
Bachelor
November 25, 2021

Interactive Command
History Visualization

for the REPL
Proof-of-concept implementation around the

Python interactive mode

Nadine Muller
of Zürich, ZH, Switzerland (16-944-563)

supervised by
Prof. Dr. Harald C. Gall

Dr. Pasquale Salza

software evolution & architecture lab

Bachelor

Interactive Command
History Visualization

for the REPL
Proof-of-concept implementation around the

Python interactive mode

Nadine Muller

software evolution & architecture lab

Bachelor

Author: Nadine Muller, nadine.muller@uzh.ch

Project period: 25.05.2021 - 25.11.2021

Software Evolution & Architecture Lab
Department of Informatics, University of Zurich

Acknowledgements

I want to thank Prof. Dr. Harald Gall for giving me the opportunity of writing my thesis at the
department of software evolution and architecture. I give my thanks to Dr. Pasquale Salza and
Marco Edoardo Palma for supervising my thesis, and for being patient while waiting for progress
updates on my part. I also want to thank my family for supporting me emotionally in this stressful
time, and especially my father, for the clarifying discussions when I got stuck at some points.

Abstract

REPLs play an important part in the programming world. They have many useful features, but
are lacking in user-friendliness. This thesis presents the design and implementation of a web
application built around a Python console, aimed at improving the user experience of the con-
sole with additional features. The main addition is an interactive visualization of the command
history, helping users keep an overview over what has been programmed already, letting them
restore previous program states to try something else, and generating a script from the command
history that can be used in other environments.

Zusammenfassung

REPLs spielen eine wichtige Rolle in der Welt der Programmierung. Sie haben viele nützliche
Funktionen, aber es fehlt ihnen an Benutzerfreundlichkeit. Diese Arbeit stellt das Design und
die Implementierung einer Webanwendung vor, die auf einer Python-Konsole basiert und da-
rauf abzielt, die Benutzererfahrung der Konsole mit zusätzlichen Funktionen zu ergänzen. Die
wichtigste Neuerung ist eine interaktive Graphi des Befehlsverlaufs, die den Benutzern hilft,
einen Überblick über das bereits Programmierte zu behalten, frühere Programmzustände wieder-
herzustellen, um danach etwas anderes auszuprobieren, und ein Programmskript aus dem Be-
fehlsverlauf zu erzeugen, das in anderen Umgebungen weiter verwendet werden kann.

Contents

1 Introduction 1

2 Background 3
2.1 Interactive Consoles . 3

2.1.1 REPL Definition . 3
2.1.2 Examples . 3

2.2 Python . 3
2.2.1 Features . 3

3 Related Work 5
3.1 Educational Programming Languages . 5

3.1.1 Text-Based EPLs . 5
3.1.2 Graphical EPLs . 5
3.1.3 Block-Based EPLs . 6

3.2 Third-Party Python Consoles . 6
3.3 Other Tools . 7

3.3.1 Python Standard Library . 7
3.3.2 Dynamic Visualization of Data Structures with Debug Visualizer 7

4 Approach 9
4.1 Requirements . 9
4.2 User Stories . 9

4.2.1 Personas . 9
4.2.2 Stories . 10

4.3 Features . 10
4.3.1 Visualization of Command History . 10
4.3.2 Branching . 11
4.3.3 Editing Input And Program State . 11
4.3.4 Generating a Script . 11

4.4 Model . 11
4.4.1 Console . 11
4.4.2 Back End . 11
4.4.3 Front End . 12

4.5 Implementation . 13
4.5.1 Console . 13
4.5.2 Back End . 13
4.5.3 Front End . 15

viii Contents

4.5.4 WebSocket Message Protocol . 19
4.6 Design Choices and Limitations . 20

5 Conclusion 23

Contents ix

List of Figures
4.1 Light (left) and dark (right) modes of the user interface. 16
4.2 Every type of marked node in the state visualization. 16
4.3 The editing menu of the application. 17

List of Tables

List of Listings
4.1 Python3 command used to get the program state after every user input. 15
4.2 Summary of message format for client-to-server. 20
4.3 Summary of message format for server-to-client. 20

x Contents

Chapter 1

Introduction

According to the Merriam-Webster Dictionary, in computing, a program is defined as "a sequence
of instructions that can be inserted into a mechanism, such as a computer" [9]. The term "to
program" has first been used in computing in 1942 by Mauchly, in a paper on electronic computing
[38]. He used it in the sense of connecting different computing units with signal cables. The
modern understanding, as defined above, seems to have stabilised only around 1951 [33].

There are different ways of programming. In most cases, programmers write their code in
text files. These scripts, or programs are then executed as units. This process has three separate
phases. The first step is to design a solution, the second step is to write the program code. Then
the program needs to be compiled, and finally it can be executed, and the outcome validated.

Interactive programming has a different approach, where these steps happen in parallel, which
is beneficial to both learners and experts. One can start programming without already knowing
what the final solution is going to be. This is helpful when designing a solution or an algorithm.
Additionally, any feedback is immediate, which supports learning by doing and a trial-and-error
approach. However, the development environment has to support this interactive style of pro-
gramming.

One application of interactive programming is called live coding. Originating in performance
arts, it is also used in programming-related lectures and conference presentations [53]. It ap-
plies traditional development tools, such as monitoring file changes or automatically reloading
browser pages, in an interactive fashion.

The REPL is a more traditional interactive programming environment. The acronym stands
for read-eval-print-loop, which describes the coding process with such a tool. The user gives an
input statement to the console, which is read by the REPL, then evaluated. The output of the
statement is printed to the console, before the REPL waits for new input to repeat this process.

These consoles are useful for small tasks, experimentation with the programming language,
and for learning the basics of programming.

Nevertheless, the REPL has limitations, which can be improved upon. Statements are executed
linearly; there is no possibility to properly undo previous inputs, and program states cannot be
saved to return to them later, and try an alternative path. In fact, there is not an easy way to get an
intuitive presentation of the current program state. Even more complications occur when trying
to understand and retrace how the program state evolved, since there is no insight into previous
program states.

In addition, it is generally not intended to export the executed code to use it in another project.
While it is technically possible to find the console history, it is not obvious and a manual process.
Consoles are traditionally fully textual. To give users a better overview over the state and evolu-
tion of the program, informative visualizations could be used.

The goal of this thesis is therefore to implement an environment with the aforementioned
improvements to a traditional REPL. More specifically, this tool is an interactive environment

2 Chapter 1. Introduction

with a visualization of the program state and command history, the ability to navigate between
program states and branch off of them, and with automatic generation of a script based on the
command history.

