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Abstract

Computational vision has become more and more relevant in the last few years. Analysis of image
and video input is relevant to robotics and self-driving cars to name just a few examples. Because
of this relevance, algorithms for stereo matching need to get more precise and faster. This thesis
considers the use of Gabor Jets for disparity estimation, evaluates its efficiency, and compares
it to other algorithms. For this comparison, three different algorithms have been chosen: Horn
Schunk Optical Flow, Lius Optical Flow, and StereoBM. To be able to compare different types of
images, a sample from the DrivingStereo as well as the Middlebury dataset has been selected.
For the evaluation, the bad matched pixels, mean relative error, and mean absolute error of all
four algorithms were calculated. Gabor Jets worked better on images taken in a real-life setting
than in a studio setting. Especially in images with a lot of traffic, Gabor Jets work better than the
other algorithms. Based on these evaluations, Gabor Jets can keep up with the aforementioned
algorithms and even surpass them in certain aspects.





Zusammenfassung

Computational Vision hat in den letzten Jahren immer mehr an Bedeutung gewonnen. Die
Analyse von Bild- und Videoeingaben ist für die Robotik und selbstfahrende Autos relevant, um
nur einige Beispiele zu nennen. Aufgrund dieser Relevanz müssen Algorithmen für das Stereo-
Matching immer präziser und schneller werden. In dieser Arbeit wird die Verwendung von Ga-
bor Jets für die Disparitätsschätzung untersucht, ihre Effizienz bewertet und sie mit anderen Al-
gorithmen verglichen. Für diesen Vergleich wurden drei verschiedene Algorithmen ausgewählt:
Horn Schunk Opticalflow, Lius Opticalflow und StereoBM. Um verschiedene Bildtypen vergle-
ichen zu können, wurde ein Beispiel aus dem DrivingStereo sowie dem Middlebury-Datensatz
ausgewählt. Für die Bewertung wurden die Bad Matched Pixels, der mittlere relative Fehler
und der mittlere absolute Fehler aller vier Algorithmen berechnet.Gabor-Jets funktionierten bei
Bildern, die in einer realen Umgebung aufgenommen wurden, besser als in einer Studioumge-
bung. Besonders gut funktionierte die Disparitätsschätzung mit Gabor Jets bei Bildern mit viel
Verkehr. Basierend auf diesen Auswertungen können Gabor Jets mit den oben genannten Algo-
rithmen mithalten und übertreffen sie sogar in einigen Aspekten.
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Chapter 1

Introduction

In the last two decades, computer vision has developed quickly and become increasingly rele-
vant. The underlying goal is to reconstruct information about shape, location, and illumination
of objects from images. Szeliski (2011) One of the many topics in computer vision is optical flow.
Optical flow is the pattern of motion, and it can be used for a range of tasks such as gesture
recognition or to represent temporal information. Lappe (2009) Ke et al. (2018) A neighbouring
field to this is stereo matching. With stereo matching or disparity estimation, the aim is to find
a correspondence between pixels of two stereo images. Orozco et al. (2017) While it can be used
to calculate optical flow in videos, one of the main tasks of stereo matching is to estimate the
depth of a binocular set of images to reconstruct a 3D version of it. There are no public video
databases that provide ground truths; there are multiples that provide pairs of stereo images with
ground truths.Lai et al. (2019) This is why this thesis focuses on disparity estimation of stereo
images. For the practical aspect of this thesis, the datasets Middlebury and DrivingStereo were
usedYang et al. (2019)Scharstein et al. (2014). Further options would have been the datasets Kitti
or ETH3D Urtasun (2012) Schöps et al. (2017), but since DrivingStereo provided the most images
and Middlebury seems to be the most commonly used database, these are the ones used for this
thesis.

Because of its relevance in robotics and autonomous driving, amongst other fields, there are
many different approaches to both stereo matching and optical flow. This thesis aims to com-
pare the application of Gabor Jets for disparity estimation on stereo images to other established
algorithms.

One of these algorithms is a version of the Horn Schunck Optical Flow proposed in 1981. The
implementation used here is based on Bob and was added in 2012. Horn Schunck is considered a
global method for disparity estimation.Anjos et al. (2012) Horn and Schunck (1981) Another im-
plementation provided in bob is Liu’s Optical Flow. C.Liu developed this Optical Flow estimator
in 2009. Liu (2009) Lastly, the StereoBM algorithm implemented on OpenCV will be an example
of a block matching algorithm. Bradski (2000)

For different points in the image, Gabor Jets are generated from the responses of Gabor Wavelets
at this position. They encode the texture of the image around the point in question. For the fol-
lowing tests, the implementation of Gabor Jets that was added to Bob in 2011 will be used.Anjos
et al. (2012)Günther et al. (2012) For the evaluation, both the calculation time and the accuracy of
the results will be compared. There are different methods of determining the accuracy. The meth-
ods used in this thesis are bad matched pixels, mean relative error, and mean absolute error. All of
these compare the disparities calculated by the algorithms to the ground truths provided by the
datasets. Kim et al. (2021) Cabezas et al. (2012) This thesis will first introduce the algorithms used
for the comparison in the Chapter "Related Work". In the chapter "Approach" the used datasets
will be introduced, as well as the evaluation methods and some implementation details. Under
"Results" the outcome of the different stereo matching approaches is shown. Finally all relevant
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results will be interpreted in the "Discussion".



