matched to ground truth. Therefore, the stability metric is a complementary metric to the
accuracy metric (Zhang and Wang, 2016).

Φ = EF + EC + ER (2.10)

The metrics described in this section are paramount to compare different object detectors con-
cerning the accuracy and stability of their predictions. Even though different object detection
challenges rely on different evaluation metrics, it is shown in this chapter that they all aim to
measure the ability of an object detector to localize and classify objects in images. The PASCAL
VOC challenge and WIDER Face benchmark both employ a shared measurement, which is also a
subset of the extensive evaluation metrics of the COCO challenge. This lack of empirical evidence
is mainly because the stability is measured over a sequence of frames, which is not the case for
static images. On the other hand, the stability metric lacks practical application in object detec-
tion challenges. However, this metric enables another perspective on the ability of the detector to
tightly fit bounding boxes with spatial stability compared to their associated ground truth boxes.
Therefore, these metrics also play a crucial role in evaluating the performance of different models
in multiple experimental setups with varying implementations of Non-Maximum-Suppression,
which are elaborated in the next chapter.

Chapter 3

Stabilizing Bounding Boxes

The first research question of this thesis and, therefore, a primary goal of this thesis concerns the
stabilization of bounding box predictions for face and object detection. The center of attention,
therefore, lies on the post-processing step of Non-Maximum Suppression. The previous chapter
on background & related work 2 indicates that the main focus of the literature is on either increas-
ing accuracy or speed by substituting the classic greedy NMS. Nevertheless, the classic greedy
approach is the method of choice for most face and object detectors. In this chapter, it is described
how the general approach to performing NMS is challenged by altering the post-processing of
two independent multi-stage detection frameworks – one for object detection with Faster R-CNN
using the COCO and PASCAL VOC datasets and one for face detection with MTCNN using the
WIDER Face dataset. During the forward pass in both frameworks, multiple process steps require
a selection of bounding boxes. By substitution with a variable implementation of this particular
bounding box selection, the behavior of the face and object detectors can be studied concerning
accuracy and stability. Therefore, in this chapter, a variable implementation of bounding box
selection is provided by a function that performs either classic greedy NMS or Soft-NMS of the
previous chapter. Both methods are manually re-implemented based on the original functions
of PyTorch and Soft-NMS and their algorithmic description. These two methods form the first
part of this methodological chapter by creating a baseline benchmark of two established NMS
approaches. In the second part, two approaches called Average NMS and Average IoU NMS are
introduced to not only challenge the accuracy benchmark but, more importantly, in terms of sta-
bility. The bounding boxes created by Average and Average IoU NMS create new bounding box
coordinates and probability scores based on all neighboring bounding boxes above a threshold.
The last part of this chapter represents a thematically overarching topic of handling multi-class
detections.

3.1 Classic Greedy Non-Maximum Suppression
The proposition of a more stable NMS approach requires modifying the selection process in the
multi-stage detectors Faster R-CNN and MTCNN. The status quo of bounding box selection is
to perform Non-Maximum Suppression in the post-processing step at the end of each stage.
Thereby, bounding boxes, class memberships, and their associated predicted probability are sent
together with an IoU threshold to an NMS function that performs classic greedy NMS (algorithm
1). As a result, the function returns a single list of indices, with which the original bounding
boxes, scores, and labels are sliced to apply the actual selection of the NMS function. This slic-
ing is a solid and rapid selection process since the same bounding boxes are already present and
can be chosen by index. Algorithm 1 shows the formal procedure of the classic greedy Non-

20 Chapter 3. Stabilizing Bounding Boxes

Maximum Suppression as stated by Bodla et al. (2017). When comparing this algorithm to the
observed practical implementation of PyTorch, two main differences can be observed.1 First, al-
gorithm 1 assumes to only receive bounding boxes of a single class and therefore does not need
to distinguish between bounding boxes of different classes. This topic is discussed at the end of
this chapter in section 3.5. Second, the return values are the selected boxes and the respective
detection scores instead of the index.

Algorithm 1: Classic Greedy Non-Maximum Suppression
Input: B = {b1, ..., bN}, S = {s1, ..., sN}, Nt

B: list of initial detection bounding boxes
S: list of corresponding detection estimates
Nt: NMS threshold
begin

D ← { }
while B ∕= empty do

m ← argmax S
M ← bm
D ← D ∪M ;B ← B −M
for bi in B do

if IoU(M, bi) ≥ Nt then
B ← B − bi;S ← S − si

end
end

end
return D,S

end

The algorithmic functionality of classic greedy NMS according to Bodla et al. (2017) and shown
in algorithm 1 starts with detection bounding boxes, their associated detection probability esti-
mates, and an NMS threshold. During a loop, the index of the detection score with the maximal
value is stored in m. This index is then used to store the associated bounding box in M . The
own practical implementation also follows the same structure with a loop. However, instead of
looking for the index of the maximal score, the boxes and scores are already sorted in descending
order of the score values – this way, the initial maximal score, and corresponding bounding box
are selected by index 0. The next step is selecting the maximally scoring bounding box by adding
it to the set D and taking it out of the set of all bounding boxes B. In the code, this is achieved by
appending the maximally scoring bounding box and its score to two separate lists defined out-
side of the loop. The set difference is made by setting the bounding boxes and scores to a slice of
these lists from index 1 to the end of the list. This way, the maximal score and associated bound-
ing box of index 0 are disregarded. The algorithm loops over the remaining bounding boxes and
compares the IoU to the maximally scoring bounding box M . The own practical implementation
does not require a loop, therefore, but rather works with a two-dimensional tensor of the output
of the Torchvision implementation of IoU calculation by calling torchvision.ops.box_iou()

with M and the remaining boxes B as parameters.1 With the pairwise IoU scores between M and
b1, b2, ..., bn in the second dimension, these scores can directly be compared to the parametrized
IoU threshold. The comparison is made with torch.where, which compares the second dimen-

1Torchvision Ops: https://pytorch.org/vision/stable/ops.html

https://pytorch.org/vision/stable/ops.html

3.2 Soft-Non-Maximum Suppression 21

sion to the condition of being smaller than the IoU threshold.2 While the algorithm performs a set
difference on all bounding boxes and scores with those scores greater or equal to the IoU thresh-
old, the practical implementation directly selects only the boxes and scores with a score below the
threshold and continues the loop with only those selected. According to Bodla et al. (2017) the
pruning step in algorithm 1 can be written as a re-scoring function (equation (3.1)) with the scores
set to 0 for an IoU score greater or equal to the threshold.

si =

$
si, IoU(M, bi) < Nt

0, IoU(M, bi) ≥ Nt

(3.1)

This re-scoring function can be considered a discontinuous binary weighting function with a hard
threshold at Nt.

As soon as the set of bounding boxes B is empty, the sets of selected boxes D and associated
scores S are returned while all other boxes and scores are suppressed. The own implementation
also returns the actual bounding boxes and scores and the class labels, which also undergo the
same slicing procedures during the loop as the boxes and scores. Even though the class labels are
discussed later, it can be stated that the classic greedy NMS is class agnostic, and the labels are
included in the own implementation only to match the length of associated bounding boxes and
scores for simplicity purposes.

3.2 Soft-Non-Maximum Suppression

Algorithm 2: Soft-Non-Maximum Suppression
Input: B = {b1, ..., bN}, S = {s1, ..., sN}
B: list of initial detection bounding boxes
S: list of corresponding detection estimates
begin

D ← { }
while B ∕= empty do

m ← argmax S
M ← bm
D ← D ∪M ;B ← B −M
for bi in B do

si ← sif(IoU(M, bi))
end

end
return D,S

end

The authors of the Soft-NMS approach state that their method improves the accuracy of classic
greedy NMS with one line of code (Bodla et al., 2017). From an algorithmic perspective, this
statement can be confirmed when algorithm 2 is set against algorithm 1. Instead of comparing
the IoU scores between the maximally scoring bounding box and all remaining bounding boxes
with a hard threshold, a penalty function is applied to all remaining detections and the respective

2TORCH.WHERE: https://pytorch.org/docs/stable/generated/torch.where.html

https://pytorch.org/docs/stable/generated/torch.where.html

22 Chapter 3. Stabilizing Bounding Boxes

IoU(!, #!)

$"	
$%&((,*!)"

,

Figure 3.1: SOFT-NMS PENALTY FUNCTION. The Soft-NMS penalty surface as a function of σ and
IoU(M, bi). The ranges of IoU(M, bi) and σ are [0, 1] and (0, 1] respectively.

scores. In terms of the rescoring function seen with classic greedy NMS in equation (3.1), the
penalty function for Soft-NMS can be formulated as follows:

si = sie
− IoU(M,bi)2

σ , ∀bi /∈ D. (3.2)

This function is considered a Gaussian function to prune the overlapping bounding boxes by
penalizing their associated probability scores. The hyperparameter σ can be interpreted as similar
to the threshold Nt of classic greedy NMS. The smaller σ is chosen to be, the lower is the penalty
for the score of marginally overlapping bounding boxes. At the same time holding σ small, the
more the bounding boxes overlap, the larger the penalty applied to the corresponding scores. The
behavior of the penalty function can be observed on the surface of the graph in figure 3.1. In case
M and bi do not overlap at all, the exponent of e becomes 0, which leads to leaving the score si
at its initial value since e−0 = 1. This is exactly the case in the classic greedy NMS re-scoring
function if the IoU scores are below the threshold.

Even though it is slightly different from the algorithmic perspective between Soft-NMS and
classic greedy NMS, the implementation differs in three significant points. First, from algorithm
2 it is not clear whether the penalized detection scores are only used for the selection during
NMS or also assigned to the bounding boxes for further processing. Second, since an arbitrary
number of detection scores are updated in every iteration, it is necessary to perform a reordering
of bounding boxes based on the new scores afterward. The implementation assumes that the
newly computed scores are also returned together with the bounding boxes due to Soft-NMS.
Thereby, it can be continued to select the maximally scoring bounding box and its score at index
0.

Moreover, finally, there is also no threshold defined in algorithm 2 to limit the number of
bounding boxes to perform a selection on the bounding boxes. Without actually pruning the
bounding boxes and associated scores, the same number of detections would be returned from
a Soft-NMS application. This would suggest that the detection framework applies an additional

3.3 Average Non-Maximum Suppression 23

comparison with a threshold by itself after Soft-NMS. Since this can not be assumed to be the case
for all detection frameworks, the practical re-implementation of Soft-NMS features a comparison
with a low threshold, which is variably chosen to be between 0.1 and 0.01. This means that only
bounding boxes with associated re-scored detection probabilities above this score threshold are
returned. Additionally, the hyperparameter σ of the Soft-NMS penalty function is chosen to be
0.5 as recommended by Bodla et al. (2017).

3.3 Average Non-Maximum Suppression
As seen in section 2.3, there exist multiple approaches to aggregate proposed bounding boxes
to form a final detection that uses the information of neighboring boxes (Sermanet et al., 2013;
Zhou et al., 2017; Ning et al., 2017; Solovyev et al., 2021). The first of the two newly introduced
methods – Average NMS, is firmly based on the theoretical foundation of Solovyev et al. (2021)
and Sermanet et al. (2013). Average NMS unifies the concepts of these two approaches by adopt-
ing a similar weighting and re-scoring procedure as seen in Solovyev et al. (2021) and inserting
the selection process into the prediction pipeline as stated in Sermanet et al. (2013). On the one
hand, the main difference of Average NMS and WBF proposed by Solovyev et al. (2021) lies in
the usage of the predicted bounding boxes inside of the multi-stage frameworks Faster R-CNN
and MTCNN. WBF is applied to combine predicted bounding boxes of an ensemble of different
models in a post-processing fashion. On the other hand, Average NMS differs from the OverFeat
bounding box merge procedure in terms of the match criteria between neighboring bounding
boxes and the calculation of the final detection score.

By having a more detailed look at the WBF algorithm proposed by Solovyev et al. (2021), it can
be observed that the first part of the selection of neighboring bounding boxes works in the same
way as it is done in algorithm 1 with classic greedy NMS and in algorithm 2 with Soft-NMS. All
neighboring bounding boxes with an IoU score above a given threshold are considered, together
with their associated scores, as sets for candidate boxes CB and candidate scores CS. Both sets
have the same number of elements c. First, the new score NS gets calculated as the average of all
candidate scores CS with

NS =

%c
i=1 CSi

c
. (3.3)

As a second step, the new bounding box NB gets calculated as the weighted average by using
the detection scores CS as weights with

NBWBF =

%c
i=1 CSi ∗ CBi%c

i=1 CSi
. (3.4)

The newly proposed Average NMS uses weighted average bounding box aggregation calcu-
lation with an additional intermediate step to calculate the weights separately.3 But in contrast
to the calculation in equation (3.3), Average NMS uses these weights also for the re-calculation of
the final detection score. Meaning that the final detection score is also a weighted average of all
candidate scores instead of the average. Therefore, the weights w get calculated with

wANMS,i =
CSi%c
j=1 CSj

. (3.5)

These weights represent the share of each candidate score compared to all the candidate scores.
Suppose an instance i of the candidate boxes CB is predicted with a high candidate score CSj

3Bob IP Facedetect on Gitlab: https://gitlab.idiap.ch/bob/bob.ip.facedetect/-/blob/
master/bob/ip/facedetect/detect.py#L15

https://gitlab.idiap.ch/bob/bob.ip.facedetect/-/blob/master/bob/ip/facedetect/detect.py#L15

24 Chapter 3. Stabilizing Bounding Boxes

with i = j. In that case, the weight is proportionally more extensive than for a candidate box with
a lower candidate score. The sum of all individual weights equals 1. Then these weights are used
to calculate the new aggregated bounding box coordinates with

NBANMS =

c!

i=1

wANMS,i ∗ CBi. (3.6)

By plugging equation (3.10) into equation (3.7), it can be shown that the Average NMS box aggre-
gation is the mathematical equivalent to the WBF method:4

NBANMS =

c!

i=1

wANMS,i ∗ CBi =

c!

i=1

CSi%c
j=1 CSj

∗ CBi =

%c
i=1 CSi ∗ CBi%c

j=1 CSj
=

%c
i=1 CSi ∗ CBi%c

i=1 CSi

(3.7)

However, there is a significant difference of Average NMS to the WBF method in the calculation
of the final detection score NSANMS . The new score NSANMS is calculated similarly as the new
box NBANMS with

NSANMS =

c!

i=1

wANMS,i ∗ CSi. (3.8)

The reason for using the weighted average for the final detection score NSANMS is to attribute
the proportional impact of high individual confidence to the final detection score. Meaning that
if a bounding box obtains high confidence, it should contribute more to the overall weighted
average detection score. Hence, the influence the detections have on the aggregation of the final
bounding box is the same as for the formation of the final detection score. Therefore, the result
of the Average NMS is more consistent between bounding box aggregation and confidence score
calculation than WBF.

Following the mathematical formulations of Average NMS, it is shown that the proposed
method uses the same weighted average for the bounding box aggregation and the detection
score calculation. The procedure to apply these calculations within the bounding box selection is
formally stated in algorithm 3. The main differences to the classic greedy NMS are the additional
variables used to store candidate boxes and scores. Furthermore, an additional loop is required
to compute the weights. By using these weights, the weighted average of the combined box and
score is calculated. Thereby, box_average employs equation (3.7) to calculate the new boxes NB.
At the end of each iteration, the combined box and score are collected by D and S, respectively.
D and S are returned after the final iteration as the result of the Average NMS.

3.4 Average IoU Non-Maximum Suppression
The second proposed method is Average IoU NMS, which differs from Average NMS only in
calculating the weights. As mentioned in the section above, when calculating the aggregated
bounding box of Average NMS, the weighted average is used as stated in Solovyev et al. (2021)
for the WBF method. This method was inspired by the calculation of Non-Maximum Weighted
(NMW) from Zhou et al. (2017) and Ning et al. (2017). However, NMW also includes the IoU
score between the maximally scoring bounding box M and the overlapping bounding box Bi to
compute the weight wi. As already stated in section 2, NMW only uses the IoU to compute the

4Weighted Arithmetic Mean Definition: https://en.wikipedia.org/wiki/Weighted_
arithmetic_mean

https://en.wikipedia.org/wiki/Weighted_arithmetic_mean

3.4 Average IoU Non-Maximum Suppression 25

Algorithm 3: Average Non-Maximum Suppression
Input: B = {b1, ..., bN}, S = {s1, ..., sN}, Nt

B: list of initial detection bounding boxes
S: list of corresponding detection estimates
Nt: NMS threshold
begin

D ← { }
while B ∕= empty do

m ← argmax S
M ← bm
CS ← sm
CB ← M
B ← B −M
for bi in B do

if IoU(M, bi) ≥ Nt then
CB ← CB ∪ bi
CS ← CS ∪ si
B ← B − bi;S ← S − si

end
end
weights ← { }
for csi in CS do

weights ← weights ∪ csi/ sum(CS)
end
D ← D ∪ box_average(CB,weights)
S ← S ∪ sum(CS ∗ weights)

end
return D,S

end

weights for the bounding box aggregation and then assigns the maximal detection score Sm to the
aggregated box. Average IoU NMS extends, therefore NMW using the IoU influenced weights to
calculate the weighted average of detection scores. Therefore, the weights wANMS are calculated
in the same fashion as in NMW by

wAINMS,i =
CSi ∗ IoU(M,CBi)%c

j=1 CSj ∗ IoU(M,CBj)
. (3.9)

These weights are then used to aggregate the bounding boxes equivalently as in equation (3.7).
This procedure is exactly the same as in Zhou et al. (2017) and Ning et al. (2017). Then Average
IoU differs from NMW by using

NSAINMS =

c!

i=1

wAINMS,i ∗ CSi. (3.10)

to calculate the final detection score NSAINMS . This calculation is similar to the detection score
calculation of YOLO (Redmon et al., 2016). The interpretation of the weights follows the same
nature as with Average NMS with the difference that the product of detection score and IoU
score determines the influence on the final aggregation. Neighboring boxes with a high overlap
and high confidence contribute proportionally more to creating the final aggregation than boxes

26 Chapter 3. Stabilizing Bounding Boxes

with low overlap and low confidence. This contribution is also reflected in the Average NMS in
the aggregation of the final bounding box and the final detection score. The formal application
of these mathematical equations is stated in algorithm 4. It only diverges from the structure
described in Average NMS in the calculation of candidate scores CS.

Algorithm 4: Average IoU Non-Maximum Suppression
Input: B = {b1, ..., bN}, S = {s1, ..., sN}, Nt

B: list of initial detection bounding boxes
S: list of corresponding detection estimates
Nt: NMS threshold
begin

D ← { }
while B ∕= empty do

m ← argmax S
M ← bm
CS ← sm
CB ← M
B ← B −M
for bi in B do

if IoU(M, bi)≥ Nt then
CB ← CB ∪ bi
CS ← CS ∪ si∗IoU(M, bi)
B ← B − bi;S ← S − si

end
end
weights ← { }
for csi in CS do

weights ← weights ∪ csi/ sum(CS)
end
D ← D ∪ box_average(CB,weights)
S ← S ∪ sum(CS ∗ weights)

end
return D,S

end

3.5 Multi-Non-Maximum Suppression
The above sections discuss four distinct NMS methods to implement experiments into Faster R-
CNN and MTCNN. However, these multi-stage detection frameworks already employ the classic
greedy NMS method in the post-processing of each stage. Since all of the above-stated NMS meth-
ods are considered as members of the post processing NMS substitutional methods from section
2, it is possible to replace the original implementation with a variable Multi-Non-Maximum Sup-
pression function. This function allows a parametrized control over the applied method, thresh-
olds, and multi-class distinction to evaluate different versions of the frameworks during the ex-
perimental part of this thesis. Furthermore, by implementing a holistic Multi-NMS function,
the differing output, especially of classic greedy NMS and Soft-NMS compared to Average and

3.5 Multi-Non-Maximum Suppression 27

Average IoU NMS, can be unified in that regard. The implementation of Multi-Non-Maximum
Suppression is stated in the appendix B.1.

The substitution of the original classic greedy NMS function call in both stages of Faster R-
CNN and the three stages in MTCNN is implemented by calling the mnms() function instead.
In the original implementation, both Faster R-CNN and MTCNN call the same NMS function
by Torchvision.5 Within the mnms() function, all 4 above mentioned methods are implemented
according to the algorithms 1, 2, 3 and 4. Additionally, the function call from the original version
of Faster R-CNN and MTCNN is added and set as the default method. The difference between
the original function call and the re-implemented classic greedy NMS according to 1 is that the
original function is written in C++. In contrast, the re-implemented version is written in Python.
The method of choice for the experimental purpose can be passed as a parameter with the IoU
threshold, Soft-NMS specific score threshold, a limiting parameter, and the multi-class distinction.

So far, all of the explained Non-Maximum Suppression methods are class agnostic, meaning
that no class differentiation is made during the selection or aggregation of the final bounding
boxes. This agnostic is due to the design of the original classic greedy NMS implementation by
Torchvision, which is also applied to Soft-NMS, Average NMS, and Average IoU NMS.5 Before
performing any of the above-stated NMS algorithms, the bounding boxes are offset depending
on the class/level they belong to. It is referred to classes or levels because NMS is, for example,
in Faster R-CNN called in the Region Proposal Network, where no classes have been determined
for the boxes yet. At this stage, the boxes can only be distinguished by the levels of the Feature
Pyramid Network they originate from. The class/level value then gets multiplied with the sum of
maximum coordinate value and 1. This multiplication means that the class/level 1 gets an offset
of the maximum coordinate plus 1. These offsets are then added to the corresponding bounding
box coordinates. This way, boxes of different classes/levels do not overlap and are considered
separately during NMS. After the selection or aggregation of NMS, the offset is subtracted again.

In this chapter, four Non-Maximum Suppression methods are either re-implemented based on
their algorithms or newly implemented with novel components based on existing literature. The
re-implementation of classic greedy NMS and Soft-NMS aims to create a benchmark and draw
comparisons between newly implemented aggregation methods. Average NMS and Average IoU
NMS are both based on methods observed in the literature but partially altered to develop novel
forms of weighted average bounding box aggregation. Especially the last two methods are de-
signed to achieve the overall goal of this thesis to stabilize bounding box predictions. The last sec-
tion of this chapter takes the four NMS methods and combines them in the Multi-Non-Maximum
Suppression function. This function replaces the original function calls in Faster R-CNN and
MTCNN to test the effects of the individual NMS methods during the experimental part of this
thesis.

5Source Code for TORCHVISION.OPS.BOXES: https://pytorch.org/vision/stable/_modules/
torchvision/ops/boxes.html#batched_nms

https://pytorch.org/vision/stable/_modules/torchvision/ops/boxes.html#batched_nms

Chapter 4

Measuring Stability

The literature review in chapter 2 shows that there are proposed Non-Maximum Suppression
methods that potentially contribute to the increase of stability of bounding boxes without specif-
ically evaluating it. The prevailing metric of evaluating face and object localization and classi-
fication in images is the mean average precision either over multiple IoU thresholds as seen in
Lin et al. (2014) or over a single IoU threshold as stated in Everingham et al. (2010) and lined out
in table 2.2. The argumentation of a detector’s ability to localize the objects better is made by at-
tributing it to an increased accuracy as seen in He et al. (2018). While at the same time, there exists
an evaluation metric for stability, primarily used for video detection and object tracking, proposed
by Zhang and Wang (2016). The usage of this stability metric is not linked to the evaluation in
images since it depends on a flow of frames to follow an object along a trajectory to capture the
changes in bounding box coordinates and detection statuses. Therefore, a method is proposed to
connect single images and detectors with this metric to establish an image stability evaluation.
This establishment can validate the contribution toward stable bounding box prediction using
the introduced NMS methods of the previous chapter.Consequently, this chapter contributes to
answering of the second research question.

A video consists of a sequence of consecutive frames, which are also called still images.1 The
datasets introduced in section 2.1 provide combined 10’936 still images. However, these images
are independent captures of objects or faces depending on the theme of the dataset, and they
can hardly be sequentially combined for stability analysis. As mentioned in the introduction of
this chapter, the stability metric requires the same object along a trajectory of at least two frames.
Hence, there is a possibility to emulate multiple frames by creating multiple augmented versions
of the same image and sequentially combining these versions as frames. When additionally the
ground truth annotations of these images are augmented in the same way, the prerequisites for a
stability evaluation with the introduced metric are given.

4.1 Sequence Construction
For constructing a short sequence of augmented images, it is decided to work with four frames.
The reason for at least four frames is, on the one hand, to cover the original image and three
different transformations in order to introduce a movement of the objects between the frame
and to observe the detectors’ behavior to localize them. On the other hand, it is limited to four
frames due to the time constraint of this thesis. The first frame f1 is the original image from the
test/evaluation set of the respective dataset. The second frame f2 represents a horizontal shift
of the images to the right. The third frame f3 is a vertical shift of the images downwards. The

1Definition of Frame Rate: https://en.wikipedia.org/wiki/Frame_rate

https://en.wikipedia.org/wiki/Frame_rate

30 Chapter 4. Measuring Stability

!! !" !# !$

Figure 4.1: FRAME CONSTRUCTION. An example of a sequence of four augmented images as frames.
With f1 as the original image, f2 with a shift of 50 pixels to the right, f3 with a shift of 50 pixels downwards
and f4 with a rotation of 15 degrees.

fourth frame f4 is a rotation of the images. The reason for the shifts on both axes in f2 and f3
is to obtain the same bounding box aspect ratio of the ground truth. Since the faces and objects
in the still image are moved horizontally and vertically, the aspect ratio of the ground truth does
not change. The rotation is to introduce a possible change in the aspect ratio of the ground truth
bounding boxes. These three transformations are depicted in figure 4.1 and belong to the affine
transformations. Additionally, the figure 4.1 shows the construction of the sequence of augmented
images as frames {f1, f2, f3, f4} with an example image and with arbitrary values for the shifts
and rotation. All of these transformations are affine transformations and are formally described
in the following section.

4.2 Affine Transformations
Formally, an affine transformation is a spatial coordinate transformation to relocated points in
an image by translation, rotation, scaling, or sheering. According to Gonzalez et al. (2002), all
mentioned transformations can be achieved by multiplying the coordinates with a 3× 3 transfor-
mation matrix T as in equation (4.1). The kind of transformation is dependent on the values used
for t11, t12, ..., t32 in equation (4.1). The original image in f1 can also be considered a transforma-
tion by having T as the identity matrix I3. Since this transformation is not specifically applied, it
will not be stated as a transformation below.

&
x y 1

'
=

&
v w 1

'
T =

&
v w 1

'
(

)
t11 t12 0
t21 t22 0
t31 t32 1

*

+ (4.1)

The transformations for the frames f2 and f3 are a translation in the positive direction of the x-
axis and the positive direction of the y axis, respectively. Each transformation simulates a lateral
and vertical movement of the objects in an image. These transformations can be achieved by
adjusting the transformation matrix T and choosing the values for tx and ty accordingly. The

4.2 Affine Transformations 31

transformation matrix Tt for translations has the following form:

Tt =

(

)
1 0 0
0 1 0
tx ty 1

*

+ (4.2)

The transformation for the fourth frame f4 is a rotation of the original image. Therefore, the
transformation matrix T is adjusted in the following way to obtain the transformation matrix for
the rotation TR:

TR =

(

)
cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

*

+ (4.3)

In order to find values for tx, ty , and θ, an exploratory search is conducted in both frameworks
Faster R-CNN and MTCNN separately by employing the stability metric to multiple possible
transformations. Therefore, images from the COCO and WIDER Face dataset have been ran-
domly selected, and the detections evaluated for a range of possible values for tx, ty , and θ. The
evaluation works similarly as described in section 4.1 with a sequence of two frames. The first
frame is the base case with the original image of the datasets. The second frame is transformed
concerning one of the parameters tx, ty , and θ while holding the other two transformations at 0.
Specifically, one of the three parameters is chosen to then repeatedly be compared to the base case
with a parameter value of the set P = {1, 2, 3, ..., 32}. This means in the example of the horizontal
shifts; the stability is evaluated between the base image and, for example, a shift by 1 pixel, 2
pixels, up to the comparison of the base case and a shift of 32 pixels. They result in 32 compar-
isons between the base image and a transformed version of it for each evaluation scenario. Hence,
there are three evaluation scenarios for Faster R-CNN with images of the COCO dataset and three
evaluation scenarios for MTCNN with images of the WIDER Face datasets. The transformation
values chosen with the exploratory search with images of the COCO dataset are assumed to have
the same effect on PASCAL VOC since both datasets use the same detector, and these values are
rather framework-specific than dataset-specific. The goal of this exploratory search is to find val-
ues for tx, ty and θ, which will determine the augmentation in the construction of the sequence in
section 4.1. These transformation parameters should have the same values for Faster R-CNN and
MTCNN to enable comparison between these two frameworks in terms of stability depending on
the sequence of frames.