The thesis structure is the following: Chapter 2 contains background information on inter-
active consoles and the programming language Python, whose interactive mode constitutes the
base for the tool. In chapter 3, we look at similar tools, and their approaches. The approach is
detailed in chapter 4. We list the ideal requirements, and explain the features, then we describe
the architecture and implementation, and we specify the reasoning for some design choices and
the limitations of this approach. Finally, chapter 5 contains the conclusion and opportunities for
future work.

Chapter 2

Background

This thesis is based on different topics, the most relevant being interactive consoles and the pro-
gramming language Python.

2.1 Interactive Consoles

2.1.1 REPL Definition
The REPL, short for "read-eval-print-loop", is a type of programming environment. Its main char-
acteristic is right in the name. The REPL reads user-given input, evaluates it, and prints the result.
This process is repeated in a loop, as long as there is an input to read. It is also known as an
interactive shell or console, or a command-line interface.

2.1.2 Examples
One of the earliest implementations of a REPL is based on Lisp, from 1960 [39]. Lisp is one of
the oldest high-level programming languages, originally created as a mathematical notation. A
different example is the APL\360 terminal system from 1967, specialized on mathematics calcu-
lations [12]. Other popular consoles are sh and its descendants, which are used in Unix-based
operating systems, the R console [32] used mostly for statistics and data analysis, and Python’s
interactive mode [16, 18, 20].

2.2 Python
Python is an free and open-source [28] programming language. Python was designed by Guido
van Rossum in the late 1980s [51].

The third major version, Python3 first released in December 2008 [49]. At the time of writing
(November 2021), the latest release version is 3.10.0.

2.2.1 Features
Python is a cross-platform, high-level, interpreted programming language. It is mainly object-
oriented, but it also supports other programming paradigms, such as functional and procedural
programming [24].

4 Chapter 2. Background

Readability

Python has a focus on readable and non-verbose code, with an official coding style guide [50].
Python uses indentation [19] to delimit blocks instead of parentheses or curly braces like many
other languages (C, Java etc.).

Extensibility

Another important characteristic of the language is its modularity and extensibility [51]. Python
has a large standard library [29] of modules, and there are many third-party modules available
also [26].

Interactive Mode

Another feature of Python is the interactive interpreter [20]. It acts as a console that evaluates and
executes Python code line by line. It has all of the features that Python has when writing scripts,
while also, like other REPLs, printing the result of expressions.

Chapter 3

Related Work

There are many efforts in research and in the industry to create programming languages and tools
to make programming more accessible to newcomers, and more fun to learn, as well as improving
tools used by professional programmers for ease of use.

This chapter lists and explains some of those languages and tools, focusing on educational
programming languages and third-party Python consoles.

3.1 Educational Programming Languages
There are different approaches to teaching the basics of programming. One way is using ed-
ucational programming languages (EPL). Educational programming languages are designed to
facilitate learning to program for beginners. They are mostly used to teach basic programming
concepts, before learners start to learn classical programming languages with additional complex-
ity and details.

The main types of EPLs are text-based languages, graphical programming languages, and
block-based languages.

3.1.1 Text-Based EPLs
Purely textual educational programming languages are the closest to most classical program-
ming languages. On one hand, this closeness makes it easy to switch from an EPL to a classical
programming language. On the other hand, they are the more difficult EPLs to learn, since the
learners have to overcome their syntax first, before being able to use them.

Many EPLs are initially based on other programming languages, such as BASIC, which was
heavily influenced by ALGOL and FORTRAN [34].

BASIC was designed to be usable by students in non-science fields [34]. It became widely used
in the 1970s and 80s thanks to the spread of home computers, many of which came with BASIC
installed [52].

Another textual educational programming language is A++ [36], which is based on Lambda
calculus [35], a notation for mathematical application of functions to arguments [1].

3.1.2 Graphical EPLs
Another type of educational programming languages are graphical EPLs. They are different from
text-based EPLs in that the program written in text produces a graphical output, typically in a
two-dimensional environment.

6 Chapter 3. Related Work

Logo is an example of such a language. Its most popular environment lets the user control
a graphics object represented by a turtle through written commands. [13] The turtle can move
forward, turn right, and do only a few other simple actions. The simple interface reduces the
syntax and number of commands that learners will have to memorize, lowering the entry barrier.

The immediate visual feedback and the simple commands of Logo and similar programming
environments like Karel [43] make them a popular choice for teaching children about program-
ming.

3.1.3 Block-Based EPLs
A third approach is using "building block"-like structures to build a script. These block-based lan-
guages are very different to traditional programming languages, in that users do not write code in
text. Instead, they manipulate the code by drag-and-dropping different block-like elements in a
certain order. These blocks represent control structures, functions, operators, and other elements
used in structural programming.

Proponents of this technique argue that "seeing and pointing", i.e. direct manipulation, is a
better user interface than "typing and remembering" [46].

Scratch [31], a free and open-source block-based programming environment, is aimed at chil-
dren between the ages of 8 and 16 [30]. The user can control and animate sprites using blocks as
described above. It is based on Google’s Blockly, a Javascript library for an "editor ... that represents
coding concepts as interlocking blocks" [8].

There are other tools which also use Blockly as their base. The Ozobot project [42] is about
programming a small robot using either markers and paper, or OzoBlockly [41], an editor based
on Blockly.

A hybrid approach between block-based and textual programming is used by mBlock [37], a
tool inspired by Scratch [2]. The block-based editor is similar to Scratch, but the user can read the
textual Python script generated by the blocks. Additionally, there is a Python editor to write scripts
with the same functionality in Python directly, using a Python library.

3.2 Third-Party Python Consoles
Python comes with a built-in interactive mode [18], which can be started in a terminal. On compat-
ible shells, the console has some useful features by default [17]. Tab completion auto-completes
variables and module names when pressing tab; the history is saved between sessions, and can
be navigated with the arrow keys.

For more advanced features, the Python documentation recommends using the third-party
tools IPython [44] or bpython [6].

IPython has many more features [47], some of which extend beyond the typical characteristics
[48] of a REPL. It has built-in access to the Python pdb debugger [25], its profiler, and allows object
introspection. It also supports accessing the underlying shell while running, and several "magic"
commands that control the environment, i.e. IPython and the operating system.

While IPython has a feature set more similar to an IDE, bpython has a simpler approach [5]. Its
idea is to be a console with some small but useful extra features. The "Rewind" functionality [5]
is noteworthy. It allows the user to undo the last line, leading to the code up until but excluding
that line being re-evaluated.

ptpython [45] is a another third-party Python console. It is different from IPython and bpython
in that it lets the user reuse one or more lines of the previous command history without manually
having to select every single line using the up arrow.