Chapter 2

Related Work

2.1 Algorithms
There are many different approaches to stereo matching. In 1981 Lucas and Kanade developed
a technique for image matching by using the spatial intensity gradient of images. They also
showed the application of their technique in a stereo vision system. Lucas and Kanade (1981) To-
day, Lucas-Kanade is still one of the most popular methods for solving optical flow for a locally
constant motion. Many approaches build on this original method. Radgui et al. (2008) There are
different classifications of traditional stereo vision algorithms. Methods for disparity estimations
can be divided into the following classes: block-based stereo matching, graph cut-based stereo
matching, and semi-global matching. Block-based stereo matching is a local method, that uses a
constraint on a small number of pixels around the pixel of interest. For the semi-global matching,
a block-based matching is smoothed by path-wise information from multiple directions. Graph
cut-based stereo matching uses constraints on the whole image. Raza et al. (2015) There are mul-
tiple deep learning and machine learning approaches to optimize the results and make stereo
matching more cost-efficient. Poggi et al. (2021)

2.1.1 StereoBM
OpenCV is an open-source library of programming functions for computer vision. It also contains
multiple algorithms that can be used for stereo matching. One example that will be focused on
is the class StereoBM 1. StereoBM implements a block matching algorithm to compute disparities
between stereo images. It was added to OpenCV by K.Konolige. A block matching algorithm
segments each image into n x n blocks. Each block from the left image is then matched to a
block in the right image.Yaakob et al. (2013) Bradski (2000) OpenCV also contains a StereoSGBM
class which implements an algorithm based on the work of Hirschmuller (2008) on semi-global
matching algorithms. It also matches blocks instead of single pixels. Instead of the eight direc-
tions considered in the original algorithm, this version only considers five. The complexity of the
SGM method is linear to the number of pixels. It uses pathwise optimizations to perform a fast
approximation .Hirschmuller (2008) Bradski (2000) Scharstein et al. (2014)

2.1.2 Horn Schunck Method
In 1980 Horn and Schunk developed an algorithm for the determination of optical flow from a
sequence of images. The algorithm is based on an equation combining two components of the

1https://docs.opencv.org/3.4/d9/dba/classcv_1_1StereoBM.html

https://docs.opencv.org/3.4/d9/dba/classcv_1_1StereoBM.html
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Figure 2.1: Illustration of the brightness gradient vector (Ex, Ey) for Horn Schunck. The velocity
(u,v) has to lie in a right angle to the gradient vector. Horn and Schunck (1981)

flow velocity. The optical flow component in the direction of the brightness gradient (Ex, Ey)
with Et, Ex and Ey being partial derivates of image brightness is:

− Et√
E2

x + E2
y

(2.1)

The brightness gradient vector in relation to the velocity (u,v) is illustrated in Figure 2.1

Because there is no way to compute the flow velocity locally without additional constraints,
the smoothness of the flow is used as the second constraint. Smoothness here stands for the
minimization of distortions in the flow. To express this constraint, one can minimize the sum of
the squares of the laplacians of the x- and y components of the flow. u and v are the vertical and
horizontal components of the flow field.

∇2u =
δ2u

δx2
+
δ2u

δy2
and∇2v =

δ2v

δx2
+
δ2v

δy2
(2.2)

Horn and Schunck developed the algorithm to solve this equation iteratively. Horn and Schunck
(1981) Bob contains an optical flow estimator based on this work, the functor bob.ip.optflow.
hornschunck.VanillaFlow is the classical optical flow estimator based on the original work of
Horn and Schunk. For this, the parameters alpha and iterations are needed. Alpha describes the
weighting factor between the smoothness of the field and brightness constants. A good default
for alpha values is around 200. Iterations are the number of iterations used to minimize the flow
error. Anjos et al. (2012) Horn and Schunck (1981)
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2.1.3 Liu
As a part of his thesis, Liu developed a method to derive optical flow. This approach differs from
the other algorithms as following, for the optical flow computation, it uses a technique called
Iterative Reweighted Least Squares (IRLS). It iterates between computing the weight, computing
the nonlinear term, and solving a least-squares problem. The weight is defined as two diagonal
matrices φ and ψ. and the nonlinear term is the computation of the weight based on the current
estimate of dU and dV. With these to factors the linear equation

[
ψ′I2x + αL ψ′IxIy
ψ′IxIy ψ′I2y + αL

] [
dU
dV

]
= −

[
ψ′IxIz + αLU
ψ′IyIz + αLV

]
(2.3)

These steps are repeated until dU and dV converge. With IRLS, the filters that have been learned
from ground-truths can be used. This makes it possible to get better characteristics of flow fields.
Another advantage of IRLS is its ability to handle large-magnitude flows for the temporal con-
straint. IRLS always converges to a local minimum which is shown by showing equivalence of
IRLS to the variational upper-bound optimization Jordan (1999) Liu (2009) Bob contains two im-
plementations of Ce Liu’s Optical Flow, the Conjugate-Gradient based implementation and the
Successive Over Relaxation implementation. Both implementations use a coarse-to-fine approach
to compute the dense optical flow field. The function takes two grayscale input images and op-
tionally the regularization weight as alpha. It returns a 2D double array with the same dimensions
as the input, which contains the output velocities in x and y. Anjos et al. (2012)