The exploratory search for possible values for the transformation parameters tx, ty and θ for
Faster R-CNN is summarized in figures 4.2 and 4.3. The stability errors in figure 4.2 are the
respective sums of fragment error, center position error, and scale and ratio error for Faster R-
CNN concerning the affine transformation. Figure 4.3 depicts the same errors for MTCNN. The
individual errors for each of the stability error breakdowns are shown in the appendix C.2. It
can be observed by looking at both figures that the stability errors for horizontal and vertical
translations changes from high to low errors frequently and repeatedly. A periodic pattern could
be observed if the same graph plotted for an individual image with only one object located within
it. The periodicity comes from the sliding window and maximum pooling of the multi-scale
feature maps in the Faster R-CNN and MTCNN. Whenever the horizontal or vertical translation
of the original sized image overlaps with the downscaled location of the sliding window, very
similar features are observed as in the non-translated base image. Thereby, the stability error is
low. On the other hand, if the translation falls into another sliding window location, the observed
features might vary more, and the stability error is larger. In the case of the individual image,
these stability highs and lows behave periodically.

The periodicity depends on the proposal’s origin in the multi-scale feature pyramid in the case
of Faster R-CNN and the multi-scale image pyramid in the case of MTCNN. By combining mul-
tiple images in the exploratory search, their bounding boxes are detected with different origins

32 Chapter 4. Measuring Stability

(a) Faster R-CNN stability error for
tx ∈ P

(b) Faster R-CNN stability error for
ty ∈ P

(c) Faster R-CNN stability error for
θ ∈ P

Figure 4.2: FASTER R-CNN STABILITY ERROR FOR AF FINE TRANSFORMATIONS. The stability error
curves for each of the three affine transformations with Faster R-CNN. (a) shows the stability error (y-axis)
over an increase of horizontal translations (x-axis) in pixels. (b) shows the stability error (y-axis) over an
increase of vertical translations (x-axis) in pixels. (c) shows the stability error (y-axis) over an increase of
rotations (x-axis) in degrees. The horizontal orange line in all three graphs indicates the mean standard error
for the respective curve.

in the feature/image pyramid depending on their size. Therefore, by adding them together, the
individual patterns get mixed. When the parameters tx, ty , and θ for Faster R-CNN are chosen,
the stability error is low; the overall stability evaluation would indicate high stability. However,
these parameters would have a different effect on the MTCNN framework since the proposals
are generated differently. This would be the case when choosing tx = 17 for example. The same
logic applies to parameters where the stability error is high in one of the frameworks in the ex-
ploratory search. Therefore, the parameters are chosen around the average level (orange line) of
the exploratory search stability error to ensure these levels are comparable between Faster R-CNN
and MTCN. When comparing figure 4.2a and 4.3a with the aforementioned objective, a shift by
20 pixels is a valid value for tx. The horizontal translation by 20 pixels resulted in both Faster
R-CNN and MTCNN in a stability error close to the mean, which is comparable between the
frameworks. By checking 4.2b against 4.3b, it can be seen that the stability error for vertical shifts
in the MTCNN is five times higher than in Faster R-CNN. Hence, a comparable level between the
frameworks cannot be established. However, to still comply with the selection of ty around the
individual mean stability errors and to compare the horizontal translation, ty is also chosen to be
20.

There is also a different behavior of the stability error about rotations visible compared to the
horizontal and vertical translations. While the stability errors for translations go up and down,
the stability error for rotations primarily increases with rising rotation. This behavior can be
exemplarily shown with figure 4.4. The ground truth bounding boxes of the example image in
figure 4.4a are tightly fit around the objects, whereas the ground truth boxes in figure 4.4b are
loose. Even if an object detector produces tight-fitting bounding boxes for the objects in figure
4.4b, the stability error would be high due to the dependency on the loose ground truth bounding
boxes in the stability evaluation metric. The ground truth bounding boxes get loose when rotating
the image with its annotations because there is no information about the object passed to the
rotated bounding box. The edges of the rotated bounding boxes are always parallel to the x-
and y-axis. When rotating an image and its annotations, the bounding box without recalculation
would be skewed and not parallel with the axes anymore. The recalculated rotated bounding
box aims to enclose all coordinates of the skewed box and therefore inflates. This inflation could
be circumvented by calculating a rectangular convex hull of the object information in the form
of segmentation coordinates. Unfortunately, these coordinates are only available for the COCO

4.2 Affine Transformations 33

(a) MTCNN stability error for
tx ∈ P

(b) MTCNN stability error for
ty ∈ P

(c) MTCNN stability error for θ ∈ P

Figure 4.3: MTCNN STABILITY ERROR FOR AF FINE TRANSFORMATIONS. The stability error curves
for each of the three affine transformations with MTCNN. (a) shows the stability error (y-axis) over an in-
crease of horizontal translations (x-axis) in pixels. (b) shows the stability error (y-axis) over an increase of
vertical translations (x-axis) in pixels. (c) shows the stability error (y-axis) over an increase of rotations (x-
axis) in degrees. The horizontal orange line in all three graphs indicates the mean standard error for the
respective curve.

dataset and are missing for the PASCAL VOC and WIDER Face datasets. Therefore, the strategy
to prevent ground truth bounding box from inflating is to choose θ big enough (>3) that the
transformation is noticeable but small enough (<10) to sustain relatively tight-fitting ground truth
bounding boxes. Hence, the value chosen for θ is a 5-degree rotation.

By having decided on the transformation parameters to have values of tx = 20, ty = 20 and
θ = 5, the transformation matrices obtain the following form:

TX =

(

)
1 0 0
0 1 0
20 0 1

*

+ ,TY =

(

)
1 0 0
0 1 0
0 20 1

*

+ ,TR =

(

)
cos(5) sin(5) 0
− sin(5) cos(5) 0

0 0 1

*

+ . (4.4)

When plugging TR into equation 4.1, the rotated coordinates can be calculated according to Gon-
zalez et al. (2002) by vector matrix multiplication using the original coordinates v and w with

x = v cos(5)− w sin(5),

y = v sin(5) + w cos(5). (4.5)

The same vector matrix multiplication with
&
v w 1

'
, TX and TY enables the calculation of the

translated coordinates by tx and ty . Thereby, the translated coordinates x and y are the sum of the
original coordinates v and w multiplied with tx and ty respectively.

In this chapter, a novel method is proposed that considers a stability evaluation metric that is
initially intended for video detection and adopted to evaluate still images. Thereby, augmented
versions of the images are sequentially arranged to form four frames. With this frame arrange-
ment, a short sequence of moving objects is simulated to inspect the object and face detectors
towards their ability to produce stable bounding boxes. Additionally, in this chapter, a range
of possible transformation parameters are evaluated with a two-frame adoption to the proposed
stability evaluation. Employed in an exploratory search, the parameter selection is compared
between the frameworks Faster R-CNN and MTCNN to provide the best possible comparison
between them, analyzed in upcoming chapters. This chapter is paramount to measure the impact
of the NMS methods introduced in the previous chapter and therefore contributes to the achieve-
ment of the overall goal of this thesis. The proposed method and selected parameters directly
influence the experimental setup described in the next chapter.

34 Chapter 4. Measuring Stability

(a) Example image rotated by 2
degrees

(b) Example image rotated by 20 degrees

Figure 4.4: GROUND TRUTH COMPARISON OF DIF FERENTLY ROTATED IMAGES. The tightness of the
ground truth bounding boxes changes with the degrees of rotation. (a) shows the example image with a
rotation of 2 degrees with the corresponding rotated bounding boxes. (b) shows the same example image
with its ground truth boxes rotated by 20 degrees.

Chapter 5

Experimental Framework

“Insanity is doing the same thing over and
over again, but expecting different results."

Rita Mae Brown, Sudden Death

The aim of the experimental framework chapter is to conceptually guide through the implemen-
tation of the method proposed in chapter 3 and the establishment of the accuracy and stability
measurement based on the procedures introduced in chapters 2 and 4. This chapter follows the
pipeline structure, starting with the data preparation, the framework, and model selection, and
it ends with the two different perspectives on evaluating the predictions. During each stage, the
relevant concepts and decisions based on the related work are further elaborated to maintain the
reproducibility of the results. The generated results are then summarized in the next chapter.

5.1 Data Preparation
All of the three datasets, regardless of the origin, follow the same procedure. First, validation/test
images and their respective ground truth annotations are loaded. Then, simple transformations
are applied and prepared for uniform output functionality. These steps are all integrated with a
class for each of the datasets individually. The uniform implementation of these dataset classes is
described in detail and provided in the appendix A.2. In this section, the supplementation of these
dataset classes is described with the implementation of the affine transformations from chapter 4.
The embedding of these transformations into the data preparation is essential to provide a consis-
tent data flow into the streamlined prediction and evaluation pipeline of the following sections.

By building on top of the theoretical groundwork of the previous chapter 4 to enable a stabil-
ity evaluation with a sequence of augmented still images, additional practical implementation-
related topics arise. To replicate the desired affine transformations with its parameters, different
approaches have been considered. The PyTorch way of transforming data leads to the problem
of unilateral transformations as depicted in figure 5.1. The explanation related to this problem is
stated in the appendix A.2 and not further detailed at this point.

In order to apply the same transformation of image and its associated annotations, another
approach have to be chosen instead of torchvision.transforms.RandomAffine. An alterna-
tive way of transforming data is provided by the Python package Albumentations (Buslaev et al.,
2020). Within this package, multiple geometric transformations are available, which enable the
same functionalities as RandomAffine from PyTorch. Such an alternative is Affine from

36 Chapter 5. Experimental Framework

(a) Original example image
with its ground truth

bounding boxes

(b) Example image rotated by 5
degrees with fit_output =

True

Figure 5.1: UNILATERAL TRANSFORMATION. (a) shows the original example image without any trans-
formation together with the associated ground truth bounding boxes.(b) shows the same example image
rotated. Only the PyTorch unilateral transformation of the image was applied. The annotations stay at the
same coordinates as in (a).

albumentations.augmentations.geometric.transforms.1 By utilizing an object of this class,
images and annotations can be translated on the x and y axes and rotated.1 Additional param-
eters of this class are fit_output, mode and always_apply. With the parameter always_apply
the probabilistic application of this transform object is ruled out and the transformation is done
every time. In order to compare the outcome of the bounding box stabilization it is vital to trans-
form every image and annotation of the dataset. The parameter fit_output, which accepts a
boolean value, can be interpreted as a second transformation to center the image such that it fits
the image plane.1 However, if a horizontal or vertical translation is applied as the targeted trans-
formation, fit_output = True would negate this affine transformation by centring the image
again.1 Therefore, fit_output should only be applied for rotational transformations. Although,
if applied to rotations the shape of the image changes to fit the whole image including the rotation
as seen in figure 5.2. By fitting the output with a rotation, the whole information in the image can
be processed and potential objects located in the corners, can be detected. The resulting width
and hight after the rotation can be calculated according to equation (5.1).2

new width = height sin(θ) + width cos(θ)

new height = height cos(θ) + width sin(θ). (5.1)

The mode parameter references the OpenCV border flag and can be applied to all of the three
transformation types.1 By translating or rotating an image, the shape of the image remains un-
changed but the pixel values get shifted to the right (shift in x direction with tx > 0), down (shift
in y direction with ty > 0) or rotated according to equations (4.4) and (4.3). This means that the

1Albumentations Affine Transformations: https://albumentations.ai/docs/api_reference/
augmentations/geometric/transforms/

2Image Rotation using OpenCV on Github: https://cristianpb.github.io/blog/
image-rotation-opencv

https://albumentations.ai/docs/api_reference/augmentations/geometric/transforms/
https://cristianpb.github.io/blog/image-rotation-opencv

5.1 Data Preparation 37

(a) Example image with
horizontal and vertical

translation neglected by
fit_output = True

(b) Example image rotated by 5
degrees with fit_output =

True

(c) Example image rotated by 5
degrees with fit_output =

False

Figure 5.2: EXAMPLE OF CHANGES IN SHAPE WITH ROTATION. Fitting the transformed image to the
output has two different effects on translations and rotations. (a) shows the example image, translated by
20 pixels in positive y direction and 20 pixels in positive x direction. Nevertheless, fit_output = True
negates these translations and re-centers the image. (b) shows the same example image also rotated by
5 degrees but with fit_output = False. The image size stays the same but the corners of the rotated
image are disregarded since they lay outside of the original image size. (c) shows the example image rotated,
also with fit_output = True. With this rotated example the image size changes with regard to equation
(5.1).

content of the image in case of a translation in positive x direction, moves by tx pixels to the right.
By comparing f1 and f2 of figure 4.1, this shift is visualized. When looked at the first colored
column (very left border) of the image in frame f1 M ∈ [0, 256]C×H×W . Then the first column is
represented as M[:,:,0] and has the same values as the transformed version M ′

[:,:,tx]
in the column

tx after a shift by tx. This shift on the very right border has the effect that pixel values in the span
of M[:,:,W−1−tx:W−1] are disregarded and the column M[:,:,W−tx−1] are at the position of M ′

[:,:,W−1]

in the transformed image. By shifting the pixel values in the image M by tx pixels to the right, the
values in M ′

[:,:,0:tx−1] would all be 0 if the parameter mode is left on its default value 0. When mode

= 1 the pixel values at M ′
[:,:,0:tx−1] would all be interpolated with M ′

[:,:,tx]
, which are the same

values as in M[:,:,0]. The same procedure applies for shifts in either positive or negative direction
of x and y and also for rotations around the image center.

By embedding these transformation steps into the data preparation pipeline in the dataset
classes, the foundation is laid out to predict and evaluate the augmented images in the same
way. The consistency and compatibility between data preparation, prediction, and evaluation
pipeline are important in combining predictions on differently augmented data and comparing
these combinations between models and frameworks.

38 Chapter 5. Experimental Framework

5.2 Object and Face Detection
The detection pipeline comprises the application of the core contribution of this thesis by replac-
ing Non-Maximum-Suppression at multiple stages of the object and face detectors. As seen in
the dataset section 2.1, multiple datasets distinguish themselves in terms of object classes located
within the images. Therefore, every dataset requires a dedicated model to localize these objects
and then correctly assign them to the corresponding object class. Since both COCO and PASCAL
VOC contain multiple classes of objects, these objects are detected with the help of two differently
trained Faster R-CNN models. On the other hand, to localize one single object class – faces in the
images of the WIDER Face dataset, an MTCNN model is employed. In this chapter, multiple
connections with previously mentioned topics can be made. First, two different detection archi-
tectures are further elaborated, which are theoretically introduced in section 2.3. Then, the differ-
ent stages in the frameworks are identified to point out where Multi-Non-Maximum-Suppression
replaces the original implementation of classic greedy NMS.

5.2.1 Faster R-CNN
About the theoretical background, provided in section 2.2.2, in this thesis, a Faster R-CNN as
a multi-class object detection framework is applied. A pre-trained version on the COCO 2017
training set is available torchvision.models.detection, which also employs a ResNet-50 FPN
backbone, which in turn is pre-trained on Imagenet.3 In comparison with Ren et al. (2015) and
He et al. (2016), the RPN with a ResNet-50 FPN backbone used in this thesis differs in two points.
First, the fully connected output layer with softmax activation function is eliminated from the
ResNet-50 backbone. This output layer is intended for the ImageNet classification. This reduc-
tion occurs because the integration of the FPN is due to obtaining its feature maps instead of
probabilistic outputs from the fully connected layer. The output of the second last layer in the
ResNet-50 is a convolutional feature map. It serves in the Faster R-CNN as input for the down-
stream step of proposing regions and classifying objects. This means that the ResNet-50 backbone
with 50 layers only contributes 49 layers to the Faster R-CNN model. This reduction is already
made by PyTorch when loading the backbone, and the difference to He et al. (2016) is stated for
completeness.

Second, by applying FPN in the RPN, not only a single scale feature map gets consulted to
propose regions but rather multiple levels of a feature pyramid (Lin et al., 2017a). The original
implementation of the downstream step of region proposals in the RPN as seen in Ren et al. (2015)
applies a small subnetwork of sliding windows on top of a single convolutional feature map.
By sliding over the convolutional feature map, this small subnetwork takes rectangular spatial
windows of the size 3 × 3 as input. It reduces the dimensionality to a 256-dimensional feature,
representing the input for two sibling fully connected layers. Multiple reference boxes with three
distinct scales and three different aspect ratios, called anchors, are predicted to propose regions of
different shapes at each rectangular sliding window. Meaning that at each position of the sliding
window, nine anchors get produced, reduced in dimensionality, and fed into two fully connected
layers. These two fully connected layers are one box regression layer and one box classification
layer. The box classification layer in the RPN is class-agnostic and only distinguishes between
an object and background. As a result, the box regression layer outputs per sliding window and
anchor four coordinates per box. The maximum of 36 possible proposal coordinates for nine
possible proposal boxes gets predicted in the default case. Similarly, the box classification layer
predicts either the membership of a set of classes or a background class in the form of an objectness
score per anchor, which results in a maximum of 18 scores per sliding window position.

3Torchvision Models: https://pytorch.org/vision/stable/models.html#
object-detection-instance-segmentation-and-person-keypoint-detection

https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-and-person-keypoint-detection

5.2 Object and Face Detection 39

Figure 5.3: COCO DATASET EXAMPLE IMAGE. The image considered as example for dimension explo-
ration in FPN, RPN and Fast R-CNN predictor.

To explore the inner workings of the Feature Pyramid Network, an example image (figure 5.3)
of the COCO dataset is passed through the network, and the dimensions are recorded. For this
example of the FPN in symphony with the ResNet-50 backbone, an image is considered with the
size 3 × 426 × 640. As a first step the image gets normalized with means [0.485, 0.456, 0.406] and
standard deviation [0.229, 0.224, 0.225]. The image also gets scaled to 3×800×1201 by calculating
a scaling factor based on the minimal and maximal value of width and height and fixed minimal
and maximal values of 800 and 1333, respectively. The normalized and rescaled image serves
as input to the ResNet-50 backbone. With the bottom-up pathway via forward pass through
the convolutional net, the outputs of the convolutional blocks conv2-conv5 have sizes of C1 ∈
R64×400×608, C2 ∈ R256×200×304, C3 ∈ R512×100×152, C4 ∈ R1024×50×76, C5 ∈ R2048×25×38 with the
pixel values {x ∈ R | 0 ≤ x ≤ 1}. Note that between the input of the backbone and output of
C1, padding of (3, 3) is applied. The output shapes of {C1, C2, C3, C4, C5} stay about the input
shape with the shape of 3 × 800 × 1201 by 2 × 2 max-pooling of in every convolutional block.
As mentioned by introducing FPN in chapter 2 C1 is not considered by the bottom-up pathway
of the FPN due to its large spatial resolution. The top-down pathway starts at the very end
with the output of C5 and applies a 1 × 1 convolution via the lateral connection to reduce the
dimensions from 2048 to 256 (Lin et al., 2017a). By upsampling again with a factor of 2, the
top-down pathway goes the other way around as the bottom-up pathway. It merges via element-
wise addition the respective feature map from its subsampled counterpart. Each merged map
undergoes another convolution, this time with kernel size 3 × 3. The resulting feature maps
have shapes P2 ∈ R256×200×304, P3 ∈ R256×100×152, P4 ∈ R256×50×76, P5 ∈ R256×25×38. P6 gets
produced by 2× 2 max pooling P5 and has the shape of 256× 13× 19. An example without P6 is
depicted in figure 5.4.4

By proposing regions based on multiple levels of a feature pyramid with FPN as introduced
in chapter 2, the sliding window remains the same with a kernel size of 3 × 3 (Lin et al., 2017a).

4Understanding Feature Pyramid Networks for object detection (FPN) on Medium: https://
jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c

https://jonathan-hui.medium.com/understanding-feature-pyramid-networks-for-object-detection-fpn-45b227b9106c

40 Chapter 5. Experimental Framework

C5

C4

C3

C2

Figure 5.4: DETAILED FEATURE PYRAMID NETWORK. Example illustration to create {C2, C3, C4, C5}
and {P2, P3, P4, P5} for the RoI head. The RPN head additionally uses P6 from max-pooling P5. Source: Hui,
Jonathan4

The difference is that this sliding window is applied to every level of the feature pyramid instead
of a single-scale feature map. This approach makes it obsolete to produce multi-scale anchors
for one level because anchors of a single scale are assigned to each level of the feature pyramid,
which already represents multi-scale feature maps. In the case of the Region Proposal Network,
with FPN, not only four levels of the feature pyramid get produced but the additional fifth as
mentioned in chapter 2 as well. This results in 5 differently scaled feature maps where the 3 × 3
sliding window is applied to generate anchors with areas of {322, 642, 1282, 2562, 5122}. Further-
more, Ren et al. (2015) also produce three different aspect ratios of the anchors. This is also done
with the FPN approach by using anchors with aspect ratios {1:2, 1:1, 2:1}, which results in a to-
tal of 15 anchors over the whole feature pyramid. Concerning the example above where it is
shown how {P2, P3, P4, P5, P6} are generated by the FPN, the RPN utilizes these feature maps
further. An illustration therefore is depicted in figure 5.4. The forward pass of the Regional Pro-
posal Network takes these five feature maps and passes them first through a 3× 3 convolutional
layer and then through two siblings 1 × 1 convolutions to regress bounding boxes and predict
object/non-object based on each feature map and the three aspect ratios. For example, when P6

with size 256 × 13 × 19 gets passed through the RPN head, the sliding window with 3 × 3 and
the two attached sibling convolutional layers produce per sliding window and per aspect ratio
one objectness score and four bounding box coordinates. The feature map of size ×13× 19, is 247
possible locations for a sliding window. Therefore, 247 ∗ 3 = 741 anchors are produced. Anal-
ogously, with this procedure the RPN head generates for P5 with size 256 × 25 × 38 a total of
25 ∗ 38 ∗ 3 = 2′850 anchors. On P4, P3 and P2 are then 11’400, 45600 and 182’400 anchors pro-
duced respectively. This results in a total of 242’991 anchors over the whole image, which all get
classified with an objectness score and regressed with four bounding box coordinates about those
anchors. As mentioned above and in 2 the classification and bounding box regression layer are
trained on the COCO 2017 training set and assign object/non-object classes and bounding box
coordinates based on the learned weights.

The result of the RPN head comprises 242’911 proposals, each with bounding box coordinates
and an objectness score, which need to be filtered to output the final proposals. The filtering
process distinguishes between training and testing by limiting the allowed proposals. During

5.2 Object and Face Detection 41

training, the top 2’000 and during testing only the top 1’000 proposals are maximally allowed per
level (Ren et al., 2015). This filter reduces the number of proposals in the example to 4’741 propos-
als. Each proposal then is clamped to the boundary of the image size. This clamping particularly
applies to proposals at the border of the image. In the example image, 1’183 coordinates were ad-
justed to the size of the image. Furthermore, proposals with bounding boxes with a tiny area get
removed. As the final step of the filtering process, the RPN Non-Maximum Suppression gets ap-
plied to the remaining 4’741 proposals. At this stage, the original implementation is replaced with
the Multi-Non-Maximum Suppression function introduced in chapter 3. With the default values
of NMS (IoU threshold = 0.7, multi-level distinction = True, number of allowed proposals = 1′000
and classic greedy NMS as the method) the RPN outputs 1’420 proposals. These proposals have
five components; each proposal has four bounding box coordinates and an assigned objectness
score. According to the RPN, these proposals should cover a region of an object with a certainty
represented with the objectness score. Further down the prediction pipeline, these proposals are
processed with a Fast R-CNN predictor to predict the refined bounding box coordinates and the
class membership of the specific classes of a given dataset.

Fast R-CNN Predictor

The last step of the unified Faster R-CNN is to predict refined bounding boxes and class mem-
bership probabilities by materializing its second module – the Fast R-CNN predictor with an
RoI pooling layer (Ren et al., 2015; Girshick, 2015). As introduced in chapter 2, the Fast R-CNN
requires both an input image and region proposals first to perform the Region of Interest (RoI)
pooling. The Faster R-CNN utilization of the Fast R-CNN predictor waives the usage of convolu-
tional layers, which generate, according to Girshick (2015), the single feature map. Since not only
one single-scale feature map but rather a multi-scale feature pyramid gets produced with FPN in
the backbone, the feature pyramid then serves as input to both the Regional Proposal Network
and the Fast R-CNN predictor (Lin et al., 2014). Because of this change in the input of the Fast
R-CNN predictor, the subsequent RoI pooling has to be adjusted to assign multi-scale RoIs to the
according to pyramid levels (Lin et al., 2017a).

In contrast to the RPN, the RoI pooling only considers four of the five available pyramid
levels of the feature pyramid generated by the FPN. RoI of different scales gets assigned to the
remaining levels of the feature pyramid about the scale of the input image. This assignment
is done by inferring the scale based on the fact that during FPN, a subsampling factor of 2 is
used, and therefore, scaling factors 0.25, 0.125, 0.0625, 0.03125 are applied on the respective level
of the feature pyramid. The RoI pooling then extracts 7× 7 features from all level proposals with
a channel dimension of size 256. The extracted features are sent through two 1’024 dimensional
fully connected layers. The input shape of the first layer has a fixed size respective to the extracted
features 7 ∗ 7 ∗ 256 = 12′544. The output of the second fully connected layer then undergoes the
final prediction of the Fast R-CNN predictor with a sibling output layer of a class-specific classifier
and a bounding box regressor (Lin et al., 2017a; Girshick, 2015). The layer with the classifier
outputs a softmax probability estimate over K + 1 object classes (K dataset-specific classes and
one background class). The regression layer predicts for each of the K classes a refined bounding
box with four coordinates.

Since the Fast R-CNN predictor is not class-agnostic, the sibling output layers need to be
adjusted to the number of classes K of either COCO or PASCAL VOC. Ren et al. (2015) state
in their experiments that fine-tuning of the Faster R-CNN for PASCAL VOC is not necessary
since the COCO categories are a superset of the PASCAL VOC and only the softmax layer has
to be adjusted to the 20 PASCAL VOC categories plus background class. Even though PASCAL
VOC-specific fine-tuning is not necessary, Ren et al. (2015) also state that fine-tuning improves the
accuracy of the model. Therefore, a fine-tuning is conducted for the PASCAL VOC dataset on the

42 Chapter 5. Experimental Framework

Faster R-CNN. The default settings with the pre-trained Faster R-CNN model from PyTorch are
based on the COCO classes and trained for that purpose.3 For simplification of the detection on
images from the PASCAL VOC dataset, only the RoI pooling layer and the Fast R-CNN predictor
of the Faster R-CNN are replaced and instantiated with the number of classes to be K = 21. The
ResNet-50 backbone with FPN pre-trained on ImageNet and the RPN pre-trained on COCO 2017
remain the same. However, when instantiating the Faster R-CNN with the ResNet-50 backbone,
the last three convolutional blocks get unfrozen per default and are considered during training.

Similarly, the RPN automatically adjusts to training mode as well and gets fine-tuned during
training iterations. The fine-tuning of the Faster R-CNN model for PASCAL VOC is manually
trained on the union of training and validation set of the PASCAL VOC dataset about chapter 2.1.
The hyperparameters for this training process are selected to run for ten epochs with Stochastic
Gradient Descent (SGD) optimizer, a learning rate of 0.0001, momentum of 0.9, weight decay of
0.000001. Furthermore, a learning rate scheduler gets applied with a step size of 3 and a gamma
of 0.1. Since the main focus of this thesis lies in the evaluation of the bounding box predictions of
object and face detectors, the training procedure is not explored in more detail.

With regard to the example from the beginning of this section, the number of detections as
the output of the Fast R-CNN predictor remains unchanged to the number of proposals at the
output of the RPN. However, these proposals serve to reference the multi-scale feature maps of
the feature pyramid for the RoI pooling and class-specific feature generation in the Fast R-CNN
predictor. As the last step, similarly to the RPN post-processing, the detections undergo a filtering
process. After classifying and regressing over the K+1 object classes, the example image from the
COCO dataset generates an output of the Fast R-CNN predictor of 1’420 probability estimates for
81 classes and 1’420 bounding boxes with four bounding box coordinates for 81 classes as well.
The boxes get first clamped to the image size, which affects 7’421 bounding box coordinates. In
the next step, the scores get arranged to represent the 81 classes, and the background class can
be removed. The bounding boxes, classification scores, and labels get reshaped to represent a
separate instance into one dimension. This reshapes a two-dimensional tensor of detection scores
from 1′420 × 80 into a single dimension with 113’600 instances. Every bounding box, label, and
score with a respective score below 0.05 gets filtered out, which leaves from 113’600 instances only
655 detections.

Furthermore, predictions associated with minimal bounding box areas get removed as well.
As the final step of the Faster R-CNN post-processing in the RoI heads, the Non-Maximum-
Suppression is applied to the remaining 655 bounding boxes with their respective score and labels.
Similar to RPN, the Multi-Non-Maximum Suppression function replaces the original implemen-
tation of classic greedy NMS. The default values for this stage NMS are an IoU threshold of 0.7
with the classic greedy NMS method, multi-class distinction, and a limit of 1000 detections per
image during testing. With these default values, the final number of detections of the Faster R-
CNN for the example image is 88. According to the classification score distribution depicted in
figure 5.5, most of the 88 detected objects have low confidence. Compared to the ground truth
annotations, the image contains 20 objects. If the predictions were filtered by a score threshold
of 0.7, only 19 detections would remain that cover almost all ground truth boxes. The Faster R-
CNN predictions get only slightly filtered by detection scores during the post-processing. The
intention behind including even low-scoring detections into the output may be due to the holistic
output consideration during the accuracy evaluation. Further implementation details regarding
the Faster R-CNN post-processing during RPN and RoI Pooling are explained in the appendix
A.3.