3.3 Other Tools 7

3.3 Other Tools

3.3.1 Python Standard Library
Th Python standard library [29] contains several modules, which are useful for a variety of tasks.
Of special interest are those modules, which give access to a lower layer of the language itself, or
the execution of some code. For the latter, pdb [25] is a debugger included in the Python standard
library.

For the language itself, there are some modules grouped under the "Python Language Ser-
vices" [27]. They make it possible to work with the Python language. The ast [22] module, for
example, is useful to create and manage abstract syntax trees for Python.

To build custom interactive interpreters, the code module [23] exposes appropriate classes
and functions.

3.3.2 Dynamic Visualization of Data Structures with Debug Vi-
sualizer

The Debug Visualizer project [10, 11] is an extension for the Visual Studio Code IDE [40].
This extension enables different visualizations that may be useful while programming. To get

the data to visualize, the programmer can make a helper function to transform it into JSON that
the extension uses to generate a visualization.

Chapter 4

Approach

In this chapter, we first list the requirements for the application. Then we describe the design of
the application, before moving on to the implementation.

4.1 Requirements
The purpose of the application is the extension of a REPL while keeping its benefits and improv-
ing the aspects that it has drawbacks in.

The basic requirements are:

• managing a REPL in a shell

• piping user input from the application to the console

• piping the output of the console back to the application

• showing the current program state

• saving the command history

• visualizing the command history in an interactive, and dynamically updated graph

• restoring existing program states

• branching off from previous paths

4.2 User Stories
User stories are a good tool to get a better idea of what and whose needs the application is sup-
posed to fulfill. Different types of users might have other reasons to use the tool. First, we describe
these personas, then the user stories.

4.2.1 Personas
The Beginner

The Beginner does not have any, or only very little previous programming experience. They want
to learn programming, and need fast feedback and support.

10 Chapter 4. Approach

The Algorithm/Solution Developer

The Algorithm or Solution Developer wants to solve a problem by designing an appropriate al-
gorithm. They need to be able to change previous parts of the code, and to see the effects that
those changes have. Additionally they want to export the work done in the application into their
own code base.

The Undecided

The Undecided has previous programming experience, and wants to try out different program-
ming languages or frameworks before making a choice, ideally without having to spend a lot of
time and energy installing tools on every option that they are considering.

The Tinkerer

The Tinkerer likes experimenting with code, and has fun playing around with the features.

4.2.2 Stories
• As a user, I want a summary of the current program state, so that I know what constants

and variables are currently in memory.

• As a user, I want a graphical view of the history of my commands, so that I know which
command led to what program state.

• As a user, I want to restore any previous program state, so that I do not have to manually
reenter every command to reach the given program state.

• As a user, I want to branch off an existing program state, so that I can explore different code
sequences and the resulting program states.

• As a user, I want to annotate code with my intentions, so that I can track whether I fulfill
them.

• As a user, I want to export parts or all of my code as a script, so that I can use it in other
development environments.

4.3 Features
The application described in this thesis is meant as a proof-of-concept for an interactive console
environment that provides a visualization and navigation of program state and command history.
This additional functionality is supposed to make using the console more user-friendly, better
suited towards experimentation, and the resulting code easily reusable.

4.3.1 Visualization of Command History
In a console, it is not always easy to keep an overview of what you have programmed so far due
to a purely textual interface and a non-trivially accessible command history.

Therefore, in this tool, the command history will be visualized as an interactive and dynami-
cally updated graph. It allows the user to always have an overview over what they have done so
far, and it is also the interface to navigate between program states.

4.4 Model 11

4.3.2 Branching
Consoles typically save the command history, which is accessible in the interface going backwards
chronologically line by line. So, if after working on one path for some time, the user decides to
return to a previous point in the history to try something different, they have to manually re-
execute the commands up to that point, going back in the history for every single command.

We address this issue with the branching functionality. Selecting a node in the history graph
restores the corresponding program state. From there, the user can enter new commands, creating
a new branching path in the history. The original path is saved, and any state on that path can
still be restored. Both paths will obviously be represented on the command history visualization
like branches of a tree.

4.3.3 Editing Input And Program State
In a traditional console, if you want to execute a sequence of commands, but with a single com-
mand changed in the middle, or different variables, you have to enter every command from that
point on again manually.

To mitigate this problem, the user can edit existing commands and update, add, or remove
variables for any previous program state in the tool. Like this, they do not have to start from
scratch when they make a mistake.

4.3.4 Generating a Script
It is possible to access and reuse the command history of a typical console, since it is usually
saved in a file. However, many users would not know that the file exists or where it is located.
This makes it hard to reuse code written in a console in a different code base.

Our application makes the code written by the user reusable. The user can choose a path from
the root to any node and export a script containing the sequence of commands from the beginning
to that program state, with all of the edits as well.

4.4 Model
The application is modelled into three main components: a console, the back end, and the front
end. The application is separated into a front end and a back end, because the program managing
the console needs access to the operating system, which needs to have the REPL installed. To
minimize the start-up procedure for the user, the console is run on a server, so that the user only
needs to have access to the client application, and does not have to install any REPL onto their
device.

4.4.1 Console
The console is an interactive console, running in a shell on a server, where it is managed by the
back end.

4.4.2 Back End
The back end has access to the operating system of its host server. It is responsible for starting
and stopping the console in a shell. It intercepts the standard output stdout, and error stderr

12 Chapter 4. Approach

of that shell.
It also upholds a connection to the front end. Through this connection, it receives the com-

mands to start, stop, or reset the console. It also receives the user’s input, which is piped to the
console’s standard input stdin. Conversely, it sends the stdout and stderr of the console
back to the front end.

4.4.3 Front End
The front end is the part of the application that the user interacts with. The main parts are the
textual representation of the console, the state management, and the console history visualization.

State Management

Console History. The console history saves the data from every input piped to stdin, the data
piped from every output to stdout and every error to stderr. The output and error data are
grouped with the input that came immediately before.

Program State. The program state contains all of the constants and variables that are defined
in a certain moment during the execution of a program, with their respective names, values, and
types. It is collected after every input, and grouped with said input.

State Management Structure. All of this data is stored in a tree structure. A node contains
one input line, any corresponding output and error, and the program state after the execution of
that input. A tree structure is well suited for this data, because the branching functionality can be
represented by the branches of the tree.

The root node is the program state after the console starts up. The child of a node is the
next entered command and its associated data. In a linear command history, every node in the
tree would thus have at most one child node. However, the tree structure allows nodes to have
multiple children. This enables the branching functionality.

The State structure has some typical tree operations, but also some more specific to its meaning
of a program state and command history manager.