2.1.4 Machine Learning Methods
There are several approaches to use deep learning for stereo matching. Hamid et al. (2020) Us-
ing traditional cost aggregation and disparity computation methods to get disparity maps with
deep neural networks did achieve reasonable accuracy. However, they did tend to give wrong
predictions in large texture less or reflective regions and occluded regions and around the edges
of objects. Zhang et al. (2019) Deep learning approaches leverage on CNNs to infer confidence
maps. There are two subcategories Cost-Volume CNNs and Disparity CNNs. Cost-volume CNNs
performed better in experiments, but disparity CNNs were competitive, particularly with noisy
stereo algorithms Poggi et al. (2021) Of course, there have also been multiple approaches using
traditional machine learning techniques. Many of them use classifiers, specifically forests, to im-
prove the cost of the Semi-Global Matching pipeline(SGM) algorithm.Poggi et al. (2021) Because
of a lack of available source code this thesis does not use a deep learning or machine learning
approach. The reimplementation of such an approach would have exceeded the timeframe for
this bachelor thesis.

2.2 Gabor Jets
In 1946 Gabor first proposed the Gabor function, a linear filter often used for texture analysis and
feature extraction. It has been found that Gabor functions can be used to model the simple cells in
the brains of mammals. Because of this, the image analysis using Gabor functions is very similar
to actual human perception. Daugman (1985) Barina (2016) Gabor (1946) Tai Sing Lee (1996) One
directional Gabor Wavelets are Gabor functions created by dilation and shift from one Gabor
Wavelet, the mother Gabor Wavelet. There are continuous Gabor Wavelets and discreet Gabor
Wavelets. The two directional Wavelets have additional parameters such as the rotation of the
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spatial wave. The implementation of Gabor Jets on bob is based on the discreet Gabor wavelet
family. To process an image using Gabor Wavelets, a Gabor transformed image is generated.
This image consists of layers, each convoluting the original image with the corresponding Gabor
Wavelet. Because this Gabor transformed image contains much redundant information, only
some Gabor Wavelet responses are kept. A Gabor jet is generated by combining the responses
of these Gabor Wavelets at specific positions into a vector. A Gabor Jet codes the texture of an
image around its extraction point. Günther et al. (2012) Buhmann et al. (1989)

Disparity Map Estimation

The disparity can be estimated from two Gabor Jets. Günther et al. (2012) Sanger proposed a
method that used a complex Gabor filter to convolve the left and right images. He then used
the difference in the complex phase at each point to indicate a local shift. This algorithm does
not require a formal matching process since it senses disparity directly from a locally computed
parameter. Sanger (1988) In 2015 Malathi and Bhuyan proposed a feature-based stereo matching
method, in which local features of Gabor Wavelets in spatial domains are used for matching cost
computation. To reduce the dimensionality of the local Gabor Wavelet coefficients, they used
principal component analysis. They described the following advantages of using Gabor Wavelet
in spatial domain: Plausibility to model the visual system. Processing of local areas of interest.
Faster than conventional FFT implementations. Malathi and Bhuyan (2015) DeJong et al. showed
that FlowNetS is based on Gabor filters. They found that a Gabor filter based on two frames
limited the performance for flow velocity estimation. Performance could be improved by using
more frames. De Jong et al. (2021) There have been approaches using Gabor responses as input
for CNN’s.Hosseini and Cho (2019)

Implementation in Bob

Gabor Wavelets and Jets are implemented in bob.ip.gabor. The function bob.ip.gabor.Jet(trafo-
image,pos) can be used to create a Gabor Jet for a fixed position on an image. Günther et al.
(2012)Anjos et al. (2012)

Figure 2.2b shows the Gabor Wavelet used for the calculations of the real and absolute part of
the original image. In the absolute part 2.2c the border on the top and bottom of the image looks
very similar despite the differences seen in the original image, 2.2a it can also be observed in the
real part. 2.2d This is due to the wrap-around which happens in the Gabor Wavelet transform,
meaning there are responses from one side represented on the opposite side of the image.

Further there is a function bob.ip.Gabor.Similarity("Disparity", gwt) that uses these Jets and
calculates the similarities within an image.Figure 2.3 shows how Gabor wavelets can be used to
find similarities in an image. Figure 2.3b shows the similarity of each pixel in the image to the
selected point marked with an X in Figure 2.3a . By using these functions it is possible to create a
disparity map of two stereo images.
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Figure 2.2: The response of Gabor Wavelets to an image from DrivingStereo
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Figure 2.3: Gabor Wavelets can be used to find similarities within an image.





Chapter 3

Approach

The practical part of this thesis calculates disparity maps for images from the DrivingStereo and
the Middlebury dataset, using all four introduced approaches. And evaluates them using the
MRE, MAE and BMP values. Because for the DrivingStereo images the ground truth is only one
value per pixel, all disparities in this thesis are calculated in horizontal direction only.