5.2 Object and Face Detection 43

Figure 5.5: FASTER R-CNN EXAMPLE CLASSIF ICATION SCORES. The classification scores for the
example image in figure 5.3

5.2.2 MTCNN
The Multi-Task Cascaded Convolutional Neural Network (MTCNN) as introduced in 2.2.2 is the
framework used in this thesis to detect faces and localize facial landmarks in images of the WIDER
Face dataset. A publicly available implementation of the MTCNN using PyTorch can be found
in the Github repository, called Facenet-PyTorch.5 The PyTorch implementation is based on a
TensorFlow implementation of Sandberg6, which is itself based on the original implementation
of Zhang in Matlab.7 The implementation in the Facenet-PyTorch repository is oriented at the
architecture of Zhang et al. (2016) and provides pre-trained versions of the P-Net, R-Net, and
O-Net. Unfortunately, the author of Facenet-PyTorch does not clearly state what training proce-
dure was applied to the different stages of MTCNN.7 Therefore, it is assumed to follow the same
training process described in Zhang et al. (2016) and the model weights to be converted versions
of the models from the Github repository of Zhang.7 Similarly to the description of the detec-
tion pipeline in the previous section 5.2.1, the forward pass is exemplarily shown with an image
from the WIDER Face dataset. During the detection in the different stages of the MTCNN, the
presence of NMS is pointed out to indicate where classic greedy NMS is replaced with Multi-
Non-Maximum Suppression for the experimental purpose of this thesis.

By referring back to the theoretical foundation of MTCNNs in 2.2.2, it is shown that the de-
tection pipeline starts with building an image pyramid before passing the data through the first
stage of the framework. Considering an example image of size 1′534×1′024×3 that gets extracted
from the WIDER Face specific PyTorch data loader. By loading the images and annotations via
the PyTorch data loader, the pixel values of the images are not normalized because the MTCNN
framework normalizes them during detection itself. Therefore, the images can directly be fed into
the preprocessing steps of the detection. As described in 2.2.2, the image pyramid builds up with
the input image in different scales. The initial scale gets defined by 12/minsize, where minsize
is a parameter that can be defined during the model instantiation and refers to the minimal size

5Facenet-PyTorch on Github: https://github.com/timesler/facenet-pytorch
6Face Recognition using Tensorflow on Github: https://github.com/davidsandberg/facenet
7MTCNN Face Detection Alignment on Github: https://github.com/kpzhang93/MTCNN_face_

detection_alignment

https://github.com/timesler/facenet-pytorch
https://github.com/davidsandberg/facenet
https://github.com/kpzhang93/MTCNN_face_detection_alignment

44 Chapter 5. Experimental Framework

(a) Proposals from
scale 0.6

(b) Proposals from
scale 0.3016

(c) Proposals from
scale 0.1516

(d) Proposals from
scale 0.0762

(e) Proposals from
scale 0.0383

Figure 5.6: MTCNN MULTI-SCALE PROPOSALS. Selection of proposals made on different scales. With
the largest scale (a) the P-Net produces the smallest bounding boxes. As the scale decreases in (b), (c) and (d),
the proposed bounding box size increases. One of the smaller of the total of 12 different scales is depicted in
(e) with comparably the largest bounding boxes of all examples.

a face can have during detection. Per default the minimal face size is set to minsize = 20 and
therefore, the initial scale is set to 12/20 = 0.6. If the initial scale multiplied by the smaller height
and width is at least 12 pixels, the scale gets added to the image pyramid. In the case of the ex-
ample image, the orientation is vertical, and the smaller value of the size is the width with 1’024
pixels. When calculating the first scale about the minimal face size, the width of the first scaled
image of the image pyramid becomes 1′024 ∗ 0.6 = 614.4. If the initial scale gets added to the
pyramid, then the scale is discounted by a factor of 0.709 and continued until the minimal side
of the image is smaller than 12 pixels. This factor is also a parameter of the MTCNN model and
is chosen to stay at the default value. With this procedure, 12 different scales get added to the
pyramid, with 0.6 being the largest and 0.014 being the smallest. When keeping the input image
size unchanged, the bigger the minimal face size is allowed to be, the smaller gets the initial scale,
and the fewer images can be collected for the image pyramid. However, if the minimal face size
is exactly 12, the initial scale is one, and the image pyramid gets constructed with 13 scaled im-
ages. The smaller the minimal face size gets, the larger the initial scale, and more images fit into
the image pyramid. Although there are more images in the image pyramid, the initial scale is
in the case of minsize < 12 larger than 1, which means that the largest image in the pyramid is
larger than the input image itself. Generally, the small images in the image pyramid enable the
framework to detect large faces and the large images in the pyramid give MTCNN the ability to
detect small faces. To visualize this inversely proportional dependence, in figure 5.9 the propos-
als (before NMS) for differently scaled images from the image pyramid are plotted, which were
detected in scales of {0.6, 0.3016, 0.1516, 0.0762, 0.0383} and rescaled relative to the image size.

Within a loop of all scaled images in the image pyramid, every scaled image gets normalized
and undergoes a forward pass of the proposal net (P-Net). The P-Net consists of a sequence of
3 convolutional layers, followed by a parametric rectified linear unit (PReLU) as an activation
function. After the first sequence of 3 × 3 convolution, max pooling with a stride of 2 is applied,
halting the spatial dimensions. A sibling convolutional layer is applied after the third sequence of
3×3 convolution and PReLU activation function. One 1×1 convolution regresses the rectangular
bounding boxes of the proposals, and the other 1 × 1 convolution feeds in a softmax layer to es-
timate the probabilities of the detected proposals. The sibling output layer of the P-Net produces
456 ∗ 303 = 138′168 proposals at the scale of 0.6. Four bounding box coordinates are regressed
for each of these proposals, and two probabilities of being face/non-face are estimated. All pro-
posals with a probability of being a face below a threshold (0.6 per default for the first stage) are

5.2 Object and Face Detection 45

(a) NMS with IoU threshold
of 0

(b) NMS with IoU threshold
of 0.5

(c) NMS with IoU threshold
of 1

Figure 5.7: MTCNN P-NET NMS. (a) IoU threshold of 0, only the maximal bounding box gets selected
and all others are suppressed. (b) IoU threshold of 0.5 default settings for scale-specific NMS in the P-Net.
(c) IoU threshold of 1, all proposed bounding boxes get selected if they do not overlap to 100%

disregarded. The example image produced in the P-Net with a scale of 0.6, 665 proposals with a
face probability greater or equal to 0.6. The other 137’503 proposals have a face probability below
0.6 and are filtered out. The bounding box coordinates of the remaining 665 proposals are then
rescaled with a factor of 2 to compensate for the stride of 2 in the max-pooling layer. Within each
scale, overlapping bounding boxes with an IoU of 0.5 are then suppressed with the classic greedy
Non-Maximum-Suppression (5.7b). In order to visualize the influence of NMS, especially with
varying IoU threshold can be seen in figure 5.7, where the same classic greedy NMS function is
applied at the same scale of the example image pyramid (0.02716) but with different IoU thresh-
olds. Having the IoU threshold towards 0, neighboring bounding boxes get suppressed even with
low overlap (figure 5.7a).

On the other hand, the IoU threshold towards 1 allows bounding boxes to be highly overlap-
ping before suppressing the non-maximal ones (figure 5.7c). This NMS function call is replaced
with the Multi-NMS function, comparable to the substitution mentioned in section 5.2.1. The
application of classic greedy NMS suppresses 379 proposals, which leaves 286 proposals for the
first of 12 scales. In total, for all 12 scales, there are 273’080 detections and 1’842 proposals left af-
ter comparing the probabilities to the threshold and 784 proposals after suppressing overlapping
bounding boxes with greedy NMS for the example image. After the scale-specific application of
NMS, an additional Non-Maximum-Suppression is performed to suppress overlapping bounding
boxes across all scales with an IoU threshold of 0.7. This NMS function is also subject to substi-
tution by Multi-NMS. The number of proposals remains the same for the example image after
applying overall NMS to all scales.

To prepare the remaining proposals after detection and filtering of the first stage, the proposal
references on the input image are cropped out of the image in a 24×24 rectangle and normalized.
An example of such a crop before normalization can be seen in figure ??. This results in an input
shape of the R-Net of 784 proposals with 3 × 24 × 24. The R-Net applies two sequences of 3 × 3
convolution, PReLU activation function, and max pooling with stride 2. Then a sequence of 2× 2
convolution, followed by a PReLU activation function and a dense layer with another PReLU
activation function. The output of the activated dense layer feeds in a sibling dense layer. One re-
gresses the refined bounding box coordinates, and a softmax activation function follows the other

46 Chapter 5. Experimental Framework

Figure 5.8: MTCNN R-NET PROPOSAL CROP. A high scoring proposal bounding box being cropped
out into a 3× 24× 24 rectangle

one to estimate the binary probabilities of the refined bounding box containing a face/non-face.
By comparing the output probability estimates with a pre-defined threshold of 0.7, the proposals
of the respective scores below that threshold are disregarded. Concerning the example image,
there are 742 binary probability estimates below that threshold and 42 above it. In figure 5.9a are
all P-Net proposals plotted and in figure 5.9b only those with a probability threshold above 0.7.
Before the refinement of the R-Net is applied to the proposals, the second stage NMS is applied to
the bounding boxes with an IoU threshold of 0.7, which is visualized in figure 5.9c. This applica-
tion of NMS is similar to the NMS over all scales of the P-Net, with the difference that bounding
boxes with a low probability score in the R-Net are filtered out. The R-Net NMS additionally
suppresses eight bounding boxes. This NMS function is like the two NMS functions from P-Net
subject to replacement with Multi-NMS introduced in chapter 3. The refinement of the R-Net
takes place with the remaining 34 bounding boxes, which still possess the same coordinates as
detected in the P-Net. By correcting the bounding box coordinates with the regression outputs of
the P-Net, the proposals change significantly, as displayed in figure 5.9d.

As mentioned by introducing MTCNN in section 2.2.2, the third stage works similarly to the
R-Net. The 34 refined bounding boxes of the R-Net are first cropped out as seen in figure 5.8 but
in a larger size of 3 × 48,×48 and then fed into the O-Net. The O-Net consists of 3 sequences of
3 × 3 convolutions, PReLU activation functions, and a max-pooling with stride 2. Then a 2 × 2
convolution followed by a PReLU is applied with a fully connected layer activated again by a
PReLU further downstream. The output of the O-Net is a triplet fully connected layer with one
layer followed by a softmax activation function for the probability estimates, one layer for the
bounding box regression, and one layer for the facial landmarks with an output size of 10. The
output layer reflects the outputs obtained when passing the example image through the O-Net,
where 34× 4 bounding box coordinates, 34× 2 probability estimates, and 34× 10 facial landmark
coordinates are returned. The same filtering procedure of R-Net applies to the O-Net as well. First,
all proposals with a probability estimate below the threshold of 0.7 are filtered out. The bounding
boxes are still based on the refinement made in the R-Net but classified differently during the

5.3 Evaluation 47

(a) All proposals after the
P-Net forward pass

(b) Filtered proposals after
R-Net forward pass

(c) Proposals after R-Net
NMS

(d) Refined proposals after
filtering and NMS

application in R-Net

Figure 5.9: MTCNN R-NET STEPS. From all proposals of the P-Net (a) the R-Net estimates binary
classification probabilities and filters out low scoring proposals (b). Then NMS is applied to the remaining
proposals (c) and the regression output of the R-Net is used to correct bounding box coordinates of the
proposals after NMS (d)

forward pass through the O-Net. The seven remaining R-Net refined bounding boxes that are
above the threshold are plotted in figure 5.10a. After the filtering process, the bounding boxes
get refined with the regression output obtained in the O-Net (5.10b), and then the final round
of classic greedy NMS with an IoU threshold of 0.7 is applied. These two steps are switched
compared to the second stage of MTCNN. As already mentioned in the first two stages, Multi-
NMS replaces classic greedy NMS here as well. After applying the final NMS, there is only one
detection left for the example image at hand. This final detection is depicted in figure 5.10c. The
final detection has three elements: 4 bounding box coordinates proposed in the P-Net, refined
by the R-Net and the O-Net, a probability estimate, and ten facial landmark coordinates that
indicate the locations of both eyes, the nose, and both corners of the mouth. The final output
of the MTCNN is displayed in figure 5.10d. Additional implementation details of MTCNN are
stated in the appendix A.4.

5.3 Evaluation
The construction of an evaluation pipeline with regard to multiple evaluation objectives is a chal-
lenging task, considering there are three distinct datasets subject to analysis for this thesis. The
objectives for evaluation are twofold: (I) Since an essential part of the frameworks Faster R-CNN
and MTCNN is altered by implementing multiple different NMS functions within Multi-NMS, it
must be ensured that the frameworks still perform object detection with roughly the same accu-
racy compared to the baseline. Therefore, the classic greedy NMS, which is the same as in the
original implementation of the frameworks, is re-implemented in Multi-NMS as mentioned in
chapter 3. The primary metric for inter framework and inter-model comparison is the detection
mean Average Precision (mAP) or Average Precision (AP) as mentioned in section 2.4. Therefore,
the first evaluation objective is to create a baseline with the original implementation of NMS in
Faster R-CNN and MTCNN for the respective datasets and then compare the detection accuracy
in the form of mAP with multiple different experimental procedures executions. These different
executions of the accuracy evaluation consist of 64 runs for each of the datasets COCO and PAS-

48 Chapter 5. Experimental Framework

(a) R-Net detections after
filtering low scoring

bounding boxes in the
O-Net

(b) O-Net detections after
regression adjustments

(c) O-Net detections after
NMS

(d) Final O-Net detection

Figure 5.10: MTCNN O-NET STEPS. (a) Proposals made in P-Net and refined in R-Net are classified in
the O-Net and are only kept if the probability estimates are above 0.7. (b) The refined bounding boxes of
the R-Net are again refined after regressing them in the O-Net. (c) The final detection bounding boxes after
applying NMS to the O-Net refined bounding boxes. (d) The output of the MTCNN of the example image
with the final remaining bounding box, 5 facial landmarks and a probability estimate of 0.9999

CAL VOC with the Faster R-CNN and 256 runs for the WIDER Face dataset with MTCNN. (II)
The overall goal of this thesis is to stabilize bounding boxes, and consequently, this goal has to be
measurable. Unfortunately, the stability of bounding boxes about affine transformations is only
partially compatible with the first evaluation objective. Since mAP and AP are strongly depen-
dent on the IoU metric and thresholds, they are not an adequate measurement for the bounding
box stability as mentioned in chapter 4. Hence, the second evaluation objective is to combine
the different experimental executions from the accuracy evaluation to evaluate the stability of the
dataset sequence, and NMS method-specific runs. An overall goal of the evaluation pipeline is
to create a consistent implementation of shared metrics to establish comparability between the
frameworks, datasets, and NMS methods.

5.3.1 Accuracy Evaluation

The first evaluation objective focuses on the accuracy of the object detection frameworks Faster
R-CNN and MTCNN with regard to the respective datasets and their ground truth annotations.
As stated in the introduction to this chapter and in section 2.4, the main metric for accuracy
in object detection is Average Precision and its variations (Ren et al., 2015; Padilla et al., 2020).
By far, the most extensive evaluation metrics for Python are provided by the COCO API when
evaluating detections on the COCO dataset.8 Furthermore, COCO evaluation also covers among
other metrics also the main metric employed by the PASCAL VOC challenge and WIDER Face
benchmark (Everingham et al., 2010; Yang et al., 2016). Therefore, it is reasonable to design the
evaluation pipeline based on the COCO evaluation implementation provided by pycocotools and

8COCO Validation: https://cocodataset.org/#detection-eval

https://cocodataset.org/#detection-eval

5.3 Evaluation 49

Torchvision 9 10 In this section, the general evaluation pipeline is explained by inspecting the
COCO dataset, since it is implemented for that purpose. However, multiple customizations have
to be applied to the original implementation to fit this thesis’s experimental requirements. Second,
the specific implementation adjustments for PASCAL VOC and WIDER Face are stated to produce
the same metrics for all three datasets. The prediction pipeline is closely linked to the chapter 4
and section 5.1 with the adjustments made in that regard.

COCO Evaluation

The evaluation pipeline for an object detector using the COCO dataset can be considered as a
backward integration of the prediction pipeline by unifying the process of predicting and eval-
uating sequentially in a batched fashion. This process relies on multiple Python scripts from
Torchvision and the site-package pycocotools.10 9 While pycocotools can be installed as a stan-
dard package, the necessary files from Torchvision have to be downloaded manually and stored
on the remote server. Before starting the evaluation itself, the data and the model need to be
prepared. This preparation incorporates the steps mentioned in section 5.1 about the customized
dataset classes and procedure mentioned in section 5.2 regarding framework-specific NMS con-
figuration. The transformational parameters have to be defined and passed to the customized
dataset class, which is then loaded by a PyTorch data loader. At the same time, the model is
prepared by accessing a pre-trained version and passing the NMS configuration as a parameter.
For this specific example, all default values are chosen, which means no affine transformation is
applied, and the choice of NMS is the classic greedy approach.

The starting point of the prediction/evaluation process starts by converting the annotations
of the dataset to a COCO-specific format to extract the ground truth bounding boxes from the data
loader. Based on the COCO-specific formatted annotations, an instance of the class COCOEvaluator
is created. The COCOEvaluator class can be simultaneously interpreted as the API connection to
pycocotools, the registry of the evaluation results. By instantiating the class, the ground truth
annotations are loaded into the registry as an instance of the COCOeval class from pycocotools. At
this point, it is essential to mention that the ground truth annotations are not extracted using the
__getitem__() method of the COCODetection class but rather in a nested fashion during the con-
version to the COCO specific format. By skipping the __getitem__() method of the dataset, the
transformations elaborated in chapter 4 do not affect the ground truth annotations. This would
lead to the unilateral transformation of only the images and not the annotations as displayed in
figure 5.1. In order to prevent this case, the same affine transformation process is implemented
into the COCOEvaluator class as well. By customizing this class, the respective transformational
parameters have to be embedded into the constructor.

The next step is to iterate over the data and extract each time an image and annotation pair.
The image is then passed to the model, predicting bounding boxes, confidence scores, and class
labels. The COCOEvaluator class gets then updated with the output, evaluates the predictions
concerning the ground truth, and complements the registry with the results. This update process
triggers multiple functions in the pycocotools API, where the predictions are sorted based on the
confidence score and then matched to the ground truth using ten different IoU levels between
predicted bounding boxes and annotated ground truth bounding boxes as introduced in section
2.4. As soon as the last image and annotation pair is processed and the COCOEvaluator registry is
updated, the loop is terminated and the results accumulated. The accumulation process captures
the evaluation results of the individual images and calculates the 12 COCO-specific metrics elab-
orated in section 2.4. After the accumulation is done, the evaluator summarizes the accumulated

9pycocotools on Github: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/
pycocotools/cocoeval.py

10Torchvision object detection reference on Github: https://github.com/pytorch/vision/
tree/master/references/detection

https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py
https://github.com/pytorch/vision/tree/master/references/detection

50 Chapter 5. Experimental Framework

results and prints out the 12 metrics regarding the predicted bounding boxes, confidence scores,
and labels as depicted in listing 5.1.

Average Precision (AP) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.370

Average Precision (AP) @[IoU=0.50 | area= all | maxDets=100] = 0.581

Average Precision (AP) @[IoU=0.75 | area= all | maxDets=100] = 0.400

Average Precision (AP) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.212

Average Precision (AP) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.401

Average Precision (AP) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.482

Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 1] = 0.310

Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets= 10] = 0.491

Average Recall (AR) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.515

Average Recall (AR) @[IoU=0.50:0.95 | area= small | maxDets=100] = 0.326

Average Recall (AR) @[IoU=0.50:0.95 | area=medium | maxDets=100] = 0.550

Average Recall (AR) @[IoU=0.50:0.95 | area= large | maxDets=100] = 0.648

Listing 5.1: COCO metrics to the baseline settings

In summary, two changes need to be implemented to adjust the COCO evaluation pipeline to
the experimental setup. First, the evaluate() function is re-implemented in the prediction/eval-
uation pipeline with additional parameters. These parameters ensure consistent transformation
throughout the prediction and evaluation pipeline. Additionally, the COCODetection class has
to accept these transformational parameters and perform the transformation accordingly before
building up the registry for the ground truth annotations. The sole reason for these adjustments is
because the COCO dataset is closely integrated into the evaluation pipeline provided by PyTorch
and pycocotools.10 9

In light of the holistic view on the prediction and evaluation pipeline for different NMS and
affine transformations, there are 64 combinations to execute the pipeline for the COCO dataset.
As pointed out in section 5.2, there are two distinct executions of NMS in the Faster R-CNN. One
function call in the RPN head and the other one in the RoI head. By implementing the Multi-NMS
function mentioned in 3, which features the selection of four different methods. Therefore, there
are 42 = 16 possible NMS permutations with the methods for RPN and RoI heads. When also
considering the four different affine transformations of the single frames, all these 16 NMS scenar-
ios have to be selected for each affine transformation. This results in 16 ∗ 4 = 64 executions of the
prediction and evaluation pipeline for COCO, which also produces 64 result tables as displayed
in listing 5.1. Up to the evaluation, all the necessary information about the matching predictions
and ground truth annotations are stored in the COCOEvaluator registry.

PASCAL VOC Evaluation

The evaluation pipeline for predictions based on the PASCAL VOC dataset is closer to the orig-
inal implementation of Torchvision and pycocotools than the evaluation pipeline for the COCO
dataset. Therefore, fewer changes need to be adopted. However, the data and model preparation
process before executing the detection/evaluation pipeline has to be performed the same way
as with the COCO dataset. The main difference can be observed when converting the PASCAL
VOC ground truth annotations to the COCO format. Because the PASCAL VOC dataset class
is not as closely integrated into the COCO evaluation pipeline as it is the case for the COCO
dataset, the only way to extract the ground truth annotations is by calling the __getitem__()

method. Furthermore, this method has been customized from the version PyTorch provides, as
explained in section 5.1. Thereby, the necessary transformations are applied to both the images
and annotations simultaneously and prepared in a COCO-compatible format. These ground truth
annotations are then used to populate the registry by instantiation the COCOEvaluator class. The

5.3 Evaluation 51

images are used as described above to produce predictions, which are then compared with the
ground truth via the pycocotools API.9

Since PASCAL VOC and COCO datasets use the Faster R-CNN, the holistic prediction and
evaluation pipeline behaves similarly regarding the production of detections and their evaluation.
Hence, there are also the two locations of RPN and RoI head to replace NMS with Multi-NMS.
Each of these permutations predicts bounding boxes with one of four possible affine transfor-
mations. Therefore, the PASCAL VOC prediction and evaluation pipeline also gets executed 64
times, producing 64 accuracy metrics after the standards of the COCO metrics. Since the COCO
metrics are applied to the results on the PASCAL VOC dataset, the COCOEvaluator registry also
holds the information about the ground truth and detection matches during evaluation.

WIDER Face Evaluation

The WIDER Face evaluation pipeline lies in between the number of changes needed to adopt the
COCO and PASCAL VOC evaluation pipelines. With regard to data preparation, the pipeline
can be set up in the same way as described for COCO. Comparable to PASCAL VOC, the data
from the WIDER Face dataset gets extracted via the __getitem__() method and therefore trans-
formed accordingly when converted to the COCO format. This is also due to the adjustments in
the WIDER Face dataset discussed in section 5.1. However, the model preparation is performed
differently. With MTCNN, only the three stages with their parameters for score thresholds and
image pyramid calculation are instantiated. The prediction pipeline is performed by calling a
function that orchestrates the forward passes of the three nets and the respective post-processing
functionalities. Therefore, each of the three stages receives their respective NMS method by pass-
ing them as parameters into the prediction pipeline and not during instantiation of the model as
with Faster R-CNN.

By instantiating the COCODetection class, the registry is created with the WIDER Face ground
truth annotations converted to COCO format. Similar to the COCO evaluation, image and an-
notation pairs are extracted from the WIDER Face data loader. The images are then passed to
the MTCNN prediction pipeline together with the desired NMS parameters. The predicted out-
put of the MTCNN framework differs substantially from the expected output in the evaluate()

function. By manually converting the outcome of the prediction pipeline into a format that the
COCODetection class accepts, it can be ensured that the registry is updated accordingly. After all
images and annotations are analyzed and the results stored in the registry, the accumulation and
summarization of the COCO metrics behave similarly to the COCO evaluation.

Concerning the holistic prediction and evaluation pipeline of the MTCNN framework, there
are more executions necessary to cover the same experimental reach as described in the Faster
R-CNN. Since the MTCNN framework features three stages with a possibility to exchange the
NMS function with Multi-NMS, introduced in chapter 3, there are 43 = 64 permutations. It
is also desired to perform different experiments by changing these NMS methods’ order in the
stages. Each of the 64 NMS permutations needs to be run with all four affine transformations to
construct the frame sequence, which results in 64 ∗ 4 = 256 total experimental runs to evaluate
the predictions in terms of their accuracy.

5.3.2 Stability Evaluation
As introduced in chapter 4 and section 2.4, there is a complementary perspective to the evaluation
of predicted bounding boxes regarding their associated ground truth. The bounding box stability
is a metric to summarize the error of detections along a trajectory. Since the analyzed datasets
of this thesis only contain still images, the trajectory with respect to the time is one-dimensional.
However, as seen in chapter 4, affine transformations to the datasets create four different versions

52 Chapter 5. Experimental Framework

of each image. Initially, the default image is contained in the dataset, translation to the right by
20 pixels, translation to the bottom by 20 pixels, and a rotation of 5 degrees. By obtaining these
different versions of the datasets, each version can be interpreted as a frame–these frames can be
grouped and measured towards the second goal of this chapter.

The stability metric Φ by Zhang and Wang (2016) introduced in section 2.4 is the sum of the
components EF, EC and ER. Each of these components is dependent on the time dimension in
terms of the length of trajectories in frames. EF measures the fragment error with status changes
throughout a sequence. The number of trajectories in a video sequence can be interpreted as the
number of objects detected in the dataset. Moreover, the trajectory length is for the experiments
ideally 4, for the four different affine transformations.

On the other hand, the two spatial components of the stability metric EC and ER are indepen-
dent of the absolute position of the detection in the image and only measure its relative position
to the ground truth annotation. However, they measure the standard deviation of the errors over
the number of frames. If the time dimension is missing, the standard deviation of a single frame
cannot be computed. Therefore, the crucial part of linking the stability metric of Zhang and Wang
(2016) to this thesis is to build a sequence of 4 frames by sequentially matching the transformed
detections and annotations of each image.

In order to analyze four augmented still images of the datasets sequentially, it can be con-
tinued where the evaluation of accuracy ended. The prediction and evaluation pipeline has
produced 64 individual results for each COCO and PASCAL VOC dataset. Additionally, for
MTCNN, there have been 256 results. These results of the respective framework’s accuracy can
directly be fed into the stability evaluation using the detection and ground truth matching from
the COCODetection registry. This has the advantage that the accuracy and stability evaluation is
performed on the same basis of matches between detections and ground truths. In order to create
a sequence of detections predicted by one model, the four equally configured NMS experiments,
each with another different affine transformed dataset, have to be grouped. Combining the same
NMS configurations leaves 16 different models to analyze for each of COCO and PASCAL VOC
and 64 for WIDER Face predictions.

The four frames are constructed by accessing the grouped results for each NMS configuration
from the accuracy evaluation. The detections and annotations are looked up in the respective
result files for that specific image when iterating over the dataset. This loop differs between
MTCNN and Faster R-CNN results. Since Faster R-CNN is used for multi-class predictions, the
results are stored for each class in a separate entry. However, individual classes in a multi-class
setting can be handled separately since they relate to a single trajectory. If more than one detection
per frame exists, the order is crucial since each detection refers to one trajectory. The construction
of the sequence starts with the selection of the default dataset transformation and its result. The
second element of the sequence consists of the results of the translated dataset transformation in
the positive x-direction by tx = 20. To check if the order of these results corresponds to the order
of the default result, the IoU between the detected boxes in default transformation and the inverse
transformation (T−1

X) of the tx translated results are calculated. The inverse transformations of
the translations in equation 4.4 have the form

T−1
X =

(

)
1 0 0
0 1 0

−20 0 1

*

+ ,T−1
Y =

(

)
1 0 0
0 1 0
0 −20 1

*

+ . (5.2)

Similarly, the inverse transformation of the rotation matrix TR has the form

T−1
R =

(

)
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

*

+ . (5.3)

5.3 Evaluation 53

The inverse transformation of the tx translation is done by subtracting 20 pixels from the hori-
zontal dimension of the bounding box coordinates, which is (xmin − 20 and xmax − 20. The same
procedure is applied to the ty translated setting as well with ymin − 20 and ymax − 20. The detec-
tions resulted from rotated images can not simply be inversely transformed back by subtraction
since the image shape. With that, the image center coordinates have changed according to equa-
tion 5.1. In order to apply the inverse transformation, the same transformation as described in
chapter 4 in general and in the appendix A.2 in detail, is reused. By applying the first rotation
with 5 degrees and fitting the output as displayed in figure 5.2, the image shape changed. When
then rotating the same image by -5 degrees, the padding triangles created to fit the output during
the first rotation are treated as part of the image and, therefore, make the original image smaller
in relative perspective. If this inverse transformation is applied to the detected and ground truth
boxes, then they are adjusted to the decreased size of the rotated (+5 degrees), padded, and ro-
tated (-5 degrees) image. The image shape after the first rotation is divided by the original image
shape to overcome this problem. The resulting scale can factorize the respective dimensions of
the inverse translated image to obtain the same size. The bounding boxes are then divided by
this factor to be adjusted to the original size of the image. With the inverse transformation of each
frame, the detected and ground truth bounding boxes are comparable between frames. Therefore,
it is possible to ensure that the trajectory between the four frames refers to the same detection and
ground truth annotation.