Console Representation

While the console is running on the back end, the application represents the console to the user
on the front end as well, since the user typically does not have access to the back end.

Command History Visualization

The visualization of the command history as a tree graph is an integral part of the application.
The nodes represent the program states, and the edges represent the user-given inputs that lead
from the parent node, or program state, to the child node’s represented state. Depending on the
input that leads to a state, the node is marked to add a visual indicator of program flow. For
example, loops, namely for and while statements, are marked with a loop symbol. The edges
are overlaid with the text of the input or the sequence of inputs that they represent.

The visualization is interactive, since selecting a node restores the corresponding program
state. Additionally, the program state and the input are editable through the visualization.

4.5 Implementation 13

4.5 Implementation
The application is implemented in a simple client-server architecture. The back-end server is a
Node.js [14] script. In the script, the client-side web application, the front end, is also started
locally. The web application’s code is all in Javascript files referenced in the HTML of the web
page. The communication between back and front end happens through a WebSocket connection.
The server spawns a shell and manages a Python3 console.

Choice of technologies. Since I have experience working with web technologies, namely the
combination of HTML, CSS, and JavaScript, a web application makes the most sense. It also runs
on most modern devices without having to port the application to different operating systems.
Additionally, I also like implementing visualizations in SVG, which integrates well into a web
page.

Node.js is a JavaScript runtime, therefore both the front and the back end are implemented in
JavaScript, minimizing the number of different programming languages used.

The reason WebSockets are used to connect the web application and the server-side is that it is
another web technology with a simple interface, that is used for real-time bi-directional commu-
nication.

Python is a widely used programming language, used often to teach programming as well,
that I know well.

4.5.1 Console
The console is the standard Python3 interactive mode. The shell’s stdin, stdout, and stderr
are piped from and to the server script with Node.js streams [15]. The standard input channel
receives the user’s input from server-side. The standard output and error channels are piped to
the server.

The Python console uses the output channel if the input given is an expression to be evaluated,
or if a print-statement is given. The error channel is used, as the name suggests, if during the
execution, an exception is raised and not caught, but also for the startup message and the prompts
(">>> " and "... ").

4.5.2 Back End
The server manages the Python console and executes the messages sent from the web application
through a WebSocket connection.

To start the server, the script needs to be run with Node.js. The basic command is node
index.js [PATH-TO-PYTHON]. If the optional [PATH-TO-PYTHON] argument is not given,
the Python3 path is assumed to be python3, otherwise the given path is used to start the console.

Starting the Console. When the console is started, triggered by a message sent from the web
application, all of the control variables and the streams piped from and to the console are initial-
ized, and the client-side is sent an informational message stating whether or not spawning the
shell and starting the console have been successful.

Unique ID generation. There is an incremental counter that generates a unique ID for every
grouping of data, that is the input, the preceding console prompt, any output and error messages
that the console prints after that input and before the next input, and finally the program state
after the input’s execution.

14 Chapter 4. Approach

Console Prompts as Control Flow Indicators. The stderr stream is in a flowing state, mean-
ing that any data chunks are consumed as soon as they are available. Since the prompts for new
input, the start of the read-eval-print-loop, are piped through the error channel, they are the main
indicator of control flow.

There are two types of prompts: the primary prompt ">>> " and the secondary prompt "...
". The primary prompt prompts for the next command, the secondary prompt for a continuation
of the previous command.

User Input. A primary prompt means that the stdin stream of the console is empty, and the
console is awaiting new input. At that point, a new ID is generated, and the prompt is sent to
the web application with that ID. If user input is received through the connection to the front end
when the console is in that state, it is pushed into the shell’s stdin, and a message with the input
and the same ID is sent back to the web application.

Collecting Output and Errors. When the console consumes the input, it will eventually print
another prompt, primary or secondary. If it is secondary, so "... ", there is no other output, a
new ID is generated and the new prompt is sent back to the client-side with this ID.

If the prompt is primary, a few more steps are executed. First, the output to stdout is col-
lected, if there is any. It is then sent to the front end with the same ID that was used for the input.
If the error stream held other data before the prompt, it is also sent back with that ID. Before
restarting the loop from the start, the program state needs to be collected.

Collecting Program State. After the execution of every user-given input command, when the
primary prompt is printed, the program state is queried by pushing a hard-coded Python com-
mand to stdin. It is a sequence of statements in one line, separated by semi-colons, so as to use
only one iteration of the REPL per program state.

It executes the following steps:

1. Assign a copy of a dictionary map to "___g"1, containing every globally defined variable
with the key being its name and the value its value.

2. Assign a copy of a dictionary to "___l", containing every locally defined variable similarly
to "___g".

3. Update "___g" with the key-value pairs of "___l".

4. Delete the entry for "___g" in the dictionary "___g". Delete "___l".

5. Import the "json.dumps" function, which converts a given Python object into JSON, under
the name "___dumps".

6. Print the converted JSON string with...

7. the variable name, value, ...

8. and type...

9. of every item in "___g".

10. Delete "___g" and "___dumps".

1The variable names used in this command all start with a triple underscore to minimize the risk of corrupting a
variable or import defined by the user.

4.5 Implementation 15

1'___g=globals().copy();' +

2'___l=locals().copy();' +

3'___g.update(___l);' +

4'del ___g["___g"];del ___l;' +

5'from json import dumps as ___dumps;' +

6'print(___dumps(' +

7'{x:{"name":x,"value":str(___g[x]),' +

8'"type":str(type(___g[x]))[8:-2]} ' +

9'for x in ___g},separators=(",",":")));' +

10'del ___g;del ___dumps\n'

Listing 4.1: Python3 command used to get the program state after every user input.

A new primary prompt in the error stream marks that the output of this command is ready
in the stdout stream. It is a JSON string of a map, where the keys are variable names, and their
respective value is the name, value, and type of that variable. The program sends it to the web
application through the WebSocket connection, with the current ID.

This time, the ID is incremented again, and attached to the prompt, is sent to the front end
also. Now the console is ready to receive more user-given input, so that the cycle can start again.

Restoring Old Program States. When the user wants to restore an old program state, the mes-
sage from the web application contains the sequence of commands that lead up to that state.

On the back end, the console is stopped and a new instance is started. The text data is split
into an array of strings representing single lines of code, i.e. the user-given commands.

Now, the first command is pushed into stdin, starting the read-eval-print-loop as we de-
scribed it before. When the console is ready for new input, instead of waiting for the user to enter
a new command, the next line in the array is used instead. This is done until every element in the
array of commands has been executed.

The program state has therefore been restored, and the server resumes the previous routine.