3.1 Implementation Details

3.1.1 Gabor Jets
To estimate the disparity between the two stereo images, the bob.ip.Gabor API can be used.1Günther
et al. (2012) The function bob.ip.gabor.Jet(trafo-image,pos) can be used to create a Gabor jet for a
fixed position on an image. Günther et al. (2012)Anjos et al. (2012)

To transform an image with bob.ip.Gabor.Transform there are two relevant parameters: The
number of scales and k_max. These parameters can increase the region from which a Gabor Jet
is extracted. There are also parameters to set the number of directions, the spatial resolution of
Gabor Wavelets, and the distance between two scales of Gabor Wavelets. For these parameters,
the default values were used.

3.1.2 StereoBM
The function StereoBM_create takes the parameters numDisparities and blockSize. With numDis-
parities, the search range is given. This means that for each pixel, the algorithm searches for a
number of best disparities. The second parameter is blockSize, and this parameter gives the lin-
ear size of the blocks used for comparison. This parameter has to be odd. A smaller block size
gives a more accurate disparity map but allows for more wrong correspondences. A larger block
size results in a smoother but less accurate disparity map.

3.1.3 Liu
The the cg version, which was used for this thesis is implemented on bob as well2. For Liu’s al-
gorithm, multiple optional parameters can be set. They give regularization weight, downsample

1https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.ip.gabor/doc/py_api.
html

2https://www.idiap.ch/software/bob/docs/bob/bob.ip.optflow.liu/master/py_api.html

https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.ip.gabor/doc/py_api.html
https://www.idiap.ch/software/bob/docs/bob/docs/stable/bob/bob.ip.gabor/doc/py_api.html
https://www.idiap.ch/software/bob/docs/bob/bob.ip.optflow.liu/master/py_api.html
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Figure 3.1: Disparity with Gabor Jets, original and rescaled image.

ratio, width of coarsest level, number of outer fixed-point iterations, number of inner fixed-point
iterations, and number of cg iterations.

3.1.4 Horn Schunck
For the VanillaFlow function in bob.ip.optflow.hornschunck the parameters alpha and iterations
can be set 3. Alpha is the weighting factor between brightness costs and field smoothness. The
number of iterations is used to minimize the flow error

3.2 Preprocessing of Images
The preprocessing of the images is important because not every algorithm tested is capable of
handling color. Further, the size of images can have a significant impact on the duration of calcu-
lation.

3.2.1 Impact of Image Size
The original images in the DrivingStereo dataset are 881 x 400 pixels large. The disparity calcu-
lation with Gabor Jets took around 125 s for the large images. To reduce this calculation time the
images were rescaled to half the size. This resulted in faster calculation but only slightly worse
results.

3.2.2 Impact of Color
One aspect inspected during this thesis was the influence of the colour channels on the results.
Since the algorithm worked with black and white images, all data had to be converted to black
and white. In this process, it is possible to give different weights to the different colour channels.
To compare eventual differences between the color channels three versions of the images have

3https://www.idiap.ch/software/bob/docs/bob/bob.ip.optflow.hornschunck/stable/py_api.
html

https://www.idiap.ch/software/bob/docs/bob/bob.ip.optflow.hornschunck/stable/py_api.html
https://www.idiap.ch/software/bob/docs/bob/bob.ip.optflow.hornschunck/stable/py_api.html
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Figure 3.2: Disparities on images where only one channel was used.
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Figure 3.3: Example of an image with a black border.

been prepared using the library PIL, which offers a function to extract only one colour channel
from an image. In Figure 3.2 three graphs created with each only one color channel are shown.

3.2.3 Impact of Border
Gabor Jets extract local frequency information around the target position. At the border of the
images, by default, the images are wrapped around, this leads to inaccuracies in the border region.
To minimize this the black border of 100 pixels was added (see Figure 3.3). Instead of random
pixels the black border is now used to calculate the Gabor Jets for the border pixels.

3.3 Datasets

3.3.1 DrivingStereo
The Driving Stereo dataset was published in 2019. It consists of training and testing datasets. The
training set consists of 174431 image pairs, and the testing dataset contains 7751 image pairs. Each
image is 881x400 px in size. They provide disparity and depth maps for all frames. The disparities
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(a) Left image (b) Right image

(c) Disparity map provided by DrivingStereo
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Figure 3.4: Disparity maps for an example image of DrivingStero

are given as values on a pixel. This means the disparity is not directed. For the following results
the disparity is assumed to be horizontally directed. The DrivingStereo dataset provides disparity
maps for the training data. The disparity maps are saved as uint16 PNG images. This means
the disparity value can be computed for each pixel by converting the uint16 value to float and
dividing it by 256. The labels of disparity have been produced by using multi-frame LiDAR
points. Yang et al. (2019) LiDAR, short for Light Detection and Ranging, is a technology that can
be mounted on a vehicle. It records data about the surface of the Earth using a laser. Li and
Ibanez-Guzman (2020) The resulting ground truth only contains information about points where
the laser is reflected back to the sensing units. Because of this, there are points where no data are
available in the ground truth. The disparity maps can only be evaluated where data are available.