If there are differing numbers of detections between the frames, the order of the bounding
boxes might have to be adjusted to maintain a consistent trajectory. Therefore, the same inter-
frame IoU is used to calculate the best and worst overlap of the inverse transformed detections
and annotations. It has to be determined how many unique objects/faces are located within these
four frames. The number of unique objects dictates how many trajectories should be present in
this particular sequence. The detections corresponding to the frames with less than the num-
ber of unique detections have to be padded to match this number. The padding takes place in
order to achieve the same dimensions of detections for streamlined stability determination. By
considering the calculation of IoU scores between the frame f1, containing the detections of the
original image, and f2 containing the detections of a transformed image with TR. When calcu-
lating IoU scores between the two frames f1 and f2 with the corresponding detected bounding
boxes Bf1

p ∈ [0, 256]m×4 and the inverse transformed bounding boxes (Bf2
p) ∈ [0, 256]n×4 with

T−1
R applied and with m < n. The resulting IoU scores IoU(Bf1 , Bf2) have the shape m × n. By

selecting the maximum values and indices of the IoU matrix in the m dimension, the n best IoU
scores and their index can be retrieved. Since m < n the smallest n−m IoU scores are close to 0.
This is because the (Bf2

p) contains more objects than Bf1
p and when comparing the m to n objects,

only n have a strong overlap. This is only the case for this particular setting. Since the bounding
boxes of two almost identical frames are compared (after inverse transformation), it can be as-
sumed that the IoUs of the present boxes are close to 1. On the other hand, it can also be assumed
that in the case of mismatching dimensions, the n−m smallest IoUs are missing bounding boxes
of Bf1

p . Therefore, by looking up the associated indices, the padding of size (n − m) × 4 can be
inserted into Bf1

p . The padded bounding boxes have the form Bk,f
padding = (0, 0, 0, 0). This exam-

ple of inter-frame IoU comparison is performed between all frames of the sequence to match the
dimension of the unique objects in the sequence.

After the reordering and padding of the detected and ground truth bounding boxes, the actual
accuracy metrics can be calculated for each trajectory separately. The predicted Bp and ground

54 Chapter 5. Experimental Framework

truth bounding boxes Bg now have the form of

Bp =

(

,,,)

Bf1,k1
p Bf2,k1

p Bf3,k1
p Bf4,k1

p

Bf1,k2
p Bf2,k2

p Bf3,k2
p Bf4,k2

p
...

...
...

...
Bf1,km

p Bf2,km
p Bf3,km

p Bf4,km
p

*

---+
, Bg =

(

,,,)

Bf1,k1
g Bf2,k1

g Bf3,k1
g Bf4,k1

g

Bf1,k2
g Bf2,k2

g Bf3,k2
g Bf4,k2

g
...

...
...

...
Bf1,km

g Bf2,km
g Bf3,km

g Bf4,km
g

*

---+
. (5.4)

Each of the bounding boxes have the form Bk,f
p = (xk,f

minp, y
k,f
minp, x

k,f
maxp, y

k,f
maxp) and Bk,f

g =

(xk,f
ming, y

k,f
ming, x

k,f
maxg, y

k,f
maxg). The first component of the stability metric is the fragment error EF,

which measures the temporal stability by measuring the presence of detections over a trajectory.
First, to calculate EF from equation 2.7 the number of non-zero bounding boxes for each frame has
to be extracted from Bp and Bg . By iterating over the frames, and then iterating over the detec-
tions, it can be looked at each detection if it is present in Bd. This results in the number of changes
per detection for all frames. In reference to 2.7, the number of changes is divided by tk − 1. Since
the maximum length of a trajectory is equal to the presence in all frames, tk is equal to 4. If a
detection is present in frames f1 and f3 and not present in f2 and f4, the number of changes is
3 and dividing it by 4 − 1, results in the highest possible value of 1 for EF for one trajectory. On
the other hand, if a detection consists of 4 padded bounding boxes or 4 detected bounding boxes,
there are no status changes and EF results in 0 for that particular trajectory. All fragment errors are
added up for each image in the dataset. Also the maximal number of possible detections of each
image with regard to that specific class is added up to form N . When all fragment errors over all
images and all its trajectories are added up, the fragment error gets averaged by the total number
of trajectories N . EF is only calculated based on the bounding boxes of Bp, since Bg mirrors the
number of bounding boxes in terms of the ground truth.

The second component of the stability metric is the center position error EC and measures the
spatial stability of a trajectory by the standard deviation from the center position. EC consists of
σk
x and σk

y , which themselves are the standard deviation of ek,fx and ek,fy . To calculate the error
in center position on the x axis ek,fx and the error in center position on the y axis ek,fy of the
detections, the ground truth annotations are needed and both set of bounding boxes need to be
converted first. By converting the bounding boxes, the form of Bk,f

p = (xk,f
p , yk,fp , wk,f

p , hk,f
p) and

Bk,f
g = (xk,f

g , yk,fg , wk,f
g , hk,f

g) is obtained. Then ek,fx and ek,fy are calculated according to equation
2.8 for each detection in each frame. For each trajectory all the frames are combined and the
standard deviations of ekx and eky are computed. Before calculating the standard deviation, the
padded bounding boxes are filtered out.

For the last component of the stability metric, also measures the spatial stability of a trajectory.
The bounding boxes are converted to only consist of their width and height. The calculation of
ER follows the the procedure of equation 2.9 by first computing ek,fs and ek,fr for each frame and
each detection. Then ek,fs and ek,fr are combined for all 4 frames of the trajectory and the standard
deviation is computed. The padded bounding boxes are filtered for this process as well since these
boxes are not produced by the framework and added manually. Additionally, the calcuation of
ek,fs and ek,fr with bounding boxes of width and height 0 would result in a division by 0.

All components of the stability metric are calculated per image and then summed up at the
end. After the fragment error, σk

x and σk
y , σk

s and σk
r are calculated for the last image, also the

total number of possible trajectories N is aggregated. Then EF, EC and ER can be determined by
averaging the fragment error, the sum of σk

x and σk
y and the sum of σk

s and σk
r by N . The stability

Φ is then the sum of EF, EC and ER.
There is one essential adjustment to the initially proposed stability metric by Zhang and Wang

(2016). The authors draw the stability error Φ over all IoU overlaps between [0, 1] and calculate
the area under the curve as the final metric. Since the stability metric in this thesis taps in on the
COCODetection registries to obtain the exact detection and ground truth matches as for the accu-

5.3 Evaluation 55

racy evaluation, the lowest possible IoU is determined by the COCO evaluation metric, which is
0.5.

The overall stability evaluation combines the accuracy evaluation of each model NMS-composition
in terms of the four different dataset transformations. Each transformation is considered a frame
and then sequentially combined to evaluate the stability of detections made on transformed im-
ages. When measuring the bounding box stability by comparing inter-frame detections with the
transformed ground truth annotations, it can be analyzed how different frameworks with dif-
ferent NMS methods perform on moving objects in the sequence of frames proposed in chapter
4.

Chapter 6

Results

Within this chapter the results are reported from the combination of proposed Non-Maximum
Suppression substitutions (chapter 3) and stability evaluation (chapter 4), together with already
well established accuracy evaluation (section 2.4) guided by the experimental framework (chap-
ter 5). The foundation built up throughout the entire thesis and specified in the experimental
framework leads two a two-part evaluation outcome. The four different Non-Maximum Sup-
pression methods are first evaluated for accuracy in both detection frameworks with the respec-
tive datasets. Since the frameworks are multi-stage detectors, there are multiple combinations of
possible framework compositions to configure the frameworks. Due to the methodological de-
sign, each NMS composition is evaluated for accuracy for each of the four augmented frames.
The second evaluation component, the stability evaluation, the accuracy evaluation results, and
byproducts are grouped in an ordered sequence. Especially the sequential combination of the ac-
curacy evaluation outcome in the form of matching prediction bounding boxes and ground truth
bounding boxes are further analyzed and in the following reported.

6.1 Accuracy
The primary goal for the first part is to utilize established accuracy metrics to compare differently
composed frameworks with each other. Therefore, classic greedy and Soft-NMS have been re-
implemented in the Multi-Non-Maximum Suppression function to establish a benchmark. The
two newly proposed methods of Average NMS and Average IoU NMS are expected to have an
accuracy performance close to the benchmark of the reused NMS methods. The primary metrics,
therefore, are the COCO-style mean Average Precision (stated as AP) and the PASCAL VOC-style
mean Average Precision (stated as AP0.5). The difference between these two is stated in detail
in section 2.4–the accuracy evaluation as opposed to the stability evaluation performed on still
images. However, the single frames of the sequences used for the stability evaluation can still
be considered independent images in an augmented version. Therefore, the accuracy evaluation
is performed on every single frame of the sequence. Hence, there are four accuracy evaluations
for each NMS composition of each framework with its specific dataset(s). An example of such an
NMS composition for Faster R-CNN is the usage of classic greedy NMS (Classic) in the Region
Proposal Network (RPN) and Average IoU NMS (Avg. IoU) in the Region of Interest Head (RoI).
This results in 64 accuracy evaluations for the COCO dataset and 64 accuracy evaluations for the
PASCAL VOC dataset, both with Faster R-CNN. The results of these accuracy evaluations are
stated in tables 6.1 and 6.2. In light of the upcoming combination of the individual frames of a
specific framework composition in the stability evaluation, the individual accuracies are already
grouped by these compositions. Therefore tables 6.1 and 6.2 each have 16 rows, corresponding to
these NMS compositions in columns NMS RPN and NMS RoI. To indicate the overall accuracy

58 Chapter 6. Results

NMS RPN NMS RoI AP AP0.5 APf1 AP50
f1

APf2 AP50
f2

APf3 AP50
f3

APf4 AP50
f4

Classic Classic 34.58 57.03 37.0 58.1 36.1 57.4 36.5 57.7 28.7 54.9
Classic Soft 34.78 56.53 37.2 57.6 36.3 56.9 36.7 57.3 28.9 54.3
Classic Average 32.23 55.23 34.2 56.2 33.5 55.5 33.8 55.9 27.4 53.3
Classic Avg. IoU 34.28 56.53 36.9 58.0 36.1 57.3 36.5 57.7 27.6 53.1
Soft Classic 34.20 56.58 36.5 57.5 35.7 56.9 36.2 57.4 28.4 54.5
Soft Soft 34.33 55.95 36.7 57.0 35.8 56.2 36.3 56.8 28.5 53.8
Soft Average 32.10 54.70 34.2 55.6 33.4 55.0 33.8 55.3 27.0 52.9
Soft Avg. IoU 32.15 54.70 34.2 54.9 33.4 54.3 33.9 54.7 27.1 52.5
Average Classic 34.60 56.98 37.0 58.1 36.1 57.3 36.5 57.7 28.8 54.8
Average Soft 34.73 56.50 37.1 57.5 36.3 56.9 36.6 57.3 28.9 54.3
Average Average 32.23 55.23 34.2 56.2 33.5 55.5 33.8 55.9 27.4 53.3
Average Avg. IoU 32.38 54.75 34.3 55.6 33.7 55.0 34.0 55.4 27.5 53.0
Avg. IoU Classic 34.58 56.95 36.9 58.0 36.1 57.3 36.5 57.7 28.8 54.8
Avg. IoU Soft 34.70 56.45 37.0 57.5 36.3 56.9 36.6 57.2 28.9 54.2
Avg. IoU Average 32.08 55.10 34.0 56.0 33.4 55.4 33.6 55.7 27.3 53.3
Avg. IoU Avg. IoU 32.38 54.75 34.3 55.6 33.7 55.0 34.0 55.4 27.5 53.0

Table 6.1: COCO ACCURACY EVALUATION RESULTS. The accuracy evaluation results for the COCO
dataset with Faster R-CNN. NMS RPN and NMS RoI stand for the Non-Maximum Suppression method
used in the Faster R-CNN. AP is the main metric for the COCO evaluation and is measured as the mean
Average Precision over ten IoU thresholds. AP0.5 is the main metric for the PASCAL VOC and WIDER Face
evaluation and is measured as the mean Average Precision for an IoU threshold of 0.5. Each of these metrics
is measured for every frame in {f1, f2, f3, f4}. Therefore, the first pair of AP and AP0.5 are calculated by
averaging all AP and AP0.5 over all four frames in the sequence. The bold numbers indicate the best scoring
NMS composition for each metric.

over the four frames in a sequence ({f1, f2, f3, f4}), the frame specific APfn and AP50
fn

for n ∈
{1, 2, 3, 4} are averaged and stated in columns AP and AP0.5.

In table 6.1, it can be observed that for COCO, the NMS composition consisting of the com-
bination of both benchmarking NMS methods outperform all other framework compositions in
terms of overall average AP and AP0.5. These high numbers result from a consistent performance
in terms of AP for the combination Classic/Soft and in terms of AP0.5 for the combination Clas-
sic Classic over all frames. However, Average/Soft and Average IoU/Soft combinations perform
nearly as good as Classic/Soft in terms of AP over ten IoU thresholds (AP). There is no distinct
combination that outperforms all other combinations in AP and AP0.5. It can also be observed
that superior performance in both AP and AP0.5 for the COCO dataset is mutually exclusive.
Combinations either achieve a top score for AP or a top score for AP0.5. Therefore, it is informa-
tive to evaluate the accuracy of Faster R-CNN on the COCO dataset with both Average Precision
variations.

Table 6.2 shows the accuracy evaluation results for Faster R-CNN on the PASCAL VOC dataset.
Again the combination of benchmark NMS methods Classic/Soft has a high accuracy perfor-
mance. However, replacing classic greedy NMS in the RPN head with Average IoU NMS, the
performance peaks regarding all measured Average Precisions. The combination Average IoU/-
Soft directly disproves the observation made in the COCO accuracy evaluation results, that top
performance in both AP and AP0.5 are mutually exclusive. This combination achieves top perfor-
mance over all frames in both AP and AP0.5. This also results in superior performance in overall
AP and AP0.5. It is also notable that the order of NMS employment in the Faster R-CNN matters.
If Soft/Average IoU is used instead of Average IoU/Soft, the accuracy performance drops to the
worst of all measured performances.

In addition to the NMS composition possibilities in Faster R-CNN, MTCNN employs NMS

6.1 Accuracy 59

NMS RPN NMS RoI AP AP0.5 APf1 AP50
f1

APf2 AP50
f2

APf3 AP50
f3

APf4 AP50
f4

Classic Classic 43.33 79.20 45.50 79.80 44.40 79.00 45.00 79.20 38.40 78.80
Classic Soft 44.35 80.30 46.50 81.00 45.50 80.30 46.10 80.20 39.30 79.70
Classic Average 41.28 76.93 42.40 77.10 41.80 76.70 42.00 76.70 38.90 77.20
Classic Avg. IoU 41.60 76.00 42.70 76.10 42.30 75.90 42.30 75.70 39.10 76.30
Soft Classic 41.85 77.95 43.80 78.60 43.00 77.70 43.40 77.90 37.20 77.60
Soft Soft 42.73 78.48 44.70 79.30 43.90 78.30 44.20 78.30 38.10 78.00
Soft Average 40.93 77.03 41.90 77.30 41.30 76.60 41.60 76.90 38.90 77.30
Soft Avg. IoU 38.73 72.05 40.00 72.30 39.40 71.90 39.70 71.80 35.80 72.20
Average Classic 43.33 79.38 45.30 79.90 44.40 79.10 45.20 79.50 38.40 79.00
Average Soft 44.03 80.40 46.00 81.10 45.00 80.30 45.80 80.30 39.30 79.90
Average Average 41.43 77.13 42.50 77.40 41.90 76.70 42.10 77.00 39.20 77.40
Average Avg. IoU 41.23 76.13 42.20 76.30 41.70 75.80 42.00 76.10 39.00 76.30
Avg. IoU Classic 43.38 79.40 45.40 79.90 44.50 79.10 45.20 79.60 38.40 79.00
Avg. IoU Soft 44.40 80.48 46.50 81.10 45.50 80.40 46.20 80.50 39.40 79.90
Avg. IoU Average 39.05 73.93 40.30 74.20 39.60 73.80 40.00 73.70 36.30 74.00
Avg. IoU Avg. IoU 41.70 76.18 42.80 76.30 42.30 75.90 42.60 76.10 39.10 76.40

Table 6.2: PASCAL VOC ACCURACY EVALUATION RESULTS. The accuracy evaluation results for the
PASCAL VOC dataset with Faster R-CNN. NMS RPN and NMS RoI stand for the Non-Maximum Suppres-
sion method used in the Faster R-CNN. AP is the main metric for the COCO evaluation and is measured
as the mean Average Precision over ten IoU thresholds. AP0.5 is the main metric for the PASCAL VOC and
WIDER Face evaluation and is measured as the mean Average Precision for an IoU threshold of 0.5. Each
of these metrics is measured for every frame in {f1, f2, f3, f4}. Therefore, the first pair of AP and AP0.5 are
calculated by averaging all AP and AP0.5 over all four frames in the sequence. The bold numbers indicate
the best scoring NMS composition for each metric.

in three stages. An example of such an NMS composition for MTCNN is the usage of Average
NMS (Average) in the proposal network (P-Net), classic greedy NMS (Classic) in the refinement
network (R-Net), and Average IoU NMS (Avg. IoU) in the output network (O-Net). Therefore,
there are 64 different combinations of NMS to be deployed in all three stages. By evaluating all in-
dividual frames in terms of accuracy for all compositions, the MTCNN evaluation on the WIDER
Face dataset comprises 256 accuracy outcomes. For the sake of overview, the very low performing
AP and AP0.5 combinations are filtered out in table 6.3. The entire table for the accuracy evalu-
ation with MTCNN on WIDER Face is depicted in appendix D. By scanning through table 6.3 it
is evident that every combination with Soft-NMS is missing. Especially since Soft-NMS was part
of every top-performing combination in the COCO and PASCAL VOC result tables. The miss-
ing Soft-NMS entries in this result table are due to the consistent low performance of the NMS
method in MTCNN. Possible reasons, therefore, are stated in the following chapter when these
results are interpreted.

Nevertheless, the benchmark combination with classic greedy NMS in all three stages is among
the top-performing MTCNN compositions in terms of accuracy. The benchmark method classic
greedy NMS is part of every top scoring combination, especially when combined with Average
IoU NMS. The combination Average IoU/Average IoU/Classic performs the best concerning AP
and AP0.5. The high score in AP is due to the best accuracies in the third and fourth frames. In-
terestingly, in the fourth frame, which represents the rotated images, this combination achieves
an accuracy higher than for both translated images. This score is atypical when comparing the
overall performance to the fourth frame in both Faster R-CNN evaluations.

60 Chapter 6. Results

NMS P-Net NMS R-Net NMS O-Net AP AP0.5 APf1 AP50
f1

APf2 AP50
f2

APf3 AP50
f3

APf4 AP50
f4

Classic Classic Classic 26.73 47.35 28.00 47.40 22.60 47.20 28.20 47.40 28.10 47.40
Classic Classic Average 26.48 46.80 28.00 46.80 21.80 46.80 28.00 46.80 28.10 46.80
Classic Classic Avg. IoU 24.65 44.58 26.00 44.60 20.50 44.50 26.10 44.60 26.00 44.60
Classic Average Classic 26.83 47.33 28.00 47.30 22.70 47.20 28.50 47.40 28.10 47.40
Classic Average Average 26.55 46.80 28.00 46.80 21.90 46.70 28.10 46.80 28.20 46.90
Classic Average Avg. IoU 24.63 44.48 26.00 44.50 20.50 44.50 26.00 44.50 26.00 44.40
Classic Avg. IoU Classic 26.80 47.35 28.10 47.30 22.70 47.30 28.30 47.40 28.10 47.40
Classic Avg. IoU Average 26.58 46.95 28.10 47.50 21.90 46.70 28.10 46.80 28.20 46.80
Classic Avg. IoU Avg. IoU 24.60 44.63 26.00 45.20 20.40 44.40 26.00 44.50 26.00 44.40
Average Classic Classic 26.53 47.20 28.10 47.40 22.00 46.70 28.00 47.30 28.00 47.40
Average Classic Average 26.50 46.73 28.10 46.80 22.00 46.70 28.00 46.60 27.90 46.80
Average Classic Avg. IoU 24.78 44.73 26.30 44.60 20.60 44.70 26.20 44.80 26.00 44.80
Average Average Classic 26.83 47.33 28.30 47.40 22.70 47.20 28.10 47.40 28.20 47.30
Average Average Average 26.53 46.78 28.10 46.80 21.90 46.80 28.20 46.80 27.90 46.70
Average Average Avg. IoU 24.60 44.58 25.90 44.30 20.50 44.50 26.20 44.90 25.80 44.60
Average Avg. IoU Classic 26.88 47.30 28.30 47.40 22.80 47.20 28.20 47.40 28.20 47.20
Average Avg. IoU Average 26.58 46.70 28.10 46.70 22.00 46.70 28.20 46.80 28.00 46.60
Average Avg. IoU Avg. IoU 24.70 44.50 25.90 44.20 20.70 44.60 26.20 44.70 26.00 44.50
Avg. IoU Classic Classic 26.78 47.35 28.20 48.30 22.40 46.40 28.30 47.40 28.20 47.30
Avg. IoU Classic Average 26.53 46.83 28.20 47.80 21.80 46.00 28.20 46.80 27.90 46.70
Avg. IoU Classic Avg. IoU 24.80 44.93 26.30 45.70 20.60 44.70 26.20 44.70 26.10 44.60
Avg. IoU Average Classic 26.83 47.33 28.30 48.20 22.50 46.40 28.30 47.40 28.20 47.30
Avg. IoU Average Average 26.60 46.95 28.30 47.70 22.00 46.70 28.20 46.80 27.90 46.60
Avg. IoU Average Avg. IoU 24.68 44.73 26.10 45.50 20.50 44.50 26.20 44.60 25.90 44.30
Avg. IoU Avg. IoU Classic 26.88 47.73 28.40 48.20 22.60 47.20 28.20 47.40 28.30 48.10
Avg. IoU Avg. IoU Average 26.63 47.15 28.30 47.70 22.00 46.80 28.10 46.70 28.10 47.40
Avg. IoU Avg. IoU Avg. IoU 24.68 44.90 26.10 45.40 20.60 44.60 26.00 44.50 26.00 45.10

Table 6.3: WIDER FACE ACCURACY EVALUATION RESULTS. The accuracy evaluation results for the
WIDER Face dataset with MTCNN. NMS RPN and NMS RoI stand for the Non-Maximum Suppression
method used in the MTCNN. AP is the main metric for the COCO evaluation and is measured as the mean
Average Precision over ten IoU thresholds. AP0.5 is the main metric for the PASCAL VOC and WIDER Face
evaluation and is measured as the mean Average Precision for an IoU threshold of 0.5. Each of these metrics
is measured for every frame in {f1, f2, f3, f4}. Therefore, the first pair of AP and AP0.5 are calculated by
averaging all AP and AP0.5 over all four frames in the sequence. The bold numbers indicate the best scoring
NMS composition for each metric.

6.2 Stability

The second part of this chapter focuses on the complementary evaluation perspective of this thesis
– the stability of detections. The stability metric, in general, measures the temporal and spatial
stability of detections. As proposed in chapter 4 and detailed on in section 5.3.2, the stability
evaluation works on top of the accuracy evaluation. By tapping into the outcomes of each of
the above-stated accuracy evaluations and their outcomes, it is possible to analyze the temporal
and spatial stability of the detections to their ground truth annotations in ordered sequences.
Each row of the above-stated result tables represents the individual accuracy performance on
each frame of the sequence and the averaged accuracy performance on the whole sequence of
frames. Therefore, the stability evaluation results have the same form by orienting at the different
compositions of NMS methods for the respective frameworks and datasets. Each of the following
tables reports first the framework compositions and the averaged accuracy evaluation metrics AP
and AP0.5. The column SE is the main evaluation metric for the stability evaluation, indicating
the overall stability error. The stability error is the sum of the three columns of fragment error
(FE), center position error (CPE), and scale and ratio error (CPE). To further indicate the number
of total unique detection ground truth matches there have been, column N states the number of

6.2 Stability 61

NMS RPN NMS RoI AP AP0.5 SE FE CPE SRE N
Classic Classic 34.58 57.03 0.605 0.415 0.127 0.062 4157
Classic Soft 34.78 56.53 0.598 0.403 0.132 0.062 5047
Classic Average 32.23 55.23 0.591 0.416 0.123 0.052 4153
Classic Avg. IoU 34.28 56.53 0.596 0.415 0.124 0.058 4209
Soft Classic 34.20 56.58 0.603 0.414 0.129 0.060 4305
Soft Soft 34.33 55.95 0.599 0.404 0.132 0.062 5234
Soft Average 32.10 54.70 0.482 0.296 0.067 0.119 4108
Soft Avg. IoU 32.15 54.10 0.591 0.411 0.126 0.053 4291
Average Classic 34.60 56.98 0.596 0.413 0.124 0.059 4198
Average Soft 34.73 56.50 0.478 0.281 0.071 0.127 4854
Average Average 32.23 55.23 0.591 0.416 0.123 0.052 4153
Average Avg. IoU 32.38 54.75 0.488 0.299 0.068 0.120 4099
Avg. IoU Classic 34.58 56.95 0.595 0.413 0.123 0.059 4203
Avg. IoU Soft 34.70 56.45 0.598 0.403 0.132 0.062 5047
Avg. IoU Average 32.08 55.10 0.489 0.301 0.068 0.120 4046
Avg. IoU Avg. IoU 32.38 54.75 0.586 0.414 0.122 0.050 4223

Table 6.4: COCO STABILITY EVALUATION RESULTS. The stability evaluation results for the COCO
dataset with Faster R-CNN. NMS RPN and NMS RoI stand for the Non-Maximum Suppression method
used in the Faster R-CNN. For AP and AP0.5 the averaged mean Average Precision over all frames in the
sequence is computed. SE stands for stability error and is the sum of FE (fragment error), CPE (center
position error) and SRE (scale and ratio error). N is the number of trajectories by which all of the individual
errors are normalized with. The bold numbers indicate the best scoring NMS composition. The error terms
are best when they are small.

trajectories for each NMS composition. The results for Faster R-CNN on the COCO dataset and on
the PASCAL VOC dataset are depicted in tables 6.4 and 6.5 respectively. The results for MTCNN
on the WIDER Face dataset are listed tabularly in table 6.6.

In contrast to the accuracy evaluation metrics, the stability evaluation metrics are the most
stable if the errors are minor. Hence, the most stable NMS combination for Faster R-CNN on the
COCO dataset in table 6.4 is Average/Soft. This combination also has the second-highest score
regarding AP. This means that predictions made with Average/Soft are accurate and the most
stable over the sequence of augmented images. This is mainly due to a relatively low fragment
error, which indicates that the detections stay stable over the temporal dimension of the sequence.
It can further be observed that the number of trajectories is the highest when Soft-NMS is applied
in the RPN and RoI heads. Generally, when Soft-NMS is applied in the RoI head, the number of
distinct detections is high. A large number of trajectories can benefit the fragment error by giving
a possibility to match the detections over the four frames.

Nevertheless, it can also increase the stability error when these matched detections are too
different in the center, scale, and ratio deviation from their ground truths. This can be seen in the
combination of Soft/Soft, where N is the largest. Overall, the smallest errors can be identified in
combinations with Average or Average IoU NMS.