Stopping the Console. When the order to stop the console comes from the front end, the child
process that is running the Python console is killed immediately.

4.5.3 Front End
The front end is the application that the user interacts with. It is a web application written in
vanilla HTML5, styled with a CSS style sheet, with the functionality brought by five JavaScript
files referenced via <script> tags in the HTML. The visualization of the command history is
generated with SVG.

After testing with different browsers, the application seems to be compatible with most mod-
ern browsers on desktop.

User Interface. The user interface is optimized for a desktop screen. It has four sections.
In the lower middle of the view-port is the virtual representation of the Python console that

is running on the back end. Every input to stdin, every output to stdout and stderr on the
actual console is also printed on this virtual console. Additionally, informational messages about
the status of the console are also displayed there.

The panel on the left side displays a program state at the top, usually the current one, unless
the user has selected a different node on the visualization. Underneath it, there are controls to

16 Chapter 4. Approach

Figure 4.1: Light (left) and dark (right) modes of the user interface.

open and close the WebSocket connection, and buttons to start and stop the console, with the
current statuses of both of those.

The right-side panel is a list of all of the program states in the currently active path. They
can be related to the relevant console output by their ID. Showing the content of each program
state can be toggled by activating its list entry. The active program state, and the state whose
information is displayed on the left-hand side, are both highlighted with a solid and a dashed
border respectively.

The largest section of the interface is the interactive graph visualization of the state tree data
structure. It occupies the top half of the window. The nodes, depicted as gray circles, represent
program states. If the preceding command is of a special type, they have related symbols in the
middle.

Figure 4.2: Every type of marked node in the state visualization.

4.5 Implementation 17

The edges of the graph represent the command(s) that lead from the program state of the
source node to the target node’s program state. Likewise, they are depicted as lines overlaid with
the text of these commands.

The nodes are interactive. Moving the cursor over a node selects it with a dashed border, and
displays its program state on the left-side panel. Double-clicking a node restores that program
state. The active program state, which a new input would be executed from, has its representing
node circled with a solid border. A click on a node while holding the Shift-key opens up the
editing menu for that state.

In the editing menu, two things can be edited: the program state, and the commands that
lead from the last program state to the state to be edited. Program state is the set of all variables
and constants defined at a given point in time of the execution. The user can change the values
of existing variables, define new variables, and delete old variables. Alternatively, the statement
leading to that program state can also be edited. The user may delete the statement entirely, add
more statements, or edit the original statement.

On re-execution of an edited path, the program state is updated accordingly. If the number of
statements in the edit is different from the original, this will also lead to fewer or more program
state nodes between the originally edited state and its parent node. If the user has changed the
program state by manipulating the variables, this change is converted into a Python statement,
which is executed immediately after the edited state.

Figure 4.3: The editing menu of the application.

HTML and CSS. The HTML is not very complex, aside from the hand-coded modal dialog
perhaps. It has basic keyboard accessibility, excluding the SVG visualization.

The CSS style sheet contains the style rules for the HTML document. The web application has
light and dark mode, both style and color choices contained in the style sheet as well.

18 Chapter 4. Approach

Scripts. The first script is an external open-source library, the other four are the result of this
thesis project. The latter are loosely separated into different concerns, however there is some
overlap and the later scripts also depend on the earlier ones.

D3.js. The first script is the D3.js library [4] for JavaScript. Its self-declared purpose is to "ma-
nipulat[e] documents based on data" [4]. We use it to simplify handling the dynamic updating of
the virtual console and the graph visualization.

State Tree Data Structure. The second script defines the State data structure. It is a tree
structure at its core, with additional properties and methods that are specific to its program state
and console history management aspect.

WebSocket Connection and Storage. The third script deals with the WebSocket connection
and with the management of the browser’s local storage. It also initializes some DOM elements
that are interconnected with those two aspects of the application.

The state of the application is saved to local storage after every change because local storage
is persistent across browser sessions, as long as the user does not delete it manually. This way, if
the user closes the browser after working in the application, their session will be reloaded when
they open it again (provided the server is running). It is also safe to reload the page without data
loss.

A custom setStorageItem(key, value) function ensures that if the value of an item in
local storage changes, a custom DOM event is dispatched, which triggers a dynamic update of
the user interface, most importantly the virtual console and the visualization.

The WebSocket connection can be opened – and closed – by the user by activating a button. The
status of the connection is saved in local storage, so that the connection is automatically reopened
on an accidental page reload.

The most complex and arguably most important part of the third script is how incoming con-
sole history and program state data is handled. If the parsed incoming message contains an ID
and either of the following properties: prompt, stdin, stdout, stderr or programState, the
State structure, as it is saved in local storage needs to be updated.

1. The algorithm checks if the message data is originally from restoring an existing program
state. If that is the case, the original state is updated with the new ID and content, and the
algorithm is done.

2. If the message data is new however, we check if the old tree structure is empty, i.e. only has
a root node without any data. If it is, we replace it with the incoming data and return.

3. If the existing tree structure is populated, the algorithm searches for a state with an ID
matching the one in the message. If this state exists, it is updated with the new data, and
we stop.

4. In the final case, no state with the message ID exists. A new state with the message data is
created, and appended to to the last active state as a child node.

Virtual Console and Script Generation. Since the actual Python console is managed from the
back end, the user does not have direct access to it. Therefore, the web application is built around
a virtual representation of the console and its content, which is updated dynamically with the
updates coming from the back end.

Script number four is mainly focused on that virtual console, but also contains the code for
generating a script from the command history, as well as other helper functions to sanitize the
program state for presentation to the user.

4.5 Implementation 19

Graph Visualization and Editing States. The last script addresses two major aspects of the
application. Both the actual visualization of the state tree structure, and the editing functionality
are implemented in that script.

The visualization is implemented in SVG using D3.js [4]. The visualization represents the State
data structure built from the command history and program states, using D3’s cluster layout
for trees [7]. The update_tree(tree, size) function updating the graph is triggered by a
custom DOM event that is emitted when the underlying data structure changes, and when the
window is resized. This function sorts the nodes, calculates the optimal layout for the screen
size, then updates the position of the nodes and the edges accordingly, with D3’s "data joining"
mechanism [3], binding the data to their representing SVG elements.

The editing functionality can be accessed by clicking on a node while holding the shift-key.
This opens a modal dialog with the interface to edit the state and input, but only if the path the
chosen node is in, does not contain any edited nodes that have not yet been executed by the
console. (The reasoning for this behavior will be explained in section 4.6.)

The commands entered by the user between the current and the previous program state are
isolated and presented in a text field. The script also collects the variables defined in the program
state, excluding functions, classes and modules, since they cannot easily be re-assigned a value.
The remaining variables’ values are also displayed in separate text fields.