3.3.2 Middlebury
The Middlebury Stereo Datasets provide stereo images complete with disparity maps. Since 2001
only 71 image pairs collected have been collected. The images vary slightly in size but most of
them are around 2864 x 1924 px large. As the techniques of obtaining these images have been
improved over time, only the images from 2014 have been used for this comparison. There was a
part of the images used for evaluation where no ground truths were provided, meaning for this
thesis 14 images were actually used. The ground truths for the Middlebury dataset have been
acquired by using structured light. This structured-light technique uses a projector to project one
or more light patterns on a scene. With this, dense and pixel-accurate correspondences can be
produced. The disparity values d can be converted to depth with the following equation, where
Z is the depth in mm, d is the disparity value in pixels, doffs the x-difference of principal points,
and f is the pixel’s focal length. Scharstein et al. (2014)

Z = baseline ∗ f/(d+ doffs). (3.1)
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Figure 3.5: Example image from the Middlebury Dataset, left and right image.

3.4 Disparity Map Evaluation

The main point of evaluation for disparity maps is accuracy. To get the accuracy of the calculated
disparity maps, they can be compared to the disparity maps provided by the dataset. There are
multiple ways to calculate the accuracy of disparity maps to get values that can be compared.
For these results, the mean absolute error, the mean relative error and the bad matched pixels
percentage were calculated. For this calculations the values of a grid from the ground truth and
estimated image were used, this grid contains every 10 pixel in width and height. This grid
was implemented because there was to much data if every pixel was considered. The grid is
completely unconditional to the availability of disparity values. Because of this a lot of the values
were 0 since both ground truth and the disparity maps calculated by the algorithms do not have
results for every pixel.

3.4.1 Mean Absolute Error

The mean absolute error calculates the absolute difference between the ground truth value and
the disparity value. X and y are the coordinates used to refer to the disparity values in the grid of
values created for each image.

MEA =
1

N

N∑
(x,y)

|Dtrue(x, y)−Destimated(x, y)| (3.2)

Kim et al. (2021)

3.4.2 Mean Relative Error

The MRE calculates the ratio of error magnitudes against actual disparity values. With this
method, every value that deviates from the ground truth is considered an error. Cabezas et al.
(2012)
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MRE =
1

N

N∑
(x,y)

|Dtrue(x, y)−Destimated(x, y)|
Dtrue(x, y)

(3.3)

X and y are coordinates of the disparity values D in the grid used for the evaluation.

3.4.3 Bad Matched Pixels
BMP is often used for the evaluation of disparity maps. It is given as a percentage and calculated
by counting the number of differences between the ground truth and estimated disparity values
that exceed a given threshold. Cabezas et al. (2012) X and y are coordinates in the grid used for
the evaluation. The BMP value is calculated as follows:

ε(x, y) =

{
1 if |Dtrue(x, y)−Destimated(x, y)| > δ

0 if |Dtrue(x, y)−Destimated(x, y)| ≤ δ
(3.4)

with epsilon being the difference value between the disparity values D for threshold delta.

BMP =
100%

N

N∑
(x,y)

ε(x, y) (3.5)

TN is the number of points used for the comparison.
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Results

In the following, the results of the disparity estimations with Gabor Jets, Horn Schunck, Liu, and
StereoBM for images from the Driving Stereo Dataset and images from the Middlebury dataset are
given. For each of the algorithms, the disparity maps of the different images are created. These
disparity maps are then compared to the ground truths and evaluated by using the previously
introduced BMP, MAE and MRE formulas.

4.1 Parameters

Preliminary to calculating all the values, the best parameters were determined for all of the al-
gorithms. For all the results in this thesis, the same parameters have been used. For Gabor Jets,
the number_of_scales was set to 12, and k_max was set to pi/4. With StereoBM, the parameter
numDisparities was set to 32 and blockSize to 5, which is a relatively small blockSize. For Liu,
only the alpha parameter, which sets the regularization weight, has been manually set to 0.5. The
parameters of Horn Schunck have been set to alpha = 200 and iterations = 20. The recommended
default value of alpha = 200 proves to work best in this case. For all parameters not mentioned
here, the default values have been used.

4.2 Results on the Driving Stereo Dataset

In the following section, the results of the data from DrivingStereo are described. For these re-
sults, only the folder 18-07-09-16-11-56 from the training data was used. This means that for the
following results, 2776 pairs of stereo images were used. Only a part of the available data was
used for efficiency reasons because some of the algorithms have a very long calculation time, and
2776 is a large enough sample to get representative results while still having reasonable running
times. Because of the number of images used, the complete tables are not represented in this
chapter.

Figure 4.1 shows examples of disparity maps computed by the different algorithms. There is
a difference in both the length and placement of the disparity arrows. Both Gabor Jets and Liu
provide disparities for each of the chosen pixels, while StereoBM and Horn Schunck do not. Horn
Schunck results in zero for many pixels. Because of that, only a few arrows are plotted.
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Figure 4.1: Disparity maps on an example image of DrivingStereo
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Table 4.1: Calculation Times

Algorithm Rescaled image Original Image

Gabor Jets 5.39 s 124 s
Horn Schunck 2.28 s 5.82 s
Liu 22.6 s 68.1 s
StereoBM 0.5 s 1.7 s

HS Gabor Liu StereoBM
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Figure 4.2: Boxplot of the MRE values for the DrivingStereo Dataset

Calculation time

As mentioned previously, the running times are problem points for some of the algorithms.
Rescaling the images already took the running time of the Gabor Jets from 124 s down to 5.39
s on average.
Table 4.1 shows the average calculation times measured after the preprocessing.