The stability errors for Faster R-CNN on the PASCAL VOC dataset in table 6.5 are closer
to each other than the SE in the COCO dataset stability evaluation. There is only one outlier
with the combination of Average/Classic. Interestingly, this combination the other way around

62 Chapter 6. Results

NMS RPN NMS RoI AP AP0.5 SE FE CPE SRE N
Classic Classic 43.33 79.20 0.452 0.263 0.071 0.118 3280
Classic Soft 44.35 80.30 0.426 0.232 0.073 0.122 4423
Classic Average 41.28 76.93 0.409 0.264 0.056 0.089 3280
Classic Avg. IoU 41.60 76.00 0.409 0.264 0.056 0.089 3277
Soft Classic 41.85 77.95 0.452 0.258 0.073 0.121 3562
Soft Soft 42.73 78.48 0.430 0.226 0.077 0.128 4624
Soft Average 40.93 77.03 0.417 0.260 0.061 0.097 3551
Soft Avg. IoU 38.73 72.05 0.419 0.259 0.062 0.098 3552
Average Classic 43.33 79.38 0.746 0.580 0.060 0.107 3171
Average Soft 44.03 80.40 0.420 0.227 0.071 0.122 4532
Average Average 41.43 77.13 0.452 0.307 0.055 0.090 3306
Average Avg. IoU 41.23 76.13 0.452 0.306 0.055 0.090 3303
Avg. IoU Classic 43.38 79.40 0.481 0.304 0.066 0.111 3316
Avg. IoU Soft 44.40 80.48 0.418 0.225 0.072 0.122 4530
Avg. IoU Average 39.05 73.93 0.447 0.305 0.054 0.088 3311
Avg. IoU Avg. IoU 41.70 76.18 0.448 0.305 0.055 0.089 3307

Table 6.5: PASCAL VOC STABILITY EVALUATION RESULTS. The stability evaluation results for the
VOC dataset with Faster R-CNN. NMS RPN and NMS RoI stand for the Non-Maximum Suppression method
used in the Faster R-CNN. For AP and AP0.5 the averaged mean Average Precision over all frames in the
sequence is computed. SE stands for stability error and is the sum of FE (fragment error), CPE (center
position error) and SRE (scale and ratio error). N is the number of trajectories by which all of the individual
errors are normalized with. The bold numbers indicate the best scoring NMS composition. The error terms
are best when they are small.

with Classic/Average shows the smallest stability error. This again emphasizes evaluating all the
combinations of NMS methods in the RPN and RoI heads. Another combination with the smallest
stability error is Classic/Average IoU. It can generally be observed that Average and Average IoU
perform very similarly regardless of the second component of the composition. The combination
of Average IoU/Soft, which scored the highest in terms of AP and AP0.5 during the accuracy
evaluation, also has a relatively low stability error.

Additionally, it shows the lowest fragment error. This is due to the consistent superior accu-
racies over all frames in the accuracy evaluation. The combination of Average IoU/Average in
the stability evaluation of Faster R-CNN on the PASCAL VOC dataset results in the lowest center
position error and scale and ratio error. However, since a high fragment error dominates the sum,
the stability error is relatively large. It can again be observed that if Soft-NMS is placed as the
NMS method in the RoI head, the number of trajectories is large.

The last table 6.6 summarizes the stability evaluation results for MTCNN on the WIDER Face
dataset. This table is also a filtered version of the entire table (appendix D.1) with the same cri-
terion of low scoring AP and AP0.5 exclusion. The lowest error for MTCNN is the combination
of Average NMS in the P-Net and the O-Net with classic greedy NMS in between in the R-Net.
This is the result of low scale and ratio error and low center position error. Also, the fragment
error for this combination is only 0.0001, larger than the minimum. The combination with the
lowest fragment error in the stability evaluation also shows consistent accuracy rates in the ac-
curacy evaluation above. Even though the accuracies are not performing top, the fragment error

6.2 Stability 63

NMS P-Net NMS R-Net NMS O-Net AP AP0.5 SE FE CPE SRE N
Classic Classic Classic 26.73 47.35 0.1853 0.0639 0.0485 0.0729 2937
Classic Classic Average 26.48 46.80 0.1637 0.0637 0.0345 0.0654 2939
Classic Classic Avg. IoU 24.65 44.58 0.1696 0.0636 0.0378 0.0681 2938
Classic Average Classic 26.83 47.33 0.1895 0.0655 0.0502 0.0737 2940
Classic Average Average 26.55 46.80 0.1652 0.0647 0.0350 0.0655 2938
Classic Average Avg. IoU 24.63 44.48 0.1720 0.0647 0.0387 0.0686 2940
Classic Avg. IoU Classic 26.80 47.35 0.1901 0.0659 0.0505 0.0737 2944
Classic Avg. IoU Average 26.58 46.95 0.1660 0.0646 0.0353 0.0661 2942
Classic Avg. IoU Avg. IoU 24.60 44.63 0.1724 0.0647 0.0388 0.0689 2942
Average Classic Classic 26.53 47.20 0.1864 0.0646 0.0484 0.0733 2925
Average Classic Average 26.50 46.73 0.1629 0.0637 0.0339 0.0653 2925
Average Classic Avg. IoU 24.78 44.73 0.1696 0.0636 0.0375 0.0685 2924
Average Average Classic 26.83 47.33 0.1902 0.0667 0.0497 0.0738 2933
Average Average Average 26.53 46.78 0.1663 0.0659 0.0347 0.0656 2932
Average Average Avg. IoU 24.60 44.58 0.1730 0.0657 0.0386 0.0687 2933
Average Avg. IoU Classic 26.88 47.30 0.1916 0.0674 0.0502 0.0740 2939
Average Avg. IoU Average 26.58 46.70 0.1669 0.0663 0.0349 0.0657 2936
Average Avg. IoU Avg. IoU 24.70 44.50 0.1727 0.0655 0.0385 0.0687 2936
Avg. IoU Classic Classic 26.78 47.35 0.1893 0.0681 0.0485 0.0726 2932
Avg. IoU Classic Average 26.53 46.83 0.1662 0.0665 0.0343 0.0654 2932
Avg. IoU Classic Avg. IoU 24.80 44.93 0.1733 0.0666 0.0383 0.0684 2932
Avg. IoU Average Classic 26.83 47.33 0.1941 0.0700 0.0505 0.0736 2939
Avg. IoU Average Average 26.60 46.95 0.1698 0.0684 0.0353 0.0662 2939
Avg. IoU Average Avg. IoU 24.68 44.73 0.1762 0.0682 0.0391 0.0689 2939
Avg. IoU Avg. IoU Classic 26.88 47.73 0.1935 0.0683 0.0512 0.0741 2940
Avg. IoU Avg. IoU Average 26.63 47.15 0.1684 0.0666 0.0355 0.0663 2939
Avg. IoU Avg. IoU Avg. IoU 24.68 44.90 0.1752 0.0663 0.0395 0.0693 2939

Table 6.6: WIDER FACE STABILITY EVALUATION RESULTS. Stability evaluation results for the WIDER
Face dataset with MTCNN. The Non-Maximum Suppression methods used to evaluate the MTCNN is stated
in NMS RPN and NMS RoI. For AP and AP0.5 the averaged mean Average Precision over all frames in the
sequence is computed. SE stands for stability error and is the sum of FE (fragment error), CPE (center
position error) and SRE (scale and ratio error). N is the number of trajectories by which all of the individual
errors are normalized with. The bold numbers indicate the best scoring NMS composition. The error terms
are best when they are small.

values consistency over the detections in the four frames. It can also be observed that the number
of trajectories does not vary vastly. Between the maximum and minimum are only 20 distinct de-
tections in the sequence. This contrasts with the other stability evaluation results, where mainly
Soft-NMS drives the number of trajectories up.

However, concerning the first research question, the stability evaluation results listed so far
do not yet allow any statistically meaningful conclusion to be drawn. For this reason, the stabil-
ity errors are further investigated through a t-test. Although the stability errors are assumed to
be normally distributed, the population sizes differ (column N in tables 6.4, 6.5 and 6.6. It can
also be assumed that every two compared samples are independent within and between each
other. In this case, two independent sample comparison of means test with unequal variances is
applicable.1

In reference to the first research question, the hypothesis is formulated that the stability error
(SE) of the Non-Maximum Suppression substitution (SES) is greater or equal to the stability error

1Definition Welch’s t-test: https://en.wikipedia.org/wiki/Welch%27s_t-test

https://en.wikipedia.org/wiki/Welch%27s_t-test

64 Chapter 6. Results

NMS RPN NMS RoI Classic/Classic Classic/Soft Soft/Classic Soft/Soft
Classic Average 3.35E-02 1.82E-01 6.04E-02 1.43E-01
Classic Avg. IoU 1.31E-01 4.33E-01 2.01E-01 3.72E-01
Soft Average 1.52E-55 7.02E-54 2.26E-54 4.71E-55
Soft Avg. IoU 3.01E-02 1.69E-01 5.50E-02 1.32E-01
Average Classic 1.08E-01 3.87E-01 1.71E-01 3.28E-01
Average Soft 8.14E-64 1.09E-62 1.30E-62 4.79E-64
Average Average 3.35E-02 1.82E-01 6.04E-02 1.43E-01
Average Avg. IoU 2.07E-48 1.63E-46 2.86E-47 1.39E-47
Avg. IoU Classic 9.36E-02 3.55E-01 1.50E-01 2.98E-01
Avg. IoU Soft 1.59E-01 5.00E-01 2.41E-01 4.35E-01
Avg. IoU Average 1.17E-48 9.20E-47 1.61E-47 7.84E-48
Avg. IoU Avg. IoU 6.30E-03 5.49E-02 1.33E-02 3.92E-02

Table 6.7: COCO T-TEST. The resulting p-values of the one-tailed t-test for Faster R-CNN using the COCO
dataset. Numbers in bold indicate NMS combinations significant on a 99% confidence level.

of the benchmarking Non-Maximum Suppression method (SEB). This leads to the establishment
of the null (H0) and alternative hypothesis (HA) in a one-tailed t-test:

• H0: SEB - SES ≤ 0

• HA: SEB - SES > 0

The null hypothesis states that the difference between the benchmark and the substitution is at
most 0, which means that the substituting NMS method has a stability error that is greater or
equal compared to the stability error of the benchmarking NMS method. On the other hand, the
alternative hypothesis states that the NMS substitution shows more minor stability errors than
the NMS benchmark method. As the benchmarking NMS methods are the combination of classic
greedy NMS and Soft-NMS considered. This is an extended benchmark since Soft-NMS is not
available in the original implementation of Faster R-CNN as utilized for this thesis. The original
implementation of Faster R-CNN only features classic greedy NMS in all stages. As Soft-NMS
is already implemented by Bodla et al. (2017) and its results reported, it is considered as part of
the extended benchmark for the first part of this analysis. The NMS substitution methods are
every other combination of NMS methods in the frameworks. For this hypothesis test, the 99%
confidence level is used.

The table 6.7 summarizes the results of the above-described t-test for Faster R-CNN using
the COCO dataset. Every combination featuring at least one of the proposed NMS methods is
compared to every combination of benchmark NMS methods in terms of their stability error dif-
ference. It can be seen that the stability error of Average IoU/Average IoU is significantly smaller
than the benchmark. Applying Average IoU/Average IoU as NMS yields significantly higher
stability than the original implementation of Faster R-CNN with the COCO dataset. The four
combinations of Soft/Average, Average/Soft, Average/Average IoU, and Average IoU/Average
show notably low p-values. This indicates that their stability error is significantly smaller than
every combination of the benchmarks.

Table 6.8 shows the same comparison of NMS substitutions and NMS benchmarking methods
with a t-test but this time for Faster R-CNN using the PASCAL VOC dataset. In this table, only
one combination allows significantly higher stability than all of the benchmarking NMS methods.
Using classic greedy NMS in the RPN head and Average NMS in the RoI head is significantly more

6.2 Stability 65

NMS RPN NMS RoI Classic/Classic Classic/Soft Soft/Classic Soft/Soft
Classic Average 1.18E-08 7.25E-03 1.01E-08 1.55E-03
Classic Avg. IoU 2.04E-08 9.58E-03 1.76E-08 2.16E-03
Soft Average 2.13E-06 8.61E-02 1.93E-06 3.09E-02
Soft Avg. IoU 8.81E-06 1.51E-01 8.07E-06 6.28E-02
Average Classic 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Average Soft 4.20E-06 1.63E-01 3.76E-06 6.42E-02
Average Average 5.02E-01 1.00E+00 5.04E-01 9.99E-01
Average Avg. IoU 4.98E-01 1.00E+00 5.00E-01 9.99E-01
Avg. IoU Classic 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Avg. IoU Soft 1.38E-06 1.08E-01 1.22E-06 3.77E-02
Avg. IoU Average 2.78E-01 9.98E-01 2.79E-01 9.92E-01
Avg. IoU Avg. IoU 3.23E-01 9.99E-01 3.24E-01 9.95E-01

Table 6.8: PASCAL VOC T-TEST. The resulting p-values of the one-tailed t-test for Faster R-CNN using
the PASCAL VOC dataset. Numbers in bold indicate NMS combinations significant on a 99% confidence
level.

stable than Classic/Classic, Classic/Soft, Soft/Classic, and Soft/Soft. As seen in table 6.5, when
switching to Average NMS in the RPN head and classic greedy NMS in the RoI head, the stability
error is the largest. This can also be observed in the p-values, being at 1.

Furthermore, significantly more stable than the original implementation of Faster R-CNN
with classic greedy NMS in both the RPN and RoI head are all the combinations Classic/Av-
erage IoU, Soft/Average, Soft/Average IoU, Average/Soft, and Average IoU/Soft. The same
case is confirmed by comparing these substituting NMS methods to the benchmark Soft/Classic.
The benchmark of Classic/Soft already has a low stability error such that only Classic/Average
and Classic/Average IoU yield significantly smaller stability errors. Moreover, the benchmark
Soft/Soft can only be significantly outperformed in terms of stability by Classic/Average on a
confidence level of 99% for Faster R-CNN using the PASCAL VOC dataset.

The last table with the results of the one-tailed t-test is table 6.9 showing the comparison of
NMS methods in MTCNN with the WIDER Face dataset. Since every combination with Soft-NMS
performed severely in the MTCNN with given hyperparameters, these combinations are not part
of the accuracy and stability evaluation results mentioned above. Nonetheless, it is not reason-
able to include these combinations into the comparing t-test and neither as substituting NMS
methods nor benchmarking NMS methods. Furthermore, to increase the readability of table 6.9,
MTCNN compositions with NMS methods yielding larger stability errors than the benchmark
are not shown in this statistical test. Nevertheless, these results of the t-test are meaningful con-
cerning the available data. The results show the comparison with the available implementation
of MTCNN. There are 12 combinations of substituting NMS methods that are significantly more
stable than the original implementation of MTCNN with classic greedy NMS.

This chapter exemplifies the two perspectives of object/face detection evaluation, which are
considered throughout this thesis. First, the accuracy evaluation results are presented in three
densely aggregated tables. Each table shows the results of a specific dataset and its respective
object/face detector. Then, by holding the aggregation level consistent, the results of the stability
evaluation are reported. The tables showing these results summarize the stability metrics and
provide an overview of the best performing framework compositions concerning the accuracy
evaluation. In addition, a one-tailed t-test is conducted to inspect further the difference in stabil-
ity of the proposed NMS methods Average NMS and Average IoU. Every possible combination is

66 Chapter 6. Results

NMS P-Net NMS R-Net NMS O-Net Classic/Classic/Classic
Classic Classic Average 3.48E-06
Classic Classic Avg. IoU 5.98E-04
Classic Average Classic 8.12E-01
Classic Average Average 1.51E-05
Classic Average Avg. IoU 2.97E-03
Classic Avg. IoU Classic 8.44E-01
Classic Avg. IoU Average 3.03E-05
Classic Avg. IoU Avg. IoU 3.97E-03
Average Classic Classic 5.95E-01
Average Classic Average 1.29E-06
Average Classic Avg. IoU 5.37E-04
Average Average Classic 8.48E-01
Average Average Average 4.12E-05
Average Average Avg. IoU 5.61E-03
Average Avg. IoU Classic 9.10E-01
Average Avg. IoU Average 7.44E-05
Average Avg. IoU Avg. IoU 4.85E-03
Avg. IoU Classic Classic 7.95E-01
Avg. IoU Classic Average 4.59E-05
Avg. IoU Classic Avg. IoU 7.33E-03
Avg. IoU Average Classic 9.66E-01
Avg. IoU Average Average 8.76E-04
Avg. IoU Average Avg. IoU 3.32E-02
Avg. IoU Avg. IoU Classic 9.56E-01
Avg. IoU Avg. IoU Average 2.88E-04
Avg. IoU Avg. IoU Avg. IoU 2.01E-02

Table 6.9: WIDER FACE T-TEST. The resulting p-values of the one-tailed t-test for MTCNN using the
WIDER Face dataset. NMS combinations with a stability error greater than the benchmark are not regarded
by this test. Therefore, Soft-NMS has an overall bad performance on MTCNN with given hyperparameters,
this method is not considered conducting this test. Numbers in bold indicate NMS combinations significant
on a 99% confidence level.

compared with the benchmark to decide on a 99% confidence level about the significance of the
lower stability error. Five combinations of substituting NMS methods in Faster R-CNN with the
COCO dataset outperform the available implementation in terms of more stable detections. Four
of these five even outperform every other combination of the benchmarks. For Faster R-CNN
using the PASCAL VOC dataset, 6 NMS combinations provide detections with statistically signif-
icantly fewer stability errors than the available implementation. For MTCNN using the WIDER
Face dataset, there are 16 NMS combinations with significantly increased stability compared to
the available implementation. Dataset and framework-specific differences are noticeable. This
especially can be seen when comparing the stability errors between the different datasets and
frameworks. The stability errors for Faster R-CNN on the COCO dataset are the highest, followed
by the PASCAL VOC dataset also evaluated by the Faster R-CNN. The lowest stability errors are
stated in the table summarizing the stability evaluation of MTCNN on the WIDER Face dataset.
These results are further interpreted and put in comparison with previously stated information
in the following chapter.

To summarize the results achieved, table 6.10 shows all frameworks with their respective
datasets and results. The benchmark for this table is chosen to be the available implementa-
tion of Faster R-CNN and MTCNN. This deviation from the results reported above, where an

6.2 Stability 67

extended benchmark with combinations of Soft-NMS was considered. In summary, according to
table 6.10, the combination of Average/Classic performs more accurately and more stable than
the available implementation of Faster R-CNN using the COCO dataset, with the accuracy mea-
sured in the COCO primary evaluation metric AP and statistically significant stability. Regarding
Faster R-CNN on the PASCAL VOC dataset, there are combinations of Average/Soft and Aver-
age IoU/Soft that both perform better in terms of accuracy (measured with the primary accuracy
evaluation metric of PASCAL VOC) and stability (statistically significant) than the available im-
plementation. For MTCNN using the WIDER Face dataset, no combination outperforms accuracy
and stability (statistically significant) compared to the available implementation. However, mul-
tiple combinations outperform the available implementation in terms of accuracy and statistically
insignificant stability.

68 Chapter 6. Results

Framework Dataset NMS 1st Stage NMS 2nd Stage NMS 3rd Stage AP AP50 p-value

Faster R-CNN

COCO

Classic Classic - 34.58 57.03 -
Classic Average - 32.23 55.23 3.35E-02
Classic Avg. IoU - 34.28 56.53 1.31E-01
Soft Average - 32.10 54.70 1.52E-55
Soft Avg. IoU - 32.15 54.10 3.01E-02
Average Classic - 34.60 56.98 1.08E-01
Average Soft - 34.73 56.50 8.14E-64
Average Average - 32.23 55.23 3.35E-02
Average Avg. IoU - 32.38 54.75 2.07E-48
Avg. IoU Classic - 34.58 56.95 9.36E-02
Avg. IoU Soft - 34.70 56.45 1.59E-01
Avg. IoU Average - 32.08 55.10 1.17E-48
Avg. IoU Avg. IoU - 32.38 54.75 6.30E-03

PASCAL VOC

Classic Classic - 43.33 79.20 -
Classic Average - 41.28 76.93 1.18E-08
Classic Avg. IoU - 41.60 76.00 2.04E-08
Soft Average - 40.93 77.03 2.13E-06
Soft Avg. IoU - 38.73 72.05 8.81E-06
Average Classic - 43.33 79.38 1.00E+00
Average Soft - 44.03 80.40 4.20E-06
Average Average - 41.43 77.13 5.02E-01
Average Avg. IoU - 41.23 76.13 4.98E-01
Avg. IoU Classic - 43.38 79.40 1.00E+00
Avg. IoU Soft - 44.40 80.48 1.38E-06
Avg. IoU Average - 39.05 73.93 2.78E-01
Avg. IoU Avg. IoU - 41.70 76.18 3.23E-01

MTCNN WIDER Face

Classic Classic Classic 26.73 47.35 -
Classic Classic Average 26.48 46.80 3.48E-06
Classic Classic Avg. IoU 24.65 44.58 5.98E-04
Classic Average Classic 26.83 47.33 8.12E-01
Classic Average Average 26.55 46.80 1.51E-05
Classic Average Avg. IoU 24.63 44.48 2.97E-03
Classic Avg. IoU Classic 26.80 47.35 8.44E-01
Classic Avg. IoU Average 26.58 46.95 3.03E-05
Classic Avg. IoU Avg. IoU 24.60 44.63 3.97E-03
Average Classic Classic 26.53 47.20 5.95E-01
Average Classic Average 26.50 46.73 1.29E-06
Average Classic Avg. IoU 24.78 44.73 5.37E-04
Average Average Classic 26.83 47.33 8.48E-01
Average Average Average 26.53 46.78 4.12E-05
Average Average Avg. IoU 24.60 44.58 5.61E-03
Average Avg. IoU Classic 26.88 47.30 9.10E-01
Average Avg. IoU Average 26.58 46.70 7.44E-05
Average Avg. IoU Avg. IoU 24.70 44.50 4.85E-03
Avg. IoU Classic Classic 26.78 47.35 7.95E-01
Avg. IoU Classic Average 26.53 46.83 4.59E-05
Avg. IoU Classic Avg. IoU 24.80 44.93 7.33E-03
Avg. IoU Average Classic 26.83 47.33 9.66E-01
Avg. IoU Average Average 26.60 46.95 8.76E-04
Avg. IoU Average Avg. IoU 24.68 44.73 3.32E-02
Avg. IoU Avg. IoU Classic 26.88 47.73 9.56E-01
Avg. IoU Avg. IoU Average 26.63 47.15 2.88E-04
Avg. IoU Avg. IoU Avg. IoU 24.68 44.90 2.01E-02

Table 6.10: OVERALL RESULTS. The overall summary of results. This table shows both in this thesis
considered frameworks and the results for the respective datasets. The columns AP and AP50 show in this
table accuracy results and are in bold if the accuracy is greater or equal to the available implementation
with NMS combination Classic/Classic(/Classic). The last column shows the p-value of the one-tailed t-test
between each combination and the benchmark. Only the available implementation is therefore considered
as benchmark. Numbers in bold for this column indicate NMS combinations significant on a 99% confidence
level.

Chapter 7

Discussion

In this chapter, the results are put in context and interpreted to enhance bounding box stability
with Non-Maximum Suppression. Moreover, the results are regarded as measuring the temporal
and spatial stability of predicted bounding boxes in still images and further discussed. Lastly,
various limitations must be considered with the approach of this thesis.

7.1 Non-Maximum Suppression Alternatives
In chapter 3 two Non-Maximum Suppression methods are proposed that have not been report-
edly implemented so far. Average NMS and Average IoU NMS are based in their single compo-
nents on different implementations from the literature, but the combination of these components
is novel. They are especially recalculating the detection score as the weighted average of the de-
tection scores for Average NMS and the IoU weighted average for Average IoU NMS. Overall, a
combination with one of these NMS methods achieves very comparative results in the accuracy of
the detections. By inspecting the accuracy of the worst-performing NMS combination for Faster
R-CNN using the COCO dataset, it can be calculated that Soft/Average is 7.2% below AP and
4.1% below AP0.5 of the benchmark with Classic/Classic. Though, the best performing combi-
nation of Average NMS in the RPN head and Soft-NMS in the RoI head scores 0.4% better in AP
and 0.9% below AP0.5 of the available implementation. For Faster R-CNN using the PASCAL
VOC dataset, the worst performing combination featuring Soft-NMS in the RPN head and Aver-
age IoU NMS in the RoI Head achieves a 10.6% lower AP and 9% lower AP0.5 than the available
implementation. On the other hand, the best performing combination of Average IoU in the RPN
head and Soft-NMS in the RoI head scores 2.5% higher in AP and 1.6% better in AP0.5 than the
benchmark. The inspection of accuracy results for MTCNN using the WIDER Face dataset leads
to an increase of 0.6% in AP and an increase of 0.8% in AP0.5 with Average IoU NMS in the P- and
R-Net and classic greedy NMS in the O-Net. The worst performing results in terms of accuracy
and stability with MTCNN is a combination with Soft-NMS. As already mentioned in the results
in chapter 6 the application of Soft-NMS could not produce any comparable detection results with
MTCNN. The reason for bad performance is that the default hyperparameters for MTCNN are
not favorable for applying Soft-NMS. Since Soft-NMS works by decaying the detection score of
the bounding box, all non-maximum detection scores are decreased. This NMS application works
well with Faster R-CNN since there are only minimal thresholds between the two stages. How-
ever, with MTCNN, there are thresholds of 0.6, 0.7, and 0.7 for the three stages. These thresholds
limit the capability of the framework to gradually regress the detected bounding boxes, classify
them and filter detections by these thresholds. Instead, already in the proposal stage are the scores
decayed such that a majority of proposals do not reach the refinement stage. Those proposals
which make it to the output stage are then mostly equipped with a detection score that is below

70 Chapter 7. Discussion

the significant threshold of 0.7. Therefore, MTCNN outputs a minimal number of detections. This
output results in degenerate accuracy and stability scores. A potential solution would be to adjust
the decaying factor of Soft-NMS or lower the thresholds of the MTCNN. Although this represents
a valid solution, the results would not be comparable to the other detection results of Faster R-
CNN using Soft-NMS or MTCNN with the other three NMS methods. For comparability reasons,
the weak performance of Soft-NMS in MTCNN is tolerated.

As discussed in the previous chapter and summarized in table 6.10, there are proposed com-
binations of Non-Maximum Suppression methods that both outperform the accuracy and are
statistically significant in terms of higher stability in the Faster R-CNN regardless of the dataset
used. However, the high scoring combinations in AP, AP0.5 are not the same. This result implies
that there is no unique combination of NMS methods to be placed in the RPN and RoI head to
achieve superior accuracy and significantly more stable detection results at the same time. The
interpretation of this finding is that the hyperparameters for the Faster R-CNN post-processing,
which are also shared with the NMS methods, are not optimally selected and therefore do only
partially and distinctively contribute to the generality of well-performing results. Nevertheless,
when lowering the aspiration of surpassing all the benchmarks in both AP and AP0.5, then there
is one combination that can be considered as a successful substitution of Non-Maximum Suppres-
sion in the Faster R-CNN framework. When replacing classic greedy NMS in the RPN head with
Average NMS and in the RoI head with Soft-NMS, there is a significant increase in stability for
both respective datasets. This combination surpasses AP and AP0.5 of the available implementa-
tion in the Faster R-CNN with the PASCAL VOC dataset and AP of the available implementation
in the Faster R-CNN with the COCO dataset. The only metric, which Average/Soft fails to sur-
pass, is AP0.5 in the Faster R-CNN with the COCO dataset. When also lowering the aspirations
of outperforming the benchmark of the available implementation.

7.2 Measuring Stable Bounding Boxes
The stability evaluation metric introduced in chapter 2 and the strategy to materialize this eval-
uation metric for still images in chapter 4 are entirely novel approaches. The stability evaluation
has its roots in the video detection and multi-objects tracking field. There is already little evidence
of reported usage in the literature for the main application of stability evaluation. All the more
unknown is this method in the field of object detection in static images. By creating sequences of
augmented static images, the stability evaluation metric becomes accessible even for non-video
sequences. The decision about the length and the kind of augmentation is not made with evi-
dence. However, the parameters for the augmentation are based on an analysis of a randomly
select population of images for Faster R-CNN and MTCNN, respectively. The goal of this selec-
tion is to establish comparability between the frameworks in terms of their stability errors. By
doing so, as mentioned in the results, it can be observed that the stability error decreases with the
decreasing size of the datasets. This observation suggests that the more specialized a framework
is for a specific task, the more stable its predicted detections are. Substituting Non-Maximum
Suppression methods with stabilizing methods helps even more to increase the stability.

7.3 Limitations
In this section, the limitations are stated concerning the research conducted in this thesis. Espe-
cially the proposition of a novel strategy of measuring the stability of predicted detections adds
many considerations worth noting in this section.