If the user chooses to submit changes to the input, the edited text is split into single commands.
For each of those, a new State node is created, forming a chain of State nodes. This chain is ap-
pended to the program state before the original input, and the current program state is appended
to the last of the newly created nodes, replacing the previous command history in the State data
structure.

If instead, the user edits the program state directly through the variables, the submitted pro-
gram state is compared to the original version. If it contains new variables, variables with changed
values, or if variables have been deleted, the edited state is different from the original one. The
actual change is enacted through an added Python command. This command assigns the new
value to updated variables, defines the new variables, and deletes the removed variables, by con-
catenating these statements separated by semi-colons. Finally, the command is wrapped in a new
State node, which is inserted after the original program state, which is equivalent to executing
this generated statement list after the original program state has been reached but before any
commands that come afterwards.

4.5.4 WebSocket Message Protocol
The WebSocket server and the client-side application are both hosted on http://localhost:
8080 as defined in the script, since this proof-of-concept tool is running locally for now. However,
it will not be difficult to change that so that the server is hosted on a different machine and address
than the web application.

The custom message protocol used by the WebSocket connection between the server and the
web application is tailored to the application’s needs. In both directions, it is a JSON string with
a specific set of attributes.

Client to Server

The client-side web application sends messages to the server to tell it what to do.
The two main types are orders directly related to the console status, and orders related to the

user input.
If a message is related to the user input, its type is "command". The content of the message is

the user’s input for the console without a newline. Ideally, it would be a correct Python expression

http://localhost:8080
http://localhost:8080

20 Chapter 4. Approach

or statement, but it is not if the user made a mistake.
The other type that a message from the front end can have, is "console". The content indicates

what the server should do with the console, namely "start", "stop", "check", and "reset".
"start" and "stop" mean to start and stop the console, respectively. "check" means that the
server should reply with the console status, i.e. whether it is running or not. "reset" means
that the server needs to stop and start the console again, with the "file" attribute containing the
sequence of commands that the console should then execute.

{

"type": ["command", "console"],

// if type===command

"content": "python expression/statement w/o newline",

// if type===console

"content": ["start", "stop", "check", "reset"]

// if "content"==="reset"

"file": "binary data from blob"

}

Listing 4.2: Summary of message format for client-to-server.

Server to Client

The message format for the server to send to client-side has more attributes than the other way
around, and the main purpose is to convey information about the console and the read-eval-print-
loop.

The "info" field is filled when the console has been started or stopped successfully, or if it has
failed to do so.

The "status" contains the status of the console, which is either "STARTED" or "STOPPED". It is
sent to the web application when the latter ordered to check the console status.

{

"info": "information related to the request",

// status of the console

"status": ["STARTED", "STOPPED"],

"prompt": [">>> ", "... "],

"stdin": "command entered to stdin",

"stdout": "data read from stdout",

"stderr": "data read from stderr, except for prompts",

"programState": "JSON string representing the program state",

// if stdout, stderr, stdin, or prompt !== undefined,

"id": "number, ID of the responsible input"

}

Listing 4.3: Summary of message format for server-to-client.

4.6 Design Choices and Limitations
Both the design of the application and the actual implementation are just one possible way to
fulfill the requirements. The current architecture is mainly informed by what was feasible to
implement in the time frame of this thesis based on my skill level and experience.

4.6 Design Choices and Limitations 21

In this section we list and describe some limitations and drawbacks of the chosen design and
its implementation, and what might be appropriate solutions for these issues.

Custom Interpreter. The user-written commands are directly piped to the Python console. The
program state is also queried using Python commands in that console. The information that can be
gathered from that data is limited. To extend the functionality and usefulness of the application,
more data is needed. More information about e.g. run-time memory, the evolution of variable
values, and the type of statements, could be used for better user support and assistance.

Editing States. While the application has an editing feature to update existing program states
and commands, it is not technically what users might expect. Typically an editing feature changes
the edited data directly, and there is the possibility to undo more recent changes.

Our application does not handle editing in this way. The main reason is that if the user ed-
its a program state directly, the change would not reflected in the generated script, leading to
confusion when the results are different from what the user expected.

To avoid that, any changes that the user makes to the program state are converted into a
Python command that executes those changes immediately after the original program state has
been reached. Not only does that ensure that a script generated from the command history ac-
tually incorporates the user’s edits, it is also visible to the user in the virtual console and in the
visualization, avoiding any confusion if they forget that they edited something.

There is a drawback to this method however. in Python, attempting to delete an name not
bound to a value raises a NameError exception [21]. If the user edits a state such that a variable
is not defined anymore, either by deleting the variable, or changing the command that defined
it, and the state is in a different branch than the currently active one, the updated history is not
re-executed automatically, and the program states in the State sub-tree of the edited node are not
updated accordingly. Editing any of those nodes to delete the already deleted variable would lead
to an error. To keep this situation from happening, if a program state has been edited, the user has
to execute the new version by restoring that program state or any of its descendant nodes, before
they are allowed to edit another state.

Browser Compatibility and Accessibility. As a web application, it runs in the browser. The
JavaScript and the CSS for the page use some language features not compatible with old browsers
or on mobile devices, but the tool runs successfully on modern desktop browsers.

Accessibility is also important. While the basic user interface of the application is keyboard-
accessible, the visualization is not. This makes some of its major functionalities not usable for
users who do not use a pointing device.

Chapter 5

Conclusion

Conclusion. In this thesis, we planned to implement an interactive environment, where a REPL
is wrapped with a program state and command history management system, complete with an
interactive visualization of the command history and the program states. First, we motivated
this plan by outlining the benefits of interactive programming and REPLs specifically, and then
analyzing areas of improvement.

From that, we extracted the requirements for an implementation of an application that pro-
vides the innate benefits of a REPL with features that improve on its drawbacks.

We then designed a basic client-server architecture, that connects the user of the planned ap-
plication with a console running on a server. The application should present the console input
and output, as well as an interactive graphical representation of the command history and the
resulting program states.

Then we explained the implementation of this design in detail. The server-side Node.js script
manages a REPL, and communicates with the front-end web application through a WebSocket
connection.

We finished the explanation of this approach with a discussion of the design choices and the
resulting implications.

Future Work. Since the application is basically a proof-of-concept, there are many opportunities
to improve and extend it.

On the side of the implementation details, it has to be said that the different parts of the
application, both on the web application and on the Node.js script, are not very well encapsulated.
If the code is to be used and extended further, a refactoring may be necessary. Additionally, the
accessibility features of the user interface are at the bare minimum, and will need improvement
to be usable by users who depend on keyboard navigation or even a screen reader.