4.2.1 Mean Relative Error
Figure 4.2 shows the boxplots for the MRE values on the DrivingStereo dataset for all four ap-
proaches. The smallest distribution and lowest mean is achieved by Liu. StereoBM has the high-
est mean. Gabor Jets have a distribution span between 0.1 and 0.48. This leads to a mean below
the mean of StereoBM but above the means of Horn Schunck and Liu.

4.2.2 Mean Absolute Error
Considering the mean value for all the used images, Horn Schunck did perform the best with a
mean of 74.0739. Followed by Gabor Jets, which had a mean of 91.3251 overall images. While
StereoBM has the lowest MAE value for a single image, its mean over all images was 373.2638,
which is considerably higher than both Horn Schunck and Gabor Jets.
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Figure 4.3: Boxplot of the MAE values for the DrivingStereo Dataset

In the boxplots in 4.3 one can see that Gabor Jets and Horn Schunck have a much smaller
distribution and lower mean than Liu and StereoBM. While the mean of Horn Schunck is lower
than the mean of Gabor Jets, the Gabor Jet has a smaller distribution.

4.2.3 Bad Matched Pixels
The delta used to calculate the BMP was 1. Overall, Horn Schunck has the lowest percentage of
bad matched pixels with only 13.55% on average. Gabor Jets follows with an average of 21.77 %
bad matched pixels and Liu with an average of 23.43%. The highest mean is 28.52 % for StereoBM.

In accordance with the average values, StereoBM has the most outliers, while Horn Schunck
has no outliers.

4.3 Results of the Middlebury Dataset
The following results are calculated on a sample from the Middlebury dataset. For the Middle-
bury dataset, only 14 images were used, because of this all results can be represented in this
chapter. Figure 4.5 is the Middlebury image Vintage with Disparities calculated by Gabor Jets
and OpenCV For the visualization of the StereoBM disparity map, the disparity values have been
reduced by a factor of 10 to provide a clearer image as the disparity values are large and result in
very long arrows.

4.3.1 Mean Relative Error
The following table shows the MRE values for the 14 pictures used from the Middlebury dataset.

As can be observed in the following boxplots, even though it has the most extensive distri-
bution, StereoBM has the smallest mean. Gabor Jets has the highest mean, closely followed by
Liu.
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Figure 4.4: Boxplot of the BMP values for the DrivingStereo Dataset
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Figure 4.5: Disparity maps calculated with Gabor Jets and OpenCV StereoBM
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Table 4.2: MRE values on Middlebury

Gabor Horn Schunck Liu StereoBM

Adriondeck 91.5783 81.0361 89.8556 53.2569
artL 96.4428 79.6193 94.497 106.7138

Jadeplant 89.6413 79.096 88.7431 71.7772
Motorcycle 90.1609 81.2317 88.429 61.9353

MotorcycleE 90.1095 81.2315 87.0907 61.8583
Piano 85.7692 76.5815 83.0779 61.9474

PianoL 85.7478 76.5812 82.3521 74.7148
Pipes 87.931 74.1561 85.287 79.1265

Playroom 87.8542 73.3085 84.8268 52.8175
Playtable 88.0375 80.9813 86.4987 54.2823
Recycle 90.4157 79.8748 88.4476 76.5829
Shelves 81.9842 74.6605 80.1102 49.3717
Teddy 87.1957 77.6905 85.9676 55.3391

Vintage 90.9087 75.2396 88.4163 48.5351

Mean 88.8412 77.9492 86.6857 64.8756
Standard deviation 3.3649 2.8551 3.5690 15.8169

Figure 4.6: Boxplot of the MRE values for the Middlebury Dataset
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Table 4.3: MAE values on Middlebury

Image Gabor Jets Liu Horn Schunck StereoBM

0 adriondeck.png 10567.7803 10427.1794 5603.8633 10897.5880
1 artL.png 13002.8934 11814.1713 6842.4836 18166.42
2 jadeplant.png 23672.0341 23691.2211 10185.6195 24620.4516
3 motorcycle.png 13223.8054 13545.7312 7194.3181 14949.0959
4 motorcycleE.png 13224.8821 13309.7557 7194.309 14920.1306
5 piano.png 9243.4309 8706.6926 4807.2843 9295.3849
6 pianoL.png 9346.3648 8646.9028 4807.2659 10926.5457
7 pipes.png 11138.1309 10693.5352 5219.9251 8850.5846
8 playroom.png 13304.8526 12264.7048 7644.9797 12858.5404
9 playtable.png 12044.2622 11974.8094 6017.5559 12266.6762
10 recycle.png 9394.9474 8933.602 3977.4386 10604.8647
11 shelves.png 9885.5844 9191.0689 4913.0965 9672.1493
12 teddy.png 9798.3586 9648.8783 5131.6742 10223.68
13 vintage.png 22600.192 19919.7811 9569.3032 14308.2233

4.3.2 Mean Absolute Error
The mean absolute error for all the algorithms was generally very high for the Middlebury dataset.
As can be seen in the boxplots in Figure 4.7, the Horn Schunck algorithm results in the lowest
mean value. The results for Gabor Jets and Liu are very similar. They have almost the same mean
and distribution. In table 4.3 one can see that they performed well on the same images. The mean
result of StereoBM is close to the mean of Liu and Gabor Jets, but the distribution is a bit wider, it
performed well on different images than Gabor Jets, and Liu did.