7.3 Limitations 71

• Faster R-CNN and MTCNN are evaluated with every combination of NMS methods with
their respective default values. Also, NMS-specific parameters are chosen at default values,
such as the decaying factor of Soft-NMS. On the one hand, this decision leads to results that
cannot indicate a single NMS combination that improves all accuracy-specific metrics and is
statistically significant in terms of stability. On the other hand, this leads to depraved results
for Soft-NMS in MTCNN. By adjusting thresholds of MTCNN or increasing the decaying
factor of Soft-NMS, more informative results for Soft-NMS are feasible

• The focus during the selection of models for the frameworks is on the availability and the
allowance to alter NMS functions. There are better-performing models featuring Faster R-
CNN and MTCNN available, but this thesis solely focuses on the replacement of classic
greedy NMS and, therefore, only measures the relative performance within the frameworks
at hand

• There was only reasonable effort invested in fine-tuning the Faster R-CNN model to the
PASCAL VOC dataset because there is no pre-trained version available with Torchvision

• The aspect of evaluation speed of the frameworks is not considered in this thesis. Available
implementations of the frameworks feature NMS functions written in C++, which is more
efficient than the own implementation in Python

• The stability evaluation metric originates from a source with questionable quality. The met-
ric has also not been frequently reported in the past. Nevertheless, it is considered an excel-
lent approach to measure detection results’ spatial and temporal stability, and no calculation
errors are spotted in the respective equations. Since this specific stability metric is not well
represented in the literature, there is no ground for comparison. Therefore, the only com-
parison that can be drawn internally in this thesis.

• There is a deviation of the usage of the stability metric to the proposed metric in the litera-
ture. Instead of using the area under the curve for 10 IoU thresholds, only the single stability
error using an IoU threshold of 0.5 is reported. This adjustment is due to the reuse of detec-
tion and ground truth matches from the COCO accuracy evaluation, which only registers
matches above 0.5

• From the literature, it is unclear what happens to center position error and scale and ra-
tio error if detection is present in only one frame of the sequence. The standard deviation
cannot be calculated with a single number, and therefore a standard deviation of 0 was re-
ported instead. It is assumed that the fragment error accounts for such a case. Even though
the fragment error for such a detection scenario is only in {0.333, 0.667}. This depends on
whether the detected frame is at the beginning/end or in the middle of the frames. Mean-
ing the fragment error represents the same amount as in a potential case with two or three
detections in the sequence

• The construction of the sequences in terms of length and kind of transformations are not
empirically validated. Therefore, longer frame sequences would lead to more informative
results, and a different arrangement of the frames could lead to another overall outcome.
However, the results are consistently evaluated using the same length and the same ar-
rangement

• The transformational parameters of the horizontal and vertical translations and the rotations
are selected using an analysis of a limited range of parameter values on a subset of data

• The t-test in the results chapter is conducted assuming that the stability errors are normally
distributed and independent within and between each other

72 Chapter 7. Discussion

• The exact t-test cannot be conducted using the accuracy results of the different NMS combi-
nations with the different frameworks. Since the finally reported AP and AP0.5 metrics are
the mean of the accuracy metrics of the individual frames; they are dependent on each other.
Also, due to the number of different framework compositions, evaluating each framework
with a differently seeded subset of the data is not reasonable

Chapter 8

Conclusion & Future Work

This chapter presents a brief synopsis of the milestones and the significant contributions towards
answering the two initially stated research questions. Besides, core results are comprehensively
summed, and ultimately, considerations about future research are asserted.

8.1 Conclusion
The focus of this thesis lies on the stabilization of bounding box predictions using an aggregat-
ing alternative of the classic greedy Non-Maximum Suppression. In chapter 2 the grounds are
laid by introducing the WIDER Face, MS COCO and PASCAL VOC; one dataset for face detec-
tion and two for various object detection. Furthermore, the concept of object and face detec-
tion is explained with instances of single- and multi-stage detectors. A more particular aspect of
the presented detectors is elaborated with the Non-Maximum Suppression as a substantial post-
processing part. Additionally, recent developments concerning optimizing NMS are stated. The
fundamental part with the focus on background information and related work is rounded off with
an introduction to the predominantly used evaluation metrics to determine a detector’s accuracy
of locating and classifying objects and faces. Thereby, a complementary perspective on the holis-
tic evaluation topic is introduced with the term stability. An evaluation metric proposed for the
related field of video detection and multi-object tracking is introduced and formally stated.

In chapter 3 the methodological concept of achieving more stable bounding boxes with Non-
Maximum Suppression is formalized. As part of this concept and for benchmarking reasons, the
well-established method of classic greedy NMS and Soft-NMS are chosen to be re-implemented.
In addition, by combining multiple different approaches from the literature, two novel NMS algo-
rithms are proposed. In contrast to the other two methods Average NMS and Average IoU NMS
consider all predicted bounding boxes that overlap to a threshold to be aggregated to one infor-
mative bounding box with an associated detection score. The proposed algorithms perform still in
a greedy manner but utilize the information of all bounding boxes located in close proximity to an
object. All four NMS methods are then combined in a single parametrized Multi-Non-Maximum
Suppression function. This chapter contributes the foundation of the implementation to answer
the first research question.

Since the two newly proposed NMS algorithms aim to stabilize the exact location of detected
bounding boxes, the measurability of this goal in still images is limited. Therefore, in chapter 4,
a new method is proposed by fabricating consecutive frames of augmented images to simulate
moving objects in a video sequence. This approach enables the potential to measure the tempo-
ral and spatial stability of object and face detectors, in addition to the already well-established
accuracy metric. This chapter materializes the concept necessary towards answering the second
research question. Therefore, a major contribution to the answer to this research question is made.

74 Chapter 8. Conclusion & Future Work

Chapter 5 guides the realization of the proposed Multi-NMS function and the approach to se-
quence augmented images in an experimental framework. The two detection frameworks Faster
R-CNN and MTCNN, are inspected in more detail. The forward pass of example images is
studied and identified where the Multi-NMS function replaces the initially implemented classic
greedy NMS. This chapter is supplemented by implementation details to the evaluation pipeline
of measuring accuracy and stability. This chapter facilitates the experimental setup to collect ev-
idence to answer the first research question. This evidence can also be utilized to support the
approach proposed to answer the second research question.

In chapter 6, the extensive results are summarized and presented concerning the two perspec-
tives of measuring the object and face detection outcome. Accuracy- and stability-specific results
are discussed and put in comparison. A one-tailed t-test is performed to indicate statistically sig-
nificant increases in stability. Equipping Faster R-CNN and MTCNN with the newly proposed
NMS methods leads almost half of the presented experiments to significantly more stable bound-
ing box predictions. Even in some cases to more accurate predictions in comparison with the ini-
tially implemented classic greedy NMS. Despite the numerous well-performing compositions of
Faster R-CNN and MTCNN with the proposed NMS methods, there is a minority outperforming
the status-quo concerning the accuracy and stability metrics combined. Replacing classic greedy
NMS in the post-processing of the Regional Proposal network with the newly proposed Average
NMS and substituting the initial implementation in the post-processing of the Region of Interest
head with Soft-NMS yields superior results in the Faster R-CNN for both of the used datasets.
Predicting with the same scenario with Average IoU NMS in the RPN head instead of Average
NMS increases the accuracy and stability performance even more for the PASCAL VOC dataset.
However, this is only partially true for the COCO dataset evaluated on the same framework.

Furthermore, especially the absence of Soft-NMS is noticeable in the results of MTCNN. Since
a combination of Soft-NMS yields good results in the Faster R-CNN, it is expected to behave sim-
ilarly in the framework for face detection. Lamentably, the experimental setup does not endorse
the functionality of Soft-NMS, and the performance is by no means comparable to any other com-
bination of NMS methods. Even though Soft-NMS does not contribute much evidence to the
results of MTCNN, there is still a contribution to the learning process. This failure highlights the
importance of not only bounding box detections but also detection probabilities. Both contribute
from the forward pass through the framework to the final output. Referring to chapter 3, where
Average NMS and Average IoU are proposed, this learning is beneficial. Several sources pro-
pose the two algorithms; some already implemented the averaging aspect of averaging bounding
box coordinates of overlapping boxes. However, the methods proposed in this thesis differ in
terms of recalculating the score. Comparing the results of the previous chapter and considering
the weak performance of Soft-NMS in MTCNN, it can be deduced that the computation of the
score is just as crucial as the bounding boxes, even though they are often overlooked in the visual
representation of the detection results.

In conclusion, this thesis provides an extensive foundation to study the influence of Non-
Maximum Suppression on the object and face detection. It exemplarily shows the vast potential of
this post-processing algorithm to increase the accuracy further but, more importantly, the stability
of bounding box prediction using a weighted average for detection boxes and scores. Therefore,
concerning the first research question, the weighted average approach of Non-Maximum Sup-
pression positively influences the stability of bounding box detection in object and face detectors.
The positive influence is shown on a 99% confidence level with multiple combinations, including
Average and Average IoU Non-Maximum Suppression. Also, the second research question can
be confidently answered. Combining the approach of treating static augmented images as frames
in a sequence with the stability evaluation metric for video detection and multi-object tracking
enables the capability of quantification and measurability to object and face detectors.

8.2 Future Work 75

8.2 Future Work
While conducting this work, numerous appealing areas for further research emerged. Some are
linked to the limitations mentioned in the previous chapter, but most relate to the paucity of
evidence in this under-researched area.

• The application of Average NMS and Average IoU NMS likely require a revision of the IoU
threshold in the different stages different from the default values used for classic greedy
NMS. The overwhelming amount of framework compositions limit the number of experi-
ments conducted, therefore. The potential for further increase in accuracy and stability is
probable

• Since the utilization of Average and Average IoU NMS in combination with Soft NMS in
the RPN and RoI head respectively yields good results for Faster R-CNN, there might be
a tremendous potential of adding a decaying factor to the Average and Average IoU NMS
algorithms

• Lowering the thresholds in MTCNN or increasing the decaying factor for Soft-NMS makes
this NMS method applicable in the framework

• The models used for the frameworks are mostly underperforming on the selected datasets
compared to the state-of-the-art performance of object and face detectors. Better-performing
models lead to more matches between detections and ground truths. This increased perfor-
mance, in turn, enables a more accurate study of the stability of detected bounding boxes

• Measuring the stability of facial landmarks in MTCNN is expected to correlate with the
stability of bounding boxes since these are predicted based on the bounding boxes. An
alternative way of integrating the additional information of landmarks into the process of
Non-Maximum Suppression can be done comparable as proposed by Ranjan et al. (2017).
Thereby, the landmarks offer additional information about the correct location of the face

• MTCNN uses softmax for binary classification; this could be replaced by binary cross-
entropy. Furthermore, in the P-Net, NMS is individually applied to every single level of
the image pyramid. Instead, the Multi-NMS function can handle multiple levels with offset.
Hence, this loop can be replaced, and the originating level passed to the M-NMS function

• The limiting factor for the throughput of experimental trials is the computation time. Since
the re-implemented NMS algorithms give great insight into the actual bounding box se-
lection process, they perform relatively slow. By orienting at the initial implementation of
classic greedy NMS by Torchvision, efficiency can be increased, and framework composition
evaluation can be performed faster

• Decoupling the stability evaluation from the accuracy evaluation would require a matching
process between ground truths and detections. However, IoU thresholds could be set in-
dependently and inspected in that regard, which is closer to the initially proposed stability
evaluation metric

• There are numerous ways to adjust the construction of sequences to simulate the move-
ments of objects. By increasing the number of frames in a sequence, usage of more diverse
transformations, differently arranging the frames, or simply using labeled video sequences,
the evaluation perspective on stability can be enhanced

76 Chapter 8. Conclusion & Future Work

• The parameters used for horizontal and vertical translations can be adjusted to all kinds of
detections. When tracing back detections to their origin in the Feature Pyramid Network,
the scaling factor can be considered when choosing the values of these parameters. There-
fore, shifts that overlap with the exact position of the sliding window can be prevented

• The stability evaluation can be paired with the research in translation, rotation and scale in-,
and equivariance

• For this work, only multi-stage detectors are investigated. The impact on single-stage de-
tectors is worth considering

• Ultimately, using Average and Average IoU NMS during the training can have an impact
on the object and face detectors to regress more stable bounding boxes

Appendix A

Further Information &
Implementation Details

A.1 Non-Maximum Suppression Alternatives
While Soft-NMS is aiming for a replacement of classic greedy NMS with a method comparable in
light of computational complexity, ASAP-NMS focusses on increasing the speed of NMS. Tripathi
et al. (2020) point out NMS of being a bottleneck to object detectors and propose the method
accelerating Non-Maximum-Suppression using spatially aware priors (ASAP). The speed of NMS
is increased by reducing the number of proposals which are not located in close proximity of each
other and therefore have a low chance of affecting the suppression decision. With this technique
latency is reduced by a pre-computed lookup table to provide an overlap in the anchor space as a
proxy for the overlap in the proposal space. Therefore, only proposals with a reasonable overlap
are looked up and compared with the maximum scoring bounding box. Without sacrificing the
accuracy on COCO and PASCAL VOC, ASAP-NMS achieves a decrease of latency from 13.6ms
to 1.2ms on CPU during the the post processing step of Non-Maximum Suppression. Despite the
increase in speed of NMS, Tripathi et al. (2020) only measure their method against the accuracy
of bounding box prediction and not the stability of these boxes.

Wu and Li (2021) have the goal of eliminating false positives from Non-Maximum Suppres-
sion by considering it as a combinatorial optimization problem. Additionally to classic greedy
NMS, the chaotic whale optimization algorithm is introduced to solve this problem. The chaotic
whale optimization is a meta-heuristic algorithm that is inspired by nature that initializes a set
of randomly selected candidate solutions and iteratively optimizes this set under supervision of
a fitness function. In more detail, the chaotic whale optimization utilizes the spatial locations
of bounding boxes and classic greedy NMS to partition them into candidate regions to approx-
imate the number of real objects. All bounding boxes have the same chance of being selected,
this reduces the greediness of classic greedy NMS by the global search ability. With the chaotic
search in combination with a fitness function, an optimal combination of bounding boxes can be
found. CW-NMS achieves a marginal increase in mAP of COCO and PASCAL VOC compared to
the classic greedy NMS and Soft-NMS. However, due to the randomness of the selection process,
there is a chance to further increase instability of the detected bounding boxes compared to classic
greedy NMS.

Tan et al. (2019) see non-maximum suppression as a ranking problem and propose an end-to-
end learning procedure. The subnetwork learns and predicts ranking scores based on the overlap
with the ground truth bounding boxes. These ranking scores get combined with the classifica-
tion scores to obtain a single criterion to conclude on the suppression decision of an associated
bounding box.

78 Appendix A. Further Information & Implementation Details

Tychsen-Smith and Petersson (2018) introduce a bounding box regression loss which goes well
with their modification of NMS called Fitness NMS. The bounded IoU loss aims to optimize the
proposed region of interest with the ground truth bounding box. Similarly, with Fitness NMS
only bounding boxes that maximize their estimated IoU with the ground truth get selected dur-
ing the post processing step. To conclude the implementation, only an accuracy evaluation was
performed without addressing the specifics of stability or localization in detail.

A.2 Data Preparation Implementation Details
As a first step the downloaded datasets get read in by a subclass of torch.utils.data.Dataset
as declared in the PyTorch documentation.1 Within such a dataset subclass the images are gen-
erally opened using the pillow library (PIL), which enables Python with image processing capa-
bilities.2 The annotations get parsed depending on the source format of the individual dataset
annotations. A dataset subclass has a minimum of three methods built in, namely __init__ as
the constructor, __getitem__ to access images and annotations by index and __len__ to provide
the length of the dataset.1 The constructor of the dataset subclass requires multiple arguments,
which can be divided into two categories: data origin related and data transformation related.
The data origin related arguments differ depending on each of COCO, PASCAL VOC or WIDER
Face data and will be explained individually. In general the directory of the stored images and
annotations needs to be passed first or whether the data should be downloaded.

The second argument category with the data transformation related arguments is the same
for each of the datasets and consists of four different transformational arguments. Three of these
will be introduced in the next section of affine transformations. Nevertheless, the first transfor-
mational argument is implemented in the reused PyTorch dataset subclass and is inherited from
the VisionDataset and can be one of transform, transforms or target_transform.3 All of
these possible arguments take a transform function which gets manually defined before creat-
ing a dataset object and is called get_transform(). transform takes the transform function
get_transform() which itself takes a PIL image and transforms it.1 transforms takes as well
the transform function get_transform() of an input and target and returns a transformed ver-
sion of both.1 And lastly, target_transform takes the transform function get_transform()

which only takes a target and returns the transformed target again.1 The transform function
get_transform() is defined as a composition of either standard transform objects or functional
transform objects from torchvision.transforms or torchvision.transforms.functional re-
spectively in the form of a list.4 The difference between standard transform objects and func-
tional transform objects lies in the randomness of their parameters.4 Functional transform ob-
jects do not contain a random number generator and are used to create reproducible transfor-
mations.4 Regardless of functional or non functional transformations, the composition takes a
list of transform objects and is nested in the transform function get_transform() which gets
passed to the dataset subclass.4 An example of such a transform object that gets appended
to a list to be composed, is the ToTensor object, which is a functional transformation object
from torchvision.transforms.functional. With ToTensor an image of type PIL image or
numpy.ndarray with the shape (H x W x C) with pixel values in the range [0, 255] gets converted
into a torch.FloatTensor of shape (C x H x W) with a range between [0.0, 1.0].4 In terms of
shape; C stands for the color channels, H for height and W for width. The ToTensor object is the
first transformation that gets appended to the composition within the get_transform() function.

1PyTorch Datasets: https://pytorch.org/vision/stable/datasets.html
2Pillow on Github: https://github.com/python-pillow/Pillow
3Vision Dataset on Github: https://github.com/pytorch/vision/blob/master/torchvision/

datasets/vision.py
4Vision Dataset on Github: https://pytorch.org/vision/stable/transforms.html

https://pytorch.org/vision/stable/datasets.html
https://github.com/python-pillow/Pillow
https://github.com/pytorch/vision/blob/master/torchvision/datasets/vision.py
https://pytorch.org/vision/stable/transforms.html

A.2 Data Preparation Implementation Details 79

Regarding the practical implementation of the second goal of the data preparation, the datasets
not only have to be capable of holding the images and ground truths in an original state but also
produce an affine transformed version of the data as mentioned above. Therefore, when look-
ing at the variety of transform objects of torchvision.transforms, it can be observed that there
exists a class called RandomAffine.4 This class takes among others the parameters degrees and
shear, which lead to a transformation in terms of rotation and shifts in x and y dimension.4 How-
ever, when looking closely at the forward() function of the RandomAffine class, it can be seen
that it only accepts an image with the type of a PIL image or a tensor as input.4 Similarly the
return value is only the affine transformed image.4 This means when utilizing an object of the
RandomAffine class in the composition of the get_transform() function, it can only be passed
with the transform parameter of the dataset subclass. Which further means that only the image
gets transformed but not the associated annotations. The result of such a unilateral transforma-
tion of only the images would leave out the annotations from this transformation as observable in
figure 5.1. Further down the prediction pipeline the model would predict bounding boxes based
on a transformed image but the evaluation metric would then compare those bounding boxes to
untransformed ground truth annotations. A possible workaround could be to define a second
transform function with a similar transformation pipeline dedicated to the annotations but there
I face the problem that the RandomAffine class only takes PIL images or tensors of images as
inputs in the forward() function.4

By relating back to the initially mentioned four transformational parameters which are passed
when creating such a dataset subclass, the first transformational parameter was explained above.
In order to delegate the shifts in x and y direction and the rotation, the last three transformational
arguments are needed. Even though two almost independent transformation pipelines are in
use, they can be content-wise delimited. Type transformation as seen in the get_transform()

function gets passed via the first transformational parameter when instantiating an object of the
dataset subclass. The affine transformation then has to be moved inside the dataset subclass and
implemented in the __getitem__ method. This means every time an image and annotations pair
gets extracted from the dataset subclass the affine transformation gets executed and returned.

After explaining the details behind the data origin related and the four transformational pa-
rameters, an object of the dataset subclass can be created and stored in a variable. As the last
step of data preparation the dataset subclass object gets passed to a data loader (DataLoader)
from torch.utils.data in order to be able to iterate through the dataset during prediction and
evaluation.5

With regard to the PyTorch implementation of the COCO, PASCAL VOC and WIDER Face
dataset from torchvision.datasets substantial changes are applied to comply with with the
functionalities required for the detection and especially for the evaluation pipeline for experi-
mental purposes.1 Most importantly, the constructor of the COCODetection, VOCDetection and
WIDERFace subclasses of the VisionDataset class must be complemented with the 3 transforma-
tional parameters for affine transformations described above to enable shifts and a rotation via the
__getitem__() method of the class. This addition of the transformational arguments is applied
to all the datasets. Additionally, the WIDERFace class constructor needs another additional argu-
ment to distinguish between the difficulties provided in the data as described in section 2.1.3. To
prevent the WIDERFace class to load all the data during instantiation and then only select a subset
of the data, it is decided to distinguish during the data parsing process. This means that only
the respective images and annotations of the chosen difficulty get parsed. This is achieved by
implementing an additional filtering function, which is called during the parsing. The original
implementation of torchvision.datasets.widerface iterates over the annotation file to extract
the image file location and annotations from the txt file. The image path, which is a string, indi-
cates to what event category the image and its annotations belong. As described in section 2.1.3

5PyTorch Dataloader: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

80 Appendix A. Further Information & Implementation Details

the event categories between 40 and 60 are classified to belong to the easy difficulty. By splitting
up the string and extracting the event category, an integer comparison selects images and annota-
tions belonging to the range [40, 60]. Even though it is mentioned in 2.1.3 to only utilize the easy
partition of the WIDER Face dataset for this analysis, the selection also works for medium and
hard difficulties of the dataset images. Additionally, the mentioned invalidity check for bounding
box annotations from 2.1.3 is also placed within this filtering function.

A.3 Faster R-CNN Post Processing

The custom adjustment implementation of the Non-Maximum-Suppression function call in RPN
and Fast R-CNN has only small impact in the code but due to strong interleaving of single func-
tion calls, it drags a chain of changes in the original code with it. Since both NMS applications
are located in the post processing steps of the two modules of Faster R-CNN, they both execute
the same NMS function and the same adjustments can be applied. With the original implementa-
tion of PyTorch, the orchestration of instantiation of the two modules (RPN and Fast R-CNN) is
achieved via submodules of RPN and Fast R-CNN (RPN anchor generation, RPN head, box RoI
pool, RoI heads, Fast R-CNN predictor and others) in the FasterRCNN class that is itself a subclass
of GeneralizedFasterRCNN. Both are located in torchvision.models.detection. While the
majority of instantiations are done within the __init__() function of the FasterRCNN class (back-
bone instantiation is done via a standalone function in the same Python file), the forward pass is
implemented in the main class GeneralizedFasterRCNN. The two NMS function calls are located
in torchvision.models.detection.rpn and torchvision.models.detection.roi_heads,
which are both instantiated during the model construction via FasterRCNN. The original NMS
implementation of PyTorch does not allow parameters upon the model instantiation that can
change the behavior of the NMS function, which is itself located in torchvision.ops.boxes.6

Therefore, Multi-NMS replaces the necessity of torchvision.ops.boxes by providing a new
Python file outside of the Torchvision side package for example in a self maintained repository.8

To access the Multi-NMS function from the RPN and Fast R-CNN post processing, these two files
have to be copied over to the same repository as well. Additionally, the classic greedy NMS func-
tion returns only the indices of the selected boxes in a descending order of the objectness or class
probability score. With the replacing Multi-NMS function, described in 3, bounding box coordi-
nates and scores are computed in an alternative way and can not be referenced back by index of
the input bounding boxes and scores as shown in listing A.1. Therefore, the Multi-NMS function
returns instead of indices, all selected bounding boxes with the respective scores and levels/la-
bels according to listing A.2. This change in return values have to be reflected in the RPN and
Fast R-CNN post processing as well by replacing the index-specific selection of instances with the
return values of the new NMS function. Moreover, to create a flexible experimental setup with
varying NMS parameters (NMS methods, IoU thresholds, NMS method specific thresholds and
limits) these parameters have to be passed through the RPN and Fast R-CNN instantiation in the
FasterRCNN class. This means that the FasterRCNN class also has to be adjusted and stored in the
same repository as mentioned above. By providing customized versions of the FasterRCNN, RPN
and RoI heads classes and an own implementation of the NMS function, the forward pass of the
Faster R-CNN is still done via GeneralizedFasterRCNN but utilizes the classes in the Python files
located in the newly created repository.

6Torchvision NMS on Github: https://github.com/pytorch/vision/blob/master/torchvision/
ops/boxes.py

https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py

A.4 Implementation Details of MTCNN 81

1 keep = box_ops.batched_nms(boxes, scores, labels, self.nms_thresh)

2 keep = keep[:self.post_nms_top_n()]

3 boxes, scores, labels = boxes[keep], scores[keep], labels[keep]

Listing A.1: ORIGINAL INDEX SELECTION IN FASTER R-CNN

1 indices, boxes, scores, labels = mnms(boxes, scores, labels, nms_thres=self.nms_thresh,

multi_class=True, method=self.nms_method, score_thres=0.1, limit=self.

detections_per_img)

Listing A.2: REPLACEMENT OF INDEX SELECTION IN FASTER R-CNN

A.4 Implementation Details of MTCNN
The difference to the accessibility of the provided code to Faster R-CNN is that MTCNN is not
available as PyTorch implementation but must rather be cloned from Github.7 The code described
in section 5.2.2 depends heavily on the Facenet-PyTorch implementation.7 As mentioned by ex-
plaining the pass through of an example image in section 5.2.2, the only changes that differ from
the original implementation are the NMS function calls and the respective usage of its return val-
ues. In total there are 4 different NMS function calls (2 in P-Net, 1 in R-Net and 1 in O-Net). The
original implementation of Facenet-PyTorch utilizes the same NMS function of PyTorch as Faster
R-CNN by importing torchvision.ops.boxes.8 The torchvision.ops.boxes NMS works in a
classic greedy fashion by returning solely the indices of the selected boxes according the algorithm
1. Since the classic greedy NMS only returns indices, these indices then have to be looked up in
the bounding boxes, scores and regression values, which two of them were passed to the function
as parameters. The definitive selection only takes place as shown in listing A.3. The Multi-NMS
function that implements a variable way to execute different NMS methods with a set of param-
eters, is required to alter the bounding box coordinates (in case of averaging overlapping boxes
above IoU threshold) and returns the new bounding boxes. The aggregated bounding boxes then
cannot be retrieved by slicing with indices in the original bounding box tensor boxes as displayed
in listing A.3. Therefore, the substitution of the NMS function call also drags along a change in the
subsequent further slicing of tensors in MTCNN as shown in listing A.4. By having the selected
boxes and scores directly as a return value of the Multi-NMS function, there is no need for slicing
in the boxes tensor. It can simply be continued with the usage of the tensor nms_boxes instead.
However, the replacement of the selection process as seen in the implementation details for Faster
R-CNN in section 5.2.1 cannot be directly applied to MTCNN. MTCNN also requires the indices
to slices the non-suppressed bounding boxes when multiple images are processed in a batched
fashion. Therefore, the Multi-NMS function not only returns the selected bounding boxes, scores
and levels, but also the indices of those instances which where not suppressed.

7Facenet-PyTorch on Github: https://github.com/timesler/facenet-pytorch
8Torchvision NMS on Github: https://github.com/pytorch/vision/blob/master/torchvision/

ops/boxes.py

https://github.com/timesler/facenet-pytorch
https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py

82 Appendix A. Further Information & Implementation Details

1 pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7)

2 boxes, image_inds, mv = boxes[pick], image_inds[pick], mv[pick]

Listing A.3: ORIGINAL INDEX SELECTION IN MTCNN

1 pick, nms_boxes, nms_scores, nms_levels = mnms(boxes_scale[:, :4], boxes_scale[:,4],

image_inds_scale, nms_thres=0.7, multi_class=True, method=first_stage_method,

score_thres=0.01)

Listing A.4: REPLACEMENT OF INDEX SELECTION IN MTCNN

Appendix B

Code

B.1 Multi-NMS Implementation

1 def mnms(boxes, scores, levels, nms_thres=0.5, multi_class=True, method=’vision’,

score_thres=0.01, limit=1000):

2 """Multi-Non-Maximum Suppression implementation to variably change between NMS

methods to select or aggregate

3 bounding boxes

4 Args:

5 boxes (Tensor[N, 4], required): Bounding boxes to perform NMS. Boxes are

expected to have the format

6 [xmin, ymin, xmax, ymax] with 0 <= xmin < xmax and 0 <= ymin < ymax.

7 scores (Tensor[N], required): Scores for each of the bounding boxes.

8 levels (Tensor[N], required)): Levels/Labels for each of the bounding boxes.

9 nms_thres (Tensor[N], required): IoU threshold above which NMS is performed.

Default: 0.5

10 multi_class (bool, optional): Multi-class distinction to apply an offset to not

compare boxes between

11 different levels/labels. Default: True

12 method (string, optional): NMS method, can be one of ’vision’, ’classic’, ’soft

’, ’average’, ’average_iou’.