The script generation feature is also very basic, only letting users choose the branch of the
command history for which they need the script. This feature has room for expansion, such as
letting users pick and choose lines of code to include in the script, potentially in a block-based
editor.

A vision of a bigger scale is using artificial intelligence to support the user more. If the user is
trying to find a solution to a problem, but is stuck at one point, a digital assistant could provide
hints on where the user has to look.

Finally, another opportunity for extension is to generalize the tool in the programming lan-
guages it supports. Currently, it works with Python’s interactive mode only, however other REPLs
could benefit from such a tool as well.

24 Chapter 5. Conclusion

Bibliography

[1] Jesse Alama and Johannes Korbmacher. The Lambda Calculus. In Edward N. Zalta, edi-
tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
Summer 2021 edition, 2021.

[2] 吴贤燕. What Is mBlock 5? https://www.yuque.com/makeblock-help-center-en/
mblock-5/overview, 2020. [Online; accessed 16-November-2021].

[3] Mike Bostock. Thinking with Joins. https://bost.ocks.org/mike/join/, 2012. [On-
line; accessed 24-November-2021].

[4] Mike Bostock. D3.js - Data-Driven Documents. https://d3js.org/, 2021. [Online; ac-
cessed 22-November-2021].

[5] bpython. About. https://bpython-interpreter.org/about.html, 2020. [Online;
accessed 17-November-2021].

[6] bpython. Home. https://bpython-interpreter.org/, 2021. [Online; accessed 17-
November-2021].

[7] d3. d3-hierarchy. https://github.com/d3/d3-hierarchy/tree/v3.0.1#cluster,
2021. [Online; accessed 24-November-2021].

[8] Google Developers. Blockly | Google Developers. https://developers.google.com/
blockly, 2021. [Online; accessed 15-November-2021].

[9] Merriam-Webster.com Dictionary. Program | Definition of Program by Merriam-Webster.
https://www.merriam-webster.com/dictionary/program, 2021. [Online; ac-
cessed 29-October-2021].

[10] Henning Dieterichs. An extension for VS Code that visualizes data during debugging.
https://github.com/hediet/vscode-debug-visualizer, 2021. [Online; accessed
18-November-2021].

[11] Henning Dieterichs. Debug Visualizer. https://marketplace.visualstudio.com/
items?itemName=hediet.debug-visualizer, 2021. [Online; accessed 18-November-
2021].

[12] A. D. Falkoff and K. E. Iverson. The APL\360 Terminal System. In Symposium on Interactive
Systems for Experimental Applied Mathematics: Proceedings of the Association for Computing Ma-
chinery Inc. Symposium, page 22–37, New York, NY, USA, 1967. Association for Computing
Machinery.

https://www.yuque.com/makeblock-help-center-en/mblock-5/overview
https://www.yuque.com/makeblock-help-center-en/mblock-5/overview
https://bost.ocks.org/mike/join/
https://d3js.org/
https://bpython-interpreter.org/about.html
https://bpython-interpreter.org/
https://github.com/d3/d3-hierarchy/tree/v3.0.1#cluster
https://developers.google.com/blockly
https://developers.google.com/blockly
https://www.merriam-webster.com/dictionary/program
https://github.com/hediet/vscode-debug-visualizer
https://marketplace.visualstudio.com/items?itemName=hediet.debug-visualizer
https://marketplace.visualstudio.com/items?itemName=hediet.debug-visualizer

26 BIBLIOGRAPHY

[13] Logo Foundation. A Logo Primer. https://el.media.mit.edu/logo-foundation/
what_is_logo/logo_primer.html, 2015. [Online; accessed 12-November-2021].

[14] OpenJS Foundation. Node.js. https://nodejs.org/en/, 2021. [Online; accessed 22-
November-2021].

[15] OpenJS Foundation. Stream | Node.js v17.1.0 Documentation. https://nodejs.org/
api/stream.html, 2021. [Online; accessed 22-November-2021].

[16] Python Software Foundation. 1. Command line and environment. https://docs.
python.org/3/using/cmdline.html, 2021. [Online; accessed 17-November-2021].

[17] Python Software Foundation. 14. Interactive Input Editing and History Substitution. https:
//docs.python.org/3/tutorial/interactive.html, 2021. [Online; accessed 17-
November-2021].

[18] Python Software Foundation. 16. Appendix. https://docs.python.org/3/tutorial/
appendix.html#interactive-mode, 2021. [Online; accessed 17-November-2021].

[19] Python Software Foundation. 2. Lexical analysis. https://docs.python.org/3/
reference/lexical_analysis.html#indentation, 2021. [Online: accessed 9-
November-2021].

[20] Python Software Foundation. 2. Using the Python Interpreter. https://docs.python.
org/3/tutorial/interpreter.html, 2021. [Online; accessed 7-November-2021].

[21] Python Software Foundation. 7. Simple statements. https://docs.python.org/3/
reference/simple_stmts.html, 2021. [Online; accessed 25-November-2021].

[22] Python Software Foundation. ast – Abstract Syntax Trees. https://docs.python.org/
3/library/ast.html, 2021. [Online; accessed 18-November-2021].

[23] Python Software Foundation. code – Interpreter base classes. https://docs.python.
org/3/library/code.html, 2021. [Online; accessed 18-November-2021].

[24] Python Software Foundation. General Python FAQ. https://docs.python.org/3/
faq/general.html, 2021. [Online; accessed 8-November-2021].

[25] Python Software Foundation. pdb – THe Python Debugger. https://docs.python.
org/3/library/pdb.html, 2021. [Online; accessed 17-November-2021].

[26] Python Software Foundation. PyPI: The Python Package Index. https://pypi.org/,
2021. [Online: accessed 9-November-2021].

[27] Python Software Foundation. Python Language Services. https://docs.python.org/
3/library/language.html, 2021. [Online; accessed 18-November-2021].

[28] Python Software Foundation. The Python programming language. https://github.
com/python/cpython, 2021. [Online: accessed 10-November-2021].

[29] Python Software Foundation. The Python Standard Library. https://docs.python.
org/3/library/index.html, 2021. [Online: accessed 9-November-2021].