4.3.3 Bad Matched Pixels
In the table 4.4 one can see the BMP values of all the approaches. For the following results the
delta for the BMP was set to 1

Both Horn Schunck and Liu’s BMP values are extremely high. The BMP values of Gabor Jets
and StereoBM are closer to their MRE values. The BMP values for Horn Schunck and Liu do not
get lower when a smaller threshold is used to calculate the BMP.
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Figure 4.7: Boxplot of the MAE values for the Middlebury Dataset

Table 4.4: BMP Values on Middlebury

Gabor Jets Horn Schunck Liu StereoBM

Adriondeck 0.7407 0.9995 0.9998 0.5274
artL 0.7836 0.9995 0.9998 0.3538
Jadeplant 0.7177 0.9995 0.9998 0.6234
Motorcycle 0.7128 0.9995 0.9998 0.43201
MotorcyceE 0.7128 0.9995 0.9994 0.4347
Piano 0.7419 0.9995 0.9998 0.3060
PianoL 0.8738 0.9995 0.9998 0.5187
Pipes 0.7033 0.9995 0.9998 0.3259
Playroom 0.7345 0.9995 0.9998 0.5439
Playtable 0.8142 0.9995 0.9998 0.3684
Recycle 0.7695 0.9995 0.9998 0.3709
Shelves 0.7767 0.9995 0.9998 0.3873
Teddy 0.6973 0.9995 0.9998 0.2869
Vintage 0.7171 0.9995 0.9998 0.4806

Mean 0.7568 0.9995 0.9998 0.4327
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Discussion

For many of the applications of stereo matching, the speed of the algorithm is crucial. While the
calculation duration for the Gabor Jets was very slow for the original images, it did significantly
improve by rescaling the images. For the original images, it took around 124 s, for the rescaled
images the average calculation time was reduced to 5.39 s. Although this is still slower than the
0.5 s of StereoBM or 2.28 s of Horn Schunck, it did surpass Liu, which takes on average 22.6 s on
the rescaled images.

Considering the results of the evaluations, there is a difference between the two datasets in
general as well as for each of the algorithms. Looking at MAE 5.1 results for the DrivingStereo
dataset, one can see that Horn Schunck outperformed the other algorithms in both measurements.
For both evaluation methods, Gabor Jets has better results than StereoBM but worse results than
Horn Schunck and Liu. Comparing the images for which Gabor Jets and Horn Schunck had
both highest and lowest MAE values, it can be observed that Gabor Jets performed best on an
image with many different cars in it 5.1a and worst on a calmer image mainly consisting of an
almost empty road5.1b. This is because Gabor Jets work best with the edges of the objects. The
opposite case is witnessed for the Horn Schunck algorithm, with the best MAE being achieved
for a calmer image with only two cars in it 5.1a and the worst for an image with more traffic and
more variations in texture 5.1b.

For the BMP, the table 5.2 shows the best and worst results for all algorithms. In 5.3 the images
where the disparity calculations with Gabor Jets resulted in the highest percentage of bad matched
pixels are shown. All of the images consist primarily of an empty road. This does not offer a lot
of edges or textures for the Gabor Jets.

With the MRE evaluation, Liu had the lowest mean and distribution. Horn Schunck again had
the best result for an image with only a few cars and prominent structures 5.4a, while both Liu

Table 5.1: MAE values on DrivingStereo

Name Gabor Jets Liu Horn Schunck StereoBM

54-37-143.png 27.4668 422.8741 15.4592 46.0471
51-42-424.png 52.3406 118.8669 61.8797 395.3169
41-56-697.png 67.3103 536.0222 12.3092 22.1378

44-13-691.png 187.4997 775.8986 172.7955 455.2240
49-07-908.png 102.6489 1098.1899 105.7062 778.03
55-00-470.png 157.1728 1077.8844 195.6546 505.17
51-49-525.png 142.4025 689.4080 132.5607 1112.1928
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(a) Gabor Jet, best MAE value (b) Gabor Jet, worst MAE value

(a) Horn Schunck, best MAE value (b) Horn Schunck, best MAE value

Table 5.2: BMP values on DrivingStereo

Name Gabor Jets Liu Horn Schunck StereoBM

54-41-453.png 0.0668 0.0729 0.0643 0.2311
54-41-053.png 0.0746 0.0609 0.0662 0.2349
41-56-697.png 0.1497 0.17021 0.0249 0.3561
49-09-309.png 0.1942 0.2853 0.1832 0.1245

55-33-802.png 0.4380 0.2807 0.2003 0.2965
55-39-508.png 0.2690 0.34124 0.1934 0.2894
44-13-691.png 0.4267 0.2738 0.2476 0.3102
41-53-396.png 0.1390 0.1967 0.0882 0.4997