13 Default: ’vision’

14 score_thres (flaot, optional): Score threshold, only applicable when method=’

soft’. Performs filtering

15 on decayed scores. Default: 0.01

16 limit (int, optional): Limits the number of boxes to be returned. Default: 1000

17 Returns:

18 tuple(indices, boxes, scores, levels): indices (Tensor[K]), boxes (Tensor[K, 4])

, scores (Tensor[K]), levels (Tensor[K])

19 Raises:

20 Exception: When an invalid method is passed that is not implemented

21 """

22 device = boxes.device

23 if boxes.numel() == 0:

24 return torch.empty((0,), dtype=torch.int64, device=levels.device), \

25 torch.empty((0, 4), dtype=torch.int64, device=boxes.device), \

26 torch.empty((0,), dtype=torch.int64, device=scores.device), \

27 torch.empty((0,), dtype=torch.int64, device=levels.device)

Listing B.1: OWN IMMPLEMENTATION OF MULTI-NON-MAXIMUM SUPPRESSION PART 4

84 Appendix B. Code

1 ...

2 all_methods = [’vision’, ’classic’, ’soft’, ’average’, ’average_iou’]

3 if not any(method.lower() == s for s in all_methods):

4 raise Exception("NMS method not defined, try one of {}".format(all_methods))

5

6 if method == ’average_iou’:

7 iou = True

8 method = ’average’

9 elif method == ’average’:

10 iou = False

11

12 indices = torch.sort(scores, descending=True)[1]

13 boxes = boxes[torch.sort(scores, descending=True)[1]]

14 levels = levels[torch.sort(scores, descending=True)[1]]

15 scores = torch.sort(scores, descending=True)[0]

16

17 D_b, D_s, D_l, D_i = [], [], [], []

18 if multi_class:

19 max_coordinate = boxes.max()

20 offsets = levels.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes))

21 boxes = boxes + offsets[:, None]

22

23 if method == ’vision’:

24 nms_indices = box_ops.nms(boxes, scores, nms_thres)

25 D_i, D_b, D_s, D_l = nms_indices, boxes[nms_indices],

26 scores[nms_indices], levels[nms_indices]

27

28 elif method == ’classic’:

29 while boxes.shape[0]:

30 M = boxes[0]

31 D_b.append(M)

32 D_s.append(scores[0])

33 D_l.append(levels[0])

34 D_i.append(indices[0])

35 boxes = boxes[1:]

36 scores = scores[1:]

37 levels = levels[1:]

38 indices = indices[1:]

39 inds_below = torch.where(

40 box_ops.box_iou(

41 M.unsqueeze(0), boxes) < nms_thres)[1]

42 boxes = boxes[inds_below]

43 scores = scores[inds_below]

44 levels = levels[inds_below]

45 indices = indices[inds_below]

46 D_l = torch.stack(D_l)

47 D_b = torch.stack(D_b)

48 D_s = torch.stack(D_s)

49 D_i = torch.stack(D_i)

Listing B.2: OWN IMMPLEMENTATION OF MULTI-NON-MAXIMUM SUPPRESSION PART 4

B.1 Multi-NMS Implementation 85

1 ...

2 elif method == ’average’:

3 while boxes.shape[0]:

4 M_b = boxes[0]

5 M_s = scores[0]

6 M_l = levels[0]

7 M_i = indices[0]

8 boxes = boxes[1:]

9 scores = scores[1:]

10 levels = levels[1:]

11 indices = indices[1:]

12 ious = box_ops.box_iou(M_b.unsqueeze(0), boxes)

13 inds_below = torch.where(ious < nms_thres)[1]

14 inds_above = torch.where(ious >= nms_thres)[1]

15 cand_boxes = torch.cat((boxes[inds_above], M_b.unsqueeze(0)), 0).to(device)

16 cand_scores = torch.cat(

17 (scores[inds_above], M_s.unsqueeze(0)), 0).to(device)

18 if iou:

19 w_iou = torch.cat(

20 (torch.ones(1), ious[0][inds_above]), 0)

21 else:

22 w_iou = torch.ones(cand_scores.shape[0])

23

24 cand_scores = cand_scores * w_iou.to(device)

25 weights = cand_scores / cand_scores.sum()

26 new_box = torch.sum(

27 weights.reshape(1,-1).t() * cand_boxes, dim=0)

28 new_score = torch.sum(weights * cand_scores)

29

30 D_b.append(new_box)

31 D_s.append(new_score)

32 D_l.append(M_l)

33 D_i.append(M_i)

34

35 indices = indices[inds_below]

36 boxes = boxes[inds_below]

37 scores = scores[inds_below]

38 levels = levels[inds_below]

39

40 if len(D_l) == limit:

41 break

42

43 D_l = torch.stack(D_l)

44 D_b = torch.stack(D_b)

45 D_s = torch.stack(D_s)

46 D_i = torch.stack(D_i)

Listing B.3: OWN IMPLEMENTATION OF MULTI-NON-MAXIMUM SUPPRESSION PART 3

86 Appendix B. Code

1 ...

2 elif method == ’soft’:

3 sigma = 0.5

4 while boxes.shape[0]:

5 indices = indices[torch.sort(scores, descending=True)[1]]

6 boxes = boxes[torch.sort(scores, descending=True)[1]]

7 levels = levels[torch.sort(scores, descending=True)[1]]

8 scores = torch.sort(scores, descending=True)[0]

9

10 M_b = boxes[0]

11 D_b.append(M_b)

12 D_s.append(scores[0])

13 D_l.append(levels[0])

14 D_i.append(indices[0])

15 boxes = boxes[1:]

16 scores = scores[1:]

17 levels = levels[1:]

18 indices = indices[1:]

19 ious = box_ops.box_iou(M_b.unsqueeze(0), boxes)

20 scores = scores * torch.exp(-(ious*ious)/sigma).squeeze()

21

22 D_l = torch.stack(D_l)

23 D_b = torch.stack(D_b)

24 D_s = torch.stack(D_s)

25 D_i = torch.stack(D_i)

26

27 D_l = D_l[D_s > score_thres]

28 D_b = D_b[D_s > score_thres]

29 D_s = D_s[D_s > score_thres]

30 D_i = D_i[D_s > score_thres]

31

32 if len(D_s) == 0 or len(D_b) == 0:

33 return torch.empty((0,), dtype=torch.int64, device=levels.device), \

34 torch.empty((0, 4), dtype=torch.int64, device=boxes.device), \

35 torch.empty((0,), dtype=torch.int64, device=scores.device), \

36 torch.empty((0,), dtype=torch.int64, device=levels.device)

37

38 if multi_class:

39 offsets_ = D_l.to(D_b) * (max_coordinate + torch.tensor(1).to(D_b))

40 D_b = D_b - offsets_[:, None]

41

42 return D_i, D_b, D_s, D_l

Listing B.4: OWN IMPLEMENTATION OF MULTI-NON-MAXIMUM SUPPRESSION PART 4

B.2 Stability Evaluation 87

B.2 Stability Evaluation

1

2

3 def get_transform():

4 transforms = []

5 transforms.append(T.ToTensor())

6 return T.Compose(transforms)

7

8

9 coco_dataset = CocoTransformedDetection(

10 root=’/home/user/engeli/detectron2/datasets/coco/val2017’,

11 annFile=’/home/user/engeli/detectron2/datasets/coco/’

12 ’annotations/instances_val2017.json’,

13 transforms=get_transform(), x_shift=0, y_shift=0, rotation=0)

14

15 data_loader = torch.utils.data.DataLoader(

16 coco_dataset, batch_size=1, shuffle=False, num_workers=0,

17 collate_fn=utils.collate_fn)

18

19 coco_r_dataset = CocoTransformedDetection(

20 root=’/home/user/engeli/detectron2/datasets/coco/val2017’,

21 annFile=’/home/user/engeli/detectron2/datasets/coco/’

22 ’annotations/instances_val2017.json’,

23 transforms=get_transform(), x_shift=0, y_shift=0, rotation=5)

24

25 data_r_loader = torch.utils.data.DataLoader(

26 coco_r_dataset, batch_size=1, shuffle=False, num_workers=0,

27 collate_fn=utils.collate_fn)

28

29 rpn = [’standard’, ’soft’, ’average’, ’average_iou’]

30 roi = [’standard’, ’soft’, ’average’, ’average_iou’]

31 all_methods = [rpn, roi]

32 methods = list(itertools.product(*all_methods))

33

34

35 def convert_to_xyxy(boxes):

36 """ Converts bounding boxes in the form [xmin, ymin, w, h] to bounding boxes with [

xmin, ymin, xmax, ymax]

37 Args:

38 boxes (Tensor[N, 4], required): Bounding boxes in the form [xmin, ymin, w, h]

39

40 Returns:

41 Tensor[N, 4]: Bounding boxes in the form [xmin, ymin, xmax, ymax]

42 """

43 return torch.transpose(

44 torch.stack([boxes[:, 0], boxes[:, 1], boxes[:, 0] + boxes[:, 2],

45 boxes[:, 1] + boxes[:, 3]]), 0, 1)

Listing B.5: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 2

88 Appendix B. Code

1 ...

2 def backward_transform(image_id, boxes_dt, boxes_gt):

3 """ Inverse transforms detection and ground truth boxes of already transformed boxes

4 by considering image size with associated image_id

5 Args:

6 image_id (int, required): Image ID that the bounding boxes are associated to

7 boxes_dt (Tensor[N, 4], required): Detected bounding boxes in the form [xmin,

ymin, xmax, ymax]

8 boxes_gt (Tensor[N, 4], required): Ground truth bounding boxes in the form [xmin

, ymin, xmax, ymax]

9 Returns:

10 tuple(boxes_dt, boxes_gt): Inverse transformed detection boxes (Tensor[N, 4])

11 and ground truth boxes (Tensor[N, 4]), both in the form in the form [xmin, ymin,

xmax, ymax]

12 """

13 if torch.unique(torch.nonzero(boxes_dt)[:, 0]).numel() == 0:

14 return torch.zeros(1, 4), torch.zeros(1, 4)

15 else:

16 img_o_shape = (coco_dataset.coco.imgs[image_id][’height’],

17 coco_dataset.coco.imgs[image_id][’width’])

18 r_height = int(img_o_shape[0] * np.cos(np.deg2rad(5)) +

19 img_o_shape[1] * np.sin(np.deg2rad(5)))

20 r_width = int(img_o_shape[0] * np.sin(np.deg2rad(5)) +

21 img_o_shape[1] * np.cos(np.deg2rad(5)))

22 img_shape = (r_height, r_width)

23 img = torch.ones((img_shape[0], img_shape[1], 3))

24 boxes_dt = box_ops.clip_boxes_to_image(boxes_dt, img_shape)

25 boxes_gt = box_ops.clip_boxes_to_image(boxes_gt, img_shape)

26 factor = torch.tensor(img_shape) / torch.tensor(img_o_shape)

27 boxes_dt = torch.cat((boxes_dt, torch.ones(

28 boxes_dt.shape[0]).unsqueeze(1)), 1)

29 boxes_gt = torch.cat((boxes_gt, torch.zeros(

30 boxes_gt.shape[0]).unsqueeze(1)), 1)

31 boxes = torch.cat((boxes_dt, boxes_gt))

32 transform = A.Compose([

33 A.augmentations.geometric.transforms.Affine(

34 scale={’x’: float(factor[1]), ’y’: float(factor[0])}, rotate=-5,

35 fit_output=False, mode=1, always_apply=True)],

36 bbox_params=A.BboxParams(format=’pascal_voc’, min_visibility=0.3))

37 transformed = transform(image=np.array(img) * 255, bboxes=boxes)

38 dt, gt = [], []

39 for box in transformed[’bboxes’]:

40 if int(box[4]) == 0:

41 xmin, ymin, xmax, ymax = box[:4]

42 gt.append(torch.tensor([xmin / factor[1], ymin / factor[0],

43 xmax / factor[1], ymax / factor[0]]))

44 if int(box[4]) == 1:

45 xmin, ymin, xmax, ymax = box[:4]

46 dt.append(torch.tensor([xmin / factor[1], ymin / factor[0],

47 xmax / factor[1], ymax / factor[0]]))

48 if len(dt) == 0:

49 return torch.zeros(1, 4), torch.zeros(1, 4)

50 else:

51 return torch.stack(dt), torch.stack(gt)

Listing B.6: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 2

B.2 Stability Evaluation 89

1 ...

2 def get_e_x_y(gt_boxes, dt_boxes):

3 """ Calculates deviation of the detection from center position in x- and y-dimension

from the ground truth

4 Args:

5 gt_boxes (Tensor[N, 4], required): Detected bounding boxes in the form [xmin,

ymin, xmax, ymax]

6 dt_boxes (Tensor[N, 4], required): Ground truth bounding boxes in the form [xmin

, ymin, xmax, ymax]

7

8 Returns:

9 tuple(center_deviation_x, center_deviation_y): center_deviation_x and

center_deviation_y as Tensor[N]

10 """

11 if len(dt_boxes.shape) == 1:

12 gt_boxes = gt_boxes.unsqueeze(0)

13 dt_boxes = dt_boxes.unsqueeze(0)

14 w = gt_boxes[:, 2] - gt_boxes[:, 0]

15 h = gt_boxes[:, 3] - gt_boxes[:, 1]

16 x_c_d = dt_boxes[:, 0] + 0.5 * (dt_boxes[:, 2] - dt_boxes[:, 0])

17 y_c_d = dt_boxes[:, 1] + 0.5 * (dt_boxes[:, 3] - dt_boxes[:, 1])

18 x_c_g = gt_boxes[:, 0] + 0.5 * (gt_boxes[:, 2] - dt_boxes[:, 0])

19 y_c_g = gt_boxes[:, 1] + 0.5 * (gt_boxes[:, 3] - dt_boxes[:, 1])

20 return (x_c_d - x_c_g) / w, (y_c_d - y_c_g) / h

21

22

23 def get_e_s_r(gt_boxes, dt_boxes):

24 """ Calculates deviation from scale and aspect ratio of the detection compared to

the ground truth

25 Args:

26 gt_boxes (Tensor[N, 4], required): Detected bounding boxes in the form [xmin,

ymin, xmax, ymax]

27 dt_boxes (Tensor[N, 4], required): Ground truth bounding boxes in the form [xmin

, ymin, xmax, ymax]

28

29 Returns:

30 tuple(scale_deviation_x, ratio_deviation_y): scale_deviation_x and

ratio_deviation_y as Tensor[N]

31 """

32 if len(dt_boxes.shape) == 1:

33 gt_boxes = gt_boxes.unsqueeze(0)

34 dt_boxes = dt_boxes.unsqueeze(0)

35 w_g = gt_boxes[:, 2] - gt_boxes[:, 0]

36 h_g = gt_boxes[:, 3] - gt_boxes[:, 1]

37 w_d = dt_boxes[:, 2] - dt_boxes[:, 0]

38 h_d = dt_boxes[:, 3] - dt_boxes[:, 1]

39 s = (w_d * h_d) / (w_g * h_g)

40 return torch.tensor([torch.sqrt(s_i) for s_i in s]), \

41 (w_d / h_d) / (w_g / h_g)

Listing B.7: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 3

90 Appendix B. Code

1 ...

2 def get_sigmas(frame, m):

3 """ Calculates standard deviations for center deviations and scale and ratio

deviations.

4 And calculates the fragment error.

5 Args:

6 frame (dict of str: Tensor[N, 4], required): Keys in [’default_gt_boxes’, ’

x_gt_boxes’, ’y_gt_boxes’,

7 ’r_gt_boxes’,’default_boxes’, ’x_boxes’, ’y_boxes’, ’r_boxes’]

8 m (Tensor[4, N], required): Matrix indicating the presence or absence of every

unique detection in every frame

9 Returns:

10 tuple(sigma_x, sigma_y, sigma_s, sigma_r, fes): Each element of the tuble has

the format Tensor[N]

11 """

12 gts = [’default_gt_boxes’, ’x_gt_boxes’, ’y_gt_boxes’, ’r_gt_boxes’]

13 dts = [’default_boxes’, ’x_boxes’, ’y_boxes’, ’r_boxes’]

14 e_xs = []

15 e_ys = []

16 e_ss = []

17 e_rs = []

18 sigma_x = []

19 sigma_y = []

20 sigma_s = []

21 sigma_r = []

22 for g, d in zip(gts, dts):

23 num_el = torch.unique(torch.nonzero(frame[d])[:, 0]).numel()

24 max_el = int(m.shape[1])

25 if not num_el:

26 e_x, e_y, e_s, e_r = torch.ones(4, max_el) * float(’Nan’)

27 else:

28 e_x, e_y = get_e_x_y(frame[g], frame[d])

29 e_s, e_r = get_e_s_r(frame[g], frame[d])

30 e_xs.append(e_x)

31 e_ys.append(e_y)

32 e_ss.append(e_s)

33 e_rs.append(e_r)

34 e_x = torch.stack(e_xs)

35 e_y = torch.stack(e_ys)

36 e_s = torch.stack(e_ss)

37 e_r = torch.stack(e_rs)

Listing B.8: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 4

B.2 Stability Evaluation 91

1 ...

2 for i in range(e_x.shape[1]):

3 if len(e_x[list(torch.isnan(e_x[:, i]) == False), i]) > 1:

4 sigma_x.append(statistics.stdev(

5 [float(x) for x in e_x[:, i] if not torch.isnan(x)]))

6 sigma_y.append(statistics.stdev(

7 [float(y) for y in e_y[:, i] if not torch.isnan(y)]))

8 sigma_s.append(statistics.stdev(

9 [float(s) for s in e_s[:, i] if not torch.isnan(s)]))

10 sigma_r.append(statistics.stdev(

11 [float(r) for r in e_r[:, i] if not torch.isnan(r)]))

12 else:

13 sigma_x.append(

14 [float(x * 0) for x in e_x[:, i] if not torch.isnan(x)][0])

15 sigma_y.append(

16 [float(y * 0) for y in e_y[:, i] if not torch.isnan(y)][0])

17 sigma_s.append(

18 [float(s * 0) for s in e_s[:, i] if not torch.isnan(s)][0])

19 sigma_r.append(

20 [float(r * 0) for r in e_r[:, i] if not torch.isnan(r)][0])

21

22 m = m.transpose(0, 1)

23 m[m > 0] = 1

24 fes = []

25 for element in m:

26 f_e = 0

27 for e in range(1, 4):

28 if element[e] != element[e - 1]:

29 f_e += 1

30 fes.append(f_e / 3)

31

32 return torch.tensor(sigma_x).squeeze(), torch.tensor(sigma_y).squeeze(), \

33 torch.tensor(sigma_s).squeeze(), torch.tensor(sigma_r).squeeze(), torch.

tensor(fes)

Listing B.9: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 5

92 Appendix B. Code

1 ...

2 if __name__ == ’__main__’:

3 for m in tqdm(range(len(methods))):

4 rpn, roi = methods[m]

5 if rpn == ’soft’:

6 rpn_thr = ’score_thres_0.01’

7 else:

8 rpn_thr = ’default’

9 if roi == ’soft’:

10 roi_thr = ’score_thres_0.1’

11 else:

12 roi_thr = ’default’

13 res_d_file = ’/home/user/engeli/stabilizing-nms/fasterrcnn/coco_results/accuracy

/’

14 \’coco_resnet50_rpn_{}_{}_roi_{}_{}_x_default_y_default_rot_default.h5’.format(

15 rpn, rpn_thr, roi, roi_thr)

16 res_x_file = ’/home/user/engeli/stabilizing-nms/fasterrcnn/coco_results/accuracy

/’

17 \’coco_resnet50_rpn_{}_{}_roi_{}_{}_x_20_y_default_rot_default.h5’.format(

18 rpn, rpn_thr, roi, roi_thr)

19 res_y_file = ’/home/user/engeli/stabilizing-nms/fasterrcnn/coco_results/accuracy

/’

20 \’coco_resnet50_rpn_{}_{}_roi_{}_{}_x_default_y_20_rot_default.h5’.format(

21 rpn, rpn_thr, roi, roi_thr)

22 res_r_file = ’/home/user/engeli/stabilizing-nms/fasterrcnn/coco_results/accuracy

/’ \

23 ’coco_resnet50_rpn_{}_{}_roi_{}_{}_x_default_y_default_rot_5.h5’.

format(

24 rpn, rpn_thr, roi, roi_thr)

25 _, _, _, results_d = dd.io.load(res_d_file)

26 _, _, _, results_x = dd.io.load(res_x_file)

27 _, _, _, results_y = dd.io.load(res_y_file)

28 _, _, _, results_r = dd.io.load(res_r_file)

29 stability_results = dict()

30 frames = []

31 N = 0

32 results_d = {d[’image_id’]: d for d in results_d if d[’aRng’] == [0,

10000000000.0]}

33 results_x = {x[’image_id’]: x for x in results_x if x[’aRng’] == [0,

10000000000.0]}

34 results_y = {y[’image_id’]: y for y in results_y if y[’aRng’] == [0,

10000000000.0]}

35 results_r = {r[’image_id’]: r for r in results_r if r[’aRng’] == [0,

10000000000.0]}

36 indices_d = list(results_d.keys())

37 indices_x = list(results_x.keys())

38 indices_y = list(results_y.keys())

39 indices_r = list(results_r.keys())

40 lead_indices = list(set().union(indices_d, indices_x, indices_y, indices_r))

Listing B.10: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 6

B.2 Stability Evaluation 93

1 ...for i in tqdm(range(len(lead_indices))):

2 frame = dict()

3 image_id = lead_indices[i]

4 frame[’image_id’] = image_id

5 if lead_indices[i] in indices_d:

6 len_d = len(results_d[lead_indices[i]][’dtBoxes’])

7 if len_d > 0:

8 boxes_d_dt = convert_to_xyxy(torch.stack(

9 results_d[lead_indices[i]][’dtBoxes’]))

10 boxes_d_gt = convert_to_xyxy(torch.tensor(

11 results_d[lead_indices[i]][’gtBoxes’]))

12 else:

13 boxes_d_dt, boxes_d_gt = torch.zeros(1, 4),torch.zeros(1, 4)

14 else:

15 len_d = 0

16 if lead_indices[i] in indices_x:

17 len_x = len(results_x[lead_indices[i]][’dtBoxes’])

18 if len_x > 0:

19 boxes_x_dt = convert_to_xyxy(torch.stack(

20 results_x[lead_indices[i]][’dtBoxes’]))

21 boxes_x_gt = convert_to_xyxy(torch.tensor(

22 results_x[lead_indices[i]][’gtBoxes’]))

23 else:

24 boxes_d_dt, boxes_d_gt = torch.zeros(1, 4),torch.zeros(1, 4)

25 else:

26 len_x = 0

27 if lead_indices[i] in indices_y:

28 len_y = len(results_y[lead_indices[i]][’dtBoxes’])

29 if len_y > 0:

30 boxes_y_dt = convert_to_xyxy(torch.stack(

31 results_y[lead_indices[i]][’dtBoxes’]))

32 boxes_y_gt = convert_to_xyxy(torch.tensor(

33 results_y[lead_indices[i]][’gtBoxes’]))

34 else:

35 boxes_d_dt, boxes_d_gt = torch.zeros(1, 4),torch.zeros(1, 4)

36 else:

37 len_y = 0

38 if lead_indices[i] in indices_r:

39 len_r = len(results_r[lead_indices[i]][’dtBoxes’])

40 if len_r > 0:

41 boxes_r_dt = convert_to_xyxy(torch.stack(

42 results_r[lead_indices[i]][’dtBoxes’]))

43 boxes_r_gt = convert_to_xyxy(torch.tensor(

44 results_r[lead_indices[i]][’gtBoxes’]))

45 else:

46 boxes_d_dt, boxes_d_gt = torch.zeros(1, 4),torch.zeros(1, 4)

47 else:

48 len_r = 0

49 frame[’default_gt_boxes’] = boxes_d_gt

50 frame[’x_gt_boxes’] = boxes_x_gt

51 frame[’y_gt_boxes’] = boxes_y_gt

52 frame[’r_gt_boxes’] = boxes_r_gt

53 if len_d == len_x == len_y == len_r == 0:

54 continue

Listing B.11: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 7

94 Appendix B. Code

1 ...

2 all_boxes = []

3 d_boxes = []

4 x_boxes = []

5 y_boxes = []

6 r_boxes = []

7 indices = []

8 gts = [’default_gt_boxes’, ’x_gt_boxes’, ’y_gt_boxes’, ’r_gt_boxes’]

9 dts = [’default_boxes’, ’x_boxes’, ’y_boxes’, ’r_boxes’]

10 for gt_id, g in enumerate(gts):

11 if g == ’default_gt_boxes’:

12 for box in frame[g]:

13 d_boxes.append(box)

14 indices.append(gt_id)

15 elif g == ’x_gt_boxes’:

16 for box in frame[g]:

17 x_boxes.append(box - torch.tensor([20, 0, 20, 0]))

18 indices.append(gt_id)

19 elif g == ’y_gt_boxes’:

20 for box in frame[g]:

21 y_boxes.append(box - torch.tensor([0, 20, 0, 20]))

22 indices.append(gt_id)

23 elif g == ’r_gt_boxes’:

24 _, r_gt = backward_transform(image_id, frame[g], frame[g])

25 for r in r_gt:

26 r_boxes.append(r)

27 indices.append(gt_id)

28 if len(d_boxes) == len(x_boxes) == len(y_boxes) == len(r_boxes) == 1:

29 if torch.sum(d_boxes[0]) == 0 and torch.sum(x_boxes[0]) == -40 \

30 and torch.sum(y_boxes[0]) == -40 and torch.sum(r_boxes[0]) == 0:

31 continue

32

33 d_boxes = torch.stack(d_boxes)

34 x_boxes = torch.stack(x_boxes)

35 y_boxes = torch.stack(y_boxes)

36 r_boxes = torch.stack(r_boxes)

37 all_boxes = torch.cat([d_boxes, x_boxes, y_boxes, r_boxes])

Listing B.12: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 8

B.2 Stability Evaluation 95

1 ...

2 all_box_dict = {all_box_id + 1: {’box’: box}

3 for all_box_id, box in enumerate(all_boxes) if

4 torch.sum(box) > 0}

5 for k, v in all_box_dict.items():

6 all_box_dict[k][’frame_index’] = int(indices[k - 1])

7 for box_id, values in all_box_dict.items():

8 box = values[’box’]

9 frame_index = values[’frame_index’]

10 remaining_ids = []

11 remaining_boxes = []

12 for r_box_id, r_values in all_box_dict.items():

13 if r_values[’frame_index’] != frame_index:

14 remaining_ids.append(r_box_id)

15 remaining_boxes.append(r_values[’box’])

16 if len(remaining_boxes) == 0:

17 all_box_dict[box_id][’matches’] = np.array([0])

18 continue

19 ious = box_ops.box_iou(box.unsqueeze(0),

20 torch.stack(remaining_boxes))

21 remaining_ids = np.array(remaining_ids)

22 if torch.count_nonzero(ious) > 0:

23 all_box_dict[box_id][’matches’] = remaining_ids[

24 [int(i) for i in torch.where(ious > 0.01)[1]]]

25 else:

26 all_box_dict[box_id][’matches’] = np.array([0])

27

28 m = []

29 for id, value in all_box_dict.items():

30 n = [0, 0, 0, 0]

31 n[value[’frame_index’]] = id

32 for match in value[’matches’]:

33 if match == 0:

34 continue

35 n[all_box_dict[match][’frame_index’]] = match

36 if n not in m:

37 m.append(n)

38

39 dt_boxes = torch.cat((boxes_d_dt, boxes_x_dt, boxes_y_dt, boxes_r_dt), dim

=0)

40 gt_boxes = torch.cat((boxes_d_gt, boxes_x_gt, boxes_y_gt, boxes_r_gt), dim

=0)

Listing B.13: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 10

96 Appendix B. Code

1 ...

2 m = torch.tensor(m).transpose(0, 1)

3

4 N += m.shape[1]

5 pad = torch.zeros(1, 4)

6 for index, dist_det in enumerate(m):

7 dt_fr = []

8 gt_fr = []

9 for j in dist_det:

10 if j == 0:

11 dt_fr.append(pad)

12 gt_fr.append(pad)

13 else:

14 dt_fr.append(dt_boxes[int(j - 1)].unsqueeze(0))

15 gt_fr.append(gt_boxes[int(j - 1)].unsqueeze(0))

16 frame[dts[index]] = torch.cat(dt_fr)

17 frame[gts[index]] = torch.cat(gt_fr)

18

19 if len(frame) > 1:

20 frame[’sigma_x’], frame[’sigma_y’], frame[’sigma_s’], frame[’sigma_r’],

frame[’ef’] = get_sigmas(frame,

21

m)

22 frames.append(frame)

23

24 stability_results[’N’] = N

25 e_c = 0

26 e_r = 0

27 e_f = 0

28 for frame in frames:

29 if len(frame) > 1:

30 e_f += float(torch.sum(frame[’ef’]))

31 e_c += torch.sum(frame[’sigma_x’] + frame[’sigma_y’])

32 e_r += torch.sum(frame[’sigma_s’] + frame[’sigma_r’])

33 stability_results[’E_f’] = float(e_f / N)

34 stability_results[’E_c’] = float(e_c / N)

35 stability_results[’E_r’] = float(e_r / N)

36 stability_results[’SE’] = stability_results[’E_f’] + stability_results[’E_c’] +

stability_results[’E_r’]

37 log_file = ’/home/user/engeli/stabilizing-nms/fasterrcnn/coco_results/stability/

coco_rpn_{}_{}_roi_{}_{}.log’.format(

38 rpn, rpn_thr, roi, roi_thr)

39 log = open(log_file, "a")

40 orig_stdout = sys.stdout

41 sys.stdout = log

42 print(rpn, rpn_thr, roi, roi_thr)

43 print(stability_results[’N’])

44 print(stability_results[’E_f’])

45 print(stability_results[’E_c’])

46 print(stability_results[’E_r’])

47 print(stability_results[’SE’])

48 log.close()

49 sys.stdout = orig_stdout

50 dd.io.save(log_file.replace(’log’, ’h5’), [frames, stability_results])

Listing B.14: OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 11

Appendix C

Extended Analysis

(a) Faster R-CNN center position
error for tx ∈ P

(b) Faster R-CNN scale and ratio
error for tx ∈ P

(c) Faster R-CNN stability error for
tx ∈ P

Figure C.1: FASTER R-CNN STABILITY ERROR BREAKDOWN FOR HORIZONTAL TRANSLATION.
The stability error breakdown for the horizontal translational parameter. (a) shows the center position error
(y-axis) over an increase of horizontal translation (x-axis) in pixels. (b) shows the scale and ratio error (y-
axis) over an increase of horizontal translation (x-axis) in pixels. (c) shows the stability error (y-axis) over
an increase of horizontal translation (x-axis) in pixels. The fragment error is constantly 0 and therefore not
shown in the graph due to the missing contribution to the stability error. The horizontal orange line in all
three graphs indicates the mean stability error for the respective curve.