[30] Scratch Foundation. About Scratch. https://scratch.mit.edu/about, 2021. [Online;
accessed 14-November-2021].

https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://el.media.mit.edu/logo-foundation/what_is_logo/logo_primer.html
https://nodejs.org/en/
https://nodejs.org/api/stream.html
https://nodejs.org/api/stream.html
https://docs.python.org/3/using/cmdline.html
https://docs.python.org/3/using/cmdline.html
https://docs.python.org/3/tutorial/interactive.html
https://docs.python.org/3/tutorial/interactive.html
https://docs.python.org/3/tutorial/appendix.html#interactive-mode
https://docs.python.org/3/tutorial/appendix.html#interactive-mode
https://docs.python.org/3/reference/lexical_analysis.html#indentation
https://docs.python.org/3/reference/lexical_analysis.html#indentation
https://docs.python.org/3/tutorial/interpreter.html
https://docs.python.org/3/tutorial/interpreter.html
https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/code.html
https://docs.python.org/3/library/code.html
https://docs.python.org/3/faq/general.html
https://docs.python.org/3/faq/general.html
https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html
https://pypi.org/
https://docs.python.org/3/library/language.html
https://docs.python.org/3/library/language.html
https://github.com/python/cpython
https://github.com/python/cpython
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://scratch.mit.edu/about

BIBLIOGRAPHY 27

[31] Scratch Foundation. Scratch - Imagine, Program, Share. https://scratch.mit.edu/,
2021. [Online; accessed 14-November-2021].

[32] The R Foundation. The R Project for Statistical Computing. https://www.r-project.
org/, 2021. [Online; accessed 7-November-2021].

[33] D.A. Grier. The ENIAC, the verb "to program" and the emergence of digital computers. IEEE
Annals of the History of Computing, 18(1):51–55, 1996.

[34] Thomas E. Kurtz. BASIC, page 515–537. Association for Computing Machinery, New York,
NY, USA, 1978.

[35] Georg P. Loczewski. Origin. https://aplpl-intro.aplusplus.net/node17.html,
2004. [Online; accessed 12-November-2021].

[36] Georg P. Loczewski. A++: The Smallest Programming Language in the World. https:
//aplpl-intro.aplusplus.net/index.html, 2018. [Online; accessed 12-November-
2021].

[37] Makeblock. mBlock - One-Stop Coding Platform for Teaching and Learning. hhttps://
mblock.makeblock.com/en-us/, 2021. [Online; accessed 16-November-2021].

[38] John W. Mauchly. The Use of High Speed Vacuum Tube Devices for Calculating, pages 355–358.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1982.

[39] J. McCarthy, R. Brayton, D. Edwards, P. Fox, L. Hodes, D. Luckham, K. Maling, and D. Park S.
Russell. Lisp I programmer’s manual. Computation Center and Research Laboratory of Elec-
tronics (MIT), Cambridge, Massachusetts, 03 1960. [Online, accessed 12 October 2020].

[40] Microsoft. Visual Studio Code - Code editing. Redefined. https://code.
visualstudio.com/, 2021. [Online; accessed 18-November-2021].

[41] Inc. Ozo EDU. OzoBlockly | OzoBot. https://ozobot.com/create/ozoblockly,
2021. [Online; accessed 15-November-2021].

[42] Inc. Ozo EDU. Ozobot | Robots to code and create with. https://ozobot.com/, 2021.
[Online; accessed 15-November-2021].

[43] Richard E. Pattis. Karel The Robot: A Gentle Introduction to the Art of Programming. John Wiley
& Sons, New York, 2nd edition, July 1994.

[44] Fernando Pérez and Brian E. Granger. IPython: a system for interactive scientific computing.
Computing in Science and Engineering, 9(3):21–29, May 2007.

[45] prompt toolkit. A better Python REPL. https://github.com/prompt-toolkit/
ptpython, 2021. [Online; accessed 18-November-2021].

[46] David Canfield Smith, Allen Cypher, and Jim Spohrer. Kidsim: Programming agents without
a programming language. Commun. ACM, 37(7):54–67, July 1994.

[47] The IPython Development Team. IPython Documentation. https://ipython.
readthedocs.io/en/stable/index.html, 2021. [Online; accessed 17-November-
2021].

https://scratch.mit.edu/
https://www.r-project.org/
https://www.r-project.org/
https://aplpl-intro.aplusplus.net/node17.html
https://aplpl-intro.aplusplus.net/index.html
https://aplpl-intro.aplusplus.net/index.html
hhttps://mblock.makeblock.com/en-us/
hhttps://mblock.makeblock.com/en-us/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://ozobot.com/create/ozoblockly
https://ozobot.com/
https://github.com/prompt-toolkit/ptpython
https://github.com/prompt-toolkit/ptpython
https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/index.html

28 BIBLIOGRAPHY

[48] L. Thomas van Binsbergen, Mauricio Verano Merino, Pierre Jeanjean, Tijs van der Storm,
Benoit Combemale, and Olivier Barais. A principled approach to repl interpreters. In Pro-
ceedings of the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2020, page 84–100, New York, NY, USA,
2020. Association for Computing Machinery.

[49] Guido van Rossum. A Brief Timeline of Python. http://python-history.
blogspot.com/2009/01/brief-timeline-of-python.html, 2009. [Online; ac-
cessed 8-November-2021].

[50] Guido van Rossum, Barry Warsaw, and Nick Coghlan. PEP 8 – Style Guide for Python
Code. https://www.python.org/dev/peps/pep-0008/, 2001. [Online: accessed 9-
November-2021].

[51] Bill Venners. The Making of Python. A Conversation with Guido van Rossum, Part I. https:
//www.artima.com/articles/the-making-of-python, 2003. [Online; accessed 8-
November-2021].

[52] Wikipedia contributors. BASIC — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/w/index.php?title=BASIC&oldid=1047128882, 2021. [Online; ac-
cessed 12-November-2021].

[53] Wikipedia contributors. Live coding — Wikipedia, the free encyclopedia, 2021. [Online;
accessed 25-November-2021].

http://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
http://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
https://www.python.org/dev/peps/pep-0008/
https://www.artima.com/articles/the-making-of-python
https://www.artima.com/articles/the-making-of-python
https://en.wikipedia.org/w/index.php?title=BASIC&oldid=1047128882
https://en.wikipedia.org/w/index.php?title=BASIC&oldid=1047128882

	Introduction
	Background
	Interactive Consoles
	REPL Definition
	Examples

	Python
	Features

	Related Work
	Educational Programming Languages
	Text-Based EPLs
	Graphical EPLs
	Block-Based EPLs

	Third-Party Python Consoles
	Other Tools
	Python Standard Library
	Dynamic Visualization of Data Structures with Debug Visualizer

	Approach
	Requirements
	User Stories
	Personas
	Stories

	Features
	Visualization of Command History
	Branching
	Editing Input And Program State
	Generating a Script

	Model
	Console
	Back End
	Front End

	Implementation
	Console
	Back End
	Front End
	WebSocket Message Protocol

	Design Choices and Limitations

	Conclusion