Figure 5.1: On the left is image 41-56-697.png, which is the image on which the StereoBM algo-
rithm performed the best on. On the right is the image 51-49-525.png for which the StereoBM
algorithm had the largest MAE.
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(a) Liu,best BMP (b) Liu,best BMP

Figure 5.2: Images with the best BMP for Liu and Horn Schunck

Figure 5.3: Images for which Gabro Jets has the highest BMP

5.4c and Gabor Jets 5.4b performed the best on images consisting of more than half of a flower
meadow. For Liu, this is likely because it repeatedly looks at brightness and smoothness, which
works better on images with a few distinctive areas. For Gabor Jets it can be explained by the
very textured nature of the meadow, unlike an empty street, a meadow has many structures that
can be considered.

Both Gabor Jets and Liu have the highest MRE value for artL 5.5a and the lowest MRE for
shelves 5.5b . Horn Schunck has the lowest MRE value for Playroom 5.5d and the highest for
Motorcycle. StereoBM got the lowest result for Vintage 5.5c and the highest for artL 5.5a. All
algorithms besides Horn Schunck had the lowest MRE value for artL, this is likely because it is
a very clearly divided image. It has a lot of contrast and large objects, which leads to both clean
edges, which are good for the performance of Gabor Jets and the large differences in colour, which
seems to be beneficial for Liu and StereoBM. Horn Schunck performed the best on the image with
smaller areas, yet still an image with a lot of contrast and edges.

For the Middlebury dataset, the BMP values seem unfitting. The BMP is generally very high

Table 5.3: MRE values on DrivingStereo

Name Horn Schunck Gabor Jets Liu StereoBM

12-06-908.png 0.0174 0.0835 0.005 0.2479
18-51-021.png 0.0394 0.0452 0.0031 0.3925
16-23-480.png 0.2572 0.265 0.2056 0.085
18-50-119.png 0.0409 0.0417 0.0084 0.4479

25-42-228.png 0.3023 0.2994 0.2638 0.22
29-18-002.png 0.2511 0.4555 0.1722 0.3583
23-59-319.png 0.0803 0.1168 0.0380 0.6863
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(a) Horn Schunck,best MRE (b) Gabor Jet,best MRE

(c) Liu,best MRE (d) StereoBM,best MRE

Figure 5.4: Images for which the respective algorithms have the lowest MRE

and, despite having good results for the MAE and MRE calculations, the Horn Schunck algorithm
gets 99.5 % bad matches. It is likely that there is an error in the calculations that has not been found
yet.

If the results from the DrivingStereo and the Middlebury datasets are compared, one can see
that the block matching algorithm from StereoBM outperformed the other approaches with the
Middlebury images. These images are constructed and consist of multiple objects, while the Driv-
ingStere images are real-life images that often have large parts where not a lot goes on, like empty
streets and meadows or bushes. In image 5.6a one can observe that Gabor Jets estimated the most
disparities around the object, which stands out in front of the background. The Horn Schunck
algorithm performed second best on both DrivingStereo and Middlebury.

While Gabor Jets performed better on the DrivingStereo dataset, StereoBM performed better
on the Middlebury dataset. The type of images can explain the difference in performance between
DrivingStereo and Middlebury. While the DrivingStereo dataset has been captured in real traffic,
the images for the Middlebury dataset have been constructed under studio conditions. Because
of this, the images in the Middlebury dataset consist of mainly a few items in a closed room, while
the images DrivingStereo dataset show scenes where many objects are further from the lens. There
is also a difference in the capture of the ground truths for both datasets. While DrivingStereo
uses Lidar, Middlebury uses structured light. Because of this difference, the ground truths for
Middlebury contain information for more pixels of the image.
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(a) artL (b) Shelves

(c) Vintage (d) Playroom

Figure 5.5: Images with the highest and lowest values on Middlebury
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Figure 5.6: Disparity maps for the image Recycle.
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Conclusion

As there are many possible applications for optical flow, more efficient algorithms for calculating
stereo matching are needed. In this thesis, the use of Gabor Jets for stereo matching was analysed
using images from two datasets, DrivingStereo and Middlebury. To optimize the results all im-
ages are preprocessed. They are first converted to black and white, as some of the algorithms can
not process coloured images, then rescaled to shorten the calculation time, and finally a border of
100 black pixel is added around the image to avoid inaccuracies due to wrap around. By compar-
ing the results of Gabor Jets to the results of Horn Schunck, Liu, and StereoBM, this thesis showed
that Gabor Jets could be an alternative for disparity estimation. On lower-resolution images, Ga-
bor Jets achieve times that can keep up with the other algorithms. Considering accuracy Gabor
Jets performed well, especially for images from the DrivingStereo dataset with a lot of traffic.
For a more complete assessment it would be interesting to compare Gabor Jets’ results to the re-
sults of machine learning approaches. It would also be interesting to calculate the disparities in
all directions, not only horizontally. Further the application for calculating the optical flow in
video sequences would be interesting. Finally, the presented results show that Gabor Jets can be
considered an alternate method for stereo matching. Especially for working with traffic images,
Gabor Jets could be an interesting approach.
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