98 Appendix C. Extended Analysis

(a) Faster R-CNN center position
error for ty ∈ P

(b) Faster R-CNN scale and ratio
error for ty ∈ P

(c) Faster R-CNN stability error for
ty ∈ P

Figure C.2: FASTER R-CNN STABILITY ERROR BREAKDOWN FOR VERTICAL TRANSLATION. The
stability error breakdown for the vertical translational parameter. (a) shows the center position error (y-axis)
over an increase of vertical translation (x-axis) in pixels. (b) shows the scale and ratio error (y-axis) over
an increase of vertical translation (x-axis) in pixels. (c) shows the stability error (y-axis) over an increase of
vertical translation (x-axis) in pixels. The fragment error is constantly 0 and therefore not shown in the graph
due to the missing contribution to the stability error. The horizontal orange line in all three graphs indicates
the mean stability error for the respective curve.

(a) Faster R-CNN center position
error for θ ∈ P

(b) Faster R-CNN scale and ratio
error for θ ∈ P

(c) Faster R-CNN stability error for
θ ∈ P

Figure C.3: FASTER R-CNN STABILITY ERROR BREAKDOWN FOR ROTATION. The stability error
breakdown for the rotational parameter. (a) shows the center position error (y-axis) over an increase of
rotation (x-axis) in degrees. (b) shows the scale and ratio error (y-axis) over an increase of rotation (x-axis) in
degrees. (c) shows the stability error (y-axis) over an increase of rotation (x-axis) in degrees. The fragment
error is constantly 0 and therefore not shown in the graph due to the missing contribution to the stability
error. The horizontal orange line in all three graphs indicates the mean stability error for the respective
curve.

99

(a) MTCNN fragment error
for tx ∈ P

(b) MTCNN center position
error for tx ∈ P

(c) MTCNN scale and ratio
error for tx ∈ P

(d) MTCNN stability error
for tx ∈ P

Figure C.4: MTCNN STABILITY ERROR BREAKDOWN FOR HORIZONTAL TRANSLATION. The sta-
bility error breakdown for the horizontal translational parameter for MTCNN. (a) shows the fragment error
(y-axis) over an increase of horizontal translation (x-axis) in pixels. (b) shows the center position error (y-
axis) over an increase of horizontal translation (x-axis) in pixels. (c) shows the scale and ratio error (y-axis)
over an increase of horizontal translation (x-axis) in pixels. (d) shows the stability error (y-axis) over an
increase of horizontal translation (x-axis) in pixels. The horizontal orange line in all three graphs indicates
the mean stability error for the respective curve.

(a) MTCNN fragment error
for ty ∈ P

(b) MTCNN center position
error for ty ∈ P

(c) MTCNN scale and ratio
error for ty ∈ P

(d) MTCNN stability error
for ty ∈ P

Figure C.5: MTCNN STABILITY ERROR BREAKDOWN FOR VERTICAL TRANSLATION. The stability
error breakdown for the vertical translational parameter for MTCNN. (a) shows the fragment error (y-axis)
over an increase of vertical translation (x-axis) in pixels. (b) shows the center position error (y-axis) over an
increase of vertical translation (x-axis) in pixels. (c) shows the scale and ratio error (y-axis) over an increase
of vertical translation (x-axis) in pixels. (d) shows the stability error (y-axis) over an increase of vertical
translation (x-axis) in pixels. The horizontal orange line in all three graphs indicates the mean stability error
for the respective curve.

(a) MTCNN fragment error
for θ ∈ P

(b) MTCNN center position
error for θ ∈ P

(c) MTCNN scale and ratio
error for θ ∈ P

(d) MTCNN stability error
for θ ∈ P

Figure C.6: MTCNN STABILITY ERROR BREAKDOWN FOR ROTATION. The stability error breakdown
for the rotational parameter for MTCNN. (a) shows the fragment error (y-axis) over an increase of rotation (x-
axis) in degrees. (b) shows the center position error (y-axis) over an increase of rotation (x-axis) in degrees.
(c) shows the scale and ratio error (y-axis) over an increase of rotation (x-axis) in degrees. (d) shows the
stability error (y-axis) over an increase of rotation (x-axis) in degrees. The horizontal orange line in all three
graphs indicates the mean stability error for the respective curve.

Appendix D

Extended Results

102 Appendix D. Extended Results

NMS P-Net NMS R-Net NMS O-Net AP AP50 APf1 AP50
f1

APf2 AP50
f2

APf3 AP50
f3

APf4 AP50
f4

Classic Classic Classic 26.73 47.35 28.00 47.40 22.60 47.20 28.20 47.40 28.10 47.40
Classic Classic Soft 4.93 8.93 5.00 9.00 4.20 8.60 5.40 9.10 5.10 9.00
Classic Classic Average 26.48 46.80 28.00 46.80 21.80 46.80 28.00 46.80 28.10 46.80
Classic Classic Avg. IoU 24.65 44.58 26.00 44.60 20.50 44.50 26.10 44.60 26.00 44.60
Classic Soft Classic 11.90 22.10 12.40 22.20 10.10 21.90 12.50 22.20 12.60 22.10
Classic Soft Soft 7.63 13.85 7.90 13.70 6.40 13.50 7.90 13.60 8.30 14.60
Classic Soft Average 11.85 22.00 12.30 22.10 10.00 21.80 12.50 22.10 12.60 22.00
Classic Soft Avg. IoU 11.43 21.60 11.90 21.70 9.80 21.40 12.10 21.80 11.90 21.50
Classic Average Classic 26.83 47.33 28.00 47.30 22.70 47.20 28.50 47.40 28.10 47.40
Classic Average Soft 4.93 8.95 5.10 9.10 4.30 8.90 5.30 8.90 5.00 8.90
Classic Average Average 26.55 46.80 28.00 46.80 21.90 46.70 28.10 46.80 28.20 46.90
Classic Average Avg. IoU 24.63 44.48 26.00 44.50 20.50 44.50 26.00 44.50 26.00 44.40
Classic Avg. IoU Classic 26.80 47.35 28.10 47.30 22.70 47.30 28.30 47.40 28.10 47.40
Classic Avg. IoU Soft 4.88 8.83 5.10 9.10 4.20 8.70 5.30 8.80 4.90 8.70
Classic Avg. IoU Average 26.58 46.95 28.10 47.50 21.90 46.70 28.10 46.80 28.20 46.80
Classic Avg. IoU Avg. IoU 24.60 44.63 26.00 45.20 20.40 44.40 26.00 44.50 26.00 44.40
Soft Classic Classic 9.85 17.00 10.50 16.80 8.10 16.70 10.50 17.70 10.30 16.80
Soft Classic Soft 3.95 7.13 4.30 7.10 3.50 7.30 3.80 7.00 4.20 7.10
Soft Classic Average 9.95 17.18 10.60 17.70 8.10 16.60 10.60 17.60 10.50 16.80
Soft Classic Avg. IoU 9.75 16.65 10.40 16.70 8.10 16.60 10.30 16.70 10.20 16.60
Soft Soft Classic 6.93 12.33 7.30 12.60 5.80 11.60 7.30 12.60 7.30 12.50
Soft Soft Soft 4.53 8.15 4.90 8.70 3.60 7.60 4.70 8.00 4.90 8.30
Soft Soft Average 7.00 12.38 7.30 12.60 5.70 11.60 7.40 12.60 7.60 12.70
Soft Soft Avg. IoU 6.85 12.25 7.30 12.50 5.60 11.50 7.20 12.50 7.30 12.50
Soft Average Classic 9.88 16.95 10.70 17.70 8.10 16.60 10.30 16.70 10.40 16.80
Soft Average Soft 3.98 7.15 4.10 7.10 3.50 7.20 3.90 7.10 4.40 7.20
Soft Average Average 9.85 16.70 10.60 16.70 8.10 16.60 10.40 16.70 10.30 16.80
Soft Average Avg. IoU 9.70 16.63 10.30 16.70 8.00 16.50 10.30 16.70 10.20 16.60
Soft Avg. IoU Classic 9.83 16.93 10.70 17.70 8.00 16.60 10.20 16.70 10.40 16.70
Soft Avg. IoU Soft 3.95 7.13 4.10 7.00 3.50 7.30 3.90 7.00 4.30 7.20
Soft Avg. IoU Average 9.88 16.93 10.70 17.70 8.00 16.60 10.40 16.70 10.40 16.70
Soft Avg. IoU Avg. IoU 9.70 16.65 10.30 16.70 8.00 16.50 10.30 16.70 10.20 16.70
Average Classic Classic 26.53 47.20 28.10 47.40 22.00 46.70 28.00 47.30 28.00 47.40
Average Classic Soft 5.05 9.00 5.00 8.90 4.60 9.00 5.40 9.00 5.20 9.10
Average Classic Average 26.50 46.73 28.10 46.80 22.00 46.70 28.00 46.60 27.90 46.80
Average Classic Avg. IoU 24.78 44.73 26.30 44.60 20.60 44.70 26.20 44.80 26.00 44.80
Average Soft Classic 11.70 21.40 12.40 21.30 9.90 21.10 12.50 22.00 12.00 21.20
Average Soft Soft 7.53 13.65 7.80 13.30 6.50 13.90 8.10 14.00 7.70 13.40
Average Soft Average 11.60 21.50 12.30 22.10 9.80 21.00 12.40 21.90 11.90 21.00
Average Soft Avg. IoU 11.15 20.88 11.80 20.90 9.40 20.40 12.00 21.60 11.40 20.60
Average Average Classic 26.83 47.33 28.30 47.40 22.70 47.20 28.10 47.40 28.20 47.30
Average Average Soft 5.03 8.90 5.40 9.10 4.50 9.00 5.10 8.80 5.10 8.70
Average Average Average 26.53 46.78 28.10 46.80 21.90 46.80 28.20 46.80 27.90 46.70
Average Average Avg. IoU 24.60 44.58 25.90 44.30 20.50 44.50 26.20 44.90 25.80 44.60
Average Avg. IoU Classic 26.88 47.30 28.30 47.40 22.80 47.20 28.20 47.40 28.20 47.20
Average Avg. IoU Soft 5.08 8.88 5.30 9.00 4.50 8.80 5.20 8.90 5.30 8.80
Average Avg. IoU Average 26.58 46.70 28.10 46.70 22.00 46.70 28.20 46.80 28.00 46.60
Average Avg. IoU Avg. IoU 24.70 44.50 25.90 44.20 20.70 44.60 26.20 44.70 26.00 44.50
Avg. IoU Classic Classic 26.78 47.35 28.20 48.30 22.40 46.40 28.30 47.40 28.20 47.30
Avg. IoU Classic Soft 4.95 9.05 5.10 9.20 4.20 8.80 5.40 9.20 5.10 9.00
Avg. IoU Classic Average 26.53 46.83 28.20 47.80 21.80 46.00 28.20 46.80 27.90 46.70
Avg. IoU Classic Avg. IoU 24.80 44.93 26.30 45.70 20.60 44.70 26.20 44.70 26.10 44.60
Avg. IoU Soft Classic 11.25 21.03 11.70 21.00 9.60 20.90 11.80 21.10 11.90 21.10
Avg. IoU Soft Soft 7.13 13.00 7.30 12.70 6.30 13.50 7.50 13.00 7.40 12.80
Avg. IoU Soft Average 11.20 20.90 11.60 20.90 9.40 20.70 12.00 21.00 11.80 21.00
Avg. IoU Soft Avg. IoU 10.83 20.55 11.20 20.60 9.10 20.30 11.60 20.60 11.40 20.70
Avg. IoU Average Classic 26.83 47.33 28.30 48.20 22.50 46.40 28.30 47.40 28.20 47.30
Avg. IoU Average Soft 4.98 8.88 5.10 9.10 4.30 8.80 5.30 8.90 5.20 8.70
Avg. IoU Average Average 26.60 46.95 28.30 47.70 22.00 46.70 28.20 46.80 27.90 46.60
Avg. IoU Average Avg. IoU 24.68 44.73 26.10 45.50 20.50 44.50 26.20 44.60 25.90 44.30
Avg. IoU Avg. IoU Classic 26.88 47.73 28.40 48.20 22.60 47.20 28.20 47.40 28.30 48.10
Avg. IoU Avg. IoU Soft 4.80 8.83 5.10 9.20 4.00 8.70 5.20 8.80 4.90 8.60
Avg. IoU Avg. IoU Average 26.63 47.15 28.30 47.70 22.00 46.80 28.10 46.70 28.10 47.40
Avg. IoU Avg. IoU Avg. IoU 24.68 44.90 26.10 45.40 20.60 44.60 26.00 44.50 26.00 45.10

Table D.1: MTCNN ACCURACY EVALUATION RESULTS. Accuracy evaluation results for the WIDER
Face dataset with MTCNN

103

NMS P-Net NMS R-Net NMS O-Net AP AP50 SE FE CPE SRE Number of trajectories
Classic Classic Classic 26.73 47.35 0.1853 0.0639 0.0485 0.0729 2937
Classic Classic Soft 4.93 8.93 0.4096 0.3035 0.0434 0.0626 2428
Classic Classic Average 26.48 46.80 0.1637 0.0637 0.0345 0.0654 2939
Classic Classic Avg. IoU 24.65 44.58 0.1696 0.0636 0.0378 0.0681 2938
Classic Soft Classic 11.90 22.10 0.5480 0.4243 0.0559 0.0679 2108
Classic Soft Soft 7.63 13.85 0.5543 0.4293 0.0566 0.0684 2085
Classic Soft Average 11.85 22.00 0.5439 0.4231 0.0542 0.0667 2106
Classic Soft Avg. IoU 11.43 21.60 0.5445 0.4228 0.0545 0.0672 2102
Classic Average Classic 26.83 47.33 0.1895 0.0655 0.0502 0.0737 2940
Classic Average Soft 4.93 8.95 0.4169 0.3081 0.0456 0.0632 2417
Classic Average Average 26.55 46.80 0.1652 0.0647 0.0350 0.0655 2938
Classic Average Avg. IoU 24.63 44.48 0.1720 0.0647 0.0387 0.0686 2940
Classic Avg. IoU Classic 26.80 47.35 0.1901 0.0659 0.0505 0.0737 2944
Classic Avg. IoU Soft 4.88 8.83 0.4192 0.3072 0.0463 0.0657 2409
Classic Avg. IoU Average 26.58 46.95 0.1660 0.0646 0.0353 0.0661 2942
Classic Avg. IoU Avg. IoU 24.60 44.63 0.1724 0.0647 0.0388 0.0689 2942
Soft Classic Classic 9.85 17.00 0.5352 0.4470 0.0360 0.0522 1704
Soft Classic Soft 3.95 7.13 0.5233 0.4469 0.0309 0.0456 1333
Soft Classic Average 9.95 17.18 0.5293 0.4468 0.0328 0.0497 1727
Soft Classic Avg. IoU 9.75 16.65 0.5360 0.4544 0.0325 0.0491 1724
Soft Soft Classic 6.93 12.33 0.5776 0.4777 0.0457 0.0543 1388
Soft Soft Soft 4.53 8.15 0.5690 0.4725 0.0444 0.0521 1334
Soft Soft Average 7.00 12.38 0.5771 0.4788 0.0444 0.0539 1409
Soft Soft Avg. IoU 6.85 12.25 0.5784 0.4812 0.0442 0.0530 1404
Soft Average Classic 9.88 16.95 0.5365 0.4500 0.0357 0.0509 1712
Soft Average Soft 3.98 7.15 0.5290 0.4492 0.0323 0.0475 1323
Soft Average Average 9.85 16.70 0.5274 0.4436 0.0333 0.0505 1702
Soft Average Avg. IoU 9.70 16.63 0.5342 0.4513 0.0331 0.0497 1712
Soft Avg. IoU Classic 9.83 16.93 0.5382 0.4501 0.0362 0.0520 1710
Soft Avg. IoU Soft 3.95 7.13 0.5347 0.4556 0.0322 0.0469 1322
Soft Avg. IoU Average 9.88 16.93 0.5369 0.4534 0.0336 0.0499 1718
Soft Avg. IoU Avg. IoU 9.70 16.65 0.5307 0.4475 0.0330 0.0502 1705
Average Classic Classic 26.53 47.20 0.1864 0.0646 0.0484 0.0733 2925
Average Classic Soft 5.05 9.00 0.4199 0.3119 0.0441 0.0639 2428
Average Classic Average 26.50 46.73 0.1629 0.0637 0.0339 0.0653 2925
Average Classic Avg. IoU 24.78 44.73 0.1696 0.0636 0.0375 0.0685 2924
Average Soft Classic 11.70 21.40 0.5506 0.4264 0.0570 0.0672 2125
Average Soft Soft 7.53 13.65 0.5562 0.4329 0.0561 0.0672 2106
Average Soft Average 11.60 21.50 0.5477 0.4248 0.0560 0.0669 2114
Average Soft Avg. IoU 11.15 20.88 0.5476 0.4252 0.0555 0.0669 2119
Average Average Classic 26.83 47.33 0.1902 0.0667 0.0497 0.0738 2933
Average Average Soft 5.03 8.90 0.4248 0.3131 0.0466 0.0651 2418
Average Average Average 26.53 46.78 0.1663 0.0659 0.0347 0.0656 2932
Average Average Avg. IoU 24.60 44.58 0.1730 0.0657 0.0386 0.0687 2933
Average Avg. IoU Classic 26.88 47.30 0.1916 0.0674 0.0502 0.0740 2939
Average Avg. IoU Soft 5.08 8.88 0.4131 0.3004 0.0468 0.0659 2406
Average Avg. IoU Average 26.58 46.70 0.1669 0.0663 0.0349 0.0657 2936
Average Avg. IoU Avg. IoU 24.70 44.50 0.1727 0.0655 0.0385 0.0687 2936
Avg. IoU Classic Classic 26.78 47.35 0.1893 0.0681 0.0485 0.0726 2932
Avg. IoU Classic Soft 4.95 9.05 0.4149 0.3053 0.0452 0.0643 2417
Avg. IoU Classic Average 26.53 46.83 0.1662 0.0665 0.0343 0.0654 2932
Avg. IoU Classic Avg. IoU 24.80 44.93 0.1733 0.0666 0.0383 0.0684 2932
Avg. IoU Soft Classic 11.25 21.03 0.5660 0.4382 0.0590 0.0689 2082
Avg. IoU Soft Soft 7.13 13.00 0.5617 0.4369 0.0576 0.0671 2072
Avg. IoU Soft Average 11.20 20.90 0.5579 0.4326 0.0573 0.0679 2078
Avg. IoU Soft Avg. IoU 10.83 20.55 0.5576 0.4328 0.0571 0.0677 2081
Avg. IoU Average Classic 26.83 47.33 0.1941 0.0700 0.0505 0.0736 2939
Avg. IoU Average Soft 4.98 8.88 0.4241 0.3135 0.0458 0.0648 2440
Avg. IoU Average Average 26.60 46.95 0.1698 0.0684 0.0353 0.0662 2939
Avg. IoU Average Avg. IoU 24.68 44.73 0.1762 0.0682 0.0391 0.0689 2939
Avg. IoU Avg. IoU Classic 26.88 47.73 0.1935 0.0683 0.0512 0.0741 2940
Avg. IoU Avg. IoU Soft 4.80 8.83 0.4328 0.3204 0.0465 0.0659 2443
Avg. IoU Avg. IoU Average 26.63 47.15 0.1684 0.0666 0.0355 0.0663 2939
Avg. IoU Avg. IoU Avg. IoU 24.68 44.90 0.1752 0.0663 0.0395 0.0693 2939

Table D.2: MTCNN STABILITY EVALUATION RESULTS. Stability evaluation results for the WIDER Face
dataset with MTCNN

105

List of Figures
2.1 Class distribution COCO & PASCAL VOC datasets 4
2.2 Bounding box coordinates . 4
2.3 ResNet architectures . 8
2.4 Feature Proposal Network . 10
2.5 Trajectories of sequence of frames . 18

3.1 Soft-NMS Penalty Function . 22

4.1 Frame construction . 30
4.2 Faster R-CNN stability error for affine transformations 32
4.3 MTCNN stability error for affine transformations . 33
4.4 Ground truth comparison of differently rotated images 34

5.1 Unilateral transformation . 36
5.2 Example of changes in shape with rotation . 37
5.3 COCO dataset example image . 39
5.4 Detailed Feature Pyramid Network . 40
5.5 Faster R-CNN example classification scores . 43
5.6 MTCNN Multi-Scale Proposals . 44
5.7 MTCNN P-Net NMS . 45
5.8 MTCNN R-Net Proposal Crop . 46
5.9 MTCNN R-Net Steps . 47
5.10 MTCNN O-Net Steps . 48

C.1 Faster R-CNN stability error breakdown for horizontal translation 95
C.2 Faster R-CNN stability error breakdown for vertical translation 96
C.3 Faster R-CNN stability error breakdown for rotation 96
C.4 MTCNN stability error breakdown for horizontal translation 97
C.5 MTCNN stability error breakdown for vertical translation 97
C.6 MTCNN stability error breakdown for rotation . 97

106 Appendix D. Extended Results

List of Tables
2.1 Dataset Overview . 6
2.2 COCO challenge metrics . 16

6.1 COCO accuracy evaluation results . 56
6.2 PASCAL VOC accuracy evaluation results . 57
6.3 WIDER FACE accuracy evaluation results . 58
6.4 COCO stability evaluation results . 59
6.5 PASCAL VOC stability evaluation results . 60
6.6 WIDER Face stability evaluation results . 61
6.7 COCO t-test . 62
6.8 PASCAL VOC t-test . 63
6.9 WIDER Face t-test . 64
6.10 Overall results . 66

D.1 MTCNN accuracy evaluation results . 100
D.2 MTCNN stability evaluation results . 101

107

List of Listings
5.1 COCO metrics to the baseline settings . 49
A.1 ORIGINAL INDEX SELECTION IN FASTER R-CNN 79
A.2 REPLACEMENT OF INDEX SELECTION IN FASTER R-CNN 79
A.3 ORIGINAL INDEX SELECTION IN MTCNN . 80
A.4 REPLACEMENT OF INDEX SELECTION IN MTCNN 80
B.1 OWN IMMPLEMENTATION OF MULTI-NON-MAXIMUM SUPPRESSION PART 4 81
B.2 OWN IMMPLEMENTATION OF MULTI-NON-MAXIMUM SUPPRESSION PART 4 82
B.3 OWN IMPLEMENTATION OF MULTI-NON-MAXIMUM SUPPRESSION PART 3 83
B.4 OWN IMPLEMENTATION OF MULTI-NON-MAXIMUM SUPPRESSION PART 4 84
B.5 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 2 85
B.6 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 2 86
B.7 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 3 87
B.8 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 4 88
B.9 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 5 89
B.10 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 6 90
B.11 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 7 91
B.12 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 8 92
B.13 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 10 93
B.14 OWN IMPLEMENTATION OF THE STABILITY EVALUATION PART 11 94

Bibliography

Bodla, N., Singh, B., Chellappa, R., and Davis, L. S. (2017). Improving Object Detection With
One Line of Code. In Proceedings of the IEEE international conference on computer vision, pages
5561–5569.

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., and Kalinin, A. A.
(2020). Albumentations: Fast and Flexible Image Augmentations. Information, 11(2).

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010). The PASCAL
Visual Object Classes (VOC) challenge. International journal of computer vision, 88(2):303–338.

Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580–587.

Gomaa, A., Abdelwahab, M. M., Abo-Zahhad, M., Minematsu, T., and Taniguchi, R.-i. (2019).
Robust Vehicle Detection and Counting Algorithm Employing a Convolution Neural Network
and Optical Flow. Sensors, 19(20):4588.

Gonzalez, R. C., Woods, R. E., et al. (2002). Digital image processing.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

He, Y., Zhang, X., Savvides, M., and Kitani, K. (2018). Softer-NMS: Rethinking Bounding Box
Regression for Accurate Object Detection. arXiv preprint arXiv:1809.08545, 2:3.

Hoiem, D., Chodpathumwan, Y., and Dai, Q. (2012). Diagnosing error in object detectors. In
European conference on computer vision, pages 340–353. Springer.

Hosang, J., Benenson, R., Dollár, P., and Schiele, B. (2015). What makes for effective detection
proposals? IEEE transactions on pattern analysis and machine intelligence, 38(4):814–830.

Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes et des
Jura. Bull Soc Vaudoise Sci Nat, 37:547–579.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017a). Feature Pyramid
Networks for Object Detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2117–2125.

110 BIBLIOGRAPHY

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017b). Focal Loss for Dense Object
Detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L.
(2014). Microsoft COCO: Common Objects in Context. In European conference on computer vision,
pages 740–755. Springer.

Ning, C., Zhou, H., Song, Y., and Tang, J. (2017). Inception Single Shot Multibox Detector for Ob-
ject Detection. In 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW),
pages 549–554. IEEE.

Padilla, R., Netto, S. L., and da Silva, E. A. (2020). A Survey on Performance Metrics for Object-
Detection Algorithms. In 2020 International Conference on Systems, Signals and Image Processing
(IWSSIP), pages 237–242. IEEE.

Ranjan, R., Patel, V. M., and Chellappa, R. (2017). HyperFace: A Deep Multi-Task Learning Frame-
work for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition.
IEEE transactions on pattern analysis and machine intelligence, 41(1):121–135.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You Only Look Once: Unified,
Real-Time Object Detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 779–788.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks. Advances in neural information processing systems, 28:91–99.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). Overfeat: Inte-
grated Recognition, Localization and Detection using Convolutional Networks. arXiv preprint
arXiv:1312.6229.

Solovyev, R., Wang, W., and Gabruseva, T. (2021). Weighted boxes fusion: Ensembling boxes from
different object detection models. Image and Vision Computing, 107:104117.

Sundararaman, R., De Almeida Braga, C., Marchand, E., and Pettre, J. (2021). Tracking Pedestrian
Heads in Dense Crowd. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3865–3875.

Tan, Z., Nie, X., Qian, Q., Li, N., and Li, H. (2019). Learning to rank proposals for object detection.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 8273–8281.

Tripathi, R., Singla, V., Najibi, M., Singh, B., Sharma, A., and Davis, L. (2020). ASAP-
NMS: Accelerating Non-Maximum Suppression Using Spatially Aware Priors. arXiv preprint
arXiv:2007.09785.

Tychsen-Smith, L. and Petersson, L. (2018). Improving Object Localization with Fitness NMS and
Bounded IoU Loss. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 6877–6885.

Wu, G. and Li, Y. (2021). Non-maximum suppression for object detection based on the chaotic
whale optimization algorithm. Journal of Visual Communication and Image Representation,
74:102985.

Yang, S., Luo, P., Loy, C. C., and Tang, X. (2016). WIDER FACE: A Face Detection Benchmark. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

BIBLIOGRAPHY 111

Zhang, H. and Wang, N. (2016). On The Stability of Video Detection and Tracking. arXiv preprint
arXiv:1611.06467.

Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint Face Detection and Alignment using Multi-
task Cascaded Convolutional Networks. IEEE Signal Processing Letters, 23(10):1499–1503.

Zhou, H., Li, Z., Ning, C., and Tang, J. (2017). Cad: Scale Invariant Framework for Real-Time
Object Detection. In Proceedings of the IEEE International Conference on Computer Vision Workshops,
pages 760–768.

Zhu, H., Wei, H., Li, B., Yuan, X., and Kehtarnavaz, N. (2020). A Review of Video Object Detection:
Datasets, Metrics and Methods. Applied Sciences, 10(21):7834.

Zou, Z., Shi, Z., Guo, Y., and Ye, J. (2019). Object Detection in 20 Years: A Survey. arXiv preprint
arXiv:1905.05055.

